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ABSTRACT

Wildfire activity has increased in the US and is projected to accelerate under future climate 
change. However, our understanding of the impacts of climate change on wildfire smoke and 
health remains highly uncertain. We quantify the past and future mortality burden in the US due 
to wildfire smoke fine particulate matter (PM2.5). We construct an ensemble of statistical and 
machine learning models that link variation in climate to wildfire smoke PM2.5, and empirically 
estimate smoke PM2.5-mortality relationships using georeferenced data on all recorded deaths in 
the US from 2006 to 2019. We project that climate-driven increases in future smoke PM2.5 could 
result in 27,800 excess deaths per year by 2050 under a high warming scenario, a 76% increase 
relative to estimated 2011-2020 averages. Cumulative excess deaths from wildfire smoke PM2.5 
could exceed 700,000 between 2025-2055. When monetized, climate-induced smoke deaths result 
in annual damages of $244 billion by mid-century, comparable to the estimated sum of all other 
damages in the US in prior analyses. Our research suggests that the health cost of climate-driven 
wildfire smoke could be among the most important and costly consequences of a warming 
climate in the US.
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1 Introduction

Wildfire activity has increased substantially over the US in the last two decades, with the
largest increases observed in the western US (1–5 ). As a result, air pollution that is as-
sociated with wildfire smoke (specifically fine particulate matter, PM2.5) has significantly
increased (6–9 ). Given established relationships between ambient smoke PM2.5 exposure
and poor health (10–13 ), these increases have likely worsened several health outcomes.
In many parts of the western US, smoke PM2.5 accounted for over 50% of the annual con-
centration of PM2.5 in extreme smoke years (14 , 15 ), and has led to stagnation or even
reversal of the substantial improvements in ambient PM2.5 concentrations over the last
two decades – improvements brought about substantially by the Clean Air Act and its
amendments (16–18 ). Importantly, and unlike most other sources of air pollutants, wild-
fire smoke is currently unregulated under the Clean Air Act, and thus quantifying drivers
of past and future wildfire activity and smoke is central to understanding how this grow-
ing source of pollution will change in coming decades, how health might be impacted, and
whether policy should respond.

Mounting evidence has suggested that human-induced climate change is a leading cause
for the increased wildfire activity, especially in forested areas in the western US (2–4 ,
19–21 ), alongside other important causes that include historical fire suppression and the
expansion of human activities into forested areas (22 ). A warming climate can influence
wildfire activities by altering the aridity of the fuel (2 , 23 ), conditions for fire spread (24 ,
25 ), as well as lightning ignitions (26 ). For the western US, many studies have projected
increasing wildfire risks under a warming climate primarily due to increasing fuel aridity
under higher ambient temperature (27–29 ).

However, the relationship between a warming climate and the resulting increase in wild-
fire smoke and health impacts remains poorly quantified, and as a result, leading esti-
mates of climate impacts in the US and globally do not consider health impacts from wild-
fire smoke (30–32 ). Several studies use regression models or land-vegetation-fire mod-
els to first project the wildfire activities under future climate and then utilize chemical
transport models to estimate changes in smoke PM2.5 concentrations (33–37 ) and asso-
ciated health outcomes (38–41 ). However, prior projections of future mortality due to
climate-driven fire smoke span a very wide range (42 ) – reflecting an important knowledge
gap given the large potential impacts. Uncertainties in the prior projections come from
three key sources. First, large uncertainties exist in how wildfire emissions respond to cli-
mate change (43 ). Second, modeling fire impacts on surface PM2.5 often faces large uncer-
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tainty in emission inventories (44 , 45 ), the vertical distribution of emission profiles (46 ),
and fire-weather interactions (47 ), which results in modeled smoke concentrations that
sometimes differ by an order of magnitude when compared to surface observations (48 ).
Third, most prior studies quantify the health impacts of smoke PM2.5 by applying exist-
ing concentration-response functions derived from total PM2.5 exposures, which could fail
to capture unique health impacts of smoke PM2.5 exposure, such as from smoke-specific
chemical composition and toxicity (49 ) or behavioral responses unique to smoke events
(13 ).

Because of these challenges, very few studies to date have projected future smoke PM2.5

concentrations using empirically grounded relationships between climate, wildfire, and
PM2.5 (40 , 50 ). To our knowledge, no studies have estimated the future smoke mortal-
ity burden accounting for the unique health impacts of smoke PM2.5 using dose-response
functions that are specific to smoke pollution exposure. Absent this quantification, lead-
ing estimates of the societal impact of climate change – many of which are directly used to
guide policy – do not incorporate potential mortality impacts due to wildfire smoke PM2.5

(31 , 32 , 51 ). Detailed projections of future smoke PM2.5 exposure and health burden are
crucial to inform policies to mitigate and adapt to the negative impacts of smoke PM2.5 on
humans.

In this paper, we develop a comprehensive, data-driven approach that directly address all
three of the above challenges. First, to improve understanding of the climate-fire emissions
relationship, we construct an ensemble of statistical and machine learning models that pre-
dict fire emissions as a function of climate and land-use variables over North America (in-
cluding Mexico and Canada), using observational data from 2001-2021. By using historical
data that includes recent years with extreme weather conditions (e.g., drought in the west-
ern US in 2020), which is projected to increase under future climate change, our ensemble
of models can better characterize how climate influences wildfire emissions in future sce-
narios. By modeling changes in wildfire emissions in Canada and Mexico, our approach
can also capture important transboundary influences on US smoke PM2.5 and health ef-
fects, such as those that occurred in the summer of 2023 (52 ).

Second, we use surface wildfire smoke PM2.5 estimates from (8 ) to establish an empirical
relationship between wildfire emissions and smoke PM2.5 concentration across the contigu-
ous US at 10 km resolution, accounting for variation in wind directions and spatial trans-
port. Our approach fits the observed surface PM2.5 data well and allows us to efficiently
predict smoke concentration in one location from changes in wildfire emissions in another
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(Methods). Third, to address the challenge of accurately estimating the health impacts
of ambient smoke exposure, we empirically estimate the effects of annual smoke PM2.5

concentration on annual mortality rates using county-level data from 2006 to 2019 on all
recorded deaths in the US. We estimate dose-response functions using a Poisson model
in which mortality rates are allowed to respond non-linearly to variation in smoke PM2.5

, consistent with prior papers that suggest responses could be non-linear (13 , 53 ), while
flexibly controlling for temperature, precipitation, and a broad range of possible spatial
and temporal confounds (Methods).

Finally, we combine the empirical relationships between climate, wildfire emissions, smoke
PM2.5, and mortality rates derived above with projected climate variables derived from
CMIP6 global climate model ensembles to generate future projections of smoke PM2.5 and
mortality burden. We project the annual average smoke PM2.5 concentration in each 10
km location across the contiguous US (48 states and the District of Columbia) between
2046 and 2055 under different climate scenarios. We then quantify changes in mortality
rates in each county in the contiguous US between 2050 and the historical period, and
the difference across three future emissions scenarios representing ambitious emissions
reductions, moderate emissions, and a high-emissions scenario (SSP1-2.6, SSP2-4.5, and
SSP3-7.0) to quantify the potential health benefits from climate mitigation and adapta-
tion. We value future excess deaths using standard VSL-based methods and quantify the
uncertainty in the final projected mortality burden across the different components of our
modeling framework. Finally, we compare our mortality estimates with estimates of direct
temperature-related mortality burden and aggregate climate costs from prior work (51 ,
54 , 55 ) to contextualize the importance of climate-smoke channels relative to other known
climate impacts.

We report four main findings. First, using an ensemble of statistical and machine learn-
ing models, we find that wildfire smoke is likely to substantially increase under future
climate change, with average exposure across the US population increasing 2-3 fold in
2050 relative to 2011-2020. This large increase is a result of the tight coupling between
fuel aridity and wildfire activity, and the large projected changes in fuel aridity under a
warming climate. Second, using historical data, we show that increases in annual expo-
sure to smoke PM2.5 are associated with higher county-level annual mortality rates across
the contiguous US, with increases detectable at even very low levels of wildfire smoke ex-
posure. Our findings are consistent with a host of recent work suggesting that there is
no safe level of air pollution exposure (e.g. (56 )). Third, using our empirically-derived
dose response functions, we estimate that smoke PM2.5 will cause 23,800 to 27,800 annual
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excess deaths by mid-century across the three climate scenarios – an increase of 51-76%
relative to 2011-2020 estimates. Even under a low warming scenario (SSP1-2.6), we esti-
mate that climate-induced smoke PM2.5 will lead to 8,000 more annual excess deaths in
the US than were observed in the last decade, suggesting that even aggressive mitigation
will not substantially limit this source of climate damages through mid-century. Fourth,
when monetized, climate-induced smoke deaths result in annual damages of $244 billion by
mid-century, comparable to prior aggregate estimates of all other economic damage due to
climate change in the US (51 , 55 ). We also estimate that increasing deaths from smoke
offset about two-thirds of one of the largest (and frequently under-recognized) benefits of
climate change in the US: the substantial decline in cold-related deaths that is expected
in the US in coming decades (54 ). Our research suggests that the health cost of climate-
driven wildfire smoke could be among the most important and costly consequences of a
warming climate in the US.

