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1 Introduction

The pronounced volatility of world equity markets is difficult to reconcile with textbook
models in which the price of a stock is the rational expectation of future cash-flow funda-
mentals, discounted at a constant rate. These theories imply that stock markets should be
far more stable than observed, leading a vast literature to explain “excess” stock market
volatility with discount rate variation.! But recent advancements in the field of behavioral
finance point toward a different explanation, namely that investors may exhibit systematic
expectational errors (“belief distortions”) that lead them to overreact to news relevant for
cash-flow growth. A standard result is that overreaction amplifies market volatility, offering
an explanation for observed equity markets that does not rely on variable discount rates.

Documenting evidence of overreaction (or belief distortions more generally) requires both
a measure of what investors subjectively expect, and a benchmark for gauging any distor-
tion in subjective growth expectations. The traditional approach to this problem is to use
surveys of analysts or investors to measure subjective expectations, and to use in-sample
regressions of survey forecast errors on lagged forecast revisions to measure overreaction.
Despite valuable insights, the very simplicity and convenience of the traditional approach
necessarily leaves several pertinent questions unanswered.

First, the precise news events to which investor beliefs purportedly overreact are left
unspecified in the forecast-error-on-forecast-revision regression approach. If the stock mar-
ket overreact to news, which real-world events have historically been responsible for such
reactions and why?

Second, what are the perceived shocks that investors are responding to when they over-
react to news? Bordalo, Gennaioli, LaPorta and Shleifer (2019), Nagel and Xu (2022), and
Bordalo, Gennaioli, Porta and Shleifer (2024) propose single-shock models in which investors
react to unexpected changes in a univariate earnings or payout process. These papers do

not tell us how evidence on belief overreaction might change in a more general setting where

LFor textbook treatments of this issue, see Chapters 7 and 8 of Campbell, Lo and MacKinlay (1997), and
Chapter 20 of Cochrane (2005).



investors react to multiple primitive shocks perceived to be relevant for payout and valuation.

Third, contrary to the traditional regression approach, dynamic machine learning algo-
rithms designed to quantify the overall magnitude of distortion in beliefs find little evidence
that survey forecast errors are related to lagged forecast revisions (Bianchi, Ludvigson and
Ma (2022a)). This raises immediate questions about the traditional methodology, since it
means that the standard regression approach to measuring over- or underreaction may not
provide a reliable means of quantifying systematic expectational error.

In this paper we revisit the evidence on belief overreaction to news using a more general
empirical approach capable of addressing these gaps in the literature. Our objectives are
to (i) measure the stock market’s response to specific news events, (ii) estimate revisions in
the representative investor’s perceptions about multiple sources of risk as a result of those
events, and (iii) gauge the quantitative importance (if any) of a range of belief distortions
in driving the market’s reactions to news.

Our approach has four central ingredients. First, we require high frequency market
reactions to specific news events. To this end, we study hundreds of such events across
macroeconomic data releases, corporate earnings announcements, and central bank commu-
nications from the Federal Reserve (the Fed). Second, we need a conceptual framework for
thinking about over- versus underreaction. For this, we specify and estimate a structural
asset, pricing model in which investors react to real-world news by revising their perceptions
about multiple primitive shocks that together span cash-flow and discount rate news. Third,
investor beliefs in the structural model must be allowed to potentially depart from rationality
in a variety of ways by magnitudes that are freely estimated. For this, we specify two broad
sources of distortion. The first allows for general forms of over- and underreaction that could
arise from distorted perceptions about the laws of motion driving the aggregate economy.
This distortion means that investors may react to news by misattributing one primitive shock
to a mixture of others. The second determines how investors react to the fundamental shocks
that they perceive to have learned about from a news event. This distortion is summarized

by a single estimated scalar parameter ( that controls reactions to all shocks, a formulation



that nests specific belief formation frameworks. These including inattention (IA), which
implies underreaction to news and occurs if ¢ < 0 (Sims (2003), Gabaix (2019)), diagnostic
expectations (DE), which implies overreaction and occurs if ¢ > 0 (Bordalo, Gennaioli and
Shleifer (2018), Bordalo et al. (2019), and Bordalo et al. (2024)), and rational expectations
(RE) in which there is neither over- or underreaction and occurs if ¢ = 0. The fourth and
final ingredient in our approach is to use the dynamic machine learning methodology of
Bianchi et al. (2022a) (BLM1) and Bianchi, Lee, Ludvigson and Ma (2025) to construct an
explicit measure of non-distorted and efficient expectation formation with which to compare
to the subjective beliefs of investors. We then merge this machine learning output with the
structural estimation to identify and quantify any distortions in beliefs as seen through the
lens of the structural model.

Our main findings can be summarized as follows. First, while the structural estimation
treats as equally likely the opposing belief formation frameworks of inattention and DE, our
parameter estimates imply that the representative investor exhibits belief overreaction to
all perceived shocks in a manner consistent with DE. The estimated baseline model with
DE-style overreaction fits the post-war behavior of the stock market with little to no error.

Second, these parameter estimates imply that market fluctuations around big real-world
news events sometimes exhibit overreaction as well, causing “excess” volatility in response
to such events. This force for volatility is driven by the estimated DE distortion and occurs
when overreaction to each shock individually amplifies the effects of all shocks combined. We
find that investors are most overreactive to a highly transitory (i.e., short-run) component
of the payout share of output but are also strongly overreactive to a longer-run component.
These estimated overreactions to payout-share news are driven in the data by high-frequency
jumps in analyst expectations for earnings relative to aggregate output and are much stronger
than overreactions to combinations of shocks that feed into asset prices through economic
growth or discount rates. This hierarchy of overreactions is driven by our machine evidence
that survey respondents make larger, demonstrably predictable errors in their forecasts of

earnings growth than they do in their forecasts of output growth, inflation, or returns. That



investors attend strongly to news about the earnings share of output is consistent with
evidence that the earnings share, while highly volatile, has contributed more in the long-run
to stock market valuations than either economic growth or discount rates (Greenwald, Lettau
and Ludvigson (2025)).

Third, despite our finding that investors overreact to all perceived shocks, we show that
the stock market often underreacts to news. To explain this result, we begin with a sim-
plified theoretical setting in which multiple primitive macroeconomic risks are relevant for
the subjective growth expectations that underpin shareholder value. Using this simplified
model, we show that overreaction to all primitive shocks can dampen rather than amplify
market volatility via a shock composition effect. This happens because many real-world news
events cause investors to revise their perceptions about more than one fundamental shock,
in directions that have counteracting but asymmetric implications for valuations. For ex-
ample, suppose that an event is perceived as predominantly good news about discount rates
with some partially offsetting bad news about earnings/payout. If investors are only slightly
overreactive to the perceived shocks that drive discount rates, the investor reaction to the
discount rate component of the news even will be close to the rational response. By contrast,
if investors are much more strongly overreactive to the perceived shocks that drive earnings
and payout, the investor reaction to the cash-flow component of the news event will be far
from the rational response. As a consequence, the market can rise “too little” because the
investor’s expectations for earnings are more overly pessimistic than her views on discount
rates are overly rosy.

This surprising result is attributable to asymmetries in the distorted reactions to coun-
teracting fundamental shocks (the shock composition effect), and occurs when overreaction
to each shock individually dampens the effects of all shocks combined. Such asymmetries
are a direct result of the estimated hierarchy of overreactions discussed above. The under-
reaction phenomenon it generates is not attributable to inattention and occurs even though
a single free parameter ( controls the magnitude of distorted reactions to all shocks. We

show that this shock composition effect well describes the stock market’s behavior in several



major episodes of post-millennial history, most notably the Global Financial Crisis, in which
behavioral overreaction was a force for stability rather than volatility. Indeed, when we take
into account the sequence of estimated shocks that occurred over the entire post-millennial
period, this force for stability predominates. What we find is that a counterfactually rational
stock market would have been more volatile than actually observed, resulting in a puzzle of
“excess stability” rather than excess volatility. By contrast, a model of DE-style belief over-
reaction to multiple shocks can perfectly explain the data, not because it amplifies volatility

but because it dampens it.

Relation to the Literature Our study builds on a large and growing body of literature
studies overreaction in subjective expectations and its relation to stock market behavior
(Barberis, Shleifer and Vishny (1998), Chen, Da and Zhao (2013), Bordalo et al. (2018),
Bordalo, Gennaioli, Ma and Shleifer (2020), Bordalo et al. (2019), Nagel and Xu (2022),
Afrouzi, Kwon, Landier, Ma and Thesmar (2023), Bordalo et al. (2024), De La O and Meyers
(2021, 2023) Hillenbrand and McCarthy (2021).) At the same time, other researchers have
argued that at least some types of news are not tended to and thus met with underreaction
(e.g., Mankiw and Reis (2002), Woodford (2002), Sims (2003), Gabaix (2019), Kohlhas
and Walther (2021).) We extend these literatures by combining machine learning with a
structural estimation in order to freely estimate the direction and severity of a range of biases
(if any) in the stock market’s reaction to hundreds of real-world news events, delineating the
role of perceptions about multiple fundamental macro shocks in driving these reactions. Our
study adds to the findings in this literature by showing that markets can underreact to news
even if investors overreact to all perceived shocks.

Other studies hypothesize that any link between subjectively expected future cash-flow
growth and stock price variation occurs because the former responds to the latter rather
than drives it (Bastianello and Fontanier (2022), Chaudhry (2023), Jin and Li (2023)) or,
relatedly, that unexplained flows in and out of the stock market—evidently disconnected from

genuine cash-flow news—are responsible for substantial stock market volatility (e.g., Gabaix



and Koijen (2021), Hartzmark and Solomon (2022)). These papers study price movements
driven by flows or other mechanical factors unrelated to news, without taking a stand on
what may have caused the price movement or flow to change in the first place. We take
the converse and complimentary approach of studying market reactions to actual news,
estimating their role in causing equilibrium price movements. Since actual news causes
adjustments in forward-looking asset prices only when investors’ subjective expectations are
revised, such reactions should be highly informative about investor beliefs.

We follow the tradition of many papers in using equity analysts’ survey forecasts of earn-
ings growth as one observable indicator of subjective cash-flow expectations in our analysis.
As emphasized by Adam and Nagel (2023), however, the extent to which equity analysts’
forecasts are representative of broader market expectations remains an open question. The
methodology adopted here takes a step toward addressing this limitation by employing a
structural estimation that substantially broadens the set of observable indicators relevant
for understanding investor beliefs. In particular, in our approach, the true underlying ex-
pectations of investors are identified by using a wide range of forward-looking indicators,
including surveys and asset prices themselves, to map onto theoretically motivated expres-
sions that must obey cross-equation restrictions. This allows us to use multiple empirical
signals to identify the subjective beliefs of stock market investors, going beyond the use of
surveys alone.

The methodology of this paper builds off of the structural mixed-frequency approach of
Bianchi, Ludvigson and Ma (2022b) (BLM2) for inferring what markets learn from news.
Unlike the present study, BLM2 makes no use of machine learning to quantify systematic
expectational error. It thus investigates market reactions to news without addressing whether
those reactions may be nonrational and if so why, a gap this paper fills. Tt is the merging
of machine learning and structural estimation that is unique to the present paper and, the
best of our knowledge, the extant literature.

The machine learning aspect of our methodology to measure systematic expectational

errors consistent with the conditions of real-world expectation formation uses the general



approach of BLM1 and Bianchi et al. (2025). The contribution of this paper is to take
these machine-measured biases as an input into a structural estimation in order to inves-
tigate why those biases occur, with specific attention to how they show up in reactions to
news. Our machine learning approach builds on insights in Bybee, Kelly, Manela and Xiu
(2021), Gu, Kelly and Xiu (2020), and Cong, Tang, Wang and Zhang (2021), which show
the power of supervised learning algorithms for asset return prediction. While our algo-
rithms utilize supervised learning, they differ from these studies in that they are specifically
designed to uncover and quantify distortions in subjective beliefs. A foundational principle
of our algorithms recognizes that market participants have access to thousands of pieces of
potentially relevant information in real time, while the canonical standard for rational ex-
pectation formation is predicated on the efficient use of all of it. The machine algorithm we
design constructs a benchmark for objective expectation formation that is, by construction,
free from human cognitive biases and efficiently copes with the problems of overfitting and
structural change without look-ahead bias. Adherence to this principle is important to avoid
overstating estimates of biases in the structural model.

The rest of this paper is organized as follows. In the next section we present a simplified
framework to explain the key elements of our approach. We describe our machine learning
algorithm in Section 3, the full structural model in Section 4, and the estimation, data, and
measurement for the full structural model in Section 5. Section 6 presents our main findings.
Section 7 presents additional results designed to unpack the main mechanisms behind our
findings, while Section 8 concludes. Throughout the paper we use lowercase letters to denote
log variables, i.e., d; = In(D,), and “~” to denote features of the model under the subjective

beliefs of the investor that may depart from full rationality.

2 Simplified Framework

This section contains two parts. The first part presents a simplified structural model of

investor behavior and aggregate dynamics. The second part provides key steps of our empir-



ical approach, which synthesis the machine learning output with the structural estimation,
using this simplified framework to illustrate the core elements of our approach. Since the
application to the full structural framework is a straightforward generalization, we leave the
full structural estimation details to the Online Appendix.

Any marriage of machine learning with parametric structural estimation must confront
the fact that the structural model is a stylized representation of reality subject to error,
while the machine beliefs, survey forecasts, and other data are the product of much more
complicated real-world phenomena. This section clarifies that our methodology produces
results that are conditional on a stylized structural model, but one that we explicitly treat

in estimation as an approximation of a complex and unknown “true” data generating process.

Simplified Structural Model Let real stock market payout, D;, be a time-varying share
K, of real output Y, i.e., D, = K;Y;. With arbitrary time-variation in K, the specification
D, = K;Y, is a tautology. We argue here, however, that empirically log growth Ad; is better
described by the specification d; = k; + y; than by a univariate process for Ad;, because
the former helps to identify distinct trend and cycle components that arise separately from
variation in k; and y;. We present evidence on this below.

To see how these distinct components contribute short-run and longer-run components
in earnings/payout growth, consider a simplified theoretical setting in which a representative
investor forms subjective beliefs about log real stock market payouts, d, which follows the

law of motion:

Adt = Ayt + kt - ]Ct,1 (1)
ke = (1= pp)k+ pphi +eng (2)
Ayr = (1= pay) Ay + payAYi1 + eayy- (3)

Write the above as a bi-variate system in deviations from steady-state using “hats,” i.e.,
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Suppose both k; and Ay, are stationary with 0 < p;,pa, < 1. The system (4) therefore
implies that AdtH = (p — 1)1%15 + pAyAAyt has both a negatively autocorrelated component
originating from fluctuations in the payout share k;, and a positively autocorrelated compo-
nent originating from output growth Ay,. It follows that a negative impulse to e, implies
AdtH > 0, i.e., positive catch-up growth next period, while a positive impulse to €;; implies
AAdtH < 0, i.e., negative fall-back growth next period. We refer to the k; earnings share
component as the “cyclical” component, to the Ay; positively autocorrelated component as
the “trend” component, and to the entire bi-variate specification as a “trend-cycle” model.
This labeling serves to explicitly distinguish the bi-variate model from more commonly em-
ployed univariate autoregressive models for Ady, such as those in Nagel and Xu (2022), and
Bordalo et al. (2024).

Evidence for empirically relevant variation in the earnings share of output has previously
been emphasized by Greenwald et al. (2025). Here we provide supporting evidence for the
current context by reporting the results of specification tests comparing the fit of the trend-
cycle specification (1)-(3) with that of a standard univariate autoregressive specification for
Ady = p+ pAdy_1 + €4, using observations on earnings growth. To do so we measure d;
with a bottom-up estimate of IBES “Street Earnings” for the S&P 500. Street Earnings differ

from GAAP earnings by excluding discontinued operations, extraordinary charges, and other



non-operating items. We discuss this measure of earnings further below. Table 1 provides
the results of two specification comparisons, based on the estimated log likelihood and the

BIC criterion, which varies inversely with the likelihood but penalizes for extra parameters.

?tablename? 1: Model comparison on (street) earning growth Ae,

AR(1) with intercept Trend—cycle

log L(6) —549.170  —544.759
BIC 1113.508 1104.687

By both measures, the trend-cycle model is strongly preferred by the data. This is relevant
because we show below that a specification that models empirically plausible variation in k;
and y; separately generates findings that differ markedly from models with univariate spec-
ifications. Consistent with the evidence above, we view the trend-cycle specification—and
therefore our findings—as strongly preferred by the data to those generated by a univariate
autoregressive specification for Ad;.

We consider two types of distortion in investor beliefs about stock market fundamentals
SM. First, we allow that the perceived process for fundamentals growth may differ from (5)
because the investor’s subjective value EM = (py, Pay) of the persistence of fundamentals,

oM | differs from its objective value:
A~ ~M A~
S, =1 (67) S+ RME)Y, (6)

Since the functional form of (6) is otherwise identical to that of (4), this implies distorted
perceptions about 6 translate directly into distorted perceptions about the shocks. In this
case, the perceived shock vector Eﬁw will differ from the objective innovation eM.?

Second, revisions in expectations may be subject to a time-varying distortion 7,. To
model this distortion, we generalize the univariate specifications of Bordalo et al. (2018),
Bordalo et al. (2019), Bordalo et al. (2024) to accommodate the multivariate system (6). As

in those specifications, investors are unaware that they have a distortion but behave as of

2“Peso problems” in which investors fear a rare event that does not occur in the sample observed by our

~M
machine algorithm would also show up as a wedge between § and 6.
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their subjective expectations E, [-] were conditional on some additional news 7,. Whereas in

those specifications 7, is a scalar, here it is a 3 x 1 vector satisfying

IEt [SﬁJ =1 <5M) <*§tM + Cm) ) (7)
where 1, = (nAdi,nk,t,nAyi),. The scalar parameter ¢ controls the magnitude and nature
of the distortion and nests different models. If ( > 0, investor expectations overreact to
their perceived news as in models with DE or earlier models of belief overreaction (e.g.,
Barberis et al. (1998)). If ¢ < 0, investors underreact to perceived news, as in models with
inattention (Sims (2003), Gabaix (2019)). In the remainder of this paper, we refer to 7,
simply as the “DE distortion” for brevity, even though, strictly speaking, the reference to
diagnostic expectations only applies when ¢ > 0. The empirical relevance of either type of
distortion—captured by the sign and magnitude of (—will be subject to estimation in the full
structural model.

As in Bordalo et al. (2018), Bordalo et al. (2019), and Bordalo et al. (2024), we allow
overreaction to gradually revert over time by specifying 7, to follow a VAR(1) (rather than
AR(1)) process n, = P7;TM77t—1 + RMEM where TM = TM <5M> and 0 < p, < 1. This shows
that the distortion vector 7, has innovations that are proportional to the perceived cash-flow
shocks. Note that when p, =0, nag = Eks + Enys-

Equation (6) implies that the investor may misperceive the law of motion for cash-flow
growth. It is important to clarify that this does not mean the investor misperceives Ad;
itself, once observed. That is, investors do not suffer from delusions about the facts of cash-
flow growth once they learn those facts. What the distinction between (5) and (6) does imply
is that investors may disagree with a fully rational agent about how they got to those facts.

Suppose for now that investors price in a constant risk-premium and risk-free rate ry
under their subjective beliefs. (The full model relaxes this assumption.) Let PP denote the

stock price level and apply a Campbell and Shiller (1989) approximate present value identify
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by expanding the log return r2, = In(P, + Dyy1) — In(PP) around a point PP /D, = PD:
7}31 = Kpd,0 + Bpdiy1 — pdy + Adyy, (8)
where r” is the stock market return, pd; = pP — d;, 8 = %, Kpao = In(1 + exp(pd)) —

B(pd), and pd = In(PD). With the constant risk-premium and risk-free rate and imposing

lim;_, id pdiy; = 0, the price-payout ratio is

pdt = pd + ]Et Z BUAAdt_i_l_HJ (9)
=0
fleA ~ fi)/k, —1 ~
i+ (LA ) (& 1\ (; | 0
e (225) )+ (B55) om0

where pd = (de,o —rP 4+ Ad) /(1 = B), rP equals to the constant subjectively expected re-
turn, and Ad = Ay equals steady-state payout growth. This shows that the price-payout
ratio reflects the investor’s perceived law of motion and the time-varying distortion n,. Com-
bining (10) and (8) and noting that E, [7:41] = 0 because the agent is unaware of the
distortion, we verify E; [r2,] = rP.

If this were the model that generated the data, what would be the objective (i.e., non-

distorted) expectation of future returns? In contrast to (7), objective beliefs take the form
E, S| = T (9) 5},
Taking expectations of (8) under objective beliefs E;[-] yields

Pay —Pay| < Bpaypy — 1]
E [rp,] ="+ {#] Ay, + [%} PayClay.

1- pAy/B 1-— pAy
(P =) L =B) ] - ﬁl)k/)n =17 -
+ { 1— 7.8 }kt+ [ 1——ﬁkﬁ } (pk_l)cnk,t (11)

Subjective and objective expected returns coincide only when (i) ¢ = 0, and (i) T = TM,

in which case objective expected returns in (11) are always r?, and investors rationally price

12



in a constant risk-free rate and risk premium. More generally, the terms in square brackets

show the predictable components of objectively expected future returns that are attributable

to the systematic distortions in subjective beliefs.

Belief Reactions to News: The Shock Composition Effect With these expressions

in hand, we now consider how different news events would affect subjective and objective

beliefs, where a news “event” in this context is defined as distinct combination of perceived

economic shocks, or revisions subjective expectations about the current economic state. For

ease of exposition, we set p, = 0 in (7), implying 7, , = €k, N, = Eay.t-

1. Event 1: €, < 0. This news causes the investor to revise her perception of the

current payout share downward, while having no affect on perceived output growth,

i.e., gAy,t =0.

(2)

Suppose ¢ > 0 as in DE models of belief overreaction and let p, = p, = 0.
It is straightforward to show that investors respond to this news with excessive

optimism about catch-up growth in payout:

<]Et — Et) [AAdtH} = —(Eps > 0,

since €, < 0. The excessive optimism inflates the initial price impact, but from
(11) we can see that the inevitable investor disappointment in future growth (once
observed) will cause a price reversal and lower future returns that is objectively

predictable: E, [rﬁl} =rP 4+ (&, <rP.

Suppose ¢ = 0 while p, > p,. Here the investor over-extrapolates today’s bad

news to the future, generating excessive pessimism about future growth:
(Et — Et) [Adﬁl} = (Pr — i) €kt < 0.

The excessive pessimism means that the investor will inevitably be favorably

13



surprised in the future, causing a price rebound and objective expectation of

higher future returns: B, [r2,] =72 + [(pp — o) (1 = B8) /(1 = DB3)]| e > P

2. Event 2: €5y, < 0. This news causes the investor to revise her perception of current

output growth downward,, while having no effect on the perceived ki, i.e., €, = 0.

(a) Suppose ¢ > 0 and Pay = Pay > 0.2 Investors respond with excessive pessimism
about subsequent growth: <Et — Et> [AAdtH} = PayCEays < 0, since eay < 0.
This causes the price to overreact on the downside, which (11) shows leads to a

predictable price reversal and objective expectation of higher future returns.

(b) Suppose ¢ = 0, while Pay > Pay- The investor over-extrapolates today’s bad
economic growth news to the future, generating excessive pessimism about subse-
quent growth: (Et - Et> [AAdtH] = (Pay — Pay) Eage < 0. Like 2 (a), the price
overreacts on the downside, generating a predictable price reversal and objective

expectation of higher future returns.

3. Event 3: €, < 0 and €p,; < 0. This news causes investors to revise their subjective
expectation of both the payout share and output growth downward. Computing the
overall market impact of this news requires combining the reactions to both perceived
shocks. For a concrete numerical example, we consider the situation where ¢ > 0 and
the other conditions of Cases 1(a) and 2(a) apply. From 1(a), DE causes investors
to respond to ;<0 with excessive optimism about catch-up growth. So under these
distorted beliefs, p” would rise by some amount (suppose 5), whereas under RE with
pr = 0 the ex-dividend price would be unchanged. From 2(a), DE causes investors
to respond to €a,,<0 with excessive pessimism about future growth. So under these
distorted beliefs, prices would fall by some amount (suppose 10), whereas under RE
with p,, > 0 prices would fall by a lesser degree (suppose 6). Taken together, the

behavioral model implies an overall price impact of 5—10 = —5, which can be compared

3This example requires Py # 0 because DE operates only on innovations that have predictability for
future growth.

14



to the impact under objective beliefs of 0 — 6 = —6. Thus, the market underreacts to

the news as a whole, even though the investor overreacts to all shocks.

Event 3 gives rise to an important distinction between the multivariate setting studied here
and the DE models typical of the literature, in which ¢ > 0 applies to a univariate earnings or
payout process. When multiple primitive macroeconomic risks are relevant for the subjective
growth expectations that underpin shareholder value, overreaction to all shocks can dampen
rather than amplify market volatility via a shock composition effect. This happens when
news events cause investors to revise their perceptions about more than one fundamental
shock, in directions that have counteracting but asymmetric implications for valuations. In
the example of Event 3 above, the market fell “too little” because the investor’s expecta-
tions for the earnings share were more overly rosy than her views on economic growth were
overly pessimistic. Although this example plugs in hypothetical values for the price effects,
it serves to illustrate the point that asymmetries can arise even though the same ¢ > 0 scalar
parameter applies to all shocks because, as (7) shows, the shock-specific volatility and prop-
agation properties still matter for the magnitude of shock-specific overreactions.* For the
main application of this paper, the volatility and propagation parameters governing these
asymmetries are all estimated and the extent to which such asymmetric overreactions play

a role in historical stock market variation is a key empirical question to be explored.

Estimation We estimate the model using Bayesian state-space methods. A general premise
of the approach is that a wide variety of observable data—interpreted through the lens of a
structural model-constitute important signals of what real-world market participants believe
and expect. These include not only direct measures of subjective asset market expectations
from surveys of equity analysts and investors (as in the traditional approach), but also fluc-
tuations in spot prices, futures markets, and professional forecasts of the broader economy.

We use non-parametric machine learning to construct the empirical counterpart to the the-

~M
4This can be observed from (7) by noting that 7, contains the perceived shocks and multiplies 7™ (9 ),

which contains the propagation parameters.
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oretical rational expectation E;[-]. Our structural estimation uses the machine expectation
output, denoted EML[.], as noisy signals of the theoretical RE expectation E,[-], a proce-
dure that forces our estimates of E,[-] to be consistent with a practical, real-time objective
expectation process. We describe the machine algorithm of our procedure below.

To illustrate the procedure, we begin with the model solution for the model (5)-(10),
which implies that the state vector S, = [SM, pdy, pdy—1,7P, 1, S;f]/ evolves according to a

vector autoregression (VAR) state equation
Sy = C(0) +T(0)S1 + R(O)Qe!",

where SM = (Ady, ki, Ayy) is a set of macro fundamentals, S} is discussed below, C, T', and R

are matrices comprised of the model’s primitive parameters @ = (pk, PAys Prs Pays G rP.j, Py ks Ay)

@ is a matrix of shock volatilities, and 7, is the latent DE distortion to be estimated. The
relation between the variables in the model and a vector of observable signals X; can be

written as a observation equation taking the form

Xt:D+ZSt+UUt,

where D and Z are matrix parameters, and v, is a vector of observation errors with standard
deviations in the diagonal matrix U. The observation errors v; are important for modeling
noise due to various sources (including gaps that arise from the approximating structural
model itself) and are discussed below. Combining X; = D+ ZS;+Uv, with the state equation
S; = C+TS; 1+ RQeM, allows us to estimate the model parameters and theoretical states
S; using state-space methods.

In the model description above, investor expectations were conditioned on the state
vector S;. In reality, however, some of its elements will be observed imperfectly in real time
because they undergo subsequent revision. For example, asset price data p? are not subject
to revision, but d; is real payout and must computed using data on inflation that is subject

to revision. To better match the conditions of real-world decision making, in our estimation

16

/!
)



we assume that investors have access only to a noisy measure of any indicators subject to
subsequent revision, and price assets on that basis. Let S} = [Ad;f, ky, Ayy, pd;, pdf ., rtD*}
denote these noisy elements of S; observed in real time.

Let Fy[y;1.] generically denote a vector of observed subjective forecast measures made at
time t of variable y at time t+v measured from surveys, futures markets, or other expectations
data, and let EMZ[y,, ] denote an observed objective machine forecast produced in an outer
estimation. Let matrices with a subscript, e.g., Z,, denote the parameter sub-vector of Z
that when multiplied by S; or S} and added to D, 4 U,v,; picks out the appropriate model
variable to map back into empirical observations X, e.g., Z;.5; picks out the element of S;
corresponding to k. Finally, collect the coefficients on k¢, g, and (n Ayt Tg) 0 (11) showing

the effect of these variables on objective return expectations [, [rﬂl} into Zg(r),ays ZE(r),Ays

and Zg(),,, respectively. The observation equation X, = D + ZS; + Uw; takes the form

A koAwl ] o] Zon S, ]
pd; 0 ZpdSt
rP 0 7S
Fo[&din| | =] 0 |+ | (o= D2+, 200+ C2,) S; | + U0 (12)
EMI [AdtH} 0 ((pr — 1)Zk + pay Zay) Si
Fy [rf] rP 0
EMC 2] | L] | (Zeoyk + Zewyay + CZrya) S

The vector on the left consists of empirical observations. The vector with theoretical states on
the right must obey the cross-equation restrictions implied by (5)-(10). The above mapping

between observations and model restrictions illustrates key steps of our estimation approach.

