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1 Introduction

The sensor revolution only began in earnest during the past decade, and yet the number of devices

that monitor our physical environment and convert that data into a digital signal in real-time is

remarkable, providing what the US National Science Foundation calls the world’s ‘first electronic

nervous system’ (NSF 2004). While most of these sensors are used by governments, firms, or

consumers for purely private purposes, a surprising number also broadcast information in the form

of public or quasi-public goods. This includes crowd-sourced data on transportation conditions,

criminal activities, as well as weather and other environmental conditions. The Internet of Things

and expansion of 6G mobile networks will only serve to increase their prevalence (Imoize et al.

2021; Ang et al. 2022). One interesting feature of the markets for these public-facing sensors is

that knowledge spillovers should influence their geographic spread while, at the same time, wealth

and other constraints will influence the overall distribution of information across the population.

In this paper, we study the adoption and diffusion of one such high-quality sensor — the PurpleAir

(PA) monitor — which is sold directly to consumers and measures local air pollution levels.1

The PA market is interesting for at least two reasons. First, air pollution is the 4th largest

cause of death globally, leading to 6.7 million premature deaths per year (HEI 2020; Fuller et al.

2022). Since the birth of the environmental movement in the 1960s, most of the regulatory efforts to

address this problem have focused on reducing emissions. At the same time, there is an increasing

realization that individuals play an important role in their exposure to pollution. In particular,

they can engage in temporal avoidance by altering activities on more polluted days, with evidence

amassing to indicate that information about air quality leads to changes in behavior (Burke et al.

2022).2 Doing so effectively, however, requires having real-time pollution data at suitable spatial

scales. Regrettably, official government air quality monitoring networks tend to be quite sparse: the

US, which has the largest network in the world, has approximately 1 monitor per 750 square miles.

In India, that number drops to approximately 1 monitor per 3000 square miles (Guttikunda et al.

2023). Fortunately, the sensor revolution has made inexpensive and reliable air quality monitoring

increasingly available, with the promise of measurement at a much finer level of spatial aggregation.3

Second, PA produces a high-quality monitor that is sold directly to consumers at an approximate

retail cost ranging from $180-$250 US. One particularly interesting feature of this product is that

its default setting broadcasts its measures of geocoded pollution through the PA website and app,

thereby making that information a local public good. Thus, the extent to which these monitors

improve the accuracy of the official monitoring network at fine spatial scales depends on the pattern

of monitor adoption. From a purely informational perspective, the ideal spacing of monitors should

1The Air Quality Sensor Performance Evaluation Center, maintained by the California South Coast Air Qual-
ity Management District, found that PA sensor data was highly correlated with standard reference measures in a
controlled laboratory setting (see Krebs et al. (2021) for more details).

2In the long-run, wealthier individuals may also sort into less polluted locations (Banzhaf and Walsh 2008).
3At the same time, we are seeing tremendous advances in the measurement of pollution using satellite-based data

(Van Donkelaar et al. 2021). While that data also provides unprecedented levels of spatial detail, the steps involved
in producing it limit the temporal resolution to a monthly scale and cause significant lags in the release of data.
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reflect the degree of spatial correlation in pollution. Other factors that may also influence private

adoption include income, preferences, and the perceived benefits from hyper-localized air quality

measurement. The goal of this paper is to characterize the diffusion of monitors over time and to

assess the degree to which that pattern aligns with one that is focused exclusively on a value-of-

information approach.4

Our paper reveals several interesting patterns regarding monitor adoption. First, we find high

spatial correlations between the readings of monitors placed outdoors within the same census tract.

Despite these correlations, we observe high spatial clustering of monitors: 19.5% of census tracts

have at least 1 outdoor monitor per square mile, and 5.2% of census tracts have over 5 outdoor

monitors per square mile, resulting in high levels of information redundancy. This suggests that the

marginal outdoor monitor provides limited additional information. In stark contrast, we find low

correlations between readings of monitors placed indoors, which is sensible given the contributions

of household-specific sources to indoor pollution concentrations. This suggests that the marginal

indoor monitor provides high levels of information, but largely as a private value to the homeowner,

making the high levels of spatial clustering that we observe more rationalizable in this private good

setting.

To better understand the factors behind this clustering, we examine census tract characteristics

correlated with monitor adoption, and uncover several interesting findings. As with many new

devices, we find that monitor purchases are increasing in income. This finding that monitors are a

normal good alone is unsurprising but implies that the placement of monitors may actually increase

health inequalities — if monitors enable people to improve their health through avoidance behavior,

then the benefit from these monitors are more likely to accrue to the higher income individuals

that adopted them. This logic also underlies another more interesting pattern: monitors are more

present in less polluted areas, presumably due to residential sorting driven by income. This pattern

of adoption reduces the social value from these monitors, since the places that would benefit the

most from information that could encourage pollution avoidance behavior are precisely the ones

least likely to have this information. We also find that monitor adoption is lowest in areas with a

higher share of Black or Hispanic populations, suggesting the monitors create racial inequality in

access to pollution information as well.