2 Data and empirical approach

2.1 Wildfire and smoke PM2.5 datasets

We use annual fire emissions from the fourth version of the Global Fire Emissions Database
with small fires (GFED4s) from 2001-2021 (57 ). The native spatial resolution of GFED4s
is 0.25×0.25 degrees. We use the estimated dry matter (DM) emissions as our primary
variable for the emissions. DM emissions capture the amount of biomass being consumed
in the burning process. We choose DM emissions as the proxy for overall fire emissions
(rather than individual emissions species such as black carbon or NOx) due to uncertainty
in the emission factors used in GFED4s. GFED4s include fire emissions from agriculture
fires and land-use change as well. However, as wildland fire emissions dominate in most
study regions (especially in western US and Canada where we see the largest effects), we
refer to our estimates as “wildfire emissions” and “wildfire smoke” for simplicity and consis-
tency (Table S1).

For smoke PM2.5, we use gridded daily wildfire smoke PM2.5 predictions for the contigu-
ous US at 10 km resolution from January 1, 2006 to December 31, 2020 derived from (8 ).
This dataset specifically estimates the ambient PM2.5 concentration due to wildfire smoke
influence by constructing a machine learning model that uses smoke plume data, remotely-
sensed variables, and meteorological variables to predict the anomalous increases in surface
PM2.5 measured by surface air quality monitors during wildfire. To estimate contributions
of smoke PM2.5 to total PM2.5, we use the total PM2.5 estimates from (58 ), which com-
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bines satellite retrievals of aerosol optical depth, chemical transport modeling, and ground-
based measurements to estimate monthly total ambient PM2.5 concentrations.

2.2 Climate and meteorological datasets

We use climate and land use variables to predict wildfire DM emissions. The climate vari-
ables include 2m air temperature, precipitation, relative humidity, soil moisture (of the top
soil layer), vapor pressure deficit (VPD), wind speed (at 10m level), and runoff (sum of
surface and subsurface). We include these climate variables because they are available in
both the historical data and the climate projections from CMIP6 climate model ensem-
bles. Our models do not include other potentially important variables such as fire weather
index and fuel moisture (as used in (59 )) because they are unavailable in future projec-
tions. These climate variables are derived from the North American Regional Reanaly-
sis (NARR) (60 ), with the exception of soil moisture. Soil moisture is derived from the
VIC land-surface model of phase 2 of the North American Land Data Assimilation System
(NLDAS-2) (61 ) and only available in the contiguous US. The native spatial resolution is
32 km for NARR variables and 0.125 degree for NLDAS-2 variables. Land use variables
are derived from the North American Land Change Monitoring System (NALCMS) for the
year 2015 (62 ). More specifically, we use three land use variables which each represents
the percentage of area in three categories: cropland, forest, and grassland. The native res-
olution of land use variables is 30m. Because high-resolution projections of future land use
change are not available, the land use variables are held constant across time in both the
historical and future periods.

For future climate change scenarios, we use the projected climate variables from the Cou-
pled Model Intercomparison Project Phase 6 (CMIP6). We examine three primary climate-
forcing scenarios featured by the IPCC, which are constructed as pairs between the Shared
Socio-economic Pathways (SSPs) and the Representative Concentration Pathways (RCPs)
(63 ). We use SSP1-2.6 (which the IPCC refers to as the “Low” scenario), SSP2-4.5 (which
the IPCC refers to as the “Intermediate” scenario), and SSP3-7.0 (which the IPCC refers
to as the “High” scenario). We use projections from 28 global climate models that include
the selected variables that cover the study region (Table S6). Following practice of IPCC,
we select only one ensemble realization for each model – we use the first ensemble variant
of each model (“r1i1p1f1”) when possible.

When modeling the relationship between wildfire emissions and smoke PM2.5, we also in-
clude meteorological variables in the regression model. The daily gridded meteorological
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variables are derived from gridMET (64 ). In our main specification, we aggregate the me-
teorological variable to the monthly and smoke grid cell level. We include the splines of
daily surface temperature, precipitation, dewpoint temperature, boundary layer height, air
pressure, 10m wind direction (U and V components) and wind speed.

2.3 Predicting wildfire emissions

We construct an ensemble of statistical and machine learning models to predict wildfire
emissions using climate and land use variables. Our models predict the annual dry mat-
ter (DM) emissions derived from GFED4s emission inventory using climate and land-use
variables from 2001 to 2021. We build separate models for each of the five regions (western
US, southeastern US, northeastern US, Canada-Alaska, and Mexico) to capture the re-
gionally heterogeneous relationships between climate, land type and wildfire emissions. For
each region, we construct six different models as potential model candidates: linear regres-
sion model, linear regression model with log outcomes, Least Absolute Shrinkage and Se-
lection Operator (LASSO) models, LASSO models with log outcomes, 2-layer Neural Net-
work (NN) model, and NN models with log outcomes. These six algorithms are selected to
cover a possible range of model candidates with varying desired characteristics – including
simple models that are commonly used in prior studies (e.g., the linear and log-linear re-
gression models), models that are easy to interpret (e.g., the linear regression and LASSO
models), and more flexible machine learning models that are used in prior studies (e.g., the
NN model).

One key challenge for this prediction problem is that the fire occurrence, spread, and re-
sulting emissions at local scales are often fairly stochastic due to varying and hard-to-
predict non-climate factors, including where and when human and natural ignitions occur
and how much suppression effort is applied. Therefore, to better capture the predictable
components of the climate-wildfire relationship, we create models to predict annual emis-
sions aggregated at different spatial scales for each of the six model types mentioned above.
We aggregate the outcome variables and model features at four spatial scales: the grid
scale (0.25 deg, 26956 cells in total), the North America Level-3 Ecoregion scale (177 re-
gions in total), the North America Level-2 Ecoregion scale (51 regions in total), and the
regional scale (5 regions in total). We then select the spatial resolution that optimizes
model performance for each model type (as described below), allowing the optimal spa-
tial resolution to differ across different model types and regions (see Figure S3 for model
performances across spatial scales).

6



To evaluate the model performance, we use nested leave-one-out cross-validations (LOOCV)
at the temporal scale. We divide our data into 21 temporal folds, each including one year
of data. For each holdout fold, we train the model using the remaining 20 folds of data
with hyper-parameters selected using an inner-loop 5-fold CV within the training data.
We then obtain out-of-sample predictions for the holdout fold and repeat this process to
obtain out-of-sample predictions for the entire time period. As we focus on projecting the
future wildfire emissions over a 10-year period (i.e. decadal averages) under future climate
scenarios, we thus evaluate the performance of our models on similar 10-year intervals. We
compute the moving averages of predicted and observed emissions over 10-year moving
windows. We compute two metrics and use them as the basis for evaluating the perfor-
mance of each model: 1) the root mean square error between predictions and observations,
and 2) the prediction biases of the highest-emitting 10-year period. The first metric al-
lows us to assess the model performance across years with different climate conditions to
detect differences between current and future climate for different climate scenarios. The
second metric allows us to assess the model performance under the extreme smoke condi-
tions which are more likely to occur under future climate. To obtain the final model that
can be used for future projections, we create an “ensemble model” which combines the pre-
dictions from the selected base models with the corresponding optimal spatial resolution.
The selected models and their performances can be found in Table S2.

2.4 Quantifying fire impacts on smoke PM2.5

To estimate smoke PM2.5 concentrations associated with future wildfire emissions, we de-
sign a statistical approach to establish an empirical relationship between ambient smoke
PM2.5 from (8 ) and wildfire emissions derived from GFED4s. We estimate the relationship
between wildfire emissions and smoke PM2.5 concentration across the contiguous US (48
states and the District of Columbia) at 10 km resolution, accounting for variation in wind
directions and atmospheric transport. This approach allows us to efficiently predict smoke
concentration in one location from changes in wildfire emissions in another. Despite using
estimated DM emissions from GFED4s as an input, our estimates of smoke PM2.5 concen-
trations strongly predict the variations in the empirical estimates of surface smoke PM2.5

concentrations, and are thus directly constrained by surface PM2.5 measurement during
wildfire episodes.

Specifically, we use the following regression equation to empirically quantify the impacts of
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the wildfire DM emissions on smoke PM2.5 in the US in our historical data:

Smokeiym =
∑
d,w

βdw∆Emisdw,iym + γWiym + ηy + ψm + θi + ϵiym (1)

where Smokeiym denotes the smoke PM2.5 at grid cell i (resolution: 10 km), year y and
month-of-year m. Emisdw,iym denotes the wildfire DM emissions that in the distance bin d
and wind direction w (w ∈ {upwind, other, downwind}) of the smoke location i on month-
of-year m and year y. In our main specification, we estimate the impacts of wildfire DM
emissions at different distances from the smoke location: <50 km, 50-100 km, 100-200 km,
200-350 km, 350-500 km, 500-750 km, 750-1000 km, 1000-1500 km, 1500-2000 km, >2000
km. Wiym are the meteorological variables at the grid cell i (as described in the dataset
section). We include these meteorological variables to capture potential meteorological
variability that could influence ambient PM2.5 concentrations. Our main specification in-
cludes linear year trend (ηy) and month-of-year fixed effects (ψm) to capture the long-term
trend and seasonality of smoke PM2.5 concentration, and grid cell-level fixed effects (θi) to
control for the time-invariant unobserved factors at the grid cell location. ϵiym represents
the error term.

