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1 Introduction

The pronounced volatility of world equity markets is di�cult to reconcile with textbook

models in which the price of a stock is the rational expectation of future cash-�ow funda-

mentals, discounted at a constant rate. These theories imply that stock markets should be

far more stable than observed, leading a vast literature to explain �excess� stock market

volatility with discount rate variation.1 But recent advancements in the �eld of behavioral

�nance point toward a di�erent explanation, namely that investors may exhibit systematic

expectational errors (�belief distortions�) that lead them to overreact to news relevant for

cash-�ow growth. A standard result is that overreaction ampli�es market volatility, o�ering

an explanation for observed equity markets that does not rely on variable discount rates.

Documenting evidence of overreaction (or belief distortions more generally) requires both

a measure of what investors subjectively expect, and a benchmark for gauging any distor-

tion in subjective growth expectations. The traditional approach to this problem is to use

surveys of analysts or investors to measure subjective expectations, and to use in-sample

regressions of survey forecast errors on lagged forecast revisions to measure overreaction.

Despite valuable insights, the very simplicity and convenience of the traditional approach

necessarily leaves several pertinent questions unanswered.

First, the precise news events to which investor beliefs purportedly overreact are left

unspeci�ed in the forecast-error-on-forecast-revision regression approach. If the stock mar-

ket overreact to news, which real-world events have historically been responsible for such

reactions and why?

Second, what are the perceived shocks that investors are responding to when they over-

react to news? Bordalo, Gennaioli, LaPorta and Shleifer (2019), Nagel and Xu (2022), and

Bordalo, Gennaioli, Porta and Shleifer (2024) propose single-shock models in which investors

react to unexpected changes in a univariate earnings or payout process. These papers do

not tell us how evidence on belief overreaction might change in a more general setting where

1For textbook treatments of this issue, see Chapters 7 and 8 of Campbell, Lo and MacKinlay (1997), and
Chapter 20 of Cochrane (2005).
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investors react to multiple primitive shocks perceived to be relevant for payout and valuation.

Third, contrary to the traditional regression approach, dynamic machine learning algo-

rithms designed to quantify the overall magnitude of distortion in beliefs �nd little evidence

that survey forecast errors are related to lagged forecast revisions (Bianchi, Ludvigson and

Ma (2022a)). This raises immediate questions about the traditional methodology, since it

means that the standard regression approach to measuring over- or underreaction may not

provide a reliable means of quantifying systematic expectational error.

In this paper we revisit the evidence on belief overreaction to news using a more general

empirical approach capable of addressing these gaps in the literature. Our objectives are

to (i) measure the stock market's response to speci�c news events, (ii) estimate revisions in

the representative investor's perceptions about multiple sources of risk as a result of those

events, and (iii) gauge the quantitative importance (if any) of a range of belief distortions

in driving the market's reactions to news.

Our approach has four central ingredients. First, we require high frequency market

reactions to speci�c news events. To this end, we study hundreds of such events across

macroeconomic data releases, corporate earnings announcements, and central bank commu-

nications from the Federal Reserve (the Fed). Second, we need a conceptual framework for

thinking about over- versus underreaction. For this, we specify and estimate a structural

asset pricing model in which investors react to real-world news by revising their perceptions

about multiple primitive shocks that together span cash-�ow and discount rate news. Third,

investor beliefs in the structural model must be allowed to potentially depart from rationality

in a variety of ways by magnitudes that are freely estimated. For this, we specify two broad

sources of distortion. The �rst allows for general forms of over- and underreaction that could

arise from distorted perceptions about the laws of motion driving the aggregate economy.

This distortion means that investors may react to news by misattributing one primitive shock

to a mixture of others. The second determines how investors react to the fundamental shocks

that they perceive to have learned about from a news event. This distortion is summarized

by a single estimated scalar parameter ζ that controls reactions to all shocks, a formulation
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that nests speci�c belief formation frameworks. These including inattention (IA), which

implies underreaction to news and occurs if ζ < 0 (Sims (2003), Gabaix (2019)), diagnostic

expectations (DE), which implies overreaction and occurs if ζ > 0 (Bordalo, Gennaioli and

Shleifer (2018), Bordalo et al. (2019), and Bordalo et al. (2024)), and rational expectations

(RE) in which there is neither over- or underreaction and occurs if ζ = 0. The fourth and

�nal ingredient in our approach is to use the dynamic machine learning methodology of

Bianchi et al. (2022a) (BLM1) and Bianchi, Lee, Ludvigson and Ma (2025) to construct an

explicit measure of non-distorted and e�cient expectation formation with which to compare

to the subjective beliefs of investors. We then merge this machine learning output with the

structural estimation to identify and quantify any distortions in beliefs as seen through the

lens of the structural model.

Our main �ndings can be summarized as follows. First, while the structural estimation

treats as equally likely the opposing belief formation frameworks of inattention and DE, our

parameter estimates imply that the representative investor exhibits belief overreaction to

all perceived shocks in a manner consistent with DE. The estimated baseline model with

DE-style overreaction �ts the post-war behavior of the stock market with little to no error.

Second, these parameter estimates imply that market �uctuations around big real-world

news events sometimes exhibit overreaction as well, causing �excess� volatility in response

to such events. This force for volatility is driven by the estimated DE distortion and occurs

when overreaction to each shock individually ampli�es the e�ects of all shocks combined. We

�nd that investors are most overreactive to a highly transitory (i.e., short-run) component

of the payout share of output but are also strongly overreactive to a longer-run component.

These estimated overreactions to payout-share news are driven in the data by high-frequency

jumps in analyst expectations for earnings relative to aggregate output and are much stronger

than overreactions to combinations of shocks that feed into asset prices through economic

growth or discount rates. This hierarchy of overreactions is driven by our machine evidence

that survey respondents make larger, demonstrably predictable errors in their forecasts of

earnings growth than they do in their forecasts of output growth, in�ation, or returns. That
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investors attend strongly to news about the earnings share of output is consistent with

evidence that the earnings share, while highly volatile, has contributed more in the long-run

to stock market valuations than either economic growth or discount rates (Greenwald, Lettau

and Ludvigson (2025)).

Third, despite our �nding that investors overreact to all perceived shocks, we show that

the stock market often underreacts to news. To explain this result, we begin with a sim-

pli�ed theoretical setting in which multiple primitive macroeconomic risks are relevant for

the subjective growth expectations that underpin shareholder value. Using this simpli�ed

model, we show that overreaction to all primitive shocks can dampen rather than amplify

market volatility via a shock composition e�ect. This happens because many real-world news

events cause investors to revise their perceptions about more than one fundamental shock,

in directions that have counteracting but asymmetric implications for valuations. For ex-

ample, suppose that an event is perceived as predominantly good news about discount rates

with some partially o�setting bad news about earnings/payout. If investors are only slightly

overreactive to the perceived shocks that drive discount rates, the investor reaction to the

discount rate component of the news even will be close to the rational response. By contrast,

if investors are much more strongly overreactive to the perceived shocks that drive earnings

and payout, the investor reaction to the cash-�ow component of the news event will be far

from the rational response. As a consequence, the market can rise �too little� because the

investor's expectations for earnings are more overly pessimistic than her views on discount

rates are overly rosy.

This surprising result is attributable to asymmetries in the distorted reactions to coun-

teracting fundamental shocks (the shock composition e�ect), and occurs when overreaction

to each shock individually dampens the e�ects of all shocks combined. Such asymmetries

are a direct result of the estimated hierarchy of overreactions discussed above. The under-

reaction phenomenon it generates is not attributable to inattention and occurs even though

a single free parameter ζ controls the magnitude of distorted reactions to all shocks. We

show that this shock composition e�ect well describes the stock market's behavior in several
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major episodes of post-millennial history, most notably the Global Financial Crisis, in which

behavioral overreaction was a force for stability rather than volatility. Indeed, when we take

into account the sequence of estimated shocks that occurred over the entire post-millennial

period, this force for stability predominates. What we �nd is that a counterfactually rational

stock market would have been more volatile than actually observed, resulting in a puzzle of

�excess stability� rather than excess volatility. By contrast, a model of DE-style belief over-

reaction to multiple shocks can perfectly explain the data, not because it ampli�es volatility

but because it dampens it.

Relation to the Literature Our study builds on a large and growing body of literature

studies overreaction in subjective expectations and its relation to stock market behavior

(Barberis, Shleifer and Vishny (1998), Chen, Da and Zhao (2013), Bordalo et al. (2018),

Bordalo, Gennaioli, Ma and Shleifer (2020), Bordalo et al. (2019), Nagel and Xu (2022),

Afrouzi, Kwon, Landier, Ma and Thesmar (2023), Bordalo et al. (2024), De La O and Meyers

(2021, 2023) Hillenbrand and McCarthy (2021).) At the same time, other researchers have

argued that at least some types of news are not tended to and thus met with underreaction

(e.g., Mankiw and Reis (2002), Woodford (2002), Sims (2003), Gabaix (2019), Kohlhas

and Walther (2021).) We extend these literatures by combining machine learning with a

structural estimation in order to freely estimate the direction and severity of a range of biases

(if any) in the stock market's reaction to hundreds of real-world news events, delineating the

role of perceptions about multiple fundamental macro shocks in driving these reactions. Our

study adds to the �ndings in this literature by showing that markets can underreact to news

even if investors overreact to all perceived shocks.

Other studies hypothesize that any link between subjectively expected future cash-�ow

growth and stock price variation occurs because the former responds to the latter rather

than drives it (Bastianello and Fontanier (2022), Chaudhry (2023), Jin and Li (2023)) or,

relatedly, that unexplained �ows in and out of the stock market�evidently disconnected from

genuine cash-�ow news�are responsible for substantial stock market volatility (e.g., Gabaix
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and Koijen (2021), Hartzmark and Solomon (2022)). These papers study price movements

driven by �ows or other mechanical factors unrelated to news, without taking a stand on

what may have caused the price movement or �ow to change in the �rst place. We take

the converse and complimentary approach of studying market reactions to actual news,

estimating their role in causing equilibrium price movements. Since actual news causes

adjustments in forward-looking asset prices only when investors' subjective expectations are

revised, such reactions should be highly informative about investor beliefs.

We follow the tradition of many papers in using equity analysts' survey forecasts of earn-

ings growth as one observable indicator of subjective cash-�ow expectations in our analysis.

As emphasized by Adam and Nagel (2023), however, the extent to which equity analysts'

forecasts are representative of broader market expectations remains an open question. The

methodology adopted here takes a step toward addressing this limitation by employing a

structural estimation that substantially broadens the set of observable indicators relevant

for understanding investor beliefs. In particular, in our approach, the true underlying ex-

pectations of investors are identi�ed by using a wide range of forward-looking indicators,

including surveys and asset prices themselves, to map onto theoretically motivated expres-

sions that must obey cross-equation restrictions. This allows us to use multiple empirical

signals to identify the subjective beliefs of stock market investors, going beyond the use of

surveys alone.

The methodology of this paper builds o� of the structural mixed-frequency approach of

Bianchi, Ludvigson and Ma (2022b) (BLM2) for inferring what markets learn from news.

Unlike the present study, BLM2 makes no use of machine learning to quantify systematic

expectational error. It thus investigates market reactions to news without addressing whether

those reactions may be nonrational and if so why, a gap this paper �lls. It is the merging

of machine learning and structural estimation that is unique to the present paper and, the

best of our knowledge, the extant literature.

The machine learning aspect of our methodology to measure systematic expectational

errors consistent with the conditions of real-world expectation formation uses the general
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approach of BLM1 and Bianchi et al. (2025). The contribution of this paper is to take

these machine-measured biases as an input into a structural estimation in order to inves-

tigate why those biases occur, with speci�c attention to how they show up in reactions to

news. Our machine learning approach builds on insights in Bybee, Kelly, Manela and Xiu

(2021), Gu, Kelly and Xiu (2020), and Cong, Tang, Wang and Zhang (2021), which show

the power of supervised learning algorithms for asset return prediction. While our algo-

rithms utilize supervised learning, they di�er from these studies in that they are speci�cally

designed to uncover and quantify distortions in subjective beliefs. A foundational principle

of our algorithms recognizes that market participants have access to thousands of pieces of

potentially relevant information in real time, while the canonical standard for rational ex-

pectation formation is predicated on the e�cient use of all of it. The machine algorithm we

design constructs a benchmark for objective expectation formation that is, by construction,

free from human cognitive biases and e�ciently copes with the problems of over�tting and

structural change without look-ahead bias. Adherence to this principle is important to avoid

overstating estimates of biases in the structural model.

The rest of this paper is organized as follows. In the next section we present a simpli�ed

framework to explain the key elements of our approach. We describe our machine learning

algorithm in Section 3, the full structural model in Section 4, and the estimation, data, and

measurement for the full structural model in Section 5. Section 6 presents our main �ndings.

Section 7 presents additional results designed to unpack the main mechanisms behind our

�ndings, while Section 8 concludes. Throughout the paper we use lowercase letters to denote

log variables, i.e., dt = ln(Dt), and �∼� to denote features of the model under the subjective

beliefs of the investor that may depart from full rationality.

2 Simpli�ed Framework

This section contains two parts. The �rst part presents a simpli�ed structural model of

investor behavior and aggregate dynamics. The second part provides key steps of our empir-
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ical approach, which synthesis the machine learning output with the structural estimation,

using this simpli�ed framework to illustrate the core elements of our approach. Since the

application to the full structural framework is a straightforward generalization, we leave the

full structural estimation details to the Online Appendix.

Any marriage of machine learning with parametric structural estimation must confront

the fact that the structural model is a stylized representation of reality subject to error,

while the machine beliefs, survey forecasts, and other data are the product of much more

complicated real-world phenomena. This section clari�es that our methodology produces

results that are conditional on a stylized structural model, but one that we explicitly treat

in estimation as an approximation of a complex and unknown �true� data generating process.

Simpli�ed Structural Model Let real stock market payout, Dt, be a time-varying share

Kt of real output Yt, i.e., Dt = KtYt. With arbitrary time-variation in Kt, the speci�cation

Dt = KtYt is a tautology. We argue here, however, that empirically log growth ∆dt is better

described by the speci�cation dt = kt + yt than by a univariate process for ∆dt, because

the former helps to identify distinct trend and cycle components that arise separately from

variation in kt and yt. We present evidence on this below.

To see how these distinct components contribute short-run and longer-run components

in earnings/payout growth, consider a simpli�ed theoretical setting in which a representative

investor forms subjective beliefs about log real stock market payouts, d, which follows the

law of motion:

∆dt = ∆yt + kt − kt−1 (1)

kt = (1− ρk)k + ρkkt−1 + εk,t (2)

∆yt = (1− ρ∆y)∆y + ρ∆y∆yt−1 + ε∆y,t. (3)

Write the above as a bi-variate system in deviations from steady-state using �hats,� i.e.,
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k̂t ≡ kt − k:


∆̂dt+1

k̂t+1

∆̂yt+1


︸ ︷︷ ︸

ŜM
t+1

=


0 ρk − 1 ρ∆y

0 ρk 0

0 0 ρ∆y


︸ ︷︷ ︸

TM(θM)


∆̂dt

k̂t

∆̂yt


︸ ︷︷ ︸

ŜM
t

+


1 1

1 0

0 1


︸ ︷︷ ︸

RM

 εk,t+1

ε∆y,t+1


︸ ︷︷ ︸

εMt+1

, (4)

or, letting θM ≡ (ρk, ρ∆y)
′, in matrix notation as

ŜM
t+1 = TM

(
θM
)
ŜM
t +RMεMt+1. (5)

Suppose both kt and ∆yt are stationary with 0 ≤ ρk, ρ∆y < 1. The system (4) therefore

implies that ∆̂dt+1 = (ρk − 1)k̂t + ρ∆y∆̂yt has both a negatively autocorrelated component

originating from �uctuations in the payout share kt, and a positively autocorrelated compo-

nent originating from output growth ∆yt. It follows that a negative impulse to εk,t implies

∆̂dt+1 > 0, i.e., positive catch-up growth next period, while a positive impulse to εk,t implies

∆̂dt+1 < 0, i.e., negative fall-back growth next period. We refer to the kt earnings share

component as the �cyclical� component, to the ∆yt positively autocorrelated component as

the �trend� component, and to the entire bi-variate speci�cation as a �trend-cycle� model.

This labeling serves to explicitly distinguish the bi-variate model from more commonly em-

ployed univariate autoregressive models for ∆dt, such as those in Nagel and Xu (2022), and

Bordalo et al. (2024).

Evidence for empirically relevant variation in the earnings share of output has previously

been emphasized by Greenwald et al. (2025). Here we provide supporting evidence for the

current context by reporting the results of speci�cation tests comparing the �t of the trend-

cycle speci�cation (1)-(3) with that of a standard univariate autoregressive speci�cation for

∆dt = µ + ρ∆dt−1 + εt, using observations on earnings growth. To do so we measure dt

with a bottom-up estimate of IBES �Street Earnings� for the S&P 500. Street Earnings di�er

from GAAP earnings by excluding discontinued operations, extraordinary charges, and other
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non-operating items. We discuss this measure of earnings further below. Table 1 provides

the results of two speci�cation comparisons, based on the estimated log likelihood and the

BIC criterion, which varies inversely with the likelihood but penalizes for extra parameters.

?tablename? 1: Model comparison on (street) earning growth ∆et

AR(1) with intercept Trend�cycle

logL(θ̂) −549.170 −544.759
BIC 1113.508 1104.687

By both measures, the trend-cycle model is strongly preferred by the data. This is relevant

because we show below that a speci�cation that models empirically plausible variation in kt

and yt separately generates �ndings that di�er markedly from models with univariate spec-

i�cations. Consistent with the evidence above, we view the trend-cycle speci�cation�and

therefore our �ndings�as strongly preferred by the data to those generated by a univariate

autoregressive speci�cation for ∆dt.

We consider two types of distortion in investor beliefs about stock market fundamentals

SM
t . First, we allow that the perceived process for fundamentals growth may di�er from (5)

because the investor's subjective value θ̃
M

≡ (ρ̃k, ρ̃∆y)
′ of the persistence of fundamentals,

θM , di�ers from its objective value:

ŜM
t+1 = TM

(
θ̃
M
)
ŜM
t +RM ε̃Mt+1. (6)

Since the functional form of (6) is otherwise identical to that of (4), this implies distorted

perceptions about θM translate directly into distorted perceptions about the shocks. In this

case, the perceived shock vector ε̃Mt will di�er from the objective innovation εMt .2

Second, revisions in expectations may be subject to a time-varying distortion ηt. To

model this distortion, we generalize the univariate speci�cations of Bordalo et al. (2018),

Bordalo et al. (2019), Bordalo et al. (2024) to accommodate the multivariate system (6). As

in those speci�cations, investors are unaware that they have a distortion but behave as if

2�Peso problems� in which investors fear a rare event that does not occur in the sample observed by our

machine algorithm would also show up as a wedge between θ̃
M

and θ.
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their subjective expectations Ẽt [·] were conditional on some additional news ηt. Whereas in

those speci�cations ηt is a scalar, here it is a 3× 1 vector satisfying

Ẽt

[
ŜM
t+1

]
= TM

(
θ̃
M
)(

ŜM
t + ζηt

)
, (7)

where ηt ≡
(
η∆d,t, ηk,t, η∆y,t

)′
. The scalar parameter ζ controls the magnitude and nature

of the distortion and nests di�erent models. If ζ > 0, investor expectations overreact to

their perceived news as in models with DE or earlier models of belief overreaction (e.g.,

Barberis et al. (1998)). If ζ < 0, investors underreact to perceived news, as in models with

inattention (Sims (2003), Gabaix (2019)). In the remainder of this paper, we refer to ηt

simply as the �DE distortion� for brevity, even though, strictly speaking, the reference to

diagnostic expectations only applies when ζ > 0. The empirical relevance of either type of

distortion�captured by the sign and magnitude of ζ�will be subject to estimation in the full

structural model.

As in Bordalo et al. (2018), Bordalo et al. (2019), and Bordalo et al. (2024), we allow

overreaction to gradually revert over time by specifying ηt to follow a VAR(1) (rather than

AR(1)) process ηt = ρηT̃
Mηt−1+R

M ε̃Mt , where T̃
M ≡ TM

(
θ̃
M
)
and 0 ≤ ρη < 1. This shows

that the distortion vector ηt has innovations that are proportional to the perceived cash-�ow

shocks. Note that when ρη = 0, η∆d = ε̃k,t + ε̃∆y,t.

Equation (6) implies that the investor may misperceive the law of motion for cash-�ow

growth. It is important to clarify that this does not mean the investor misperceives ∆dt+1

itself, once observed. That is, investors do not su�er from delusions about the facts of cash-

�ow growth once they learn those facts. What the distinction between (5) and (6) does imply

is that investors may disagree with a fully rational agent about how they got to those facts.

Suppose for now that investors price in a constant risk-premium and risk-free rate rf

under their subjective beliefs. (The full model relaxes this assumption.) Let PD
t denote the

stock price level and apply a Campbell and Shiller (1989) approximate present value identify
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by expanding the log return rDt+1 ≡ ln(PD
t+1 +Dt+1)− ln(PD

t ) around a point PD
t /Dt ≡ PD:

rDt+1 = κpd,0 + βpdt+1 − pdt +∆dt+1, (8)

where rDt is the stock market return, pdt ≡ pDt − dt, β ≡ PD
1+PD

, κpd,0 ≡ ln(1 + exp(pd)) −

β(pd), and pd = ln(PD). With the constant risk-premium and risk-free rate and imposing

limj→∞ βjpdt+j = 0, the price-payout ratio is

pdt = pd+ Ẽt

∞∑
ι=0

βυ∆̂dt+1+υ (9)

= pd+

(
ρ̃∆y

1− ρ̃∆yβ

)(
∆̂yt + ζη∆y,t

)
+

(
ρ̃k − 1

1− ρ̃kβ

)(
k̂t + ζηk,t

)
, (10)

where pd ≡
(
κpd,0 − rD +∆d

)
/ (1− β), rD equals to the constant subjectively expected re-

turn, and ∆d = ∆y equals steady-state payout growth. This shows that the price-payout

ratio re�ects the investor's perceived law of motion and the time-varying distortion ηt. Com-

bining (10) and (8) and noting that Ẽt

[
ηt+1

]
≡ 0 because the agent is unaware of the

distortion, we verify Ẽt

[
rDt+1

]
= rD.

If this were the model that generated the data, what would be the objective (i.e., non-

distorted) expectation of future returns? In contrast to (7), objective beliefs take the form

Et

[
ŜM
t+1

]
= TM

(
θM
)
ŜM
t .

Taking expectations of (8) under objective beliefs Et[·] yields

Et

[
rDt+1

]
= rD +

[
ρ∆y − ρ̃∆y

1− ρ̃∆yβ

]
∆̂yt +

[
βρ∆yρη − 1

1− ρ̃∆yβ

]
ρ̃∆yζη∆y,t

+

[
(ρk − ρ̃k) (1− β)

1− ρ̃kβ

]
k̂t +

[
βρkρη − 1

1− ρ̃kβ

]
(ρ̃k − 1) ζηk,t (11)

Subjective and objective expected returns coincide only when (i) ζ = 0, and (ii) T̃M = TM ,

in which case objective expected returns in (11) are always rD, and investors rationally price
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in a constant risk-free rate and risk premium. More generally, the terms in square brackets

show the predictable components of objectively expected future returns that are attributable

to the systematic distortions in subjective beliefs.

Belief Reactions to News: The Shock Composition E�ect With these expressions

in hand, we now consider how di�erent news events would a�ect subjective and objective

beliefs, where a news �event� in this context is de�ned as distinct combination of perceived

economic shocks, or revisions subjective expectations about the current economic state. For

ease of exposition, we set ρη = 0 in (7), implying ηk,t = ε̃k,t, η∆y,t = ε̃∆y,t.

1. Event 1: ε̃k,t < 0. This news causes the investor to revise her perception of the

current payout share downward, while having no a�ect on perceived output growth,

i.e., ε̃∆y,t = 0.

(a) Suppose ζ > 0 as in DE models of belief overreaction and let ρ̃k = ρk = 0.

It is straightforward to show that investors respond to this news with excessive

optimism about catch-up growth in payout:

(
Ẽt − Et

) [
∆̂dt+1

]
= −ζε̃k,t > 0,

since ε̃k,t < 0. The excessive optimism in�ates the initial price impact, but from

(11) we can see that the inevitable investor disappointment in future growth (once

observed) will cause a price reversal and lower future returns that is objectively

predictable: Et

[
rDt+1

]
= rD + ζε̃k,t < rD.

(b) Suppose ζ = 0 while ρ̃k > ρk. Here the investor over-extrapolates today's bad

news to the future, generating excessive pessimism about future growth:

(
Ẽt − Et

) [
∆̂dt+1

]
= (ρ̃k − ρk) ε̃k,t < 0.

The excessive pessimism means that the investor will inevitably be favorably
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surprised in the future, causing a price rebound and objective expectation of

higher future returns: Et

[
rDt+1

]
= rD + [(ρk − ρ̃k) (1− β) /(1− ρ̃kβ)] ε̃k,t > rD.

2. Event 2: ε̃∆y,t < 0. This news causes the investor to revise her perception of current

output growth downward� while having no e�ect on the perceived kt, i.e., ε̃k,t = 0.

(a) Suppose ζ > 0 and ρ̃∆y = ρ∆y > 0.3 Investors respond with excessive pessimism

about subsequent growth:
(
Ẽt − Et

) [
∆̂dt+1

]
= ρ̃∆yζε̃∆y,t < 0, since ε̃∆y,t < 0.

This causes the price to overreact on the downside, which (11) shows leads to a

predictable price reversal and objective expectation of higher future returns.

(b) Suppose ζ = 0, while ρ̃∆y > ρ∆y. The investor over-extrapolates today's bad

economic growth news to the future, generating excessive pessimism about subse-

quent growth:
(
Ẽt − Et

) [
∆̂dt+1

]
=
(
ρ̃∆y − ρ∆y

)
ε̃∆y,t < 0. Like 2 (a), the price

overreacts on the downside, generating a predictable price reversal and objective

expectation of higher future returns.

3. Event 3: ε̃k,t < 0 and ε̃∆y,t < 0. This news causes investors to revise their subjective

expectation of both the payout share and output growth downward. Computing the

overall market impact of this news requires combining the reactions to both perceived

shocks. For a concrete numerical example, we consider the situation where ζ > 0 and

the other conditions of Cases 1(a) and 2(a) apply. From 1(a), DE causes investors

to respond to ε̃k,t<0 with excessive optimism about catch-up growth. So under these

distorted beliefs, pDt would rise by some amount (suppose 5), whereas under RE with

ρk = 0 the ex-dividend price would be unchanged. From 2(a), DE causes investors

to respond to ε̃∆y,t<0 with excessive pessimism about future growth. So under these

distorted beliefs, prices would fall by some amount (suppose 10), whereas under RE

with ρ∆y > 0 prices would fall by a lesser degree (suppose 6). Taken together, the

behavioral model implies an overall price impact of 5−10 = −5, which can be compared

3This example requires ρ̃∆y ̸= 0 because DE operates only on innovations that have predictability for
future growth.
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to the impact under objective beliefs of 0− 6 = −6. Thus, the market underreacts to

the news as a whole, even though the investor overreacts to all shocks.

Event 3 gives rise to an important distinction between the multivariate setting studied here

and the DE models typical of the literature, in which ζ > 0 applies to a univariate earnings or

payout process. When multiple primitive macroeconomic risks are relevant for the subjective

growth expectations that underpin shareholder value, overreaction to all shocks can dampen

rather than amplify market volatility via a shock composition e�ect. This happens when

news events cause investors to revise their perceptions about more than one fundamental

shock, in directions that have counteracting but asymmetric implications for valuations. In

the example of Event 3 above, the market fell �too little� because the investor's expecta-

tions for the earnings share were more overly rosy than her views on economic growth were

overly pessimistic. Although this example plugs in hypothetical values for the price e�ects,

it serves to illustrate the point that asymmetries can arise even though the same ζ > 0 scalar

parameter applies to all shocks because, as (7) shows, the shock-speci�c volatility and prop-

agation properties still matter for the magnitude of shock-speci�c overreactions.4 For the

main application of this paper, the volatility and propagation parameters governing these

asymmetries are all estimated and the extent to which such asymmetric overreactions play

a role in historical stock market variation is a key empirical question to be explored.

Estimation We estimate the model using Bayesian state-space methods. A general premise

of the approach is that a wide variety of observable data�interpreted through the lens of a

structural model�constitute important signals of what real-world market participants believe

and expect. These include not only direct measures of subjective asset market expectations

from surveys of equity analysts and investors (as in the traditional approach), but also �uc-

tuations in spot prices, futures markets, and professional forecasts of the broader economy.

We use non-parametric machine learning to construct the empirical counterpart to the the-

4This can be observed from (7) by noting that ηt contains the perceived shocks and multiplies TM
(
θ̃
M
)
,

which contains the propagation parameters.
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oretical rational expectation Et[·]. Our structural estimation uses the machine expectation

output, denoted EML
t [·], as noisy signals of the theoretical RE expectation Et[·], a proce-

dure that forces our estimates of Et[·] to be consistent with a practical, real-time objective

expectation process. We describe the machine algorithm of our procedure below.

To illustrate the procedure, we begin with the model solution for the model (5)-(10),

which implies that the state vector St =
[
SM
t , pdt, pdt−1, r

D
t , ηt, S

∗
t

]′
evolves according to a

vector autoregression (VAR) state equation

St = C(Θ) + T (Θ)St−1 +R(Θ)QεMt ,

where SM
t = (∆dt, kt,∆yt) is a set of macro fundamentals, S

∗
t is discussed below, C, T , and R

are matrices comprised of the model's primitive parametersΘ =
(
ρk, ρ∆y, ρ̃k, ρ̃∆y, ζ, r

D, β, ρη, k,∆y
)′
,

Q is a matrix of shock volatilities, and ηt is the latent DE distortion to be estimated. The

relation between the variables in the model and a vector of observable signals Xt can be

written as a observation equation taking the form

Xt = D + ZSt + Uvt,

where D and Z are matrix parameters, and vt is a vector of observation errors with standard

deviations in the diagonal matrix U . The observation errors vt are important for modeling

noise due to various sources (including gaps that arise from the approximating structural

model itself) and are discussed below. CombiningXt = D+ZSt+Uvt with the state equation

St = C + TSt−1 +RQεMt , allows us to estimate the model parameters and theoretical states

St using state-space methods.

In the model description above, investor expectations were conditioned on the state

vector St. In reality, however, some of its elements will be observed imperfectly in real time

because they undergo subsequent revision. For example, asset price data pDt are not subject

to revision, but dt is real payout and must computed using data on in�ation that is subject

to revision. To better match the conditions of real-world decision making, in our estimation
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we assume that investors have access only to a noisy measure of any indicators subject to

subsequent revision, and price assets on that basis. Let S∗
t =

[
∆d∗t , k

∗
t ,∆y

∗
t , pd

∗
t , pd

∗
t−1, r

D∗
t

]
denote these noisy elements of St observed in real time.

Let Ft[yt+υ] generically denote a vector of observed subjective forecast measures made at

time t of variable y at time t+υ measured from surveys, futures markets, or other expectations

data, and let EML
t [yt+υ] denote an observed objective machine forecast produced in an outer

estimation. Let matrices with a subscript, e.g., Zx, denote the parameter sub-vector of Z

that when multiplied by St or S
∗
t and added to Dx +Uxvx,t picks out the appropriate model

variable to map back into empirical observations Xt, e.g., ZkSt picks out the element of St

corresponding to kt. Finally, collect the coe�cients on k̂t, ŷt, and (η∆y,t, ηk,t)
′ in (11) showing

the e�ect of these variables on objective return expectations Et

[
rDt+1

]
into ZE(r),∆y, ZE(r),∆y,

and ZE(r),η, respectively. The observation equation Xt = D + ZSt + Uvt takes the form



[∆dt, kt,∆yt]
′

pdt

rDt

Ft

[
∆̂dt+1

]
EML

t

[
∆̂dt+1

]
Ft

[
rDt+1

]
EML

t

[
rDt+1

]



=



0

0

0

0

0

rD

rD



+



ZsMSt

ZpdSt

ZrSt(
(ρ̃k − 1)Zk + ρ̃∆yZ∆y + ζZη

)
S∗
t(

(ρk − 1)Zk + ρ∆yZ∆y

)
S∗
t

0(
ZE(r),k + ZE(r),∆y + ζZE(r),η

)
S∗
t



+ Uvt. (12)

The vector on the left consists of empirical observations. The vector with theoretical states on

the right must obey the cross-equation restrictions implied by (5)-(10). The above mapping

between observations and model restrictions illustrates key steps of our estimation approach.