We delve further into these findings by exploring dynamic patterns of monitor adoption, first

exploring how changes in pollution relate to monitor purchases. Although our cross-sectional results

indicate that monitors are more present in less polluted areas, we find that increases in pollution

within an area — notably from wildfires — lead to increases in monitor purchases. These findings

are consistent with Bayesian learning, in which households update their beliefs about the value of

a monitor as new pollution shocks occur.

4Our analysis mirrors the extensive literature on technology adoption and diffusion which began with Zvi
Griliches’s seminal work on hybrid corn (Griliches 1957) and has been extended to examine the modern technologies
of our digital economy (e.g., Caselli and Coleman 2001) with one important distinction. Our analysis focuses on
the adoption of a technology that provides public goods, which greatly complicates the spatial elements of diffusion
relative to this prior literature that has examined goods whose value is largely private. See Hall (2004) for a review
of the core issues and challenges.

2



In the dynamic specification we also explore peer effects by including the lagged cumulative

number of monitors within a tract as a control variable. We find that past monitor purchases

by peers within a tract is highly predictive of current purchases. Such results may reflect true

peer effects, whereby individuals learn about these monitors from their neighbors, or unobserved

correlates that drive the monitor purchases of all households within a neighborhood, such as a taste

for new technology.

Given the low marginal informational value of each additional outdoor monitor in a nearby

location, we explore several possible drivers behind the strong patterns of clustering. We largely rule

out explanations based on incomplete information. The process behind monitor purchase decisions,

where customers must visit the PA website, makes it unlikely that consumers are unaware of the

correlation between proximate monitors. Consistent with this, we find that additional monitors

placed within a tract do not improve measures of pollution variability within the tract. Of course,

a high correlation on average does not necessarily mean that monitors are highly correlated at all

points in the pollution distribution, suggesting that the clustering of monitors may be justified

based on an option value approach.

We extend this exercise to explore the correlation of monitor readings along various points in

the pollution distribution but find minimal evidence to support an option value explanation. The

residual explanation for this pattern of monitor clustering relies on spatial clustering in preferences,

although we cannot test these explanations directly. Technophiles may purchase monitors for rea-

sons that are quasi-independent from the value of information that the monitor provides, including

a competitive desire to ‘keep up with the Joneses’ and thus drive high levels of spatial correlation

in monitor adoption.

Although the sensor revolution holds promise to greatly improve lives, our results suggest that

a market-based allocation leads to suboptimal information provision. We recognize the challenge

in inferring welfare without knowing the full value from monitor adoption, and revealed preferences

suggest consumers are better off purchasing them. Nonetheless, an optimal policy based on a value

of information approach will require supplemental provision of monitors where the private market

falls short. The efficiency of any such policy will, of course, depend on design features that limit

the crowding out of private purchases, underscoring the need to better understand the drivers of

private market adoption in the first place.

These shortcomings of market-based information provision also have implications for environ-

mental justice. Given the spatial variation in pollution levels, publicly provided air quality monitors

provide a local public good in which the informational value of a monitor declines with distance.

Privately provided monitors, which supplement the publicly provided monitors, provide the most

value in the areas where they are placed. Since their placement occurs in wealthier, Whiter, and

cleaner areas, the private market for monitors leads to inequality in access to information, a pattern

that could be alleviated through coordinated monitor placement.
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2 Background and Data

We focus our analysis on ambient particulate matter less than 2.5 microns in diameter (PM2.5),

small particles that have severe negative health consequences when inhaled (EPA 2023b). PM2.5

comes from both outdoor and indoor sources. Outdoor sources include agricultural processes,

industrial combustion, power plants, and transportation, but also non-anthropogenic sources, such

as wildfire smoke (McDuffie et al. 2021). In the indoor environment, PM2.5 originates from outdoor

sources that infiltrate indoors5, as well as from indoor sources such as cooking (EPA 2023a).6

Information about outdoor vs. indoor pollution has distinct implications for short-run adaptive

behavior. The level of outdoor PM2.5 in a given location is not controllable by the individual. Thus,

avoidance must come from changing the type or location of one’s activities, such as staying inside

or spending time in less polluted areas (e.g., Neidell 2009; Burke et al. 2022). Indoors, however,

people can control the level of pollution through various behavioral responses. They can alter

their contribution to indoor emissions through cooking decisions or reduce emissions by running

air purifiers or opening windows (as long as outdoor levels are lower than indoor levels) (Metcalfe

and Roth 2024).

Measures of outdoor and indoor monitor adoption come from the PurpleAir Real-Time Air

Quality Monitoring Network. PA monitors report PM2.5 estimates from laser-based particle counts.