To better capture the atmospheric transport of smoke PM2.5, we divide the wildfire emis-
sions (from a given distance bin) into three categories depending on wind direction and
the location of fire. Following methods in (65 ), wildfire emissions are classified into “up-
wind” or “downwind”, depending on whether the wildfire location is at the upwind or down-
wind direction of the smoke grid cell. We combine daily emissions with daily wind direc-
tion (10m wind) to calculate the daily emission from each wind direction and further ag-
gregate to the monthly level.

Many previous studies have demonstrated that wildfire emission factors (e.g., mass of or-
ganic carbon particles emitted from burning one kg fuel) strongly depend on the combus-
tion conditions (e.g., the combustion completeness) and the underlying fuel type among
many other factors (66–69 ). As many of these characteristics (e.g., the combustion effi-
ciency of different fires) are not available at the national scale, we use a data-driven ap-
proach and estimate different models/equations for the nine US climate regions deter-
mined by National Centers for Environmental Information (see Figure 2 for region defi-
nitions), which allows the relationship between emissions and surface smoke PM2.5 to differ
by region. The resulting regional estimates therefore implicitly account for some hetero-
geneity in the vegetation fuel types, fire intensities (as characterized in historical fires),
and topographies for different locations. For example, prior studies have shown that smol-
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dering fires often have higher PM2.5 emission factors compared to flaming fires due to in-
complete combustion (68 ), which might partly explain the relatively high emissions factors
in the Southeast as smoldering fires are more common there due to high humidity (70 ).

2.5 Projecting wildfire emissions and smoke PM2.5 under future cli-

mate

We combine our ensemble of statistical and machine learning models with climate projec-
tions from ensembles of global climate models to project the wildfire emissions and smoke
PM2.5 under future climate scenarios. Consistent with the optimal spatial resolutions se-
lected for each region, we predict the annual wildfire DM emissions at different spatial res-
olutions, from 2001-2055. We then statistically downscale the predicted regional emissions
to the native grid cell level (0.25 degree) by distributing predicted DM emissions using av-
erage historical spatial distribution of emissions at the grid cell level (2001-2021).

We combine the downscaled predicted DM emissions at GFED4s grid cell level (0.25 de-
gree) with the empirical relationship we established between smoke PM2.5 and GFED4s
DM emissions to calculate predicted smoke PM2.5 in each smoke grid cell (resolution of 10
km). When calculating the smoke PM2.5 in future scenarios, the wind direction and mete-
orological conditions are held constant at the average conditions in the historical period.
We further calculate the difference between the estimated smoke in any future year and
the average estimated smoke between 2011-2020. The delta difference is then added to the
average observed smoke PM2.5 concentration between 2011-2020 to obtain the final smoke
predictions for each grid cell in the future years.

2.6 Impacts of smoke PM2.5 on mortality

We calculate all-cause mortality associated with wildfire smoke exposure historically and
under future climate scenarios using a dose-response function empirically derived from
2006-2019 county-level data. We combine county-level population-weighted annual smoke
PM2.5, derived from (8 ), with county-level all-cause mortality rates by different age groups.
We obtain individual-level multiple cause of death mortality data from the National Cen-
ter for Health Statistics to calculate age-standardized mortality rates for all ages, those
under 65 years of age, and those 65 years and older (71 ). County-level mortality rates
were age-standardized using the direct method and 5-year bins (0-4, 5-9, ..., 85 and over)
based on the 2000 US Census Standard Population. Monthly mortality rates were stan-
dardized per 100,000 population. To fully capture damages from ambient wildfire smoke
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concentrations, our preferred outcome is age-standardized, all-cause, all-age mortality rates
at the county-year level. We also separately estimate impacts among those 65 years and
older and those under 65 years of age (Figure S6).

In our main analysis, we estimate a Poisson model in which we allow non-linear impacts of
annual smoke PM2.5 on mortality rates at the county-year level:

Dcsy = exp (
∑
i

βismokeBIN
i
csy + γWcsy + ηsy + θc + εcsy) (2)

where Dcsy denotes the age-adjusted all-cause mortality rates in county c, state s, and
year y. smokeBIN i

csy is a dummy variable for whether annual population-weighted smoke
PM2.5 in county c, state s, and year y falls into the range of bin i (0-0.1, 0.1-0.25, 0.25-
0.5, 0.5-0.75, 0.75-1, 1-2, 2-3, 3-4, 4-5, 5-6, >6 µg/m3; 0-0.1 is the reference category).
The main coefficients of interest are the βi’s, which estimate the effects of a year with an-
nual smoke concentration of bin i on mortality rates, relative to a year with annual mean
smoke PM2.5 concentration below 0.1 µg/m3. The reference category included <0.1 be-
cause only 4 county-year observations had exactly zero ambient wildfire smoke. Wcsy de-
notes a flexible control of temperature (the number of days that fall in different tempera-
ture bins) and linear and quadratic terms of annual population-weighted precipitation. ηsy
denotes a vector of state-year fixed effects (i.e. separate intercepts for each year in each
state) that accounts for all factors that differ across states in a given year (e.g. Califor-
nia 2018 versus Oregon 2018) as well as all factors that differ within states across years
(e.g. California 2017 versus California 2018). θc denotes a set of county-level fixed effects
that accounts for any county-specific time-invariant factors that could be correlated with
both smoke exposure and mortality (e.g., high income communities in the mountainous ar-
eas on the west coast could have higher smoke exposure but lower mortality rates due to
non-smoke reasons). In essence, we identify the effect of wildfire smoke on mortality us-
ing within-county variation over time, after accounting for any factors that trend over time
within that county’s state, and for any correlation between smoke variation and variation
in temperature and precipitation. Because temporal variation in wildfire smoke exposure is
largely a function of idiosyncratic factors such as where a given fire starts and which way
the wind blows, our estimates have a plausibly causal interpretation. The coefficients are
estimated using weighted Poisson regression models, with function “fepois” from R package
“fixest”. The estimations are weighted by county-level population counts to enable esti-
mates of population-averaged effects, as well as to reduce statistical uncertainty. The un-
certainty of the coefficients are estimated using bootstrap of 500 runs. ϵcsy represents the
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error terms.

While we observe historical data on daily smoke PM2.5 concentrations and monthly cause-
specific mortality rates, we estimate the dose-response functions at the annual level to be
consistent with our smoke concentration projections, which are only feasible at the annual
level. This approach deviates from previous studies estimating health impacts from wild-
fire smoke which focus primarily on sub-annual exposures, but it allows for a direct appli-
cation of the estimated response functions to annual smoke projections. It also has the ad-
vantage of allowing us to capture the net effect of either behavioral dynamics in response
to short-term variation, as has been observed in related settings (13 ), or “displacement”
of mortality that would of otherwise occurred but was hastened as a result of short-term
exposure – a common concern in climate impact studies (30 ).

To evaluate the influence of functional forms of the dose-response function, we estimate al-
ternative response functions using a Poisson model, a least-squares linear regression, and
a quadratic model where wildfire smoke concentrations were treated as a continuous expo-
sure, and calculate how different functional forms influence the estimates of projected an-
nual excess deaths (Figure S9). We find that non-binned models generally fail to capture
meaningful impacts of both low-level and high-level smoke exposure (Figure S12).

Further, to assess the sensitivity of our results to multiple assumptions, we estimate sev-
eral alternative specifications of the Poisson model. Specifically, we estimate a model which
uses alternative bin definitions, a model which includes year 2020, a model which calcu-
lates the number of months or the number of days in a year that fall in different smoke
bins to represent different temporal aggregations, and a model which is estimated at county-
month level. While we cannot calculate the impact on projected mortality under scenarios
using these sub-annual measures of wildfire smoke PM2.5 given the resolution of the wild-
fire smoke projections, we instead compare between estimated historical excess deaths dur-
ing 2011-2020, calculated as the difference between predicted deaths at observed smoke
levels relative to what would have occurred absent any smoke. We find that the largest
differences occur when using monthly bins, likely due to the lagged effects of smoke on
mortality at the monthly level (Figure S10).

To calculate smoke attributable deaths in the historical scenario, we use the county-level
population data for the year 2019. We use the county-level average death rate between
2006 to 2019 as the baseline mortality rate for calculations with the Poisson model. For
projections of future mortality burden, we scale the population according to the future
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population projections from the US Census (72 ).

2.7 Monetizing health impacts

The mortality impacts are monetized using a value of statistical life (VSL) of $10.95 mil-
lion (year 2019 dollars), as recommended by the US EPA (73 ) and used in previous stud-
ies (54 ). For future scenarios, we adjust VSL values using the projected economic growth
of 2% and income elasticity of one, following a similar method from Carleton et al. (54 ).
We compare the monetized health impacts from climate-induced smoke with two prior es-
timates of aggregate monetized/economic damage due to climate change. Hsiang et al. es-
timated an annual damage of 0.4%-0.8% of US GDP or $166-332 billion (in year 2019 dol-
lars, using annual projected GDP of $38.5 trillion from (55 )). Their approach empirically
calculated the effects of climate change on a variety of economic damages from temperature-
related mortality, agriculture, crime, coastal storms, energy, and labor channels (51 ). The
Framework for Evaluating Damages and Impacts (FrEDI), developed by US EPA (55 ),
estimated an annual damage of $292 billion in the 2050s. FrEDI considered 21 sectors (in-
cluding estimated wildfire damages from western US (40 )). The wildfire health damages
considered in FrEDI only accounted for effects of wildfire in the western US and used an
empirical climate-fire relationship derived from historical data before 2013 which did not
include recent extreme wildfire years (40 ). We use the default parameters and results from
FrEDI in the year of 2050.