1. Historical data [Ad,, ki, Ay,]" are mapped onto the model’s approximating objective
laws of motion Z,mS; to obtain best-fitting descriptions of structural model data dy-
namics. Observation errors in v; account for both estimation and specification error

arising because the model is an approximation of the true (unknown) data dynamics.
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2. Real time data. Investors and machine forecasts are made on the basis of real time

data S}, as in real-world forecasting.

3. Multiple signals identify E[] Multiple forward-looking indicators are used to iden-
tify subjective beliefs, including financial market variables (e.g., 7 and pd;), survey
and futures markets forecasts IFy[-], each of which are treated as noisy signals of the true
underlying subjective expectations process IEt[] of the investor.® For example, multiple
subjective expectations measures I, [AAdtH} map into ((ﬁk —1)Zk + ppyZay + CZn) Sy,
informing estimates of py, pa,, and ¢. As we often have multiple noisy signals on a

single theoretical concept, observation error is inevitable.

4. Machine forecasts identify E[-]. Iterative machine forecasts EML [-] serve as noisy
signals of the theoretical RE benchmark, e.g., Ei‘“ [Adt+1] is mapped onto [E, [AAdtH} =
((px — 1) Zi + payZayS;)- This forces our structural estimates of Eq[-] to be consistent
with a real-time objective expectations process based on knowledge we can verify would

have been available to investors in real-time.

At the core of this approach is a strategy for using information from high dimensional,
nonparametric, machine-based representations of objective beliefs to inform and identify
systematic expectational errors as represented in stylized parametric frameworks of human
behavior. There are three components to the approach: (i) the machine forecasts EM~ [-] that
are used as an empirical signal of objective beliefs, (ii) the systematic expectational errors
(if any) that are embedded in observed investor behavior, and (iii) the stylized parametric
framework of human behavior that the observations map onto.

For the first component, two aspects are central to our approach. First, the real-time
nature of the machine estimation is designed to emulate the real-world setting and eliminate
look-ahead advantages. Second, a high-dimensional neural network function serves to ap-

proximate what is ultimately the unknown function that best represents objective beliefs.

5Short samples for survey expectations or other data are not technically a problem for this methodology
since a much larger set of observables is used to measure expectations while missing values can be estimated
using a filter and structural model.

6Tt is known that a multi-layer neural network can approximate virtually any unknown function arbitrarily
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These empirically optimal forecasts are then mapped onto the appropriate equations of a
low-dimensional structural model, providing approximately unbiased signals of what could
have been rationally expected in the model environment.

The second component refers to the multiple real-world signals of investor expectations,
including from asset prices themselves, that could exhibit evidence of distortion. However,
both machine and investors must cope with estimation, specification, and data-revision er-
rors, as well as with structural change in an evolving environment. These aspects represent
noise that are common to rational and subjective beliefs and that we accommodate in the
structural estimation by allowing for errors in the observation equations of the state-space
representation.

The third component refers to the primary purpose of structural modeling, which is
to provide a conceptual framework for interpreting the data. Such frameworks are always
approximations of reality, but help us relate findings to an existing literature, while making
theoretical concepts precise and facilitating understanding.

Putting this all together, conditional on a stylized parametric model, the estimation
procedure uses surveys and other forward-looking data to inform subjective parameters and
distortions, machine forecasts inform objective beliefs, and observation errors capture noise.”

The final step in the empirical analysis is to measure market reactions to news, which
we do by employing the mixed-frequency filtering algorithm developed in BLM?2 to estimate
revisions in investor perceptions in tight windows surrounding news events. The nature and
severity of any behavioral biases in market reactions to news is estimated by comparing

jumps in model-implied investor beliefs with those of a counterfactual investor with rational

well given a large enough set of inputs. See Hecht-Nielsen (1987) for the well-known Kolmogorov universal
representation theorem that applies to arbitrary continuous functions and Ismailov (2023) for the theorem
extending to discontinuous functions.

"In the first equations of (12) the structural model laws of motion are mapped back into full revised,
historical data. These equations could be dropped from the estimation, so that the machine forecasts are
the only signal on the parameters of the objective laws of motion. The cost of doing so is that these
mappings are likely to improve the description of the model’s historical relationships. Keeping them allows
the estimator to strike a balance between doing a good job of describing such dynamics (as in traditional
structural estimation), while at the same time mitigating concerns about overfitting and look-ahead bias
that can arise from a purely in-sample structural estimation.
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expectations, whose beliefs are informed by our machine learning output. This leads us
to discuss machine beliefs, which are compiled from algorithmic output and produced in a

first-stage for use in Xj.

3 Machine Learning

To measure distortions in beliefs, we need a practical measure of unbiased, information-
efficient expectation formation under the conditions of real-world decision making, with
which to compare the subjective beliefs of investors. For this, we make use of the machine
learning algorithms BLM1 and Bianchi et al. (2025). The contribution of these papers is
to measure the overall magnitude of these distortions. The contribution of this paper is to
take these machine-measured distortions as an input into a structural estimation in order
to investigate why those biases occur, with a specific attention paid to how they show up
in reactions to news. We refer the reader to BLM1 and Bianchi et al. (2025) (BLLM)
for additional details on the machine estimation and output, providing only an summary
description here.

We are interested in forming a machine expectation of a time series y; 4y, indexed by
j whose value in period v > 1 the machine is asked to predict. The following machine

specification is estimated over rolling samples:

Yjtro = G* (Xta /Bj,v,t) + €jtto- (13)

where A& is a large input dataset available in real time including an intercept, and G*(-) is a
machine learning estimator that can be represented by a high dimensional set of finite-valued

parameters 3. .5 With this estimator in hand, we follow the six step algorithmic approach

j7U7t.

8We use the Long Short-Term Memory (LSTM) deep sequence recurrent neural network estimator with
N hidden layers A} € RP»"

N
GESTM (X, 0n) = Y WU IRE (X, 00) + by
Y Z t Y Y

n=l1xDuyn  p, i1 1x1
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of BLM1: 1. Sample partitioning,’ 2. Training, 3. Model selection and cross-validation, 4.
Grid and sample partition re-optimization, 5. Out-of-sample prediction, 6. Roll forward and
repeat. Step 3 includes variable selection, shrinkage, and hyper-parameter tuning. The end
product of this procedure is a time-series of objective time ¢ machine “beliefs” about y; ;1.,
denoted EME [y; 1]

Two points about the algorithm bear emphasis. First, the machine expectations are based
on only that information at ¢ that we can verify would have been available to investors in
real time. Second, the machine algorithm is designed to uncover bias in subjective beliefs,
i.e., predictable mistakes that arise from a demonstrable misuse of available information. In
the estimation below, surveys are used as signals of subjective beliefs. The algorithms of
BLM1 and BLLM are structured so that the machine’s forecasts can differ from the survey
forecasts only if the machine finds evidence of predictable mistakes in the survey responses
immediately prior to the machine making a true out-of-sample forecast. These algorithms
are run multiple times while being “paired” with a different survey forecast, to identify
predictable mistakes in every survey response.

The output of BLM1 and BLLM show that the machine achieves sizable reductions in the
mean-square-forecast-errors relative to survey forecasts over an extended testing subsample
for stock market returns, earnings growth, output growth, and inflation. These reductions
are largest during times of important economic change (see the papers for details.) Overall,
these results are consistent with the premise that a relatively unbiased, information-efficient
machine using only real-time information is able to detect patterns in widely available data
that notably improve predictive accuracy over human forecasts. This systematically superior
performance motivates our use of the machine benchmark for measuring non-distorted ex-
pectation formation in the structural estimation. It is noteworthy, as shown in Bianchi et al.
(2025), that survey respondents make much larger systematically predictable errors in their

forecasts of earnings growth than in their forecasts of broad economic growth or returns.

9At time t, a prior training sample of size T is partitioned into two subsample windows: an “estimation”
subsample consisting of the first T observations, and a hold-out “validation” sample of Ty subsequent
observations so that T'=Tg + Ty .
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Keeping in mind that the machine forecasts are a central data input into the structural
estimation identifying objective expectations, these preliminary results foreshadow and help
explain a key finding below, namely that investor reactions payout-share shocks are much
more distorted than to other shocks.

One might reasonably ask why this machine component is needed at all. After all, an al-
ternative would be to construct a RE benchmark by estimating a presumed structural model
of objective beliefs on historical data. The difficulty with this approach is three-fold. First,
as emphasized previously by BLM1, Farmer, Nakamura and Steinsson (2024), it is both
subject to look-ahead bias and presumes perfect knowledge of the data generating process,
factors that tend to overstate behavioral biases. Second, such an approach is silent on the
cumulative importance of distortions beyond those implied by the chosen parametric model.
Addressing this gap requires an explicit measure of non-distorted expectation formation,
against which we can measure behavioral distortions in the structural model. Third, para-
metric models may not be flexible enough to approximate the decision making of financial
market participants. A machine algorithm can be highly flexible, while selecting the optimal

amount of sparsity and shrinkage.

4 Structural Model

We now apply the ideas presented above for the simplified model to the full structural model.
We work with a risk-adjusted log-linear approximation to the model, in which all random

variables are conditionally log-normally distributed.

Macro Dynamics As above, let aggregate stock market payout, D;, be a time-varying
share K; of real output Yy, i.e., D; = K;Y;. We now generalize the simple bivariate process
considered above to allow for additional variables, each with their own short- and longer-
run components. Specifically, macro dynamics are described by a series of equations for
the nominal short rate i;, general price inflation 7;, output growth Ay;, and the log payout

share of output k; = d; — y;. For each of these, we specify “trend” or “long-run” components
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denoted with “bars” that evolve according to
T = (1= ¢ )Tr1 + o2 + 05,654, Vo = {i,m, Ay, k}, (14)

where ez; ~ N(0,1) is an i.i.d. shock to the trend component of x with a time-varying

volatility oz, discussed below, and ¢, is a parameter governing its persistence. We assume

that i;, m;, Ay, and k; vary cyclically around these trend components manner as follows.
First, we assume that the nominal short rate is set by the central bank and follows the

process
i —i=(1=1y) [ (T = ) + oy (By, = 9)] + i (i-1 — 1) + 0ig €0, (15)

where ¢;; ~ N(0,1) is an i.i.d. monetary policy shock, and 4,7, and ¢ are parameters. The

dynamics of inflation and output growth follow similar primitive processes:

Ty — T = 67{',71’ (ftfl - ﬂ-) + 6W,Ay (A_yt - g) + 57r,i (gtfl - Z) + Uﬂzétgﬂzt (16)

Ayt —g = /BAy,ﬂ’ (ft—l - ﬂ—) + 5Ay,Ay (A_ytfl - g) + /BAy,i (Et—l - Z) + UAyyftgAy,tv (17)

where J3;; are parameters and e, ~ N(0,1) and e, ~ N(0,1) are iid. shocks that
represents short-run, cyclical, variation in these variables. The log payout share, k;, is

modeled as a primitive process following:

kt —k = pk,k (Et,1 — /C) —+ Bk,Fy (A_yt - g) + Uk,g,f:k,t, (18)

where e, ~ N(0,1) is an i.i.d. shock. This specification implies that inflation, output
growth, the payout share, and the short-rate are simultaneously determined by the dynamical

system (15)-(18).19

10T his specification for macro dynamics is consistent with a triangular identification strategy for monetary
policy shocks.
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We refer to iid. innovations without the bars as the cyclical components (e.g., ey,
is the “cyclical payout share shock”), to those in (14) as trend component shocks (e.g.,
x4 is the “trend payout share shock”), and to the overall specification as a trend-cycle
model, a generalization of the simplified trend-cycle specification. It should be kept in mind,
however, that the “trend” components are latent random variables that are hybrids of i.i.d.
and persistent processes and are furthermore contemporaneously correlated with multiple
economic variables in the simultaneous system above. We use these hybrid specifications to
introduce parsimoniously parameterized but flexible persistence in the variables in a manner
similar to a vector autoregression, but with fewer estimable parameters.

The shock volatilities in all of primitive processes above vary with the discrete valued
random variable &,, which evolves according to a .4 -state Markov-switching process with
transition matrix H. Collect the parameters v,, ¢, ... etc., of the above equations including
H into a vector #". Equations (15)-(18), along with the expression for payout growth,
Ad; = Ak + Ay, represent a macro-dynamic system that can be expressed as a Markov-

switching vector autoregression (MS-VAR) law of motion (LOM) taking the form:
S =M (0M) + TV (0M)SM, + RM(0M)Q e, (19)

where SM = [Ay;, Ay, Ady, 74, T, s, 11, kt,Et]/, CM(.), TM(.), RM(-) are matrices of primi-

/ y /. . ..
oM , 5{” = [eAyyt, ERy.ts Emts Emts Eit€ity Ehty €E,t] is a vector of primitive macro

tive parameters
shocks, and Qé‘f (+) is a diagonal matrix of shock volatilities that varies stochastically with
&, Due to the endogeneity of these variables, R™(-) has non-zero off diagonal elements,

implying that multiple fundamental shocks affect a single state variable.

Perceived Macro Dynamics Investors have subjective beliefs EM about the parameters
governing macro dynamics in (15)-(18) that could differ from the objective #*. Let these
differences be captured by a wedge vector wy: EM = 0™ + wy. We assume that investors
apply these perceived dynamics to a noisy measure of SM that they observe in real time,

denoted SM*. The two are related by A,SM* = A,SM + Q%¢,,, where £,; ~ N(0,1) is an
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i.i.d. “vintage” error attributable to data revisions.!! Elements of SM for which there is no

post-publication revision are assumed to have no such vintage errors. Investors take SM*

12

as given and price assets accordingly.’” Taken together, these assumptions imply that the

perceived counterpart to (19) takes the form

~M ~M i (~MN\ ~ar_
SMx — oM (0 ) LM (9 ) SMx 4 pM (9 ) QuzM (20)
% =% -1/
SM = | Ayt By Ady m w T R R (21)
Et = [gAy,tvgAi%tagﬂ,tvgﬁ,tagi,tg{’t)gk,tagE7t}/a (22)

where Eiv " is a vector of perceived primitive macroeconomic shocks. The perceived volatilities
Qvé‘f of these shocks vary with the same discrete valued random variable £, but have a
perceived transition matrix H that may differ from H. As in the simplified model, RM is
neither square nor diagonal, so distorted beliefs about the parameters translate directly into
distorted perceptions about the shocks, implying that investors can misattribute a change
in one primitive shock to a mixture of others.

Let TM = TM <5M> and analogously for RM <5M> and CM <5M) As above, investors

may exhibit a time-varying DE distortion 7, such that subjective expectations follow:
~ ~M ~M\ Y ~M\ Y
B [sp) = o (67) + [ (87)] st 1 (87)] e (23)

~M ~ ~ o~ ~ 2 ~ v—1
where CM <9 ) =CM 4 TMCOM [TM} CM 4+ .+ [TM} CM. The scalar parameter
¢ governs the strength of the over- or underreaction to all shocks, with ¢ > 0, implying
overreaction, and ( < 0 implying underreaction. As above, the distortion 7, follows a

VAR(1) process, with an innovation that is proportional to the vector of perceived shocks

"The A, matrix emphasizes that vintage errors can be on a linear combination of elements of SM* and/or
that they apply only to specific elements.

12This treats S* as an unbiased signal of the underlying “true” state vector S that is precise enough
to reasonably ignore any uncertainty about the signal when pricing assets.
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=M.
mo=p, TV, +RMQYE",  p,€[0,1]. (24)

Thus, 7, is a vector with elements comprised of unique decaying sums of multiple past
perceived innovations {’5?4,5%1,5%2, )
The special case of rational expectations occurs when both the wedge vector wy and the

scalar parameter ¢ are both zero.

Asset Pricing Dynamics The economy is populated by a continuum of identical investors
who earn all income from trade in a stock market and a one-period nominal risk-free bond
in zero net supply. Assets are priced by a representative investor who consumes per-capita
aggregate shareholder payout, D; = K;Y;.

The representative investor’s intertemporal marginal rate of substitution in consumption

is the stochastic discount factor (SDF) with logarithm:

miy1 = In (Bp) + ﬁpt ~ YVra (AdtJrl) . (25)

where v, is a curvature parameter and where the time discount factor is subject to an
aggregate externality in the form of a patience shifter ¥, that individual investors take as
given.!3 A time-varying specification for the subjective time-discount factor is essential for
ensuring that investors are willing to hold the nominal bond at the interest rate set by the
central bank’s policy rule.

The first-order-condition for optimal holdings of the one-period nominal risk-free bond

13This specification for ¥, is a generalization of those considered in previous work (e.g.,Ang and Piazzesi
(2003); Campbell and Cochrane (1999); Lettau and Wachter (2007)). Combining (27) and (25), we see that
¥p,¢ is implicitly defined as

’19{) = — |:Zt — Et [7Tt+1] + f[‘it [77-aAdt+1] — 5{]t [_’Y'r‘aAdpﬂH-l — 7Tt+1} — lpt —1In (ﬁp) :
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with a face value equal to one nominal unit is
LP7'Q, =E, (M I (26)

where (); is the nominal bond price, I~Et denotes the subjective expectations of the investor,
and II,,; = P,1/P, is the gross rate of general price inflation. We assume that investors
have a time-varying preference for nominal risk-free assets over equity, accounted for by the
term LP, > 1 in (26), implying that the bond price @, is higher than it would be absent
these benefits, i.e., when LP, = 1. Taking logs of (26) and using the properties of conditional

log-normality delivers an expression for the real interest rate as perceived by the investor:
it — Ei [me1] = —E¢ [myga] — 5V [y — mea] — Ipe (27)

where the nominal interest rate i, = —In (Q,), m41 = In (Il,41) is net inflation, V[-] is the
conditional variance under the subjective beliefs of the investor, and lp, = In (LF;) > 0.

Variation in [p; follows an AR(1) process

Ipe — E = Pip (lpt—l - E) + OpgCipt (28)

subject to an ii.d. shock g5+ ~ N (0,1). Since lp; is a component of preferences, distorted
perceptions play no role in (28).
Let PP denote total value of market equity. Using (8), pd; = In (PtD /Dt) obeys the

following approximate log Euler equation:

pdy = FKpqpo+ Et (M1 + Ady + Bpdigq] +

+.5V, [mup1 + Adpsy + Bpdyy] . (29)

Rewriting as a function of 7}111 and subtracting off (27), the log equity premium as perceived
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by the investor is:

—5V, [r2,] - COV, [, m24]

Et |:7°tD+1:| — (lt — ]Et [7Tt+1]> = » o -+ lpt s (30)
N ~ . +.5V [mi11] — COV, [my g, mp41] e

. . . liquidity Premium
subj. equity premium

Vv
subj. risk premium

where 6@@ [-] is the conditional covariance under the subjective beliefs of the investor.
The subjective equity premium has two components. The component labeled “subj. risk
premium” is attributable to the agent’s subjective perception of the quantity of risk, which
varies in the model with fluctuations in the stochastic volatilities of the macro shocks, driven
by &,. The term labeled “liquidity premium” comes from the time-varying preference for risk-
free nominal debt over equity. It captures fluctuations in the pricing of risk due to factors
not explicitly modeled, such as time variation in sentiment or implied risk aversion (e.g.,
from leverage constraints), flights to quality, or changes in the perceived liquidity and safety
attributes of nominal risk-free assets (e.g., Krishnamurthy and Vissing-Jorgensen (2012)).

We treat this risk-preference component as a latent random variable to be estimated.

Equilibrium An equilibrium is defined as a set of prices (bond prices, stock prices), macro
quantities (interest rates, inflation, output growth, payout share), laws of motion, and in-
vestor beliefs such that macro dynamics in (14)-(18) and thus (19) are satisfied, asset pricing

dynamics in (25)-(29) are satisfied, and investor beliefs are given by (20), (23) and (24).

Model Solution We solve the system of structural model equations that must hold in
equilibrium using standard algorithms that preserve log-normality of the system. (See the
Online Appendix for details).

Let S = [mt,pdt, Ipy, IEt (M) ,E (pdtﬂ)} be a set of asset pricing state variables obey-
ing (25)-(29), and let S, = [SM, SM*, S{‘,’éﬁw,nt]/. The solution to the complete structural
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model can be expressed as a MS-VAR in S;:
Si=C (06,06, ) + T (06,0, ) Sir + R (6e,.0e, ) Qe (31)

where C(-), T(-), R(-) are matrices of primitive parameters involving elements of 0, and
5,5“ some of which vary with the Markov-switching variable &;, and Q¢,(-) is a matrix of
shock volatilities that vary stochastically with &,. The structural shocks are contained in
g = (8?4 ,5lp,t,5v7t),, which stacks the primitive macro shocks 8?1 , the liquidity premium

shock e, (a feature of preferences), and the vintage errors ¢, ;.1

5 Estimation and Mapping to Data

State-Space Estimation and Filter The system of estimable equations is placed in

state-space form by combining (31) with an observation equation taking the form

Xt = th,t + Zgth; + Utvt (32)
Ve N(O,]),

where X; denotes a vector of observable data and machine forecasts at time ¢, v; is a vector
of observation errors, U, is a diagonal matrix with the standard deviations of v; on the main
diagonal, and Dy, ;, and Zg, ; are parameters that map X; into corresponding theoretical
restrictions that are functions of S;. The parameters Z¢, ;, U;, and D¢, ; depend on ¢ inde-
pendently of £, because some series in X; are not available at all frequencies and /or over the
full sample. As a result, the state-space estimation uses different measurement equations to
include these series when the data are available, and exclude them when they are missing.
We estimate the state-space representation with three volatility regimes (high/med /low)

using Bayesian methods based on a modified version of Kim’s (Kim (1994)) basic filter and

SO | ~ ~
UNeither 2 or 1, appear separately in &, because £ = (RMQM) (S{VI* —-cM 1M S%’{) is entirely

pinned down SM* (and thus by e™ and e,), while 5, has an innovation that is proportional to 2} .
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approximation to the likelihood for Markov-switching state space models. A random-walk
metropolis Hastings MCMC algorithm is used to characterize uncertainty. The model param-
eters is estimated on mixed-frequency monthly, quarterly, and biannual data and, following
BLM2, used subsequently along with high-frequency forward-looking data to conduct an

event study to characterize market reactions to news. We outline this procedure below.

Priors A complete description of the priors is provided in Section 8 of the Online Ap-
pendix.! Here we discuss priors on parameters governing investor beliefs. For the wedge

— 0™ we use a prior that is Normal, centered on zero, with standard devia-

vector wy = EM
tion +5% deviation from the objective parameter, i.e., § = 6(14wy) where wy ~ N (0, .052).
For the parameter ( governing the extent to which investors over- or underreact to perceived
shocks, we use a prior that is Normal, centered on zero, with informative but loose tightness
set to unit standard deviation to achieve modest shrinkage. Importantly, the priors for all
of these parameters are symmetric, i.e., centered on zero, and are therefore without bias re-
garding the nature of the distortion. This is essential for our investigation because whether
[ 2 0 or ¢ 2 0 could have important consequences for asset pricing dynamics. In both cases,
our estimation treats these polar parametric possibilities as equally likely and accordingly

ensures that that both their sign and magnitude are approached as open empirical questions

to be investigated.

Machine Expectations We use machine forecasts of excess stock market returns, S&P
500 earnings growth, GDP growth, and inflation in our estimation. These machine forecasts
map onto theoretical equations consistent with rational expectations, i.e., with wedge vector
wy and the scalar parameter ( both zero, and are based on forecasts of macro fundamentals

obtained with forward iterations of:

St =M (M) + T (OM)SHT + RY(0M) Qe e, (33)

15Priors for most parameters are standard and specified to be loosely informative except where stronger
restrictions are dictated by theory, e.g., risk aversion must be non-negative.
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which twists estimates of 0" in the objective LOM (19) toward values consistent with the
machine forecasts. The resulting estimator of 8" therefore strikes a balance between pro-
viding a good description of historical data and ensuring that the parameters describing
the objective data evolution are free from overfitting and look-ahead bias characteristic of a
purely ex post estimation. Since we use observations errors in the estimation, this does not
presume that the machine exactly knows the parameters of the stylized model, only that the

machine forecasts provide a valuable signal of their real-time magnitudes.

Inferring Belief Reactions to News To infer how investor beliefs are affected by news,
we apply the high frequency filtering algorithm developed in BLM2 for inferring revisions in
investor perceptions about the current economic state in tight windows around news events.
Even though investors price assets continuously, we assume that they can observe monthly
values for the real-time macro state vector SM* and the corresponding volatility regime &,,
only at the end of each month. It follows that a news event arriving within the month can
only be informative about the end-of-month values of SM* and ¢,, leading investors update
their beliefs over the values for these variables they expect to prevail.'® We refer to these
intramonth updates in beliefs as revisions in nowcasts. They are equivalent to revisions in
perceived shocks. We discuss the procedure for estimating the belief revisions briefly below,

leaving detailed coverage of the general approach to BLM2.

Data The meta data-set used for this project consists of thousands of economic time series
at mixed sampling intervals and spans the period January 1961 through December 2021.
For the structural estimation, the observation vector often uses multiple noisy signals of the
objective underlying theoretical concept. In what follows, we provide a brief summary of the
data and how it is used. A complete description of the data, sources, and mapping to the

model is provided in the Online Appendix.

16Investors can observe the objective volatility regime sequence {ft,ftfl, } at the end of each ¢, but
their perceived volatilities Q¢ may still differ from the objective Q¢ .
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Data used in structural estimation We estimate the model structural parameters
on data at monthly or lower frequency sampling intervals (as available) from 2001:01-2021:12.
Many series are used because they have obvious model counterparts, e.g., Gross Domestic
Product (GDP) growth, Consumer Price Index (CPI) inflation, the federal funds rate (FFR),
stock market returns, the S&P 500 market capitalization. We use real-time versus historical
versions of these, as appropriate, for mappings onto SM* and SM. The ratios of U.S. cor-
porate sector payout-to-GDP, S&P 500 earnings-to-GDP and S&P 500 dividends-to-GDP
are all used as noisy signals on the payout share of output K;. Investor expectations over
multiple horizons are informed by (i) surveys of expectations on future stock returns from
UBS/Gallup, the Michigan Survey of Consumers (SOC), the Conference Board (CB), the
CFO Survey from the Richmond Federal Reserve Bank, converting firm-level earnings per
share forecasts to S&P 500 forecasts by aggregating over the value-weighted firm-level fore-
casts and converting to growth forecasts, and the Consensus Forecasts of the S&P 500 index
from Bloomberg (BBG), (ii) equity analysts’ S&P 500 one-year-ahead earnings growth ex-
pectations from IBES and Bloomberg (BBG), and the IBES long-term-growth expectations
using the LTG expectation variable!” (iii) dividend growth expectations using S&P dividend
futures data following the procedure of Gormsen and Koijen (2020), (iv) expectations of
future inflation and GDP growth from the Survey of Professional Forecasters (SPF), BBG,
the Livingston (LIV) Survey (inflation only), and the Blue Chip (BC) Survey, (v) inter-
est rate expectations using Federal Funds Futures (FFF), Eurodollar (ED) futures, both
at multiple contract horizons, and the Blue Chip (BC) survey expectations of the FFR 12

months ahead.'® Data on the spread between the Baa corporate bond return and the 20-year

1"When using the IBES long-term growth forecasts (LTG), we follow Bordalo et al. (2019) in aggregating
the value-weighted firm-level long-term growth forecasts of the median analyst to obtain LTG at the S&P
500 level. Since there is ambiguity in the question framing, we treat LTG as an annual five-year forward
growth expectation, (i.e., annual earnings growth from four to five years ahead), since that delivers the lowest
mean-square loss with the survey responses after considering a variety of long- and forward-horizon growth
targets. Interpreting LTG as an expected annual n-year forward growth rate (rather than the expected
annualized n-year growth rate), is consistent with the reference to the nezt full business cycle and moreover
makes the stable median LTG forecast easier to reconcile with the volatile median one-year growth forecast.

18In principle, fed funds futures market rates may contain a risk premium that varies over time. If such
variation exists, it is absorbed in the estimation by the observation error for these equations (Piazzesi and
Swanson (2008)).
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Treasury bond return (“Baa spread” hereafter) are used as an additional noisy signal on the
subjective equity premium, including the liquidity premium component, [p;.

Our measure of corporate earnings deserves further mention. We use bottom-up measure
of IBES Street Earnings for the S&P 500, which differs from GAAP earnings by excluding
discontinued operations, extraordinary charges, and other non-operating items. This is im-
portant because Street Earnings—unlike GAAP earnings—are closely aligned with the target of
equity analysts forecasts (IBES and BBG), which we use to measure subjective beliefs about
equity cash-flows.!® Hillenbrand and McCarthy (2024) argue for the use of Street Earnings
for measuring analysts expectations and show that the use GAAP earnings can over-state

the role of short-term expectations in analyst forecasts for price-earnings fluctuations.

Data used for news events and high-frequency filtering To estimate news-driven
revisions in perceptions of the economic state StM*, we use pre- and post-news event obser-
vations on a subset of the above series available at high frequency. These include tick level
data on stock returns, the S&P 500 market capitalization, FFF and ED contract rates with
different expiries, daily BBG survey expectations on multiple variables, and daily data on
the Baa spread.? In our analysis, the pre-event value is defined as either 10 minutes before
the news event or the day prior, depending on data availability (daily versus minutely/tick
level). Similarly, the post-event value is defined as either 20 minutes after the event or the
following day. Our sample of news events include (i) 1,482 macroeconomic data releases for
GDP, CPI, U.S. unemployment, and U.S. payroll data spanning the period 1980:01-2021:12,
(ii) 16 corporate earnings announcement days spanning 1999:03-2020:05, and (iii) 219 Fed-
eral Open Market Committee (FOMC) press releases from the Fed spanning 1994:02-2021:12.