The monitors are not approved by the EPA for regulatory purposes but have proven to be highly

reliable in performance evaluations (AQMD 2019) and have recently been adopted by the EPA as an

informational tool (EPA 2022).7 PA monitors lack a display and must be connected to the internet

for the owner to obtain PM2.5 readings.8 Once installed, the monitors upload their readings to the

PA website, where the purchaser and anyone else can freely access the monitor readings, unless the

owner actively opts-out of the default public setting.

We downloaded daily readings9 of California-based PA monitors for the years 2019-2021 from

both outdoor and indoor monitors.10 This time period includes major wildfire events like the August

Complex fire in 2020, which allows us to assess the impact of sustained elevated PM2.5 levels on

monitor adoption. The GPS coordinates of the monitor allow us to identify the census tract in

which the monitor resides11, enabling us to measure the placement of monitors relative to each

other and to merge other spatial information. Indeed, PA monitors have proliferated extensively in

5Using PA data, Krebs et al. (2021) show that outdoor PM2.5 enters the indoor environment quickly and to a
large extent.

6Cooking contributes to PM2.5 not through the kind of stove used but through the foods cooked and types of
cookware used.

7Data from PA monitors are now available as a layer in Google Maps.
8A more recent monitor design provides a display of pollution levels, but this feature became available after our

analysis period.
9PM2.5 readings are reported at 2-minute intervals, but PA provides pre-aggregated data.

10When customers install their PA monitor, they self-report whether it is installed outdoors or indoors. On the
PA website, indoor monitors are denoted by a bold ring around the pollution readings.

11Purchasers can elect to toggle their exact location randomly by 500 feet, then the random location becomes
fixed at the time of installation. This introduces a classical measurement error that reduces precision in all estimates
and introduces attenuation for the dynamic estimates.

4



California, increasing from 947 outdoor and 247 indoor monitors in January 2019 to 7506 outdoor

and 3876 indoor monitors in December 2021, a nearly 10-fold increase. This growth is illustrated

in Appendix Figure A1, which also highlights the monitors’ uneven distribution across the state,

with higher concentrations in major metropolitan areas.

We merge three other sources of data to the PA data. Using the census tract where the monitor

is placed, we first merge various demographic variables from the 2019 American Community Survey.

Since monitors are endogenously located, making pollution measures a select sample, we also merge

satellite-derived data on PM2.5 concentrations from Van Donkelaar et al. (2021), which provides

measures of monthly data at the 0.01◦ × 0.01◦ level for the entire globe, corresponding to less than

one square mile in California. We merge this to the census tract by calculating the weighted average

of overlapping grid cells, where the weights reflect the share of the tract coinciding with a grid cell.

Using the exact coordinates of official EPA air quality monitors, we calculate the distance from

the geographic centroid of the census tract to the closest EPA PM2.5 monitor. Table A1 reports

the means and standard deviations of these variables for all census tracts in California. As might

be expected with a new technology, those tracts with at least one monitor are different than those

without any, which we explore directly in our estimation of the drivers of monitor adoption.

To highlight the additional information provided by the placement of a new monitor, Figure 1

presents a scatter plot of the census tract-level average PM2.5 concentrations in 2021 for monitors

operational in January 2019 vs. monitors added to the same tract in between February 2019 and

December 2020, separately for outdoor (a) and indoor (b) monitors. The plot reveals distinct

correlations between outdoor and indoor monitors, with a correlation of 0.85 between proximate

outdoor monitors and 0.22 for proximate indoor ones. These differences yield two important points

regarding the marginal value of outdoor vs. indoor monitors. First, since measurements from

outdoor monitors close to each other are highly correlated, the additional public informational

value of a new outdoor monitor close to existing monitors is low, implying information is increasing

in the distance from the nearest monitor. Second, since indoor monitors close to each other are

not highly correlated, the additional private informational value from a new indoor monitor is

high regardless of its proximity to surrounding monitors. This is not surprising because of the

role of indoor sources in contributing to pollution levels. Therefore, from a purely informational

perspective, the clustering of indoor monitors provides high private value, whereas the clustering

of outdoor monitors provides low value.

3 Econometric model

Our empirical focus is to estimate the influence of several factors on outdoor or indoor monitor

adoption. Several features guide our specification. Given the differential value of outdoor vs. indoor

monitors, we estimate models separately for each. Since the price of PA monitors has been relatively

stable over time, we assume a constant supply and specify a single equation model. We treat the

number of monitors within a tract as count data and estimate a Poisson pseudo-maximum likelihood
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regression model, which relaxes the assumption that the mean equals the variance (Gourieroux et al.

1984). We report the exponentiated coefficients from this regression, which reflect the incidence rate

ratio, then subtract 1 from these coefficients to reflect the percentage change in monitor prevalence

from a one-unit change in an independent variable.