3 Results

3.1 Empirical relationship between climate and smoke PM2.5

We considered three different statistical and machine learning frameworks for modeling
the climate-fire relationship (Methods). To account for geographical heterogeneity, we esti-
mated each of our frameworks separately by region, resulting in five ensembles of climate-
fire models. Our models can capture the variability of wildfire dry matter emissions at 10-
year intervals (to account for fire stochasticity at the annual level, see Methods), highlight-
ing their ability to quantify changes in wildfire emissions under different climate conditions
(Figure 1A). When evaluating through cross-validation of temporal blocks (i.e. randomly
splitting a time series of observations into disjoint sets of training and testing years), our
models achieve high prediction performance, especially in the western US, Canada, and
Mexico, with correlation coefficients of 0.87-0.95 in the out-of-sample evaluations (Table
S2). Under these evaluation criteria, our model achieves higher performance relative to
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other commonly-used regression methods such as a log-linear model to model climate im-
pacts on burned area (2 ), as well as more flexible machine learning methods (43 ) (Figure
S1). However, the model performance indicates that climate conditions are not the only
factors influencing the variability of wildfire emissions over time. For example, we find that
the model performs less well in the southeastern US and northeastern US, where many
fires are agricultural or prescribed fires, which are less directly influenced by climate fac-
tors (74 ). Furthermore, while our models can predict spatially- and temporally-aggregated
emissions effectively, the predictive performance deteriorates when the same model is eval-
uated at finer temporal and spatial resolutions (Figures S3 and S4). Such evaluation re-
sults are consistent with prior literature on global fire modeling (75 ). Our findings suggest
that, although climate conditions such as low soil moisture and high ambient temperatures
are related to enhanced fire activity in aggregate, whether a fire occurs in a specific loca-
tion depends on more stochastic factors such as lightning and human ignitions that are
very hard to predict (76 ).

Combining our statistical and machine learning models with future climate projections
from CMIP6 global climate models, we project that wildfire emissions will increase by
2050 in all study regions except for the eastern US (Figure 1B). The largest increases in
wildfire emissions are projected in the western US, where the model estimates that the an-
nual wildfire emissions will increase by between 248% (SSP1-2.6) and 470% (SSP3-7.0) in
the 2050s relative to average emissions during 2011-2020. When compared to 2020, the
largest wildfire year for the western US in our historical data, projected annual wildfire
emissions during the 2050s will either reach (as in the case of SSP1-2.6) or exceed (by 34%
under SSP2-4.5 or 62% under SSP3-7.0) emissions observed in 2020. This magnitude of in-
creases is largely consistent with prior estimates of the western US derived from statistical
models and process-based models (28 , 29 , 36 ). Consistent with prior literature, we find
that decreased soil moisture and increased ambient temperature, especially in the forest
areas in the western US, are the leading contributors to increased wildfire emissions (Fig-
ure S5, Table S3, Table S4). In the eastern US, we estimate a decrease of wildfire emis-
sions by 15% under SSP1-2.6 and an increase of wildfire emissions by 10% under SSP3-7.0.
These opposing predictions are driven by a combination of two conflicting factors: pro-
jected increases in ambient temperature, which increase emissions, and projected increases
in precipitation, which decrease projected emissions (Figure S5). Our projected patterns
in the eastern US are consistent with a prior study that used a process-based fire-climate
model (36 ). By the 2050s, we project an increase in emissions of 33-43% in Mexico, and
of 30-49% in Canada, relative to average emissions during 2011-2020, in large part due to
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projected increases in Vapor Pressure Deficit (VPD).

To link wildfire emissions to smoke PM2.5 concentrations, we develop an empirical relation-
ship that accounts for wind direction, distance from fire, and geographical region (Figure
2). As shown in Figure 2A, we find that wildfire emissions increase smoke PM2.5 concen-
trations near an active fire, with the effects gradually decaying as the distance from the
fire increases. Consistent with previous evidence of long-range transport of smoke (77 ,
78 ), we find a statistically significant effect (p<0.05) of wildfire emissions on downwind
locations up to 1000 km away. We find substantial regional heterogeneity in the impacts
of dry matter emissions on wildfire PM2.5 (Figure 2B). For example, we find that one ton
of dry matter emissions (as estimated in GFED4s fire emissions database) can generate as
much as 3x surface smoke PM2.5 in the Northwest compared to the Southwest and South.
Such regional heterogeneity likely reflects a multitude of factors, such as vegetation type,
vegetation density, and fire intensity (Methods).

3.2 Projected smoke PM2.5 concentration under future climate

As a result of projected rising wildfire emissions, we find increases in annual smoke PM2.5

concentrations throughout the US in 2050 under all future climate scenarios (Figure 3A).
Under our highest warming scenario (SSP3-7.0), we estimate that annual average smoke
PM2.5 concentration could reach 10 µg/m3 in some regions on the west coast, a level that
has only been observed in extreme smoke years such as 2020 (8 ). While the most sub-
stantial changes in smoke PM2.5 happen across the western US, smoke PM2.5 concentra-
tions are also projected to increase in the northeast US, largely due to projected increases
in wildfire emissions in the western US and Canada and subsequent increases in cross-
boundary transport of wildfire smoke from these fires.

We find that the relative contribution of wildfire smoke to total population-weighted PM2.5

increases by 240-320% in 2050. This finding holds even if non-smoke PM2.5 remains con-
stant – a conservative assumption given recent and ongoing declines in non-smoke PM2.5

concentrations (18 ). We estimate that smoke PM2.5 will account for 13-17% of total population-
weighted PM2.5 in the US in 2050, which is 2-3x its contribution of 5.4% during 2011-2020.
Wildfire smoke will account for at least 15% of total population-weighted PM2.5 in 17
states, including states both in the West such as Oregon (with 61% smoke contribution),
Washington (56%), and California (30%), as well as states in the South and Midwest such
as Oklahoma (19%) and Minnesota (16%). Figure 3B shows the smoke contribution in the
top 10 states (see Table S5 for more states).
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Under the SSP3-7.0 scenario, average population-weighted smoke PM2.5 exposure is pro-
jected to reach 1.47 µg/m3, an increase of over 200% relative to the average level between
2011-2020 (Figure 3C), and 1.6x the population-weighted smoke PM2.5 concentration in
the historically extreme year of 2020 (0.90 µg/m3). The differences across the three cli-
mate scenarios are negligible in 2030 and 2040 due to little difference in projections of the
climate variables (Figure S5). However, by the 2050s, population-weighted smoke PM2.5

is meaningfully smaller in the low warming scenarios, at 1.05 µg/m3 under SSP1-2.6 or
1.27 µg/m3 under SSP2-4.5, averaged across GCMs. Some individual GCMs project much
larger or smaller increases (Figure 3D). Also, these estimates represent decadal averages of
annual smoke PM2.5 concentrations, in this case averaged 2046 to 2055. Given interannual
climate variability, projections suggest that average smoke PM2.5 concentrations in individ-
ual years could differ substantially, with the highest projected smoke year having roughly
5-10x the concentration of the lowest year (Figure 3E). Our method likely underestimates
the interannual variability as it does not capture variability in non-climate factors.

3.3 Mortality burden due to smoke PM2.5 exposure

We find that exposure to annual smoke PM2.5 increases all-age mortality rates (Figure
4A), even at low smoke concentrations (<1 µg/m3), consistent with recent evidence from
studies of low levels of all-source PM2.5 (56 ). Compared to a year of zero or minimal smoke
PM2.5 (annual mean concentration <0.1 µg/m3), we find that a year with annual average
smoke PM2.5 of 0.75-1 µg/m3 increases county-level mortality rate by 1.3% (95%CI: 0.6%,
2.0%). Years with extreme ambient wildfire smoke concentrations (>6 µg/m3) increase
annual mortality rates by 5.8% (95%CI: 2.2%, 8.9%). Wildfire smoke increases mortal-
ity rates among both the elderly and the general population (Figure S6). Our estimated
smoke-mortality relationship is similar in shape to the results estimated by (53 ) at the
county-month level. For a given increase in PM2.5 concentration by 1 µg/m3, our observed
effects for smoke PM2.5 exceed a recent meta-analysis estimate for all-source PM2.5 (0.8%
increase in mortality rates per 1 µg/m3 (79 )), although our confidence interval contains
this lower estimate.

Combining our empirically-derived dose-response function and historical smoke PM2.5 con-
centrations, we estimate that smoke PM2.5 caused 15,800 excess deaths (95% CI: 6900,
25300) per year during 2011-2020 (Figure 4B), relative to a counterfactual of no smoke
PM2.5. This number of smoke-related deaths would account for 9.2% of total estimated
deaths due to total (smoke and non-smoke) PM2.5 exposure during the same period (es-
timated using the response function from (79 ) and total PM2.5 estimates from (58 )). As
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shown in Figures 4B and S7, roughly 90% of estimated excess deaths from wildfire smoke
exposure come from relatively low but frequent exposures to annual concentrations below
1 µg/m3.