1. Historical data [∆dt, kt,∆yt]
′ are mapped onto the model's approximating objective

laws of motion ZsMSt to obtain best-�tting descriptions of structural model data dy-

namics. Observation errors in vt account for both estimation and speci�cation error

arising because the model is an approximation of the true (unknown) data dynamics.
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2. Real time data. Investors and machine forecasts are made on the basis of real time

data S∗
t , as in real-world forecasting.

3. Multiple signals identify Ẽt[·]. Multiple forward-looking indicators are used to iden-

tify subjective beliefs, including �nancial market variables (e.g., rDt and pdt), survey

and futures markets forecasts Ft[·], each of which are treated as noisy signals of the true

underlying subjective expectations process Ẽt[·] of the investor.5 For example, multiple

subjective expectations measures Ft

[
∆̂dt+1

]
map into

(
(ρ̃k − 1)Zk + ρ̃∆yZ∆y + ζZη

)
S∗
t ,

informing estimates of ρ̃k, ρ̃∆y, and ζ. As we often have multiple noisy signals on a

single theoretical concept, observation error is inevitable.

4. Machine forecasts identify Et[·]. Iterative machine forecasts EML
t [·] serve as noisy

signals of the theoretical RE benchmark, e.g., EML
t

[
∆̂dt+1

]
is mapped onto Et[∆̂dt+1] =(

(ρk − 1)Zk + ρ∆yZ∆yS
∗
t

)
. This forces our structural estimates of Et[·] to be consistent

with a real-time objective expectations process based on knowledge we can verify would

have been available to investors in real-time.

At the core of this approach is a strategy for using information from high dimensional,

nonparametric, machine-based representations of objective beliefs to inform and identify

systematic expectational errors as represented in stylized parametric frameworks of human

behavior. There are three components to the approach: (i) the machine forecasts EML
t [·] that

are used as an empirical signal of objective beliefs, (ii) the systematic expectational errors

(if any) that are embedded in observed investor behavior, and (iii) the stylized parametric

framework of human behavior that the observations map onto.

For the �rst component, two aspects are central to our approach. First, the real-time

nature of the machine estimation is designed to emulate the real-world setting and eliminate

look-ahead advantages. Second, a high-dimensional neural network function serves to ap-

proximate what is ultimately the unknown function that best represents objective beliefs.6

5Short samples for survey expectations or other data are not technically a problem for this methodology
since a much larger set of observables is used to measure expectations while missing values can be estimated
using a �lter and structural model.

6It is known that a multi-layer neural network can approximate virtually any unknown function arbitrarily
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These empirically optimal forecasts are then mapped onto the appropriate equations of a

low-dimensional structural model, providing approximately unbiased signals of what could

have been rationally expected in the model environment.

The second component refers to the multiple real-world signals of investor expectations,

including from asset prices themselves, that could exhibit evidence of distortion. However,

both machine and investors must cope with estimation, speci�cation, and data-revision er-

rors, as well as with structural change in an evolving environment. These aspects represent

noise that are common to rational and subjective beliefs and that we accommodate in the

structural estimation by allowing for errors in the observation equations of the state-space

representation.

The third component refers to the primary purpose of structural modeling, which is

to provide a conceptual framework for interpreting the data. Such frameworks are always

approximations of reality, but help us relate �ndings to an existing literature, while making

theoretical concepts precise and facilitating understanding.

Putting this all together, conditional on a stylized parametric model, the estimation

procedure uses surveys and other forward-looking data to inform subjective parameters and

distortions, machine forecasts inform objective beliefs, and observation errors capture noise.7

The �nal step in the empirical analysis is to measure market reactions to news, which

we do by employing the mixed-frequency �ltering algorithm developed in BLM2 to estimate

revisions in investor perceptions in tight windows surrounding news events. The nature and

severity of any behavioral biases in market reactions to news is estimated by comparing

jumps in model-implied investor beliefs with those of a counterfactual investor with rational

well given a large enough set of inputs. See Hecht-Nielsen (1987) for the well-known Kolmogorov universal
representation theorem that applies to arbitrary continuous functions and Ismailov (2023) for the theorem
extending to discontinuous functions.

7In the �rst equations of (12) the structural model laws of motion are mapped back into full revised,
historical data. These equations could be dropped from the estimation, so that the machine forecasts are
the only signal on the parameters of the objective laws of motion. The cost of doing so is that these
mappings are likely to improve the description of the model's historical relationships. Keeping them allows
the estimator to strike a balance between doing a good job of describing such dynamics (as in traditional
structural estimation), while at the same time mitigating concerns about over�tting and look-ahead bias
that can arise from a purely in-sample structural estimation.
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expectations, whose beliefs are informed by our machine learning output. This leads us

to discuss machine beliefs, which are compiled from algorithmic output and produced in a

�rst-stage for use in Xt.

3 Machine Learning

To measure distortions in beliefs, we need a practical measure of unbiased, information-

e�cient expectation formation under the conditions of real-world decision making, with

which to compare the subjective beliefs of investors. For this, we make use of the machine

learning algorithms BLM1 and Bianchi et al. (2025). The contribution of these papers is

to measure the overall magnitude of these distortions. The contribution of this paper is to

take these machine-measured distortions as an input into a structural estimation in order

to investigate why those biases occur, with a speci�c attention paid to how they show up

in reactions to news. We refer the reader to BLM1 and Bianchi et al. (2025) (BLLM)

for additional details on the machine estimation and output, providing only an summary

description here.

We are interested in forming a machine expectation of a time series yj,t+υ indexed by

j whose value in period υ ≥ 1 the machine is asked to predict. The following machine

speci�cation is estimated over rolling samples:

yj,t+υ = Ge
(
Xt,βj,υ,t

)
+ ϵjt+υ. (13)

where Xt is a large input dataset available in real time including an intercept, and Ge(·) is a

machine learning estimator that can be represented by a high dimensional set of �nite-valued

parameters βj,υ,t.
8 With this estimator in hand, we follow the six step algorithmic approach

8We use the Long Short-Term Memory (LSTM) deep sequence recurrent neural network estimator with
N hidden layers hn

t ∈ RDhn

GLSTM (Xt, θjh) =

N∑
n=1

W (yhn)︸ ︷︷ ︸
1×Dhn

hn
t (Xt, θjh)︸ ︷︷ ︸
Dhn×1

+ by︸︷︷︸
1×1

.
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of BLM1: 1. Sample partitioning,9 2. Training, 3. Model selection and cross-validation, 4.

Grid and sample partition re-optimization, 5. Out-of-sample prediction, 6. Roll forward and

repeat. Step 3 includes variable selection, shrinkage, and hyper-parameter tuning. The end

product of this procedure is a time-series of objective time t machine �beliefs� about yj,t+υ,

denoted EML
t [yj,t+υ].

Two points about the algorithm bear emphasis. First, the machine expectations are based

on only that information at t that we can verify would have been available to investors in

real time. Second, the machine algorithm is designed to uncover bias in subjective beliefs,

i.e., predictable mistakes that arise from a demonstrable misuse of available information. In

the estimation below, surveys are used as signals of subjective beliefs. The algorithms of

BLM1 and BLLM are structured so that the machine's forecasts can di�er from the survey

forecasts only if the machine �nds evidence of predictable mistakes in the survey responses

immediately prior to the machine making a true out-of-sample forecast. These algorithms

are run multiple times while being �paired� with a di�erent survey forecast, to identify

predictable mistakes in every survey response.

The output of BLM1 and BLLM show that the machine achieves sizable reductions in the

mean-square-forecast-errors relative to survey forecasts over an extended testing subsample

for stock market returns, earnings growth, output growth, and in�ation. These reductions

are largest during times of important economic change (see the papers for details.) Overall,

these results are consistent with the premise that a relatively unbiased, information-e�cient

machine using only real-time information is able to detect patterns in widely available data

that notably improve predictive accuracy over human forecasts. This systematically superior

performance motivates our use of the machine benchmark for measuring non-distorted ex-

pectation formation in the structural estimation. It is noteworthy, as shown in Bianchi et al.

(2025), that survey respondents make much larger systematically predictable errors in their

forecasts of earnings growth than in their forecasts of broad economic growth or returns.

9At time t, a prior training sample of size Ṫ is partitioned into two subsample windows: an �estimation�
subsample consisting of the �rst TE observations, and a hold-out �validation� sample of TV subsequent
observations so that Ṫ = TE + TV .
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Keeping in mind that the machine forecasts are a central data input into the structural

estimation identifying objective expectations, these preliminary results foreshadow and help

explain a key �nding below, namely that investor reactions payout-share shocks are much

more distorted than to other shocks.

One might reasonably ask why this machine component is needed at all. After all, an al-

ternative would be to construct a RE benchmark by estimating a presumed structural model

of objective beliefs on historical data. The di�culty with this approach is three-fold. First,

as emphasized previously by BLM1, Farmer, Nakamura and Steinsson (2024), it is both

subject to look-ahead bias and presumes perfect knowledge of the data generating process,

factors that tend to overstate behavioral biases. Second, such an approach is silent on the

cumulative importance of distortions beyond those implied by the chosen parametric model.

Addressing this gap requires an explicit measure of non-distorted expectation formation,

against which we can measure behavioral distortions in the structural model. Third, para-

metric models may not be �exible enough to approximate the decision making of �nancial

market participants. A machine algorithm can be highly �exible, while selecting the optimal

amount of sparsity and shrinkage.

4 Structural Model

We now apply the ideas presented above for the simpli�ed model to the full structural model.

We work with a risk-adjusted log-linear approximation to the model, in which all random

variables are conditionally log-normally distributed.

Macro Dynamics As above, let aggregate stock market payout, Dt, be a time-varying

share Kt of real output Yt, i.e., Dt = KtYt. We now generalize the simple bivariate process

considered above to allow for additional variables, each with their own short- and longer-

run components. Speci�cally, macro dynamics are described by a series of equations for

the nominal short rate it, general price in�ation πt, output growth ∆yt, and the log payout

share of output kt ≡ dt − yt. For each of these, we specify �trend� or �long-run� components
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denoted with �bars� that evolve according to

xt = (1− ϕx)xt−1 + ϕxxt + σx,ξtεx,t, ∀x = {i, π,∆y, k} , (14)

where εx,t ∼ N (0, 1) is an i.i.d. shock to the trend component of x with a time-varying

volatility σx,ξt discussed below, and ϕx is a parameter governing its persistence. We assume

that it, πt, ∆yt, and kt vary cyclically around these trend components manner as follows.

First, we assume that the nominal short rate is set by the central bank and follows the

process

it − i = (1− ψi)
[
ψπ (πt − π) + ψ∆y

(
∆yt − g

)]
+ ψi

(
it−1 − i

)
+ σi,ξtεi,t, (15)

where εi,t ∼ N (0, 1) is an i.i.d. monetary policy shock, and i, π, and g are parameters. The

dynamics of in�ation and output growth follow similar primitive processes:

πt − π = βπ,π (πt−1 − π) + βπ,∆y

(
∆yt − g

)
+ βπ,i

(
it−1 − i

)
+ σπ,ξtεπ,t (16)

∆yt − g = β∆y,π (πt−1 − π) + β∆y,∆y

(
∆yt−1 − g

)
+ β∆y,i

(
it−1 − i

)
+ σ∆y,ξtε∆y,t, (17)

where βi,j are parameters and επ,t ∼ N (0, 1) and ε∆y,t ∼ N (0, 1) are i.i.d. shocks that

represents short-run, cyclical, variation in these variables. The log payout share, kt, is

modeled as a primitive process following:

kt − k = ρk,k
(
kt−1 − k

)
+ βk,∆y

(
∆yt − g

)
+ σk,ξtεk,t, (18)

where εk,t ∼ N (0, 1) is an i.i.d. shock. This speci�cation implies that in�ation, output

growth, the payout share, and the short-rate are simultaneously determined by the dynamical

system (15)-(18).10

10This speci�cation for macro dynamics is consistent with a triangular identi�cation strategy for monetary
policy shocks.
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We refer to i.i.d. innovations without the bars as the cyclical components (e.g., εk,t

is the �cyclical payout share shock�), to those in (14) as trend component shocks (e.g.,

εk,t is the �trend payout share shock�), and to the overall speci�cation as a trend-cycle

model, a generalization of the simpli�ed trend-cycle speci�cation. It should be kept in mind,

however, that the �trend� components are latent random variables that are hybrids of i.i.d.

and persistent processes and are furthermore contemporaneously correlated with multiple

economic variables in the simultaneous system above. We use these hybrid speci�cations to

introduce parsimoniously parameterized but �exible persistence in the variables in a manner

similar to a vector autoregression, but with fewer estimable parameters.

The shock volatilities in all of primitive processes above vary with the discrete valued

random variable ξt, which evolves according to a N -state Markov-switching process with

transition matrix H. Collect the parameters ψi, ϕπ, ... etc., of the above equations including

H into a vector θM . Equations (15)-(18), along with the expression for payout growth,

∆dt = ∆kt + ∆yt, represent a macro-dynamic system that can be expressed as a Markov-

switching vector autoregression (MS-VAR) law of motion (LOM) taking the form:

SM
t = CM

(
θM
)
+ TM(θM)SM

t−1 +RM(θM)QM
ξt
εMt , (19)

where SM
t ≡

[
∆yt,∆yt,∆dt, πt, πt, it, it, kt, kt

]′
, CM(· ), TM(· ), RM(· ) are matrices of primi-

tive parameters θM , εMt =
[
ε∆y,t, ε∆y,t, επ,t, επ,t, εi,tεi,t, εk,t, εk,t

]′
is a vector of primitive macro

shocks, and QM
ξt
(· ) is a diagonal matrix of shock volatilities that varies stochastically with

ξt. Due to the endogeneity of these variables, RM(· ) has non-zero o� diagonal elements,

implying that multiple fundamental shocks a�ect a single state variable.

Perceived Macro Dynamics Investors have subjective beliefs θ̃
M
about the parameters

governing macro dynamics in (15)-(18) that could di�er from the objective θM . Let these

di�erences be captured by a wedge vector wθ: θ̃
M

= θM + wθ. We assume that investors

apply these perceived dynamics to a noisy measure of SM
t that they observe in real time,

denoted SM∗
t . The two are related by AoS

M∗
t = AoS

M
t + Qvεv,t, where εv,t ∼ N (0, 1) is an
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i.i.d. �vintage� error attributable to data revisions.11 Elements of SM
t for which there is no

post-publication revision are assumed to have no such vintage errors. Investors take SM∗
t

as given and price assets accordingly.12 Taken together, these assumptions imply that the

perceived counterpart to (19) takes the form

SM∗
t = CM

(
θ̃
M
)
+ TM

(
θ̃
M
)
SM∗
t−1 +RM

(
θ̃
M
)
Q̃M

ξt
ε̃Mt (20)

SM∗
t ≡

[
∆y∗t ,∆y

∗
t ,∆d

∗
t , π

∗
t , π

∗
t , i

∗
t , i

∗
t , k

∗
t , k

∗
t

]′
(21)

ε̃Mt ≡
[
ε̃∆y,t, ε̃∆y,t, ε̃π,t, ε̃π,t, ε̃i,tε̃i,t, ε̃k,t, ε̃k,t

]′
, (22)

where ε̃Mt is a vector of perceived primitive macroeconomic shocks. The perceived volatilities

Q̃M
ξt

of these shocks vary with the same discrete valued random variable ξt but have a

perceived transition matrix H̃ that may di�er from H. As in the simpli�ed model, R̃M is

neither square nor diagonal, so distorted beliefs about the parameters translate directly into

distorted perceptions about the shocks, implying that investors can misattribute a change

in one primitive shock to a mixture of others.

Let T̃M ≡ TM
(
θ̃
M
)
and analogously for RM

(
θ̃
M
)
and CM

(
θ̃
M
)
. As above, investors

may exhibit a time-varying DE distortion ηt such that subjective expectations follow:

Ẽt

[
SM∗
t+υ

]
= CM

υ

(
θ̃
M
)
+
[
TM

(
θ̃
M
)]υ

SM∗
t +

[
TM

(
θ̃
M
)]υ

ζηt (23)

where CM
υ

(
θ̃
M
)
≡ C̃M + T̃M C̃M +

[
T̃M
]2
C̃M + ... +

[
T̃M
]υ−1

C̃M . The scalar parameter

ζ governs the strength of the over- or underreaction to all shocks, with ζ > 0, implying

overreaction, and ζ < 0 implying underreaction. As above, the distortion ηt follows a

VAR(1) process, with an innovation that is proportional to the vector of perceived shocks

11The Ao matrix emphasizes that vintage errors can be on a linear combination of elements of S
M∗
t and/or

that they apply only to speci�c elements.
12This treats SM∗

t as an unbiased signal of the underlying �true� state vector SM
t that is precise enough

to reasonably ignore any uncertainty about the signal when pricing assets.
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ε̃Mt :

ηt = ρηT̃
Mηt−1 + R̃MQ̃M

ξt
ε̃Mt , ρη ∈ [0, 1] . (24)

Thus, ηt is a vector with elements comprised of unique decaying sums of multiple past

perceived innovations
{
ε̃Mt , ε̃

M
t−1, ε̃

M
t−2, ...

}
.

The special case of rational expectations occurs when both the wedge vector wθ and the

scalar parameter ζ are both zero.

Asset Pricing Dynamics The economy is populated by a continuum of identical investors

who earn all income from trade in a stock market and a one-period nominal risk-free bond

in zero net supply. Assets are priced by a representative investor who consumes per-capita

aggregate shareholder payout, Dt = KtYt.

The representative investor's intertemporal marginal rate of substitution in consumption

is the stochastic discount factor (SDF) with logarithm:

mt+1 = ln
(
βp

)
+ ϑpt − γra (∆dt+1) . (25)

where γra is a curvature parameter and where the time discount factor is subject to an

aggregate externality in the form of a patience shifter ϑpt that individual investors take as

given.13 A time-varying speci�cation for the subjective time-discount factor is essential for

ensuring that investors are willing to hold the nominal bond at the interest rate set by the

central bank's policy rule.

The �rst-order-condition for optimal holdings of the one-period nominal risk-free bond

13This speci�cation for ϑpt is a generalization of those considered in previous work (e.g.,Ang and Piazzesi
(2003); Campbell and Cochrane (1999); Lettau and Wachter (2007)). Combining (27) and (25), we see that
ϑp,t is implicitly de�ned as

ϑp
t = −

[
it − Ẽt [πt+1]

]
+ Ẽt [γra∆dt+1]− .5Ṽt [−γra∆dp,t+1 − πt+1]− lpt − ln

(
βp

)
.
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with a face value equal to one nominal unit is

LP−1
t Qt = Ẽt

[
Mt+1Π

−1
t+1

]
, (26)

where Qt is the nominal bond price, Ẽt denotes the subjective expectations of the investor,

and Πt+1 = Pt+1/Pt is the gross rate of general price in�ation. We assume that investors

have a time-varying preference for nominal risk-free assets over equity, accounted for by the

term LPt > 1 in (26), implying that the bond price Qt is higher than it would be absent

these bene�ts, i.e., when LPt = 1. Taking logs of (26) and using the properties of conditional

log-normality delivers an expression for the real interest rate as perceived by the investor:

it − Ẽt [πt+1] = −Ẽt [mt+1]− .5Ṽt [mt+1 − πt+1]− lpt (27)

where the nominal interest rate it = −ln (Qt), πt+1 ≡ ln (Πt+1) is net in�ation, Ṽ [·] is the

conditional variance under the subjective beliefs of the investor, and lpt ≡ ln (LPt) > 0.

Variation in lpt follows an AR(1) process

lpt − lp = ρlp
(
lpt−1 − lp

)
+ σlp,ξtεlp,t (28)

subject to an i.i.d. shock εlp,t ∼ N (0, 1). Since lpt is a component of preferences, distorted

perceptions play no role in (28).

Let PD
t denote total value of market equity. Using (8), pdt ≡ ln

(
PD
t /Dt

)
obeys the

following approximate log Euler equation:

pdt = κpd,0 + Ẽt [mt+1 +∆dt+1 + βpdt+1] +

+.5Ṽt [mt+1 +∆dt+1 + βpdt+1] . (29)

Rewriting as a function of rDt+1 and subtracting o� (27), the log equity premium as perceived
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by the investor is:

Ẽt

[
rDt+1

]
−
(
it − Ẽt [πt+1]

)
︸ ︷︷ ︸

subj. equity premium

=

 −.5Ṽt

[
rDt+1

]
− C̃OVt

[
mt+1, r

D
t+1

]
+.5Ṽt [πt+1]− C̃OVt [mt+1, πt+1]


︸ ︷︷ ︸

subj. risk premium

+ lpt︸︷︷︸,
liquidity Premium

(30)

where C̃OVt [·] is the conditional covariance under the subjective beliefs of the investor.

The subjective equity premium has two components. The component labeled �subj. risk

premium� is attributable to the agent's subjective perception of the quantity of risk, which

varies in the model with �uctuations in the stochastic volatilities of the macro shocks, driven

by ξt. The term labeled �liquidity premium� comes from the time-varying preference for risk-

free nominal debt over equity. It captures �uctuations in the pricing of risk due to factors

not explicitly modeled, such as time variation in sentiment or implied risk aversion (e.g.,

from leverage constraints), �ights to quality, or changes in the perceived liquidity and safety

attributes of nominal risk-free assets (e.g., Krishnamurthy and Vissing-Jorgensen (2012)).

We treat this risk-preference component as a latent random variable to be estimated.

Equilibrium An equilibrium is de�ned as a set of prices (bond prices, stock prices), macro

quantities (interest rates, in�ation, output growth, payout share), laws of motion, and in-

vestor beliefs such that macro dynamics in (14)-(18) and thus (19) are satis�ed, asset pricing

dynamics in (25)-(29) are satis�ed, and investor beliefs are given by (20), (23) and (24).

Model Solution We solve the system of structural model equations that must hold in

equilibrium using standard algorithms that preserve log-normality of the system. (See the

Online Appendix for details).

Let SA
t ≡

[
mt, pdt, lpt, Ẽt (mt+1) , Ẽt (pdt+1)

]
be a set of asset pricing state variables obey-

ing (25)-(29), and let St ≡
[
SM
t , S

M∗
t , SA

t , ε̃
M
t , ηt

]′
. The solution to the complete structural
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model can be expressed as a MS-VAR in St:

St = C̄
(
θξt , θ̃ξt

)
+ T̄

(
θξt , θ̃ξt

)
St−1 + R̄

(
θξt , θ̃ξt

)
Qξtεt, (31)

where C̄(· ), T̄ (· ), R̄(· ) are matrices of primitive parameters involving elements of θξt and

θ̃ξt , some of which vary with the Markov-switching variable ξt, and Qξt(· ) is a matrix of

shock volatilities that vary stochastically with ξt. The structural shocks are contained in

εt =
(
εMt , εlp,t, εv,t

)′
, which stacks the primitive macro shocks εMt , the liquidity premium

shock εlp,t (a feature of preferences), and the vintage errors εv,t.
14

5 Estimation and Mapping to Data

State-Space Estimation and Filter The system of estimable equations is placed in

state-space form by combining (31) with an observation equation taking the form

Xt = Dξt,t + Zξt,tS
′
t + Utvt (32)

vt ∼ N (0, I) ,

where Xt denotes a vector of observable data and machine forecasts at time t, vt is a vector

of observation errors, Ut is a diagonal matrix with the standard deviations of vt on the main

diagonal, and Dξt,t, and Zξt,t are parameters that map Xt into corresponding theoretical

restrictions that are functions of St. The parameters Zξt,t, Ut, and Dξt,t depend on t inde-

pendently of ξt because some series in Xt are not available at all frequencies and/or over the

full sample. As a result, the state-space estimation uses di�erent measurement equations to

include these series when the data are available, and exclude them when they are missing.

We estimate the state-space representation with three volatility regimes (high/med/low)

using Bayesian methods based on a modi�ed version of Kim's (Kim (1994)) basic �lter and

14Neither ε̃Mt or ηt appear separately in εt because ε̃
M
t =

(
R̃M Q̃M

)−1 (
SM∗
t − C̃M − T̃MSM∗

t−1

)
is entirely

pinned down SM∗
t (and thus by εMt and εv,t), while ηt has an innovation that is proportional to ε̃Mt .
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approximation to the likelihood for Markov-switching state space models. A random-walk

metropolis Hastings MCMC algorithm is used to characterize uncertainty. The model param-

eters is estimated on mixed-frequency monthly, quarterly, and biannual data and, following

BLM2, used subsequently along with high-frequency forward-looking data to conduct an

event study to characterize market reactions to news. We outline this procedure below.

Priors A complete description of the priors is provided in Section 8 of the Online Ap-

pendix.15 Here we discuss priors on parameters governing investor beliefs. For the wedge

vector wθ ≡ θ̃
M
− θM , we use a prior that is Normal, centered on zero, with standard devia-

tion ±5% deviation from the objective parameter, i.e., θ̃ = θ(1+wθ) where wθ ∼ N (0, .052).

For the parameter ζ governing the extent to which investors over- or underreact to perceived

shocks, we use a prior that is Normal, centered on zero, with informative but loose tightness

set to unit standard deviation to achieve modest shrinkage. Importantly, the priors for all

of these parameters are symmetric, i.e., centered on zero, and are therefore without bias re-

garding the nature of the distortion. This is essential for our investigation because whether

θ̃ ≷ θ or ζ ≷ 0 could have important consequences for asset pricing dynamics. In both cases,

our estimation treats these polar parametric possibilities as equally likely and accordingly

ensures that that both their sign and magnitude are approached as open empirical questions

to be investigated.

Machine Expectations We use machine forecasts of excess stock market returns, S&P

500 earnings growth, GDP growth, and in�ation in our estimation. These machine forecasts

map onto theoretical equations consistent with rational expectations, i.e., with wedge vector

wθ and the scalar parameter ζ both zero, and are based on forecasts of macro fundamentals

obtained with forward iterations of:

SM∗
t = CM

(
θM
)
+ TM(θM)SM∗

t−1 +RM(θM)QM
ξt
εM∗
t , (33)

15Priors for most parameters are standard and speci�ed to be loosely informative except where stronger
restrictions are dictated by theory, e.g., risk aversion must be non-negative.
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which twists estimates of θM in the objective LOM (19) toward values consistent with the

machine forecasts. The resulting estimator of θM therefore strikes a balance between pro-

viding a good description of historical data and ensuring that the parameters describing

the objective data evolution are free from over�tting and look-ahead bias characteristic of a

purely ex post estimation. Since we use observations errors in the estimation, this does not

presume that the machine exactly knows the parameters of the stylized model, only that the

machine forecasts provide a valuable signal of their real-time magnitudes.

Inferring Belief Reactions to News To infer how investor beliefs are a�ected by news,

we apply the high frequency �ltering algorithm developed in BLM2 for inferring revisions in

investor perceptions about the current economic state in tight windows around news events.

Even though investors price assets continuously, we assume that they can observe monthly

values for the real-time macro state vector SM∗
t and the corresponding volatility regime ξt,

only at the end of each month. It follows that a news event arriving within the month can

only be informative about the end-of-month values of SM∗
t and ξt, leading investors update

their beliefs over the values for these variables they expect to prevail.16 We refer to these

intramonth updates in beliefs as revisions in nowcasts. They are equivalent to revisions in

perceived shocks. We discuss the procedure for estimating the belief revisions brie�y below,

leaving detailed coverage of the general approach to BLM2.

Data The meta data-set used for this project consists of thousands of economic time series

at mixed sampling intervals and spans the period January 1961 through December 2021.

For the structural estimation, the observation vector often uses multiple noisy signals of the

objective underlying theoretical concept. In what follows, we provide a brief summary of the

data and how it is used. A complete description of the data, sources, and mapping to the

model is provided in the Online Appendix.

16Investors can observe the objective volatility regime sequence
{
ξt, ξt−1, ...

}
at the end of each t, but

their perceived volatilities Q̃M,ξtmay still di�er from the objective QM,ξt .
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Data used in structural estimation We estimate the model structural parameters

on data at monthly or lower frequency sampling intervals (as available) from 2001:01-2021:12.

Many series are used because they have obvious model counterparts, e.g., Gross Domestic

Product (GDP) growth, Consumer Price Index (CPI) in�ation, the federal funds rate (FFR),

stock market returns, the S&P 500 market capitalization. We use real-time versus historical

versions of these, as appropriate, for mappings onto SM∗
t and SM

t . The ratios of U.S. cor-

porate sector payout-to-GDP, S&P 500 earnings-to-GDP and S&P 500 dividends-to-GDP

are all used as noisy signals on the payout share of output Kt. Investor expectations over

multiple horizons are informed by (i) surveys of expectations on future stock returns from

UBS/Gallup, the Michigan Survey of Consumers (SOC), the Conference Board (CB), the

CFO Survey from the Richmond Federal Reserve Bank, converting �rm-level earnings per

share forecasts to S&P 500 forecasts by aggregating over the value-weighted �rm-level fore-

casts and converting to growth forecasts, and the Consensus Forecasts of the S&P 500 index

from Bloomberg (BBG), (ii) equity analysts' S&P 500 one-year-ahead earnings growth ex-

pectations from IBES and Bloomberg (BBG), and the IBES long-term-growth expectations

using the LTG expectation variable17 (iii) dividend growth expectations using S&P dividend

futures data following the procedure of Gormsen and Koijen (2020), (iv) expectations of

future in�ation and GDP growth from the Survey of Professional Forecasters (SPF), BBG,

the Livingston (LIV) Survey (in�ation only), and the Blue Chip (BC) Survey, (v) inter-

est rate expectations using Federal Funds Futures (FFF), Eurodollar (ED) futures, both

at multiple contract horizons, and the Blue Chip (BC) survey expectations of the FFR 12

months ahead.18 Data on the spread between the Baa corporate bond return and the 20-year

17When using the IBES long-term growth forecasts (LTG), we follow Bordalo et al. (2019) in aggregating
the value-weighted �rm-level long-term growth forecasts of the median analyst to obtain LTG at the S&P
500 level. Since there is ambiguity in the question framing, we treat LTG as an annual �ve-year forward
growth expectation, (i.e., annual earnings growth from four to �ve years ahead), since that delivers the lowest
mean-square loss with the survey responses after considering a variety of long- and forward-horizon growth
targets. Interpreting LTG as an expected annual n-year forward growth rate (rather than the expected
annualized n-year growth rate), is consistent with the reference to the next full business cycle and moreover
makes the stable median LTG forecast easier to reconcile with the volatile median one-year growth forecast.

18In principle, fed funds futures market rates may contain a risk premium that varies over time. If such
variation exists, it is absorbed in the estimation by the observation error for these equations (Piazzesi and
Swanson (2008)).
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Treasury bond return (�Baa spread� hereafter) are used as an additional noisy signal on the

subjective equity premium, including the liquidity premium component, lpt.

Our measure of corporate earnings deserves further mention. We use bottom-up measure

of IBES Street Earnings for the S&P 500, which di�ers from GAAP earnings by excluding

discontinued operations, extraordinary charges, and other non-operating items. This is im-

portant because Street Earnings�unlike GAAP earnings�are closely aligned with the target of

equity analysts forecasts (IBES and BBG), which we use to measure subjective beliefs about

equity cash-�ows.19 Hillenbrand and McCarthy (2024) argue for the use of Street Earnings

for measuring analysts expectations and show that the use GAAP earnings can over-state

the role of short-term expectations in analyst forecasts for price-earnings �uctuations.