We begin by estimating a static, cross-sectional model according to the following equation:

M j
c = exp(X ′

cδ
j
1 + P ′

cβ
j
1 + S′

cγ
j
1 + X̃ ′

cδ̃
j
1 + εjc) (1)

M j
c refers to the total number of monitors in census tract c by the end of 2021 in j = {outdoor, indoor}

setting. Xc contains a subset of the census tract demographic of particular interest, described in

more detail below. The vector Pc includes two satellite-derived pollution measures: the average

and the standard deviation of PM2.5 concentrations over the 2019-2021 period. Sc is the distance

from the census tract centroid to the closest EPA monitor in miles. εc denotes the error term.

Our analysis concentrates on several variables as potential drivers of monitor adoption. Since

monitor adoption is likely a normal good, we focus on household income as a predictor of monitor

demand. Education serves as a proxy for consumer awareness of this relatively new product, though

its impacts may differ for indoor and outdoor monitors given their different informational value.

Local pollution levels also likely influence monitor adoption, where the value of monitors is higher

in more polluted areas. To explore potential environmental justice angles, we also explore the role

of Black and Hispanic population shares in monitor adoption.

This analysis is a descriptive one. We recognize that many factors likely confound the rela-

tionship between these characteristics and monitor adoption. For example, individuals with higher

health risks from pollution exposure may be more likely to live in cleaner areas but also more likely

to purchase monitors. Given the cross-sectional nature of our analysis, we cannot definitively rule

out these concerns. We nonetheless enhance this model by including the remaining census tract

variables from Table A1 in the vector X̃c, and probe the sensitivity of estimates to their inclusion.

The analysis of race and ethnicity, however, is a notable exception, since these characteristics

are likely be influenced by the economic variables included in our regression models. For example,

discrimination in the labor market may lead to lower wages for certain racial and ethnic minorities,

such that income may be a potential mediator affecting monitor adoption. As a result, models

that include both race and income are difficult to interpret because income would constitute a ‘bad

control’ (Angrist and Pischke 2009) that leads to an overcontrol bias (Cinelli et al. 2022). To address

this issue, we present models that include race and ethnicity in addition to the other variables, but

we also estimate models that only include race and ethnicity to obtain estimates of the composite

impact of these characteristics. This composite impact reflects the effects of race directly as well

as the impacts of race on income and education, due to systemic injustices, on adoption decisions.

Both measures shed important light on potential environmental justice concerns related to the

private provision of this local public good.

We further extend our static analysis to explore dynamic patterns of monitor adoption, esti-
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mating the following equation:

M j
ct = exp([

∑t−1
k=0M

′
ck]α

j
2 + L(P ′

ct)λ
j
2 +X ′

cδ
j
2 + P ′

cβ
j
2 + S′

cγ
j
2 + X̃ ′

cδ̃
j
2 + θjt + εjct) (2)

M j
ct denotes the number of new monitors added in tract c in month t in j = {outdoor, indoor}

setting. The summation term measures the cumulative monitor base in the past month, i.e., the

total number of monitors online in the previous month. By including the cumulative number of

monitors, we examine the influence of prior monitor adoption by neighbors on current monitor

adoption. As more households in a given tract purchase monitors, this may increase the awareness

and appeal of the monitor, leading to a potential peer effect.

We include separate measures of cumulative outdoor and indoor monitors in each equation to

explore if own-product and cross-product prior adoption have differential impacts. Although we

establish temporal precedence between past and new monitor adoption, peer effects are likely to

be endogenous and hence challenging to identify (Manski 1993). For example, unobserved factors

within a tract, such as a preference for new gadgets, may lead to more monitor purchases both

in the past and currently. As a result, we interpret the coefficient of α2 as an endogenous peer

effect that captures both the exogenous peer effect component and the impact of unobserved factors

common to peers.

We control for changing pollution levels within a tract in the term L(Pct), which we specify

as the current and past month average PM2.5 levels separately. These terms allow us to explore

potential learning about pollution levels. Although long-term pollution levels can influence monitor

adoption, short-term changes in pollution levels may lead consumers to update their beliefs about

pollution or increase the salience of pollution concerns, thus influencing demand (Burke et al.

2022). For example, spikes in pollution driven by high-pollution events, such as wildfires, may lead

to a surge in monitor demand. Our controls for pollution levels in the same and previous month

enable us to explore whether people updated their beliefs about pollution levels based on these new

experiences.

We continue to control for the same factors as in the static equation, though their interpretation

changes considerably since the dependent variable is the number of new monitors added in a given

month. We also include year-season dummy variables (θt) to account for time trends, and we cluster

regressions on the census tract to account for arbitrary serial correlation within tracts.