We estimate that smoke PM2.5 will cause 23,800 to 27,800 annual excess deaths by mid-
century across the three climate scenarios – an increase of 51-76% in mortality burden
from smoke relative to 2011-2020. Even under the low warming scenario (SSP1-2.6), we
estimate that smoke PM2.5 will lead to 8,000 more annual excess deaths in the 2050s rel-
ative to today. Over the period of 2025-2055, we estimate that wildfire smokePM2.5 could
lead to cumulative excess deaths of 690,000 (SSP1-2.6) to 720,000 (SSP3-7.0). Although in
the historical period, annual mean wildfire smoke concentrations above 5 µg/m3 were rare
and represented only 3% of the total mortality burden (Figure 4A), we estimate that these
more extreme years will account for between 20-26% of the total excess deaths from smoke
in the 2050s (Figure S7). The climate-induced smoke deaths are distributed across popu-
lous counties in the western US as well as in the Midwest, Northeast, and South (Figure
4C). The top five states that are predicted to experience the largest increases in annual
smoke PM2.5 deaths in 2050s under SSP3-7.0 are California (3300 excess deaths per year),
Washington (900), Texas (680), Oregon (610), and Florida (380). While projected smoke
concentrations are highest in the western US, almost half of the smoke mortality come
from eastern states (east of 95◦ W) due to higher population densities and damages from
low wildfire smoke concentrations (Figure S8 and Table S7). Estimated mortality effects
are largely robust across alternative specifications of the smoke-mortality models includ-
ing alternative functional forms, temporal aggregations, and bin definitions (Figure S9 and
S10).

We contextualize the magnitude of these mortality impacts in two ways. First, we com-
pare our estimates of excess deaths from climate-driven smoke PM2.5 to the direct effects
of extreme temperatures on mortality – an impact which has been the primary focus of
climate change impacts on mortality and is projected to be one of the leading economic
costs of global climate change (31 , 32 , 54 , 80 ). Recent studies find that, by mid-century
in the US, increasing mortality from more frequent extreme heat is likely to be more than
offset by declining mortality due to cold weather with a projected decrease in annual ex-
cess deaths of 15,800 by mid-century (under the SSP2-4.5 scenario) compared to 2001-2010
(54 ). Our projected increase in smoke mortality over the same period represents 62% of
this reduction in direct temperature-related deaths (Figure 4D), significantly offsetting a
potential benefit of future warming in the US. However, as shown in Figure 4E, the size
of this offset differs across the US, with certain states likely to suffer compounded conse-
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quences from increases in both smoke-related and heat-related deaths (e.g., CA, TX, FL),
and other states likely to see minimal smoke-related mortality and a substantial decline in
heat-related deaths (e.g., IL).

As a second comparison, we compare our estimates of climate-induced smoke damages
with two prior estimates of aggregated monetized damage due to climate change. Using a
Value of Statistical Life (VSL) of $10.95 million dollars (year 2019 dollars, as suggested by
EPA (73 )), we find that the projected 12k increase in annual excess deaths due to climate-
driven wildfire smoke would result in annual damages of $244 billion in 2050 (not dis-
counted, in year 2019 dollars, see Methods). Under a similar projected warming level of
SSP3-7.0 scenario, Hsiang et al. (51 ) estimated annual damage of 0.4%-0.8% of US GDP
or $166-332 billion (in year 2019 dollars, using annual projected GDP of $38.5 trillion from
(55 )), which included damages from temperature-related mortality, agriculture, crime,
coastal storms, energy, and labor channels. The Framework for Evaluating Damages and
Impacts (FrEDI), developed by US EPA (55 ), considered more sectors (including esti-
mated wildfire damages from the western US (40 )) and estimated annual damage of $292
billion in 2050s. Our estimates suggest that damages from increase smoke-related mortal-
ity could roughly equal damages from all other estimated causes by mid-century in the US.

4 Discussion

While the effects of climate change on wildfire smoke and human health have become an
emerging research topic, these effects are rarely incorporated into estimates of climate im-
pacts. In this study, we estimate that climate-induced smoke PM2.5 could lead to 12k ad-
ditional excess deaths per year under the SSP3-7.0 scenario in the US, substantially off-
setting the reduction in direct temperature-related deaths expected due to climate change.
These estimated deaths lead to an amount of monetized damage on par with quantified
damages from all other sectors combined. Our results suggest that increasing wildfire smoke
pollution due to climate change could be one of the most important and costly conse-
quences of a warming climate in the US.

We find that aggressive mitigation of global greenhouse gas emissions would limit increases
in smoke-related deaths, but that such deaths are likely to increase substantially even un-
der low-emission scenarios. This finding points to the need to develop adaptation strate-
gies if damages are to be avoided. Adaptation could occur at many points along the wildfire-
smoke-mortality chain. Increased fuel management, such as prescribed burning, could re-
duce the likelihood of extreme wildfire activity during adverse climate conditions, but will
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create smoke of its own; while the reduction in smoke from high-intensity fire is likely to
substantially outweigh the increase from purposeful low-intensity fire, quantifying such
tradeoffs is another critical area for work (81–83 ). Adaptation could also target the re-
lationship between smoke and adverse health outcomes. This could include better inform-
ing individuals of, and protecting them from, smoke that does occur as current reliance on
individuals to self-protect appears highly inadequate and inequitable (84 , 85 ). Improved
indoor filtration, including low-cost portable filters, appears a particularly promising and
scalable solution, and ensuring that such filtration is affordable, accessible, and used is a
potential policy priority (86 ).

Using georeferenced data on deaths and ambient wildfire smoke concentrations, we show
that increasing annual exposures to smoke PM2.5 are associated with higher county-level
annual mortality rates across the contiguous US. Our work contributes to a large litera-
ture documenting the impacts of annual exposures to total PM2.5 on mortality, which has
shaped decades of policy to improve ambient air quality in the US. Due to our annual level
projections of wildfire smoke, impacts of wildfire smoke on mortality were necessarily con-
ducted at the annual level. However, wildfires are episodic and typically generate short-
term spikes in ambient air pollution, which our measure of exposure may partly obscure
(87 ). As such, our results are a complement to other studies on the health effects of short-
term (e.g., daily) wildfire smoke exposures (12 ).

We find that elevated long-term average smoke PM2.5 concentrations increase mortality
rates at both low and high concentrations. These increases lead to two important impli-
cations. First, we project large mortality burden not only in regions where large fires oc-
cur but also in populous regions with low smoke concentrations (e.g., the eastern US) that
have historically received less focus in wildfire studies. We find that 67% of the estimated
historical smoke mortality and 42% of the projected future mortality come from the east-
ern US, as a result of increases in low-level smoke concentrations, consistent with previ-
ous historical estimates from (77 ). Second, despite larger differences in projected smoke
PM2.5 concentration across the three climate scenarios, we estimate substantial mortality
increases even in the low warming scenario (SSP1-2.6), again because this scenario gener-
ates low-level annual concentration increases that we estimate can have substantial mor-
tality impacts. Our projected mortality impacts are in the uncertainty band of one prior
study that applied a range of dose-response functions of total PM2.5 exposure (39 ), while
substantially higher than the other estimate which only focuses on the western US (40 ), in
part due to the mortality impacts we find at low exposure levels.
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Our approach can isolate the “direct” impacts of climate change on wildfire air pollution,
but does not account for potential “indirect” effects of climate on wildfire through channels
such as climate’s influence on vegetation growth or lightning-related ignitions. Existing
evidence has suggested that vegetation overall would increase under higher warming lev-
els, which could lead to higher wildfire emissions and smoke (29 ). Furthermore, we did not
attempt to model the many non-climate factors that contribute to wildfire activity, includ-
ing the location of energy infrastructure, distance to road, housing development, and fire
suppression efforts. Instead, we sought a model that could isolate the influence of climate
while holding these other factors fixed. If these factors change dramatically in the future,
then our estimates could understate or overstate future emissions, smoke, and mortality.
For example, if expansions of houses near wildland vegetation continue (22 ), the effects of
a warming climate on wildfire emissions could be larger given more human ignitions, par-
ticularly as population growth in the wildland-urban interface has been most rapid in ar-
eas where the vegetation is most vulnerable to wildfire (88 ). Alternatively, large increases
in wildfire activity could be self-limiting as fires regulate the amount and availability of
fuel load for future combustion. Existing studies suggest that this feedback is likely mod-
est (28 ), but constraining this feedback empirically is a critical area for future work.