The corporate earnings news events are from Baker, Bloom, Davis and Sammon (2019) who

9 According to the IBES user guide, analysts submit forecasts after backing out these transitory com-
ponents, and IBES constructs the realized series to align with those forecasts. While analysts have some
discretion over which items to exclude, Hillenbrand and McCarthy (2024) demonstrate that the target of
these forecasts corresponds closely to earnings before special items in Compustat, suggesting that street
earnings accurately reflect the measure analysts are targeting.

20For events that occur when the market is closed we use minutely data on the S&P 500 E-mini futures
market.
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conduct textual analyses of Wall Street Journal articles to identify days in which there were
large jumps in the aggregate stock market attributed primarily to corporate earnings news
with high confidence.?!’ We run the filter to obtain estimates of S; and SM*at high frequency
pre- and post-news event, and at the end of every month from 2008:01-2021:12.

Data inputs for machine learning algorithm  The algorithm used to produce
dynamic machine expectations uses thousands of initial data inputs. Following BLM1, many
of these are converted to diffusion index factors before being passed to the machine estimator.
The initial data inputs include a real-time macro dataset on 92 indicators, a panel dataset of
147 monthly financial indicators, and daily “up-to-the-forecast” financial market information
from five broad classes of financial assets: (i) commodities prices (ii) corporate risk variables
including credit spreads (iii) equities (iv) foreign exchange, and (v) government securities. A
number of other inputs are used, including consensus forecast surprises around data releases,
FFF revisions, market jumps around past news events, and daily text-based factors estimated
by Latent Dirichlet Allocation (LDA) analysis from around one million articles published in

the Wall Street Journal between January 1984 to June 2022.22

6 Results

This section presents our estimation results. We begin with preliminary analysis of structural

parameter estimates.

Parameter Estimates Table 2 reports the posterior mode values for model parameters.

Where applicable, separate values are reported for estimates of parameters governing the

21Baker et al. (2019) (BBDS) examine next-day newspaper accounts of big daily moves (“jumps”) in the
stock market. Trained human readers classify the proximate cause of each jump into distinct categories and
code the confidence with which the journalist advances an explanation for the jump. We are grateful to the
authors of Baker et al. (2019) for providing us with their data for these event days.

22The results here are based a randomly selected sub-sample of 200,000 articles over the same period. This
procedure follows Bybee et al. (2021), and estimates topic weights for individual articles to construct a time
series of news attention by topic.
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objective macro LOM and the perceived macro LOM. Several results are worthy of high-
lighting.

Table 2: Parameters

Objective Perceived Objective Perceived
(R 0.0098 0.0098 Bri 0.0016 0.0016
U, 0.0066 0.0065 Brn —0.0001  —0.0001
VYp,  0.0002 0.0002 B Ay —0.0516  —0.0532
o, 0.0320 0.0320 Bay.i —0.0043  —0.0043

¢, 0.0001  0.0001 Bagw  0.0007  0.0007
¢a, 0.0006  0.0006 Baya, 0.0006  0.0006

¢, 00611  0.0611 Boxs  —T1724 70824
Y.  3.9131 - Dr 0.9803  1.0000
¢ 1.2626 - Pip 0.4317 -

oy 0.9982 -

Notes: Posterior mode values of the parameters. The estimation sample spans 1961:M1-2021:M12.

First, the scalar parameter ( is estimated to be a positive value equal 1.12, consistent
with overreaction to all perceived shocks in Z;” .

Second, for most parameters governing perceived macro dynamics, there is little devi-
ation from the corresponding objective parameter value. However, there are two notable
exceptions. (i) We find p, , > pj., implying that news about today’s payout share is over-
extrapolated to future payout share movements. (ii) There are differences in the perceived
and actual values of 5, x;, which in both cases is negative. This parameter governs the effect
of trend economic growth on the payout share. The negative values for these parameters
indicate that increases in trend growth Ay, drive down the payout share k,.?* Because k;
affects k; and ultimately future k; through (14) and (18), this implies that increases in Ay,
cause a long-lasting decline in k;. Yet because 0 > Ek,fy > B ay» nvestors underestimate
the absolute impact of Ay, on k,, implying that observed declines in k, originating from in-
creases in ez, are partly misattributed to another impulse that also would be perceived to

cause k; to decline. We return to this below. At the same time, 35, A, is positive but small,

Z3This result echoes findings in Greenwald et al. (2025), which shows that the U.S. stock market grew far
faster during decades with sluggish economic growth but rapid growth in the earnings share, than in decades
with rapid economic growth but a relatively stable earnings share.
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indicating that Ay, has only modest predictive power for future output growth, consistent
with the fact that output growth is not highly autocorrelated. Putting this all together,
increases in 5, , are tantamount to bad cash-flow news: the positive effects of trend growth
on future output growth are outweighed by the persistent negative effects on the payout
share of output.

Third, although not shown in Table (2), Appendix Table A.7 shows that the structural
shocks with the largest standard deviations are those to the payout share of output, especially
those to the cyclical payout share. This estimate is driven in the data by a highly volatile
corporate earnings-to-GDP ratio. These results are consistent with the idea that, on average,
news generates more uncertainty about the share of output that will ultimately accrue to
profits than it does about macroeconomic aggregates or discount rates. Since the payout
share is stationary, these estimates are consistent with a large negatively autocorrelated
component in payout growth generated by fluctuations around a trend.

Table 3: Asset Pricing Moments

Moments Model Data
Mean StD Mean StD
Log Stock Return  8.75 12.32 8.96 12.29
Log Excess Return 7.27  14.82 742  14.85
Real Interest Rate 1.48  2.90 1.54  2.53

Notes: Model moments based on modal parameter and latent state estimates. Annualized monthly statistics

(means multiplied by 12, standard deviations by 1/12) and reported in units of percent. The log return
(data) is the log difference in the S&P 500 market cap; excess returns subtract off FFR. The real interest
rate is FFR minus the average one-year ahead forecasts of inflation from the BC, SPF, SOC, and Livingston
surveys. The sample is 2001:M1 - 2019:M12.

Table 3 shows basic asset pricing moments for stock returns and the real interest rate
implied by these estimates. The model-implied moments for these series are based on the
modal parameter and latent state estimates and match their data counterparts closely.

We close this section by emphasizing that, even though the same positively estimated DE
parameter ( governs magnitude of overreactions to all shocks, the perceived volatility and
propagation properties of the shocks themselves can generate asymmetries in these overreac-

tions. It is therefore instructive to consider which shocks investors are most overreactive to
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as a result of this same DE parameter. Figure 1 shows how the investor’s expected payout
growth responds to different perceived (two standard deviation) shocks, v periods after the
shock, under the estimated parameters of our baseline model. These responses are juxta-
posed with those under the restricted set of parameter values corresponding to RE. A third,
“No DE,” line shows the responses when ( = 0 while keeping the estimated distortions be-
tween 0 and 0. A comparison of the baseline and RE responses shows that the the largest
such overreactions (in deviations from steady-state) are to the cyclical payout share shock
first, and to the trend payout share shock second. Other shocks have smaller or negligible
overreactions.?* We discuss the responses to the two payout payout share shocks and their
contribution to market volatility further below. We also see that the only shock for which
there is a non-trivial difference between the baseline responses and the No-DE responses are

those to the trend growth shock.

Figure 1: Impulse Responses of Expected Payout Growth
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Notes: This figure plots estimated impulse responses of expected payout growth at the posterior mode
parameter values, in deviations from steady-state, to shocks specified in the subpanel headers.

24The responses to the liquidity premium display no distortion since that is driven by risk preferences and
not beliefs.
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Market Reactions to News: High-Frequency Structural Event Study We now
turn to the question of how markets react to real-world news events. To do so, we use the
BLM2 filtering algorithm to infer revisions in investor perceptions about the economic state,
at high frequency around news events.

This procedure can be summarized as follows. Consider news events that occur within a
given month ¢t. Let §, € (0,1) represent the number of time units that have passed during
month ¢ up to and including some particular point ¢ — 1 4 d;. Let Stj‘vﬁ(fi 5 denote a filtered
estimate of investor beliefs at time ¢t — 1 + ;, about the time ¢ economic state that investors
expect to prevail when that state is observed at the end of the month. This is an estimate of
the investor’s nowcast of StM*(i), conditional on the volatility regime &, = i. Let the associated
filtered volatility regime probabilities be denoted ﬂi‘tflwh =Pr (& = 1| Xi_146,, X'), where
X1 denotes the history {X; 1, X, o,...}. Finally, let §, assume distinct values d,,. and
dpost that denote the moments right before and right after the news event. Announcement-
specific revisions in S™*® and in 7’ are computed using high-frequency, forward-looking
data by taking the difference between the estimated values for these variables pre- and
post-news event. These differences can be linked back to jumps in specific variables in X,
(e.g., the stock market) using the mapping (32) and further decomposed into contributions
attributable to revisions in the investor’s perceived shocks and volatility regimes using (31).
We refer to these announcement-specific jump decompositions as “shock decompositions”
and report them below for the stock market. To estimate the contribution of movements
in subjective return premia, we report the combined contributions of Ip, and the volatility
regimes to fluctuations in E, [rB.] — (it ~E, [7rt+1]> in (30), labeled “equity premium” in
the figures below.

For the macroeconomic data releases and Fed news events we have an exact time stamp
indicating when the information was released to the public. This allows us to construct
precise 30 minute windows for these events (d,,. =10 minutes before to d,,5; =20 minutes
after). We then run the filter at these times pre- and post-news using minutely or tick-level

financial market data. We also use daily data on the day before and the day after these
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events for those series that are available daily but not at higher frequency. For the corporate
earnings news—where events span an entire day-we run the filter using information on all
high-frequency series from the close of the market on the day before to the opening of the
market on the day after.

Our structural event study findings are divided by news category and displayed as a
series of bar charts, with the news event itself described in subpanel titles. For each shock
decomposition figure, we report the stock market jump in the data (as measured by the S&P
500) with a black dot and the jump implied by the estimated model with a red triangle. For
the estimated baseline model (“Base”, shown in the first bar from the left), the black dots
always lie on top of the red triangles because the baseline model is able to match both the
direction and magnitude of the market jump with negligible error. We then compare these
decompositions to two counterfactuals that reveal how the market would have behaved in
the absence of distortions: (i) rational expectations (RE), i.e., ¢ = 0 and wy = 0 V0, and
(ii) No DE, i.e., only ¢ = 0. As we have over 1700 separate news events, for the purposes of
the plots below we focus on the news by category associated with the biggest stock market
jumps in absolute value. (The results for all events are summarized in a subsequent table.)

Figure 2 reports results for Fed news events. Panel (a) depicts the market response to the
most quantitatively important Fed announcement in our sample, which occurred on January
3, 2001 when the central bank announced it would decrease the target federal funds rate
by 50 basis points, resulting in a 4.2% surge in the S&P 500 during the 30 minute window
surrounding the news. Figure 2 shows what the representative investor learned from this
announcement, as seen through the lens of the model. For the baseline model (leftmost
decomposition) the biggest contributors to the jump were upward revisions in the perceived
shocks to the trend payout share and cyclical output growth, and a downward revision in the
subjective equity premium. Under the RE counterfactual, the market would have jumped
up 3.6% rather than 4.2%. This overreaction is driven almost entirely by the DE distortion
a finding that can be observed by noting that the “No DE” counterfactual results in virtually

the same jump and decomposition as the RE counterfactual. DE causes investors to react
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Figure 2: Decomposing Jumps in S&P 500 due to FOMC News
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Notes: The figure reports shock decompositions of the pre-/post- FOMC announcement change in S&P 500
attributable to revisions in the perceived macro shocks and the subjective equity premium (the combined
effect of shocks to Ip; and stochastic volatility). The specific FOMC events reported on are those coinciding
with the four largest jumps in the S&P 500 in the high-frequency event window. The modifiers (+) or (-)
refer to the sign of the baseline response to a positive increment in the fundamental shock labeled in the
legend. The sample is 2001:M1-2021:M12.

with excessive optimism to both the trend payout share and cyclical output growth shocks,
inflating the price response. This same pattern leads to even greater overreaction for the
FOMC event depicted in panel (d), when the market jumped up by 2.10%, while it would
have jumped only .78% under RE.

An important additional finding that can be observed from Figure 2 is that distortions
are negligible in response to shocks that drive perceived risk premia. We emphasize that
this is not by construction but is instead an empirical result. As Appendix Table A.7 shows,
the shock volatilities move considerably over time and the agent’s subjective perception of
the quantity of risk is allowed to differ in estimation from the objective perception. Thus,

in principle, the agent’s subjective risk premium could have differed from the objective risk
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premium, but this is not what we find.

Figure 3: Decomposing Jumps in S&P 500 due to Macro News
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Figure 3 analyzes market reactions to news about the macro economy. Panel (a) shows
that, on April 10, 2020, early in the Covid-19 outbreak, the market fell 2.8% in the 30
minutes surrounding the Bureau of Labor Statistics (BLS) release of the CPI report, which
came in .2% below consensus forecasts.?” In this case the main driver of the 2.8% decline
was an outsize reaction to a higher perceived cyclical payout share shock, shown in purple.
Investors overreact to the expected pay-back growth induced by the higher cyclical payout
share shock. However, this shock plays virtually no role in the rational response, a point
we come back to below. For this reason, under the RE counterfactual, the market would

have declined just 0.54%. The same pattern, but in the opposite direction, plays out for

25The BLS releases typically occur at 8:30 am. We use S&P E-mini futures data to gauge market reactions
to these events.

41



the event in panel (b) surrounding the release of several pieces of data showing surprising
economic weakness, which the estimates imply led to a downward revision in the perceived
cyclical payout share shock. This revision contributed strongly to the 2% jump upward in
the market, as investors overreacted to expected catch-up growth. By contrast, the market

would have increased only 0.41% under RE, mostly due to a declining equity premium.

Figure 4: Impulse Responses to Payout Share Shocks
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Notes: This figure plots estimated impulse responses at the posterior mode parameter values, in deviations
from steady-state, to positive payout share shock (top panels) and a positive trend payout share shock
(bottom panels), respectively.

To understand these results, we must first explain why a positive increment to the cyclical
payout share shock causes a sharp decline in the stock market in the baseline case, but
not under RE. For this we refer to Figure 4, which plots estimated impulse responses, in
deviations from steady state, to 2 standard deviation increases in the cyclical payout share
shock, e, (top row) and in the trend payout share shock, ez, (bottom row). From the
top row, left panel, we see that a positive payout share shock leads to a highly transitory

increase in payout relative to GDP that quickly mean reverts. Under both RE and in the
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baseline model, this mean reversion in the payout share creates the expectation of negative
fall-back growth in payout next period (top row, middle panel), consistent with the common
understanding that the payout share is stationary. However, in the RE case, expected fall-
back growth is just negative enough to (almost) restore k; to its steady state level within
one period, so that expected growth from period 1 onward is approximately zero. Because
the shock is rationally perceived to generate a highly transitory deviation from the steady-
state payout-output share, it has a negligible effect on the level of the stock market (top
row, right panel).?® By contrast, in the baseline model with DE, the investor strongly
overreacts to the increase in ¢, giving rise to excessive pessimism about fall-back growth
next period. This effect (demonstrated above in the simplified model) is tantamount to
temporarily believing that the level of the payout share will revert back to permanently lower
level. This erroneous belief causes the market to crash before recovering next period when
actual growth is observed and investors observe that they had been excessively pessimistic
(top row, right panel).

These results can be contrasted with the responses to a trend payout share shock in
the bottom row of Figure 4. Unlike an increase in the cyclical payout share shock, €4,
an increase in ez, has highly persistent effects on k;, implying that mean reversion takes
decades.?” When the shock hits, we get a near-permanent rise in the payout share and a
one-time spike up in expected payout growth. In the baseline model, the good news from ey,
is overreacted to, creating excessive optimism and inflating the price response. The same

phenomenon leads to disappointment the following period when actual growth is observed

and investors learn that they had been excessively optimistic, causing a gradual price reversal

Z6Expected growth period 1 onward would be exactly zero if the effects of x; on payout growth were
exactly i.i.d, but these shocks affect the trend k; (see 14), albeit with an estimated positive loading that is
quite small. In turn, k; feeds back into next period’s k; (see 18). Taken together, these features imply that
a positive impulse to ey ; has—via its small effect on the trend payout share—a small (almost imperceptible)
yet highly persistent effect on rationally expected future payout growth starting in period 1. It is the
persistent movement in k; that causes the RE stock price level (as opposed to the price-payout ratio) to
rise imperceptibly above zero on impact, before declining slowly back to baseline over time (third panel).
Since the payout share mean reverts over time regardless of its persistence, positive shocks to the share
would influence prices (discounted forward-looking cash flows) less than current cash flows leading to a lower
price-payout ratio.

*TPayout rises in period 1 because ey, affects k; with lag-see (18).
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back toward the RE response.?

Returning to Figure 3, Panel (¢) shows reactions to the July 2, 2020 BLS release of the
unemployment rate, in which the stock market rose 1.97%, an increase that coincides with
the baseline model response. In this case, however, the market’s response to this news would
have been to jump 3.35% had expectations been formed rationally, implying that distorted
beliefs and DE in particular led the market to underreact to the July 2, 2020 announcement.
This happens because, while the news causes investors to revise down their perception of the
equity premium, which pushes the market up, in the baseline model it also causes a partially
offsetting upward revision in the cyclical payout share shock, which pushes the market down.
As in panel (a), this occurs because an increase in the perceived cyclical payout share causes
excessive pessimism about expected fall-back growth next period.

Under RE, there is no excessive pessimism to the cyclical payout share shock and thus no
erroneous partially offsetting contribution that dampens the market response. In addition,
under RE we see that a downward revision in the perceived shock to trend growth Ay, makes
a large positive contribution to the market change (yellow bar) because, as the parameter
estimates in Table 2 indicate, a negative shock to trend growth generates an expectation of
higher future payout growth. By contrast, this same perceived shock makes a smaller posi-
tive contribution to the market change in the no-DE case due to distortions in the perceived
LOM that underestimate this effect, which means that changes in ex; , will be partly misat-
tributed to another shock. As Figure (6) shows, in this case investors erroneously attribute
part of these effects to a positive cyclical payout share shock, which also drives up payout
but less persistently than does the negative impulse to 4, ;. This misperception therefore
dampens the effect of the true €4, , impulse on the market, an outcome that is necessarily
amplified by DE, since DE applies to the shocks that investors perceive rather than those
that actually occurred. This amplified underreaction explains why the contribution of the

yellow bar in panel (c) is so small. Overall, this event illustrates the potential for DE to

28The baseline price remains slightly above the RE level for some time before finally converging. This
happens because excessive optimism or pessimism generated by DE is modulated by the shock’s perceived
persistence, which in this case is estimated to be high—see (24).
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cause underreaction to news in a multi-shock setting. It is important to emphasize that this
underreaction is not due to inattention. In this model, a single parameter with an estimated
value indicative of behavioral overreaction controls the distorted reactions to all shocks. The
event in panel (¢) underscores the capacity of DE to generate asymmetric compositional

effects capable of either amplifying or dampening market fluctuations.

Figure 5: Decomposing Jumps in S&P 500 due to Earnings News
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Notes: See Figure 3. The figure reports shock decompositions for the four biggest corporate earnings news
events based on absolute jumps in the S&P 500 in the high-frequency event window.

Figure 5 shows shock decompositions for the stock market’s reaction to news about
corporate earnings on big corporate earnings news days. Consider January 20, 2009, a
news day in the wake of the financial crisis when the market declined 5.2% amid extensive
reports about unrealized losses in the portfolio of asset manager State Street and in those of
large banks—panel (b). Seen through the lens of the model, events like these can create the
expectation of lower output and a temporarily higher payout share of output that will shortly

mean revert, creating the expectation of lower payout growth going forward. The baseline
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model implies that the market declined largely because investors became overly pessimistic
about fall-back growth in payout, after revising their perception of the short-term, cyclical
component of the payout share upward. This effect on the market was only partially offset
by a downward revision in the subjective equity premium. By contrast, under RE, the
market would have declined just 0.8% in response to this news day, largely because there is
no overreaction to the cyclical payout share. At the same time, panel (b) of Figure 3 shows
that, under RE, an upward revision in the perceived shock to trend growth Ay, (yellow bar)
makes a large negative contribution to the market response that is barely visible in the plot
for the baseline model. This same phenomenon arises in the event of panel (c¢) of Figure 3
only in the opposite direction. As explained above, this happens because perceptions about
how trend economic growth affects payout are distorted, which implies that impulses in ex;,

are partly misattributed to another shock.

Figure 6: Responses of Perceived Shocks to Actual Trend Growth Shock
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Notes: This figure plots estimated impulse responses at the posterior mode parameter values, in deviations
from steady-state, of perceived shocks to an actual (positive) trend growth shock.

To see which shocks this misattribution maps into, we report in Figure 6 estimated
impulse responses of all perceived shocks in Eiv‘[ to a 2 standard deviation increase in the actual

trend growth shock ez ,. Under RE, only the perceived trend growth shock responds to an
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actual trend growth shock, as all perceptions are accurate. By contrast, in the baseline model,
an increase in £x;, not only causes Ery’t to increase, it also causes the perceived cyclical
payout share shock, €, to decrease strongly and persistently, and causes the perceived
inflation shock, €, to increase by a smaller absolute magnitude. The confounding negative
effect on €x; of a positive impulse to 5, creates the false expectation of catch-up growth
in payout next period. Since this false expectation has price effects that counteract those
of Efy’t, and are amplified by DE, objective changes in the trend component of economic

growth are heavily dampened in the baseline model.

Table 4: Average Jump Differentials

All Events Biggest Jumps Smallest Jumps
Macro News

—12.2% 24.2% —24.9%
CorporateEarnings News
14.4% 43.1% 5.4%
FOMC News
—13.3% 12.1% —18.3%
This table reports (|JBes¢| — | JRF|) /| JMarket| the average difference between the pre-/post- news event

jump (in absolute value) for the baseline model |JZ%*¢| and that for the counterfactual RE case |JFE|

divided by the absolute market jump |JM7%¢!|. For macro and Fed news, "Biggest" ("Smallest") refers to
the top (bottom) 10% of all events based on the absolute change in the S&P 500 over the news window. For
earnings news "Biggest" ("Smallest") refers to the top (bottom) 3 events.

Table 4 summarizes the magnitude of over- or underreaction across all news event of
a given type in our sample. We compute the difference between the absolute value of the
pre-/post- news-event jump in the S&P 500 implied by the baseline model and the RE coun-
terfactual, then average these differences across all events in a given category and express it
as a fraction of the absolute jump in the market. Positive values for this difference indicate
overreaction on average, while negative values indicate underreaction.?? We repeat the com-
putation for news that generated the “Biggest” and “Smallest” absolute jumps in the S&P

500 during the news window. For Fed and macro news (where we have hundreds of events)

29We average across all events in which the baseline and non-distorted jumps are in the same direction.
Jumps in the opposite direction happen infrequently in our sample, but also can’t be readily categorized as
either over- or underreaction, as opposed to simple “wrong” reaction.
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“Biggest” (“Smallest”) refers to the top (bottom) 10% of all events based on the absolute
change in the S&P 500. For the corporate earnings news events, where we have only 16
event-days, we define “Biggest” (“Smallest) as the top (bottom) 3 events according to the
same criteria.

Table 4 shows that, averaged across all events, we find negative differentials in the cat-
egories of Fed and macro news, i.e., underreaction, a result driven by the smallest market
events. The biggest market events are characterized by overreaction in all news categories.
The largest of these is for earnings news, where the market overreacted by an average of 44%
of the total market change. To points are worth noting. First, the corporate earnings news
events are only large events, as BBDS focus on days with large stock market movements.
Second, many of the macroeconomic data and FOMC press releases convey little if any in-
formation that was not already anticipated. Naturally, these events reside in our “Smallest”
events category because they generate little or no reaction in the market and thus little or
no over- or underreaction in absolute terms, even though the latter can still be large as a

percentage of a tiny market change.

Market Valuation: Historical Analysis We now study the model’s predictions outside
of tight windows around news events. Panel (a) of Figure 7 reports the log ratio of market
equity to last month’s output, p? — y;_1, for both the data® and the baseline model, where
the latter is computed at the modal values of all parameters and latent states. (Because
the baseline model effectively fits the observed series without error, two lines lie on top of
each other.) Panel (b) reports the data once more, along with our estimate of the market
evolution under a counterfactual simulation in which parameters that are consistent with
RE prevailed. Note that a counterfactual simulation feeds in the shocks implied by the
baseline model estimates while changing only the parameter values, a procedure that isolates

the strength of the mechanism in the baseline estimates compared to some counterfactual

30We use the interpolation method of (Stock and Watson (2010)) to obtain a monthly GDP series for
estimation.
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Figure 7: Counterfactual Simulations of S&P 500-GDP Ratio
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states. Panel (b) plots the data for pP — y;_; in solid blue and the counterfactual simulation of RE for
pP — y;_1 in dashed blue, where both series are standardized. Panel (c) plots a historical decomposition
for the GFC of changes in pP — y;_jrelative to 2007:M1. Panel (d) plots the counterfactual historical
decomposition under RE of the same series. Panels (e) and (f) present the same for the Covid crash relative
to 2020:M1. The black lines in (c)-(f) plot the changes in pP — y;_1 relative to date indicated in the vertical
bar for each case. The sample in panels (a) and (b) spans 2001:M1 - 2021:M12.

mechanism.?! Since the counterfactual will have a different starting value by construction,
we standardize both series in panel (b) to facilitate comparison. The plots in (a) and (b)
span 2001:01-2021:12. The two bottom rows of Figure 7 reports historical decompositions of
the variation in p” —y;_; during two specific episodes: the Global Financial Crisis (GFC) in
row 2, and the Covid-19 Crisis in row 3. These decompositions are reported for the baseline
model in panels (c¢) and (e) and for the RE counterfactuals in panels (d) and (f). The black

lines represent the cumulative month-to-month changes in p” — y;_; relative to a start date

31This differs from the implications of a counterfactual model, in which the shocks would be re-estimated
under an alternative set of parameters not chosen by the baseline estimation. The latter may be of interest in
some contexts, but it cannot isolate the strength of a baseline model mechanism, since both the mechanism
and the shocks change.
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for the episode, while the colored bars decompose these changes into cumulative fundamental
shocks and premia.

While panel (a) says that the baseline model perfectly explains the market’s fluctuations,
panel (b) tells us that the fit of the counterfactual RE case is far worse. A counterfactually
rational stock market would have been more volatile than actually observed, resulting in
a puzzle of “excess stability” rather than excess volatility. This finding demonstrates the
extent to which distorted beliefs with behavioral overreaction were a stabilizing force over
the post-millennial period, substantially cushioning declines during the GFC and the Covid
crisis, among other episodes.

The historical decompositions in the bottom row help to explain this result. The GFC
episode is characterized by a sharp decline in the cyclical payout share, to which the investor
strongly overreacts, leading to excessive optimism about catch-up growth in payouts. That
over-optimism makes a positive contribution to the market (purple bar), partially offsetting
the predominating negative contributions due to other shocks that were still overreacted to
but to a lesser degree. The market declines more under RE counterfactual because, in that
case, there is no overreaction to the decline in ¢, and thus no excessive optimism about
catch-up growth. This underreaction in the GFC is a prominent historical example of the
shock composition effect at work. Similarly, the third row shows that, following the outbreak
of the Covid-19 pandemic, the RE counterfactual simulation of p” — y;_; again declines by
more than the baseline series, though the difference is smaller. In this case, both over-
optimism about catch-up growth in payouts and overreaction to a perceived decline in the
trend component of real interest rates (a positive for the market) generates a smaller market
decline relative to the RE counterfactual where neither over-optimism or overreaction are

operative.
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7 Unpacking the Mechanism

To unpack the model’s main mechanisms on belief reaction to news, this section presents
several results that illustrate on how markets can underreact to news even when investors
overreact to all shocks.

It is instructive to begin by examining the events that produced the largest estimated
underreactions, which exhibit patterns representative of most underreaction events. Panels
(a)-(d) of 8 plot shock decompositions for the four events in our sample that produce the
largest underreactions. Three points deserve emphasis. First, in each case, the investor in
our model perceives good discount rate news simultaneously with bad cash-flow news. And,
in each case, the underreactions are attributable to asymmetries in the distorted reactions
to counteracting fundamental shocks (the shock composition effect). The market rises “too
little” because the investor’s expectations for earnings growth are more overly pessimistic
than her views on discount rates are overly rosy. Second, the figure shows which components
of the underlying data are at work to generate this finding. Specifically, many of these events
occur in periods of economic weakness when the Fed was cutting interest rates while the
outlook for earnings growth was bleak. Panels (e)-(g) of Figure 8 show the movements in the
high-frequency data that drive these model estimates. Around all of these events, the BAA
spread jumps down, leading us to estimate a decline in the equity premium. At the same time,
the daily BBG earnings nowcast (relative to GDP) jumps up, while the BBG 1lyr earnings
growth forecast jumps down. The two combined illustrate why, as shown in panel (h), we
estimate a strong upward revision in the investor’s expectation for the cyclical component
of the payout share resulting in lower future cash-flow growth due to pay-back, to which the

investor strongly overreacts.>® Third, at the same time, panel (h) also implies that excessive

32We emphasize that these results are not a mechanical result of our estimate that the wedge between
the subjective and objective equity premia is small. Indeed a different and opposite result could have arisen
if any of these had been true: (i) investors overreact to only a single cash-flow shock, rather than multiple
primitive shocks with separate high- and low-frequency components (the structure matters); (ii) the events
themselves did not generate jumps in multiple high-frequency variables with counteracting implications for
valuations (the data matters), and/or (iii) the magnitude of the estimated overreactions to the cash-flow
shocks was found to be small/negligible (the estimates matter).
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pessimism about future cash-flow growth surrounding these events is not solely attributable
to the cyclical component of payout growth. Investors are also excessively pessimistic about
the trend component of payout growth, a finding exhibited in panels (a)-(d) by the larger
contribution revisions in these perceived shocks make to the baseline market reaction as
compared to the RE counterfactual reaction. Still, the cyclical payout share shock makes a
larger contribution to the underreaction than the trend component does, as exhibited by the

fact that the purple bars in the baseline case are larger than the magenta.