4 Results

We begin with visual evidence for monitor clustering by mapping active outdoor and indoor pollu-

tion monitors, zooming in on the San Francisco Bay Area.12 Figure 2 shows monitor placement as

of December 2021, along with several tract-level measures. Panel (a) shows that monitors, while

12We also calculate Moran’s I, a measure of spatial autocorrelation, at the monthly level for outdoor and indoor
monitors in the entire state. Over the three-year time period, Moran’s I increased from 0.20 to 0.49 for outdoor
monitors and from 0.12 to 0.48 for indoor monitors, indicating high levels of clustering.
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highly correlated, are more prevalent in some areas than in others, with San Francisco and Berkeley

clearly having higher monitor densities than San Jose and Fremont. As Panel (b) shows, monitors

cluster in places with high income, suggesting that monitors are, unsurprisingly, a normal good.

This clustering by income is potentially concerning. Panels (c) and (d) demonstrate that monitor

adoption is denser in areas with relatively good air quality and higher White population shares,

respectively, suggesting potential inequality concerns.

Our static regression results, shown in Table 1, build on the visual evidence just discussed by

expanding our focus to the entire state and adjusting for additional control variables. Recall that we

provide the incidence-rate ratio from the Poisson model in Equation 1, where subtracting 1 yields

the percentage change in the dependent variable from a one-unit change in the explanatory variable.

Columns 1-3 refer to outdoor monitors and Columns 4-6 refer to indoor monitors. Columns 2 and

4 include the additional demographic controls in X̃c to assess the sensitivity of our estimates, while

Columns 3 and 6 isolate the race and ethnicity variables.

As expected, we find that tracts with higher incomes have more monitors. This pattern is

true for both outdoor and indoor monitors, with estimates of comparable magnitude across the

two models. A $10,000 increase in household income correlates with a statistically significant 4%

increase in the number of monitors in the tract. The estimates for income are quite stable to the

addition of further demographic controls.

Monitor adoption also increases with education levels. As the share of the population with

a bachelor’s degree increases by 0.1, outdoor monitor adoption increases by 28%. The estimate

for indoor monitors implies an astonishing rise of 712%. The difference in magnitude between

the outdoor and indoor equations could reflect understanding about the difference in the marginal

value of a monitor, whereby indoor monitors provide high value regardless of the presence of nearby

monitors. This difference in value from monitor placement may not be readily understood by many

people, and additional schooling could be an important factor in understanding this difference.

These estimates are sensitive to adding more demographic controls, though they remain statistically

significant and in the same direction.

Turning to the results by race and ethnicity, we first focus on the unadjusted models, where

the coefficients reflect the composite impact of race and ethnicity on monitor adoption described

earlier. These results, shown in Columns 3 and 6, indicate a large impact of race and ethnicity. As

the Black population share increases by 0.1, we estimate a 10% decrease in outdoor monitors and

an 8% decrease in indoor monitors. Similar estimates for the Hispanic population share indicate a

10% decrease for both outdoor and indoor monitors. As we add additional control variables, shown

in Columns 2 and 5, the coefficients on race change considerably and with different patterns across

monitor placement. For outdoor monitors, estimates continue to show a decrease in monitor pur-

chases for both Black and Hispanic populations, though smaller in magnitude than the unadjusted

estimates. For indoor monitors, we do not find a statistically significant estimate for more Hispanic

areas, and we find an increase in purchases for areas with more Black residents. As previously

discussed, many of these control variables may lead to overcontrol bias by capturing the mediating
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path by which race and ethnicity affects monitor adoption, so we interpret these adjusted results

with caution.

Focusing on pollution levels, we find that cleaner areas have significantly higher rates of monitor

adoption. A 1 µg/m3 lower level of PM2.5 increases outdoor monitors by 33% and increases indoor

monitors by 36%. This result is striking. In areas where pollution is the highest, and thus avoidance

behaviors are potentially the most effective, people have less knowledge of their pollution levels,

even when conditioning on income and education. Perhaps more economically rational, areas with

more variation in pollution have more monitors. A one-standard-deviation change in PM2.5 leads

to 17% and 23% increases in outdoor and indoor monitors, respectively, suggesting that variation

in pollution is an important factor in driving people to learn about pollution levels. The closer the

census tract is to an official EPA monitor, the fewer monitors are present in that tract. Conditional

on our full set of controls, a census tract that is 1 mile closer to an EPA monitor has 0.8% fewer

outdoor monitors, consistent with the notion that PA monitors are a substitute for EPA monitors.

We also find that indoor monitor adoption falls in census tracts closer to an EPA monitor, suggesting

that consumers also view them as substitutes — perhaps because the salience of the EPA monitor

makes a personal one, even if placed indoors, feel less valuable.

We next turn to the dynamic results, displayed in Table 2, first focusing on endogenous peer

effects. For own-product impacts, we find that monthly monitor purchases increase with the cu-

mulative number of monitors within that tract. One additional outdoor monitor purchased in the

past leads to a 11% increase in current outdoor monitor purchases within a census tract. The

comparable estimate for indoor monitors is 6%. This endogenous peer effect underpins the spatial

clustering shown in previous figures.

In terms of cross-product impacts, we obtain different results for outdoor and indoor monitors.