Our projection analysis quantifies the key uncertainties in climate-wildfire-smoke-mortality
estimations (Figure S11). Addressing these uncertainties could further improve under-
standing of the climate influences on wildfire pollution and health, and thus inform rele-
vant policies. One of the largest uncertainties is how climate change will influence wild-
fire emissions and smoke PM2.5. The statistical models we train can predict the emis-
sions well given observational data, but we know little about their ability to predict wild-
fire levels under unprecedented climate conditions. Also, we could only robustly estab-
lish the climate-wildfire relationship when evaluated at aggregated spatial and temporal
scales; predicting wildfire ignitions and growth at local scales remains very challenging.
In the future, combining statistical models that can leverage the observational constraints
with process-based climate-vegetation-fire models could likely generate a useful framework
for understanding climate impacts on wildfire pollution. Another critical uncertainty is
the health effects of smoke PM2.5 exposure. Quantifying health impacts of smoke PM2.5

at both low and high concentrations in the context of the unique chemical composition
of smoke PM2.5 and fire influence on human behaviors remains an important area of fu-
ture research. Furthermore, our estimated health cost is likely only a subset of the over-
all health burden due to possible morbidity effects of smoke, or health costs from other
wildfire-driven pollutants.
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Our projections of smoke PM2.5 and mortality effects can support climate science, health,
and policy research to better understand drivers and consequences of smoke PM2.5 under
climate change, and help inform policy priorities to address their negative impacts. Our
estimates suggest that health costs due to climate-induced smoke PM2.5 could be among
the most damaging consequences of climate change in the US. Based on our results, de-
signing and implementing policies to reduce wildfire smoke and protect vulnerable com-
munities has the potential to deliver substantial health benefits now and in the coming
decades.
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Figure 1: Projected wildfire emissions under future climate change scenarios.
Panel A: Performance of the statistical and machine learning ensemble models. We build
separate models to predict wildfire Dry Matter (DM) emissions for five regions respec-
tively: Western US, Southeast US, Northeast US, Canada-Alaska, and Mexico. The plot
shows the 10-year moving average of predicted emissions (y-axis) against the observed
emissions (x-axis), aggregated at the regional level. Panel B: Projected wildfire emissions
(unit: Million Tons, MT) under the historical scenarios and three future climate scenar-
ios (SSP1-2.6, SSP2-4.5, and SSP3-7.0). The plot shows the 10-year moving average of the
wildfire emission projections. The dashed line represents the average observed emissions
over 2001-2021 for each region. For presentation purpose, we aggregate predictions from
northeast US and southeast US to calculate the total for eastern US. Panel C: Observed
DM emissions at the native resolution (0.25 degree) in 2001-2021 from GFED4s, and pro-
jected annual emissions averaged between 2046-2055 under SSP1-2.6 and SSP3-7.0 scenar-
ios (down-scaled from aggregated projections).
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Effect of wildfire emissions on smoke by distance and wind directions

Heterogeneity in effects by region 

Figure 2: Wildfire emissions increase the observed smoke PM2.5 concentration
in the neighboring and downwind areas. Panel A: The empirically estimated effects
of wildfire emissions on smoke PM2.5 by distance from emissions and wind directions. “Up-
wind” means the fire is upwind of the location at which PM2.5 is measured. Wildfire emis-
sions are estimated to have larger impacts on smoke PM2.5 when smoke location is closer
to fire (distance to emissions is shown on the x-axis), and when wildfire emissions hap-
pen upwind of the smoke locations (wind patterns shown in colors). Separate models are
estimated for the 9 climatic regions in the US determined by National Centers for En-
vironmental Information (as shown in Panel B). Panel A shows the results in the North-
ern Rockies region. Panel B: Regional heterogeneity in emission impacts on smoke PM2.5.
Panel B shows the estimated effects of upwind emissions in the <50 km and 500-100 km
bins, across the nine regions in the US.
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Figure 3: Population exposure to wildfire smoke PM2.5 increases by 2- to 3-fold
under future climate change scenarios. Panel A: The annual mean smoke PM2.5 con-
centration in the historical data (2011-2020), and projected annual mean smoke PM2.5

concentration under the three climate scenarios in 2046-2055. Panel B: the contribu-
tion of smoke PM2.5 to total population-weighted PM2.5 at the state level. Non-smoke
PM2.5 is calculated as the difference between total PM2.5 (derived from (58 )) and smoke
PM2.5 in 2016-2020, and is assumed to be constant in future. The panel only lists the top
ten states with the highest smoke contribution under SSP3-7.0 scenario in 2050. Panel
C: population-weighted smoke PM2.5 over the US in different decades. Panel D: uncer-
tainty in the population-weighted smoke PM2.5 across the 28 GCMs used in the projec-
tion. Panel E: for each GCM, we calculate the ratio between the highest and lowest pro-
jected population-weighted smoke PM2.5 during 2046-2055. The panel shows the quantiles
of these ratios across the 28 GCMs.
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Figure 4: Mortality impacts of wildfire smoke PM2.5 and estimated mortality
due to smoke PM2.5 under future climate scenarios. Panel A: empirically estimated
effects of annual smoke PM2.5 concentration on county-level all-age annual mortality rates.
The figure shows the effects of exposure to different annual mean concentration of smoke
PM2.5 (shown in the x-axis) relative to a year with smoke concentration <0.1 µg/m3, es-
timated using a Poisson model at the county and annual level and data from 2006-2019.
The error bars show the 95% confidence interval estimated using bootstrap. The bottom
part of panel A shows the percentage of county-years in each smoke concentration bin over
the historical period (2011-2020) as well as future climate scenarios (2046-2055). Panel
B: estimated annual excess deaths due to smoke PM2.5, and contribution to total smoke
excess deaths from different smoke concentration bins. The error bars show the 95% boot-
strapped confidence intervals. Panel C: county-level projected increases in annual excess
deaths due to smoke PM2.5 in 2050; increases are calculated as the differences between the
average deaths under SSP2-4.5 scenario over 2046-2055 and the 2011-2020 average. Panel
D shows US-wide total estimated annual smoke deaths and direct temperature-related
deaths in 2050, with increasing smoke deaths offsetting 62% of the reduction in temper-
ature deaths. Panel E: projected increase in smoke deaths offsets projected reductions in
direct temperature-related deaths by 2050s, the latter as estimated in a recent study (54 ).
The x-axis shows the changes in deaths due to smoke PM2.5 in 2050s (note the log-scale),
and the y-axis shows the changes in deaths due to temperature change, where only the 25
states with > 75 smoke related deaths per year are visualized.31



5 Supplementary tables and figures

Table S1: Estimated dry matter (DM) emissions by land-use type in historical period and
future scenarios. For the historical period, the table shows the annual mean DM emissions
from each land-use type in each region from 2001-2021, directly derived from GFED4s.
For the future scenario, the table shows the annual mean DM emissions from each land-
use type in each region under SSP3-7.0 from 2046-2055. Landuse types are derived from
GFED4s inventory. “Forest” includes emissions from both temperate forests and boreal
forests.

Region Type 2001 - 2021 2050 SSP3-7.0
emissions (MT) percent emissions (MT)

Western US forest 25.8 68% 184.7
savanna 10.7 28% 76.5
agriculture 1.7 4% 12.3
landuse change 0.0 0% 0.0
peatland 0.0 0% 0.0

Southeastern US forest 4.2 28% 4.4
savanna 5.3 35% 5.8
agriculture 5.6 37% 5.6
landuse change 0.0 0% 0.0
peatland 0.0 0% 0.0

Northeastern US forest 0.6 29% 0.6
savanna 0.2 11% 0.2
agriculture 1.2 60% 1.1
landuse change 0.0 0% 0.0
peatland 0.0 0% 0.0

Canada-Alaska forest 152.6 94% 240.8
savanna 0.2 0% 0.4
agriculture 1.7 1% 2.7
landuse change 0.0 0% 0.0
peatland 8.2 5% 13.0

Mexico forest 1.2 3% 1.7
savanna 19.4 47% 29.0
agriculture 6.4 16% 9.5
landuse change 14.1 34% 17.1
peatland 0.0 0% 0.0
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Table S2: Performance of the individual statistical and machine learning models. For each
region, we train six algorithms {Linear, LASSO, Neural Net} × {level, log of the out-
come}. The table shows the optimal spatial resolution and three evaluation metrics for
each algorithm. The three evaluation metrics are correlation coefficient (R), bias in pre-
dicting the highest-emitting 10-year (Bias), and Root Mean Square Error over the mean of
the outcome (RMSE/Mean). Bias is calculated as (Prediction - Observation) / Observa-
tion for the 10-year period with the highest emissions. Models selected in the final model
ensembles are bolded and labeled “Y” in the “Selected” column. The selection is based on
RMSE + |Bias| to consider both metrics. In our main analysis, for each region, only the
algorithms with “RMSE + |Bias|” within 5% of the best algorithm are selected.