Figure 8: Largest Underreaction Events (%)
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Notes: The panels (a) - (d) of the figure reports shock decompositions of pre-/post- FOMC announcement
changes in S&P 500 attributable to revisions in the perceived macro shocks and the subjective equity premium
(the combined effect of shocks to Ip; and stochastic volatility). The specific FOMC events reported on are
those for which the absolute difference between the market’s jump under the RE counterfactual and the
baseline model as a fraction of the market jump is largest. The panels (e) - (h) show jumps in the data for
these events. Panel (g) reports the BBG 1-year earnings growth forecast and panel (h) reports the estimated
investor 1-year payout growth forecast from the model. The modifiers (+) or (-) refer to the sign of the
baseline response to a positive increment in the fundamental shock labeled in the legend. The sample is
2001:M1-2021:M12.
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These results suggest that the cyclical payout share shock plays an important role in
our finding that overreaction to all shocks can be a force for stability rather than volatility.
To quantify its importance, Figure 9 reports the results of a counterfactual simulation in
which the realized cyclical payout share shock is set zero. Panels (a) and (b) zoom in on
the GFC. To form a basis for comparison, Panel (a) displays the log ratio of market equity
to last month’s output, p? — 4, 1, in both the baseline model and the RE (i.e., ¢ = 0 and
wy = 0 VA) and No DE (i.e.,, ( = 0) counterfactuals without shutting down the cyclical
payout share shock. (The baseline model and data line lie on top of each other in solid
blue.) These results may be compared with Panel (b), which plots the same three cases,
but now counterfactually setting the realized cyclical payout share shock to zero. We see
that, for the GFC period, counterfactually eliminating the cyclical decline in the payout
share that occurred during this time-and along with it the investor’s excessive optimism
about next period’s catch-up growth—would lead to the traditional finding that overreaction
generates excess volatility. This underscores the central role played by assumptions on cash-
flow dynamics for results on over- and underreaction. At the same time, it is important to
bear in mind that the trend-cycle specification that we estimate is strongly preferred by the
data, as shown above.

However, we know from Figure 8 that asymmetries in the distorted reactions to counter-
acting fundamental shocks (the shock composition effect) can generate excess stability even
without the cyclical shock. This is illustrated in panels (¢) and (d) of Figure 9 which analyzes
the full sample rather than just the GFC. For ease of reference, Panel (c) reproduces panel
(b) of Figure 7, which shows our baseline model’s full sample implication for the market
equity-output ratio, p? — y;_;, and the corresponding RE counterfactual. Panel (d) shows
the full-sample alternative counterfactual (solid line) that sets the variance of the cyclical
payout share shock to zero and is juxtaposed with the RE counterpart of this no-cyclical-
payout counterfactual. In this case, our finding that a counterfactually rational stock market
would have been more volatile than actually observed reemerges, though it is less pronounced

than in the baseline model that features a highly transitory component in cash-flow growth
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Figure 9: Counterfactual Simulations of S&P 500-GDP Ratio: Base vs RE
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driven by empirically relevant variation in the earnings share of output. Taken together,
panels (b) and (d) demonstrate the key quantitative role of the cyclical component in the
/payout share for the overall magnitude of our excess stability finding, while also showing
that the key mechanism holds even without these shocks due to asymmetries in the distorted
reactions to counteracting fundamental shocks (the shock composition effect).

To provide a sense of the importance of the DE distortion compared to distorted percep-
tions about the macro LOM, Figure 9 also shows a red dashed-dotted line displaying results
for a counterfactual simulation of the No-DE case i.e., with ( = 0 but keeping estimated
distortions on the perceived parameters of the macro LOM. We find distorted perceptions
about the LOM driving fundamentals alone play a modest but non-trivial role in the baseline

model output, with the No-DE case lying in between the RE counterfactual (but closer to
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it) and the baseline output. Comparing the red and blue (base) lines isolates the marginal
effect of DE and again shows that it is the most important distortion we estimate.

As additional evidence of a strong cyclical component in investor beliefs, we examine the
estimated cyclical payout share shock and its relation to actual survey forecast errors. Our
procedure produces a filtered estimate of this cyclical (i.e., short-run) shock, s, which we
observe making large contributions to investor beliefs and stock market fluctuations during
the GFC in panel (¢) of Figure 7, as well as around other news events in Figures 2, 3, and 5.
The model estimates imply that investors overreact to downward (upward) impulses in this
shock with over-optimism (-pessimism) about catch-up (fall-back) growth. Thus a negative
(positive) impulse in g4, should be associated with excessively positive (negative) expecta-
tions of future cash-flow growth when compared with actual future outcomes, implying a
positive relation between e; and survey forecast errors when measured as the actual minus
forecasted value. To check this, we regress IBES or consensus (Bloomberg) forecast errors for
future S&P 500 earnings growth, Aeyy, — Fy [Aesys] over various future horizons h, on our
estimates of ;. Table 5 shows that the coefficient from such a regression using monthly data
from 2006:M1 to 2021:M12 is positive and strongly statistically significant, consistent with
the predictions of the model. This shows that the model implications for overreactions to
measured payout news, summarized by jumps in g5, reflect actual overreactions in earnings

surveys.
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Table 5: Earnings Forecast Errors and Earnings Share Shock

Regression: Aeyy, — Fy [Aeyiy] = ay + byeg + €,
Survey IBES: 1981:M12 to 2021:M12
v (months)  3M 6M IM 12M 24M

b 5.83* 234 125" 076" —0.14
(7.68) (4.35) (2.96) (2.15) (—1.13)
R? 031 018 011 008 001
obs. 250 247 244 241 229

Survey BBG: 1990:M1 to 2021:M12
v (months)  3M 6M 9M 12M

b 6.28"* 260" 143" (.92
(9.22)  (5.22) (3.61) (2.46)
R? 036 022 015  0.11
obs. 250 247 244 238

Notes: The table report the OLS coefficient, heteroskedasticity and serial correlation robust t-statistics (in
parentheses), R? statistics, and number of observations from monthly regressions of v-month-ahead forecast
errors of earnings growth on the cyclical payout share shock. Regressions using the IBES survey using data
over the period 1981:M12 to 2021:M12. Regressions using Bloomberg (BBG) span 2006:M1 to 2021:M12.

To close this section, we discuss two additional checks, the output for which is placed in
the Online Appendix to conserve space.

First, for all high-frequency news events, we use the structural model to categorize the
event by whether the market exhibited over- or underreaction. This is accomplished by
comparing the actual market reactions with the model’s RE counterfactual reaction. We
then ask whether the observed high-frequency jumps in the market that—according to the
model—can be distinguished as either over- or underreactions predict future returns with
the appropriate sign. Table A.6 in Appendix 8 shows that upward (downward) jumps in the
market around measured news events that the model categorized as overreactions are followed
by lower (higher) subsequent returns. By contrast, those categorized as underreactions have
the opposite pattern, with jumps upward (downward) followed by higher (lower) future
returns. The table reports variation in the precision of these estimates, with statistical
significance at the 10% level generally holding, and at the 5% level for overreaction events
where the market jumped down. This result is worth remarking on since we measure only

a handful of events in any given month. Given large high-frequency variation in the stock
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market, predictable changes in future returns in response to these events could easily have
been be swamped by untracked events or noise. That the signal from this few number of
events is evidently sufficiently high to observe future reversals or momentum (as appropriate)
provides supporting evidence for the existence of belief overreactions to our news events,
especially negative news.

Second, Figure A.1 in Appendix 8 shows that the model produces realistic implications
for survey expectations of stock returns over time. We find the model estimates of the
investor’s subjective expectations are close to the survey expectations and move by the right
magnitudes in times of important economic change. In particular, we observe that both
survey and model expectations for returns at a one-year horizon rise sharply in the GFC,

consistent with substantial increases in subjective risk premia during that episode.

8 Conclusion

We measure the nature and severity of a variety of belief distortions in market reactions
to hundreds of economic news events. To do so, we use a new methodology that combines
estimation of a structural asset pricing model with algorithmic machine learning to quantify
bias. The structural model allows for the perceived law of motion driving macroeconomic dy-
namics to differ from the actual law of motion, and nests specific belief formation frameworks
that include diagnostic expectations and inattention. Unlike the traditional specification of
these frameworks, we allow investors to react to multiple perceived fundamental shocks, with
a single estimated scalar parameter ¢ controlling reactions to all shocks. We show that in
this multi-shock environment, investor overreaction to all shocks can cause the market to
underreact to news, dampening rather than amplifying volatility.

This theoretical possibility turns out to be empirically relevant. Our point estimates of ¢
imply that investors overreact to all shocks rather than being inattentive to them. Yet we find
that behavioral overreaction has been be a force for market stability in the post-millennial

period. This surprising result is attributable to asymmetries in the distorted reactions to
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counteracting fundamental shocks, something we refer to as the shock composition effect.
We show that this shock composition effect well describes the stock market’s behavior in
several major episodes of post-millennial history, most notably the Global Financial Crisis,
in which behavioral overreaction was a force for stability rather than volatility.

A transformative idea of 20th century economic thought is that financial markets are
“excessively volatile” vis-a-vis predictions of canonical theory, in which stock prices are the
rational expectation of future cash-flow fundamentals discounted at a constant rate (Shiller
1981, 2000). We find that a counterfactually rational stock market would have been more
volatile than actually observed, resulting in a puzzle of excess stability rather than excess
volatility. By contrast, a macro-dynamic model with belief overreaction in the spirit of
diagnostic expectations can perfectly explain the data, not because it amplifies volatility,

but because it dampens it.
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Online Appendix

Identification

Table A.1 describes the posterior and prior distributions for the parameters of the model.
In the column Type," N stands for Normal, G stands for Gamma, IG stands for Inverse
Gamma, and B stands for Beta distribution, respectively. For all prior distributions, we
report the mean and the standard deviation. The priors for all parameters are diffuse and
centered around values typically found in the literature. To show parameter identification,
we compare the prior densities with their posterior counterparts. If the data are jointly in-
formative about the model parameters, the posterior should move well away from the prior
distribution. The prior 90% credible sets are much more diffuse than the corresponding pos-
terior credible sets, and we obtain relatively tight posterior credible sets for the parameters
both objective and perceived, offering clear evidence of identification. This occurs because,
although we estimate a large number of parameters, the model is required to fit a wide
range of observables. Many of these observables impose cross-equation restrictions that are
informative for the parameters. For example, the perceived law of motion must be consistent
with survey expectations and not too far from the actual data-generating process while the
objective LOM must account for both realized data and machine expectations.

Table A.1: Parameter Estimates

Posterior (Objective parameters) Prior Posterior (Perceived parameters) Prior
Mode 90% CS Mean  Std 90% CS Type Mode 90% CS Mean  Std 90% CS Type
; 0.0098  [0.0081,0.0116] 0.5 0.2 [0.17,0.83] B U, 0.0098  [0.0081,0.0115] 0.5 0.2 [0.17,0.83 G
U 0.0066  [0.0061,0.0079] 1.5 1 [0.31,343] G U 0.0065  [0.0061, 0.0080] 1.5 1 (0.31,3.43] B}
Yy 0.0002  [0.0002, 0.0003] 1.5 1 [0.31,343] G Uay 0.0002  [0.0002, 0.0003] 1.5 1 [0.31,343] B
&; 0.0320  [0.0291,0.0348] 0.5 0.2 [0.17,0.83] B &; 0.0320  [0.0291,0.0348] 0.5 0.2 [0.17,0.83) B
[ 0.0001  [0.0000,0.0001] 0.5 0.2 [0.17,083] B [ 0.0001  [0.0000,0.0001] 0.5 0.2 [0.17,0.83) B
Dy 0.0006  [0.0005, 0.0006] 0.5 0.2 [0.17,0.83] B Py 0.0006  [0.0005, 0.0006] 0.5 0.2 [0.17,0.83) B
[ 0.0611  [0.0591,0.0722] 0.5 0.2 [0.17,0.83] B o 0.0611  [0.0591,0.0722 0.5 0.2 [0.17,0.83) G
Yra 3.9131  [3.7844,4.2832] 6 3 [2.05,11.63] G Vra - - - -
¢ 1.2626  [1.0019,1.4129] 0 0.5 [-0.82,0.82] N ¢ - - - -
Bri 0.0016  [0.0013,0.0019] 0 0.5 [-0.82,0.82] N Bri 0.0016  [0.0013,0.0019] 0 0.5 [-0.82,0.82) N
Ban —0.0001  [—0.0001, —0.0000] 1 0.5 [-0.18,1.82] N Ban —0.0001  [—0.0001, —0.0000] 1 0.5 [(-0.18,1.82) N
Brny —0.0516 [-0.0621, —0.0395] 0 0.5 [-0.82,0.82] N Bray  —0.0532 [-0.0664, —0.0401] 0 0.5 (-0.82,0.82] N
Bayi  —0.0043 [-0.0052,—0.0033] 0 0.5 [-0.82,0.82] N Bayi  —0.0043 [-0.0052, —0.0033] 0 0.5 [-0.82,0.82] N
Bayx  0.0007  [0.0005,0.0009] 0 0.5 [-0.82,0.82] N Bayx  0.0007  [0.0005,0.0009] 0 0.5 (-0.82,0.82] N
Bayay 0.0006  [0.0005,0.0006] 0 0.5 [-0.82,0.82] N Bay.ay 0.0006  [0.0005,0.0006] 0 0.5 [-0.82,0.82) N
Bray —71724 [-7.9712,-5.9811] 2 4 [-4.58,8.58] N Bray, —7.0824 [-7.8991,—5.9014] 2 4 (—4.58,8.58] B
Prk 0.9929  [0.9682,0.9983] 0.95  0.025 [0.90,0.99] B Prk 1.0000  [0.9991,1.0000] 0.95 0.025 [0.90,0.99] B
Pip 0.4317  [0.3725, 0.4955] 0.5 0.2 [0.17,0.83] B Pip - - - -
Pn 0.9986  [0.9981,0.9995] 0.5 0.2 [0.17,0.83] B Py - - - -

Notes: The table describes the posterior and prior distributions for the parameters of the model. In
the column "Type“, N stands for Normal, G stands for Gamma, IG stands for Inverse Gamma, and
B stands for Beta distribution, respectively. For all prior distributions, we report the mean and the
standard deviation.



Data Used in Structural Estimation and Filtering Around News

Events

S&P Market Cap, Indexes, S&P Futures, S&P Dividends, Stock Market Returns,
and Treasury Bill Data

For the structural estimation we use data on both stock market returns (price growth
plus a dividend yield) and on stock market price growth. Monthly data on stock returns
are obtained from the Center for Research in Security Prices (CRSP) downloaded from
WRDS https://wrds.wharton.upenn.edu/wrdsauth/members.cgi. We use the CRSP
value-weighted monthly return series VW RETD (includes dividends) and compute annu-
alized log returns InCRSPD = 12In(1 + VW RETD). For machine forecasts of returns
or price growth we take the difference between the price growth measure or return, e.g.,
In(VWRETD), and the lagged log of the 3-month T-bill rate (3MTB). Since the 3MTB
is reported at an annual rate in percent, we compute the annualized (raw unit) log of fu-
ture returns less the current short rate, i.e., In(VWREX,;,15) = 12In(1 + VW RET Dy 15) —
In(1+4 3MTB,;/100). The structural estimation uses monthly data (or higher frequency), so
we map the annualized monthly stock return onto the one-year return in the model. Both
series were downloaded from WRDS on February 12, 2023.

When evaluating the MSEs ratios of the machine relative to that of a benchmark survey,
we compute machine forecasts for either the annual CRSP return, or S&P 500 price growth
depending on which value most closely aligns with the concept that survey respondents are
asked to predict. See below. To measure one-year stock market price growth we obtain
a monthly series on the S&P 500 market capitalization, obtained as the end-of-month se-
ries from Ycharts.com available at https://ycharts.com/indicators/sp\_500\_market\
_cap. This series span the periods 1959:01 to 2021:12 and were downloaded on March 13,
2022. This series is used to measure the monthly stock price to output ratio for the struc-
tural estimation. Below we also use the one-year log cumulative growth rate of the S&P
500 index, log <§:§—§,€>. The monthly S&P index series spans the period 1957:03 to 2022:12
and was downloaded from WRDS on January 24, 2024 from the Annual Update data of
the Index File on the S&P 500. To measure the one-year log CRSP return, we compute
S22 In(1 4+ VWRETD(t + j)) — In(1 + 3MTB(t)/100).

We obtain S&P 500 Dividend from Robert Shiller’s online data depository at URL:
http://www.econ.yale.edu/~shiller/data.htm. The series is computed from the S&P
four-quarter trailing totals and linearly interpolated to monthly data sampling intervals for
the period 1959:01 to 2021:12 and was downloaded on February 15, 2022.



For the high-frequency filtering, we use tick-by-tick data on S&P 500 index from tick-
data.com. The series was purchased and downloaded on July 2, 2022 from https://www.
tickdata.com/. We create the minutely data using the close price within each minute.
Within trading hours, we construct S&P 500 market capitalization by multiplying the
minutely S&P 500 index value by last month’s S&P 500 Divisor. The S&P 500 Divisor
is available at the URL: https://ycharts.com/indicators/sp\_500\_divisor. We sup-
plement S&P 500 index using S&P 500 E-mini futures for events that occur in off-market
hours. We use the current-quarter contract futures. We purchased the S&P 500 E-mini
futures from CME group at URL: urlhttps://datamine.cmegroup.com/. Our sample spans
January 2nd 1986 to June 30th, 2022. The S&P 500 futures data were downloaded on July
2, 2022.

Earnings Data

IBES (“Street”) Earnings Data We use S&P 500 earnings divided by GDP as a noisy
signal on the payout share K; in the structural estimation. To map into a monthly estimation,
we ideally would use monthly earnings data. Instead, we have quarterly S&P 500 IBES
street earnings per share (EPS) data that starts in 1983:Q4. Following the recommendation
of Hillenbrand and McCarthy (2024), we use Street earnings as the forecast target for IBES
analysts. Street earnings differ from GAAP earnings by excluding discontinued operations,
extraordinary charges, and other non-operating items. According to the IBES user guide,
analysts submit forecasts after backing out these transitory components, and IBES constructs
the realized series to align with those forecasts. While analysts have some discretion over
which items to exclude, Hillenbrand and McCarthy (2024) demonstrate that the target of
these forecasts corresponds closely to earnings before special items in Compustat, suggesting
that street earnings accurately reflect the measure analysts are targeting.

To convert EPS to total earnings, we multiply the resulting quarterly EPS series by the
quarterly S&P 500 divisor available at URL: https://ycharts.com/indicators/sp\_500\
_divisor. Finally, to obtain a monthly S&P 500 earnings series, we linearly interpolate the
resulting quarterly total earnings series. The final monthly total earnings series spans the
period 1983:12 to 2021:12. We downloaded IBES street earnings data from WRDS on July
19, 2025. The divisor data were downloaded on July 21, 2025.

Net Dividends Plus Net Repurchases (Equity Payout)

We use an eight quarter moving average of equity payout divided by GDP as a noisy signal
on K;. Equity payout for the corporate sector is quarterly and measured as net dividends



minus net equity issuance is computed using flow of funds data. Net dividends (“netdiv”)
is the series named for corporate business; net dividends paid (FA096121073.Q). Net repur-
chases are repurchases net of share issuance, so net repurchases is the negative of net equity
issuance. Net equity issuance (“netequi”) is the sum of Equity Issuance for Non-financial
corporate business; corporate equities; liability (Table F.103, series FA103164103) and Eq-
uity Issuance for domestic financial sectors; corporate equities; liability (Table F.108, series
FAT93164105). Since netdiv and netequi are annualized, the quarterly payout is computed
as payout=(netdiv-netequi)/4. The units are in millions of dollars. Source: Federal Reserve
Board. We map the quarterly observation into the model implications for the share k; in the
last month of each quarter. The quarterly data span the period 1951:Q4 to 2022:Q3.

Survey Data on Stock Market Expectations

We use the surveys listed below in our structural estimation. Following Nagel and Xu
(2023), we use the mean values of the Gallup/UBS, CFO survey, and Livingston forecasts.
For the University of Michigan Survey of Consumers (SOC), which are qualitative up/down
forecasts, the structural estimation maps this onto model-implied investor expectations of
one-year-ahead stock returns using the method described in Section 20 below. For compari-
son purposes, we compute machine forecasts for either the annual CRSP return, or S&P 500
price growth depending on which variable most closely aligns with the concept that survey
respondents are asked to predict.

UBS/Gallup Survey Stock Return Forecasts The UBS/Gallup is a monthly sur-
vey of one-year-ahead stock market return expectations, obtained from Roper iPoll: http:
//ropercenter.cornell.edu/ubs-index-investor-optimism/. We use the mean point
forecast in our estimation and compare these to machine forecasts of the annual CRSP
return. Gallup conducted 1,000 interviews of investors during the first two weeks of ev-
ery month and results were reported on the last Monday of the month. The first survey
was conducted on 1998:05. Until 1992:02, the survey was conducted quarterly on 1998:05,
1998:09, and 1998:11. The data on 1998:06, 1998:07, 1998:08, 1998:10, 1998:12, 1999:01,
and 2006:01 are missing because the survey was not conducted on these months. We follow
Adam, Matveev and Nagel (2021) in starting the sample after 1999:02 due to missing values
at the beginning of the sample. For each month when the survey was conducted, respondents
are asked about the return they expect on their own portfolio. The survey question is “What
overall rate of return do you expect to get on your portfolio in the next twelve months?”
Before 2003:05, respondents are also asked about the return they expect from an investment
in the stock market during the next 12 months. The survey question is “Thinking about the

4



stock market more generally, what overall rate of return do you think the stock market will
provide investors during the coming twelve months?” For each month, we calculate the av-
erage expectations of returns on their own portfolio and returns on the market index. When
calculating the average, survey respondents are weighted by the weight factor provided in
the survey. We exclude extreme observations where a respondent reported expected returns
higher than 95% or lower than -95% on either their own portfolio or the market index.

In order to construct a consistent measure of stock market return expectations over the
entire sample period, we impute missing market return expectations using the fitted values
from two regressions. First, we impute missing values during 1999:02-2005:12 and 2006:02-
2007:10 with the fitted value from regressing expected market returns on own portfolio
expectations contemporaneously, where the regression is estimated using the part of the
sample where both are available. Second, we impute the one missing observation in both
market and own portfolio return expectations for 2006:01 with the fitted value from regressing
the market return expectations on the lagged own portfolio return expectations, where the
coefficients are estimated using part of the sample where both are available, and the fitted
value combines the estimated coefficients with lagged own portfolio expectations data from
2005:12. Following Nagel and Xu (2023), we assume that the forecasted stock market return
includes dividends and capture expectations about annual simple net stock returns Fy[r,, 1o].
To obtain survey expectations of annual log returns F;[In(1+47412)] from a survey expectation
of annual net simple returns Fy[r; 5], we use the approximation F;[In(1 + r,112)] ~ In(1 +
Fy[ri412]). After applying all the procedures, the Gallup market return expectations series
spans the periods 1999:02 to 2007:10. The data were downloaded on August 1st, 2024.

We take a stand on the information set of respondents when each forecast was made,
and we assume that respondents could have used all data released before they completed
the survey. Since interviews are in the first two weeks of a month (e.g., February), we
conservatively set the response deadline for the machine forecast to be the first day of the
survey month (e.g., February 1), implying that we allow the machine to use information
only up through the end of the previous month (e.g., through January 31st). This ensures
that the machine only sees information that would have been available to all UBS/Gallup
respondents for that survey month (February). This approach is conservative in the sense
that it handicaps the machine, since all survey respondents who are being interviewed during
the next month would have access to more timely information than the machine. Since the
survey asks about the "one-year-ahead" we interpret the question to be asking about the
forecast period spanning from the current survey month to the same month one year ahead.
The data spans the periods 1998:01 to 2007:12. The data were downloaded on August 8th,
2022.



Michigan Survey of Consumers (SOC) The SOC contains approximately 50 core ques-
tions, and a minimum of 500 interviews are conducted by telephone over the course of the
entire month, each month. Table 20 of the Michigan Survey of Consumers (Soc) reports the
probability of an increase in stock market in next year. The survey question was "The next
question is about investing in the stock market. Please think about the type of mutual fund
known as a diversified stock fund. This type of mutual fund holds stock in many different
companies engaged in a wide variety of business activities. Suppose that tomorrow someone
were to invest one thousand dollars in such a mutual fund. Please think about how much
money this investment would be worth one year from now. What do you think the percent
chance that this one thousand dollar investment will increase in value in the year ahead, so
that it is worth more than one thousand dollars one year from now?"

When we use this survey forecast to compare to machine forecasts, we impute a point
forecast for stock market returns using the method described in Section 8 below. We compare
the imputed point forecast to machine forecasts of CRSP returns. When we use this survey
in the structural estimation, we map the survey answer on probability onto model-implied
investor expectations of one-year-ahead stock returns using the method described in Section
20 below.

For the SOC, interviews are conducted monthly typically over the course of an entire
month. (In rare cases, interviews may commence at the end of the previous month, as in
February 2018 when interviews began on January 31st 2018.) We take a stand on the infor-
mation set of respondents when each forecast was made, and we assume that respondents
could have used all data released before they completed the survey. Since interviews are al-
most always conducted over the course of an entire month (e.g., February), we conservatively
set the response deadline for the machine forecast to be the first day of the survey month
(e.g., February 1), implying that we allow the machine to use information only up through
the end of the previous month (e.g., through January 31st). This ensures that the machine
only sees information that would have been available to all respondents for that survey month
(February). This approach is conservative in the sense that it handicaps the machine, since
all survey respondents who are being interviewed during the next month would have access
to more timely information than the machine. Since the survey asks about the "year ahead"
we interpret the question to be asking about the forecast period spanning the period running
from the current survey month to the same month one year ahead. The data spans 2002:06
to 2021:12. The SOC responses were obtained from https://data.sca.isr.umich.edu/data-
archive /mine.php and downloaded on August 13th, 2022.



The CFO Survey Stock Return Forecasts The CFO survey is a quarterly survey that
asks respondents about their expectations for the S&P 500 return over the next 12 months,
obtained from https://www.richmondfed.org/-/media/RichmondFedOrg/research/national _
economy/cfo_survey/current_historical_cfo_data.xlsx. We use the mean point fore-
cast for the value of the “most likely” future stock return in our estimation. More specifically,
the survey asks the respondent “over the next 12 months, I expect the average annual S€P
500 return will be: Most Likely: I expect the return to be:  %”. Mean point forecasts
before 2020Q3 are available in column sp_1_exp of sheet through_Q1_2020; mean point fore-
casts from 2020Q3 and onwards are available in column sp_12moexp_2 of sheet CFO_SP500.
Following Nagel and Xu (2023), we assume that the forecasted S&P 500 return includes div-
idends and capture expectations about annual simple net stock returns F;[r;;12]. To obtain
survey expectations of annual log returns Fy[In(1+474412)] from a survey expectation of annual
net simple returns F;[r, 12|, we use the approximation F;[In(14r;y12)] &~ In(14+F;[r;112]). The
CFO survey panel includes firms that range from small operations to Fortune 500 companies
across all major industries. Respondents include chief financial officers, owner-operators,
vice presidents and directors of finance, and others with financial decision-making roles. The
CFO panel has 1,600 members as of December 2022. As for the SOC, we take a stand
on the information set of respondents when each forecast was made, and we assume that
respondents could have used all data released before they completed the survey. Because
the CFO survey releases quarterly forecasts at the end of each quarter, we conservatively
set the response deadline for the machine forecast to be the first day of the last month of
each quarter (e.g., March 1). The data spans the periods 2001Q4 to 2021Q1. The data were
downloaded on August 8th, 2022.

Livingston Survey Stock Index Forecast We obtained the Livingston Survey S&P500
index forecast (SPIF) from the Federal Reserve Bank of Philadelphia, URL: nttps://ua.
philadelphiafed.org/surveys-and-data/real-time-data-research/livingston-historical-data, and use the mean
values in our structural and forecasting models. We compare the one-year growth in these
forecasts to machine forecasts of S&P 500 price growth. Our sample spans 1947:06 to 2021:06.
The forecast series were downloaded on September 20, 2021.

The survey provides semi-annual forecasts on the level of the S&P 500 index. Participants
are asked to provide forecasts for the level of the S&P 500 index for the end of the current
survey month, 6 months ahead, and 12 months ahead. We use the mean of the respondents’
forecasts each period, where the sample is based on about 50 observations. Most of the survey
participants are professional forecasters with “formal and advanced training in economic

theory and forecasting and use econometric models to generate their forecasts.” Participants



receive questionnaires for the survey in May and November, after the Consumer Price Index
(CPI) data release for the previous month. All forecasts are typically submitted by the
end of the respective month of May and November. The results of the survey are released
near the end of the following month, on June and December of each calendar year. The
exact release dates are available on the Philadelphia Fed website, at the header of each news
release. We take a stand on the information set of the respondents when each forecast was
made by assuming that respondents could have used all data released before they completed
the survey. Since all forecasts are typically submitted by the end of May and November
of each calendar year, we set the response deadline for the machine forecast to be the first
day of the last month of June and December, implying that we allow the machine to use
information only up through the end of the May and November.