Current outdoor monitor adoption is unrelated to past indoor monitor purchases. The estimates

are statistically insignificant and, at less than one percent, small in magnitude. Current indoor

purchases, however, are strongly related to past outdoor monitor purchases, indicating an 8%

increase from one additional outdoor monitor. Since placing monitors indoors produces high private

value, we speculate that the differential result by monitor placement indicates that people learn

about monitors regardless of where they are placed, but that they correctly infer the high private

value from a monitor placed indoors and the low private (and public) value from placing a monitor

outdoors.

We next focus on contemporaneous and lagged PM2.5 to explore potential learning. As PM2.5

levels increase, we find statistically significant increases in both outdoor and indoor monitor adop-

tion, with a larger impact on indoor monitor adoption (2.2% vs. 1.1% increase). Furthermore, the

impact from the current month is larger than the past month for both outdoor and indoor monitors.

These results are consistent with people learning about pollution levels over time, leading to an

increase in monitor purchases.

Taking stock of our results, the adoption pattern for indoor monitors is consistent with an

economic model in which adoption decisions are driven by information value, whereas the pattern
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for outdoor monitors is somewhat puzzling given their low private value. What might explain the

clustering of outdoor monitors?

One possible explanation is incomplete information, whereby people are unaware of the high

spatial correlation in outdoor pollution and thus the monitor’s low marginal value. While this is

plausible for early adopters, it seems unlikely beyond the first handful of monitors within a tract.

Purchasing a monitor requires consumers to visit the PA website, where they are confronted with

data showing all the monitor readings near their home. If a household member sees that measures

are highly correlated within their tract, this should make clear to them that purchasing another

outdoor monitor will provide limited additional information. As a test of this, we regress the PM2.5

measures from the first monitor on subsequent monitors, sequentially adding each new monitor to

the regression.13 The black dots in Figure 3 display the absolute R2 (top panel) and the change in

R2 (bottom panel) as more monitors are added in a tract. The R2 hovers around 0.9 regardless of

the number of monitors, scarcely changing as more monitors are added to a tract. This confirms

that additional monitors provide minimal information, thus making incomplete information an

unlikely explanation for our main results.

Another potential driver of this pattern of adoption is option value. Our results thus far

have shown that geographically proximate monitors are highly correlated on average, but adopters

may be more concerned about correlation at particular points in the pollution distribution. In

particular, we might imagine that consumers are most concerned with high pollution days, and

it may well be that hyper-localized information is more valuable in those cases. To assess the

plausibility of such an explanation, we extend the previous analysis to measure the same R2 but

focus on pollution readings in the 75th and 90th percentile (instead of the mean) of the pollution

distribution. These results, also shown in Figure 3, show somewhat lower R2 levels for the first

few monitors compared to the mean, though the values are still quite high. By the fourth monitor,

however, the differences between these percentiles and the mean disappear. This suggests that the

option value from additional monitors, at least beyond the first few in a locality, is quite low.

Other possible explanations for the clustering of outdoor monitors rely on non-random sorting

of individuals into neighborhoods that leads to spatial clustering in preferences. For example,

technophiles — individuals who have a penchant to adopt all kinds of new technologies — may

choose to live near each other and also be more likely to buy new gadgets that measure air quality

quasi-independently from the value of information provided by that monitor. A desire to compete

with like-minded neighbors could also generate high levels of spatial correlation because others

see the broadcasted pollution of their neighbors or because they brag about their shiny new toy

at dinner parties, kids’ soccer games, or the country club. Regardless, the utility generated from

monitor adoption, in this case, is generated through ownership rather than the information services

provided by that ownership. Unfortunately, direct tests of preference clustering of this sort are

13To construct this dataset, we used monitors that had less than 25% missing observations in 2021 to remove
intermittent monitors that people may not necessarily use as a reliable source of information. We include census
tracts with at least 10 operational monitors. We run daily-level linear regressions for 2021 with tract, month, and
day-of-week fixed effects.
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exceedingly difficult to construct with the limited details available about consumers. As such, we

offer this as a plausible explanation for the clustering patterns that cannot be explained by the

previous two channels. Unpacking the mechanisms driving this ‘residual’ explanation is an area

rich for future work.

5 Conclusion

Residential-grade air quality monitors are a highly sought-after product, clearly valued by con-

sumers. While these monitors provide considerable new information to households when placed

indoors, their value outdoors depends on their proximity to other nearby monitors. In this paper,

we document a pattern of significant spatial clustering in the adoption of outdoor monitors that

limits the informational content of the monitoring network. This suboptimal pattern of adoption

does not appear to be driven by incomplete information or option value. Instead, we conclude

that some unobserved and spatially clustered preferences, such as a desire for new technology or

an effort to keep up with one’s neighbors, is likely driving the adoption and diffusion of this novel

technology.