Region Algorithm Optimal
resolution R Bias RMSE/

Mean
RMSE +
|Bias| Diff Selected

Western US Linear, level regional 0.98 -10% 20% 29% 0% Y
Western US Linear, log eco2 0.91 -16% 22% 37% 8% N
Western US LASSO, level regional 0.99 -14% 28% 43% 13% N
Western US LASSO, log regional 0.89 -3% 31% 33% 4% Y
Western US Neural Net, level eco2 0.73 0% 90% 91% 61% N
Western US Neural Net, log eco3 0.98 -20% 19% 39% 9% N
Southeastern US Linear, level eco3 0.51 -1% 6% 7% 0% Y
Southeastern US Linear, log eco2 0.36 -18% 14% 32% 25% N
Southeastern US LASSO, level eco2 0.58 -12% 9% 21% 14% N
Southeastern US LASSO, log eco2 0.02 -16% 14% 30% 23% N
Southeastern US Neural Net, level grid 0.11 5% 11% 16% 9% N
Southeastern US Neural Net, log eco2 0.30 -12% 12% 24% 17% N
Northeastern US Linear, level grid 0.05 -2% 11% 13% 0% Y
Northeastern US Linear, log regional 0.06 -11% 9% 20% 7% N
Northeastern US LASSO, log eco2 0.19 -26% 19% 45% 32% N
Northeastern US Neural Net, level eco2 0.07 2% 14% 15% 2% Y
Northeastern US Neural Net, log eco3 0.29 -20% 12% 32% 20% N
Canada-Alaska Linear, level regional 0.91 4% 15% 19% 0% Y
Canada-Alaska Linear, log eco2 0.70 43% 35% 78% 59% N
Canada-Alaska LASSO, level eco2 0.94 -15% 19% 34% 15% N
Canada-Alaska LASSO, log regional 0.73 -13% 16% 29% 10% N
Canada-Alaska Neural Net, level eco3 0.20 -9% 27% 36% 17% N
Canada-Alaska Neural Net, log regional 0.71 -30% 15% 45% 26% N
Mexico Linear, level eco2 0.88 0% 4% 4% 0% Y
Mexico Linear, log eco2 0.85 -2% 14% 16% 12% N
Mexico LASSO, level eco3 0.86 0% 5% 5% 1% Y
Mexico LASSO, log eco2 0.71 -13% 14% 27% 23% N
Mexico Neural Net, level eco2 0.72 0% 10% 10% 6% N
Mexico Neural Net, log regional 0.82 -7% 7% 14% 9% N
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Table S3: Estimated coefficients from the selected linear regression models that use cli-
mate features to predict wildfire emissions. The table only shows the coefficients from the
final selected models in each region with the corresponding optimal spatial resolution. Sta-
tistically significant coefficients (p < 0.1) are bolded.

Western US Southeastern US Northeastern US Canada-Alaska Mexico
coef p-value coef p-value coef p-value coef p-value coef p-value

temperature 2.0E-02 0.25 -9.9E-04 0.15 2.1E-04 0.30 -3.0E-02 0.08 -1.2E-02 0.00

precipitation -3.3E-02 0.27 -4.9E-03 0.00 -2.5E-04 0.63 -3.6E-02 0.43 8.8E-03 0.00

RH 5.6E-03 0.26 2.4E-04 0.55 -1.2E-04 0.36 2.3E-02 0.23 4.8E-03 0.00

wind speed 7.3E-02 0.12 9.6E-03 0.00 -1.6E-03 0.09 4.6E-02 0.79 -1.1E-03 0.92
VPD -2.3E-02 0.94 3.3E-03 0.74 -2.5E-03 0.55 2.4E+00 0.02 2.6E-01 0.00

runoff 1.2E-02 0.24 5.5E-04 0.83 5.1E-04 0.49 1.2E-01 0.13 -9.1E-03 0.26
soil moisture -2.6E-02 0.01 -3.8E-03 0.00 -2.8E-04 0.51

Table S4: Estimated coefficients from the selected LASSO models that use climate features
to predict wildfire emissions. As LASSO models are only selected in the western US and
Mexico, the table shows the coefficients from these two final selected models with the cor-
responding optimal spatial resolution.

Western US Mexico

Selected variables coef Selected variables coef

soil moisture -1.2E+00 VPD*grass 4.1E-01
temperature 1.1E+00 VPD*precipitation 9.0E-03
VPD*precipitation -2.8E+00 VPD*RH 1.3E-03
VPD*runoff 2.5E+00
RH^2 -1.5E-04
runoff^2 -1.6E-01
runoff*wind speed 1.3E-02
temperature^2 4.6E-05
wind speed^2 4.1E-01
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Table S5: Estimated population-weighted average smoke PM2.5, total PM2.5, and smoke
PM2.5 contribution at the state level. Total PM2.5 are calculated as the sum of smoke and
non-smoke PM2.5 concentrations. Non-smoke PM2.5 are assumed to be the same as the
average non-smoke PM2.5 between 2016-2020, calculated as the difference between total
PM2.5 from (58 ) and smoke PM2.5 from (8 ). Only states with >10% smoke contributions
under SSP3-7.0 scenario are listed.

State Smoke PM2.5 Total PM2.5 Smoke State Smoke PM2.5 Total PM2.5 Smoke Scenario
µg/m3 µg/m3 percent µg/m3 µg/m3 percent

Oregon 1.3 6.6 20% Kansas 0.7 7.3 9% 2011-2020
5.0 9.7 51% 1.5 7.7 19% SSP1-2.6
6.2 11.0 57% 1.7 7.9 21% SSP2-4.5
7.5 12.3 61% 1.8 8.1 22% SSP3-7.0

Montana 1.3 6.4 20% Nebraska 0.7 7.4 9% 2011-2020
4.7 9.7 48% 1.2 7.4 16% SSP1-2.6
5.7 10.7 53% 1.3 7.5 18% SSP2-4.5
6.9 11.9 58% 1.5 7.6 19% SSP3-7.0

Washington 0.9 6.0 16% Oklahoma 0.6 7.8 8% 2011-2020
3.8 8.3 46% 1.2 8.0 15% SSP1-2.6
4.6 9.0 51% 1.4 8.2 17% SSP2-4.5
5.6 10.0 56% 1.5 8.3 19% SSP3-7.0

Idaho 1.3 7.1 18% Minnesota 0.6 6.6 9% 2011-2020
4.4 10.0 44% 0.9 6.5 14% SSP1-2.6
5.4 11.0 49% 1.0 6.7 15% SSP2-4.5
6.4 12.0 54% 1.1 6.8 16% SSP3-7.0

Wyoming 0.7 5.4 13% Arkansas 0.6 8.2 7% 2011-2020
2.6 7.1 37% 1.1 8.0 14% SSP1-2.6
3.2 7.7 42% 1.2 8.2 15% SSP2-4.5
3.9 8.4 47% 1.3 8.2 16% SSP3-7.0

Nevada 0.5 7.0 7% Texas 0.5 8.3 6% 2011-2020
3.1 9.6 32% 1.1 8.5 12% SSP1-2.6
3.9 10.4 38% 1.2 8.6 14% SSP2-4.5
4.6 11.1 42% 1.3 8.7 15% SSP3-7.0

North Dakota 0.7 5.3 14% Arizona 0.2 8.2 2% 2011-2020
1.7 6.1 28% 0.9 8.7 11% SSP1-2.6
2.0 6.3 31% 1.1 8.9 13% SSP2-4.5
2.2 6.5 33% 1.3 9.1 14% SSP3-7.0

California 0.6 10.5 6% Iowa 0.6 7.8 8% 2011-2020
2.8 12.2 23% 0.8 7.5 11% SSP1-2.6
3.5 12.9 27% 0.9 7.6 12% SSP2-4.5
4.1 13.5 30% 1.0 7.7 13% SSP3-7.0

Colorado 0.5 6.1 9% Wisconsin 0.5 7.4 7% 2011-2020
1.7 7.2 24% 0.8 7.1 11% SSP1-2.6
2.0 7.5 27% 0.9 7.3 12% SSP2-4.5
2.3 7.8 30% 1.0 7.3 13% SSP3-7.0

Utah 0.5 6.9 7% Louisiana 0.4 8.5 5% 2011-2020
1.7 7.7 22% 0.8 8.5 10% SSP1-2.6
2.0 8.0 26% 1.0 8.6 11% SSP2-4.5
2.4 8.4 29% 1.0 8.6 12% SSP3-7.0

South Dakota 0.7 6.1 11% Mississippi 0.4 8.3 5% 2011-2020
1.4 6.3 22% 0.7 8.0 9% SSP1-2.6
1.5 6.5 24% 0.9 8.1 11% SSP2-4.5
1.7 6.7 26% 0.9 8.2 11% SSP3-7.0

New Mexico 0.3 5.4 6% Michigan 0.4 8.0 5% 2011-2020
1.2 6.0 20% 0.6 7.6 8% SSP1-2.6
1.4 6.2 23% 0.7 7.7 9% SSP2-4.5
1.6 6.4 25% 0.8 7.7 10% SSP3-7.0
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Table S6: Climate models used in this study for future projections. We use projections
from 28 global climate models with available output under the historical and three climate
scenarios from the CMIP6 model ensembles. The spatial resolution of each model is shown
in latitude × longitude (unit: degree). Resolutions are approximated for models with vary-
ing latitudes. Data is downloaded in February, 2023.