Data used for news events and high-frequency �ltering To estimate news-driven

revisions in perceptions of the economic state SM∗
t , we use pre- and post-news event obser-

vations on a subset of the above series available at high frequency. These include tick level

data on stock returns, the S&P 500 market capitalization, FFF and ED contract rates with

di�erent expiries, daily BBG survey expectations on multiple variables, and daily data on

the Baa spread.20 In our analysis, the pre-event value is de�ned as either 10 minutes before

the news event or the day prior, depending on data availability (daily versus minutely/tick

level). Similarly, the post-event value is de�ned as either 20 minutes after the event or the

following day. Our sample of news events include (i) 1,482 macroeconomic data releases for

GDP, CPI, U.S. unemployment, and U.S. payroll data spanning the period 1980:01-2021:12,

(ii) 16 corporate earnings announcement days spanning 1999:03-2020:05, and (iii) 219 Fed-

eral Open Market Committee (FOMC) press releases from the Fed spanning 1994:02-2021:12.

The corporate earnings news events are from Baker, Bloom, Davis and Sammon (2019) who

19According to the IBES user guide, analysts submit forecasts after backing out these transitory com-
ponents, and IBES constructs the realized series to align with those forecasts. While analysts have some
discretion over which items to exclude, Hillenbrand and McCarthy (2024) demonstrate that the target of
these forecasts corresponds closely to earnings before special items in Compustat, suggesting that street
earnings accurately re�ect the measure analysts are targeting.

20For events that occur when the market is closed we use minutely data on the S&P 500 E-mini futures
market.
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conduct textual analyses of Wall Street Journal articles to identify days in which there were

large jumps in the aggregate stock market attributed primarily to corporate earnings news

with high con�dence.21 We run the �lter to obtain estimates of St and S
M∗
t at high frequency

pre- and post-news event, and at the end of every month from 2008:01-2021:12.

Data inputs for machine learning algorithm The algorithm used to produce

dynamic machine expectations uses thousands of initial data inputs. Following BLM1, many

of these are converted to di�usion index factors before being passed to the machine estimator.

The initial data inputs include a real-time macro dataset on 92 indicators, a panel dataset of

147 monthly �nancial indicators, and daily �up-to-the-forecast� �nancial market information

from �ve broad classes of �nancial assets: (i) commodities prices (ii) corporate risk variables

including credit spreads (iii) equities (iv) foreign exchange, and (v) government securities. A

number of other inputs are used, including consensus forecast surprises around data releases,

FFF revisions, market jumps around past news events, and daily text-based factors estimated

by Latent Dirichlet Allocation (LDA) analysis from around one million articles published in

the Wall Street Journal between January 1984 to June 2022.22

6 Results

This section presents our estimation results. We begin with preliminary analysis of structural

parameter estimates.

Parameter Estimates Table 2 reports the posterior mode values for model parameters.

Where applicable, separate values are reported for estimates of parameters governing the

21Baker et al. (2019) (BBDS) examine next-day newspaper accounts of big daily moves (�jumps�) in the
stock market. Trained human readers classify the proximate cause of each jump into distinct categories and
code the con�dence with which the journalist advances an explanation for the jump. We are grateful to the
authors of Baker et al. (2019) for providing us with their data for these event days.

22The results here are based a randomly selected sub-sample of 200,000 articles over the same period. This
procedure follows Bybee et al. (2021), and estimates topic weights for individual articles to construct a time
series of news attention by topic.
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objective macro LOM and the perceived macro LOM. Several results are worthy of high-

lighting.

Table 2: Parameters

Objective Perceived Objective Perceived
ψi 0.0098 0.0098 βπ,i 0.0016 0.0016
ψπ 0.0066 0.0065 βπ,π −0.0001 −0.0001
ψ∆y 0.0002 0.0002 βπ,∆y −0.0516 −0.0532
ϕi 0.0320 0.0320 β∆y,i −0.0043 −0.0043
ϕπ 0.0001 0.0001 β∆y,π 0.0007 0.0007
ϕ∆y 0.0006 0.0006 β∆y,∆y 0.0006 0.0006
ϕk 0.0611 0.0611 βk,∆y −7.1724 −7.0824
γra 3.9131 � ρk,k 0.9803 1.0000
ζ 1.2626 � ρlp 0.4317 �

ρη 0.9982 �

Notes: Posterior mode values of the parameters. The estimation sample spans 1961:M1-2021:M12.

First, the scalar parameter ζ is estimated to be a positive value equal 1.12, consistent

with overreaction to all perceived shocks in ε̃Mt .

Second, for most parameters governing perceived macro dynamics, there is little devi-

ation from the corresponding objective parameter value. However, there are two notable

exceptions. (i) We �nd ρ̃k,k > ρk,k, implying that news about today's payout share is over-

extrapolated to future payout share movements. (ii) There are di�erences in the perceived

and actual values of βk,∆y, which in both cases is negative. This parameter governs the e�ect

of trend economic growth on the payout share. The negative values for these parameters

indicate that increases in trend growth ∆yt drive down the payout share kt.
23 Because kt

a�ects kt and ultimately future kt through (14) and (18), this implies that increases in ∆yt

cause a long-lasting decline in kt. Yet because 0 > β̃k,∆y > βk,∆y, investors underestimate

the absolute impact of ∆yt on kt, implying that observed declines in kt originating from in-

creases in ε∆y,t are partly misattributed to another impulse that also would be perceived to

cause kt to decline. We return to this below. At the same time, β∆y,∆y is positive but small,

23This result echoes �ndings in Greenwald et al. (2025), which shows that the U.S. stock market grew far
faster during decades with sluggish economic growth but rapid growth in the earnings share, than in decades
with rapid economic growth but a relatively stable earnings share.
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indicating that ∆yt has only modest predictive power for future output growth, consistent

with the fact that output growth is not highly autocorrelated. Putting this all together,

increases in ε∆y,t are tantamount to bad cash-�ow news: the positive e�ects of trend growth

on future output growth are outweighed by the persistent negative e�ects on the payout

share of output.

Third, although not shown in Table (2), Appendix Table A.7 shows that the structural

shocks with the largest standard deviations are those to the payout share of output, especially

those to the cyclical payout share. This estimate is driven in the data by a highly volatile

corporate earnings-to-GDP ratio. These results are consistent with the idea that, on average,

news generates more uncertainty about the share of output that will ultimately accrue to

pro�ts than it does about macroeconomic aggregates or discount rates. Since the payout

share is stationary, these estimates are consistent with a large negatively autocorrelated

component in payout growth generated by �uctuations around a trend.

Table 3: Asset Pricing Moments

Moments Model Data
Mean StD Mean StD

Log Stock Return 8.75 12.32 8.96 12.29
Log Excess Return 7.27 14.82 7.42 14.85
Real Interest Rate 1.48 2.90 1.54 2.53

Notes: Model moments based on modal parameter and latent state estimates. Annualized monthly statistics

(means multiplied by 12, standard deviations by
√
12) and reported in units of percent. The log return

(data) is the log di�erence in the S&P 500 market cap; excess returns subtract o� FFR. The real interest

rate is FFR minus the average one-year ahead forecasts of in�ation from the BC, SPF, SOC, and Livingston

surveys. The sample is 2001:M1 - 2019:M12.

Table 3 shows basic asset pricing moments for stock returns and the real interest rate

implied by these estimates. The model-implied moments for these series are based on the

modal parameter and latent state estimates and match their data counterparts closely.

We close this section by emphasizing that, even though the same positively estimated DE

parameter ζ governs magnitude of overreactions to all shocks, the perceived volatility and

propagation properties of the shocks themselves can generate asymmetries in these overreac-

tions. It is therefore instructive to consider which shocks investors are most overreactive to
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as a result of this same DE parameter. Figure 1 shows how the investor's expected payout

growth responds to di�erent perceived (two standard deviation) shocks, υ periods after the

shock, under the estimated parameters of our baseline model. These responses are juxta-

posed with those under the restricted set of parameter values corresponding to RE. A third,

�No DE,� line shows the responses when ζ = 0 while keeping the estimated distortions be-

tween θ and θ̃. A comparison of the baseline and RE responses shows that the the largest

such overreactions (in deviations from steady-state) are to the cyclical payout share shock

�rst, and to the trend payout share shock second. Other shocks have smaller or negligible

overreactions.24 We discuss the responses to the two payout payout share shocks and their

contribution to market volatility further below. We also see that the only shock for which

there is a non-trivial di�erence between the baseline responses and the No-DE responses are

those to the trend growth shock.

Figure 1: Impulse Responses of Expected Payout Growth
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Notes: This �gure plots estimated impulse responses of expected payout growth at the posterior mode
parameter values, in deviations from steady-state, to shocks speci�ed in the subpanel headers.

24The responses to the liquidity premium display no distortion since that is driven by risk preferences and
not beliefs.
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Market Reactions to News: High-Frequency Structural Event Study We now

turn to the question of how markets react to real-world news events. To do so, we use the

BLM2 �ltering algorithm to infer revisions in investor perceptions about the economic state,

at high frequency around news events.

This procedure can be summarized as follows. Consider news events that occur within a

given month t. Let δh ∈ (0, 1) represent the number of time units that have passed during

month t up to and including some particular point t− 1+ δh. Let S
M∗(i)
t|t−1+δh

denote a �ltered

estimate of investor beliefs at time t− 1+ δh about the time t economic state that investors

expect to prevail when that state is observed at the end of the month. This is an estimate of

the investor's nowcast of S
M∗(i)
t , conditional on the volatility regime ξt = i. Let the associated

�ltered volatility regime probabilities be denoted πi
t|t−1+δh

≡ Pr (ξt = i|Xt−1+δh , X
t−1), where

X t−1 denotes the history {Xt−1, Xt−2, ...}. Finally, let δh assume distinct values δpre and

δpost that denote the moments right before and right after the news event. Announcement-

speci�c revisions in SM∗(i) and in πi are computed using high-frequency, forward-looking

data by taking the di�erence between the estimated values for these variables pre- and

post-news event. These di�erences can be linked back to jumps in speci�c variables in Xt

(e.g., the stock market) using the mapping (32) and further decomposed into contributions

attributable to revisions in the investor's perceived shocks and volatility regimes using (31).

We refer to these announcement-speci�c jump decompositions as �shock decompositions�

and report them below for the stock market. To estimate the contribution of movements

in subjective return premia, we report the combined contributions of lpt and the volatility

regimes to �uctuations in Ẽt

[
rDt+1

]
−
(
it − Ẽt [πt+1]

)
in (30), labeled �equity premium� in

the �gures below.

For the macroeconomic data releases and Fed news events we have an exact time stamp

indicating when the information was released to the public. This allows us to construct

precise 30 minute windows for these events (δpre =10 minutes before to δpost =20 minutes

after). We then run the �lter at these times pre- and post-news using minutely or tick-level

�nancial market data. We also use daily data on the day before and the day after these
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events for those series that are available daily but not at higher frequency. For the corporate

earnings news�where events span an entire day�we run the �lter using information on all

high-frequency series from the close of the market on the day before to the opening of the

market on the day after.

Our structural event study �ndings are divided by news category and displayed as a

series of bar charts, with the news event itself described in subpanel titles. For each shock

decomposition �gure, we report the stock market jump in the data (as measured by the S&P

500) with a black dot and the jump implied by the estimated model with a red triangle. For

the estimated baseline model (�Base�, shown in the �rst bar from the left), the black dots

always lie on top of the red triangles because the baseline model is able to match both the

direction and magnitude of the market jump with negligible error. We then compare these

decompositions to two counterfactuals that reveal how the market would have behaved in

the absence of distortions: (i) rational expectations (RE), i.e., ζ = 0 and wθ = 0 ∀θ, and

(ii) No DE, i.e., only ζ = 0. As we have over 1700 separate news events, for the purposes of

the plots below we focus on the news by category associated with the biggest stock market

jumps in absolute value. (The results for all events are summarized in a subsequent table.)

Figure 2 reports results for Fed news events. Panel (a) depicts the market response to the

most quantitatively important Fed announcement in our sample, which occurred on January

3, 2001 when the central bank announced it would decrease the target federal funds rate

by 50 basis points, resulting in a 4.2% surge in the S&P 500 during the 30 minute window

surrounding the news. Figure 2 shows what the representative investor learned from this

announcement, as seen through the lens of the model. For the baseline model (leftmost

decomposition) the biggest contributors to the jump were upward revisions in the perceived

shocks to the trend payout share and cyclical output growth, and a downward revision in the

subjective equity premium. Under the RE counterfactual, the market would have jumped

up 3.6% rather than 4.2%. This overreaction is driven almost entirely by the DE distortion

a �nding that can be observed by noting that the �No DE� counterfactual results in virtually

the same jump and decomposition as the RE counterfactual. DE causes investors to react
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Figure 2: Decomposing Jumps in S&P 500 due to FOMC News
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Notes: The �gure reports shock decompositions of the pre-/post- FOMC announcement change in S&P 500
attributable to revisions in the perceived macro shocks and the subjective equity premium (the combined
e�ect of shocks to lpt and stochastic volatility). The speci�c FOMC events reported on are those coinciding
with the four largest jumps in the S&P 500 in the high-frequency event window. The modi�ers (+) or (-)
refer to the sign of the baseline response to a positive increment in the fundamental shock labeled in the
legend. The sample is 2001:M1-2021:M12.

with excessive optimism to both the trend payout share and cyclical output growth shocks,

in�ating the price response. This same pattern leads to even greater overreaction for the

FOMC event depicted in panel (d), when the market jumped up by 2.10%, while it would

have jumped only .78% under RE.

An important additional �nding that can be observed from Figure 2 is that distortions

are negligible in response to shocks that drive perceived risk premia. We emphasize that

this is not by construction but is instead an empirical result. As Appendix Table A.7 shows,

the shock volatilities move considerably over time and the agent's subjective perception of

the quantity of risk is allowed to di�er in estimation from the objective perception. Thus,

in principle, the agent's subjective risk premium could have di�ered from the objective risk
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premium, but this is not what we �nd.

Figure 3: Decomposing Jumps in S&P 500 due to Macro News
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Notes: See Figure 2. The �gure reports shock decompositions for the four biggest macro news events based
on absolute jumps in the S&P 500 in the high-frequency event window.

Figure 3 analyzes market reactions to news about the macro economy. Panel (a) shows

that, on April 10, 2020, early in the Covid-19 outbreak, the market fell 2.8% in the 30

minutes surrounding the Bureau of Labor Statistics (BLS) release of the CPI report, which

came in .2% below consensus forecasts.25 In this case the main driver of the 2.8% decline

was an outsize reaction to a higher perceived cyclical payout share shock, shown in purple.

Investors overreact to the expected pay-back growth induced by the higher cyclical payout

share shock. However, this shock plays virtually no role in the rational response, a point

we come back to below. For this reason, under the RE counterfactual, the market would

have declined just 0.54%. The same pattern, but in the opposite direction, plays out for

25The BLS releases typically occur at 8:30 am. We use S&P E-mini futures data to gauge market reactions
to these events.
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the event in panel (b) surrounding the release of several pieces of data showing surprising

economic weakness, which the estimates imply led to a downward revision in the perceived

cyclical payout share shock. This revision contributed strongly to the 2% jump upward in

the market, as investors overreacted to expected catch-up growth. By contrast, the market

would have increased only 0.41% under RE, mostly due to a declining equity premium.

Figure 4: Impulse Responses to Payout Share Shocks
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Notes: This �gure plots estimated impulse responses at the posterior mode parameter values, in deviations
from steady-state, to positive payout share shock (top panels) and a positive trend payout share shock
(bottom panels), respectively.

To understand these results, we must �rst explain why a positive increment to the cyclical

payout share shock causes a sharp decline in the stock market in the baseline case, but

not under RE. For this we refer to Figure 4, which plots estimated impulse responses, in

deviations from steady state, to 2 standard deviation increases in the cyclical payout share

shock, εk,t, (top row) and in the trend payout share shock, εk,t, (bottom row). From the

top row, left panel, we see that a positive payout share shock leads to a highly transitory

increase in payout relative to GDP that quickly mean reverts. Under both RE and in the
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baseline model, this mean reversion in the payout share creates the expectation of negative

fall-back growth in payout next period (top row, middle panel), consistent with the common

understanding that the payout share is stationary. However, in the RE case, expected fall-

back growth is just negative enough to (almost) restore kt to its steady state level within

one period, so that expected growth from period 1 onward is approximately zero. Because

the shock is rationally perceived to generate a highly transitory deviation from the steady-

state payout-output share, it has a negligible e�ect on the level of the stock market (top

row, right panel).26 By contrast, in the baseline model with DE, the investor strongly

overreacts to the increase in εk,t, giving rise to excessive pessimism about fall-back growth

next period. This e�ect (demonstrated above in the simpli�ed model) is tantamount to

temporarily believing that the level of the payout share will revert back to permanently lower

level. This erroneous belief causes the market to crash before recovering next period when

actual growth is observed and investors observe that they had been excessively pessimistic

(top row, right panel).

These results can be contrasted with the responses to a trend payout share shock in

the bottom row of Figure 4. Unlike an increase in the cyclical payout share shock, εk,t,

an increase in εk,t has highly persistent e�ects on kt, implying that mean reversion takes

decades.27 When the shock hits, we get a near-permanent rise in the payout share and a

one-time spike up in expected payout growth. In the baseline model, the good news from εk,t

is overreacted to, creating excessive optimism and in�ating the price response. The same

phenomenon leads to disappointment the following period when actual growth is observed

and investors learn that they had been excessively optimistic, causing a gradual price reversal

26Expected growth period 1 onward would be exactly zero if the e�ects of εk,t on payout growth were
exactly i.i.d, but these shocks a�ect the trend kt (see 14), albeit with an estimated positive loading that is
quite small. In turn, kt feeds back into next period's kt (see 18). Taken together, these features imply that
a positive impulse to εk,t has�via its small e�ect on the trend payout share�a small (almost imperceptible)
yet highly persistent e�ect on rationally expected future payout growth starting in period 1. It is the
persistent movement in kt that causes the RE stock price level (as opposed to the price-payout ratio) to
rise imperceptibly above zero on impact, before declining slowly back to baseline over time (third panel).
Since the payout share mean reverts over time regardless of its persistence, positive shocks to the share
would in�uence prices (discounted forward-looking cash �ows) less than current cash �ows leading to a lower
price-payout ratio.

27Payout rises in period 1 because εk,t a�ects kt with lag�see (18).
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back toward the RE response.28

Returning to Figure 3, Panel (c) shows reactions to the July 2, 2020 BLS release of the

unemployment rate, in which the stock market rose 1.97%, an increase that coincides with

the baseline model response. In this case, however, the market's response to this news would

have been to jump 3.35% had expectations been formed rationally, implying that distorted

beliefs and DE in particular led the market to underreact to the July 2, 2020 announcement.

This happens because, while the news causes investors to revise down their perception of the

equity premium, which pushes the market up, in the baseline model it also causes a partially

o�setting upward revision in the cyclical payout share shock, which pushes the market down.

As in panel (a), this occurs because an increase in the perceived cyclical payout share causes

excessive pessimism about expected fall-back growth next period.

Under RE, there is no excessive pessimism to the cyclical payout share shock and thus no

erroneous partially o�setting contribution that dampens the market response. In addition,

under RE we see that a downward revision in the perceived shock to trend growth ∆yt makes

a large positive contribution to the market change (yellow bar) because, as the parameter

estimates in Table 2 indicate, a negative shock to trend growth generates an expectation of

higher future payout growth. By contrast, this same perceived shock makes a smaller posi-

tive contribution to the market change in the no-DE case due to distortions in the perceived

LOM that underestimate this e�ect, which means that changes in ε∆y,t will be partly misat-

tributed to another shock. As Figure (6) shows, in this case investors erroneously attribute

part of these e�ects to a positive cyclical payout share shock, which also drives up payout

but less persistently than does the negative impulse to ε∆̄y,t. This misperception therefore

dampens the e�ect of the true ε∆̄y,t impulse on the market, an outcome that is necessarily

ampli�ed by DE, since DE applies to the shocks that investors perceive rather than those

that actually occurred. This ampli�ed underreaction explains why the contribution of the

yellow bar in panel (c) is so small. Overall, this event illustrates the potential for DE to

28The baseline price remains slightly above the RE level for some time before �nally converging. This
happens because excessive optimism or pessimism generated by DE is modulated by the shock's perceived
persistence, which in this case is estimated to be high�see (24).
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cause underreaction to news in a multi-shock setting. It is important to emphasize that this

underreaction is not due to inattention. In this model, a single parameter with an estimated

value indicative of behavioral overreaction controls the distorted reactions to all shocks. The

event in panel (c) underscores the capacity of DE to generate asymmetric compositional

e�ects capable of either amplifying or dampening market �uctuations.

Figure 5: Decomposing Jumps in S&P 500 due to Earnings News
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Notes: See Figure 3. The �gure reports shock decompositions for the four biggest corporate earnings news
events based on absolute jumps in the S&P 500 in the high-frequency event window.

Figure 5 shows shock decompositions for the stock market's reaction to news about

corporate earnings on big corporate earnings news days. Consider January 20, 2009, a

news day in the wake of the �nancial crisis when the market declined 5.2% amid extensive

reports about unrealized losses in the portfolio of asset manager State Street and in those of

large banks�panel (b). Seen through the lens of the model, events like these can create the

expectation of lower output and a temporarily higher payout share of output that will shortly

mean revert, creating the expectation of lower payout growth going forward. The baseline
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model implies that the market declined largely because investors became overly pessimistic

about fall-back growth in payout, after revising their perception of the short-term, cyclical

component of the payout share upward. This e�ect on the market was only partially o�set

by a downward revision in the subjective equity premium. By contrast, under RE, the

market would have declined just 0.8% in response to this news day, largely because there is

no overreaction to the cyclical payout share. At the same time, panel (b) of Figure 3 shows

that, under RE, an upward revision in the perceived shock to trend growth ∆yt (yellow bar)

makes a large negative contribution to the market response that is barely visible in the plot

for the baseline model. This same phenomenon arises in the event of panel (c) of Figure 3

only in the opposite direction. As explained above, this happens because perceptions about

how trend economic growth a�ects payout are distorted, which implies that impulses in ε∆y,t

are partly misattributed to another shock.

Figure 6: Responses of Perceived Shocks to Actual Trend Growth Shock
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Notes: This �gure plots estimated impulse responses at the posterior mode parameter values, in deviations
from steady-state, of perceived shocks to an actual (positive) trend growth shock.

To see which shocks this misattribution maps into, we report in Figure 6 estimated

impulse responses of all perceived shocks in ε̃Mt to a 2 standard deviation increase in the actual

trend growth shock ε∆y,t. Under RE, only the perceived trend growth shock responds to an
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actual trend growth shock, as all perceptions are accurate. By contrast, in the baseline model,

an increase in ε∆y,t not only causes ε̃∆y,t to increase, it also causes the perceived cyclical

payout share shock, ε̃k,t, to decrease strongly and persistently, and causes the perceived

in�ation shock, ε̃π,t, to increase by a smaller absolute magnitude. The confounding negative

e�ect on ε̃k,t of a positive impulse to ε̃∆y,t creates the false expectation of catch-up growth

in payout next period. Since this false expectation has price e�ects that counteract those

of ε̃∆y,t, and are ampli�ed by DE, objective changes in the trend component of economic

growth are heavily dampened in the baseline model.

Table 4: Average Jump Di�erentials

All Events Biggest Jumps Smallest Jumps
Macro News

−12.2% 24.2% −24.9%
CorporateEarnings News

14.4% 43.1% 5.4%
FOMC News

−13.3% 12.1% −18.3%

This table reports
(
|JBase| − |JRE |

)
/|JMarket| the average di�erence between the pre-/post- news event

jump (in absolute value) for the baseline model |JBase| and that for the counterfactual RE case |JRE |
divided by the absolute market jump |JMarket|. For macro and Fed news, "Biggest" ("Smallest") refers to

the top (bottom) 10% of all events based on the absolute change in the S&P 500 over the news window. For

earnings news "Biggest" ("Smallest") refers to the top (bottom) 3 events.

Table 4 summarizes the magnitude of over- or underreaction across all news event of

a given type in our sample. We compute the di�erence between the absolute value of the

pre-/post- news-event jump in the S&P 500 implied by the baseline model and the RE coun-

terfactual, then average these di�erences across all events in a given category and express it

as a fraction of the absolute jump in the market. Positive values for this di�erence indicate

overreaction on average, while negative values indicate underreaction.29 We repeat the com-

putation for news that generated the �Biggest� and �Smallest� absolute jumps in the S&P

500 during the news window. For Fed and macro news (where we have hundreds of events)

29We average across all events in which the baseline and non-distorted jumps are in the same direction.
Jumps in the opposite direction happen infrequently in our sample, but also can't be readily categorized as
either over- or underreaction, as opposed to simple �wrong� reaction.
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�Biggest� (�Smallest�) refers to the top (bottom) 10% of all events based on the absolute

change in the S&P 500. For the corporate earnings news events, where we have only 16

event-days, we de�ne �Biggest� (�Smallest) as the top (bottom) 3 events according to the

same criteria.

Table 4 shows that, averaged across all events, we �nd negative di�erentials in the cat-

egories of Fed and macro news, i.e., underreaction, a result driven by the smallest market

events. The biggest market events are characterized by overreaction in all news categories.

The largest of these is for earnings news, where the market overreacted by an average of 44%

of the total market change. To points are worth noting. First, the corporate earnings news

events are only large events, as BBDS focus on days with large stock market movements.

Second, many of the macroeconomic data and FOMC press releases convey little if any in-

formation that was not already anticipated. Naturally, these events reside in our �Smallest�

events category because they generate little or no reaction in the market and thus little or

no over- or underreaction in absolute terms, even though the latter can still be large as a

percentage of a tiny market change.

Market Valuation: Historical Analysis We now study the model's predictions outside

of tight windows around news events. Panel (a) of Figure 7 reports the log ratio of market

equity to last month's output, pDt − yt−1, for both the data30 and the baseline model, where

the latter is computed at the modal values of all parameters and latent states. (Because

the baseline model e�ectively �ts the observed series without error, two lines lie on top of

each other.) Panel (b) reports the data once more, along with our estimate of the market

evolution under a counterfactual simulation in which parameters that are consistent with

RE prevailed. Note that a counterfactual simulation feeds in the shocks implied by the

baseline model estimates while changing only the parameter values, a procedure that isolates

the strength of the mechanism in the baseline estimates compared to some counterfactual

30We use the interpolation method of (Stock and Watson (2010)) to obtain a monthly GDP series for
estimation.
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Figure 7: Counterfactual Simulations of S&P 500-GDP Ratio
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Notes: Panel (a) plots the log S\&P500-to-lagged GDP\ ratio, pDt − yt−1 (blue solid line) along with the
model-implied pDt −yt−1 in dashed red line, obtained using the modal estimates of the parameters and latent
states. Panel (b) plots the data for pDt − yt−1 in solid blue and the counterfactual simulation of RE for
pDt − yt−1 in dashed blue, where both series are standardized. Panel (c) plots a historical decomposition
for the GFC of changes in pDt − yt−1relative to 2007:M1. Panel (d) plots the counterfactual historical
decomposition under RE of the same series. Panels (e) and (f) present the same for the Covid crash relative
to 2020:M1. The black lines in (c)-(f) plot the changes in pDt − yt−1 relative to date indicated in the vertical
bar for each case. The sample in panels (a) and (b) spans 2001:M1 - 2021:M12.

mechanism.31 Since the counterfactual will have a di�erent starting value by construction,

we standardize both series in panel (b) to facilitate comparison. The plots in (a) and (b)

span 2001:01-2021:12. The two bottom rows of Figure 7 reports historical decompositions of

the variation in pDt − yt−1 during two speci�c episodes: the Global Financial Crisis (GFC) in

row 2, and the Covid-19 Crisis in row 3. These decompositions are reported for the baseline

model in panels (c) and (e) and for the RE counterfactuals in panels (d) and (f). The black

lines represent the cumulative month-to-month changes in pDt − yt−1 relative to a start date

31This di�ers from the implications of a counterfactual model, in which the shocks would be re-estimated
under an alternative set of parameters not chosen by the baseline estimation. The latter may be of interest in
some contexts, but it cannot isolate the strength of a baseline model mechanism, since both the mechanism
and the shocks change.
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for the episode, while the colored bars decompose these changes into cumulative fundamental

shocks and premia.

While panel (a) says that the baseline model perfectly explains the market's �uctuations,

panel (b) tells us that the �t of the counterfactual RE case is far worse. A counterfactually

rational stock market would have been more volatile than actually observed, resulting in

a puzzle of �excess stability� rather than excess volatility. This �nding demonstrates the

extent to which distorted beliefs with behavioral overreaction were a stabilizing force over

the post-millennial period, substantially cushioning declines during the GFC and the Covid

crisis, among other episodes.

The historical decompositions in the bottom row help to explain this result. The GFC

episode is characterized by a sharp decline in the cyclical payout share, to which the investor

strongly overreacts, leading to excessive optimism about catch-up growth in payouts. That

over-optimism makes a positive contribution to the market (purple bar), partially o�setting

the predominating negative contributions due to other shocks that were still overreacted to

but to a lesser degree. The market declines more under RE counterfactual because, in that

case, there is no overreaction to the decline in εk,t and thus no excessive optimism about

catch-up growth. This underreaction in the GFC is a prominent historical example of the

shock composition e�ect at work. Similarly, the third row shows that, following the outbreak

of the Covid-19 pandemic, the RE counterfactual simulation of pDt − yt−1 again declines by

more than the baseline series, though the di�erence is smaller. In this case, both over-

optimism about catch-up growth in payouts and overreaction to a perceived decline in the

trend component of real interest rates (a positive for the market) generates a smaller market

decline relative to the RE counterfactual where neither over-optimism or overreaction are

operative.
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7 Unpacking the Mechanism

To unpack the model's main mechanisms on belief reaction to news, this section presents

several results that illustrate on how markets can underreact to news even when investors

overreact to all shocks.

It is instructive to begin by examining the events that produced the largest estimated

underreactions, which exhibit patterns representative of most underreaction events. Panels

(a)-(d) of 8 plot shock decompositions for the four events in our sample that produce the

largest underreactions. Three points deserve emphasis. First, in each case, the investor in

our model perceives good discount rate news simultaneously with bad cash-�ow news. And,

in each case, the underreactions are attributable to asymmetries in the distorted reactions

to counteracting fundamental shocks (the shock composition e�ect). The market rises �too

little� because the investor's expectations for earnings growth are more overly pessimistic

than her views on discount rates are overly rosy. Second, the �gure shows which components

of the underlying data are at work to generate this �nding. Speci�cally, many of these events

occur in periods of economic weakness when the Fed was cutting interest rates while the

outlook for earnings growth was bleak. Panels (e)-(g) of Figure 8 show the movements in the

high-frequency data that drive these model estimates. Around all of these events, the BAA

spread jumps down, leading us to estimate a decline in the equity premium. At the same time,

the daily BBG earnings nowcast (relative to GDP) jumps up, while the BBG 1yr earnings

growth forecast jumps down. The two combined illustrate why, as shown in panel (h), we

estimate a strong upward revision in the investor's expectation for the cyclical component

of the payout share resulting in lower future cash-�ow growth due to pay-back, to which the

investor strongly overreacts.32 Third, at the same time, panel (h) also implies that excessive

32We emphasize that these results are not a mechanical result of our estimate that the wedge between
the subjective and objective equity premia is small. Indeed a di�erent and opposite result could have arisen
if any of these had been true: (i) investors overreact to only a single cash-�ow shock, rather than multiple
primitive shocks with separate high- and low-frequency components (the structure matters); (ii) the events
themselves did not generate jumps in multiple high-frequency variables with counteracting implications for
valuations (the data matters), and/or (iii) the magnitude of the estimated overreactions to the cash-�ow
shocks was found to be small/negligible (the estimates matter).
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pessimism about future cash-�ow growth surrounding these events is not solely attributable

to the cyclical component of payout growth. Investors are also excessively pessimistic about

the trend component of payout growth, a �nding exhibited in panels (a)-(d) by the larger

contribution revisions in these perceived shocks make to the baseline market reaction as

compared to the RE counterfactual reaction. Still, the cyclical payout share shock makes a

larger contribution to the underreaction than the trend component does, as exhibited by the

fact that the purple bars in the baseline case are larger than the magenta.