In this context, our results highlight one of the core challenges arising from private provision of

a public good. The preferences of consumers are unlikely to fully align with social objectives since

the efficient production of additional information from monitors requires them to be evenly spread

across the population. Not only does clustering yield less informational content than it might other-

wise do for any given level of monitors, but it also contributes to inequality in access to information

about air quality. This inefficient and inequitable outcome resulting from uncoordinated private

adoption suggests an important potential role for supplementary investments by the public sector.

The optimal design of such a government program should leverage the private value consumers

appear to receive from ownership (rather than information) to minimize moral hazard and crowd

out from these public investments. At the same time, the value of these public investments is likely

to extend beyond that experienced by consumers, as it would facilitate research on a less selected

sample than those based on the PurpleAir network alone.

An important caveat to these conclusions is that the results are context-specific. Our study

is in a high-income country with a high level of existing information about air pollution. The

marginal value of monitors is likely much higher in a low-information setting, especially when no

other monitors exist. Roughly one-third of countries around the globe lack legal requirements for

air quality monitoring (UNEP 2022), suggesting potentially high value from the private adoption

of consumer monitors. Nonetheless, as monitors expand into these areas, our analysis hints at the

importance of coordinating that expansion.
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Tables & Figures

Table 1: Static regression results

Dependent variable: Nb. monitors Outdoor monitors Indoor monitors

Med. annual houshold income, 1000 USD 1.004*** 1.004*** 1.002*** 1.004***

(0.000) (0.000) (0.000) (0.001)

Share Bachelor’s degree 3.790*** 6.983*** 72.177*** 66.070***

(0.385) (0.881) (10.194) (11.621)

Share Black population 0.233*** 0.876 0.010*** 2.890*** 4.943*** 0.176***

(0.058) (0.214) (0.003) (0.824) (1.442) (0.048)

Share Hispanic population 0.215*** 0.653*** 0.008*** 0.630** 0.993 0.001***

(0.024) (0.080) (0.001) (0.117) (0.206) (0.000)

Av. PM2.5 concentration, µg/m3 0.674*** 0.685*** 0.638*** 0.630***

(0.006) (0.006) (0.008) (0.008)

PM2.5 standard deviation, µg/m3 1.174*** 1.180*** 1.232*** 1.250***

(0.003) (0.004) (0.006) (0.008)

Distance to closest EPA monitor, miles 1.000 0.992*** 0.950*** 0.949***

(0.001) (0.002) (0.003) (0.004)

Control variables

X̃c No Yes No No Yes No

Census tracts 7,965 7,965 7,965 7,965 7,965 7,965

Notes: Coefficients and standard errors (in parentheses) of the Poisson pseudo-maximum likelihood regressions of
the census tract-level number of outdoor monitors (Columns 1-3) and indoor monitors (Columns 4-6) on the listed
variables. Columns 2 and 5 further include X̃c as control variables. The number of monitors refers to the number of
active monitors in December 2021. Average PM2.5 concentration and standard deviation covers the years 2019-2021.
All demographic variables are from the 2019 American Community Survey.
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Table 2: Dynamic regression results: lagged
PM2.5

Dependent variable: Outdoor Indoor

Nb. new monitors monitors monitors

Nb. outdoor monitors past month 1.111*** 1.078***

(0.009) (0.016)

Nb. indoor monitors past month 0.991 1.061***

(0.023) (0.010)

PM2.5 level same month, µg/m3 1.011*** 1.022***

(0.001) (0.002)

PM2.5 level past month, µg/m3 1.009*** 1.009***

(0.001) (0.002)

Control variables

Xc Yes Yes

Sc Yes Yes

X̃c Yes Yes

θt Yes Yes

Census tracts 7,965 7,965

Observations 278,775 278,775

Notes: Coefficients and standard errors (in parentheses) of
the Poisson pseudo-maximum likelihood regressions of the
monthly census tract-level number of new outdoor (Column
1) and new indoor monitors (Column 2) on the cumulative
number of previously added outdoor and indoor monitors and
the same- and lagged-monthly average PM2.5 levels. Both re-
gressions further include Xc, Sc, X̃c, and θt (season, year, and
season-times-year indicators) as control variables. The stan-
dard errors are clustered on census tracts.
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Figure 1: Correlation of monitor readings within the same census tract

(a) Outdoor monitors
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Notes: The figure compares the 2021 county-level average PM2.5 concentrations of same-census tract monitors that were
operational in January 2019 (x-axis) and monitors that became operational between February 2019 and December 2020 (y-
axis). Only monitors with less than 25% missing daily observations in 2021 are included. The correlation coefficients are: (a)
0.847 (b) 0.223.
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Figure 2: Monitor clustering within the San Francisco Bay Area