Model Ensemble variant Resolution
ACCESS-CM2 r1i1p1f1 1.25 x 1.88
ACCESS-ESM1-5 r1i1p1f1 1.25 x 1.88
BCC-CSM2-MR r1i1p1f1 1.12 x 1.12
CanESM5 r1i1p1f1 2.79 x 2.81
CAS-ESM2-0 r1i1p1f1 1.42 x 1.41
CESM2-WACCM r1i1p1f1 0.94 x 1.25
CMCC-CM2-SR5 r1i1p1f1 0.94 x 1.25
CMCC-ESM2 r1i1p1f1 0.94 x 1.25
CNRM-CM6-1 r1i1p1f2 1.4 x 1.41
CNRM-CM6-1-HR r1i1p1f2 0.5 x 0.5
CNRM-ESM2-1 r1i1p1f2 1.4 x 1.41
EC-Earth3 r1i1p1f1 0.7 x 0.7
EC-Earth3-Veg r1i1p1f1 0.7 x 0.7
EC-Earth3-Veg-LR r1i1p1f1 1.12 x 1.12
FGOALS-f3-L r1i1p1f1 0.94 x 1.25
FGOALS-g3 r1i1p1f1 2.03 x 2
GFDL-ESM4 r1i1p1f1 1 x 1.25
GISS-E2-1-G r1i1p1f2 2 x 2.5
GISS-E2-1-H r1i1p1f2 2 x 2.5
IPSL-CM6A-LR r1i1p1f1 1.27 x 2.5
KACE-1-0-G r1i1p1f1 1.25 x 1.88
MIROC-ES2L r1i1p1f2 2.79 x 2.81
MIROC6 r1i1p1f1 1.4 x 1.41
MRI-ESM2-0 r1i1p1f1 1.12 x 1.12
NorESM2-LM r1i1p1f1 1.89 x 2.5
NorESM2-MM r1i1p1f1 0.94 x 1.25
TaiESM1 r1i1p1f1 0.94 x 1.25
UKESM1-0-LL r1i1p1f2 1.25 x 1.88
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Table S7: Estimated annual excess deaths due to wildfire smoke at the state level. For
historical period, the table shows average annual excess deaths due to smoke PM2.5 expo-
sure during 2011-2020. For future climate scenarios, the table shows average annual excess
deaths due to smoke PM2.5 exposure during 2046-2055 (median across 28 GCMs).

State Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 State Historical SSP1-2.6 SSP2-4.5 SSP3-7.0

California 1381 4164 4657 5700 South Carolina 266 327 353 380
Texas 1276 1974 1958 1999 Tennessee 360 283 358 373
Washington 360 1108 1266 1530 Massachusetts 283 257 330 359
Florida 821 1119 1198 1295 Montana 87 219 253 318
Oregon 411 858 1020 1245 Mississippi 184 295 302 306
New York 800 749 924 979 Arkansas 244 323 305 302
Michigan 610 807 819 825 Kentucky 256 238 285 291
Ohio 651 701 845 821 Iowa 243 277 283 286
Pennsylvania 633 617 759 820 Kansas 224 265 260 269
Illinois 779 746 862 817 Utah 92 186 245 259
North Carolina 442 575 612 667 Maryland 236 168 213 232
Georgia 447 567 606 643 New Mexico 82 175 188 212
Arizona 184 511 558 574 Connecticut 162 150 193 201
Nevada 117 421 463 560 Nebraska 147 168 167 180
Colorado 225 398 497 540 West Virginia 94 69 101 109
Virginia 288 431 467 497 Wyoming 31 72 81 99
Wisconsin 366 461 464 471 South Dakota 63 81 85 91
Missouri 476 406 453 462 Maine 62 59 79 87
Indiana 392 394 464 452 New Hampshire 54 59 74 79
Louisiana 274 440 438 441 North Dakota 53 63 67 77
New Jersey 394 328 406 437 Rhode Island 49 43 55 61
Idaho 100 296 348 431 Delaware 44 24 33 37
Minnesota 340 399 405 418 Vermont 26 25 32 35
Alabama 306 358 391 409 D.C. 29 25 32 33
Oklahoma 320 415 394 404
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Figure S1: Predictive performance of our model and two other approaches used in previous
research to predict wildfire emissions using climate variables. For comparison purposes,
this figure only shows the results in western US. Panel A compares the predictive perfor-
mance between our ensemble statistical and machine learning model (“Our model”), a re-
gression method that uses fire-season VPD to predict the logged fire emissions (“log(fire)-
VPD”) as used in (2 ), and a XGBOOST model that predicts the fire emissions at the grid
cell level as used in (43 ). The table shows the correlation coefficient (R), RMSE/mean,
and bias of the highest-emitting 10-year period. Panels B and C show the out-of-sample
prediction from the log(fire)-VPD regressions, with the same underlying data shown in
level scale (B) and log scale (C). This demonstrates that while log(fire)-VPD regression
achieves reasonable performance in the log scale (as reported by previous papers), its per-
formance is inferior to our models in predicting the absolute levels of fire emissions. Pan-
els D and E show the out-of-sample predictions from XGBOOST model under tempo-
ral LOOCV (D) and random CV (E) using the underlying dataset from (43 ). Random
CV randomly partitions data to training and test sets with the same grid cell from dif-
ferent years possibly existing in both training and test sets. Panels D and E suggest the
XGBOOST model trained at the grid cell has an inflated performance under random CV
which grid cells can contribute data to both training and test sets.
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U.S. Climate regions

Figure S2: Performance of the fire-smoke regression models. The black dots show the full
adjusted R2 of the regression model. The color bars show the within R2 after partialing
out the month-of-year and grid cell fixed effects. The within R2 thus quantify the model
predictive performance within each grid cell and month-of-year. Each bar shows the per-
formance of a fire-smoke model in one of the nine US climate regions.
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Figure S3: Predictive performance of models trained at different spatial resolutions (West-
ern US). The plot shows the 10-year moving average of predicted emissions (y-axis)
against the observed emissions (x-axis) from models trained at different spatial resolu-
tions. For each algorithm (row), results are presented for models trained using grid cell
data (“grid”), data aggregated at the level-3 ecoregion (“eco3”), data aggregated at the
level-2 ecoregion (“eco2”), and data aggregated at the regional level (“regional”). Despite
the different spatial resolutions of training data, the evaluation is at the regional level: we
first aggregate the out-of-sample prediction to the regional level and compare the aggre-
gated predictions against the aggregated observations. Dashed lines are 1-1 lines.
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Figure S4: Predictive performance of models evaluated at different temporal scales (West-
ern US). The plot shows the 10-year moving average of predicted emissions (y-axis)
against the observed emissions (x-axis) from the same set of model but evaluated at dif-
ferent temporal scales. For each algorithm (row), the results show the out-of-sample pre-
diction aggregated at different temporal scales ranging from no-aggregation (i.e. 1 year),
to aggregation at the 10-year intervals. Dashed lines are 1-1 lines.
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Figure S5: Projections of the climatic variables used in our statistical and machine learn-
ing models. Colour line indicates the median across 28 GCMs, and the shade area shows
the 25th and 75th percentile across GCMs. The plot shows the 10-year moving average
of the anomalies of each variable relative to the average values under historical scenario
during 2001-2014. Soil moisture is not shown in Canada-Alaska and Mexico, as historical
observations of soil moisture from NLDAS-2 are not available for these two regions.
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Figure S6: Impacts of smoke PM2.5 concentration on mortality rates estimated by age
group. The figure shows the effects of exposure to different annual mean concentration
of smoke PM2.5 (x-axis) relative to a no-smoke year (defined as a year with smoke PM2.5

concentration less than 0.1 µg/m3), estimated using a Poisson model at the county and
annual level. The error bars show the 95% confidence interval estimated using bootstrap.
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Figure S7: Percentage of estimated death contributions from each smoke concentration
bin. The plot shows the contribution to total smoke-related deaths from county-years with
annual mean smoke concentrations that fall in different smoke concentration bins under
each scenario.
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Figure S8: Estimated annual excess deaths due to smoke PM2.5 under the historical, SSP1-
2.6, and SSP3-7.0 scenarios. The top panels show estimates at the county level. The bot-
tom panels show estimates at the state level.
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Figure S9: Estimated annual excess deaths due to smoke PM2.5 across alternative dose-
response functions. Our main analysis uses the “Poisson bin” specification. The error bars
show the 95% confidence interval estimated using bootstrap.
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Figure S10: Estimated annual excess deaths due to smoke PM2.5 (2011-2020) across alter-
native specifications of the Poisson model. In addition to our main model (grey bar), we
estimate a model which uses alternative bin definitions, a model which includes year 2020,
a model which calculates the number of months or the number of days in a year that fall
in different smoke bins to represent different temporal aggregations, and a model which is
estimated at the county-month level. The error bars show the 95% confidence interval esti-
mated using bootstrap.
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Figure S11: Uncertainty in estimated annual excess deaths due to wildfire smoke PM2.5

under SSP3-7.0 scenario. The figure shows the uncertainty of the mortality estimates due
to climate projections, climate-fire model, and the dose-response function between smoke
and mortality. The red dashed line shows the main estimate reported in the paper (i.e.
27,800 excess deaths per year). The solid bar shows the 10th and 90th percentile, and the
black line shows the 2.5th and 97.5th percentile. Uncertainty from “climate projection”
is calculated using the percentiles of the estimated mortality from the 28 GCMs. Uncer-
tainty from “climate-fire model” is calculated using bootstrap procedures performed on the
individual fire-climate models from each region. More specifically, we first construct boot-
strapped samples of the fire-climate panel dataset (sample with replacement) and then fit
fire-climate model from each bootstrapped sample, and use these models to project smoke
deaths. Uncertainty from “dose-response function” is calculated using bootstrap procedures
performed on the health response functions. More specifically, we construct bootstrapped
samples of the smoke-death dataset and estimate one dose-response function from each
sample.
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Figure S12: Impacts of smoke PM2.5 concentration on mortality rates estimated using
three alternative dose-response functions. The three colour lines show the estimated re-
sults from three non-binned models with poisson, linear, and quadratic specifications. For
comparison, the black dots show the estimated coefficients from our main model (Poisson
bin model). The shaded areas and the error bars represent the 95% confidence interval es-
timated using bootstrap procedure.
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