Figure 8: Largest Underreaction Events (%)
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Notes: The panels (a) - (d) of the �gure reports shock decompositions of pre-/post- FOMC announcement
changes in S&P 500 attributable to revisions in the perceived macro shocks and the subjective equity premium
(the combined e�ect of shocks to lpt and stochastic volatility). The speci�c FOMC events reported on are
those for which the absolute di�erence between the market's jump under the RE counterfactual and the
baseline model as a fraction of the market jump is largest. The panels (e) - (h) show jumps in the data for
these events. Panel (g) reports the BBG 1-year earnings growth forecast and panel (h) reports the estimated
investor 1-year payout growth forecast from the model. The modi�ers (+) or (-) refer to the sign of the
baseline response to a positive increment in the fundamental shock labeled in the legend. The sample is
2001:M1-2021:M12.
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These results suggest that the cyclical payout share shock plays an important role in

our �nding that overreaction to all shocks can be a force for stability rather than volatility.

To quantify its importance, Figure 9 reports the results of a counterfactual simulation in

which the realized cyclical payout share shock is set zero. Panels (a) and (b) zoom in on

the GFC. To form a basis for comparison, Panel (a) displays the log ratio of market equity

to last month's output, pDt − yt−1, in both the baseline model and the RE (i.e., ζ = 0 and

wθ = 0 ∀θ) and No DE (i.e., ζ = 0) counterfactuals without shutting down the cyclical

payout share shock. (The baseline model and data line lie on top of each other in solid

blue.) These results may be compared with Panel (b), which plots the same three cases,

but now counterfactually setting the realized cyclical payout share shock to zero. We see

that, for the GFC period, counterfactually eliminating the cyclical decline in the payout

share that occurred during this time�and along with it the investor's excessive optimism

about next period's catch-up growth�would lead to the traditional �nding that overreaction

generates excess volatility. This underscores the central role played by assumptions on cash-

�ow dynamics for results on over- and underreaction. At the same time, it is important to

bear in mind that the trend-cycle speci�cation that we estimate is strongly preferred by the

data, as shown above.

However, we know from Figure 8 that asymmetries in the distorted reactions to counter-

acting fundamental shocks (the shock composition e�ect) can generate excess stability even

without the cyclical shock. This is illustrated in panels (c) and (d) of Figure 9 which analyzes

the full sample rather than just the GFC. For ease of reference, Panel (c) reproduces panel

(b) of Figure 7, which shows our baseline model's full sample implication for the market

equity-output ratio, pDt − yt−1, and the corresponding RE counterfactual. Panel (d) shows

the full-sample alternative counterfactual (solid line) that sets the variance of the cyclical

payout share shock to zero and is juxtaposed with the RE counterpart of this no-cyclical-

payout counterfactual. In this case, our �nding that a counterfactually rational stock market

would have been more volatile than actually observed reemerges, though it is less pronounced

than in the baseline model that features a highly transitory component in cash-�ow growth
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Figure 9: Counterfactual Simulations of S&P 500-GDP Ratio: Base vs RE
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(d) CF (Full sample): No Cycl. PO Share Shock

Base + no cycl. PO shock, Std = 0.31
RE + no cycl. PO shock, Std = 0.34
No DE + no cycl. PO shock, Std = 0.33

Notes: Panel (a) and (b) plots the model base estimate of pDt − yt−1 in solid blue, and the counterfactual
simulation of RE for pDt − yt−1 in dashed blue for the GFC of changes in pDt − yt−1 relative to 2007:M1.
Panel (c) and (d) plot the base estimate for pDt − yt−1 in solid blue and the counterfactual simulation of RE
for pDt − yt−1 in dashed blue, where both series are standardized. Panel (b) and (d) plot the counterfactual
where the cyclical PO share shock has zero variance. The sample spans 2001:M1 - 2021:M12.

driven by empirically relevant variation in the earnings share of output. Taken together,

panels (b) and (d) demonstrate the key quantitative role of the cyclical component in the

/payout share for the overall magnitude of our excess stability �nding, while also showing

that the key mechanism holds even without these shocks due to asymmetries in the distorted

reactions to counteracting fundamental shocks (the shock composition e�ect).

To provide a sense of the importance of the DE distortion compared to distorted percep-

tions about the macro LOM, Figure 9 also shows a red dashed-dotted line displaying results

for a counterfactual simulation of the No-DE case i.e., with ζ = 0 but keeping estimated

distortions on the perceived parameters of the macro LOM. We �nd distorted perceptions

about the LOM driving fundamentals alone play a modest but non-trivial role in the baseline

model output, with the No-DE case lying in between the RE counterfactual (but closer to
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it) and the baseline output. Comparing the red and blue (base) lines isolates the marginal

e�ect of DE and again shows that it is the most important distortion we estimate.

As additional evidence of a strong cyclical component in investor beliefs, we examine the

estimated cyclical payout share shock and its relation to actual survey forecast errors. Our

procedure produces a �ltered estimate of this cyclical (i.e., short-run) shock, εkt, which we

observe making large contributions to investor beliefs and stock market �uctuations during

the GFC in panel (c) of Figure 7, as well as around other news events in Figures 2, 3, and 5.

The model estimates imply that investors overreact to downward (upward) impulses in this

shock with over-optimism (-pessimism) about catch-up (fall-back) growth. Thus a negative

(positive) impulse in εkt should be associated with excessively positive (negative) expecta-

tions of future cash-�ow growth when compared with actual future outcomes, implying a

positive relation between εkt and survey forecast errors when measured as the actual minus

forecasted value. To check this, we regress IBES or consensus (Bloomberg) forecast errors for

future S&P 500 earnings growth, ∆et+υ − Ft [∆et+h] over various future horizons h, on our

estimates of εkt. Table 5 shows that the coe�cient from such a regression using monthly data

from 2006:M1 to 2021:M12 is positive and strongly statistically signi�cant, consistent with

the predictions of the model. This shows that the model implications for overreactions to

measured payout news, summarized by jumps in εkt, re�ect actual overreactions in earnings

surveys.
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Table 5: Earnings Forecast Errors and Earnings Share Shock

Regression: ∆et+υ − Ft [∆et+υ] = aυ + bυεkt + ϵυ
Survey IBES: 1981:M12 to 2021:M12

υ (months) 3M 6M 9M 12M 24M
b 5.83∗∗∗ 2.34∗∗∗ 1.25∗∗∗ 0.76∗∗ −0.14

(7.68) (4.35) (2.96) (2.15) (−1.13)
R2 0.31 0.18 0.11 0.08 0.01
obs. 250 247 244 241 229

Survey BBG: 1990:M1 to 2021:M12
υ (months) 3M 6M 9M 12M

b 6.28∗∗∗ 2.60∗∗∗ 1.43∗∗∗ 0.92∗∗∗

(9.22) (5.22) (3.61) (2.46)
R2 0.36 0.22 0.15 0.11
obs. 250 247 244 238

Notes: The table report the OLS coe�cient, heteroskedasticity and serial correlation robust t-statistics (in
parentheses), R2 statistics, and number of observations from monthly regressions of υ-month-ahead forecast
errors of earnings growth on the cyclical payout share shock. Regressions using the IBES survey using data
over the period 1981:M12 to 2021:M12. Regressions using Bloomberg (BBG) span 2006:M1 to 2021:M12.

To close this section, we discuss two additional checks, the output for which is placed in

the Online Appendix to conserve space.

First, for all high-frequency news events, we use the structural model to categorize the

event by whether the market exhibited over- or underreaction. This is accomplished by

comparing the actual market reactions with the model's RE counterfactual reaction. We

then ask whether the observed high-frequency jumps in the market that�according to the

model�can be distinguished as either over- or underreactions predict future returns with

the appropriate sign. Table A.6 in Appendix 8 shows that upward (downward) jumps in the

market around measured news events that the model categorized as overreactions are followed

by lower (higher) subsequent returns. By contrast, those categorized as underreactions have

the opposite pattern, with jumps upward (downward) followed by higher (lower) future

returns. The table reports variation in the precision of these estimates, with statistical

signi�cance at the 10% level generally holding, and at the 5% level for overreaction events

where the market jumped down. This result is worth remarking on since we measure only

a handful of events in any given month. Given large high-frequency variation in the stock
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market, predictable changes in future returns in response to these events could easily have

been be swamped by untracked events or noise. That the signal from this few number of

events is evidently su�ciently high to observe future reversals or momentum (as appropriate)

provides supporting evidence for the existence of belief overreactions to our news events,

especially negative news.

Second, Figure A.1 in Appendix 8 shows that the model produces realistic implications

for survey expectations of stock returns over time. We �nd the model estimates of the

investor's subjective expectations are close to the survey expectations and move by the right

magnitudes in times of important economic change. In particular, we observe that both

survey and model expectations for returns at a one-year horizon rise sharply in the GFC,

consistent with substantial increases in subjective risk premia during that episode.

8 Conclusion

We measure the nature and severity of a variety of belief distortions in market reactions

to hundreds of economic news events. To do so, we use a new methodology that combines

estimation of a structural asset pricing model with algorithmic machine learning to quantify

bias. The structural model allows for the perceived law of motion driving macroeconomic dy-

namics to di�er from the actual law of motion, and nests speci�c belief formation frameworks

that include diagnostic expectations and inattention. Unlike the traditional speci�cation of

these frameworks, we allow investors to react to multiple perceived fundamental shocks, with

a single estimated scalar parameter ζ controlling reactions to all shocks. We show that in

this multi-shock environment, investor overreaction to all shocks can cause the market to

underreact to news, dampening rather than amplifying volatility.

This theoretical possibility turns out to be empirically relevant. Our point estimates of ζ

imply that investors overreact to all shocks rather than being inattentive to them. Yet we �nd

that behavioral overreaction has been be a force for market stability in the post-millennial

period. This surprising result is attributable to asymmetries in the distorted reactions to

57



counteracting fundamental shocks, something we refer to as the shock composition e�ect.

We show that this shock composition e�ect well describes the stock market's behavior in

several major episodes of post-millennial history, most notably the Global Financial Crisis,

in which behavioral overreaction was a force for stability rather than volatility.

A transformative idea of 20th century economic thought is that �nancial markets are

�excessively volatile� vis-a-vis predictions of canonical theory, in which stock prices are the

rational expectation of future cash-�ow fundamentals discounted at a constant rate (Shiller

1981, 2000). We �nd that a counterfactually rational stock market would have been more

volatile than actually observed, resulting in a puzzle of excess stability rather than excess

volatility. By contrast, a macro-dynamic model with belief overreaction in the spirit of

diagnostic expectations can perfectly explain the data, not because it ampli�es volatility,

but because it dampens it.
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Online Appendix

Identi�cation

Table A.1 describes the posterior and prior distributions for the parameters of the model.

In the column Type," N stands for Normal, G stands for Gamma, IG stands for Inverse

Gamma, and B stands for Beta distribution, respectively. For all prior distributions, we

report the mean and the standard deviation. The priors for all parameters are di�use and

centered around values typically found in the literature. To show parameter identi�cation,

we compare the prior densities with their posterior counterparts. If the data are jointly in-

formative about the model parameters, the posterior should move well away from the prior

distribution. The prior 90% credible sets are much more di�use than the corresponding pos-

terior credible sets, and we obtain relatively tight posterior credible sets for the parameters

both objective and perceived, o�ering clear evidence of identi�cation. This occurs because,

although we estimate a large number of parameters, the model is required to �t a wide

range of observables. Many of these observables impose cross-equation restrictions that are

informative for the parameters. For example, the perceived law of motion must be consistent

with survey expectations and not too far from the actual data-generating process while the

objective LOM must account for both realized data and machine expectations.

Table A.1: Parameter Estimates

Posterior (Objective parameters) Prior Posterior (Perceived parameters) Prior
Mode 90% CS Mean Std 90% CS Type Mode 90% CS Mean Std 90% CS Type

ψi 0.0098 [0.0081, 0.0116] 0.5 0.2 [0.17, 0.83] B ψi 0.0098 [0.0081, 0.0115] 0.5 0.2 [0.17, 0.83] G
ψπ 0.0066 [0.0061, 0.0079] 1.5 1 [0.31, 3.43] G ψπ 0.0065 [0.0061, 0.0080] 1.5 1 [0.31, 3.43] G
ψ∆y 0.0002 [0.0002, 0.0003] 1.5 1 [0.31, 3.43] G ψ∆y 0.0002 [0.0002, 0.0003] 1.5 1 [0.31, 3.43] B
ϕi 0.0320 [0.0291, 0.0348] 0.5 0.2 [0.17, 0.83] B ϕi 0.0320 [0.0291, 0.0348] 0.5 0.2 [0.17, 0.83] B
ϕπ 0.0001 [0.0000, 0.0001] 0.5 0.2 [0.17, 0.83] B ϕπ 0.0001 [0.0000, 0.0001] 0.5 0.2 [0.17, 0.83] B
ϕ∆y 0.0006 [0.0005, 0.0006] 0.5 0.2 [0.17, 0.83] B ϕ∆y 0.0006 [0.0005, 0.0006] 0.5 0.2 [0.17, 0.83] B
ϕk 0.0611 [0.0591, 0.0722] 0.5 0.2 [0.17, 0.83] B ϕk 0.0611 [0.0591, 0.0722] 0.5 0.2 [0.17, 0.83] G
γra 3.9131 [3.7844, 4.2832] 6 3 [2.05, 11.63] G γra � − − �
ζ 1.2626 [1.0019, 1.4129] 0 0.5 [−0.82, 0.82] N ζ � − − �
βπ,i 0.0016 [0.0013, 0.0019] 0 0.5 [−0.82, 0.82] N βπ,i 0.0016 [0.0013, 0.0019] 0 0.5 [−0.82, 0.82] N
βπ,π −0.0001 [−0.0001,−0.0000] 1 0.5 [−0.18, 1.82] N βπ,π −0.0001 [−0.0001,−0.0000] 1 0.5 [−0.18, 1.82] N
βπ,∆y −0.0516 [−0.0621,−0.0395] 0 0.5 [−0.82, 0.82] N βπ,∆y −0.0532 [−0.0664,−0.0401] 0 0.5 [−0.82, 0.82] N
β∆y,i −0.0043 [−0.0052,−0.0033] 0 0.5 [−0.82, 0.82] N β∆y,i −0.0043 [−0.0052,−0.0033] 0 0.5 [−0.82, 0.82] N
β∆y,π 0.0007 [0.0005, 0.0009] 0 0.5 [−0.82, 0.82] N β∆y,π 0.0007 [0.0005, 0.0009] 0 0.5 [−0.82, 0.82] N
β∆y,∆y 0.0006 [0.0005, 0.0006] 0 0.5 [−0.82, 0.82] N β∆y,∆y 0.0006 [0.0005, 0.0006] 0 0.5 [−0.82, 0.82] N
βk,∆y −7.1724 [−7.9712,−5.9811] 2 4 [−4.58, 8.58] N βk,∆y −7.0824 [−7.8991,−5.9014] 2 4 [−4.58, 8.58] B
ρk,k 0.9929 [0.9682, 0.9983] 0.95 0.025 [0.90, 0.99] B ρk,k 1.0000 [0.9991, 1.0000] 0.95 0.025 [0.90, 0.99] B
ρlp 0.4317 [0.3725, 0.4955] 0.5 0.2 [0.17, 0.83] B ρlp � � � �
ρη 0.9986 [0.9981, 0.9995] 0.5 0.2 [0.17, 0.83] B ρη � � � �

Notes: The table describes the posterior and prior distributions for the parameters of the model. In

the column "Type�, N stands for Normal, G stands for Gamma, IG stands for Inverse Gamma, and

B stands for Beta distribution, respectively. For all prior distributions, we report the mean and the

standard deviation.

1



Data Used in Structural Estimation and Filtering Around News

Events

S&PMarket Cap, Indexes, S&P Futures, S&P Dividends, Stock Market Returns,

and Treasury Bill Data

For the structural estimation we use data on both stock market returns (price growth

plus a dividend yield) and on stock market price growth. Monthly data on stock returns

are obtained from the Center for Research in Security Prices (CRSP) downloaded from

WRDS https://wrds.wharton.upenn.edu/wrdsauth/members.cgi. We use the CRSP

value-weighted monthly return series VWRETD (includes dividends) and compute annu-

alized log returns lnCRSPD = 12ln(1 + VWRETD). For machine forecasts of returns

or price growth we take the di�erence between the price growth measure or return, e.g.,

ln(VWRETD), and the lagged log of the 3-month T-bill rate (3MTB). Since the 3MTB

is reported at an annual rate in percent, we compute the annualized (raw unit) log of fu-

ture returns less the current short rate, i.e., ln(VWREXt+12) ≡ 12ln(1 + VWRETDt+12)−
ln(1 + 3MTBt/100). The structural estimation uses monthly data (or higher frequency), so

we map the annualized monthly stock return onto the one-year return in the model. Both

series were downloaded from WRDS on February 12, 2023.

When evaluating the MSEs ratios of the machine relative to that of a benchmark survey,

we compute machine forecasts for either the annual CRSP return, or S&P 500 price growth

depending on which value most closely aligns with the concept that survey respondents are

asked to predict. See below. To measure one-year stock market price growth we obtain

a monthly series on the S&P 500 market capitalization, obtained as the end-of-month se-

ries from Ycharts.com available at https://ycharts.com/indicators/sp\_500\_market\

_cap. This series span the periods 1959:01 to 2021:12 and were downloaded on March 13,

2022. This series is used to measure the monthly stock price to output ratio for the struc-

tural estimation. Below we also use the one-year log cumulative growth rate of the S&P

500 index, log
(

PS&P
t+12

PS&P
t

)
. The monthly S&P index series spans the period 1957:03 to 2022:12

and was downloaded from WRDS on January 24, 2024 from the Annual Update data of

the Index File on the S&P 500. To measure the one-year log CRSP return, we compute∑12
j=1 ln(1 + VWRETD(t+ j))− ln(1 + 3MTB(t)/100).

We obtain S&P 500 Dividend from Robert Shiller's online data depository at URL:

http://www.econ.yale.edu/~shiller/data.htm. The series is computed from the S&P

four-quarter trailing totals and linearly interpolated to monthly data sampling intervals for

the period 1959:01 to 2021:12 and was downloaded on February 15, 2022.
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For the high-frequency �ltering, we use tick-by-tick data on S&P 500 index from tick-

data.com. The series was purchased and downloaded on July 2, 2022 from https://www.

tickdata.com/. We create the minutely data using the close price within each minute.

Within trading hours, we construct S&P 500 market capitalization by multiplying the

minutely S&P 500 index value by last month's S&P 500 Divisor. The S&P 500 Divisor

is available at the URL: https://ycharts.com/indicators/sp\_500\_divisor. We sup-

plement S&P 500 index using S&P 500 E-mini futures for events that occur in o�-market

hours. We use the current-quarter contract futures. We purchased the S&P 500 E-mini

futures from CME group at URL: urlhttps://datamine.cmegroup.com/. Our sample spans

January 2nd 1986 to June 30th, 2022. The S&P 500 futures data were downloaded on July

2, 2022.

Earnings Data

IBES (�Street�) Earnings Data We use S&P 500 earnings divided by GDP as a noisy

signal on the payout shareKt in the structural estimation. To map into a monthly estimation,

we ideally would use monthly earnings data. Instead, we have quarterly S&P 500 IBES

street earnings per share (EPS) data that starts in 1983:Q4. Following the recommendation

of Hillenbrand and McCarthy (2024), we use Street earnings as the forecast target for IBES

analysts. Street earnings di�er from GAAP earnings by excluding discontinued operations,

extraordinary charges, and other non-operating items. According to the IBES user guide,

analysts submit forecasts after backing out these transitory components, and IBES constructs

the realized series to align with those forecasts. While analysts have some discretion over

which items to exclude, Hillenbrand and McCarthy (2024) demonstrate that the target of

these forecasts corresponds closely to earnings before special items in Compustat, suggesting

that street earnings accurately re�ect the measure analysts are targeting.

To convert EPS to total earnings, we multiply the resulting quarterly EPS series by the

quarterly S&P 500 divisor available at URL: https://ycharts.com/indicators/sp\_500\

_divisor. Finally, to obtain a monthly S&P 500 earnings series, we linearly interpolate the

resulting quarterly total earnings series. The �nal monthly total earnings series spans the

period 1983:12 to 2021:12. We downloaded IBES street earnings data from WRDS on July

19, 2025. The divisor data were downloaded on July 21, 2025.

Net Dividends Plus Net Repurchases (Equity Payout)

We use an eight quarter moving average of equity payout divided by GDP as a noisy signal

on Kt. Equity payout for the corporate sector is quarterly and measured as net dividends
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minus net equity issuance is computed using �ow of funds data. Net dividends (�netdiv�)

is the series named for corporate business; net dividends paid (FA096121073.Q). Net repur-

chases are repurchases net of share issuance, so net repurchases is the negative of net equity

issuance. Net equity issuance (�netequi�) is the sum of Equity Issuance for Non-�nancial

corporate business; corporate equities; liability (Table F.103, series FA103164103) and Eq-

uity Issuance for domestic �nancial sectors; corporate equities; liability (Table F.108, series

FA793164105). Since netdiv and netequi are annualized, the quarterly payout is computed

as payout=(netdiv-netequi)/4. The units are in millions of dollars. Source: Federal Reserve

Board. We map the quarterly observation into the model implications for the share kt in the

last month of each quarter. The quarterly data span the period 1951:Q4 to 2022:Q3.

Survey Data on Stock Market Expectations

We use the surveys listed below in our structural estimation. Following Nagel and Xu

(2023), we use the mean values of the Gallup/UBS, CFO survey, and Livingston forecasts.

For the University of Michigan Survey of Consumers (SOC), which are qualitative up/down

forecasts, the structural estimation maps this onto model-implied investor expectations of

one-year-ahead stock returns using the method described in Section 20 below. For compari-

son purposes, we compute machine forecasts for either the annual CRSP return, or S&P 500

price growth depending on which variable most closely aligns with the concept that survey

respondents are asked to predict.

UBS/Gallup Survey Stock Return Forecasts The UBS/Gallup is a monthly sur-

vey of one-year-ahead stock market return expectations, obtained from Roper iPoll: http:

//ropercenter.cornell.edu/ubs-index-investor-optimism/. We use the mean point

forecast in our estimation and compare these to machine forecasts of the annual CRSP

return. Gallup conducted 1,000 interviews of investors during the �rst two weeks of ev-

ery month and results were reported on the last Monday of the month. The �rst survey

was conducted on 1998:05. Until 1992:02, the survey was conducted quarterly on 1998:05,

1998:09, and 1998:11. The data on 1998:06, 1998:07, 1998:08, 1998:10, 1998:12, 1999:01,

and 2006:01 are missing because the survey was not conducted on these months. We follow

Adam, Matveev and Nagel (2021) in starting the sample after 1999:02 due to missing values

at the beginning of the sample. For each month when the survey was conducted, respondents

are asked about the return they expect on their own portfolio. The survey question is �What

overall rate of return do you expect to get on your portfolio in the next twelve months?�

Before 2003:05, respondents are also asked about the return they expect from an investment

in the stock market during the next 12 months. The survey question is �Thinking about the
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stock market more generally, what overall rate of return do you think the stock market will

provide investors during the coming twelve months?� For each month, we calculate the av-

erage expectations of returns on their own portfolio and returns on the market index. When

calculating the average, survey respondents are weighted by the weight factor provided in

the survey. We exclude extreme observations where a respondent reported expected returns

higher than 95% or lower than -95% on either their own portfolio or the market index.

In order to construct a consistent measure of stock market return expectations over the

entire sample period, we impute missing market return expectations using the �tted values

from two regressions. First, we impute missing values during 1999:02-2005:12 and 2006:02-

2007:10 with the �tted value from regressing expected market returns on own portfolio

expectations contemporaneously, where the regression is estimated using the part of the

sample where both are available. Second, we impute the one missing observation in both

market and own portfolio return expectations for 2006:01 with the �tted value from regressing

the market return expectations on the lagged own portfolio return expectations, where the

coe�cients are estimated using part of the sample where both are available, and the �tted

value combines the estimated coe�cients with lagged own portfolio expectations data from

2005:12. Following Nagel and Xu (2023), we assume that the forecasted stock market return

includes dividends and capture expectations about annual simple net stock returns Ft[rt+12].

To obtain survey expectations of annual log returns Ft[ln(1+rt+12)] from a survey expectation

of annual net simple returns Ft[rt+12], we use the approximation Ft[ln(1 + rt+12)] ≈ ln(1 +

Ft[rt+12]). After applying all the procedures, the Gallup market return expectations series

spans the periods 1999:02 to 2007:10. The data were downloaded on August 1st, 2024.

We take a stand on the information set of respondents when each forecast was made,

and we assume that respondents could have used all data released before they completed

the survey. Since interviews are in the �rst two weeks of a month (e.g., February), we

conservatively set the response deadline for the machine forecast to be the �rst day of the

survey month (e.g., February 1), implying that we allow the machine to use information

only up through the end of the previous month (e.g., through January 31st). This ensures

that the machine only sees information that would have been available to all UBS/Gallup

respondents for that survey month (February). This approach is conservative in the sense

that it handicaps the machine, since all survey respondents who are being interviewed during

the next month would have access to more timely information than the machine. Since the

survey asks about the "one-year-ahead" we interpret the question to be asking about the

forecast period spanning from the current survey month to the same month one year ahead.

The data spans the periods 1998:01 to 2007:12. The data were downloaded on August 8th,

2022.
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Michigan Survey of Consumers (SOC) The SOC contains approximately 50 core ques-

tions, and a minimum of 500 interviews are conducted by telephone over the course of the

entire month, each month. Table 20 of the Michigan Survey of Consumers (Soc) reports the

probability of an increase in stock market in next year. The survey question was "The next

question is about investing in the stock market. Please think about the type of mutual fund

known as a diversi�ed stock fund. This type of mutual fund holds stock in many di�erent

companies engaged in a wide variety of business activities. Suppose that tomorrow someone

were to invest one thousand dollars in such a mutual fund. Please think about how much

money this investment would be worth one year from now. What do you think the percent

chance that this one thousand dollar investment will increase in value in the year ahead, so

that it is worth more than one thousand dollars one year from now?"

When we use this survey forecast to compare to machine forecasts, we impute a point

forecast for stock market returns using the method described in Section 8 below. We compare

the imputed point forecast to machine forecasts of CRSP returns. When we use this survey

in the structural estimation, we map the survey answer on probability onto model-implied

investor expectations of one-year-ahead stock returns using the method described in Section

20 below.

For the SOC, interviews are conducted monthly typically over the course of an entire

month. (In rare cases, interviews may commence at the end of the previous month, as in

February 2018 when interviews began on January 31st 2018.) We take a stand on the infor-

mation set of respondents when each forecast was made, and we assume that respondents

could have used all data released before they completed the survey. Since interviews are al-

most always conducted over the course of an entire month (e.g., February), we conservatively

set the response deadline for the machine forecast to be the �rst day of the survey month

(e.g., February 1), implying that we allow the machine to use information only up through

the end of the previous month (e.g., through January 31st). This ensures that the machine

only sees information that would have been available to all respondents for that survey month

(February). This approach is conservative in the sense that it handicaps the machine, since

all survey respondents who are being interviewed during the next month would have access

to more timely information than the machine. Since the survey asks about the "year ahead"

we interpret the question to be asking about the forecast period spanning the period running

from the current survey month to the same month one year ahead. The data spans 2002:06

to 2021:12. The SOC responses were obtained from https://data.sca.isr.umich.edu/data-

archive/mine.php and downloaded on August 13th, 2022.
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The CFO Survey Stock Return Forecasts The CFO survey is a quarterly survey that

asks respondents about their expectations for the S&P 500 return over the next 12 months,

obtained from https://www.richmondfed.org/-/media/RichmondFedOrg/research/national_

economy/cfo_survey/current_historical_cfo_data.xlsx. We use the mean point fore-

cast for the value of the �most likely� future stock return in our estimation. More speci�cally,

the survey asks the respondent �over the next 12 months, I expect the average annual S&P

500 return will be: Most Likely: I expect the return to be: ___% �. Mean point forecasts

before 2020Q3 are available in column sp_1_exp of sheet through_Q1_2020; mean point fore-

casts from 2020Q3 and onwards are available in column sp_12moexp_2 of sheet CFO_SP500.

Following Nagel and Xu (2023), we assume that the forecasted S&P 500 return includes div-

idends and capture expectations about annual simple net stock returns Ft[rt+12]. To obtain

survey expectations of annual log returns Ft[ln(1+rt+12)] from a survey expectation of annual

net simple returns Ft[rt+12], we use the approximation Ft[ln(1+rt+12)] ≈ ln(1+Ft[rt+12]). The

CFO survey panel includes �rms that range from small operations to Fortune 500 companies

across all major industries. Respondents include chief �nancial o�cers, owner-operators,

vice presidents and directors of �nance, and others with �nancial decision-making roles. The

CFO panel has 1,600 members as of December 2022. As for the SOC, we take a stand

on the information set of respondents when each forecast was made, and we assume that

respondents could have used all data released before they completed the survey. Because

the CFO survey releases quarterly forecasts at the end of each quarter, we conservatively

set the response deadline for the machine forecast to be the �rst day of the last month of

each quarter (e.g., March 1). The data spans the periods 2001Q4 to 2021Q1. The data were

downloaded on August 8th, 2022.

Livingston Survey Stock Index Forecast We obtained the Livingston Survey S&P500

index forecast (SPIF) from the Federal Reserve Bank of Philadelphia, URL: https://www.

philadelphiafed.org/surveys-and-data/real-time-data-research/livingston-historical-data, and use the mean

values in our structural and forecasting models. We compare the one-year growth in these

forecasts to machine forecasts of S&P 500 price growth. Our sample spans 1947:06 to 2021:06.

The forecast series were downloaded on September 20, 2021.

The survey provides semi-annual forecasts on the level of the S&P 500 index. Participants

are asked to provide forecasts for the level of the S&P 500 index for the end of the current

survey month, 6 months ahead, and 12 months ahead. We use the mean of the respondents'

forecasts each period, where the sample is based on about 50 observations. Most of the survey

participants are professional forecasters with �formal and advanced training in economic

theory and forecasting and use econometric models to generate their forecasts.� Participants
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receive questionnaires for the survey in May and November, after the Consumer Price Index

(CPI) data release for the previous month. All forecasts are typically submitted by the

end of the respective month of May and November. The results of the survey are released

near the end of the following month, on June and December of each calendar year. The

exact release dates are available on the Philadelphia Fed website, at the header of each news

release. We take a stand on the information set of the respondents when each forecast was

made by assuming that respondents could have used all data released before they completed

the survey. Since all forecasts are typically submitted by the end of May and November

of each calendar year, we set the response deadline for the machine forecast to be the �rst

day of the last month of June and December, implying that we allow the machine to use

information only up through the end of the May and November.

We follow Nagel and Xu (2022) in constructing one-year stock price growth expectations

from the level forecasts. Starting from June 1992, we use the ratio between the 12-month

level forecast (SPIF_12Mt) and 0-month level nowcasts (SPIF_ZMt) of the S&P 500 index.

Before June 1992, the 0-month nowcast is not available. Therefore we use the annualized

ratio between the 12-month (spi12t) and 6-month (spi6t) level forecast of the S&P 500

index

F(Liv)
t

[
Pt+12

Pt

]
≈


F(Liv)
t [Pt+12]

F(Liv)
t [Pt]

= SPIF_12Mt
SPIF_ZMt

if t ≥ 1992M6(
F(Liv)
t [Pt+12]

F(Liv)
t [Pt+6]

)2
=
(
spi12t
spi6t

)2
if t < 1992M6

(A.1)

where Pt is the S&P 500 index and t indexes the survey's response deadline. To obtain a

survey expectation of the log change in price growth we use the approximation:

Ft (∆pt+12) ≈ ln (Ft[Pt+12])− ln (Pt) .

Bloomberg Consensus Survey Stock Index Forecasts As an additional signal of

investor expectations, we use the Bloomberg (BBG) Consensus Forecast of the stock market.

Survey respondents are asked to forecast the �end-of-year� closing value of the S&P 500 index

on the last trading day of the calendar year (id: SPXSFRCS). The forecast horizon therefore

changes depending on when in the year panelists are answering the survey. Surveys conducted

between January through November forecast the index for the end-of-current-year (EOCY).