We follow Nagel and Xu (2022) in constructing one-year stock price growth expectations
from the level forecasts. Starting from June 1992, we use the ratio between the 12-month
level forecast (SPIF_12M;) and O-month level nowcasts (SPIF_ZM;) of the S&P 500 index.
Before June 1992, the 0-month nowcast is not available. Therefore we use the annualized
ratio between the 12-month (spil2,) and 6-month (spi6,) level forecast of the S&P 500

index
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where P, is the S&P 500 index and ¢ indexes the survey’s response deadline. To obtain a

survey expectation of the log change in price growth we use the approximation:
]Ft (Apt+12> ~ In (Ft[Pt+12]) —In (Pt) .

Bloomberg Consensus Survey Stock Index Forecasts As an additional signal of
investor expectations, we use the Bloomberg (BBG) Consensus Forecast of the stock market.
Survey respondents are asked to forecast the “end-of-year” closing value of the S&P 500 index
on the last trading day of the calendar year (id: SPXSFRCS). The forecast horizon therefore
changes depending on when in the year panelists are answering the survey. Surveys conducted
between January through November forecast the index for the end-of-current-year (EOCY).
Surveys held in December forecast the index for the end-of-next-year (EONY). For example:
On January 2021, the survey forecasts the S&P 500 index 11 months ahead for the end of
2021. On November 2021, the survey forecasts the S&P 500 index 1 month ahead for the
end of 2021. On December 2021, the survey forecasts the S&P 500 index 12 months ahead
for the end of 2022. The data span the period from 16-Apr-1999 to 15-Jun-2022 and were



downloaded from the Bloomberg terminal on July 8, 2022. The survey has been conducted
irregularly over time. It was conducted roughly once a week from 1999 to 2014, roughly two
to three times per month from 2014 to 2016, and once each month since 2017. We construct
a monthly dataset of these survey observations by taking the last observation for a month
as our monthly observation for the years 1999 to 2014.

We use these data to augment the estimation as an additional signal on stock market
return expectations. This requires a mapping into the monthly subjective return expectation
counterpart from the model. Our procedure is to treat survey forecasts for month M =
1,2,3,...,12 as a signal on the 12-M month underlying expectations process for returns.
Thus, for surveys conducted in January of a given year, we take the BBG forecast in January
of the EOCY S&P 500 index value and divide it by the observed S&P 500 index value on
December 31 of the immediately previous year. This observation is mapped into the model
implications for 11-month-ahead subjective return expectations of investors. For surveys
conducted in February of a given year, we take the BBG forecast of the EOCY S&P index
value and divide it by the observed S&P value for January 31 of the current year and map
that into the model implications for 10 month ahead subjective return expectations. We
follow this procedure for all surveys conducted between January through November of each
year. For surveys conducted in December, the BBG forecasts are for the end of the next
year. Thus, for surveys conducted in December of a given year, we take the BBG forecast
for the EONY S&P 500 index value and divide it by the observed S&P 500 index value on
November 31 of the current year. This is mapped into the model implications for subjectively
expected 12 month ahead returns. In all cases if the observation needed for the S&P 500
index value used in the divisor fell on a day in which the market was closed, we instead use
the value for the index from the last trading day prior to this date.

Finally, we convert the end-of-year S&P 500 return forecasts to annualized units. For
example, for all forecasts conducted in May, we raise our gross return forecasts to the power
12/7; for all forecasts conducted in June, we raise gross return forecasts by 12/6, and so on.
For mapping to log returns, we instead multiply by 12/7, 12/6, and so on.

Converting Qualitative Forecasts to Point Forecasts (SOC) For comparing the SOC
return forecast to the machine forecast, we use the SOC probability to impute a quantitative
point forecast of stock returns using a linear regression of CFO point forecasts for returns
onto the SOC probablity of a price increase. The SOC asks respondents about the percent
chance that an investment will “increase in value in the year ahead.” We interpret this
as asking about the ex dividend value, i.e., about price price growth. The CFO survey is
conducted quarterly, where the survey quarters span 2001:Q4 to 2021:Q1. The SOC survey



is conducted monthly, where survey months span 2002:06 to 2021:12. Since the CFO is a
quarterly survey, the regression is estimated in real-time over a quarterly overlapping sample.
Since the CFO survey is conducted during the last month of the quarter while the SOC is
conducted monthly, we align the survey months between CFO and SOC by regressing the
quarterly CFO survey point forecast with the qualitative SOC survey response during the
last month of the quarter. Since the SOC survey question is interpreted as asking about
S&P 500 price growth while the CFO survey question asks about stock returns including
dividends, we follow Nagel and Xu (2022) in subtracting the current dividend yield of the
CRSP value weighted index from the CFO variable before running the regression. After
estimating the regression, we then add back the dividend yield to the fitted value to obtain
an imputed SOC point forecast of stock returns including dividends.

Specifically, at time ¢, we assume that the CFO forecast of stock returns, FS™O[ry 4],
minus the current dividend yield, D,/P,, is related to the contemporaneous SOC probability

of an increase in the stock market next year, Pfgi, by:

i Olreeal — Di/ Py = By + B PSS + e

The final imputed SOC point forecast is constructed as FSOC[ry 4] = B, + BlPtsﬁfi + D,/ P,.
We first estimate the coefficients of the above regression over an initial overlapping sample of
2002:Q2 to 2004:Q4, where the quarterly observations from the CFO survey is regressed on
the SOC survey responses from the last month of each calendar quarter. Using the estimated
coefficients and the SOC probability from 2005:03 gives us the point forecast of the one-year
stock return from 2005:Q1 to 2006:Q1. We then re-estimate this equation, recursively, adding
one quarterly observation to the end of the sample at a time, and storing the fitted values.
This results in a time series of SOC point forecasts F3°C[r; ;4] spanning 2005:Q1 to 2021:Q1.

Earnings Expectations

IBES Survey We obtained the monthly survey data for the median analyst earnings per
share forecast and actual earnings per share from the Institutional Brokers Estimate System
(IBES) via Wharton Research Data Services (WRDS). The data spans the period 1976:01
to 2021:12. All data were downloaded in October 2022.

We build measures of aggregate S&P 500 earnings expectations growth using the con-
stituents of the S&P 500 at each point in time following De La O and Myers (2021). We
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first construct expected earnings expectations for aggregate earnings v-months-ahead as

Ft[Et+v] = Qt Z ]Ft [EPSi,t+v] S@t /DiUiSOTt,

1E€ET 4o

where [F is the median analyst survey forecast, E is aggregate S&P 500 earnings, EPS; is
earning per share of firm ¢ among all S&P 500 firms x;, for which we have forecasts in
IBES for t + v, S; is shares outstanding of firm ¢, and Divisor; is calculated as the S&P 500
market capitalization divided by the S&P 500 index. We obtain the number of outstanding
shares for all companies in the S&P500 from Compustat. (All data from Compustat were
downloaded on November 17th, 2022.) IBES estimates are available for most but not all
S&P 500 companies. Following De La O and Myers (2021), we multiply this aggregate by
2,1, a ratio of total S&P 500 market value to the market value of the forecasted companies
at t +v to account for the fact that IBES does not provide earnings forecasts for all firms in
the S&P 500 in every period.

IBES database contains earning forecasts up to five annual fiscal periods (FY1 to FY5)
and as a result, we interpolate across the different horizons to obtain the expectation over
the next X months, as needed. This procedure has been used in the literature, including
De La O and Myers (2021). For example, if we are interested in the expectation over the
next 12 months, and if the fiscal year of firm XYZ ends nine months after the survey date,
we have a 9-month earning forecast F;[F; o] from FY1 and a 21-month forecast Fy[E;, 9]
from FY2. We then obtain the 12-month ahead forecast by interpolating these two forecasts

as follows,
9 3

Fi[Ery12] = EFt[Et+9] + EFt[Et—O—Zl]-

For the forecasting performance estimates, we use quarterly data. To convert the monthly
forecast to quarterly frequency, we use the forecast made in the middle month of each quar-
ter, and construct one-year earnings expectations from 1976Q1 to 2021Q4 and the earning
expectation growth is calculated as an approximation following following De La O and Myers
(2021):

IF, (A€t+12) ~ In (]Ft[Et+12]) — €

where ¢, is log earnings for S&P 500 at time ¢ calculated as e, = In (EPS; - Divisor), where
EPS; is the IBES street earnings per share for the S&P 500, as described above.

We constructed long term expected earnings growth (LTG) for the S&P 500 following
Bordalo et al. (2019). Specifically, we obtained the median firm-level LTG forecast from

11



IBES, and aggregate the value-weighted firm-level forecasts,

LTG, = ZLTG” Py
=1 22 IP“LQ’”

where S is the number of firms in the S&P 500 index, and where P;; and @);; are the stock
price and the number of shares outsanding of firm ¢ at time ¢, respectively. LT'G;; is the
median forecast of firm i’s long term expected earnings growth. The data spans the periods
from 1981:12 to 2021:12. All data were downloaded in February 2023.

To estimate any biases in IBES analyst forecasts, our dynamic machine algorithm takes
as an input a likely date corresponding to information analysts could have known at the
time of their forecast. IBES does not provide an explicit deadline for their forecasts to be
returned. Therefore we instead use the “statistical period” day (the day when the set of
summary statistics was calculated) as a proxy for the deadline. We set the machine deadline
to be the day before this date. The statistical period date is typically between day 14 and
day 20 of a given month, implying that the machine deadline varies from month to month.
As the machine learning algorithm uses mixed-frequency techniques adapted to quarterly
sampling intervals, while the IBES forecasts are monthly, we compare machine and IBES
analyst forecasts as of the middle month of each quarter, considering 12-month ahead forecast
from the beginning of the month following the survey month.

BBG Daily Earnings Nowcasts and Earning Forecasts We obtain daily nowcasts and
forecasts of S&P 500 earnings per share (EPS) from BBG. The survey respondents are equity
strategists that are asked to provide nowcasts and forecasts of earnings per share (EPS) for
the constituents of the S&P 500. For each S&P 500 constituent, BBG provides the mean
forecast across survey respondents as well as a bottom-up aggregate forecast of EPS for the
S&P 500 by aggregating the EPS forecasts across the S&P 500 constituents. Bloomberg’s
core earnings-estimate product is the Bloomberg Estimate (BEst) dataset, and the standard
field is BEST _EPS (for a single stock) or BEST _EPS Index (for an index like the S&P 500).
These forecasts are closely related to the IBES forecasts since “reflects the consensus estimate
of Earnings Per Share (EPS)” based on the average of sell-side analyst projections which
target continuing operations, seeking to strip out non-recurring and extraordinary items. We
construct a mean respondent forecast for the level of S&P 500 earnings by multiplying this
bottom-up aggregate with the S&P 500 index divisor. (The index is the market capitalization
of the 500 companies covered by the index divided by the S&P 500 divisor, roughly the
number of shares outstanding across all companies.) The S&P 500 divisor is available at the
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URL: https://ycharts.com/indicators/sp_500_divisor. These forecasts are available
daily for the current quarter (nowcasts) and the next 1, 2, 3, and 4 quarters, where the
quarters are measured as standard financial quarters (Jan-Mar, Apr-June, Jul-Sep, Oct-
Dec). We interpolate across different quarterly horizons to obtain the expectation over the
next 3, 6, 9, and 12 months. For example, the observation for July 10, 2024 (which falls
under the standard financial quarter of 2024:Q3) would contain a nowcast for 2024:Q3 EPS
and a 1 quarter ahead forecast for 2024:Q4 EPS. Since the current standard financial quarter
for 2024:Q3 ends on September 30 and the next quarter for 2024:Q4 ends on December 31,
we have an 82-day ahead earnings nowcast Fy[E; go] for the current quarter and a 174-day
ahead forecast Fy[Fy 174 for one quarter ahead. We then obtain the 92-day ahead forecast
by interpolating these two forecasts as follows,

82 10
Fi[Erioo] = 9_2Ft [Eiiso] + 9_2Ft[Et+174]

where the 92-day horizon captures the number of days in the 3 months from September to
December.

To convert the daily forecast to a monthly frequency, we use the forecast made on the
15th of each month. If the forecast is not available on the 15th, we use the most recent
forecast made before the 15th of each month. To convert level forecasts of v = 1,2,3, and 4
quarter ahead S&P 500 earnings into forecasts of earnings growth, we use the approximation:

]Ft [A€t+v] ~ h’l(Ft [Et+v]) — €

where we construct a forecast of the level of S&P 500 earnings F;[E;,,] by multiplying the
S&P 500 EPS forecast with the S&P 500 index divisor. e; is log earnings for the S&P 500
at time ¢ calculated as e, = In (F;) = In (EPS; - Divisor,), where E; is the aggregate S&P
500 earnings, FPS; is the IBES street earnings per share for the S&P 500, and Divisor,
is the S&P 500 divisor, as described above. Bloomberg does not require respondents to
submit their forecasts on a specific timeline or frequency. Instead, respondents voluntarily
decide how often to update their forecasts. To ensure that consensus forecasts are not heavily
influenced by outdated information, Bloomberg excludes stale forecasts submitted before the
most recent earnings announcement date. The data was downloaded from the Bloomberg
terminal on January 10, 2025, using the Earnings & Estimates (EE) function on the S&P 500
index (SPX Index). The aggregated consensus forecasts are available daily, except weekends
and holidays, spanning the period from January 2, 1990 to January 10, 2025. The divisor
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series series span the period 1959:03 to 2021:12 and was downloaded on March 13, 2022.

Dividend Growth Expectations

We obtained the S&P dividend futures from Bloomberg terminal and obtained data on S&P
dividends from S&P (via Bloomberg terminal). The data spans the periods from 2015:01 to
2021:12 and are expressed in annual units. The series were downloaded on April 18th, 2023.
We constructed estimates of S&P 500 dividend growth expectation following the procedure
of Gormsen and Koijen (2020) by first calculating the equity yields as

1 D
e™ = ZIn [ =%
n Ft(")

where Dy is the S&P dividend, Ft(") is the dividend futures with contact length of n years,
where t is measured in quarters. We then run a regression of realized dividend growth rates
on the S&P500 onto the 2-year equity yield

ADt,t+8 = /BOD + 61D€1(52) + Et-

We use the parameter estimates from this quarterly regression to estimate expected two-year-
ahead dividend growth at daily frequency based on the fitted values and daily observations on

e§2). To do this, since we have quarterly observations on D;, we use the 2019 year-end value

of dividends D, for all days in 2020 as the numerator value for 6152). For the denominator,
since the futures contracts always mature in December, to have a 2-year price in, for example,
May 1 of 2020, we interpolate the futures price of the December contract of that year and
the following year as FQI[%C ’]a[aym = %FQ%S& Mayo1 T %F;g’;& Mayo1- Thus the daily observation

for the yield on May 1, 2020 is the 2019 year-end value for D, divided by F;éggﬁ[aym.

Fed Funds Futures and Eurodollar Data

We use tick-by-tick data on Fed funds futures (FF'F) and Eurodollar futures obtained from
the CME Group. Our sample spans January 3, 1995 to June 30, 2022. FFF contracts settle
based on the average federal funds rate that prevails over a given calendar month. Fed funds
futures are priced at 100 — ft(n), where ft(") is the time-t contracted federal funds futures
market rate that investors lock in. Contracts are monthly and expire at month-end, with
maturities ranging up to 60 months. For the buyer of the futures contract, the amount of

14



< ft(n) — rt+n> x $D, where ryy, is the ex post realized value of the federal funds rate for
month ¢ + n calculated as the average of the daily Fed funds rates in month ¢ + n, and $D
is a dollar “deposit”, represents the payoff of a zero-cost portfolio.

Eurodollar futures contracts are quarterly, expiring two business days before the third
Wednesday in the last month of the quarter. Eurodollar futures are similarly quoted, where
ft(q) is the average 3-month LIBOR in quarter ¢ of contract expiry. Maturities range up to 40
quarters. For both types of contracts, the implied contract rate is recovered by subtracting
100 from the price and multiplying by —1.

Both types of contracts are cleaned following the same procedure following communi-
cation with the CME Group. First, trades with zero volume, which indicate a canceled
order, are excluded. Floor trades, which do not require a volume on record, are included.
Next, trades with a recorded expiry (in YYMM format) of 9900 indicate bad data and are
excluded (Only 1390 trades, or less than 0.01% of the raw Fed funds data, have contract
delivery dates of 9900). For trades time stamped to the same second, we follow Bianchi,
Gomez-Cram, Kind and Kung (2023) and keep the trade with the lowest sequence number,
corresponding to the first trade that second.

Fed funds futures data require additional cleaning. Trade prices were quoted in different
units prior to August 2008. To standardize units across our sample, we start by noting that
Fed funds futures are priced to the average effective Fed funds rate realized in the contract
month. And in our sample, we expect a reasonable effective Fed funds rate to correspond to
prices in the 90 to 100 range. As such, we rescale prices to be less than 100 in the pre-August
2008 subsample.! After rescaling, a small number of trades still appear to have prices that
are far away from the effective Fed funds rates at both trade day and contract expiry, along
with trades in the immediate transactions. The CME Group could not explain this data
issue, so following Bianchi et al. (2023) and others in the high frequency equity literature,
we apply an additional filter to exclude trades with such non-sensible prices. Specifically, for
each maturity contract, we only keep trades where

|pt —]_?t(]{f,(5)| < 30,5(]'{575) + s

where p; denotes the trade price (where ¢ corresponds to a second), and p,(k,d) and o.(k, J)
denote the average price and standard deviation, respectively, centered with k/2 observations
on each side of ¢ excluding 6k/2 trades with highest price and excluding dk/2 trades with
lowest price. Finally, v is a positive constant to account for the cases where prices are

!For trades with prices significantly greater than 100, we repeatedly divide by 10 until prices are in the
range of 90 to 100. We exclude all trades otherwise.
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constant within the window. Our main specification uses k = 30, 6 = 0.05 and v = 0.4, and

alternative parameters produce similar results.

Historical Macro data (GDP and inflation)

Real Gross Domestic Product is obtained from the US Bureau of Economic Analysis. It is
in billions of chained 2012 dollars, quarterly frequency, seasonally adjusted, and at annual
rate. The source is from Bureau of Economic Analysis (BEA code: A191RX). The sample
spans 1959:Q1 to 2021:Q4. The quarterly series was interpolated to monthly frequency using
the method in Stock and Watson (2010).The quarterly series was downloaded on June 15th,
2022. Monthly inflation is measured as the log difference in the Consumer Price Index for
all urban consumers, all items, seasonally adjusted, 1982=100, from FRED (CPTAUCSL).
The sample spans 1959:01 to 2022:06. The monthly series was downloaded on August 17,
2022.

Real Time Macro Data (GDP and inflation)

At each forecast date in the sample, we construct a dataset of macro variables that could have
been observed on or before the day of the survey deadline. We use the Philadelphia Fed’s
Real-Time Data Set to obtain vintages of macro variables.? These vintages capture changes
to historical data due to periodic revisions made by government statistical agencies. We use
the real time vintages of the same variables for GDP and inflation used for the historical
data stipulated above. For real time GDP data we linearly interpolate the quarterly series
to monthly values. For a complete list of the the details on variables used in real time, see
the subsection below “Data Inputs for Machine Learning Algorithm.”

Baa Spread, 20-yr T-bond, Long-term US government securities

We obtained daily Moody’s Baa Corporate Bond Yield from FRED (series ID: DBAA)
at URL: https://fred.stlouisfed.org/series/BAA, US Treasury securities at 20-year
constant maturity from FRED (series ID: DGS20) at URL: https://fred.stlouisfed.
org/series/DGS20, and long-term US government securities from FRED (series ID: LT-
GOVTBD) at URL: https://fred.stlouisfed.org/series/LTGOVIBD. The sample for
Baa spans the periods 1986:01 to 2021:06. To construct the long term bond yields, we
use LTGOVTBD before 2000 (1959:01 to 1999:12) and use DGS20 after 2000 (2000:01 to

2The real-time data sets are available at https://www.philadelphiafed.org/research-and-data/real-time-
center /real-time-data/data-files.
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2021:06). The Baa spread is the difference between the Moody’s Corporate bond yield
and the 20-year US government yield. The excess bond premium is obtained at URL:
https://www.federalreserve.gov/econres/notes/feds-notes/ebp_csv.csv. All series
were downloaded on Feb 21, 2022.

Bloomberg Consensus Inflation and GDP forecasts

We obtain the Bloomberg (BBG) US GDP (id: ECGDUS) and inflation (id: ECPIUS)
consensus mean forecast from the Bloomberg Terminal available on a daily basis up to a few
days before the release of GDP and inflation data. The Bloomberg (BBG) US consensus
forecasts are updated daily (except for weekends and holidays) and reports daily quarter-
over-quarter real GDP growth and CPI forecasts from 2003:Q1 to 2021Q2. These forecasts
provide more high-frequency information on the professional outlook for economic indicators.
Both forecast series were downloaded on October 21, 2021.

Livingston Survey Inflation Forecast

We obtained the Livingston Survey mean 1-year and 10-year CPI inflation forecast from
the Federal Reserve Bank of Philadelphia, URL: https://www.philadelphiafed.org/surveys-and-data/
real-time-data-research/livingston-historical-data and use the median values in our structural and
forecasting models. Our sample spans 1947:06 to 2021:06. The forecast series were down-
loaded on September 20, 2021.

Bluechip Inflation and GDP Forecasts

We obtain Blue Chip expectation data from Blue Chip Financial Forecasts from Wolters
Kluwer. The surveys are conducted each month by sending out surveys to forecasters in
around 50 financial firms such as Bank of America, Goldman Sachs & Co., Swiss Re, Loomis,
Sayles & Company, and J.P. Morgan Chase. The participants are surveyed around the 25th
of each month and the results published a few days later on the 1st of the following month.
The forecasters are asked to forecast the average of the level of U.S. interest rates over a
particular calendar quarter, e.g. the federal funds rate and the set of H.15 Constant Maturity
Treasuries (CMT) of the following maturities: 3-month, 6-month, 1-year, 2-year, 5-year and
10-year, and the quarter over quarter percentage changes in Real GDP, the GDP Price
Index and the Consumer Price Index, beginning with the current quarter and extending 4
to 5 quarters into the future.
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In this study, we look at a subset of the forecasted variables. Specifically, we use the Blue
Chip micro data on individual forecasts of the quarter-over-quarter (Q/Q) percentage change
in the Real GDP, the GDP Price Index and the CPI, and convert to quarterly observations
as explained below. In our estimation we use the median survey forecast from the micro
data.

1. CPI inflation: We use quarter-over-quarter percentage change in the consumer price
index, which is defined as

“Forecasts for the quarter-over-quarter percentage change in the CPI (consumer prices

for all urban consumers). Seasonally adjusted, annual rate.”

Quarterly and annual CPI inflation are constructed the same way as for PGDP infla-
tion, except CPI replaces PGDP.

2. For real GDP growth, We use quarter-over-quarter percentage change in the Real GDP,
which is defined as

“Forecasts for the quarter-over-quarter percentage change in the level of chain-weighted
real GDP. Seasonally adjusted, annual rate. Prior to 1992, Q/Q % change (SAAR) in
real GNP.”

The surveys are conducted right before the publication of the newsletter. Each issue is always
dated the 1st of the month and the actual survey conducted over a two-day period almost
always between 24th and 28th of the month. The major exception is the January issue
when the survey is conducted a few days earlier to avoid conflict with the Christmas holiday.
Therefore, we assume that the end of the last month (equivalently beginning of current
month) is when the forecast is made. For example, for the report in 2008 Feb, we assume that
the forecast is made on Feb 1, 2008. We obtained Blue Chip Financial Forecasts from Wolters
Kluver in several stages starting in 2017 and with the last update purchased in June of 2022
and received on June 22, 2022. URL:https://law-store.wolterskluwer.com /s /product /blue-
chip-financial-forecast-print/ 01tG000000LuDUCTA3.

Survey of Professional Forecasters (SPF)

The SPF is conducted each quarter by sending out surveys to professional forecasters, defined
as forecasters. The number of surveys sent varies over time, but recent waves sent around 50
surveys each quarter according to officials at the Federal Reserve Bank of Philadelphia. Only
forecasters with sufficient academic training and experience as macroeconomic forecasters are

eligible to participate. Over the course of our sample, the number of respondents ranges from
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a minimum of 9, to a maximum of 83, and the mean number of respondents is 37. The surveys
are sent out at the end of the first month of each quarter, and they are collected in the second
or third week of the middle month of each quarter. Each survey asks respondents to provide
nowcasts and quarterly forecasts from one to four quarters ahead for a variety of variables.
Specifically, we use the SPF micro data on individual forecasts of the price level, long-run
inflation, and real GDP.? Below we provide the exact definitions of these variables as well
as our method for constructing nowcasts and forecasts of quarterly and annual inflation for
each respondent.*

We use the median values of the following variables in our structural estimation and

forecasting models:

1. Quarterly and annual inflation (1968:QQ4 - present): We use survey responses for the
level of the GDP price index (PGDP), defined as

"Forecasts for the quarterly and annual level of the chain-weighted GDP price indezx.
Seasonally adjusted, index, base year varies. 1992-1995, GDP implicit deflator. Prior
to 1992, GNP implicit deflator. Annual forecasts are for the annual average of the

quarterly levels. "

Since advance BEA estimates of these variables for the current quarter are unavailable
at the time SPF respondents turn in their forecasts, four quarter-ahead inflation and
GDP growth forecasts are constructed by dividing the forecasted level by the survey
respondent-type’s nowcast. Let ng) [P, 1] be forecaster i’s prediction of PGDP v quar-
ters ahead and Ngi) [P;] be forecaster i’s nowcast of PGDP for the current quarter.
Annualized inflation forecasts for forecaster i are

‘ % [Prio]
F [y 0] = (400/0) x In (f—“’ ,
Ny [P

where v = 1 for quarterly inflation and v = 4 for annual inflation. Similarly, we
construct quarterly and annual nowcasts of inflation as

Ny [Pt]>

N [m,00] = (400/v) x In (
Pt—v

3Individual forecasts for all variables can be downloaded at https://www.philadelphiafed.org/research-
and-data/real-time-center /survey-of-professional-forecasters/historical-data/individual-forecasts.

“The SPF documentation file can be found at https://www.philadelphiafed.org/- /media/research-and-
data/real-time-center/survey-of-professional-forecasters/spf-documentation.pdf?la=en.
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where v = 1 for quarterly inflation and v = 4 for annual inflation, and where P,_; is the
BEA’s advance estimate of PGDP in the previous quarter observed by the respondent
in time ¢, and P;,_4 is the BEA’s most accurate estimate of PGDP four quarters back.
After computing inflation for each survey respondent, we calculate the 5th through the
95th percentiles as well as the average, variance, and skewness of inflation forecasts
across respondents.

2. Long-run inflation (1991:Q4 - present): We use survey responses for 10-year-ahead CPI
inflation (CPI10), which is defined as

"Forecasts for the annual average rate of headline CPI inflation over the next 10 years.
Seasonally adjusted, annualized percentage points. The "next 10 years” includes the
year in which we conducted the survey and the following nine years. Conceptually,
the calculation of inflation is one that runs from the fourth quarter of the year before
the survey to the fourth quarter of the year that is ten years beyond the survey year,
representing a total of 40 quarters or 10 years. The fourth-quarter level is the quarterly
average of the underlying monthly levels.”

Only the median response is provided for CPI10, and it is already reported as an
inflation rate, so we do not make any adjustments and cannot compute other moments

or percentiles.
3. Real GDP growth (1968:QQ4 - present): We use the level of real GDP (RGDP), which
is defined as

"Forecasts for the quarterly and annual level of chain-weighted real GDP. Seasonally
adjusted, annual rate, base year varies. 1992-1995, fived-weighted real GDP. Prior
to 1992, fixed-weighted real GNP. Annual forecasts are for the annual average of the
quarterly levels. Prior to 1981:Q3, RGDP is computed by using the formula NGDP /
PGDP *100."

Source: Federal Reserve Bank of Philadelphia.All series were downloaded on September 17th,
2021.
Data used for News Events

Federal Reserve News Events

Federal Reserve news events are taken from Federal Open Market Committee news releases.
We compile dates and times of FOMC meetings from 1994 to 2004 from Giirkaynak, Sack
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and Swanson (2005). The dates of the remaining FOMC meetings are collected from the
Federal Reserve Board website. The times of statement releases were coalesced in the fol-
lowing priority: the Federal Reserve Board calendar, the Federal Reserve Board minutes,
Bloomberg’s FOMC page, and the first news article to appear on Bloomberg. We only in-
clude scheduled meetings and unscheduled meetings where a statement was released. Our
final database covers the period 1994:02 - 2021:12 and consists of 219 Fed news events.