(a) Monitor clustering (b) Income

static_data

cities

tl_2019_us_state

outdoor _jan_2019

outdoor _dec_2021

indoor _jan_2019

indoor _dec_2021

Public_Schools

CA_19_21_PM_monitors

OpenStreetMap

tl_2019_06_tract
<	49,000

49,000	-	65,000

65,000	-	83,000

83,000	-	109,000

>	109,000

No	labels

(c) PM2.5 concentrations

static_data

cities

tl_2019_us_state

outdoor _jan_2019

outdoor _dec_2021

indoor _jan_2019

indoor _dec_2021

Public_Schools

CA_19_21_PM_monitors

OpenStreetMap

tl_2019_06_tract
<	6

6	-	6.5

6.5	-	7

7	-	7.5

7.5	-	8

8	-	8 .5

8.5	-	9

9	-	9.5

9.5	-	10

>	10

No	labels

(d) Share of Black/Hispanic population
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Notes: The green/blue dots show the locations of outdoor/indoor monitors in December 2021. The orange dots represent the
locations of official PM2.5 monitors. The legend for Panel (b) represents quintiles of California’s census tract-level median
annual household income in 2019; for Panel (c) it is the average PM2.5 concentration in µg/m3 during the period 2019-2021;
and Panel (d) represents quintiles of California’s census tract-level shares of the Black/Hispanic population in 2019.
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Figure 3: Explained variation of added monitors
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Notes: Overall R2 (left y-axis) values from census tract-level fixed-effects regressions of the nth (x-axis) monitor added to a
tract on all previous monitors added to a tract, separately for the full sample, the above 75th percentile sample, and the above
90th percentile sample (calculated from the average reading across all 10 monitors). The right y-axis shows the difference in the
R2 to the nth-1 regression. The data includes daily readings from 2021 from monitors added before 2021. Only monitors with
less than 25% missing daily observations in 2021 are included. All regressions include month and day-of-week fixed effects.
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Appendix Tables & Figures

Table A1: Summary statistics

(2) (3)

Variable All Tracts Tracts w/ Tracts w/o (2)-(3)

PA monitor PA monitor

Nb. outdoor monitors 0.940 2.517 0.000 2.517

(2.351) (3.290) (0.000) [0.047]

Nb. indoor monitors 0.486 1.301 0.000 1.301

(1.550) (2.318) (0.000) [0.033]

Med. annual houshold income, USD 81,528 100,053 70,483 29,570

(39,387) (45,394) (30,354) [850]

Share Bachelor’s degree 0.333 0.447 0.265 0.182

(0.212) (0.212) (0.180) [0.004]

Share Black population 0.058 0.043 0.066 -0.023

(0.087) (0.067) (0.096) [0.002]

Share Hispanic population 0.381 0.236 0.467 -0.232

(0.264) (0.193) (0.264) [0.006]

Av. PM2.5 concentration, µg/m3 10.615 9.600 11.219 -1.619

(2.323) (2.136) (2.218) [0.051]

Distance to closest EPA monitor, miles 7.659 8.277 7.291 0.986

(7.336) (8.893) (6.198) [0.170]

Share under 5 y/o 0.061 0.055 0.064 -0.010

(0.026) (0.024) (0.026) [0.001]

Share over 64 y/o 0.148 0.173 0.133 0.040

(0.081) (0.085) (0.074) [0.002]

Share male 0.496 0.496 0.496 -0.000

(0.040) (0.036) (0.042) [0.001]

Unemployment rate 0.062 0.052 0.068 -0.015

(0.037) (0.034) (0.038) [0.001]

Nb. households 1,638 1,808 1,536 272

(732) (799) (668) [17]

Share owner-occupied housing units 0.548 0.607 0.514 0.093

(0.240) (0.225) (0.242) [0.005]

Share single-unit structures 0.666 0.699 0.647 0.052

(0.264) (0.256) (0.267) [0.006]

Tract size, sq. miles 19.452 37.824 8.498 29.326

(161.991) (244.234) (77.520) [3.738]

Census tracts 7,965 2,975 4,990

Notes: Means and standard deviations (in parentheses) of our dependent variables and all vari-
ables included in Xc, Pc, Sc, and X̃c at the census tract level. Column 1 includes all tracts,
Column 2 includes tracts with at least one monitor present (outdoor or indoor or both), and
Column 3 excludes those tracts. Column 4 shows the difference between Columns 2 and 3 and
the standard errors (in brackets) from a t-test for the difference in means. The number of
monitors refers to the number of operational monitors in December 2021. The average PM2.5

concentration covers the years 2019-2021. All demographic variables are from the 2019 American
Community Survey.

19



Figure A1: Diffusion of monitors in California

(a) Outdoor monitors | January 2019 (b) Outdoor monitors | December 2021

(c) Indoor monitors | January 2019 (d) Indoor monitors | December 2021

Notes: The green/blue dots show the locations of outdoor/indoor monitors that were operational in January 2019 (Panels (a)
and (c)) and December 2021 (Panels (b) and (d)). The orange dots represent the locations of official PM2.5 monitors.
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