Surveys held in December forecast the index for the end-of-next-year (EONY). For example:

On January 2021, the survey forecasts the S&P 500 index 11 months ahead for the end of

2021. On November 2021, the survey forecasts the S&P 500 index 1 month ahead for the

end of 2021. On December 2021, the survey forecasts the S&P 500 index 12 months ahead

for the end of 2022. The data span the period from 16-Apr-1999 to 15-Jun-2022 and were
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downloaded from the Bloomberg terminal on July 8, 2022. The survey has been conducted

irregularly over time. It was conducted roughly once a week from 1999 to 2014, roughly two

to three times per month from 2014 to 2016, and once each month since 2017. We construct

a monthly dataset of these survey observations by taking the last observation for a month

as our monthly observation for the years 1999 to 2014.

We use these data to augment the estimation as an additional signal on stock market

return expectations. This requires a mapping into the monthly subjective return expectation

counterpart from the model. Our procedure is to treat survey forecasts for month M =

1, 2, 3, ..., 12 as a signal on the 12-M month underlying expectations process for returns.

Thus, for surveys conducted in January of a given year, we take the BBG forecast in January

of the EOCY S&P 500 index value and divide it by the observed S&P 500 index value on

December 31 of the immediately previous year. This observation is mapped into the model

implications for 11-month-ahead subjective return expectations of investors. For surveys

conducted in February of a given year, we take the BBG forecast of the EOCY S&P index

value and divide it by the observed S&P value for January 31 of the current year and map

that into the model implications for 10 month ahead subjective return expectations. We

follow this procedure for all surveys conducted between January through November of each

year. For surveys conducted in December, the BBG forecasts are for the end of the next

year. Thus, for surveys conducted in December of a given year, we take the BBG forecast

for the EONY S&P 500 index value and divide it by the observed S&P 500 index value on

November 31 of the current year. This is mapped into the model implications for subjectively

expected 12 month ahead returns. In all cases if the observation needed for the S&P 500

index value used in the divisor fell on a day in which the market was closed, we instead use

the value for the index from the last trading day prior to this date.

Finally, we convert the end-of-year S&P 500 return forecasts to annualized units. For

example, for all forecasts conducted in May, we raise our gross return forecasts to the power

12/7; for all forecasts conducted in June, we raise gross return forecasts by 12/6, and so on.

For mapping to log returns, we instead multiply by 12/7, 12/6, and so on.

Converting Qualitative Forecasts to Point Forecasts (SOC) For comparing the SOC

return forecast to the machine forecast, we use the SOC probability to impute a quantitative

point forecast of stock returns using a linear regression of CFO point forecasts for returns

onto the SOC probablity of a price increase. The SOC asks respondents about the percent

chance that an investment will �increase in value in the year ahead.� We interpret this

as asking about the ex dividend value, i.e., about price price growth. The CFO survey is

conducted quarterly, where the survey quarters span 2001:Q4 to 2021:Q1. The SOC survey
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is conducted monthly, where survey months span 2002:06 to 2021:12. Since the CFO is a

quarterly survey, the regression is estimated in real-time over a quarterly overlapping sample.

Since the CFO survey is conducted during the last month of the quarter while the SOC is

conducted monthly, we align the survey months between CFO and SOC by regressing the

quarterly CFO survey point forecast with the qualitative SOC survey response during the

last month of the quarter. Since the SOC survey question is interpreted as asking about

S&P 500 price growth while the CFO survey question asks about stock returns including

dividends, we follow Nagel and Xu (2022) in subtracting the current dividend yield of the

CRSP value weighted index from the CFO variable before running the regression. After

estimating the regression, we then add back the dividend yield to the �tted value to obtain

an imputed SOC point forecast of stock returns including dividends.

Speci�cally, at time t, we assume that the CFO forecast of stock returns, FCFOt [rt,t+4],

minus the current dividend yield, Dt/Pt, is related to the contemporaneous SOC probability

of an increase in the stock market next year, P SOC
t,t+4, by:

FCFOt [rt,t+4]−Dt/Pt = β0 + β1P
SOC
t,t+4 + ϵt.

The �nal imputed SOC point forecast is constructed as FSOCt [rt,t+4] = β̂0 + β̂1P
SOC
t,t+4 +Dt/Pt.

We �rst estimate the coe�cients of the above regression over an initial overlapping sample of

2002:Q2 to 2004:Q4, where the quarterly observations from the CFO survey is regressed on

the SOC survey responses from the last month of each calendar quarter. Using the estimated

coe�cients and the SOC probability from 2005:03 gives us the point forecast of the one-year

stock return from 2005:Q1 to 2006:Q1. We then re-estimate this equation, recursively, adding

one quarterly observation to the end of the sample at a time, and storing the �tted values.

This results in a time series of SOC point forecasts FSOCt [rt,t+4] spanning 2005:Q1 to 2021:Q1.

Earnings Expectations

IBES Survey We obtained the monthly survey data for the median analyst earnings per

share forecast and actual earnings per share from the Institutional Brokers Estimate System

(IBES) via Wharton Research Data Services (WRDS). The data spans the period 1976:01

to 2021:12. All data were downloaded in October 2022.

We build measures of aggregate S&P 500 earnings expectations growth using the con-

stituents of the S&P 500 at each point in time following De La O and Myers (2021). We
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�rst construct expected earnings expectations for aggregate earnings υ-months-ahead as

Ft[Et+υ] = Ωt

 ∑
i∈xt+υ

Ft [EPSi,t+υ]Si,t

 /Divisort,
where F is the median analyst survey forecast, E is aggregate S&P 500 earnings, EPSi is

earning per share of �rm i among all S&P 500 �rms xt+υ for which we have forecasts in

IBES for t+ υ, Si is shares outstanding of �rm i, and Divisort is calculated as the S&P 500

market capitalization divided by the S&P 500 index. We obtain the number of outstanding

shares for all companies in the S&P500 from Compustat. (All data from Compustat were

downloaded on November 17th, 2022.) IBES estimates are available for most but not all

S&P 500 companies. Following De La O and Myers (2021), we multiply this aggregate by

Ωt+υ, a ratio of total S&P 500 market value to the market value of the forecasted companies

at t+ υ to account for the fact that IBES does not provide earnings forecasts for all �rms in

the S&P 500 in every period.

IBES database contains earning forecasts up to �ve annual �scal periods (FY1 to FY5)

and as a result, we interpolate across the di�erent horizons to obtain the expectation over

the next X months, as needed. This procedure has been used in the literature, including

De La O and Myers (2021). For example, if we are interested in the expectation over the

next 12 months, and if the �scal year of �rm XYZ ends nine months after the survey date,

we have a 9-month earning forecast Ft[Et+9] from FY1 and a 21-month forecast Ft[Et+21]

from FY2. We then obtain the 12-month ahead forecast by interpolating these two forecasts

as follows,

Ft[Et+12] =
9

12
Ft[Et+9] +

3

12
Ft[Et+21].

For the forecasting performance estimates, we use quarterly data. To convert the monthly

forecast to quarterly frequency, we use the forecast made in the middle month of each quar-

ter, and construct one-year earnings expectations from 1976Q1 to 2021Q4 and the earning

expectation growth is calculated as an approximation following following De La O and Myers

(2021):

Ft (∆et+12) ≈ ln (Ft[Et+12])− et

where et is log earnings for S&P 500 at time t calculated as et = ln (EPSt ·Divisort), where
EPSt is the IBES street earnings per share for the S&P 500, as described above.

We constructed long term expected earnings growth (LTG) for the S&P 500 following

Bordalo et al. (2019). Speci�cally, we obtained the median �rm-level LTG forecast from
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IBES, and aggregate the value-weighted �rm-level forecasts,

LTGt =
S∑

i=1

LTGi,t
Pi,tQi,t∑S
i=1 Pi,tQi,t

where S is the number of �rms in the S&P 500 index, and where Pi,t and Qi,t are the stock

price and the number of shares outsanding of �rm i at time t, respectively. LTGi,t is the

median forecast of �rm i's long term expected earnings growth. The data spans the periods

from 1981:12 to 2021:12. All data were downloaded in February 2023.

To estimate any biases in IBES analyst forecasts, our dynamic machine algorithm takes

as an input a likely date corresponding to information analysts could have known at the

time of their forecast. IBES does not provide an explicit deadline for their forecasts to be

returned. Therefore we instead use the �statistical period� day (the day when the set of

summary statistics was calculated) as a proxy for the deadline. We set the machine deadline

to be the day before this date. The statistical period date is typically between day 14 and

day 20 of a given month, implying that the machine deadline varies from month to month.

As the machine learning algorithm uses mixed-frequency techniques adapted to quarterly

sampling intervals, while the IBES forecasts are monthly, we compare machine and IBES

analyst forecasts as of the middle month of each quarter, considering 12-month ahead forecast

from the beginning of the month following the survey month.

BBG Daily Earnings Nowcasts and Earning Forecasts We obtain daily nowcasts and

forecasts of S&P 500 earnings per share (EPS) from BBG. The survey respondents are equity

strategists that are asked to provide nowcasts and forecasts of earnings per share (EPS) for

the constituents of the S&P 500. For each S&P 500 constituent, BBG provides the mean

forecast across survey respondents as well as a bottom-up aggregate forecast of EPS for the

S&P 500 by aggregating the EPS forecasts across the S&P 500 constituents. Bloomberg's

core earnings-estimate product is the Bloomberg Estimate (BEst) dataset, and the standard

�eld is BEST_EPS (for a single stock) or BEST_EPS Index (for an index like the S&P 500).

These forecasts are closely related to the IBES forecasts since �re�ects the consensus estimate

of Earnings Per Share (EPS)� based on the average of sell-side analyst projections which

target continuing operations, seeking to strip out non-recurring and extraordinary items. We

construct a mean respondent forecast for the level of S&P 500 earnings by multiplying this

bottom-up aggregate with the S&P 500 index divisor. (The index is the market capitalization

of the 500 companies covered by the index divided by the S&P 500 divisor, roughly the

number of shares outstanding across all companies.) The S&P 500 divisor is available at the
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URL: https://ycharts.com/indicators/sp_500_divisor. These forecasts are available

daily for the current quarter (nowcasts) and the next 1, 2, 3, and 4 quarters, where the

quarters are measured as standard �nancial quarters (Jan-Mar, Apr-June, Jul-Sep, Oct-

Dec). We interpolate across di�erent quarterly horizons to obtain the expectation over the

next 3, 6, 9, and 12 months. For example, the observation for July 10, 2024 (which falls

under the standard �nancial quarter of 2024:Q3) would contain a nowcast for 2024:Q3 EPS

and a 1 quarter ahead forecast for 2024:Q4 EPS. Since the current standard �nancial quarter

for 2024:Q3 ends on September 30 and the next quarter for 2024:Q4 ends on December 31,

we have an 82-day ahead earnings nowcast Ft[Et+82] for the current quarter and a 174-day

ahead forecast Ft[Et+174] for one quarter ahead. We then obtain the 92-day ahead forecast

by interpolating these two forecasts as follows,

Ft[Et+92] =
82

92
Ft[Et+82] +

10

92
Ft[Et+174]

where the 92-day horizon captures the number of days in the 3 months from September to

December.

To convert the daily forecast to a monthly frequency, we use the forecast made on the

15th of each month. If the forecast is not available on the 15th, we use the most recent

forecast made before the 15th of each month. To convert level forecasts of υ = 1, 2,3, and 4

quarter ahead S&P 500 earnings into forecasts of earnings growth, we use the approximation:

Ft[∆et+υ] ≈ ln(Ft[Et+υ])− et

where we construct a forecast of the level of S&P 500 earnings Ft[Et+υ] by multiplying the

S&P 500 EPS forecast with the S&P 500 index divisor. et is log earnings for the S&P 500

at time t calculated as et = ln (Et) = ln (EPSt ·Divisort), where Et is the aggregate S&P

500 earnings, EPSt is the IBES street earnings per share for the S&P 500, and Divisort

is the S&P 500 divisor, as described above. Bloomberg does not require respondents to

submit their forecasts on a speci�c timeline or frequency. Instead, respondents voluntarily

decide how often to update their forecasts. To ensure that consensus forecasts are not heavily

in�uenced by outdated information, Bloomberg excludes stale forecasts submitted before the

most recent earnings announcement date. The data was downloaded from the Bloomberg

terminal on January 10, 2025, using the Earnings & Estimates (EE) function on the S&P 500

index (SPX Index). The aggregated consensus forecasts are available daily, except weekends

and holidays, spanning the period from January 2, 1990 to January 10, 2025. The divisor
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series series span the period 1959:03 to 2021:12 and was downloaded on March 13, 2022.

Dividend Growth Expectations

We obtained the S&P dividend futures from Bloomberg terminal and obtained data on S&P

dividends from S&P (via Bloomberg terminal). The data spans the periods from 2015:01 to

2021:12 and are expressed in annual units. The series were downloaded on April 18th, 2023.

We constructed estimates of S&P 500 dividend growth expectation following the procedure

of Gormsen and Koijen (2020) by �rst calculating the equity yields as

e
(n)
t =

1

n
ln

(
Dt

F
(n)
t

)

where Dt is the S&P dividend, F
(n)
t is the dividend futures with contact length of n years,

where t is measured in quarters. We then run a regression of realized dividend growth rates

on the S&P500 onto the 2-year equity yield

∆Dt,t+8 = βD
0 + βD

1 e
(2)
t + εt.

We use the parameter estimates from this quarterly regression to estimate expected two-year-

ahead dividend growth at daily frequency based on the �tted values and daily observations on

e
(2)
t . To do this, since we have quarterly observations on Dt, we use the 2019 year-end value

of dividends Dt for all days in 2020 as the numerator value for e
(2)
t . For the denominator,

since the futures contracts always mature in December, to have a 2-year price in, for example,

May 1 of 2020, we interpolate the futures price of the December contract of that year and

the following year as F INT,2
2020,May01 ≡ 19

24
F

(19)
2020,May01 +

5
24
F

(31)
2020,May01. Thus the daily observation

for the yield on May 1, 2020 is the 2019 year-end value for Dt divided by F INT,2
2020,May01.

Fed Funds Futures and Eurodollar Data

We use tick-by-tick data on Fed funds futures (FFF) and Eurodollar futures obtained from

the CME Group. Our sample spans January 3, 1995 to June 30, 2022. FFF contracts settle

based on the average federal funds rate that prevails over a given calendar month. Fed funds

futures are priced at 100 − f
(n)
t , where f

(n)
t is the time-t contracted federal funds futures

market rate that investors lock in. Contracts are monthly and expire at month-end, with

maturities ranging up to 60 months. For the buyer of the futures contract, the amount of
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(
f
(n)
t − rt+n

)
× $D, where rt+n is the ex post realized value of the federal funds rate for

month t + n calculated as the average of the daily Fed funds rates in month t + n, and $D

is a dollar �deposit�, represents the payo� of a zero-cost portfolio.

Eurodollar futures contracts are quarterly, expiring two business days before the third

Wednesday in the last month of the quarter. Eurodollar futures are similarly quoted, where

f
(q)
t is the average 3-month LIBOR in quarter q of contract expiry. Maturities range up to 40

quarters. For both types of contracts, the implied contract rate is recovered by subtracting

100 from the price and multiplying by −1.

Both types of contracts are cleaned following the same procedure following communi-

cation with the CME Group. First, trades with zero volume, which indicate a canceled

order, are excluded. Floor trades, which do not require a volume on record, are included.

Next, trades with a recorded expiry (in YYMM format) of 9900 indicate bad data and are

excluded (Only 1390 trades, or less than 0.01% of the raw Fed funds data, have contract

delivery dates of 9900). For trades time stamped to the same second, we follow Bianchi,

Gómez-Cram, Kind and Kung (2023) and keep the trade with the lowest sequence number,

corresponding to the �rst trade that second.

Fed funds futures data require additional cleaning. Trade prices were quoted in di�erent

units prior to August 2008. To standardize units across our sample, we start by noting that

Fed funds futures are priced to the average e�ective Fed funds rate realized in the contract

month. And in our sample, we expect a reasonable e�ective Fed funds rate to correspond to

prices in the 90 to 100 range. As such, we rescale prices to be less than 100 in the pre-August

2008 subsample.1 After rescaling, a small number of trades still appear to have prices that

are far away from the e�ective Fed funds rates at both trade day and contract expiry, along

with trades in the immediate transactions. The CME Group could not explain this data

issue, so following Bianchi et al. (2023) and others in the high frequency equity literature,

we apply an additional �lter to exclude trades with such non-sensible prices. Speci�cally, for

each maturity contract, we only keep trades where

|pt − pt(k, δ)| < 3σt(k, δ) + γ,

where pt denotes the trade price (where t corresponds to a second), and pt(k, δ) and σt(k, δ)

denote the average price and standard deviation, respectively, centered with k/2 observations

on each side of t excluding δk/2 trades with highest price and excluding δk/2 trades with

lowest price. Finally, γ is a positive constant to account for the cases where prices are

1For trades with prices signi�cantly greater than 100, we repeatedly divide by 10 until prices are in the
range of 90 to 100. We exclude all trades otherwise.
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constant within the window. Our main speci�cation uses k = 30, δ = 0.05 and γ = 0.4, and

alternative parameters produce similar results.

Historical Macro data (GDP and in�ation)

Real Gross Domestic Product is obtained from the US Bureau of Economic Analysis. It is

in billions of chained 2012 dollars, quarterly frequency, seasonally adjusted, and at annual

rate. The source is from Bureau of Economic Analysis (BEA code: A191RX). The sample

spans 1959:Q1 to 2021:Q4. The quarterly series was interpolated to monthly frequency using

the method in Stock and Watson (2010).The quarterly series was downloaded on June 15th,

2022. Monthly in�ation is measured as the log di�erence in the Consumer Price Index for

all urban consumers, all items, seasonally adjusted, 1982=100, from FRED (CPIAUCSL).

The sample spans 1959:01 to 2022:06. The monthly series was downloaded on August 17,

2022.

Real Time Macro Data (GDP and in�ation)

At each forecast date in the sample, we construct a dataset of macro variables that could have

been observed on or before the day of the survey deadline. We use the Philadelphia Fed's

Real-Time Data Set to obtain vintages of macro variables.2 These vintages capture changes

to historical data due to periodic revisions made by government statistical agencies. We use

the real time vintages of the same variables for GDP and in�ation used for the historical

data stipulated above. For real time GDP data we linearly interpolate the quarterly series

to monthly values. For a complete list of the the details on variables used in real time, see

the subsection below �Data Inputs for Machine Learning Algorithm.�

Baa Spread, 20-yr T-bond, Long-term US government securities

We obtained daily Moody's Baa Corporate Bond Yield from FRED (series ID: DBAA)

at URL: https://fred.stlouisfed.org/series/BAA, US Treasury securities at 20-year

constant maturity from FRED (series ID: DGS20) at URL: https://fred.stlouisfed.

org/series/DGS20, and long-term US government securities from FRED (series ID: LT-

GOVTBD) at URL: https://fred.stlouisfed.org/series/LTGOVTBD. The sample for

Baa spans the periods 1986:01 to 2021:06. To construct the long term bond yields, we

use LTGOVTBD before 2000 (1959:01 to 1999:12) and use DGS20 after 2000 (2000:01 to

2The real-time data sets are available at https://www.philadelphiafed.org/research-and-data/real-time-
center/real-time-data/data-�les.
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2021:06). The Baa spread is the di�erence between the Moody's Corporate bond yield

and the 20-year US government yield. The excess bond premium is obtained at URL:

https://www.federalreserve.gov/econres/notes/feds-notes/ebp_csv.csv. All series

were downloaded on Feb 21, 2022.

Bloomberg Consensus In�ation and GDP forecasts

We obtain the Bloomberg (BBG) US GDP (id: ECGDUS) and in�ation (id: ECPIUS)

consensus mean forecast from the Bloomberg Terminal available on a daily basis up to a few

days before the release of GDP and in�ation data. The Bloomberg (BBG) US consensus

forecasts are updated daily (except for weekends and holidays) and reports daily quarter-

over-quarter real GDP growth and CPI forecasts from 2003:Q1 to 2021Q2. These forecasts

provide more high-frequency information on the professional outlook for economic indicators.

Both forecast series were downloaded on October 21, 2021.

Livingston Survey In�ation Forecast

We obtained the Livingston Survey mean 1-year and 10-year CPI in�ation forecast from

the Federal Reserve Bank of Philadelphia, URL: https://www.philadelphiafed.org/surveys-and-data/

real-time-data-research/livingston-historical-data and use the median values in our structural and

forecasting models. Our sample spans 1947:06 to 2021:06. The forecast series were down-

loaded on September 20, 2021.

Bluechip In�ation and GDP Forecasts

We obtain Blue Chip expectation data from Blue Chip Financial Forecasts from Wolters

Kluwer. The surveys are conducted each month by sending out surveys to forecasters in

around 50 �nancial �rms such as Bank of America, Goldman Sachs & Co., Swiss Re, Loomis,

Sayles & Company, and J.P. Morgan Chase. The participants are surveyed around the 25th

of each month and the results published a few days later on the 1st of the following month.

The forecasters are asked to forecast the average of the level of U.S. interest rates over a

particular calendar quarter, e.g. the federal funds rate and the set of H.15 Constant Maturity

Treasuries (CMT) of the following maturities: 3-month, 6-month, 1-year, 2-year, 5-year and

10-year, and the quarter over quarter percentage changes in Real GDP, the GDP Price

Index and the Consumer Price Index, beginning with the current quarter and extending 4

to 5 quarters into the future.
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In this study, we look at a subset of the forecasted variables. Speci�cally, we use the Blue

Chip micro data on individual forecasts of the quarter-over-quarter (Q/Q) percentage change

in the Real GDP, the GDP Price Index and the CPI, and convert to quarterly observations

as explained below. In our estimation we use the median survey forecast from the micro

data.

1. CPI in�ation: We use quarter-over-quarter percentage change in the consumer price

index, which is de�ned as

�Forecasts for the quarter-over-quarter percentage change in the CPI (consumer prices

for all urban consumers). Seasonally adjusted, annual rate.�

Quarterly and annual CPI in�ation are constructed the same way as for PGDP in�a-

tion, except CPI replaces PGDP.

2. For real GDP growth, We use quarter-over-quarter percentage change in the Real GDP,

which is de�ned as

�Forecasts for the quarter-over-quarter percentage change in the level of chain-weighted

real GDP. Seasonally adjusted, annual rate. Prior to 1992, Q/Q % change (SAAR) in

real GNP.�

The surveys are conducted right before the publication of the newsletter. Each issue is always

dated the 1st of the month and the actual survey conducted over a two-day period almost

always between 24th and 28th of the month. The major exception is the January issue

when the survey is conducted a few days earlier to avoid con�ict with the Christmas holiday.

Therefore, we assume that the end of the last month (equivalently beginning of current

month) is when the forecast is made. For example, for the report in 2008 Feb, we assume that

the forecast is made on Feb 1, 2008. We obtained Blue Chip Financial Forecasts fromWolters

Kluver in several stages starting in 2017 and with the last update purchased in June of 2022

and received on June 22, 2022. URL:https://law-store.wolterskluwer.com/s/product/blue-

chip-�nancial-forecast-print/ 01tG000000LuDUCIA3.

Survey of Professional Forecasters (SPF)

The SPF is conducted each quarter by sending out surveys to professional forecasters, de�ned

as forecasters. The number of surveys sent varies over time, but recent waves sent around 50

surveys each quarter according to o�cials at the Federal Reserve Bank of Philadelphia. Only

forecasters with su�cient academic training and experience as macroeconomic forecasters are

eligible to participate. Over the course of our sample, the number of respondents ranges from
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a minimum of 9, to a maximum of 83, and the mean number of respondents is 37. The surveys

are sent out at the end of the �rst month of each quarter, and they are collected in the second

or third week of the middle month of each quarter. Each survey asks respondents to provide

nowcasts and quarterly forecasts from one to four quarters ahead for a variety of variables.

Speci�cally, we use the SPF micro data on individual forecasts of the price level, long-run

in�ation, and real GDP.3 Below we provide the exact de�nitions of these variables as well

as our method for constructing nowcasts and forecasts of quarterly and annual in�ation for

each respondent.4

We use the median values of the following variables in our structural estimation and

forecasting models:

1. Quarterly and annual in�ation (1968:Q4 - present): We use survey responses for the

level of the GDP price index (PGDP), de�ned as

"Forecasts for the quarterly and annual level of the chain-weighted GDP price index.

Seasonally adjusted, index, base year varies. 1992-1995, GDP implicit de�ator. Prior

to 1992, GNP implicit de�ator. Annual forecasts are for the annual average of the

quarterly levels."

Since advance BEA estimates of these variables for the current quarter are unavailable

at the time SPF respondents turn in their forecasts, four quarter-ahead in�ation and

GDP growth forecasts are constructed by dividing the forecasted level by the survey

respondent-type's nowcast. Let F(i)
t [Pt+υ] be forecaster i's prediction of PGDP υ quar-

ters ahead and N(i)
t [Pt] be forecaster i's nowcast of PGDP for the current quarter.

Annualized in�ation forecasts for forecaster i are

F(i)
t [πt+υ,t] = (400/υ)× ln

(
F(i)
t [Pt+υ]

N(i)
t [Pt]

)
,

where υ = 1 for quarterly in�ation and υ = 4 for annual in�ation. Similarly, we

construct quarterly and annual nowcasts of in�ation as

N(i)
t [πt,t−υ] = (400/υ)× ln

(
N(i)

t [Pt]

Pt−υ

)
,

3Individual forecasts for all variables can be downloaded at https://www.philadelphiafed.org/research-
and-data/real-time-center/survey-of-professional-forecasters/historical-data/individual-forecasts.

4The SPF documentation �le can be found at https://www.philadelphiafed.org/-/media/research-and-
data/real-time-center/survey-of-professional-forecasters/spf-documentation.pdf?la=en.
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where υ = 1 for quarterly in�ation and υ = 4 for annual in�ation, and where Pt−1 is the

BEA's advance estimate of PGDP in the previous quarter observed by the respondent

in time t, and Pt−4 is the BEA's most accurate estimate of PGDP four quarters back.

After computing in�ation for each survey respondent, we calculate the 5th through the

95th percentiles as well as the average, variance, and skewness of in�ation forecasts

across respondents.

2. Long-run in�ation (1991:Q4 - present): We use survey responses for 10-year-ahead CPI

in�ation (CPI10), which is de�ned as

"Forecasts for the annual average rate of headline CPI in�ation over the next 10 years.

Seasonally adjusted, annualized percentage points. The "next 10 years" includes the

year in which we conducted the survey and the following nine years. Conceptually,

the calculation of in�ation is one that runs from the fourth quarter of the year before

the survey to the fourth quarter of the year that is ten years beyond the survey year,

representing a total of 40 quarters or 10 years. The fourth-quarter level is the quarterly

average of the underlying monthly levels."

Only the median response is provided for CPI10, and it is already reported as an

in�ation rate, so we do not make any adjustments and cannot compute other moments

or percentiles.

3. Real GDP growth (1968:Q4 - present): We use the level of real GDP (RGDP), which

is de�ned as

"Forecasts for the quarterly and annual level of chain-weighted real GDP. Seasonally

adjusted, annual rate, base year varies. 1992-1995, �xed-weighted real GDP. Prior

to 1992, �xed-weighted real GNP. Annual forecasts are for the annual average of the

quarterly levels. Prior to 1981:Q3, RGDP is computed by using the formula NGDP /

PGDP * 100."

Source: Federal Reserve Bank of Philadelphia.All series were downloaded on September 17th,

2021.

Data used for News Events

Federal Reserve News Events

Federal Reserve news events are taken from Federal Open Market Committee news releases.

We compile dates and times of FOMC meetings from 1994 to 2004 from Gürkaynak, Sack
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and Swanson (2005). The dates of the remaining FOMC meetings are collected from the

Federal Reserve Board website. The times of statement releases were coalesced in the fol-

lowing priority: the Federal Reserve Board calendar, the Federal Reserve Board minutes,

Bloomberg's FOMC page, and the �rst news article to appear on Bloomberg. We only in-

clude scheduled meetings and unscheduled meetings where a statement was released. Our

�nal database covers the period 1994:02 - 2021:12 and consists of 219 Fed news events.

Macro News Events

Macroeconomic data releases are news events cover news about GDP, CPI, employment

data, and payroll data. To pin down the timing of when the macro news is released, we rely

on published tables of releases from the Bureau of Labor Statistics (BLS), obtained from

https://www.bls.gov/bls/archived_sched.htm. The published tables of releases for GDP are

from the Bureau of Economic Analysis (BEA), obtained from https://www.bea.gov/news/archive.

(A complete list of the release dates is available from the authors of each news release or

through the Money Market Service Survey.) For GDP, the advance releases typically occur

at 8:30AM EST on the last Thursday of the �rst month in the quarter following the quarter

to which the data pertain. The 2nd and 3rd releases typically occur at 8:30am EST on the

last Thursday of the second and third month in the quarter following the quarter to which

the data pertain, respectively. For example, the advance release of real GDP for 2021:Q2

occurred on Thursday July 29, 2021. The advance release for 2021:Q2 was later revised in

the second and third releases on Thursday August 26, 2021 and Thursday September 30,

2021, respectively. For core CPI, the releases occur monthly at 8:30AM EST around the

15th of each month following the month to which the data pertain. The releases typically

occur during the second week of the month, either on a Tuesday, Wednesday, or Thursday.

For example, the release of the core CPI of June 2021 occurred on Tuesday July 13th, 2021.

For employment data (including the unemployment rate and nonfarm payroll), the releases

typically occur at 8:30AM EST on the �rst Friday of the month following the month to

which the data pertain. For example, the release of the unemployment rate for June 2021

occurred on Friday July 2nd, 2021. Our �nal database covers the period 1980:01- 2021:12

and consists of a total of 1482 macro news events.

Corporate Earnings News Events

We obtained days of big stock return jumps primarily attributable to corporate earnings

news from Baker et al. (2019) (BBDS). In assigning days to categories of proximate causes

for jumps, BBDS focus on articles from the Wall Street Journal (WSJ). To isolate events with
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stock market jumps that were attributable to corporate earnings news with high con�dence,

we choose events from BBDS that have (i) journalist con�dence at or above a con�dence

score of 2.5 and (ii) weights on corporate topic of at least 0.75. A con�dence score of

2.5 is about halfway between the median and 75th percentile of con�dence scores given to

category classi�cations over the full sample of WSJ articles studied by BBDS. The data were

provided by the authors on March 12, 2023. Table A.2 shows the dates and daily change in

the S&P 500 stock market index for our database, which covers the period 1985:09-2020:09

and consists of a total of 16 corporate earnings news events.

Table A.2: List of Corporate News Events

Date Daily ∆
1999/03/23 -2.65%
2000/03/07 -2.67%
2000/10/19 3.49%
2001/04/05 4.39%
2002/01/29 -2.86%
2008/07/16 2.51%
2008/09/09 -3.36%
2008/09/15 -4.64%
2008/10/21 -3.06%
2008/10/22 -5.91%
2009/01/07 -3.00%
2009/01/20 -5.22%
2009/03/12 4.07%
2009/04/09 3.71%
2009/07/15 2.95%
2020/05/01 -2.80%

Data Inputs for Machine Learning Algorithm

Macro Data Surprises

These data are used as inputs into the machine learning forecasts. We obtain median fore-

casts for GDP growth (Q/Q percentage change), core CPI (Month/Month change), unem-

ployment rate (percentage point), and nonfarm payroll (month/month change) from the

Money Market Service Survey. The median market survey forecasts are compiled and pub-

lished by the Money Market Services (MMS) the Friday before each release. We apply the
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approach used in Bauer and Swanson (2023) and de�ne macroeconomic data surprise as the

actual value of the data release minus the median expectation from MMS on the Friday

immediately prior to that data release. The GDP growth forecasts are available quarterly

from 1990Q1 to 2022Q1. The core CPI forecast is available monthly from July 1989 to April

2022. The median forecasts for the unemployment rate and nonfarm payrolls are available

monthly from Jan 1980 to May 2022, and Jan. 1985 to May 2022, respectively. All survey

forecasts were downloaded from Haver Analytics on December 17, 2022. To pin down the

timing of when the news was actually released we follow the published tables of releases from

the Bureau of Labor Statistics (BLS), discussed below.