Macro News Events

Macroeconomic data releases are news events cover news about GDP, CPI, employment
data, and payroll data. To pin down the timing of when the macro news is released, we rely
on published tables of releases from the Bureau of Labor Statistics (BLS), obtained from
https://www.bls.gov /bls/archived _sched.htm. The published tables of releases for GDP are
from the Bureau of Economic Analysis (BEA), obtained from https://www.bea.gov /news/archive.
(A complete list of the release dates is available from the authors of each news release or
through the Money Market Service Survey.) For GDP, the advance releases typically occur
at 8:30AM EST on the last Thursday of the first month in the quarter following the quarter
to which the data pertain. The 2nd and 3rd releases typically occur at 8:30am EST on the
last Thursday of the second and third month in the quarter following the quarter to which
the data pertain, respectively. For example, the advance release of real GDP for 2021:Q2
occurred on Thursday July 29, 2021. The advance release for 2021:Q2 was later revised in
the second and third releases on Thursday August 26, 2021 and Thursday September 30,
2021, respectively. For core CPI, the releases occur monthly at 8:30AM EST around the
15th of each month following the month to which the data pertain. The releases typically
occur during the second week of the month, either on a Tuesday, Wednesday, or Thursday.
For example, the release of the core CPI of June 2021 occurred on Tuesday July 13th, 2021.
For employment data (including the unemployment rate and nonfarm payroll), the releases
typically occur at 8:30AM EST on the first Friday of the month following the month to
which the data pertain. For example, the release of the unemployment rate for June 2021
occurred on Friday July 2nd, 2021. Our final database covers the period 1980:01- 2021:12
and consists of a total of 1482 macro news events.

Corporate Earnings News Events

We obtained days of big stock return jumps primarily attributable to corporate earnings
news from Baker et al. (2019) (BBDS). In assigning days to categories of proximate causes
for jumps, BBDS focus on articles from the Wall Street Journal (WSJ). To isolate events with
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stock market jumps that were attributable to corporate earnings news with high confidence,
we choose events from BBDS that have (i) journalist confidence at or above a confidence
score of 2.5 and (ii) weights on corporate topic of at least 0.75. A confidence score of
2.5 is about halfway between the median and 75th percentile of confidence scores given to
category classifications over the full sample of WSJ articles studied by BBDS. The data were
provided by the authors on March 12, 2023. Table A.2 shows the dates and daily change in
the S&P 500 stock market index for our database, which covers the period 1985:09-2020:09
and consists of a total of 16 corporate earnings news events.

Table A.2: List of Corporate News Events

Date Daily A
1999/03/23 -2.65%
2000/03/07 -2.67%
2000/10/19  3.49%
2001/04/05 4.39%
2002/01/29 -2.86%
2008/07/16 2.51%
2008/09/09 -3.36%
2008/09/15 -4.64%
2008/10/21 -3.06%
2008/10/22 -5.91%
2009/01/07 -3.00%
2009/01/20 -5.22%
2009/03/12  4.07%
2009/04/09 3.71%
2009/07/15  2.95%
2020/05/01 -2.80%

Data Inputs for Machine Learning Algorithm

Macro Data Surprises

These data are used as inputs into the machine learning forecasts. We obtain median fore-
casts for GDP growth (Q/Q percentage change), core CPI (Month/Month change), unem-
ployment rate (percentage point), and nonfarm payroll (month/month change) from the
Money Market Service Survey. The median market survey forecasts are compiled and pub-
lished by the Money Market Services (MMS) the Friday before each release. We apply the
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approach used in Bauer and Swanson (2023) and define macroeconomic data surprise as the
actual value of the data release minus the median expectation from MMS on the Friday
immediately prior to that data release. The GDP growth forecasts are available quarterly
from 1990Q1 to 2022Q1. The core CPI forecast is available monthly from July 1989 to April
2022. The median forecasts for the unemployment rate and nonfarm payrolls are available
monthly from Jan 1980 to May 2022, and Jan. 1985 to May 2022, respectively. All survey
forecasts were downloaded from Haver Analytics on December 17, 2022. To pin down the
timing of when the news was actually released we follow the published tables of releases from
the Bureau of Labor Statistics (BLS), discussed below.

FOMC Surprises

FOMC surprises are defined as the changes in the current-month, 1, 2, 6, 12, and 24 month-
ahead federal funds futures (FFF) contract rate and changes in the 1, 2, 4, and 8 quarter-
ahead Eurodollar (ED) futures contract rate, from 10 minutes before to 20 minutes after
each U.S. Federal Reserve Federal Open Market Committee (FOMC) announcement. The
data on FFF and ED were downloaded on June 3rd 2022. When benchmarking against a
survey, we use the last FOMC meeting before the survey deadline to compute surprises. For
surveys that do not have a clear deadline, we compute surprises using from the last FOMC
in the first month of the quarter. When benchmarking against moving average, we use the
last FOMC meeting before the end of the first month in each quarter to compute surprises.

Real-Time Macro Data

This section gives details on the real time macro data inputs used in the machine learning
forecasts. A subset of these series are used in the structural estimation. At each forecast
date in the sample, we construct a dataset of macro variables that could have been observed
on or before the day of the survey deadline. We use the Philadelphia Fed’s Real-Time Data

Set to obtain vintages of macro variables.?

These vintages capture changes to historical
data due to periodic revisions made by government statistical agencies. The vintages for a
particular series can be available at the monthly and/or quarterly frequencies, and the series
have monthly and/or quarterly observations. In cases where a variable has both frequencies
available for its vintages and/or its observations, we choose one format of the variable. For

instance, nominal personal consumption expenditures on goods is quarterly data with both

>The real-time data sets are available at https://www.philadelphiafed.org/research-and-data/real-time-
center /real-time-data/data-files.
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monthly and quarterly vintages available; in this case, we use the version with monthly

vintages.

Table A.3 gives the complete list of real-time macro variables. Included in the table is the

first available vintages for each variable that has multiple vintages. We do not include the last

vintage because most variables have vintages through the present.® Table A.3 also lists the

transformation applied to each variable to make them stationary before generating factors.

Let X;; denote variable 7 at time ¢ after the transformation, and let X;? be the untransformed

series. Let A = (1 — L) with LX;; = X;;_;. There are seven possible transformations with

the following codes:

1 Code lv: X;; = X{?

2 Code Alv: X, = X4 — X |

3 Code A%lv: Xy = A?X

4 Code In: X; = 1In(X)

5 Code Aln: Xy = In(X7) — In(X; )

6 Code A%ln: X = A?In(X7)

7 Code Alv/lv: Xy = (X[ = X[ )/ X1,

Table A.3: List of Macro Dataset Variables

No. Short Name Source

Tran

Description

First Vintage

Group 1: Output and Income

1 IPMMVMD Philly Fed
2 IPTMVMD Philly Fed
3 CUMMVMD Philly Fed
4 CUTMVMD Philly Fed
5 NCPROFATMVQD Philly Fed

6 NCPROFATWMVQD Philly Fed
7 OPHMVQD Philly Fed

8 NDPIQVQD Philly Fed

Aln

Aln

lv

lv

Aln

Aln

Aln

Aln

Ind. production index - Manufacturing

Ind. production index - Total

Capacity utilization - Manufacturing

Capacity utilization - Total

Nom. corp. profits after tax without IVA/CCAdj
Nom. corp. profits after tax with IVA/CCAdj
Output per hour - Business sector

Nom. disposable personal income

1962:M11
1962:M11
1979:M8
1983:M7
1965:Q4
1981:Q1
1998:Q4

1965:Q4

6For variables BASEBASAQVMD, NBRBASAQVMD, NBRECBASAQVMD, and TRBASAQVMD, the

last available vintage is 2013:Q2.
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Table A.2 (Cont’d)

No.  Short Name Source Tran Description First Vintage
9 NOUTPUTQVQD Philly Fed Aln Nom. GNP/GDP 1965:Q4
10 NPIQVQD Philly Fed Aln Nom. personal income 1965:Q4
11 NPSAVQVQD Philly Fed Alv Nom. personal saving 1965:Q4
12 OLIQVQD Philly Fed Aln Other labor income 1965:Q4
13 PINTIQVQD Philly Fed Aln Personal interest income 1965:Q4
14 PINTPAIDQVQD Philly Fed Aln Interest paid by consumers 1965:Q4
15 PROPIQVQD Philly Fed Aln Proprietors’ income 1965:Q4
16 PTAXQVQD Philly Fed Aln Personal tax and nontax payments 1965:Q4
17 RATESAVQVQD Philly Fed Alv Personal saving rate 1965:Q4
18 RENTIQVQD Philly Fed Alv Rental income of persons 1965:Q4
19 ROUTPUTQVQD Philly Fed Aln Real GNP/GDP 1965:Q4
20 SSCONTRIBQVQD Philly Fed Aln Personal contributions for social insurance 1965:Q4
21 TRANPFQVQD Philly Fed Aln Personal transfer payments to foreigners 1965:Q4
22 TRANRQVQD Philly Fed Aln Transfer payments 1965:Q4
23 CUUROO00SAOE BLS A2ln, Energy in U.S. city avg., all urban consumers, not
seasonally adj

Group 2: Employment
24 EMPLOYMVMD Philly Fed Aln Nonfarm payroll 1946:M12
25 HMVMD Philly Fed lv Aggregate weekly hours - Total 1971:M9
26 HGMVMD Philly Fed lv Agg. weekly hours - Goods-producing 1971:M9
27 HSMVMD Philly Fed v Agg. weekly hours - Service-producing 1971:M9
28 LFCMVMD Philly Fed Aln Civilian labor force 1998:M11
29 LFPARTMVMD Philly Fed lv Civilian participation rate 1998:M11
30 POPMVMD Philly Fed Aln Civilian noninstitutional population 1998:M11
31 ULCMVQD Philly Fed Aln Unit labor costs - Business sector 1998:Q4
32 RUCQVMD Philly Fed Alv Unemployment rate 1965:Q4
33 WSDQVQD Philly Fed Aln Wage and salary disbursements 1965:Q4

Group 3: Orders, Investment, Housing

25



Table A.2 (Cont’d)

No.  Short Name Source Tran Description First Vintage
34 HSTARTSMVMD Philly Fed Aln Housing starts 1968:M2
35 RINVBFMVQD Philly Fed Aln Real gross private domestic inv. - Nonresidential 1965:Q4
36 RINVCHIMVQD Philly Fed Alv Real gross private domestic inv. - Change in pri- 1965:Q4
vate inventories
37 RINVRESIDMVQD Philly Fed Aln Real gross private domestic inv. - Residential 1965:Q4
38 CASESHILLER S&P Aln Case-Shiller US National Home Price index/CPI 1987:M1
Group 4: Consumption

39 NCONGMMVMD Philly Fed Aln Nom. personal cons. exp. - Goods 2009:M8
40 NCONHHMMVMD Philly Fed Aln Nom. hh. cons. exp. 2009:M8
41 NCONSHHMMVMD Philly Fed Aln Nom. hh. cons. exp. - Services 2009:M8
42 NCONSNPMMVMD Philly Fed Aln Nom. final cons. exp. of NPISH 2009:M8
43 RCONDMMVMD Philly Fed Aln Real personal cons. exp. - Durables 1998:M11
44 RCONGMMVMD Philly Fed Aln Real personal cons. exp. - Goods 2009:M8
45 RCONHHMMVMD Philly Fed Aln Real hh. cons. exp. 2009:M8
46 RCONMMVMD Philly Fed Aln Real personal cons. exp. - Total 1998:M11
47 RCONNDMVMD Philly Fed Aln Real personal cons. exp. - Nondurables 1998:M11
48 RCONSHHMMVMD Philly Fed Aln Real hh. cons. exp. - Services 2009:M8
49 RCONSMMVMD Philly Fed Aln Real personal cons. exp. - Services 1998:M11
50 RCONSNPMMVMD Philly Fed Aln Real final cons. exp. of NPISH 2009:M8
51 NCONGMVQD Philly Fed Aln Nom. personal cons. exp. - Goods 2009:Q3
52 NCONHHMVQD Philly Fed Aln Nom. hh. cons. exp. 0209:Q3
53 NCONSHHMVQD Philly Fed Aln Nom. hh. cons. exp. - Services 2009:Q3
54 NCONSNPMVQD Philly Fed Aln Nom. final cons. exp. of NPISH 2009:Q3
55 RCONDMVQD Philly Fed Aln Real personal cons. exp. - Durable goods 1965:Q4
56 RCONGMVQD Philly Fed Aln Real personal cons. exp. - Goods 2009:Q3
57 RCONHHMVQD Philly Fed Aln Real hh. cons. exp. 2009:Q3
58 RCONMVQD Philly Fed Aln Real personal cons. exp. - Total 1965:Q4
59 RCONNDMVQD Philly Fed Aln Real pesonal cons. exp. - Nondurable goods 1965:Q4
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Table A.2 (Cont’d)

No.  Short Name Source Tran Description First Vintage
60 RCONSHHMVQD Philly Fed Aln Real hh. cons. exp. - Services 2009:Q3
61 RCONSMVQD Philly Fed Aln Real personal cons. exp. - Services 1965:Q4
62 RCONSNPMVQD Philly Fed Aln Real final cons. exp. of NPISH 2009:Q3
63 NCONQVQD Philly Fed Aln Nom. personal cons. exp. 1965:Q4
Group 5: Prices
64 PCONGMMVMD Philly Fed AZln Price index for personal cons. exp. - Goods 2009:M8
65 PCONHHMMVMD Philly Fed A2ln Price index for hh. cons. exp. 2009:M8
66 PCONSHHMMVMD Philly Fed A2ln, Price index for hh. cons. exp. - Services 2009:M8
67 PCONSNPMMVMD Philly Fed A2ln Price index for final cons. exp. of NPISH 2009:M8
68 PCPIMVMD Philly Fed A2ln, Consumer price index 1998:M11
69 PCPIXMVMD Philly Fed A2ln Core consumer price index 1998:M11
70 PPPIMVMD Philly Fed A2ln, Producer price index 1998:M11
71 PPPIXMVMD Philly Fed AZln Core producer price index 1998:M11
72 PCONGMVQD Philly Fed A2ln Price index for personal. cons. exp. - Goods 2009:Q3
73 PCONHHMVQD Philly Fed A?ln Price index for hh. cons. exp. 2009:Q3
74 PCONSHHMVQD Philly Fed A2ln Price index for hh. cons. exp. - Services 2009:Q3
75 PCONSNPMVQD Philly Fed A2ln Price index for final cons. exp. of NPISH 2009:Q3
76 PCONXMVQD Philly Fed A2ln Core price index for personal cons. exp. 1996:Q1
77 CPIQVMD Philly Fed A2ln Consumer price index 1994:Q3
78 PQVQD Philly Fed A2ln Price index for GNP/GDP 1965:Q4
79 PCONQVQD Philly Fed A2ln Price index for personal cons. exp. 1965:Q4
80 PIMPQVQD Philly Fed AZln Price index for imports of goods and services 1965:Q4
Group 6: Trade and Government

81 REXMVQD Philly Fed Aln Real exports of goods and services 1965:Q4
82 RGMVQD Philly Fed Aln Real government cons. and gross inv. - Total 1965:Q4
83 RGFMVQD Philly Fed Aln Real government cons. and gross inv. - Federal 1965:Q4
84 RGSLMVQD Philly Fed Aln Real government cons. and gross. inv. - State and  1965:Q4

local
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Table A.2 (Cont’d)

No.  Short Name Source Tran Description First Vintage
85 RIMPMVQD Philly Fed Aln Real imports of goods and services 1965:Q4
86 RNXMVQD Philly Fed Alv Real net exports of goods and services 1965:Q4

Group 7: Money and Credit

87 BASEBASAQVMD Philly Fed A2ln Monetary base 1980:Q2
88 M1QVMD Philly Fed A2ln M1 money stock 1965:Q4
89 M2QVMD Philly Fed A2ln M2 money stock 1971:Q2
90 NBRBASAQVMD Philly Fed Alv/lv Nonborrowed reserves 1967:Q3
91 NBRECBASAQVMD Philly Fed Alv/lv Nonborrowed reserves plus extended credit 1984:Q2
92 TRBASAQVMD Philly Fed A2ln Total reserves 1967:Q3
93 DIVQVQD Philly Fed Aln Dividends 1965:Q4

Daily Financial Data

Daily Data and construction of daily factors These data are used in the machine
learning forecasts. The daily financial series in this data set are from the daily financial
dataset used in Andreou, Ghysels and Kourtellos (2013). We create a smaller daily database
which is a subset of the large cross-section of 991 daily series in their dataset. Our dataset
covers five classes of financial assets: (i) the Commodities class; (ii) the Corporate Risk cat-
egory; (iii) the Equities class; (iv) the Foreign Exchange Rates class and (v) the Government
Securities.

The dataset includes up to 87 daily predictors in a daily frequency from 23-Oct-1959
to 24-Oct-2021 (14852 trading days) from the above five categories of financial assets. We
remove series with fewer than ten years of data and time periods with no variables observed,
which occurs for some series in the early part of the sample. For those years, we have
less than 87 series. There are 39 commodity variables which include commodity indices,
prices and futures, 16 corporate risk series, 9 equity series which include major US stock
market indices and the 500 Implied Volatility, 16 government securities which include the
federal funds rate, government treasury bills of securities from three months to ten years,
and 7 foreign exchange variables which include the individual foreign exchange rates of major
five US trading partners and two effective exchange rate. We choose these daily predictors
because they are proposed in the literature as good predictors of economic growth.

28



We construct daily financial factors in a quarterly frequency in two steps. First, we
use these daily financial time series to form factors at a daily frequency. The raw data
used to form factors are always transformed to achieve stationarity and standardized before
performing factor estimation (see generic description below). We re-estimate factors at each
date in the sample recursively over time using the entire history of data available in real time
prior to each out-of-sample forecast.

In the second step, we convert these daily financial indicators to quarterly weighted
variables to form quarterly factors by selecting an optimal weighting scheme according to
the method described below (see the weighting scheme section).

The data series used in this dataset are listed below in Table A.4 by data source. The
tables also list the transformation applied to each variable to make them stationary before
generating factors. The transformations used to stationarize a time series are the same as

those explained in the section “Monthly financial factor data”.

Table A.4: List of Daily Financial Dataset Variables

No. Short Name Source Tran Description

Group 1: Commodities

1 GSIZSPT Data Stream Aln S&P GSCI Zinc Spot - PRICE INDEX

2 GSSBSPT Data Stream Aln S&P GSCI Sugar Spot - PRICE INDEX

3 GSSOSPT Data Stream Aln S&P GSCI Soybeans Spot - PRICE INDEX

4 GSSISPT Data Stream Aln S&P GSCI Silver Spot - PRICE INDEX

5 GSIKSPT Data Stream Aln S&P GSCI Nickel Spot - PRICE INDEX

6 GSLCSPT Data Stream Aln S&P GSCI Live Cattle Spot - PRICE INDEX
7 GSLHSPT Data Stream Aln S&P GSCI Lean Hogs Index Spot - PRICE INDEX
8 GSILSPT Data Stream Aln S&P GSCI Lead Spot - PRICE INDEX

9 GSGCSPT Data Stream Aln S&P GSCI Gold Spot - PRICE INDEX

10 GSCTSPT Data Stream Aln S&P GSCI Cotton Spot - PRICE INDEX

11 GSKCSPT Data Stream Aln S&P GSCI Coffee Spot - PRICE INDEX

12 GSCCSPT Data Stream Aln S&P GSCI Cocoa Index Spot - PRICE INDEX
13 GSIASPT Data Stream Aln S&P GSCI Aluminum Spot - PRICE INDEX
14 SGWTSPT Data Stream Aln S&P GSCI All Wheat Spot - PRICE INDEX
15 EIAEBRT Data Stream Aln Europe Brent Spot FOB U$/BBL Daily
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Table A.3 (Cont’d)

No.  Short Name Source Tran Description

16 CRUDOIL Data Stream Aln Crude Oil-WTI Spot Cushing U$/BBL - MID PRICE

17 LTICASH Data Stream Aln LME-Tin 99.85% Cash U$/MT

18 CWFCS00 Data Stream Aln CBT-WHEAT COMPOSITE FUTURES CONT. - SETT.
PRICE

19 CCFCS00 Data Stream Aln CBT-CORN COMP. CONTINUOUS - SETT. PRICE

20 CSYCS00 Data Stream Aln CBT-SOYBEANS COMP. CONT. - SETT. PRICE

21 NCTCS20 Data Stream Aln CSCE-COTTON #2 CONT.2ND FUT - SETT. PRICE

22 NSBCS00 Data Stream Aln CSCE-SUGAR #11 CONTINUOUS - SETT. PRICE

23 NKCCS00 Data Stream Aln CSCE-COFFEE C CONTINUOUS - SETT. PRICE

24 NCCCS00 Data Stream Aln CSCE-COCOA CONTINUOUS - SETT. PRICE

25 CZLCS00 Data Stream Aln ECBOT-SOYBEAN OIL CONTINUOUS - SETT. PRICE

26 COFCo1 Data Stream Aln CBT-OATS COMP. TRcl - SETT. PRICE

27 CLDCS00 Data Stream Aln CME-LIVE CATTLE COMP. CONTINUOUS - SETT.
PRICE

28 CLGCO01 Data Stream Aln CME-LEAN HOGS COMP. TRcl - SETT. PRICE

29 NGCCS00 Data Stream Aln CMX-GOLD 100 OZ CONTINUOUS - SETT. PRICE

30 LAH3MTH Data Stream Aln LME-Aluminium 99.7% 3 Months U$/MT

31 LED3MTH Data Stream Aln LME-Lead 3 Months U$/MT

32 LNI3SMTH Data Stream Aln LME-Nickel 3 Months U$/MT

33 LTI3SMTH Data Stream Aln LME-Tin 99.85% 3 Months U$/MT

34 PLNYD www.macrotrends.net Aln Platinum Cash Price (U$ per troy ounce)

35 XPDD www.macrotrends.net Aln Palladium (U$ per troy ounce)

36 CUSs2D www.macrotrends.net Aln Corn Spot Price (U$/Bushel)

37 SoybOil www.macrotrends.net Aln Soybean Oil Price (U$/Pound)

38 OATSD www.macrotrends.net Aln Oat Spot Price (US$/Bushel)

39 WTIOilFut US EIA Aln Light Sweet Crude Oil Futures Price: 15t Expiring Contract

Settlement ($/Bbl)

Group 2: Equities
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Table A.3 (Cont’d)

No.  Short Name Source Tran Description

40 S&PCOMP Data Stream Aln S&P 500 COMPOSITE - PRICE INDEX

41 ISPCS00 Data Stream Aln CME-S&P 500 INDEX CONTINUOUS - SETT. PRICE

42 SP5EIND Data Stream Aln S&P500 ES INDUSTRIALS - PRICE INDEX

43 DJINDUS Data Stream Aln DOW JONES INDUSTRIALS - PRICE INDEX

44 CYMCS00 Data Stream Aln CBT-MINI DOW JONES CONTINUOUS - SETT. PRICE

45 NASCOMP Data Stream Aln NASDAQ COMPOSITE - PRICE INDEX

46 NASA100 Data Stream Aln NASDAQ 100 - PRICE INDEX

47 CBOEVIX Data Stream lv CBOE SPX VOLATILITY VIX (NEW) - PRICE INDEX

48 S&P500toVIX Data Stream Aln S&P500/VIX

Group 3: Corporate Risk

49 LIBOR FRED Alv Overnight London Interbank Offered Rate (%)

50 1MLIBOR FRED Alv 1-Month London Interbank Offered Rate (%)

51 3MLIBOR FRED Alv 3-Month London Interbank Offered Rate (%)

52 6MLIBOR FRED Alv 6-Month London Interbank Offered Rate (%)

53 1YLIBOR FRED Alv One-Year London Interbank Offered Rate (%)

54 1MEuro-FF FRED v 1-Month Eurodollar Deposits (London Bid) (% P.A.) minus
Fed Funds

55 3MEuro-FF FRED v 3-Month Eurodollar Deposits (London Bid) (% P.A.) minus
Fed Funds

56 6MEuro-FF FRED v 6-Month Eurodollar Deposits (London Bid) (% P.A.) minus
Fed Funds

57 APFNF- Data Stream v 1-Month A2/P2/F2 Nonfinancial Commercial Paper (NCP)

AANF (% P. A.) minus 1-Month Aa NCP (% P.A.)

58 APFNF-AAF Data Stream v 1-Month A2/P2/F2 NCP (% P.A.) minus 1-Month Aa Finan-
cial Commercial Paper (% P.A.)

59 TED Data Stream, FRED v 3Month Thill minus 3-Month London Interbank Offered Rate

(%)
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Table A.3 (Cont’d)

No.  Short Name Source Tran Description

60 MAaa-10YTB Data Stream v Moody Seasoned Aaa Corporate Bond Yield (% P.A.) minus
Y10-Thond

61 MBaa-10YTB Data Stream lv Moody Seasoned Baa Corporate Bond Yield (% P.A.) minus
Y10-Thond

62 MLA-10YTB Data Stream, FRED v Merrill Lynch Corporate Bonds: A Rated: Effective Yield (%)
minus Y10-Tbond

63 MLAA-10YTB  Data Stream, FRED v Merrill Lynch Corporate Bonds: Aa Rated: Effective Yield
(%) minus Y10-Tbond

64 MLAAA- Data Stream, FRED v Merrill Lynch Corporate Bonds: Aaa Rated: Effective Yield

10YTB (%) minus Y10-Tbond
Group 4: Treasuries

65 FRFEDFD Data Stream Alv US FED FUNDS EFF RATE (D) - MIDDLE RATE

66 FRTBS3M Data Stream Alv US T-BILL SEC MARKET 3 MONTH (D) - MIDDLE RATE

67 FRTBS6M Data Stream Alv US T-BILL SEC MARKET 6 MONTH (D) - MIDDLE RATE

68 FRTCM1Y Data Stream Alv US TREASURY CONST MAT 1 YEAR (D) - MIDDLE
RATE

69 FRTCM10 Data Stream Alv US TREASURY CONST MAT 10 YEAR (D) - MIDDLE
RATE

70 6MTB-FF Data Stream lv 6-month treasury bill market bid yield at constant maturity
(%) minus Fed Funds

71 1YTB-FF Data Stream v 1-year treasury bill yield at constant maturity (% P.A.) minus
Fed Funds

72 10YTB-FF Data Stream v 10-year treasury bond yield at constant maturity (% P.A.)
minus Fed Funds

73 6MTB-3MTB Data Stream v 6-month treasury bill yield at constant maturity (% P.A.) mi-
nus 3M-Thbills

74 1YTB-3MTB Data Stream v 1-year treasury bill yield at constant maturity (% P.A.) minus

3M-Thbills
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Table A.3 (Cont’d)

No.  Short Name Source Tran Description

75 10YTB-3MTB Data Stream v 10-year treasury bond yield at constant maturity (% P.A.)
minus 3M-Tbills

76 BKEVENO05 FRB v US Inflation compensation: continuously compounded zero-
coupon yield: 5-year (%)

77 BKEVEN10 FRB lv US Inflation compensation: continuously compounded zero-

coupon yield: 10-year (%)

78 BKEVEN1F4 FRB v BKEVEN1F4
79 BKEVENI1F9 FRB v BKEVEN1F9
80 BKEVEN5F5 FRB v US Inflation compensation: coupon equivalent forward rate:

5-10 years (%)

Group 5: Foreign Exchange (FX)

81 US_CWBN Data Stream Aln US NOMINAL DOLLAR BROAD INDEX - EXCHANGE IN-
DEX
82 US CWMN Data Stream Aln US NOMINAL DOLLAR MAJOR CURR INDEX - EX-

CHANGE INDEX

83  US CSFR2 Data Stream Aln CANADIAN $ TO US $ NOON NY - EXCHANGE RATE

84  BEU_USFR2 Data Stream Aln EURO TO US$ NOON NY - EXCHANGE RATE

85  US YFR2 Data Stream Aln JAPANESE YEN TO US $ NOON NY - EXCHANGE RATE

86  US_SFFR2 Data Stream Aln SWISS FRANC TO US $ NOON NY - EXCHANGE RATE

87  US UKFR2 Data Stream Aln UK POUND TO US § NOON NY - EXCHANGE RATE
LDA Data

These data are used as inputs into the machine learning forecasts. The database for our
Latent Dirichlet Allocation (LDA) analysis contains around one million articles published
in Wall Street Journal between January 1984 to June 2022. The current vintage of the
results reported here is based a randomly selected sub-sample of 200,000 articles over the
same period, one-fifth size of the entire database. The sample selection procedures follows
Bybee et al. (2021). First, we remove all articles prior to January 1984 and after June
2022 and exclude articles published in weekends. Second, we exclude articles with subject
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tags associated with obviously non-economic content such as sports. Third, we exclude
articles with the certain headline patterns, such as those associated with data tables or
those corresponding to regular sports, leisure, or books columns. We filter the articles using
the same list of exclusions provided by Bybee et al. (2021). Last, we exclude articles with
less than 100 words.

Processing of texts The processing of the texts can be summarized in the following five
steps.

1. Tokenization: parse each article’s text into a white-space-separated word list retaining
the article’s word ordering.

2. We drop all non-alphabetical characters and set the remaining characters to lower-
case, remove words with less than 3 letters, and remove common stop words and
URL-based terms. We use a standard list of stop words from the Python library
JENSIM. PATSING. Preprocessing.

3. Lemmatization and Stemming: lemmatization returns the original form of a word
using external dictionary Teztblob. Word in Python and based on the context of the
word. For instance, as a verb, “went” is converted to“go”. Stemming usually refers to a
heuristic process that remove the trailing letters at the end of the words, such as from
“assesses” to “assess’, and “really” to “real”. We use the Python library Teztblob. Word
to implement the lemmatization and SnowballStemmer for the stemming. The results
are not very sensitive to the particular Python packages being used.

4. From the first three steps, we obtain a list of uni-grams which are a list of singular
words. For example, "united" and "states" are uni-grams from "united states". From
the list of uni-grams, we generate a set of bi-grams as all pairs of (ordered) adjacent
uni-grams. For example, "united states" together is one bi-gram. We then exclude
uni-grams and bi-grams appearing in less than 0.1% of articles.