FOMC Surprises

FOMC surprises are de�ned as the changes in the current-month, 1, 2, 6, 12, and 24 month-

ahead federal funds futures (FFF) contract rate and changes in the 1, 2, 4, and 8 quarter-

ahead Eurodollar (ED) futures contract rate, from 10 minutes before to 20 minutes after

each U.S. Federal Reserve Federal Open Market Committee (FOMC) announcement. The

data on FFF and ED were downloaded on June 3rd 2022. When benchmarking against a

survey, we use the last FOMC meeting before the survey deadline to compute surprises. For

surveys that do not have a clear deadline, we compute surprises using from the last FOMC

in the �rst month of the quarter. When benchmarking against moving average, we use the

last FOMC meeting before the end of the �rst month in each quarter to compute surprises.

Real-Time Macro Data

This section gives details on the real time macro data inputs used in the machine learning

forecasts. A subset of these series are used in the structural estimation. At each forecast

date in the sample, we construct a dataset of macro variables that could have been observed

on or before the day of the survey deadline. We use the Philadelphia Fed's Real-Time Data

Set to obtain vintages of macro variables.5 These vintages capture changes to historical

data due to periodic revisions made by government statistical agencies. The vintages for a

particular series can be available at the monthly and/or quarterly frequencies, and the series

have monthly and/or quarterly observations. In cases where a variable has both frequencies

available for its vintages and/or its observations, we choose one format of the variable. For

instance, nominal personal consumption expenditures on goods is quarterly data with both

5The real-time data sets are available at https://www.philadelphiafed.org/research-and-data/real-time-
center/real-time-data/data-�les.
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monthly and quarterly vintages available; in this case, we use the version with monthly

vintages.

Table A.3 gives the complete list of real-time macro variables. Included in the table is the

�rst available vintages for each variable that has multiple vintages. We do not include the last

vintage because most variables have vintages through the present.6 Table A.3 also lists the

transformation applied to each variable to make them stationary before generating factors.

Let Xit denote variable i at time t after the transformation, and let X
A
it be the untransformed

series. Let ∆ = (1 − L) with LXit = Xit−1. There are seven possible transformations with

the following codes:

1 Code lv: Xit = XA
it

2 Code ∆lv: Xit = XA
it −XA

it−1

3 Code ∆2lv: Xit = ∆2XA
it

4 Code ln: Xit = ln(XA
it )

5 Code ∆ln: Xit = ln(XA
it )− ln(XA

it−1)

6 Code ∆2ln: Xit = ∆2ln(XA
it )

7 Code ∆lv/lv: Xit = (XA
it −XA

it−1)/X
A
it−1

Table A.3: List of Macro Dataset Variables

No. Short Name Source Tran Description First Vintage

Group 1: Output and Income

1 IPMMVMD Philly Fed ∆ln Ind. production index - Manufacturing 1962:M11

2 IPTMVMD Philly Fed ∆ln Ind. production index - Total 1962:M11

3 CUMMVMD Philly Fed lv Capacity utilization - Manufacturing 1979:M8

4 CUTMVMD Philly Fed lv Capacity utilization - Total 1983:M7

5 NCPROFATMVQD Philly Fed ∆ln Nom. corp. pro�ts after tax without IVA/CCAdj 1965:Q4

6 NCPROFATWMVQD Philly Fed ∆ln Nom. corp. pro�ts after tax with IVA/CCAdj 1981:Q1

7 OPHMVQD Philly Fed ∆ln Output per hour - Business sector 1998:Q4

8 NDPIQVQD Philly Fed ∆ln Nom. disposable personal income 1965:Q4

6For variables BASEBASAQVMD, NBRBASAQVMD, NBRECBASAQVMD, and TRBASAQVMD, the
last available vintage is 2013:Q2.
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Table A.2 (Cont'd)

No. Short Name Source Tran Description First Vintage

9 NOUTPUTQVQD Philly Fed ∆ln Nom. GNP/GDP 1965:Q4

10 NPIQVQD Philly Fed ∆ln Nom. personal income 1965:Q4

11 NPSAVQVQD Philly Fed ∆lv Nom. personal saving 1965:Q4

12 OLIQVQD Philly Fed ∆ln Other labor income 1965:Q4

13 PINTIQVQD Philly Fed ∆ln Personal interest income 1965:Q4

14 PINTPAIDQVQD Philly Fed ∆ln Interest paid by consumers 1965:Q4

15 PROPIQVQD Philly Fed ∆ln Proprietors' income 1965:Q4

16 PTAXQVQD Philly Fed ∆ln Personal tax and nontax payments 1965:Q4

17 RATESAVQVQD Philly Fed ∆lv Personal saving rate 1965:Q4

18 RENTIQVQD Philly Fed ∆lv Rental income of persons 1965:Q4

19 ROUTPUTQVQD Philly Fed ∆ln Real GNP/GDP 1965:Q4

20 SSCONTRIBQVQD Philly Fed ∆ln Personal contributions for social insurance 1965:Q4

21 TRANPFQVQD Philly Fed ∆ln Personal transfer payments to foreigners 1965:Q4

22 TRANRQVQD Philly Fed ∆ln Transfer payments 1965:Q4

23 CUUR0000SA0E BLS ∆2ln Energy in U.S. city avg., all urban consumers, not

seasonally adj

Group 2: Employment

24 EMPLOYMVMD Philly Fed ∆ln Nonfarm payroll 1946:M12

25 HMVMD Philly Fed lv Aggregate weekly hours - Total 1971:M9

26 HGMVMD Philly Fed lv Agg. weekly hours - Goods-producing 1971:M9

27 HSMVMD Philly Fed lv Agg. weekly hours - Service-producing 1971:M9

28 LFCMVMD Philly Fed ∆ln Civilian labor force 1998:M11

29 LFPARTMVMD Philly Fed lv Civilian participation rate 1998:M11

30 POPMVMD Philly Fed ∆ln Civilian noninstitutional population 1998:M11

31 ULCMVQD Philly Fed ∆ln Unit labor costs - Business sector 1998:Q4

32 RUCQVMD Philly Fed ∆lv Unemployment rate 1965:Q4

33 WSDQVQD Philly Fed ∆ln Wage and salary disbursements 1965:Q4

Group 3: Orders, Investment, Housing
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Table A.2 (Cont'd)

No. Short Name Source Tran Description First Vintage

34 HSTARTSMVMD Philly Fed ∆ln Housing starts 1968:M2

35 RINVBFMVQD Philly Fed ∆ln Real gross private domestic inv. - Nonresidential 1965:Q4

36 RINVCHIMVQD Philly Fed ∆lv Real gross private domestic inv. - Change in pri-

vate inventories

1965:Q4

37 RINVRESIDMVQD Philly Fed ∆ln Real gross private domestic inv. - Residential 1965:Q4

38 CASESHILLER S&P ∆ln Case-Shiller US National Home Price index/CPI 1987:M1

Group 4: Consumption

39 NCONGMMVMD Philly Fed ∆ln Nom. personal cons. exp. - Goods 2009:M8

40 NCONHHMMVMD Philly Fed ∆ln Nom. hh. cons. exp. 2009:M8

41 NCONSHHMMVMD Philly Fed ∆ln Nom. hh. cons. exp. - Services 2009:M8

42 NCONSNPMMVMD Philly Fed ∆ln Nom. �nal cons. exp. of NPISH 2009:M8

43 RCONDMMVMD Philly Fed ∆ln Real personal cons. exp. - Durables 1998:M11

44 RCONGMMVMD Philly Fed ∆ln Real personal cons. exp. - Goods 2009:M8

45 RCONHHMMVMD Philly Fed ∆ln Real hh. cons. exp. 2009:M8

46 RCONMMVMD Philly Fed ∆ln Real personal cons. exp. - Total 1998:M11

47 RCONNDMVMD Philly Fed ∆ln Real personal cons. exp. - Nondurables 1998:M11

48 RCONSHHMMVMD Philly Fed ∆ln Real hh. cons. exp. - Services 2009:M8

49 RCONSMMVMD Philly Fed ∆ln Real personal cons. exp. - Services 1998:M11

50 RCONSNPMMVMD Philly Fed ∆ln Real �nal cons. exp. of NPISH 2009:M8

51 NCONGMVQD Philly Fed ∆ln Nom. personal cons. exp. - Goods 2009:Q3

52 NCONHHMVQD Philly Fed ∆ln Nom. hh. cons. exp. 0209:Q3

53 NCONSHHMVQD Philly Fed ∆ln Nom. hh. cons. exp. - Services 2009:Q3

54 NCONSNPMVQD Philly Fed ∆ln Nom. �nal cons. exp. of NPISH 2009:Q3

55 RCONDMVQD Philly Fed ∆ln Real personal cons. exp. - Durable goods 1965:Q4

56 RCONGMVQD Philly Fed ∆ln Real personal cons. exp. - Goods 2009:Q3

57 RCONHHMVQD Philly Fed ∆ln Real hh. cons. exp. 2009:Q3

58 RCONMVQD Philly Fed ∆ln Real personal cons. exp. - Total 1965:Q4

59 RCONNDMVQD Philly Fed ∆ln Real pesonal cons. exp. - Nondurable goods 1965:Q4
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Table A.2 (Cont'd)

No. Short Name Source Tran Description First Vintage

60 RCONSHHMVQD Philly Fed ∆ln Real hh. cons. exp. - Services 2009:Q3

61 RCONSMVQD Philly Fed ∆ln Real personal cons. exp. - Services 1965:Q4

62 RCONSNPMVQD Philly Fed ∆ln Real �nal cons. exp. of NPISH 2009:Q3

63 NCONQVQD Philly Fed ∆ln Nom. personal cons. exp. 1965:Q4

Group 5: Prices

64 PCONGMMVMD Philly Fed ∆2ln Price index for personal cons. exp. - Goods 2009:M8

65 PCONHHMMVMD Philly Fed ∆2ln Price index for hh. cons. exp. 2009:M8

66 PCONSHHMMVMD Philly Fed ∆2ln Price index for hh. cons. exp. - Services 2009:M8

67 PCONSNPMMVMD Philly Fed ∆2ln Price index for �nal cons. exp. of NPISH 2009:M8

68 PCPIMVMD Philly Fed ∆2ln Consumer price index 1998:M11

69 PCPIXMVMD Philly Fed ∆2ln Core consumer price index 1998:M11

70 PPPIMVMD Philly Fed ∆2ln Producer price index 1998:M11

71 PPPIXMVMD Philly Fed ∆2ln Core producer price index 1998:M11

72 PCONGMVQD Philly Fed ∆2ln Price index for personal. cons. exp. - Goods 2009:Q3

73 PCONHHMVQD Philly Fed ∆2ln Price index for hh. cons. exp. 2009:Q3

74 PCONSHHMVQD Philly Fed ∆2ln Price index for hh. cons. exp. - Services 2009:Q3

75 PCONSNPMVQD Philly Fed ∆2ln Price index for �nal cons. exp. of NPISH 2009:Q3

76 PCONXMVQD Philly Fed ∆2ln Core price index for personal cons. exp. 1996:Q1

77 CPIQVMD Philly Fed ∆2ln Consumer price index 1994:Q3

78 PQVQD Philly Fed ∆2ln Price index for GNP/GDP 1965:Q4

79 PCONQVQD Philly Fed ∆2ln Price index for personal cons. exp. 1965:Q4

80 PIMPQVQD Philly Fed ∆2ln Price index for imports of goods and services 1965:Q4

Group 6: Trade and Government

81 REXMVQD Philly Fed ∆ln Real exports of goods and services 1965:Q4

82 RGMVQD Philly Fed ∆ln Real government cons. and gross inv. - Total 1965:Q4

83 RGFMVQD Philly Fed ∆ln Real government cons. and gross inv. - Federal 1965:Q4

84 RGSLMVQD Philly Fed ∆ln Real government cons. and gross. inv. - State and

local

1965:Q4

27



Table A.2 (Cont'd)

No. Short Name Source Tran Description First Vintage

85 RIMPMVQD Philly Fed ∆ln Real imports of goods and services 1965:Q4

86 RNXMVQD Philly Fed ∆lv Real net exports of goods and services 1965:Q4

Group 7: Money and Credit

87 BASEBASAQVMD Philly Fed ∆2ln Monetary base 1980:Q2

88 M1QVMD Philly Fed ∆2ln M1 money stock 1965:Q4

89 M2QVMD Philly Fed ∆2ln M2 money stock 1971:Q2

90 NBRBASAQVMD Philly Fed ∆lv/lv Nonborrowed reserves 1967:Q3

91 NBRECBASAQVMD Philly Fed ∆lv/lv Nonborrowed reserves plus extended credit 1984:Q2

92 TRBASAQVMD Philly Fed ∆2ln Total reserves 1967:Q3

93 DIVQVQD Philly Fed ∆ln Dividends 1965:Q4

Daily Financial Data

Daily Data and construction of daily factors These data are used in the machine

learning forecasts. The daily �nancial series in this data set are from the daily �nancial

dataset used in Andreou, Ghysels and Kourtellos (2013). We create a smaller daily database

which is a subset of the large cross-section of 991 daily series in their dataset. Our dataset

covers �ve classes of �nancial assets: (i) the Commodities class; (ii) the Corporate Risk cat-

egory; (iii) the Equities class; (iv) the Foreign Exchange Rates class and (v) the Government

Securities.

The dataset includes up to 87 daily predictors in a daily frequency from 23-Oct-1959

to 24-Oct-2021 (14852 trading days) from the above �ve categories of �nancial assets. We

remove series with fewer than ten years of data and time periods with no variables observed,

which occurs for some series in the early part of the sample. For those years, we have

less than 87 series. There are 39 commodity variables which include commodity indices,

prices and futures, 16 corporate risk series, 9 equity series which include major US stock

market indices and the 500 Implied Volatility, 16 government securities which include the

federal funds rate, government treasury bills of securities from three months to ten years,

and 7 foreign exchange variables which include the individual foreign exchange rates of major

�ve US trading partners and two e�ective exchange rate. We choose these daily predictors

because they are proposed in the literature as good predictors of economic growth.
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We construct daily �nancial factors in a quarterly frequency in two steps. First, we

use these daily �nancial time series to form factors at a daily frequency. The raw data

used to form factors are always transformed to achieve stationarity and standardized before

performing factor estimation (see generic description below). We re-estimate factors at each

date in the sample recursively over time using the entire history of data available in real time

prior to each out-of-sample forecast.

In the second step, we convert these daily �nancial indicators to quarterly weighted

variables to form quarterly factors by selecting an optimal weighting scheme according to

the method described below (see the weighting scheme section).

The data series used in this dataset are listed below in Table A.4 by data source. The

tables also list the transformation applied to each variable to make them stationary before

generating factors. The transformations used to stationarize a time series are the same as

those explained in the section �Monthly �nancial factor data�.

Table A.4: List of Daily Financial Dataset Variables

No. Short Name Source Tran Description

Group 1: Commodities

1 GSIZSPT Data Stream ∆ln S&P GSCI Zinc Spot - PRICE INDEX

2 GSSBSPT Data Stream ∆ln S&P GSCI Sugar Spot - PRICE INDEX

3 GSSOSPT Data Stream ∆ln S&P GSCI Soybeans Spot - PRICE INDEX

4 GSSISPT Data Stream ∆ln S&P GSCI Silver Spot - PRICE INDEX

5 GSIKSPT Data Stream ∆ln S&P GSCI Nickel Spot - PRICE INDEX

6 GSLCSPT Data Stream ∆ln S&P GSCI Live Cattle Spot - PRICE INDEX

7 GSLHSPT Data Stream ∆ln S&P GSCI Lean Hogs Index Spot - PRICE INDEX

8 GSILSPT Data Stream ∆ln S&P GSCI Lead Spot - PRICE INDEX

9 GSGCSPT Data Stream ∆ln S&P GSCI Gold Spot - PRICE INDEX

10 GSCTSPT Data Stream ∆ln S&P GSCI Cotton Spot - PRICE INDEX

11 GSKCSPT Data Stream ∆ln S&P GSCI Co�ee Spot - PRICE INDEX

12 GSCCSPT Data Stream ∆ln S&P GSCI Cocoa Index Spot - PRICE INDEX

13 GSIASPT Data Stream ∆ln S&P GSCI Aluminum Spot - PRICE INDEX

14 SGWTSPT Data Stream ∆ln S&P GSCI All Wheat Spot - PRICE INDEX

15 EIAEBRT Data Stream ∆ln Europe Brent Spot FOB U$/BBL Daily

29



Table A.3 (Cont'd)

No. Short Name Source Tran Description

16 CRUDOIL Data Stream ∆ln Crude Oil-WTI Spot Cushing U$/BBL - MID PRICE

17 LTICASH Data Stream ∆ln LME-Tin 99.85% Cash U$/MT

18 CWFCS00 Data Stream ∆ln CBT-WHEAT COMPOSITE FUTURES CONT. - SETT.

PRICE

19 CCFCS00 Data Stream ∆ln CBT-CORN COMP. CONTINUOUS - SETT. PRICE

20 CSYCS00 Data Stream ∆ln CBT-SOYBEANS COMP. CONT. - SETT. PRICE

21 NCTCS20 Data Stream ∆ln CSCE-COTTON #2 CONT.2ND FUT - SETT. PRICE

22 NSBCS00 Data Stream ∆ln CSCE-SUGAR #11 CONTINUOUS - SETT. PRICE

23 NKCCS00 Data Stream ∆ln CSCE-COFFEE C CONTINUOUS - SETT. PRICE

24 NCCCS00 Data Stream ∆ln CSCE-COCOA CONTINUOUS - SETT. PRICE

25 CZLCS00 Data Stream ∆ln ECBOT-SOYBEAN OIL CONTINUOUS - SETT. PRICE

26 COFC01 Data Stream ∆ln CBT-OATS COMP. TRc1 - SETT. PRICE

27 CLDCS00 Data Stream ∆ln CME-LIVE CATTLE COMP. CONTINUOUS - SETT.

PRICE

28 CLGC01 Data Stream ∆ln CME-LEAN HOGS COMP. TRc1 - SETT. PRICE

29 NGCCS00 Data Stream ∆ln CMX-GOLD 100 OZ CONTINUOUS - SETT. PRICE

30 LAH3MTH Data Stream ∆ln LME-Aluminium 99.7% 3 Months U$/MT

31 LED3MTH Data Stream ∆ln LME-Lead 3 Months U$/MT

32 LNI3MTH Data Stream ∆ln LME-Nickel 3 Months U$/MT

33 LTI3MTH Data Stream ∆ln LME-Tin 99.85% 3 Months U$/MT

34 PLNYD www.macrotrends.net ∆ln Platinum Cash Price (U$ per troy ounce)

35 XPDD www.macrotrends.net ∆ln Palladium (U$ per troy ounce)

36 CUS2D www.macrotrends.net ∆ln Corn Spot Price (U$/Bushel)

37 SoybOil www.macrotrends.net ∆ln Soybean Oil Price (U$/Pound)

38 OATSD www.macrotrends.net ∆ln Oat Spot Price (US$/Bushel)

39 WTIOilFut US EIA ∆ln Light Sweet Crude Oil Futures Price: 1St Expiring Contract

Settlement ($/Bbl)

Group 2: Equities
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Table A.3 (Cont'd)

No. Short Name Source Tran Description

40 S&PCOMP Data Stream ∆ln S&P 500 COMPOSITE - PRICE INDEX

41 ISPCS00 Data Stream ∆ln CME-S&P 500 INDEX CONTINUOUS - SETT. PRICE

42 SP5EIND Data Stream ∆ln S&P500 ES INDUSTRIALS - PRICE INDEX

43 DJINDUS Data Stream ∆ln DOW JONES INDUSTRIALS - PRICE INDEX

44 CYMCS00 Data Stream ∆ln CBT-MINI DOW JONES CONTINUOUS - SETT. PRICE

45 NASCOMP Data Stream ∆ln NASDAQ COMPOSITE - PRICE INDEX

46 NASA100 Data Stream ∆ln NASDAQ 100 - PRICE INDEX

47 CBOEVIX Data Stream lv CBOE SPX VOLATILITY VIX (NEW) - PRICE INDEX

48 S&P500toVIX Data Stream ∆ln S&P500/VIX

Group 3: Corporate Risk

49 LIBOR FRED ∆lv Overnight London Interbank O�ered Rate (%)

50 1MLIBOR FRED ∆lv 1-Month London Interbank O�ered Rate (%)

51 3MLIBOR FRED ∆lv 3-Month London Interbank O�ered Rate (%)

52 6MLIBOR FRED ∆lv 6-Month London Interbank O�ered Rate (%)

53 1YLIBOR FRED ∆lv One-Year London Interbank O�ered Rate (%)

54 1MEuro-FF FRED lv 1-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds

55 3MEuro-FF FRED lv 3-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds

56 6MEuro-FF FRED lv 6-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds

57 APFNF-

AANF

Data Stream lv 1-Month A2/P2/F2 Non�nancial Commercial Paper (NCP)

(% P. A.) minus 1-Month Aa NCP (% P.A.)

58 APFNF-AAF Data Stream lv 1-Month A2/P2/F2 NCP (% P.A.) minus 1-Month Aa Finan-

cial Commercial Paper (% P.A.)

59 TED Data Stream, FRED lv 3Month Tbill minus 3-Month London Interbank O�ered Rate

(%)
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Table A.3 (Cont'd)

No. Short Name Source Tran Description

60 MAaa-10YTB Data Stream lv Moody Seasoned Aaa Corporate Bond Yield (% P.A.) minus

Y10-Tbond

61 MBaa-10YTB Data Stream lv Moody Seasoned Baa Corporate Bond Yield (% P.A.) minus

Y10-Tbond

62 MLA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: A Rated: E�ective Yield (%)

minus Y10-Tbond

63 MLAA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aa Rated: E�ective Yield

(%) minus Y10-Tbond

64 MLAAA-

10YTB

Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aaa Rated: E�ective Yield

(%) minus Y10-Tbond

Group 4: Treasuries

65 FRFEDFD Data Stream ∆lv US FED FUNDS EFF RATE (D) - MIDDLE RATE

66 FRTBS3M Data Stream ∆lv US T-BILL SEC MARKET 3 MONTH (D) - MIDDLE RATE

67 FRTBS6M Data Stream ∆lv US T-BILL SEC MARKET 6 MONTH (D) - MIDDLE RATE

68 FRTCM1Y Data Stream ∆lv US TREASURY CONST MAT 1 YEAR (D) - MIDDLE

RATE

69 FRTCM10 Data Stream ∆lv US TREASURY CONST MAT 10 YEAR (D) - MIDDLE

RATE

70 6MTB-FF Data Stream lv 6-month treasury bill market bid yield at constant maturity

(%) minus Fed Funds

71 1YTB-FF Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus

Fed Funds

72 10YTB-FF Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.)

minus Fed Funds

73 6MTB-3MTB Data Stream lv 6-month treasury bill yield at constant maturity (% P.A.) mi-

nus 3M-Tbills

74 1YTB-3MTB Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus

3M-Tbills
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Table A.3 (Cont'd)

No. Short Name Source Tran Description

75 10YTB-3MTB Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.)

minus 3M-Tbills

76 BKEVEN05 FRB lv US In�ation compensation: continuously compounded zero-

coupon yield: 5-year (%)

77 BKEVEN10 FRB lv US In�ation compensation: continuously compounded zero-

coupon yield: 10-year (%)

78 BKEVEN1F4 FRB lv BKEVEN1F4

79 BKEVEN1F9 FRB lv BKEVEN1F9

80 BKEVEN5F5 FRB lv US In�ation compensation: coupon equivalent forward rate:

5-10 years (%)

Group 5: Foreign Exchange (FX)

81 US_CWBN Data Stream ∆ln US NOMINAL DOLLAR BROAD INDEX - EXCHANGE IN-

DEX

82 US_CWMN Data Stream ∆ln US NOMINAL DOLLAR MAJOR CURR INDEX - EX-

CHANGE INDEX

83 US_CSFR2 Data Stream ∆ln CANADIAN $ TO US $ NOON NY - EXCHANGE RATE

84 EU_USFR2 Data Stream ∆ln EURO TO US$ NOON NY - EXCHANGE RATE

85 US_YFR2 Data Stream ∆ln JAPANESE YEN TO US $ NOON NY - EXCHANGE RATE

86 US_SFFR2 Data Stream ∆ln SWISS FRANC TO US $ NOON NY - EXCHANGE RATE

87 US_UKFR2 Data Stream ∆ln UK POUND TO US $ NOON NY - EXCHANGE RATE

LDA Data

These data are used as inputs into the machine learning forecasts. The database for our

Latent Dirichlet Allocation (LDA) analysis contains around one million articles published

in Wall Street Journal between January 1984 to June 2022. The current vintage of the

results reported here is based a randomly selected sub-sample of 200,000 articles over the

same period, one-�fth size of the entire database. The sample selection procedures follows

Bybee et al. (2021). First, we remove all articles prior to January 1984 and after June

2022 and exclude articles published in weekends. Second, we exclude articles with subject
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tags associated with obviously non-economic content such as sports. Third, we exclude

articles with the certain headline patterns, such as those associated with data tables or

those corresponding to regular sports, leisure, or books columns. We �lter the articles using

the same list of exclusions provided by Bybee et al. (2021). Last, we exclude articles with

less than 100 words.

Processing of texts The processing of the texts can be summarized in the following �ve

steps.

1. Tokenization: parse each article's text into a white-space-separated word list retaining

the article's word ordering.

2. We drop all non-alphabetical characters and set the remaining characters to lower-

case, remove words with less than 3 letters, and remove common stop words and

URL-based terms. We use a standard list of stop words from the Python library

gensim.parsing.preprocessing.

3. Lemmatization and Stemming: lemmatization returns the original form of a word

using external dictionary Textblob.Word in Python and based on the context of the

word. For instance, as a verb, �went� is converted to�go�. Stemming usually refers to a

heuristic process that remove the trailing letters at the end of the words, such as from

�assesses� to �assess', and �really� to �real�. We use the Python library Textblob.Word

to implement the lemmatization and SnowballStemmer for the stemming. The results

are not very sensitive to the particular Python packages being used.

4. From the �rst three steps, we obtain a list of uni-grams which are a list of singular

words. For example, "united" and "states" are uni-grams from "united states". From

the list of uni-grams, we generate a set of bi-grams as all pairs of (ordered) adjacent

uni-grams. For example, "united states" together is one bi-gram. We then exclude

uni-grams and bi-grams appearing in less than 0.1% of articles.

5. Last, we convert an article's word list into a vector of counts for each uni-gram and

bi-gram. For example, the vector of counts [5, 7, 2] corresponds to the number of times

the words [”federal”, ”reserve”, ”bank”] appear in the article.

The LDA Model The LDA model Blei, Ng and Jordan (2003) essentially achieves sub-

stantial dimension reduction of the word distribution of each article using the following

assumptions. We assume a factor structure on the vectors of word counts. Each factor is a

topic and each article is a parametric distribution of topics, speci�ed as follows,

34



V×1︷︸︸︷
wi︸︷︷︸

word dist of article i

∼ Mult


V×K︷︸︸︷
Φ′︸︷︷︸,

topic-word dist.

K×1︷︸︸︷
θi︸︷︷︸

topic dist.

, Ni︸︷︷︸
# of words

 (A.2)

where Mult is the multinomial distribution. In the above equation, wi is a vector of word

counts of each unique term (uni-gram or bi-gram) in article i, whose size is equal to the

number of unique terms V . K is the number of factors in article i. In the estimation, we

assume K = 180 following Bybee et al. (2021). Φ is a matrix sized K × V , whose kth row

and vth column is equal to the probability of the unique term v showing up in topic k. θi

stores the weights of all k topics contained in article i, which sum up to one. Dimension

reduction is achieved as long as K << V (the number of topics are signi�cantly smaller

than the number of unique terms). More speci�cally, it reduces the dimension from T × V

to T ×K (the size of θ) + K × V (the size of Φ).

Real-time news factors. We also generate real-time news factors for each month t starting

from January 1991. In theory, we could train the LDA model using each real-time monthly

vintage but it is computationally challenging. Instead, we simplify the procedure by training

the LDA model using quarterly vintages t, t+3, t+6, etc, and use the LDA model parameters

estimated at t to �lter news paper articles within the quarter and generate news factors for

those months. More speci�cally, given every article's word distribution wi,t+s,for s = 0, 1, 2,

and the estimated real-time topic-word distribution parameters Φ̂t using articles till date t,

one can obtain the �ltered topic distribution of each article θ̂i,t+s, as follows,

V×1︷ ︸︸ ︷
wi,t+s︸ ︷︷ ︸

word dist of article i at time t+s

∼ Mult


V×K︷︸︸︷
Φ̂′︸︷︷︸,

topic-word dist.

K×1︷ ︸︸ ︷
θ̂i,t+s︸ ︷︷ ︸

topic dist.

, Ni,t+s︸ ︷︷ ︸
# of words

 . (A.3)

LDA Estimation We use the built-in LDA model estimation toolbox in the Python

library https://pypi.org/project/gensim/Gensim to implement the model estimation.

The model requires following initial inputs and parameters and it is estimated using Bayesian

methods.7

1. We create a document-term matrix W as a collection of wi for all articles i in the

sample. The number of rows in W is equal to the number of articles in our sample and

the number of columns in W is equal to the number of unique uni-gram and bi-grams

(after being �ltered) across all articles. The matrix W is used as an input for the LDA

7In theory, maximum-likelihood estimation is possible but it is computationally challenging.
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model estimation. We then follow Bybee et al. (2021) and set the number of topics K

to be 180.8

2. In the Python library Gensim, the key parameters of the LDA estim are α and β.With

a higher value of α, the documents are composed of more topics. With a higher values

of β, each topic contains more terms (uni- or bi-grams). In the implementations, we

do not impose any explicit restrictions on initial values of those parameters and set

them to be �auto�. These two parameters, alongside Φ′ and {θi}i, are estimated by the
toolbox from Python library https://pypi.org/project/gensim/Gensim.

Real-time LDA Factors With the estimated topic weights θi,t of each article i from the

LDA model, we fruther construct time series of the overall news attention to each topic, or a

news factor. The value of the topic k at time t is the average weights of topic k of all articles

published at t, speci�ed as follows,

Fk,t =

∑
i θ̂i,k,t

# of articles at t
(A.4)

for all topics k.

AR vs Trend-Cycle Speci�cation for Earnings Growth

This section compares a �trend-cycle model� speci�cation on IBES street earning growth ∆et

with an AR(1) speci�cation.

AR(1) Model

We estimate the AR(1) with intercept for earnings growth ∆et:

∆et = µ+ ρ∆et−1 + εt, εt ∼ N (0, σ2).

Under Gaussian maximum likelihood we use the stationary initial density∆e1 ∼ N
(
m,σ2/(1−

ρ2)
)
with m ≡ µ/(1− ρ). The log-likelihood is

ℓ(µ, ρ, σ2) = −1

2

[
log
(
2π

σ2

1− ρ2

)
+

(∆e1 −m)2(1− ρ2)

σ2
+

T∑
t=2

(
log(2πσ2) +

(∆et − µ− ρ∆et−1)
2

σ2

)]
.

8The authors used Bayesian criteria to �nd 180 to be an optimal number of topics.
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We maximize ℓ(µ, ρ, σ2) with the constraints |ρ| < 1 and σ2 > 0, implemented via ρ =

tanh(α) so that |ρ| < 1 and σ2 = exp(γ) > 0. The BIC is BIC = −2 ℓ(µ, ρ, σ2)+k log T with

number of parameters k = 3.

Trend-Cycle Model

Let ∆et decompose into a persistent trend gt and a mean-reverting cycle ct:

∆et = gt + ct − ct−1,

gt = µg + ρg gt−1 + ηt, ηt ∼ N (0, qg), |ρg| < 1,

ct = ρcct−1 + ζt, ζt ∼ N (0, qc), |ρc| < 1.

State space form. De�ne the state xt = [ gt, ct−1, ct ]
′ and

Z =
[
1 −1 1

]
, T =


ρg 0 0

0 0 1

0 0 ρc

 , d =


µg

0

0

 , Q = diag(qg, 0, qc).

Measurement equation: ∆et = Zxt.

Transition equation: xt = Txt−1 + d+ wt, wt ∼ N (0, Q).

To estimate the parameters, we use the Kalman �lter to extract the log-likelihood. With

prediction x̂t|t−1 and covariance Pt|t−1,

Predict: x̂t|t−1 = T x̂t−1|t−1 + d, Pt|t−1 = TPt−1|t−1T
′ +Q.

Innovation: vt ≡ ∆et − Zx̂t|t−1, Ft ≡ ZPt|t−1Z
′.

Update: Kt = Pt|t−1Z
′F−1

t , x̂t|t = x̂t|t−1 +Ktvt,

Pt|t = Pt|t−1 −KtFtK
′
t.

We estimate the parameters using maximum likelihood with the Gaussian log-likelihood

ℓ(θ) = −1

2

T∑
t=1

[
log(2π) + logFt +

v2t
Ft

]
.
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Speci�cally, we maximize ℓ(θ) with the constraints |ρi| < 1 and q2i > 0, for i = g, c, imple-

mented ρg = tanh(αg), ρc = tanh(αc), qg = exp(γg), qc = exp(γc). We estimate αg, αc, γg, γc
directly from the MLE and back out ρi and qi. The BIC is BIC = −2 ℓ(µ, ρ, σ2) + k log T

with k = 5 parameters (µg, ρg, ρc, qg, qc).

Machine Learning

Machine Algorithm Details

The basic dynamic algorithm follows the six step approach of Bianchi et al. (2022a) of 1.

Sample partitioning, 2. In-sample estimation, 3. Training and cross-validation, 4. Grid

reoptimization, 5. Out-of-sample prediction, and 6. Roll forward and repeat. We refer the

interested reader to that paper for details and discuss details of the implementation here

only insofar as they di�er.

At time t, a prior sample of size Ṫ is partitioned into two subsample windows: a train-

ing sample consisting of the �rst TE observations, and a hold-out validation sample of TV

subsequent observations so that Ṫ = TE + TV . The training sample is used to estimate the

model subject to a speci�c set of tuning parameter values, and the validation sample is used

for tuning the hyperparameters. The model to be estimated over the training sample is

yj,t+υ = Ge
(
Xt,βj,υ,t

)
+ ϵjt+υ.

where yj,t+υ is a time series indexed by j whose value in period υ ≥ 1 the machine is

asked to predict at time t, Xt is a large input dataset of right-hand-side variables includ-

ing the intercept, and Ge(·) is a machine learning estimator that can be represented by a

(potentially) high dimensional set of �nite-valued parameters βe
j,υ,t. We consider two estima-

tors for Ge(·): Elastic Net GEN(Xt,β
EN
j,υ ), and Long Short-Term Memory (LSTM) network

GLSTM(Xt,β
LSTM
j,υ ). The e ∈ {EN,LSTM} superscripts on β indicate that the parameters

depend on the estimator being used (See the next section for a description of EN and LSTM).

Xt always denotes the most recent data that would have been in real time prior to the date

on which the forecast was submitted. To ensure that the e�ect of each variable in the input

vector is regularized fairly during the estimation, we standardize the elements of Xt such that

sample means are zero and sample standard deviations are unity.It should be noted that the

most recent observation on the left-hand-side is generally available in real time only with

a one-period lag, thus the forecasting estimations can only be run with data over a sample

that stops one period later than today in real time.
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The parameters βe
j,υ,t are estimated by minimizing the mean-square loss function over

the training sample with L1 and L2 penalties

L(βe
j,υ,t,XTE

,λe
t ) ≡

1

TE

TE∑
τ=1

(
yj,τ+υ −Ge

(
Xτ ,β

e
j,υ,t

))2
︸ ︷︷ ︸

Mean Square Error

+ λe1,t

K∑
k=1

∣∣βe
j,υ,t,k

∣∣
︸ ︷︷ ︸

L1 Penalty

+ λe2,t

K∑
k=1

(βe
j,υ,t,k)

2

︸ ︷︷ ︸
L2 Penalty

where XTE
= (yj,t−TE

, . . . , yj,t,X ′
t−TE

, . . . ,X ′
t )

′ is the vector containing all observations in the

training subsample of size TE. The estimated βe
j,υ,t is a function of the data XTE

and a

non-negative regularization parameter vector λe
t =

(
λe1,t, λ

e
2,t,λ

LSTM
t

)′
where λLSTM

t is a set

of hyperparameters only relevant when using the LSTM estimator for Ge(·) (see below). For

the EN case there are only two hyperparameters, which determine the optimal shrinkage and

sparsity of the time t machine speci�cation. The regularization parameters λe
t are estimated

by minimizing the mean-square loss over pseudo-out-of-sample forecast errors generated from

rolling regressions through the validation sample:

λ̂
EN

t , T̂E , T̂V = argmin
λEN
t ,TE ,TV

{
1

TV − υ

TE+TV −υ∑
τ=TE

(
yj,τ+υ −GEN (Xτ , β̂

EN

j,υ,τ (XTE
,λEN

t ))
)2}

λ̂
LSTM

t , T̂E , T̂V = argmin
λLSTM
t ,TE ,TV

{
1

TV − υ

TE+TV −υ∑
τ=TE

(
yj,τ+υ −GLSTM (Xτ , β̂

LSTM

j,υ,τ (XTE
,λLSTM

t ))
)2}

where β̂
e

j,υ,τ (·), e ∈ {EN,LSTM}, is the time τ estimate of βe
j,υ given λe

t and data through

time τ in a training sample of size TE. Denote the combined �nal estimator β̂
e

j,υ,t(X T̂E
, λ̂

e

t ),

where the regularization parameter λ̂
e

t is estimated using cross-validation dynamically over

time. Note that the algorithm also asks the machine to dynamically choose both the optimal

training window T̂E and the optimal validation window T̂V by minimizing the pseudo-out-

of-sample MSE.

The estimation of β̂
e

j,υ,t(X T̂E
, λ̂

e

t ) is repeated sequentially in rolling subsamples, with

parameters estimated from information known at time t. Note that the time t subscripts of

β̂
e

j,υ,t and λ̂
e

t denote one in a sequence of time-invariant parameter estimates obtained from

rolling subsamples, rather than estimates that vary over time within a sample. Likewise, we
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denote the time t machine belief about yj,t+υ as Ee
t [yj,t+υ], de�ned by

Ee
t [yj,t+υ] ≡ Ge

(
Xt, β̂

e

j,υ,t(X T̂E
, λ̂

e

t )
)

Finally, the machine MSE is computed by averaging across the sequence of squared forecast

errors in the true out-of-sample forecasts for periods t = (Ṫ + υ), . . . , T where T is the last

period of our sample. The true out-of-sample forecasts used for neither estimation nor tuning

is the testing subsample used to evaluate the model's predictive performance.

On rare occasions, one or more of the explanatory variables used in the machine forecast

speci�cation assumes a value that is order of magnitudes di�erent from its historical value.

This is usually indicative of a measurement problem in the raw data. We therefore program

the machine to detect in real-time whether its forecast is an extreme outlier, and in that

case to discard the forecast replacing it with the historical mean. Speci�cally, at each t, the

machine forecast Ee
t [yj,t+υ] is set to be the historical mean calculated up to time t whenever

the former is �ve or more standard deviations above its own rolling mean over the most

recent 20 quarters.

We include the contemporaneous survey forecasts Ft [yj,t+υ] for the median respondent

only for in�ation and GDP forecasts, following BLM1. This procedure allows the machine

to capture intangible information due to judgement or private signals. Speci�cally, for these

forecasts of in�ation and GDP growth, we consider the following machine learning empirical

speci�cation for forecasting yj,t+υ given information at time t, to be benchmarked against

the time t survey forecast of respondent-type X, where this type is the median here:

yj,t+υ = Ge
jh (Zt) + γjhMFt [yj,t+υ] + ϵjt+υ, υ ≥ 1 (A.5)

where γjhM is a parameter to be estimated, and where GjhM (Zt) represents a ML estimator as

function of big data. Note that the intercept αjh from BLM gets absorbed into the Ge
jh (Zt)

in LSTM via the outermost bias term. 2.

Elastic Net Estimator

We use the Elastic Net (EN) estimator, which combines Least Absolute Shrinkage and Se-

lection Operator (LASSO) and ridge type penalties. The model can be written as:

yj,t+υ = X ′
tjβ

EN
j,υ + ϵj,t+υ
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where Xt = (1,X1t,...,XKt)
′ include the independent variable observations (Ft [yj,t+υ] ,Zjt)

into a vector with �1� and βEN
j,υ =

(
αj,υ, βj,υF, vec (Bj,υZ)

)′ ≡ (β0, β1, ...βK)
′ collects all the

coe�cients.

It is customary to standardize the elements of Xt such that sample means are zero and

sample standard deviations are unity. The coe�cient estimates are then put back in their

original scale by multiplying the slope coe�cients by their respective standard deviations,

and adding back the mean (scaled by slope coe�cient over standard deviation.) The EN

estimator incorporates both an L1 and L2 penalty:

β̂
EN

j,υ = argmin
β0,β1,...,βK


1

TE

TE∑
τ=1

(
yj,τ+υ −X ′

τβj,υ

)2
+ λ1

K∑
k=1

∣∣βj,υ,k

∣∣
︸ ︷︷ ︸

LASSO

+ λ2

K∑
k=1

(βj,υ,k)
2

︸ ︷︷ ︸
ridge


By minimizing the MSE over the training samples, we choose the optimal λ1 and λ2 values

simultaneously.

In the implementation, the EN estimator is sometimes used as an imput into the algo-

rithm using the LSTM estimator. Speci�cally, we ensure that the machine forecast can only

di�er from the relevant benchmark if it demonstrably improves the pseudo out-of-sample

prediction in the training samples prior to making a true out-of-sample forecast. Other-

wise, the machine is replaced by the benchmark calculated up to time t. In some cases the

benchmark is a survey forecast, in others it could be a historical mean value for the variable.

However, for the implementation using LSTM, we also use the EN forecast as a benchmark.

Long Short-Term Memory (LSTM) Network

An LSTM network is a type of Recurrent Neural Network (RNN), which are neural networks

used to learn about sequential data such as time series or natural language. In particular,

LSTM networks can learn long-term dependencies between across time periods by intro-

ducing hidden layers and memory cells to control the �ow of information over longer time
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periods. The general case of the LSTM network with n = 1, ..., N hidden layers is de�ned as

GLSTM(Xt,β
LSTM
j,h )︸ ︷︷ ︸

1×1

= W (yhN )︸ ︷︷ ︸
1×D

υN

υNt︸︷︷︸
D

υN
×1

+ by︸︷︷︸
1×1

(Output layer)

υnt︸︷︷︸
Dυn×1

= ont︸︷︷︸
Dυn×1

⊙ tanh( cnt︸︷︷︸
Dυn×1

) (Hidden layer)

cnt︸︷︷︸
Dυn×1

= fn
t︸︷︷︸

Dυn×1

⊙ cnt−1︸︷︷︸
Dυn×1

+ int︸︷︷︸
Dυn×1

⊙ c̃nt︸︷︷︸
Dυn×1

(Final memory)

c̃nt︸︷︷︸
Dυn×1

= tanh(W (cnυn−1)︸ ︷︷ ︸
Dυn×Dυn−1

υn−1
t︸︷︷︸

Dυn−1×1

+W (cnυn)︸ ︷︷ ︸
Dυn×Dυn

υnt−1︸︷︷︸
Dυn×1

+ bcn︸︷︷︸
Dυn×1

) (New memory)

fn
t︸︷︷︸

Dυn×1

= σ(W (fnυn−1)︸ ︷︷ ︸
Dυn×Dυn−1

υn−1
t︸︷︷︸

Dυn−1×1

+W (fnυn)︸ ︷︷ ︸
Dυn×Dυn

υnt−1︸︷︷︸
Dυn×1

+ bfn︸︷︷︸
Dυn×1

) (Forget gate)

int︸︷︷︸
Dυn×1

= σ(W (inυn−1)︸ ︷︷ ︸
Dυn×Dυn−1

υn−1
t︸︷︷︸

Dυn−1×1

+W (inυn)︸ ︷︷ ︸
Dυn×Dυn

υnt−1︸︷︷︸
Dυn×1

+ bin︸︷︷︸
Dυn×1

) (Input gate)

ont︸︷︷︸
Dυn×1

= σ(W (onυn−1)︸ ︷︷ ︸
Dυn×Dυn−1

υn−1
t︸︷︷︸

Dυn−1×1

+W (onυn)︸ ︷︷ ︸
Dυn×Dυn

υnt−1︸︷︷︸
Dυn×1

+ bon︸︷︷︸
Dυn×1

) (Output gate)

where n = 1, . . . , N indexes each hidden layer. hnt ∈ RDυn is the n-th hidden layer, where

Dυn is the number of neurons or nodes in the hidden layer. The 0-th layer is de�ned as the

input data: h0t ≡ Xt. The memory cell cnt allows the LSTM network to retain information

over longer time periods. The output gate ont controls the extent to which the memory cell

cnt maps to the hidden layer hnt . The forget gate f
n
t controls the �ow of information carried

over from the �nal memory in the previous timestep cnt−1. The input gate int controls the

�ow of information from the new memory cell c̃nt . The initial states for the hidden layers

(hn0 )
N
n=1 and memory cells (cn0 )

N
n=1 are set to zeros.

σ(·) and tanh(·) are activation functions that introduce non-linearities in the LSTM

network, applied elementwise. σ : R → R is the sigmoid function: σ(x) = (1 + e−x)−1.

tanh : R → R is the hyperbolic tangent function: tanh(x) = e2x−1
e2x+1

. The ⊙ operator refers to

elementwise multiplication.

βLSTM
j,υ ≡ (((vec(W (gnυn−1))′, vec(W (gnυn))′, b′gn)g∈{c,f,i,o})

N
n=1, vec(W

(yhN ))′, by)
′ are param-

eters to be estimated. We will refer to parameters indexed with W as weights ; parameters

indexed with b are biases. We estimate the parameters βLSTM
j,υ for the LSTM network using

Stochastic Gradient Decent (SGD), which is an iterative algorithm for minimizing the loss

function and proceeds as follows:
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1. Initialization. Fix a random seed R and draw a starting value of the parameters β
(0)
j,υ

randomly, where the superscript (0) in parentheses indexes the iteration for an estimate

of βLSTM
j,υ .

(a) Initialize the input weights W (gnυn−1) ∈ RDυn×Dυn−1 for g ∈ {c, f, i, o} using the

Glorot initializer. Draw randomly from a uniform distribution with zero mean

and a variance that depends on the dimensions of the matrix:

W
(gnυn−1)
ij

iid∼ U

[
−
√

6

Dυn +Dυn−1

,

√
6

Dυn +Dυn−1

]

for each i = 1, . . . , Dυn and j = 1, . . . , Dυn−1 .

(b) Initialize the recurrent weights W (gnυn) ∈ RDυn×Dυn for g ∈ {c, f, i, o} using the

Orthogonal initializer. Use the orthogonal matrix obtained from the QR decom-

position of a Dυn×Dυn matrix of random numbers drawn from a standard normal

distribution.

(c) Initialize biases (bgn)g∈{c,f,i,o}, hidden layers hn0 , and memory cells cn0 with zeros.

2. Mini-batches. Prepare the input data by dividing the training sample into a collection

of mini-batches.

(a) Suppose that we have a multi-variate time-series training sample with dimensions

(TE, K) whose time steps t are indexed by t = 1, . . . , TE and K is the number of

predictors. We transform this training sample into a 3-D tensor with dimensions

(NS,M,K) where

� NS = Total number of sequences in training sample

� M = Sequence length, i.e., number of time steps in each sequence

� K = Input size, i.e., number of predictors in each time step

This can be done by creating overlapping sequences from the time series:

� Sequence 1 contains time steps 1, . . . ,M

� Sequence 2 contains time steps 2, . . . ,M + 1

� Sequence 3 contains time steps 3, . . . ,M + 2

� . . .

� Sequence TE −M contains time steps TE −M, . . . , TE − 1

� Sequence NS = TE −M + 1 contains time steps TE −M + 1, . . . , TE
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(b) Randomly shu�e the NS sequences by randomly sampling a permutation of the

sequences without replacement.

(c) Partition the NS shu�ed sequences into ⌈NS/NB⌉ mini-batches. We partition the

NS sequences in the training sample ((NS,M,K) tensor) into a list of ⌈NS/NB⌉
mini-batches. A mini-batch is a (NB,M,K)-dimensional tensor containing NB

out of NS randomly shu�ed sequences.9 Let B(1), . . . , B⌈NS/NB⌉ denote the list of

mini-batches.

� NS = Total number of sequences in training sample

� NB = Mini-batch size, i.e., number of sequences in each partition.

� M = Sequence length, i.e., number of time steps in each sequence

� K = Input size, i.e., number of predictors in each time step

3. Repeat until the stopping condition is satis�ed (k = 1, 2, 3, . . . ):

(a) Dropout. Apply dropout to the mini-batch. To obtain the n-th hidden layer

under dropout, multiply the current value of the n− 1-th hidden layer hn−1
t and

the lagged value of the n-th hidden layer hnt−1 with binary masks r
(k)

t,hn−1
t

∈ RDυn−1

and r
(k)
t,hn

t−1
∈ RDυn , respectively:

υn−1
t︸︷︷︸

Dυn−1×1

= r
(k)

t,hn−1
t︸ ︷︷ ︸

Dυn−1×1

⊙ υn−1
t︸︷︷︸

Dυn−1×1

, r
(k)

t,hn−1
t ,i

iid∼ Bernoulli(phn−1
t

), i = 1, . . . , Dυn−1

υnt−1︸︷︷︸
Dυn×1

= r
(k)
t,hn

t−1︸ ︷︷ ︸
Dυn×1

⊙ υnt−1︸︷︷︸
Dυn×1

, r
(k)
t,hn

t−1,i

iid∼ Bernoulli(phn
t−1

), i = 1, . . . , Dυn

where t ∈ B(k) and n = 1, . . . , N indexes the hidden layer and it is understood that

the 0-th layer is the input vector h0t ≡ Xt. phn−1
t
, phn

t−1
∈ [0, 1] is the probability

that time t nodes in the n − 1-th hidden layer and time t − 1 nodes in the n-th

hidden layer are retained, respectively.

(b) Stochastic Gradient. Average the gradient over observations in the mini-batch

∇L(β(k−1)
j,υ ,XB(k) ,λLSTM) =

1

M

∑
t∈B(k)

∇L(β(k−1)
j,υ ,Xt,λ

LSTM)

9When NS/NB is not a whole number, ⌊NS/NB⌋ of the mini-batches will be 3-D tensors with dimensions
(NB ,M,K). One batch will contain leftover sequences and will have dimensions (NS%NB ,M,K) where %
is the modulus operator.
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where ∇L(β(k−1)
j,υ ,Xt,λ

LSTM) is the gradient of the loss function with respect to

the parameters β
(k−1)
j,υ , evaluated at the time t observation Xt = (yj,t+υ, X̂ ′

t )
′ after

applying dropout.

(c) Learning rate shrinkage. Update the parameters to β
(k)
j,υ using the Adaptive Mo-

ment Estimation (Adam) algorithm. The method uses the �rst and second mo-

ments of the gradients to shrink the overall learning rate to zero as the gradient

approaches zero.

β
(k)
j,υ = β

(k−1)
j,υ − γ

m(k)

√
v(k) + ε

where m(k) and v(k) are weighted averages of �rst two moments of past gradients:

m(k) =
1

1− πk
1

(π1m
(k−1) + (1− π1)∇L(β(k−1)

j,υ ,XB(k) ,λLSTM))

v(k) =
1

1− πk
2

(π2v
(k−1) + (1− π2)∇L(β(k−1)

j,υ ,XB(k) ,λLSTM)2)

πk denotes the k-the power of π ∈ (0, 1), and /,
√
·, and (·)2 are applied ele-

mentwise. The default values of the hyperparameters are m(0) = v(0) = 0 (initial

moment vectors), γ = 0.001 (initial learning rate), (π1, π2) = (0.9, 0.999) (decay

rates), and ε = 10−7 (prevent zero denominators).

(d) Stopping Critera. Stop iterating and return β
(k)
j,υ if one of the following holds:

� Early stopping. At each iteration, use the updated β
(k)
j,υ to calculate the loss

from the validation sample. Stop when the validation loss has not improved

for S steps, where S is a �patience� hyperparameter. By updating the pa-

rameters for fewer iterations, early stopping shrinks the �nal parameters βj,υ

towards the initial guess β
(0)
j,υ, and at a lower computational cost than ℓ2

regularization.

� Maximum number of epochs. Stop if the number of iterations reaches the

maximum number of epochs E. An epoch happens when the full set of the

training sample has been used to update the parameters. If the training

sample has TE observations and each mini-batch has M observations, then

each epoch would contain ⌈TE/M⌉ iterations (after rounding up as needed).

So the maximum number of iterations is bounded by E × ⌈TE/M⌉.

4. Ensemble forecasts. Repeat steps 1. and 2. over di�erent random seeds R and save each

of the estimated parameters β̂
LSTM

j,υ,TE
(XTE

,λLSTM, R). Then construct the out-of-sample
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forecast as the average across all 20 resulting forecasts. Ensemble can be considered as

a regularization method because it aims to guard against over�tting by shrinking the

forecasts toward the average across di�erent random seeds. The random seed a�ects

the random draws of the parameter's initial starting value β
(0)
j,υ, the sequences selected

in each mini-batch B(k), and the dropout mask r
(k)
t .

Regularization

To prevent over�tting and improve generalization, we incorporate several forms of regular-

ization into the machine learning algorithm:

� L1 and L2 penalties. The loss function includes both an L1 (lasso) penalty, which

encourages sparsity, and an L2 (ridge) penalty, which shrinks weights toward zero.

These penalties are applied to all model parameters and selected via cross-validation.

See the loss function in the preceding section for the exact formulation.

� Dropout. Dropout is implemented within the LSTM network on both input and recur-

rent nodes. At each training step, a random subset of nodes is deactivated, encour-

aging the network to rely on di�erent subsets of units. This functions similarly to an

L1 penalty and promotes sparsity and robustness. See the LSTM section above for

implementation details.

� Early stopping. Training halts when the validation loss fails to improve for a �xed

number of iterations, shrinking parameter estimates toward their initial values and

helping prevent over�tting.

� Ensemble forecasts. Forecasts are constructed by averaging across 20 di�erent random

seeds, each corresponding to di�erent initial weights. This averaging reduces forecast

variance and mitigates sensitivity to any single realization of the training process.

Hyperparameters

Let λLSTM ≡ [λ1, λ2, γ, π1, π2, p,N, (Dυn)Nn=1,M,E, S]′ collect all the hyper-parameters that

control the LSTM network's complexity and prevent the model from over�tting the data.

The number of hidden layers N and the number of neurons Dυ1 , . . . , DυN in each hidden layer

are hyper-parameters that characterize the network's architecture. To choose the number

of neurons in each layer, we apply a geometric pyramid rule where the dimension of each

additional hidden layer is half that of the previous hidden layer. We select the best LSTM
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architecture iteratively by minimizing the pseudo out-of-sample mean-squared error from

rolling forecasts over the validation sample.

Table A.5 reports the hyper-parameters for the LSTM network and its estimation. Hyper-

parameters reported as a range or a set of values are cross-validated. The hyper-parameters

are estimated by minimizing the mean-square loss over pseudo out-of-sample forecast errors

generated from rolling regressions through the validation sample. The pseudo out-of-sample

forecasts are ensemble averages implied by parameters based on di�erent random seeds R.

While the scale of the L1 and L2 penalty values used in our LSTM models may appear

small in magnitude, ranging from 10−6 to 10−2, they still play an important role in the reg-

ularization. In neural networks, penalties are typically applied to large numbers of weights,

so even small penalty values can accumulate meaningfully across the total loss function.

Moreover, these penalties can interact with other regularization methods such as dropout

and early stopping, making larger penalty values unnecessary. Similar penalty magnitudes

are also used in related work, such as Gu et al. (2020), who apply L1 penalties in the range

of 10−5 to 10−3 asset pricing applications.

For predicting stock returns, we set the L1 penalty parameter to zero, removing L1

regularization from the loss function. Given the typically low signal-to-noise ratio in stock

returns, this reduces the risk of under�tting caused by excessive sparsity, especially near

critical turning points such as crisis periods. In deep neural networks such as LSTMs, L1

penalties can eliminate important nonlinear interactions and temporal dependencies needed

to detect turning points. Our validation experiments con�rmed that models with active L1

penalties consistently underperformed by losing the ability to capture major crises. Instead,

we rely on L2 penalties, dropout, and early stopping, which regularize without forcing weights

to zero, preserving the model's sensitivity to turning point dynamics.

Adaptive LSTM Architecture Selection We allow the LSTM architecture to evolve

over time using a simple, adaptive updating procedure. At each period in the testing sample,

the machine selects the architecture (number of hidden layers and neurons per layer) that

minimized out-of-sample forecast errors in the preceding period. The candidate architectures

considered span various combinations of hidden layers and neurons per layer, as listed in

Table A.5. The architecture is updated quarterly by using the forecast performance from the

most recent quarter. This systematic approach allows the machine to adjust its speci�cation

over time based on evolving patterns in the data, while avoiding look-ahead bias or over�tting

to future outcomes.
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Table A.5: Candidate hyper-parameters for the machine learning forecast

Variable Earnings Earnings Stock Price CPI GDP
Growth Growth Returns Growth In�ation Growth

Horizon 1-Year LTG 1-Year 1-Year 1-Year 1-Year
(a) Elastic Net
L1 penalty λ1 [10−2, 101] [10−2, 101] [10−4, 101] [10−4, 101] [10−4, 100] [10−3, 101]
L2 penalty λ2 [10−2, 101] [10−2, 101] [10−4, 101] [10−4, 101] [10−4, 100] [10−3, 101]
Training window TE 4, 6, 8, 10 4, 6, 8, 10, 12 4, 5, 6, 7 4, 5, 6, 7 3, 4, 5, 6, 7 3, 4, 5, 6, 7
Validation window TV 4, 6, 8, 10 4, 6, 8, 10, 12 4, 5, 6, 7 4, 5, 6, 7 6, . . . , 15 6, . . . , 15
(b) Long Short-Term Memory Network
L1 penalty λ1 [10−6, 10−2] [10−6, 10−2] [0.0] [0.0] [10−6, 10−2] [10−6, 10−2]
L2 penalty λ2 [10−6, 10−2] [10−6, 10−2] [10−4, 10−2] [10−4, 10−2] [10−6, 10−2] [10−6, 10−2]
Learning rate γ 0.001 0.001 0.001 0.001 0.001 0.001
Gradient decay π1, π2 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999
Dropout input px 0.8 0.8 0.8 0.8 0.8 0.05
Dropout recurrent pυ 0.8 0.8 0.4 0.4 0.8 0.05
Hidden layers N 1, 3, 5 1, 3, 5 1, 3, 5 1, 3, 5 1 1
Neurons per layer 16, 32, 64 16, 32, 64 16 16 4 4
Mini-batch size M 4 4 4 4 4 4
Max epochs E 10, 000 10, 000 10, 000 10, 000 10, 000 10, 000
Early stopping S 20 20 20 20 20 5
Random seeds R 1, . . . , 20 1, . . . , 20 1, . . . , 20 1, . . . , 20 1, . . . , 20 1, . . . , 20
Training window TE 4, 8, 12 3, 7, 12 5, 7, 30 5, 7, 30 5, 7 3, 5
Validation window TV 4, 8, 12 3, 7, 12, 20 3, 4 3, 4 6, 9, 12, 15 6, 9, 12

Notes: This table reports the hyperparameters considered in the machine learning algorithm for each esti-
mator.

Machine Variables to Be forecast

Returns and price growth When evaluating the MSE ratio of the machine relative to

that of a benchmark survey, we use the machine forecast for the return or price growth

measure that most closely corresponds to the concept that survey respondents are asked to

predict:

1. CFO survey asks respondents about their expectations for the S&P 500 return over

the next 12 months. Following Nagel and Xu (2022), we interpret the survey to be

asking about rdt,t+12, the one-year CRSP value-weighted return (including dividends)

from the current survey month to the same month one year ahead.

2. Gallup/UBS survey respondents report the return (including dividends) they expect on

their own portfolio one year ahead. We interpret the survey to be asking about rdt,t+12,

the one-year CRSP value-weighted return(including dividends) from the current survey

month to the same month one year ahead.

3. Livingston survey respondents provide 12-month ahead forecasts of the S&P 500 index.

We convert the level forecast to price growth forecast by taking the log di�erence

between the 12-month ahead level forecast and the nowcast of the S&P 500 index for

the current survey month. Therefore, we interpret the survey to be asking about the

one-year price growth in the S&P 500 index.
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4. Bloomberg Consensus Forecasts asks survey respondents about the end-of-year closing

value of the S&P 500 index. We interpret the survey to be asking about the υ-month

price growth in the S&P 500 index. The horizon of the forecast changes depending on

when in the year the panelists are answering the survey.

5. Michigan Survey of Consumers (SOC) asks respondents about their perceived proba-

bility that an investment in a diversi�ed stock fund would increase in value in the year

ahead. We interpret the question to be asking about the one-year price growth in the

S&P 500 index.

6. Conference Board (CB) survey asks respondents about their categorical belief on

whether they expect stock prices to increase, decrease, or stay the same over the next

year. We interpret the question to be asking about the one-year price growth in the

S&P 500 index.

Earnings growth (IBES �Street� Earnings) For earnings growth forecasts, we use a

quarterly S&P 500 total earnings series based on IBES street earnings per share (EPS), as

described above. Street earnings exclude discontinued operations, extraordinary charges, and

other non-operating items, making them better aligned with the earnings measure targeted

by survey respondents. We convert EPS to total earnings using the S&P 500 index divisor

and use the resulting quarterly series directly, prior to any monthly interpolation, since the

machine learning algorithm operates at a quarterly frequency. The IBES street earnings

series spans 1983:Q4 to 2021:Q4.

In�ation We construct forecasts of annual in�ation de�ned as

πt+4,t = ln

(
PGDPt+4

PGDPt

)

where PGDPt is the quarterly level of the chain-weighted GDP price index. Following

Coibion and Gorodnichenko (2015), we use the vintage of in�ation data that is available

four quarters after the period being forecast.

GDP growth We construct forecasts of annual real GDP growth de�ned as

yt+4,t = ln

(
RGDPt+4

RGDPt

)
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where RGDPt is the quarterly level of chain-weighted real GDP. Following Coibion and

Gorodnichenko (2015), we use the vintage of in�ation data that is available four quarters

after the period being forecast.

Machine Input Data: Predictor Variables

The vector Zjt ≡
(
yj,t, Ĝ

′
t,W

′
jt

)′
is an r = 1+rG+rW vector which collects the data at time

t with Zjt ≡
(
yj,t, ..., yj,t−py , Ĝ

′
t, ..., Ĝ

′
t−pG

,W′
jt, ...,W

′
jt−pW

)′
a vector of contemporaneous

and lagged values of Zjt, where py, pG, pW denote the total number of lags of yj,t, Ĝ
′
t, W

′
jt,

respectively. The predictors below are listed as elements of yj,t, Ĝ
′
jt, or W

′
jt for variables.

Stock return and price growth predictor variables and speci�cations For yj equal

to CRSP value-weighted returns or S&P 500 price index growth, we �rst predict the one-year

log stock return or price growth that is expected to occur υ quarters into the future from

time t + υ − 4 to t + υ, i.e., Et[rt+υ−4,t+υ]. For horizons longer than one year, since the

υ-quarter long horizon return is the sum of one-year returns between time t to t+υ, we �rst

forecast the forward one-year returns separately and then add the components together to

get machine forecasts of υ-quarter long horizon returns. The forecasting model considers the

following variables:

In W′
jt:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92

real-time macro series; includes both monthly and quarterly series, with monthly series

converted to quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a �nancial data set DF with 147 monthly

�nancial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily �nancial dataset DD of

87 daily �nancial indicators. The raw daily series are �rst converted to daily factors

GD,t (w) and the daily factors are aggregated up to quarterly observations GQ
D,t (w)

using a weighted average of daily factors, with the weights w dependent on two free

parameters that are chosen to minimize the sum of squared residuals in a regression of

yj,t+υ on GD,t (w).