5. Last, we convert an article’s word list into a vector of counts for each uni-gram and
bi-gram. For example, the vector of counts [5, 7, 2] corresponds to the number of times
the words [” federal”,”reserve”,”bank”| appear in the article.

The LDA Model The LDA model Blei, Ng and Jordan (2003) essentially achieves sub-
stantial dimension reduction of the word distribution of each article using the following
assumptions. We assume a factor structure on the vectors of word counts. Each factor is a
topic and each article is a parametric distribution of topics, specified as follows,
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Vx1 VxK Kx1
~ =~ / / \
Ww; ~ Mult P N 02' N Ni (A2)
~~~ ~— ~—
word dist of article ¢ topic-word dist.topic dist.
# of words

where Mult is the multinomial distribution. In the above equation, w; is a vector of word
counts of each unique term (uni-gram or bi-gram) in article i, whose size is equal to the
number of unique terms V. K is the number of factors in article . In the estimation, we
assume K = 180 following Bybee et al. (2021). ® is a matrix sized K x V| whose kth row
and vth column is equal to the probability of the unique term v showing up in topic k. 6;
stores the weights of all k£ topics contained in article 4, which sum up to one. Dimension
reduction is achieved as long as K << V (the number of topics are significantly smaller
than the number of unique terms). More specifically, it reduces the dimension from 7" x V'
to T x K (the size of §) + K x V (the size of ®).

Real-time news factors. We also generate real-time news factors for each month ¢ starting
from January 1991. In theory, we could train the LDA model using each real-time monthly
vintage but it is computationally challenging. Instead, we simplify the procedure by training
the LDA model using quarterly vintages t, t+3, t+6, etc, and use the LDA model parameters
estimated at ¢ to filter news paper articles within the quarter and generate news factors for
those months. More specifically, given every article’s word distribution w;;4¢.for s = 0,1, 2,
and the estimated real-time topic-word distribution parameters o, using articles till date ¢,
one can obtain the filtered topic distribution of each article éiﬁs, as follows,

Vil VxK Kx1

X = ——

—— -« "

wi7t+s ~ Mult (I), s ei’t_;'_s s Ni,t+s . (A?))
~ ——

. . S~
topic-word dlSt'topic dist.
# of words

word dist of article ¢ at time t+s

LDA Estimation We use the built-in LDA model estimation toolbox in the Python
library https://pypi.org/project/gensim/Gensim to implement the model estimation.
The model requires following initial inputs and parameters and it is estimated using Bayesian
methods.”

1. We create a document-term matrix W as a collection of w; for all articles 7 in the
sample. The number of rows in W is equal to the number of articles in our sample and
the number of columns in W is equal to the number of unique uni-gram and bi-grams
(after being filtered) across all articles. The matrix W is used as an input for the LDA

"In theory, maximum-likelihood estimation is possible but it is computationally challenging.
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model estimation. We then follow Bybee et al. (2021) and set the number of topics K
to be 180.8

2. In the Python library Gensim, the key parameters of the LDA estim are o and 8.With
a higher value of «, the documents are composed of more topics. With a higher values
of (3, each topic contains more terms (uni- or bi-grams). In the implementations, we
do not impose any explicit restrictions on initial values of those parameters and set
them to be “auto”. These two parameters, alongside ®" and {6, },, are estimated by the
toolbox from Python library https://pypi.org/project/gensim/Gensim.

Real-time LDA Factors With the estimated topic weights 6, of each article ¢ from the
LDA model, we fruther construct time series of the overall news attention to each topic, or a
news factor. The value of the topic k at time ¢ is the average weights of topic k of all articles

published at ¢, specified as follows,

S Ok
F.,= L A4
ok # of articles at t (A4.4)

for all topics k.

AR vs Trend-Cycle Specification for Earnings Growth

This section compares a “trend-cycle model” specification on IBES street earning growth Ae;
with an AR(1) specification.

AR(1) Model

We estimate the AR(1) with intercept for earnings growth Ae;:
Aet:,u—l—pAet_l—i—gt, €tNN(0,O'2).

Under Gaussian maximum likelihood we use the stationary initial density Ae; ~ N(m, o2/(1—
p?)) with m = /(1 — p). The log-likelihood is

2

g
IL—p

o2

o p.o) = _% llog@“ )+ == 777)22(1 =), i(log(%raQ) L (Bee—p— pAet1)2>] |

8The authors used Bayesian criteria to find 180 to be an optimal number of topics.
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We maximize £(u, p,0?) with the constraints |p| < 1 and ¢ > 0, implemented via p =

tanh(a) so that |p| < 1 and 02 = exp(y) > 0. The BIC is BIC = —2/{(u, p, 0?) + klog T with
number of parameters k = 3.

Trend-Cycle Model

Let Ae; decompose into a persistent trend g; and a mean-reverting cycle ¢;:

Aey = gi + ¢ — -1,
9t = Py + Pg Gt—1 + Ny, Ng ~ N(O’qg)v |pg| <1,
G = pcct—l + Ct? Ct ~ N(O7QC)? |Ioc| < 1

State space form. Define the state x; = [ g, ¢;_1, ¢;] and

pg 00 g
Z:[1 -1 1}, T=10 0 1|, d=1|0], Q=diag(g,0,q).
Pe 0

Measurement equation: Ae; = Zx;.
Transition equation: x; = Tx; 1 +d+ ws, wy ~ N(0,Q).
To estimate the parameters, we use the Kalman filter to extract the log-likelihood. With

prediction Z;—; and covariance Py;_,

Predict: 21 = T%_1p—1 + d, Py =TP_1p1 T + Q.
Innovation: v, = Ae, — Z &1, F,=ZP,_ 7.
Update: K, = Py Z'F7', &y = &1 + Ky,
Py = Py — K, F K.

We estimate the parameters using maximum likelihood with the Gaussian log-likelihood

2

T
Z {log 27) + log F;, + —= Ft

t=1

l\DIH
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Specifically, we maximize £(f) with the constraints |p,| < 1 and ¢ > 0, for i = g, ¢, imple-
mented p, = tanh(ay), p. = tanh(a.), ¢, = exp(7,), ¢. = exp(7,.). We estimate oy, o, 7, 7.
directly from the MLE and back out p; and ¢;. The BIC is BIC = —2{(u, p,0?) + klogT
with k& = 5 parameters (p1,, 0., Pcr Qg5 Ge)-

Machine Learning

Machine Algorithm Details

The basic dynamic algorithm follows the six step approach of Bianchi et al. (2022a) of 1.
Sample partitioning, 2. In-sample estimation, 3. Training and cross-validation, 4. Grid
reoptimization, 5. Out-of-sample prediction, and 6. Roll forward and repeat. We refer the
interested reader to that paper for details and discuss details of the implementation here
only insofar as they differ.

At time ¢, a prior sample of size T' is partitioned into two subsample windows: a {rain-
ing sample consisting of the first T observations, and a hold-out wvalidation sample of Ty,
subsequent observations so that T = Tg + Ty. The training sample is used to estimate the
model subject to a specific set of tuning parameter values, and the validation sample is used
for tuning the hyperparameters. The model to be estimated over the training sample is

Yjiro = G° (Xtv /Bj,v,t) t €jtto-

where ;1. is a time series indexed by j whose value in period v > 1 the machine is
asked to predict at time t, X, is a large input dataset of right-hand-side variables includ-
ing the intercept, and G¢(-) is a machine learning estimator that can be represented by a
(potentially) high dimensional set of finite-valued parameters 3, ;. We consider two estima-
tors for G°(+): Elastic Net GFN(X;, 8%7), and Long Short-Term Memory (LSTM) network
GLSTM(Xt,ﬁ;iTM). The e € {EN,LSTM} superscripts on 3 indicate that the parameters
depend on the estimator being used (See the next section for a description of EN and LSTM).
X; always denotes the most recent data that would have been in real time prior to the date
on which the forecast was submitted. To ensure that the effect of each variable in the input
vector is regularized fairly during the estimation, we standardize the elements of X; such that
sample means are zero and sample standard deviations are unity.It should be noted that the
most recent observation on the left-hand-side is generally available in real time only with
a one-period lag, thus the forecasting estimations can only be run with data over a sample

that stops one period later than today in real time.
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The parameters 37, , are estimated by minimizing the mean-square loss function over

the training sample with L, and L, penalties

1 Ty K K
2
e e\ — e e e e e e 2
L( j,v,t’XTE7 At) - T_ § , (yj,T-S-v -G (Xw j,v,t)) + )‘l,t § ‘ﬁj,v,t,k‘ + )‘2,1& § ( j,v,t,k)
E
=1 k=1 k=1
~~ 7 Ny - 7 N - 7
Mean Square Error L; Penalty Lo Penalty
- , N - .. . .
where X7, = (Yji—1p: - Yjt» X1y, - - -, A7) is the vector containing all observations in the

training subsample of size Tg. The estimated 3j,, is a function of the data X7, and a
non-negative regularization parameter vector Af = (A{,, A3, AESTM )/ where AF9TM g a set
of hyperparameters only relevant when using the LSTM estimator for G°(-) (see below). For
the EN case there are only two hyperparameters, which determine the optimal shrinkage and
sparsity of the time ¢ machine specification. The regularization parameters A; are estimated
by minimizing the mean-square loss over pseudo-out-of-sample forecast errors generated from

rolling regressions through the validation sample:

EN 1 Tp+Ty—v EN 2
N = om . EN 2 EN
A L Tp, Ty = argmin — Z (yjﬁ_w = G X, B (X, Ay )))

AtENyTEvTV Vv T:TE

TE+Tv—U
~LSTM =~ =~ 1 ~LSTM 2
. LSTM LSTM

Ay T, Ty = argmin {T s Z <yj,7+v -G (XTv Bj,v;r (XTE7 At ))) }

XESTM T Ty, v =Tg

where ,@;UJ(-), e € {EN,LSTM}, is the time 7 estimate of 35, given A and data through
time 7 in a training sample of size T. Denote the combined final estimator B;v,t(X’fE’ X)),
where the regularization parameter X: is estimated using cross-validation dynamically over
time. Note that the algorithm also asks the machine to dynamically choose both the optimal
training window fE and the optimal validation window fv by minimizing the pseudo-out-
of-sample MSE.

The estimation of B;,U,t(X:FEaX:) is repeated sequentially in rolling subsamples, with
parameters estimated from information known at time ¢. Note that the time ¢ subscripts of
B;th and /)\\: denote one in a sequence of time-invariant parameter estimates obtained from

rolling subsamples, rather than estimates that vary over time within a sample. Likewise, we
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denote the time ¢ machine belief about y; ;.. as Ef[y;++.], defined by

-~e€

B i) = G° <Xt7 Bjwt( X7y, At))

Finally, the machine MSE is computed by averaging across the sequence of squared forecast
errors in the true out-of-sample forecasts for periods t = (T 4 v),...,T where T is the last
period of our sample. The true out-of-sample forecasts used for neither estimation nor tuning
is the testing subsample used to evaluate the model’s predictive performance.

On rare occasions, one or more of the explanatory variables used in the machine forecast
specification assumes a value that is order of magnitudes different from its historical value.
This is usually indicative of a measurement problem in the raw data. We therefore program
the machine to detect in real-time whether its forecast is an extreme outlier, and in that
case to discard the forecast replacing it with the historical mean. Specifically, at each ¢, the
machine forecast Ef [y;+1.,] is set to be the historical mean calculated up to time ¢ whenever
the former is five or more standard deviations above its own rolling mean over the most
recent 20 quarters.

We include the contemporaneous survey forecasts F; [y;4.,] for the median respondent
only for inflation and GDP forecasts, following BLM1. This procedure allows the machine
to capture intangible information due to judgement or private signals. Specifically, for these
forecasts of inflation and GDP growth, we consider the following machine learning empirical
specification for forecasting y;;;, given information at time ¢, to be benchmarked against
the time t survey forecast of respondent-type X, where this type is the median here:

Yjttv = G;h (Zy) + ’thMFt [yj,tﬂ)] + €jt+v, v=>1 (A.5)
where 7,5 is a parameter to be estimated, and where Gy (Z¢) represents a ML estimator as

function of big data. Note that the intercept o, from BLM gets absorbed into the G%, (Z;)
in LSTM via the outermost bias term. 2.

Elastic Net Estimator

We use the Elastic Net (EN) estimator, which combines Least Absolute Shrinkage and Se-
lection Operator (LASSO) and ridge type penalties. The model can be written as:

o ! EN
Yjtro = X8 + €jito
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_____ Xk:)' include the independent variable observations (F; [y;svv], Zjt)
into a vector with “1” and B = (aju, B; . vec (Bjyvz)), = (By, B1,---Bx) collects all the
coefficients.

It is customary to standardize the elements of &; such that sample means are zero and
sample standard deviations are unity. The coefficient estimates are then put back in their
original scale by multiplying the slope coefficients by their respective standard deviations,
and adding back the mean (scaled by slope coefficient over standard deviation.) The EN
estimator incorporates both an L; and Ly penalty:

Tg

K K
~EN , 1 ' 2
Bio = argmin § > (i = X/Bj0) A D Bl + 20 DBy
BobrrBr | TE 7 k=1 k=1

-

Vv
LASSO ridge

By minimizing the MSE over the training samples, we choose the optimal A\, and A, values
simultaneously.

In the implementation, the EN estimator is sometimes used as an imput into the algo-
rithm using the LSTM estimator. Specifically, we ensure that the machine forecast can only
differ from the relevant benchmark if it demonstrably improves the pseudo out-of-sample
prediction in the training samples prior to making a true out-of-sample forecast. Other-
wise, the machine is replaced by the benchmark calculated up to time ¢. In some cases the
benchmark is a survey forecast, in others it could be a historical mean value for the variable.
However, for the implementation using LSTM, we also use the EN forecast as a benchmark.

Long Short-Term Memory (LSTM) Network

An LSTM network is a type of Recurrent Neural Network (RNN), which are neural networks
used to learn about sequential data such as time series or natural language. In particular,
LSTM networks can learn long-term dependencies between across time periods by intro-
ducing hidden layers and memory cells to control the flow of information over longer time
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periods. The general case of the LSTM network with n = 1, ..., N hidden layers is defined as

N
GUSTM ﬁﬁTM) =W N4y, (Output layer)
1::1 1><D11N DUNXl 1x1
v = of Gtanh( ¢ ) (Hidden layer)
~— ~— ~—
Dynx1 Dynx1 D,nx1
g = f o, + i © ¢ (Final memory)

~~~ ~~~ ~— ~~ S~~~
Dvn x1 Danl Dv” x1 Dvn x1 Dun><1

n, n—1 _ M, M
& =tanh(WE) ol L W) gn 4 b ) (New memory)
~ — ~—
Dvn x1 DU” XDU"L_l D’U”L71 x1 Dvn XDvn Dun x1 DU” x1
n o __ nyn—1) n—1 (fro™) ,n
ro=owV v +W v+ b ) (Forget gate)
t t t—1 f
~— —_— o
Dynx1 Dyn XDvn_l Dvnfl x1 Dyn X Dyn D,n x1 Dyn x1
no inonT1) n—1 @(mo™) o on
i =o(W( v +W v+ bin ) (Input gate)
t t t—1 ?
~— — —_ s =~
Dynx1 Di’nXl)’un_1 Dvn,1><1 Dyn xDyn D,n x1 Dynx1
noo__ o1 n—1 (o™v™) ,n
o = a(W! v +W v+ bon Output gate
t ( t A , Vi1 on ) (Output gate)
Dvn x1 Dv” XD,UTI,—l Dvnfl x1 Dvn XDvn Dvn x1 D,Un x1

where n = 1,..., N indexes each hidden layer. h? € RP»" is the n-th hidden layer, where
D,n is the number of neurons or nodes in the hidden layer. The O-th layer is defined as the
input data: h? = X;. The memory cell ¢ allows the LSTM network to retain information
over longer time periods. The output gate o} controls the extent to which the memory cell
cy maps to the hidden layer h}'. The forget gate f;' controls the flow of information carried
over from the final memory in the previous timestep c;' ;. The input gate i}’ controls the

flow of information from the new memory cell ¢}'. The initial states for the hidden layers

N

(R2)N_, and memory cells (c})Y_, are set to zeros.

n=1
o(-) and tanh(-) are activation functions that introduce non-linearities in the LSTM

network, applied elementwise. ¢ : R — R is the sigmoid function: o(x) = (1 + ™).

e?r—1

tanh : R — R is the hyperbolic tangent function: tanh(z) = &7

The ® operator refers to
elementwise multiplication.

B = (((0ee(WW™™ Y, 0ec(W ™Y b)) ge (e, io) ey, vee(W ™Y b,) are param-
eters to be estimated. We will refer to parameters indexed with W as weights; parameters
indexed with b are biases. We estimate the parameters ﬁ;iTM for the LSTM network using

Stochastic Gradient Decent (SGD), which is an iterative algorithm for minimizing the loss
function and proceeds as follows:
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1. Initialization. Fix a random seed R and draw a starting value of the parameters Bﬁi

randomly, where the superscript (0) in parentheses indexes the iteration for an estimate

LSTM
of B .

nvnfl

) S RDU”XD“H_I for g € {07 f7i70} USng the

Glorot initializer. Draw randomly from a uniform distribution with zero mean

(a) Initialize the input weights W

and a variance that depends on the dimensions of the matrix:

nyn=1y g 6 6
Wl ad
K Dvn —|— D,Un—l ’ Dvn —|— Dvn—l

foreachi=1,...,Dynand j=1,..., Dyn-1.

b) Initialize the recurrent weights W6 v") ¢ RPwxDPun for g € {c, f,i,0} using the
g g g

Orthogonal initializer. Use the orthogonal matrix obtained from the QR decom-

position of a D,» X D,» matrix of random numbers drawn from a standard normal

distribution.

(c) Initialize biases (bgn)gefc,f.i,03, hidden layers A, and memory cells cf with zeros.

2. Mini-batches. Prepare the input data by dividing the training sample into a collection
of mini-batches.

(a) Suppose that we have a multi-variate time-series training sample with dimensions
(T, K) whose time steps t are indexed by t = 1,..., T and K is the number of
predictors. We transform this training sample into a 3-D tensor with dimensions
(Ng, M, K) where

e Ng = Total number of sequences in training sample
e M = Sequence length, i.e., number of time steps in each sequence

e K = Input size, i.e., number of predictors in each time step

This can be done by creating overlapping sequences from the time series:

e Sequence 1 contains time steps 1,..., M

e Sequence 2 contains time steps 2,..., M + 1
e Sequence 3 contains time steps 3,..., M + 2
[ ]

Sequence T — M contains time steps Tg — M, ..., T — 1

Sequence Ng = Tg — M + 1 contains time steps Tp — M +1,...,Tg

43



(b) Randomly shuffle the Ng sequences by randomly sampling a permutation of the
sequences without replacement.

(c) Partition the Ng shuffled sequences into [ Ng/Np| mini-batches. We partition the
Ng sequences in the training sample ((Ng, M, K) tensor) into a list of [Ng/Ng]|
mini-batches. A mini-batch is a (Np, M, K)-dimensional tensor containing Np
out of Ng randomly shuffled sequences.” Let B, ... BINs/Nsl denote the list of
mini-batches.

e Ng = Total number of sequences in training sample
e Np = Mini-batch size, i.e., number of sequences in each partition.
e M = Sequence length, i.e., number of time steps in each sequence

e K = Input size, i.e., number of predictors in each time step
3. Repeat until the stopping condition is satisfied (k =1,2,3,...):

(a) Dropout. Apply dropout to the mini-batch. To obtain the n-th hidden layer
under dropout, multiply the current value of the n — 1-th hidden layer R~ and
the lagged value of the n-th hidden layer A} ; with binary masks r h)" . € RPwn—1

(k n .

and 7, )., ) € RP" respectively:

_ k - k iid : :

ot = rt( h)"’l © ot ri h)”*li ~ Bernoullz(pwq), i=1,..., Dy

S~~~ N, N~~~ Tt
Dv'”*l x1 D,Un71><1 Dvnfl x1

k k iid : :
vy = ’r’t(h)n © vy, rih)n i ~ Bernoulli(pyp ),  i=1,...,Dyn
~—

\,—/
Dvn x1 Dvn %1 D,,n x1

wheret € B® andn = 1,..., N indexes the hidden layer and it is understood that
the 0-th layer is the input vector h? = X,. Ppn-1,Phy, € [0, 1] is the probability
that time ¢ nodes in the n — 1-th hidden layer and time ¢ — 1 nodes in the n-th
hidden layer are retained, respectively.

(b) Stochastic Gradient. Average the gradient over observations in the mini-batch

VL(ﬁg-fﬁJl)vXB )\LSTM Z VL k 1) Xt’)\LSTM)

tEB

9When Ng/Np is not a whole number, | Ng/Ng| of the mini-batches will be 3-D tensors with dimensions
(Np, M, K). One batch will contain leftover sequences and will have dimensions (Ns%Ng, M, K) where %
is the modulus operator.
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where VL(ﬁg»ijl),Xt, AMTMY g the gradient of the loss function with respect to
the parameters ﬁgﬁj—l), evaluated at the time ¢ observation X; = (y; 1., ;)" after

applying dropout.

(¢) Learning rate shrinkage. Update the parameters to 5§"2 using the Adaptive Mo-
ment Estimation (Adam) algorithm. The method uses the first and second mo-
ments of the gradients to shrink the overall learning rate to zero as the gradient
approaches zero.

) )

(k) _ ——y—
IBj,U_/Bj,v ’ym—kg

where m® and v® are weighted averages of first two moments of past gradients:

1 -
m® = e (mm Y 4 (1= m) VLB, X, X))
-
1 -
o = (Y 4 (1= m) VLB,V X, AFTY?)
2

7 denotes the k-the power of m € (0,1), and /, /-, and (-)? are applied ele-
mentwise. The default values of the hyperparameters are m(® = v© = 0 (initial
moment vectors), v = 0.001 (initial learning rate), (71, m2) = (0.9,0.999) (decay
rates), and € = 1077 (prevent zero denominators).

(d) Stopping Critera. Stop iterating and return [35’2 if one of the following holds:

o Farly stopping. At each iteration, use the updated B;ku) to calculate the loss
from the validation sample. Stop when the validation loss has not improved
for S steps, where S is a “patience” hyperparameter. By updating the pa-
rameters for fewer iterations, early stopping shrinks the final parameters 3, ,

(0)

towards the initial guess 3;;, and at a lower computational cost than (;

regularization.

o Mazimum number of epochs. Stop if the number of iterations reaches the
maximum number of epochs E. An epoch happens when the full set of the
training sample has been used to update the parameters. If the training
sample has T observations and each mini-batch has M observations, then
each epoch would contain [T /M1 iterations (after rounding up as needed).
So the maximum number of iterations is bounded by E x [Tg/M].

4. Ensemble forecasts. Repeat steps 1. and 2. over different random seeds R and save each

~LSTM
of the estimated parameters 3; , 1, (X1, ALSTM R). Then construct the out-of-sample
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forecast as the average across all 20 resulting forecasts. Ensemble can be considered as
a regularization method because it aims to guard against overfitting by shrinking the

forecasts toward the average across different random seeds. The random seed affects
(0)

s the sequences selected

the random draws of the parameter’s initial starting value 3

in each mini-batch B®, and the dropout mask rgk).

Regularization

To prevent overfitting and improve generalization, we incorporate several forms of regular-

ization into the machine learning algorithm:

e L, and Ly penalties. The loss function includes both an L; (lasso) penalty, which
encourages sparsity, and an Lo (ridge) penalty, which shrinks weights toward zero.
These penalties are applied to all model parameters and selected via cross-validation.
See the loss function in the preceding section for the exact formulation.

e Dropout. Dropout is implemented within the LSTM network on both input and recur-
rent nodes. At each training step, a random subset of nodes is deactivated, encour-
aging the network to rely on different subsets of units. This functions similarly to an
Ly penalty and promotes sparsity and robustness. See the LSTM section above for

implementation details.

e Farly stopping. Training halts when the validation loss fails to improve for a fixed
number of iterations, shrinking parameter estimates toward their initial values and

helping prevent overfitting.

e FEnsemble forecasts. Forecasts are constructed by averaging across 20 different random
seeds, each corresponding to different initial weights. This averaging reduces forecast
variance and mitigates sensitivity to any single realization of the training process.

Hyperparameters

Let AST™ = (A1, Aoy, 1, T2, 0, N, (DA, M, E, S collect all the hyper-parameters that
control the LSTM network’s complexity and prevent the model from overfitting the data.
The number of hidden layers N and the number of neurons D, ..., D, ~ in each hidden layer
are hyper-parameters that characterize the network’s architecture. To choose the number
of neurons in each layer, we apply a geometric pyramid rule where the dimension of each

additional hidden layer is half that of the previous hidden layer. We select the best LSTM
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architecture iteratively by minimizing the pseudo out-of-sample mean-squared error from
rolling forecasts over the validation sample.

Table A.5 reports the hyper-parameters for the LSTM network and its estimation. Hyper-
parameters reported as a range or a set of values are cross-validated. The hyper-parameters
are estimated by minimizing the mean-square loss over pseudo out-of-sample forecast errors
generated from rolling regressions through the validation sample. The pseudo out-of-sample
forecasts are ensemble averages implied by parameters based on different random seeds R.

While the scale of the Ly and Ly penalty values used in our LSTM models may appear
small in magnitude, ranging from 107¢ to 1072, they still play an important role in the reg-
ularization. In neural networks, penalties are typically applied to large numbers of weights,
so even small penalty values can accumulate meaningfully across the total loss function.
Moreover, these penalties can interact with other regularization methods such as dropout
and early stopping, making larger penalty values unnecessary. Similar penalty magnitudes
are also used in related work, such as Gu et al. (2020), who apply L; penalties in the range
of 107° to 1072 asset pricing applications.

For predicting stock returns, we set the L, penalty parameter to zero, removing L,
regularization from the loss function. Given the typically low signal-to-noise ratio in stock
returns, this reduces the risk of underfitting caused by excessive sparsity, especially near
critical turning points such as crisis periods. In deep neural networks such as LSTMs, [
penalties can eliminate important nonlinear interactions and temporal dependencies needed
to detect turning points. Our validation experiments confirmed that models with active L,
penalties consistently underperformed by losing the ability to capture major crises. Instead,
we rely on Lo penalties, dropout, and early stopping, which regularize without forcing weights
to zero, preserving the model’s sensitivity to turning point dynamics.

Adaptive LSTM Architecture Selection We allow the LSTM architecture to evolve
over time using a simple, adaptive updating procedure. At each period in the testing sample,
the machine selects the architecture (number of hidden layers and neurons per layer) that
minimized out-of-sample forecast errors in the preceding period. The candidate architectures
considered span various combinations of hidden layers and neurons per layer, as listed in
Table A.5. The architecture is updated quarterly by using the forecast performance from the
most recent quarter. This systematic approach allows the machine to adjust its specification
over time based on evolving patterns in the data, while avoiding look-ahead bias or overfitting

to future outcomes.
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Table A.5: Candidate hyper-parameters for the machine learning forecast

Variable Earnings Earnings Stock Price CPI GDP
Growth Growth Returns Growth Inflation Growth
Horizon 1-Year LTG 1-Year 1-Year 1-Year 1-Year
(a) Elastic Net
L penalty X\; [10—2,101] [10-2,107] [10~%,101] [10—%,107] [10—%,100] [10—3,101]
L2 penalty Ao [10—2,101] [1072,10'] [10—4,10'] [10—4,10'] [10—4,10°] [10—3,101]
Training window Tg 4,6,8,10 4,6,8,10,12 4,5,6,7 4,5,6,7 3,4,5,6,7 3,4,5,6,7
Validation window Ty 4,6,8,10 4,6,8,10,12 4,5,6,7 4,5,6,7 6,...,15 6,...,15
(b) Long Short-Term Memory Network
L1 penalty )\ [10-%,1072] [1075,1072] [0.0] [0.0] [10-%,1072] [1075,1072]
Lo penalty Ao [1076,1072] [107%,1072] [107%,1072] [107%,102] [1076,1072] [107%,1072]
Learning rate «y 0.001 0.001 0.001 0.001 0.001 0.001
Gradient decay 71,72 0.9,0.999 0.9,0.999 0.9,0.999 0.9,0.999 0.9,0.999 0.9,0.999
Dropout input pg 0.8 0.8 0.8 0.8 0.8 0.05
Dropout recurrent p,, 0.8 0.8 0.4 0.4 0.8 0.05
Hidden layers N 1,3,5 1,3,5 1,3,5 1,3,5 1 1
Neurons per layer 16, 32,64 16, 32,64 16 16 4 4
Mini-batch size M 4 4 4 4 4 4
Max epochs E 10,000 10,000 10,000 10,000 10,000 10,000
Early stopping S 20 20 20 20 20 5
Random seeds R 1,...,20 1,...,20 1,...,20 1,...,20 1,...,20 1,...,20
Training window Tg 4,8,12 3,7,12 5,7,30 5,7,30 5,7 3,5
Validation window Ty 4,8,12 3,7,12,20 3,4 3,4 6,9,12,15 6,9,12

Notes: This table reports the hyperparameters considered in the machine learning algorithm for each esti-
mator.

Machine Variables to Be forecast

Returns and price growth When evaluating the MSE ratio of the machine relative to
that of a benchmark survey, we use the machine forecast for the return or price growth
measure that most closely corresponds to the concept that survey respondents are asked to
predict:

1. CFO survey asks respondents about their expectations for the S&P 500 return over
the next 12 months. Following Nagel and Xu (2022), we interpret the survey to be
asking about 7{,, 5, the one-year CRSP value-weighted return (including dividends)
from the current survey month to the same month one year ahead.

2. Gallup/UBS survey respondents report the return (including dividends) they expect on
their own portfolio one year ahead. We interpret the survey to be asking about rgt 129
the one-year CRSP value-weighted return(including dividends) from the current survey
month to the same month one year ahead.

3. Livingston survey respondents provide 12-month ahead forecasts of the S&P 500 index.
We convert the level forecast to price growth forecast by taking the log difference
between the 12-month ahead level forecast and the nowcast of the S&P 500 index for
the current survey month. Therefore, we interpret the survey to be asking about the
one-year price growth in the S&P 500 index.
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4. Bloomberg Consensus Forecasts asks survey respondents about the end-of-year closing
value of the S&P 500 index. We interpret the survey to be asking about the v-month
price growth in the S&P 500 index. The horizon of the forecast changes depending on
when in the year the panelists are answering the survey.

5. Michigan Survey of Consumers (SOC) asks respondents about their perceived proba-
bility that an investment in a diversified stock fund would increase in value in the year
ahead. We interpret the question to be asking about the one-year price growth in the
S&P 500 index.

6. Conference Board (CB) survey asks respondents about their categorical belief on
whether they expect stock prices to increase, decrease, or stay the same over the next
year. We interpret the question to be asking about the one-year price growth in the
S&P 500 index.

Earnings growth (IBES “Street” Earnings) For earnings growth forecasts, we use a
quarterly S&P 500 total earnings series based on IBES street earnings per share (EPS), as
described above. Street earnings exclude discontinued operations, extraordinary charges, and
other non-operating items, making them better aligned with the earnings measure targeted
by survey respondents. We convert EPS to total earnings using the S&P 500 index divisor
and use the resulting quarterly series directly, prior to any monthly interpolation, since the
machine learning algorithm operates at a quarterly frequency. The IBES street earnings
series spans 1983:QQ4 to 2021:Q4.

Inflation We counstruct forecasts of annual inflation defined as

PGDP, 4
T4t = In —PGDPt

where PGDP; is the quarterly level of the chain-weighted GDP price index. Following
Coibion and Gorodnichenko (2015), we use the vintage of inflation data that is available

four quarters after the period being forecast.

GDP growth We construct forecasts of annual real GDP growth defined as

—ln RGDP; 4
Yt+a,t = —R GDP,
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where RGDP; is the quarterly level of chain-weighted real GDP. Following Coibion and
Gorodnichenko (2015), we use the vintage of inflation data that is available four quarters

after the period being forecast.

Machine Input Data: Predictor Variables

. /
The vector Zj; = (yj,t, G/, W;t> is an r = 14+ rg+rw vector which collects the data at time

t with th = <yj,t7 vy yj,t—pyv G;, ceey G’/ W’

/
t—pe> Wity oy W/ ) a vector of contemporaneous

Jt—pw
and lagged values of Z;;, where p,, pe, pw denote the total number of lags of v, , G;, Wi

A~

respectively. The predictors below are listed as elements of y;+, G;t, or W}t for variables.

Stock return and price growth predictor variables and specifications For y; equal
to CRSP value-weighted returns or S&P 500 price index growth, we first predict the one-year
log stock return or price growth that is expected to occur v quarters into the future from
time t + v — 4 to t + v, i.e., E[riip_ar40). For horizons longer than one year, since the
v-quarter long horizon return is the sum of one-year returns between time ¢ to t + v, we first
forecast the forward one-year returns separately and then add the components together to
get machine forecasts of v-quarter long horizon returns. The forecasting model considers the

following variables:
In W7,

1. Gary, for k = 0,1 are factors formed from a real-time macro dataset DM with 92
real-time macro series; includes both monthly and quarterly series, with monthly series
converted to quarterly according to the method described in the data appendix.

2. Gpy_, for k= 0,1 are factors formed from a financial data set D with 147 monthly

financial series.

3. vat_,ﬁ, for k = 0 are quarterly factors formed from a daily financial dataset DP of
87 daily financial indicators. The raw daily series are first converted to daily factors
Gp: (w) and the daily factors are aggregated up to quarterly observations G%t (W)
using a weighted average of daily factors, with the weights w dependent on two free

parameters that are chosen to minimize the sum of squared residuals in a regression of

Yjt4v ON GD,t (W)

4. LDA topics Fy;—;, for topic k = 1,2,..50 and j = 0,1. The value of the topic k at
time t is the average weights of topic k of all articles published at t.
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3.

10.

Macro data surprises from the money market survey. The macro news include, GDP
growth (Q/Q percentage change), core CPT (Month/Month change), unemployment
rate (percentage point), and nonfarm payroll (month/month change). We include first
release, second release, and final release for GDP growth. This constitutes six macro
data surprises per quarter.

FOMC surprises are defined as the changes in the current-month, 1, 2, 6, 12, and 24
month-ahead federal funds futures (FFF) contract rate and the changes in the 1, 2,
4, and 8 quarter-ahead Eurodollar (ED) futures contracts, from 10 minutes before to
20 minutes after each FOMC announcement. When benchmarking against a survey,
we use the last FOMC meeting before the survey deadline to compute surprises. For
surveys that do not have a clear deadline, we compute surprises using from the last
FOMC in the first month of the quarter. When benchmarking against moving average,
we use the last FOMC meeting before the end of the first month in each quarter to
compute surprises. This leaves 10 FOMC surprise variables per quarter.

Stock market jumps are accumulated 30-minute window negative and positive jumps

in the S&P 500 around news events over the previous quarter.

. Iy, for k= 0,1,2 is the historical mean of returns calculated up to time ¢. The initial

period is 1959Q)1.
Long-term growth of earnings: 5-year growth of the SP500 earnings per share.

Short rates. When forecasting returns or price growth, the machine controls for the
current nominal short rate, In(1 + 3M7TB,;/100), imposing a unit coefficient. This is
equivalent to forecasting the future return minus the current short rate.

The 92 macro series in DM are selected to represent broad categories of macroeconomic time

series. The majority of these are real activity measures: real output and income, employment

and hours, consumer spending, housing starts, orders and unfilled orders, compensation

and labor costs, and capacity utilization measures. The dataset also includes commodity

and price indexes and a handful of bond and stock market indexes, and foreign exchange

measures. The financial dataset D/ is an updated monthly version of the of 147 variables

comprised solely of financial market time series used in Ludvigson and Ng (2007). These

data include valuation ratios such as the dividend-price ratio and earnings-price ratio, growth

rates of aggregate dividends and prices, default and term spreads, yields on corporate bonds

of different ratings grades, yields on Treasuries and yield spreads, and a broad cross-section
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of industry, size, book-market, and momentum portfolio equity returns.'® The 87 daily
financial indicators in DP include daily time series on commodities spot prices and futures
prices, aggregate stock market indexes, volatility indexes, credit spreads and yield spreads,

and exchange rates.

Earning growth predictor variables and specifications For earning growth forecasts,
we first detrend the (log) earnings level in real time by, starting with an initial sample,
recursively running the following regression at each point in time ¢

log (earnings;) = ay + Byt + ys

For y; equal to the detrended (log) earning level, we construct a forecasted value for y;,
denoted s, based on information known up to time ¢ using the following variables:

1. Garg, for k = 0,1 are factors formed from a real-time macro dataset DM with 92
real-time macro series; includes both monthly and quarterly series, with monthly series
converted to quarterly according to the method described in the data appendix.

2. Gpy_y, for k= 0,1 are factors formed from a financial data set D with 147 monthly

financial series.

3. vat_,ﬁ, for k = 0 are quarterly factors formed from a daily financial dataset DP of
87 daily financial indicators. The raw daily series are first converted to daily factors
Gp: (w) and the daily factors are aggregated up to quarterly observations G%t (W)
using a weighted average of daily factors, with the weights w dependent on two free

parameters that are chosen to minimize the sum of squared residuals in a regression of

yjcon Gp, (w).

4. LDA factors Fy,—;, for topic k = 1,2,...50 and j = 0,1. The value of the topic k at
time t is the average weights of topic k of all articles published at t.

5. Macro data surprises from the money market survey. The macro news include, GDP
growth (Q/Q percentage change), core CPI (Month/Month change), unemployment
rate (percentage point), and nonfarm payroll (month/month change). We include first
release, second release, and final release for GDP growth. This constitutes six macro

data surprises per quarter.

10A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf
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6. FOMC surprises are defined as the changes in the current-month, 1, 2, 6, 12, and 24
month-ahead federal funds futures (FFF) contract rate and the changes in the 1, 2,
4, and 8 quarter-ahead Eurodollar (ED) futures contracts, from 10 minutes before to
20 minutes after each FOMC announcement. When benchmarking against a survey,
we use the last FOMC meeting before the survey deadline to compute surprises. For
surveys that do not have a clear deadline, we compute surprises using from the last
FOMC in the first month of the quarter. When benchmarking against moving average,
we use the last FOMC meeting before the end of the first month in each quarter to
compute surprises. This leaves 10 FOMC surprise variables per quarter.

7. Stock market jumps are accumulated 30-minute window negative and positive jumps

in the S&P 500 around news events over the previous quarter.

After we obtain the machine forecast for the detrended level of earnings, y, we obtain the v-
horizon machine earnings growth forecast (from ¢t —v to ¢ denoted E;_,, [Alog (earnings}')])

by constructing

E;_, [A log (earningsiw)] = Q4o+ Bt_vt + Q%_U — log (earnings;_.)
where log (earnings;_,) is the realized log earning level at time ¢t —v, and g)%_v is the machine
forecast of the detrended log earnings based on information up to time ¢ — v. To use this

approach to forecast the 20-quarter ahead annual forward earnings i.e., (from t — 4 to t on
basis of information at ¢ — 20), we would construct

Ei_o9 [log (earnings;")] = du—00 + By_sot + Q%_Qo-
To construct 20-quarter ahead annual earnings growth forecast we compute
E; 2 [log (earmngsi\il)} = Gy_o90 + Bi_go(t —4) + ?)%4\1&—20

to get the machine forecast of 20-quarter forward annual earnings log growth as

E¢ 20 [log (earm’ngsi\/[) — log (earmngsiﬂ)] = @1%204 + gi\vt[—QO - ?3%4\15—20-

An alternative is to use the machine inputs to directly forecast 20-quarter forward annual

earnings log growth E, s [log (earnings)’) — log (earnings,)].
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Inflation predictor variables Ior y; equal to inflation, the forecasting model considers

the following variables.

In W7,

1. nglk[yjt+v_k], lagged values of the ith type’s forecast, where k = 1,2

2. Iﬁ‘gif? [Yjt+v—1], lagged values of other type’s forecasts, s # i

3. varx (ngl[yﬁw,l]), where vary (-) denotes the cross-sectional variance of lagged sur-
vey forecasts

4. skewyx (Fgfl[g/jt%_ﬂ), where skewy () denotes the cross-sectional skewness of lagged
survey forecasts

pPi—g + (1 — p)m—1,p = 0.95 if £ <1991:Q4

5. Trend inflation measured as m;_; = ' ( e ,

CPI10;_, if ¢t > 1991:Q4

where CPI10 is the median SPF forecast of annualized average inflation over the current

and next nine years. Trend inflation is intended to capture long-run trends. When long-

run forecasts of inflation are not available, as is the case pre-1991:Q4, we us a moving
average of past inflation.

6. GDP,_, = detrended gross domestic product, defined as the residual from a regression
of GDP,_; on a constant and the four most recent values of GDP as of date t — 8. See
Hamilton (2018).

7. EMP,_, = detrended employment, defined as the residual from a regression of EMP,_;
on a constant and the four most recent values of EM P as of date ¢t — 8. See Hamilton
(2018).

8. N,Ei) [7+—0] = Nowcast as of time ¢ of the ith percentile of inflation over the period t —v

to t.

Lags of the dependent variable:

1.

Yi—1.1—v—1 one quarter lagged inflation.

The factors in th include factors formed from three large datasets separately:

1.

G-k, for k = 0,1 are factors formed from a real-time macro dataset DM with 92
real-time macro series; includes both monthly and quarterly series, with monthly series
converted to quarterly according to the method described in the data appendix.
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2. Gpy_y, for k= 0,1 are factors formed from a financial data set D with 147 monthly

financial series.

3. thfk, for k = 0 are quarterly factors formed from a daily financial dataset D of
87 daily financial indicators. The raw daily series are first converted to daily factors
Gp,. (w) and the daily factors are aggregated up to quarterly observations G%t (w)
using a weighted average of daily factors, with the weights w dependent on two free
parameters that are chosen to minimize the sum of squared residuals in a regression of
Yj+v o0 Gpy (W),

The 92 macro series in DM are selected to represent broad categories of macroeconomic time
series. The majority of these are real activity measures: real output and income, employment
and hours, consumer spending, housing starts, orders and unfilled orders, compensation
and labor costs, and capacity utilization measures. The dataset also includes commodity
and price indexes and a handful of bond and stock market indexes, and foreign exchange
measures. The financial dataset D/ is an updated monthly version of the of 147 variables
comprised solely of financial market time series used in Ludvigson and Ng (2007). These
data include valuation ratios such as the dividend-price ratio and earnings-price ratio, growth
rates of aggregate dividends and prices, default and term spreads, yields on corporate bonds
of different ratings grades, yields on Treasuries and yield spreads, and a broad cross-section
of industry, size, book-market, and momentum portfolio equity returns.!’ The 87 daily
financial indicators in DP include daily time series on commodities spot prices and futures
prices, aggregate stock market indexes, volatility indexes, credit spreads and yield spreads,
and exchange rates.

GDP growth predictor variables For y; equal to GDP growth, the forecasting model
considers the following variables.
In W,

1. Fg?_k[yjtw_k], lagged values of the ith type’s forecast, where k = 1,2

2. ngf? [Yjt+v—1], lagged values of other type’s forecasts, s # i

3. vary <F§21[yjt+v_1]>, where vary (-) denotes the cross-sectional variance of lagged sur-

vey forecasts

4. skewx (Fgﬂl[yjt%,ﬂ), where skewy () denotes the cross-sectional skewness of lagged

survey forecasts

11 A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf
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5. Ngi) [7.+—v] = Nowcast as of time ¢ of the ith percentile of inflation over the period t —v
to t.

Lags of the dependent variable:
1. Yt—14—0—1 one quarter lagged annual GDP growth.
The factors in G;t include factors formed from three large datasets separately:

1. Gy, for k = 0,1 are factors formed from a real-time macro dataset D with 92
real-time macro series; includes both monthly and quarterly series, with monthly series
converted to quarterly according to the method described in the data appendix.

2. Gpy_y, for k= 0,1 are factors formed from a financial data set D with 147 monthly

financial series.

3. G%t_k, for k = 0 are quarterly factors formed from a daily financial dataset D of
87 daily financial indicators. The raw daily series are first converted to daily factors
Gp. (w) and the daily factors are aggregated up to quarterly observations th (W)
using a weighted average of daily factors, with the weights w dependent on two free
parameters that are chosen to minimize the sum of squared residuals in a regression of

Yjt+o ON GD,t (W)

The 92 macro series in DM are selected to represent broad categories of macroeconomic time
series. The majority of these are real activity measures: real output and income, employment
and hours, consumer spending, housing starts, orders and unfilled orders, compensation
and labor costs, and capacity utilization measures. The dataset also includes commodity
and price indexes and a handful of bond and stock market indexes, and foreign exchange
measures. The financial dataset D/ is an updated monthly version of the of 147 variables
comprised solely of financial market time series used in Ludvigson and Ng (2007). These
data include valuation ratios such as the dividend-price ratio and earnings-price ratio, growth
rates of aggregate dividends and prices, default and term spreads, yields on corporate bonds
of different ratings grades, yields on Treasuries and yield spreads, and a broad cross-section
of industry, size, book-market, and momentum portfolio equity returns.'?> The 87 daily
financial indicators in DP include daily time series on commodities spot prices and futures
prices, aggregate stock market indexes, volatility indexes, credit spreads and yield spreads,
and exchange rates. Once converted into factors the total number of series used as inputs
into the machine learning specifications is given below.

12A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf
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Table A.5: Number of RHS Variables

Stock Return  Earnings GDP Inflation

Macro Factors 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag)

Financial Factors 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag)

Daily Factors 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag)
LDA Factors 50 50 0 0
FOMC Surprises 10 10 0 0
Macro Data Surprises 6 (0-1lag) 6 (0-1 lag) 0 0
Other predictors 0 3 12 13
Total 132 135 62 63

This table shows the number of predictors using for each forecast

Model Solution

We use the algorithm of Farmer, Waggoner and Zha (2011) to solve the system of structural

model equations that must hold in equilibrium, where agents form expectations taking into

account the probability of regime change &, in the future. This solution is obtained in three

steps.

1. Solve for the true law of motion of SM in (19) such that (15)-(18) are satisfied and for

the perceived law of motion of SM* in (20) such that perceived versions of (15)-(18)

are satisfied.

. Solve for the law of motion for S = [mt,pdt, Ipy, IEt (M) ,Et (pdy11)| such that (25)-
(?7?) are satisfied. The resulting solution takes the form:

S = G'A,gt + TA,MSK’{ + TA,ASil + EA,nm + EA,AIQM@EI{W + EA,AO-lp,gtElp,ta (A.6)

where fCV’A@,TVAM, etc., are matrices involving the perceived parameters 5M from (20).
Since (25)-(??) involve conditional subjective second moment terms V, and @@KQ that
are affected by &,, we follow Bansal and Zhou (2002), Bianchi, Kung and Tirskikh
(2018), and BLM2 in using a “Risk Adjustment with Lognormal Approximation,” to
preserve log-normality of the entire system. This implies that C 1.6, depends on &,.

— [QM oMx QA =M ! M _ !
- Let Sy = [SM,SM S8 my] and e} = [eays, €is Ents Erts Exgys Er E7ts E7y) - The

third and final step is to combine the equations from steps 1 and 2 into a single system
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representing the complete structural model:
Si=C (06,,0,) + T (0e,.0%, ) Si1 + R (6e,.0,) Qe (A7)

where C(-), T(-), R(-) are matrices of primitive parameters involving elements of 6,
and ggt, some of which vary with the Markov-switching variable &, and Q¢ (-) is a
matrix of shock volatilities that vary stochastically with &,. The structural shocks
of the full model are contained in & = (ei”,elp,t,evyt)/, which stacks the primitive
macro shocks €, the liquidity premium shock ej,; (a feature of preferences), and
the vintage errors €,,. Neither 5;” or 7, appear separately in e; because Ei\/[ =

-\l IO
<RMQM) <StM* —CM — TMS%’O is entirely pinned down SM* (and thus by e

and €,,), while 7, has an innovation that is proportional to Ei\/[ .

Observation Equation

The mapping from the variables of the model to the observables in the data can be written
using matrix algebra to obtain the observation equation X; = Dg, ; + Z§t7t52 + Usvy, where
Sy = [S%,S%*,S{l,nt,gy}/, and where

524 = |my, pdy, Ips, Et (mi11) aEt (pdt+1)]

Stjw = [AytaA_ywAdtﬂhﬁtaitazt?kt)Et],

- /
Mx __ * * * ok —k ok X g% 7TF
S = Ayt,Ayt,Adt,wt,wt,zt,zt,kt,k‘t} )

Annualizing the monthly growth rates to get annualized GDP growth we have Aln (GDP,) =
12AIn (Y;) = 12Ay;. For quarterly GDP growth we interpolate to monthly frequency. For our
other quarterly variables we drop these from the observation vector in the months for which
they aren’t available. Machine forecasts and investor forecasts load on different subvectors of
S;. Let the subjector relevant for the machine forecasts be denoted SMF = [SM*, S, nt,aﬁ”}’
and the subvector relevant for the investor forecasts be S/ = [SM*, St"‘,nt}/. Let matrices
with a subscript, e.g., Z,, denote the subvector of Z that when multiplied by the appropriate
subvector of S; and added to D, +U,v,; picks out the appropriate theoretical concept to map
into empirical observations on an element x; of X;. For time ¢ expected values in the model,
we construct formulas for computing e.g., the expected value of a variable x; over the next
v periods under the assumption that &, = j, such that E, (24440) = D} + 7L Sl

§4:Tt 4 Tttt
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where 7] are row vectors that load the subvector S/, and D} is a comformable

sTt,t4v sTt,t4v
interceptgff};‘;z applies to investor forecasts. These formulas are map;fédf;;to survey forecasts
and machine forecasts for variables v periods ahead, respectively. We also construct formulas
for computing the expected value of a variable x; in v periods under the assumption that
&, = J, denoted by mapping vectors taking the form Zglt,xtﬂ
machine expectation are denoted with “ML” superscripts, i.e.., Z}", and load on

. Analogous mappings for the
SMF
These loadings differ because investor forecasts use their perceived law of motion for the
macro block, while machine forecasts use the true law of motion and in addition take into
account the AR(1) evolution of 7, that varies with perceived news 2;".

The observation equation when all variables in X; are available takes the form:
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The term G'DP, refers to real gross domestic product, with GD P/ the real-time version
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available at time ¢. The term Inflation; in the above stands for 12-monoth ahead CPI
inflation with Inflation; the real-time version available at time . ft(o) refers to the FFF
contract rate that expires in the current month. FFR is the annualized nominal federal
funds rate. IF » refers to v-period ahead survey forecast at time ¢ for survey s. For inflation
and real GDP growth, surveys s include one-year ahead forecasts from Blue Chip (BC, 12
months ahead), Livingston (LIV, 2 biannual periods), Bloomberg (BBG, 12-months ahead),
and Survey of Professional Forecasters (SPF, 4 quarters ahead). For inflation, we also include
10-year ahead forecast from LIV. IF(BC) (FFR) refers to v-period ahead Blue Chip forecast
for Fed Funds Rate, with v = 12 months. E, ,(z) refers to v-period ahead machine forecasts
of variable x at time ¢. ft refers to the time-t¢ contracted federal funds futures market
rate, expiring in n months. Here we use n = {0, 6,10, 20,35}, where 0 refers the contract

that expires in the current month. ED"

refers to the time-t contracted Eurodollar rate,
expiring in n quarters. Here we use n = {1,2,4,8}. Baa, is the Baa spread described
above, where Cp,, and B are scalar parameters. To map the Baa; into the subjective risk
premium, we add a constant C'ga,to our model-implied E(S)(Almﬁv) i1 =BZ{ a,, St —

ZE oaSt T2 b ST ay S 2L S =2, S ZE L, ST and scale it by the
parameter B to be estimated. The variable pgdp;;—; is the log of the SP500 capitalization-
to-lagged nominal GDP (NGDP) ratio, i.e., In(P,/NGDP,_,); EGDP;,;_; is the level of
the S&P 500 earnings-to-lagged NGDP ratio (nominal earnings divided by lagged nominal
GDP); POGDP,;, is the eight quarter moving average of U.S. corporate sector nominal
payout relative to lagged NGDP; DGDPF,;_, is the monthly S&P 500 nominal dividend-to-
lagged NGDP ratio. These variables are mapped into the model implications for K;, with
EGDP;;y =~ K + K (ki — k+ Ay,;) and likewise for POGDP,;_1, DGDP,;_;, where K is
the steady state level of K; = exp (k;). To obtain high-frequency information on EGDP,,;_;,
we use the BBG earnings nowcasts divided by one-month lagged real-time GDP. For all
announcements, we use the pre- and post- announcement BBG earnings nowcast-to-lagged
GDP ratio. The variable 7’? — ;1 is the nominal time ¢ CRSP-VW stock return including
dividend distributions less last period’s nominal short rate. IF (AlnPtEiU) 1,1 refers to
survey forecasts of S&P 500 price index growth in excess of the lagged short rate, which
corresponds to the LIV and BBG surveys point survey forecasts of the index. IF( )(rt o) —
i;_1 refers to point survey forecasts of returns, which corresponds Gallup/UBS and CFO.
The LIV, Gallup/UBS, and CFO surveys are mapped onto annual price growth or return
expectations, as appropriate, in the model. The BBG survey is mapped into multi-month
returns, depending on the month of the year (see data description above). For SOC, which
is not a point forecast but instead a subjective probability of an increase in stock market in

next year, we map it onto the investor expectation of one-year ahead returns, allowing for
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a freely estimated slope Cspcand intercept to account for the change in units to indicate
that this is a measure that moves with point forecasts while not being identical to them.
E; . (AlnPtD — it_1) refers to machine forecasts of price growth in excess of the lagged short
rate. [, , (rtD — it_1) refers to machine forecasts of returns in excess of the lagged short rate.
Ft(n)(Ad) refers to the expectations of future dividends constructed from dividend futures
markets for n = 8 quarters ahead. ngBES)(Aet) and FEiBG)(Aet) refer to the IBES and
BBG analyst forecasts of earnings growth for v = 12 months ahead. E;,(Ae) is the v-quarter
ahead machine forecast for earnings growth from IBES with v = 4, a noisy signal on rational
expectations of Ady,.Fy(LTQG) refers to the IBES LTG forecasts. For the mapping to the
structrual model, we treat LTG as measuring annual five-year forward growth expectations,
i.e., annual earnings growth from four to five years ahead. Machine forecasts for the five-year
forward earning growth are denoted E,(LTG).

Two points about the mapping bear noting. First, the observation equation often uses
multiple measures of observables on a single variable, e.g., investor expectations of inflation
12 months ahead are measured by four different surveys (BC, SPF, LIV, and BBG). Like-
wise, dividend futures and survey expectations Ft(”)(Ad), F,SLBES)(AQ), and Fy(LTG) are all
taken as noisy signals on the underlying investor expectations process for Ad. In the filter-
ing algorithm above, these provide four noisy signals on the same latent variable. Second,
a number of different surveys are used to gauge expectations for multiple variables. These
surveys have different deadlines for respondents to turn in their forecasts. Whether monthly
or quarterly, the different surveys conduct interviews or have response deadlines that hap-
pen somewhere during the course of a specific month. We therefore conservatively set the
“response deadline” for the machine forecast to be the first day of every month, implying
that we allow the machine to use information only up through the end of the previous month
(e.g., through January 31st for an interview or response deadline in February). This ensures
that the machine only sees information that would have been available to survey respondents
in the months for which that survey is conducted. This approach is conservative in the sense
that it handicaps the machine, since all survey respondents who are being interviewed during
the next month would have access to more timely information than the machine.

Additional Figures and Tables

Table A.6 reports the results of regressing excess returns on the S&P 500 on past news in
monthly data. Past news is measured as the high-frequency jump in the stock market due
to a news event. We first sort all news events by whether the market over- or underreacted
based on the structural model estimates. We then sum all the high-frequency jumps in
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the market around news events in month ¢ in a given reaction category. This aggregated
Jumps, variable is our measure of past news. We regress future excess returns on Jumps;.
We find that news events characterized by overreaction predict future excess returns with a
negative coefficient, while those characterized by underreaction predict future excess returns
with a positive coefficient. The results for events where the news was bad, as indicated by a
downward jump in the market, are marginally more significant than those where the news
was good and are reported separately.

Table A.6: Predicting Returns Using Reactions to News

TTipe = @+ By JJumpsy, + B,ray + €y
v=12 v =24 v =36 v =60
Panel (a): Overreaction
All overreaction events
By —0.129* —-0.175* —-0.214* —0.229"
(t-stats) (—1.75) (—1.81) (-1.92) (—1.77)
Bad market news
By —0.228* —-0.237"* —-0.254" —0.231*
(t-stats) (—1.84) (—2.08) (—2.02) (—1.93)
Panel (b): Underreaction
All underreaction events

B 0.105 0.193* 0.199* 0.230*

(t-stats) (1.21) (1.71) (1.89) (1.72)
Bad market news

B 0.109* 0.215* 0.191** 0.159**

(t-stats) (1.79)  (1.94) (2.04) (1.98)

Notes: This table reports results of monthly regressions of the v-month ahead log S\&P 500 stock market
return (measured as the log difference in the S&P 500 market cap) in excess of the 1-month Treasury bill
rate (“ray.,”) on the sum of high-frequency changes in the S&P 500 around all news events in month ¢ in a
specific reaction category (“Jumps;”). To obtain a reaction category, we first sort all news events by whether
the market over- or underreacted based on the structural model estimates. We then sum the high-frequency
jumps in the S&P 500 around all news events in that reaction category for month ¢ to obtain Jumps,. The
results for the subset of events in which Jumps; < 0 are reported under the panel labeled “Bad market
news". Newey-west t-statistics are reported in brackets. Bolded numbers indicate significance at 10%$ level.
* — &g 10%, ** — sig 5%. The sample spans 1986:M2 - 2021:M12.
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Table A.7: Parameter Estimates

Regime 1 Regime 2 Regime3
Actual Perceived Actual Perceived Actual  Perceived

o; 0.0034  0.0034 o;  0.0022 0.0022 o; 0.0042 0.0042
o  0.0030 0.0030 or 0.0023 0.0023 Or 0.0037 0.0037
oany 0.0093 0.0094 oany 0.0055 0.0055 oany  0.0196 0.0197
or  0.1450 0.1451 or 0.0825 0.0825 Ok 0.2657 0.2657
o 0.0145 — o 0.0083 — o, 0.1338 —

o3 0.0070 0.0070 o; 0.0108 0.0108 o3 0.0327 0.0327
oag 0.0111 0.0111 oag 0.0067  0.0067 oag  0.0157 0.0157
oz 0.0176 0.0176 o 0.0174 0.0174 Or 0.0587 0.0588
or  0.0729 0.0730 or 0.0381 0.0381 g 0.1852 0.1852

Notes: Posterior mode values of the parameters. The estimation sample spans 1961:M1-2021:M12.

Figure A.1: Stock Return Expectations
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Notes: The figure plots the model estimate (in blue) and data (in red) for one-year-ahead stock return
expectations as indicated in each panel title. The sample spans 2001:M1 - 2021:M12
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