4. LDA topics Fk,t−j, for topic k = 1, 2, ...50 and j = 0, 1. The value of the topic k at

time t is the average weights of topic k of all articles published at t.
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5. Macro data surprises from the money market survey. The macro news include, GDP

growth (Q/Q percentage change), core CPI (Month/Month change), unemployment

rate (percentage point), and nonfarm payroll (month/month change). We include �rst

release, second release, and �nal release for GDP growth. This constitutes six macro

data surprises per quarter.

6. FOMC surprises are de�ned as the changes in the current-month, 1, 2, 6, 12, and 24

month-ahead federal funds futures (FFF) contract rate and the changes in the 1, 2,

4, and 8 quarter-ahead Eurodollar (ED) futures contracts, from 10 minutes before to

20 minutes after each FOMC announcement. When benchmarking against a survey,

we use the last FOMC meeting before the survey deadline to compute surprises. For

surveys that do not have a clear deadline, we compute surprises using from the last

FOMC in the �rst month of the quarter. When benchmarking against moving average,

we use the last FOMC meeting before the end of the �rst month in each quarter to

compute surprises. This leaves 10 FOMC surprise variables per quarter.

7. Stock market jumps are accumulated 30-minute window negative and positive jumps

in the S&P 500 around news events over the previous quarter.

8. µ̄t−k for k = 0, 1, 2 is the historical mean of returns calculated up to time t. The initial

period is 1959Q1.

9. Long-term growth of earnings : 5-year growth of the SP500 earnings per share.

10. Short rates. When forecasting returns or price growth, the machine controls for the

current nominal short rate, ln(1 + 3MTBt/100), imposing a unit coe�cient. This is

equivalent to forecasting the future return minus the current short rate.

The 92 macro series in DM are selected to represent broad categories of macroeconomic time

series. The majority of these are real activity measures: real output and income, employment

and hours, consumer spending, housing starts, orders and un�lled orders, compensation

and labor costs, and capacity utilization measures. The dataset also includes commodity

and price indexes and a handful of bond and stock market indexes, and foreign exchange

measures. The �nancial dataset Df is an updated monthly version of the of 147 variables

comprised solely of �nancial market time series used in Ludvigson and Ng (2007). These

data include valuation ratios such as the dividend-price ratio and earnings-price ratio, growth

rates of aggregate dividends and prices, default and term spreads, yields on corporate bonds

of di�erent ratings grades, yields on Treasuries and yield spreads, and a broad cross-section
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of industry, size, book-market, and momentum portfolio equity returns.10 The 87 daily

�nancial indicators in DD include daily time series on commodities spot prices and futures

prices, aggregate stock market indexes, volatility indexes, credit spreads and yield spreads,

and exchange rates.

Earning growth predictor variables and speci�cations For earning growth forecasts,

we �rst detrend the (log) earnings level in real time by, starting with an initial sample,

recursively running the following regression at each point in time t

log (earningst) = αt + βtt+ yt

For yt equal to the detrended (log) earning level, we construct a forecasted value for yt,

denoted ŷt|t−υ, based on information known up to time t using the following variables:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92

real-time macro series; includes both monthly and quarterly series, with monthly series

converted to quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a �nancial data set DF with 147 monthly

�nancial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily �nancial dataset DD of

87 daily �nancial indicators. The raw daily series are �rst converted to daily factors

GD,t (w) and the daily factors are aggregated up to quarterly observations GQ
D,t (w)

using a weighted average of daily factors, with the weights w dependent on two free

parameters that are chosen to minimize the sum of squared residuals in a regression of

yj,t on GD,t (w).

4. LDA factors Fk,t−j, for topic k = 1, 2, ...50 and j = 0, 1. The value of the topic k at

time t is the average weights of topic k of all articles published at t.

5. Macro data surprises from the money market survey. The macro news include, GDP

growth (Q/Q percentage change), core CPI (Month/Month change), unemployment

rate (percentage point), and nonfarm payroll (month/month change). We include �rst

release, second release, and �nal release for GDP growth. This constitutes six macro

data surprises per quarter.

10A detailed description of the series is given in the Data Appendix of the online supplementary �le at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf
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6. FOMC surprises are de�ned as the changes in the current-month, 1, 2, 6, 12, and 24

month-ahead federal funds futures (FFF) contract rate and the changes in the 1, 2,

4, and 8 quarter-ahead Eurodollar (ED) futures contracts, from 10 minutes before to

20 minutes after each FOMC announcement. When benchmarking against a survey,

we use the last FOMC meeting before the survey deadline to compute surprises. For

surveys that do not have a clear deadline, we compute surprises using from the last

FOMC in the �rst month of the quarter. When benchmarking against moving average,

we use the last FOMC meeting before the end of the �rst month in each quarter to

compute surprises. This leaves 10 FOMC surprise variables per quarter.

7. Stock market jumps are accumulated 30-minute window negative and positive jumps

in the S&P 500 around news events over the previous quarter.

After we obtain the machine forecast for the detrended level of earnings, y, we obtain the υ-

horizon machine earnings growth forecast (from t−υ to t denoted Et−υ

[
∆ log

(
earningsMt

)]
)

by constructing

Et−υ

[
∆ log

(
earningsMt

)]
≡ α̂t−υ + β̂t−υt+ ŷMt|t−υ − log (earningst−υ)

where log (earningst−υ) is the realized log earning level at time t−υ, and ŷMt|t−υ is the machine

forecast of the detrended log earnings based on information up to time t − υ. To use this

approach to forecast the 20-quarter ahead annual forward earnings i.e., (from t − 4 to t on

basis of information at t− 20), we would construct

Et−20

[
log
(
earningsMt

)]
= α̂t−20 + β̂t−20t+ ŷMt|t−20.

To construct 20-quarter ahead annual earnings growth forecast we compute

Et−20

[
log
(
earningsMt−4

)]
= α̂t−20 + β̂t−20(t− 4) + ŷMt−4|t−20

to get the machine forecast of 20-quarter forward annual earnings log growth as

Et−20

[
log
(
earningsMt

)
− log

(
earningsMt−4

)]
= β̂t−204 + ŷMt|t−20 − ŷMt−4|t−20.

An alternative is to use the machine inputs to directly forecast 20-quarter forward annual

earnings log growth Et−20

[
log
(
earningsMt

)
− log

(
earningsMt−4

)]
.
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In�ation predictor variables For yj equal to in�ation, the forecasting model considers

the following variables.

In W′
jt:

1. F(i)
jt−k[yjt+υ−k], lagged values of the ith type's forecast, where k = 1, 2

2. F(s ̸=i)
jt−1 [yjt+υ−1], lagged values of other type's forecasts, s ̸= i

3. varX

(
F(·)
t−1[yjt+υ−1]

)
, where varX (·) denotes the cross-sectional variance of lagged sur-

vey forecasts

4. skewX

(
F(·)
t−1[yjt+υ−1]

)
, where skewX (·) denotes the cross-sectional skewness of lagged

survey forecasts

5. Trend in�ation measured as πt−1 =

ρπt−2 + (1− ρ)πt−1, ρ = 0.95 if t < 1991:Q4

CPI10t−1 if t ≥ 1991:Q4
,

where CPI10 is the median SPF forecast of annualized average in�ation over the current

and next nine years. Trend in�ation is intended to capture long-run trends. When long-

run forecasts of in�ation are not available, as is the case pre-1991:Q4, we us a moving

average of past in�ation.

6. ˙GDP t−1 = detrended gross domestic product, de�ned as the residual from a regression

of GDPt−1 on a constant and the four most recent values of GDP as of date t− 8. See

Hamilton (2018).

7. ˙EMP t−1 = detrended employment, de�ned as the residual from a regression ofEMPt−1

on a constant and the four most recent values of EMP as of date t− 8. See Hamilton

(2018).

8. N(i)
t [πt,t−υ] = Nowcast as of time t of the ith percentile of in�ation over the period t−υ

to t.

Lags of the dependent variable:

1. yt−1,t−υ−1 one quarter lagged in�ation.

The factors in Ĝ′
jt include factors formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92

real-time macro series; includes both monthly and quarterly series, with monthly series

converted to quarterly according to the method described in the data appendix.
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2. GF,t−k, for k = 0, 1 are factors formed from a �nancial data set DF with 147 monthly

�nancial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily �nancial dataset DD of

87 daily �nancial indicators. The raw daily series are �rst converted to daily factors

GD,t (w) and the daily factors are aggregated up to quarterly observations GQ
D,t (w)

using a weighted average of daily factors, with the weights w dependent on two free

parameters that are chosen to minimize the sum of squared residuals in a regression of

yj,t+υ on GD,t (w).

The 92 macro series in DM are selected to represent broad categories of macroeconomic time

series. The majority of these are real activity measures: real output and income, employment

and hours, consumer spending, housing starts, orders and un�lled orders, compensation

and labor costs, and capacity utilization measures. The dataset also includes commodity

and price indexes and a handful of bond and stock market indexes, and foreign exchange

measures. The �nancial dataset Df is an updated monthly version of the of 147 variables

comprised solely of �nancial market time series used in Ludvigson and Ng (2007). These

data include valuation ratios such as the dividend-price ratio and earnings-price ratio, growth

rates of aggregate dividends and prices, default and term spreads, yields on corporate bonds

of di�erent ratings grades, yields on Treasuries and yield spreads, and a broad cross-section

of industry, size, book-market, and momentum portfolio equity returns.11 The 87 daily

�nancial indicators in DD include daily time series on commodities spot prices and futures

prices, aggregate stock market indexes, volatility indexes, credit spreads and yield spreads,

and exchange rates.

GDP growth predictor variables For yj equal to GDP growth, the forecasting model

considers the following variables.

In W′
jt:

1. F(i)
jt−k[yjt+υ−k], lagged values of the ith type's forecast, where k = 1, 2

2. F(s ̸=i)
jt−1 [yjt+υ−1], lagged values of other type's forecasts, s ̸= i

3. varX

(
F(·)
t−1[yjt+υ−1]

)
, where varX (·) denotes the cross-sectional variance of lagged sur-

vey forecasts

4. skewX

(
F(·)
t−1[yjt+υ−1]

)
, where skewX (·) denotes the cross-sectional skewness of lagged

survey forecasts

11A detailed description of the series is given in the Data Appendix of the online supplementary �le at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf
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5. N(i)
t [πt,t−υ] = Nowcast as of time t of the ith percentile of in�ation over the period t−υ

to t.

Lags of the dependent variable:

1. yt−1,t−υ−1 one quarter lagged annual GDP growth.

The factors in Ĝ′
jt include factors formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92

real-time macro series; includes both monthly and quarterly series, with monthly series

converted to quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a �nancial data set DF with 147 monthly

�nancial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily �nancial dataset DD of

87 daily �nancial indicators. The raw daily series are �rst converted to daily factors

GD,t (w) and the daily factors are aggregated up to quarterly observations GQ
D,t (w)

using a weighted average of daily factors, with the weights w dependent on two free

parameters that are chosen to minimize the sum of squared residuals in a regression of

yj,t+υ on GD,t (w).

The 92 macro series in DM are selected to represent broad categories of macroeconomic time

series. The majority of these are real activity measures: real output and income, employment

and hours, consumer spending, housing starts, orders and un�lled orders, compensation

and labor costs, and capacity utilization measures. The dataset also includes commodity

and price indexes and a handful of bond and stock market indexes, and foreign exchange

measures. The �nancial dataset Df is an updated monthly version of the of 147 variables

comprised solely of �nancial market time series used in Ludvigson and Ng (2007). These

data include valuation ratios such as the dividend-price ratio and earnings-price ratio, growth

rates of aggregate dividends and prices, default and term spreads, yields on corporate bonds

of di�erent ratings grades, yields on Treasuries and yield spreads, and a broad cross-section

of industry, size, book-market, and momentum portfolio equity returns.12 The 87 daily

�nancial indicators in DD include daily time series on commodities spot prices and futures

prices, aggregate stock market indexes, volatility indexes, credit spreads and yield spreads,

and exchange rates. Once converted into factors the total number of series used as inputs

into the machine learning speci�cations is given below.

12A detailed description of the series is given in the Data Appendix of the online supplementary �le at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf
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Table A.5: Number of RHS Variables
Stock Return Earnings GDP In�ation

Macro Factors 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag)
Financial Factors 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag)
Daily Factors 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag)
LDA Factors 50 50 0 0

FOMC Surprises 10 10 0 0
Macro Data Surprises 6 (0-1 lag) 6 (0-1 lag) 0 0

Other predictors 0 3 12 13
Total 132 135 62 63

This table shows the number of predictors using for each forecast

Model Solution

We use the algorithm of Farmer, Waggoner and Zha (2011) to solve the system of structural

model equations that must hold in equilibrium, where agents form expectations taking into

account the probability of regime change ξt in the future. This solution is obtained in three

steps.

1. Solve for the true law of motion of SM
t in (19) such that (15)-(18) are satis�ed and for

the perceived law of motion of SM∗
t in (20) such that perceived versions of (15)-(18)

are satis�ed.

2. Solve for the law of motion for SA
t ≡

[
mt, pdt, lpt, Ẽt (mt+1) , Ẽt (pdt+1)

]
such that (25)-

(??) are satis�ed. The resulting solution takes the form:

SA
t = C̃A,ξt + T̃A,MS

M∗
t−1 + T̃A,AS

A
t−1 + R̃A,ηηt + R̃A,MQ̃M,ξt ε̃

M
t + R̃A,Aσlp,ξtεlp,t, (A.6)

where C̃A,ξt ,T̃A,M , etc., are matrices involving the perceived parameters θ̃
M
from (20).

Since (25)-(??) involve conditional subjective second moment terms Ṽt and C̃OVt that

are a�ected by ξt, we follow Bansal and Zhou (2002), Bianchi, Kung and Tirskikh

(2018), and BLM2 in using a �Risk Adjustment with Lognormal Approximation,� to

preserve log-normality of the entire system. This implies that C̃A,ξtdepends on ξt.

3. Let St ≡
[
SM
t , S

M∗
t , SA

t , ε̃
M
t , ηt

]′
and εMt =

[
ε∆y,t, εi,t, επ,t, εk,t, ε∆y,t, εi,t, επ,t, εk,t

]′
. The

third and �nal step is to combine the equations from steps 1 and 2 into a single system

57



representing the complete structural model:

St = C̄
(
θξt , θ̃ξt

)
+ T̄

(
θξt , θ̃ξt

)
St−1 + R̄

(
θξt , θ̃ξt

)
Qξtεt, (A.7)

where C̄(· ), T̄ (· ), R̄(· ) are matrices of primitive parameters involving elements of θξt
and θ̃ξt , some of which vary with the Markov-switching variable ξt, and Qξt(· ) is a
matrix of shock volatilities that vary stochastically with ξt. The structural shocks

of the full model are contained in εt =
(
εMt , εlp,t, εv,t

)′
, which stacks the primitive

macro shocks εMt , the liquidity premium shock εlp,t (a feature of preferences), and

the vintage errors εv,t. Neither ε̃Mt or ηt appear separately in εt because ε̃Mt =(
R̃MQ̃M

)−1 (
SM∗
t − C̃M − T̃MSM∗

t−1

)
is entirely pinned down SM∗

t (and thus by εMt

and εv,t), while ηt has an innovation that is proportional to ε̃Mt .

Observation Equation

The mapping from the variables of the model to the observables in the data can be written

using matrix algebra to obtain the observation equation Xt = Dξt,t + Zξt,tS
′
t + Utvt, where

St ≡
[
SM
t , S

M∗
t , SA

t , ηt, ε̃
M
t

]′
, and where

SA
t ≡

[
mt, pdt, lpt, Ẽt (mt+1) , Ẽt (pdt+1)

]
SM
t ≡

[
∆yt,∆yt,∆dtπt, πt, it, it, kt, kt

]′
SM∗
t ≡

[
∆y∗t ,∆y

∗
t ,∆d

∗
t , π

∗
t , π

∗
t , i

∗
t , i

∗
t , k

∗
t , k

∗
t

]′
.

Annualizing the monthly growth rates to get annualized GDP growth we have ∆ln (GDPt) ≡
12∆ln (Yt) = 12∆yt. For quarterly GDP growth we interpolate to monthly frequency. For our

other quarterly variables we drop these from the observation vector in the months for which

they aren't available. Machine forecasts and investor forecasts load on di�erent subvectors of

St. Let the subjector relevant for the machine forecasts be denoted S
MF
t ≡

[
SM∗
t , SA

t , ηt, ε̃
M
t

]′
and the subvector relevant for the investor forecasts be SI

t =
[
SM∗
t , SA

t , ηt
]′
. Let matrices

with a subscript, e.g., Zx, denote the subvector of Z that when multiplied by the appropriate

subvector of St and added to Dx+Uxvx,t picks out the appropriate theoretical concept to map

into empirical observations on an element xt of Xt. For time t expected values in the model,

we construct formulas for computing e.g., the expected value of a variable xt over the next

υ periods under the assumption that ξt = j, such that Ẽt (xt,t+υ) = DI
ξt,xt,t+υ

+ ZI
ξt,xt,t+υ

SI
t ,
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where ZI
ξt,xt,t+υ

are row vectors that load the subvector SI
t , and DI

ξt,xt,t+υ
is a comformable

intercept that applies to investor forecasts. These formulas are mapped into survey forecasts

and machine forecasts for variables υ periods ahead, respectively. We also construct formulas

for computing the expected value of a variable xt in υ periods under the assumption that

ξt = j, denoted by mapping vectors taking the form ZI
ξt,xt+υ

. Analogous mappings for the

machine expectation are denoted with �ML� superscripts, i.e.., ZMF
ξt,

, and load on SMF
t .

These loadings di�er because investor forecasts use their perceived law of motion for the

macro block, while machine forecasts use the true law of motion and in addition take into

account the AR(1) evolution of ηt that varies with perceived news ε̃Mt .

The observation equation when all variables in Xt are available takes the form:
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

∆ln (GDPt)

Inflationt

∆ln (GDP ∗
t )

Inflation∗
t

FFRt

f
(0)
t

F(s)
t,υ (Inflation)

Et,υ (Inflation)

F(s)
t,υ (∆GDP )

Et,υ (∆GDP )

F(BC)
t,υ (FFR)

f
(n)
t

ED
(n)
t

Baat

pgdpt

EGDPt,t−1

BBG(EGDPt,t−1)

POGDPt,t−1

DGDPt,t−1

rDt − it−1

F(s)
t (∆lnPD

t+υ)− it−1

Et(∆lnPD
t+υ)− it−1

F(s)
t (rDt+υ)− it−1

Et(rDt+υ)− it−1

F
(n)
t (∆d)

F(IBES)
t,υ (∆et)

F(BBG)
t,υ (∆et)

Ft(LTG)

Et,υ(∆e)

Et(LTG)



=



0

0

0

0

0

0

DI
ξt,πt,t+υ

DML
ξt,πt,t+υ

DI
ξt,yt,t+υ

DML
ξt,yt,t+υ

DI
ξt,it,t+υ

DI
ξt,it+n

DI
ξt,it+n

CBaa

k

K

K

K

K

κpd,0

αẼ

αE

κpd,0

κpd,0

(1− ρ̃)µ

(1− ρ̃)µ

(1− ρ̃)µ

(1− ρ̃)µ

(1− ρ)µ

(1− ρ)µ



+



12∆yt

12πt

12∆y∗t

12π∗
t

12it

12it

ZI
ξt,πt,t+υ

SI
t

ZML
ξt,πt,t+υ

SMF
t

ZI
ξt,∆yt,t+υ

SI
t

ZML
ξt,∆yt,t+υ

SMF
t

ZI
ξt,it,t+υ

SI
t

ZI
ξt,it+n

St

ZI
ξt,it+n,St

B(Ẽ(s)
t (∆lnrDt+υ)− it−1)

(kt − k) + pdt +∆yt

K(kt − k +∆yt)

K(kt − k +∆yt)

K(kt − k +∆yt)

K(kt − k +∆yt)

βZpdSt − ZpdSt−1 + Zk (St − St−1)

+Z∆ySt + ZπSt − ZiSt−1 − ZπSt−1

ZI
ξt,pdt+υ

SI
t − ZI

ξt,pdt
SI
t + ZI

ξt,kt,t+υ
SI
t + ZI

ξt,∆yt,t+υ
SI
t

+ZI
ξt,πt+υ

SI
t − ZI

ξt,it−1
SI
t + ZI

ξt,πt−1
SI
t

ZML
ξt,pdt+υ

SML
t − ZML

ξt,pdt
SML
t + ZML

ξt,kt,t+υ
SML
t + ZML

ξt,∆yt,t+υ
SML
t

+ZML
ξt,πt+υ

SML
t − ZML

ξt,it−1
SML
t + ZML

ξt,πt−1
SML
t

βZI
ξt,pdt+υ

SI
t − ZI

ξt,pdt
SI
t + ZI

ξt,kt,t+υ
SI
t + ZI

ξt,∆yt,t+υ
SI
t

+ZI
ξt,πt+υ

SI
t − ZI

ξt,it−1
SI
t + ZI

ξt,πt−1
SI
t

βZML
ξt,pdt+υ

SML
t − ZML

ξt,pdt
SML
t + ZML

ξt,kt,t+υ
SML
t + ZML

ξt,∆yt,t+υ
SML
t

+ZML
ξt,πt+υ

SML
t − ZML

ξt,it−1
SML
t + ZML

ξt,πt−1
SML
t

ρ̃
(
ZI
ξt,∆dt,t+n

+ ζZI
ξt,ηt

)
SI
t + ZI

ξt,πt,t+n
SI
t

ρ̃
(
ZI
ξt,∆dt,t+υ

+ ζZI
ξt,ηt

)
SI
t + ZI

ξt,πt,t+υ
SI
t

ρ̃
(
ZI
ξt,∆dt,t+υ

+ ζZI
ξt,ηt

)
SI
t + ZI

ξt,πt,t+υ
SI
t

ρ̃
(
ZI
ξt,∆dt,t+20

+ ζZI
ξt,ηt

)
SI
t + ZI

ξt,πt,t+20
SI
t

−ρ̃
(
ZI
ξt,∆dt,t+16

+ ζZI
ξt,ηt

)
SI
t + ZI

ξt,πt,t+16
SI
t

ρZML
ξt,∆d,t,t+υS

ML
t + ZML

ξt,πt,t+υ
SML
t

ρZML
ξt,∆d,t,t+20S

ML
t + ZML

ξt,πt,t+20
SML
t

−ρZML
ξt,∆d,t,t+16S

ML
t + ZML

ξt,πt,t+16
SML
t



+Utvt

The term GDPt refers to real gross domestic product, with GDP
∗
t the real-time version
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available at time t. The term Inflationt in the above stands for 12-monoth ahead CPI

in�ation with Inflation∗
t the real-time version available at time t. f

(0)
t refers to the FFF

contract rate that expires in the current month. FFR is the annualized nominal federal

funds rate. F(s)
t,υ refers to υ-period ahead survey forecast at time t for survey s. For in�ation

and real GDP growth, surveys s include one-year ahead forecasts from Blue Chip (BC, 12

months ahead), Livingston (LIV, 2 biannual periods), Bloomberg (BBG, 12-months ahead),

and Survey of Professional Forecasters (SPF, 4 quarters ahead). For in�ation, we also include

10-year ahead forecast from LIV. F(BC)
t,υ (FFR) refers to υ-period ahead Blue Chip forecast

for Fed Funds Rate, with υ = 12 months. Et,υ(x) refers to υ-period ahead machine forecasts

of variable x at time t. f
(n)
t refers to the time-t contracted federal funds futures market

rate, expiring in n months. Here we use n = {0, 6, 10, 20, 35} , where 0 refers the contract

that expires in the current month. ED
(n)
t refers to the time-t contracted Eurodollar rate,

expiring in n quarters. Here we use n = {1, 2, 4, 8} . Baat is the Baa spread described

above, where CBaa and B are scalar parameters. To map the Baat into the subjective risk

premium, we add a constant CBaato our model-implied Ẽ(s)
t (∆lnrDt+υ)− it−1 =βZ

I
ξt,pdt+υ

SI
t −

ZI
ξt,pdt

SI
t +ZI

ξt,kt,t+υ
SI
t +ZI

ξt,∆yt,t+υ
SI
t +ZI

ξt,πt+υ
SI
t −ZI

ξt,it−1
SI
t +ZI

ξt,πt−1
SI
t and scale it by the

parameter B to be estimated. The variable pgdpt,t−1 is the log of the SP500 capitalization-

to-lagged nominal GDP (NGDP) ratio, i.e., ln (Pt/NGDPt−1); EGDPt,t−1 is the level of

the S&P 500 earnings-to-lagged NGDP ratio (nominal earnings divided by lagged nominal

GDP); POGDPt,t−1 is the eight quarter moving average of U.S. corporate sector nominal

payout relative to lagged NGDP; DGDPt,t−1 is the monthly S&P 500 nominal dividend-to-

lagged NGDP ratio. These variables are mapped into the model implications for Kt, with

EGDPt,t−1 ≈ K + K (kt − k +∆yt) and likewise for POGDPt,t−1, DGDPt,t−1, where K is

the steady state level of Kt = exp (kt). To obtain high-frequency information on EGDPt,t−1,

we use the BBG earnings nowcasts divided by one-month lagged real-time GDP. For all

announcements, we use the pre- and post- announcement BBG earnings nowcast-to-lagged

GDP ratio. The variable rDt − it−1 is the nominal time t CRSP-VW stock return including

dividend distributions less last period's nominal short rate. F(s)
t (∆lnPD

t+υ) − it−1 refers to

survey forecasts of S&P 500 price index growth in excess of the lagged short rate, which

corresponds to the LIV and BBG surveys point survey forecasts of the index. F(s)
t (rDt+υ) −

it−1 refers to point survey forecasts of returns, which corresponds Gallup/UBS and CFO.

The LIV, Gallup/UBS, and CFO surveys are mapped onto annual price growth or return

expectations, as appropriate, in the model. The BBG survey is mapped into multi-month

returns, depending on the month of the year (see data description above). For SOC, which

is not a point forecast but instead a subjective probability of an increase in stock market in

next year, we map it onto the investor expectation of one-year ahead returns, allowing for
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a freely estimated slope CSOCand intercept to account for the change in units to indicate

that this is a measure that moves with point forecasts while not being identical to them.

Et,υ

(
∆lnPD

t − it−1

)
refers to machine forecasts of price growth in excess of the lagged short

rate. Et,υ

(
rDt − it−1

)
refers to machine forecasts of returns in excess of the lagged short rate.

F
(n)
t (∆d) refers to the expectations of future dividends constructed from dividend futures

markets for n = 8 quarters ahead. F(IBES)
t,υ (∆et) and F(BBG)

t,υ (∆et) refer to the IBES and

BBG analyst forecasts of earnings growth for υ = 12 months ahead. Et,υ(∆e) is the υ-quarter

ahead machine forecast for earnings growth from IBES with υ = 4, a noisy signal on rational

expectations of ∆dt+υ.Ft(LTG) refers to the IBES LTG forecasts. For the mapping to the

structrual model, we treat LTG as measuring annual �ve-year forward growth expectations,

i.e., annual earnings growth from four to �ve years ahead. Machine forecasts for the �ve-year

forward earning growth are denoted Et(LTG).

Two points about the mapping bear noting. First, the observation equation often uses

multiple measures of observables on a single variable, e.g., investor expectations of in�ation

12 months ahead are measured by four di�erent surveys (BC, SPF, LIV, and BBG). Like-

wise, dividend futures and survey expectations F
(n)
t (∆d), F(IBES)

t,υ (∆et), and Ft(LTG) are all

taken as noisy signals on the underlying investor expectations process for ∆d. In the �lter-

ing algorithm above, these provide four noisy signals on the same latent variable. Second,

a number of di�erent surveys are used to gauge expectations for multiple variables. These

surveys have di�erent deadlines for respondents to turn in their forecasts. Whether monthly

or quarterly, the di�erent surveys conduct interviews or have response deadlines that hap-

pen somewhere during the course of a speci�c month. We therefore conservatively set the

�response deadline� for the machine forecast to be the �rst day of every month, implying

that we allow the machine to use information only up through the end of the previous month

(e.g., through January 31st for an interview or response deadline in February). This ensures

that the machine only sees information that would have been available to survey respondents

in the months for which that survey is conducted. This approach is conservative in the sense

that it handicaps the machine, since all survey respondents who are being interviewed during

the next month would have access to more timely information than the machine.

Additional Figures and Tables

Table A.6 reports the results of regressing excess returns on the S&P 500 on past news in

monthly data. Past news is measured as the high-frequency jump in the stock market due

to a news event. We �rst sort all news events by whether the market over- or underreacted

based on the structural model estimates. We then sum all the high-frequency jumps in
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the market around news events in month t in a given reaction category. This aggregated

Jumpst variable is our measure of past news. We regress future excess returns on Jumpst.

We �nd that news events characterized by overreaction predict future excess returns with a

negative coe�cient, while those characterized by underreaction predict future excess returns

with a positive coe�cient. The results for events where the news was bad, as indicated by a

downward jump in the market, are marginally more signi�cant than those where the news

was good and are reported separately.

Table A.6: Predicting Returns Using Reactions to News

rxt+υ = α + βJJumpst,+ βrrxt + εt+υ

υ = 12 υ = 24 υ = 36 υ = 60
Panel (a): Overreaction
All overreaction events

βJ −0.129∗ −0.175∗ −0.214∗ −0.229∗

(t-stats) (−1.75) (−1.81) (−1.92) (−1.77)
Bad market news

βJ −0.228∗ −0.237∗∗ −0.254∗∗ −0.231∗

(t-stats) (−1.84) (−2.08) (−2.02) (−1.93)
Panel (b): Underreaction
All underreaction events

βJ 0.105 0.193∗ 0.199∗ 0.230∗

(t-stats) (1.21) (1.71) (1.89) (1.72)
Bad market news

βJ 0.109∗ 0.215∗ 0.191∗∗ 0.159∗∗

(t-stats) (1.79) (1.94) (2.04) (1.98)

Notes: This table reports results of monthly regressions of the υ-month ahead log S\&P 500 stock market
return (measured as the log di�erence in the S&P 500 market cap) in excess of the 1-month Treasury bill
rate (�rxt+υ�) on the sum of high-frequency changes in the S&P 500 around all news events in month t in a
speci�c reaction category (�Jumpst�). To obtain a reaction category, we �rst sort all news events by whether
the market over- or underreacted based on the structural model estimates. We then sum the high-frequency
jumps in the S&P 500 around all news events in that reaction category for month t to obtain Jumpst. The
results for the subset of events in which Jumpst < 0 are reported under the panel labeled �Bad market
news". Newey-west t-statistics are reported in brackets. Bolded numbers indicate signi�cance at 10%$ level.
* = sig 10%, ** = sig 5%. The sample spans 1986:M2 - 2021:M12.
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Table A.7: Parameter Estimates

Regime 1 Regime 2 Regime3
Actual Perceived Actual Perceived Actual Perceived

σi 0.0034 0.0034 σi 0.0022 0.0022 σi 0.0042 0.0042
σπ 0.0030 0.0030 σπ 0.0023 0.0023 σπ 0.0037 0.0037
σ∆y 0.0093 0.0094 σ∆y 0.0055 0.0055 σ∆y 0.0196 0.0197
σk 0.1450 0.1451 σk 0.0825 0.0825 σk 0.2657 0.2657
σlp 0.0145 − σlp 0.0083 − σlp 0.1338 −
σ ı̄ 0.0070 0.0070 σ ı̄ 0.0108 0.0108 σ ı̄ 0.0327 0.0327
σ∆ȳ 0.0111 0.0111 σ∆ȳ 0.0067 0.0067 σ∆ȳ 0.0157 0.0157
σπ̄ 0.0176 0.0176 σπ̄ 0.0174 0.0174 σπ̄ 0.0587 0.0588
σk̄ 0.0729 0.0730 σk̄ 0.0381 0.0381 σk̄ 0.1852 0.1852

Notes: Posterior mode values of the parameters. The estimation sample spans 1961:M1-2021:M12.

Figure A.1: Stock Return Expectations
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Notes: The �gure plots the model estimate (in blue) and data (in red) for one-year-ahead stock return
expectations as indicated in each panel title. The sample spans 2001:M1 - 2021:M12
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