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1 Introduction

New technologies often give rise to concerns that the new technological opportunities will

be exploited by those with existing market power and, hence, diminish the rate of adoption

and innovation in those technologies. For instance, concerns about the market power of

telecommunications infrastructure providers were the focus of much regulatory attention

with respect to the Internet although, ultimately, it was newer firms that ended up being

the later focus of antitrust inquiries. The same discussions are taking place with respect to

artificial intelligence (AI). There are simultaneously concerns that incumbents who have large

repositories of data will end up leveraging their market power into the provision of artificial

intelligence technologies that rely on such data and also concerns that new entrants who

have built foundational models are signs of a highly concentrated market for AI provision.

The purpose of this survey is to examine these issues of market power in the provision of

AI. The focus here is on the latest generation of AI technologies that have received a large

amount of investment attention since the improvements in deep learning were demonstrated

around 2012 and, more recently, with the emergence of generative AI and, in particular,

large language models. Those technologies are all properly characterised as advances in

computational statistics; in particular, the statistics of prediction (Agrawal et al., 2018).

This means that the resources that are used to generate AI predictions (the output of AI

technologies) are data (both input and training), talent (data scientists and AI developers)

and compute (the hardware to train AI and run inference tasks). There is potential for

concentration amongst each of these inputs and also in the provision of AI output.

The focus of this survey is on market power issues that uniquely arise in the AI context.

Thus, we set aside considerations of talent and compute because these are factors that apply

more generally in industrial organisation and antitrust. Instead, the focus is on data and

predictions. To that end, the analysis here is divided into three areas along broad market

lines. First, the determination of competition in markets for training data – the data that

is used to develop AI predictive algorithms – is examined. Here, the central focus is on data

feedback loops that can allow market power to beget market power. The message here is that

these effects can be subtle (as anticipated by Varian (2019) and Agrawal et al. (2022)). How-

ever, it is demonstrated that the presence of data sharing or data markets can significantly

impact the potential for concentration in the provision of training data. Second, market

power in input data markets is examined. This data is used to ‘feed’ existing AI algorithms

(already trained and developed) to generate AI predictions. The key issue identified again is

how such input data traverses firm boundaries – especially amongst competitors in a market.

It is here that the potential for data-driven mergers is analysed. Finally, market power in
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the market for predictions themselves – the output of AI algorithms – is analysed. This area,

while relatively nascent, has received attention in matching markets where match quality is

important.

2 Market Power in Training Data

AI prediction algorithms generate predictions by being fed input data. The prediction al-

gorithms themselves are created using training data. The training data and input data are

often distinct, with the training data being generated in the past, whereas the input data

is often to be generated in the future. Sometimes, data might be both input and training

data, for instance, where input data is used to update prediction algorithms.

From a competition perspective, a useful although admittedly not perfect attribution of

the distinct roles of training and input data is that training data, by enabling the creation of

AI prediction algorithms, is a key component that drives entry into a market, whereas input

data, by allowing prediction algorithms to run effectively, is a key component that drives

cost and/or quality of offerings by firms in a market.

In this section, market power in the provision of training data is examined by considering

situations where incumbent firms have greater access to training data and that this creates

a potential barrier to entry. There are other AI-related resources, such as compute, that can

also create barriers to entry. Here, however, the focus is on training data, not just because

it can be an essential input but also because its non-rival nature means that it can be made

freely available to incumbents and entrants alike. Thus, it is the incentives of incumbents not

to make that data available, even at a price, that lead to higher entry barriers and market

power by those who generate or hold training data.

2.1 The Data Feedback Loop

At the heart of many considerations regarding the existence of market power is whether

the adoption of a technology involves a production function with increasing returns to scale.

With respect to AI, the issue of returns to scale has been predominantly explored with respect

to data. Agrawal et al. (2018) described how Amazon was able to generate a virtuous cycle

by launching its recommendation engines sooner, attracting more customers that generate

feedback data that improves the predicted recommendations, attracts even more customers

and so on (see Figure 1). This implies that, at least over an important range, the use of data

in production may exhibit increasing returns to scale.1

1For a pricing treatment see, Gurkan and de Véricourt (2022).
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Figure 1: The Data Feedback Loop

Farboodi and Veldkamp (2023) provide a simple model that generates this outcome.

They assume that output at time t, Yt, is a function of productivity (At) and capital (Kt)

at that time.

Yt = AtK
α
t

where α < 1. Productivity is dependent on data available, Dt:

At = A(Dt)

Finally, data is accumulated through the sales of products – that is, there is what Rosenberg

(1982) termed “learning by using.”

Dt+1 = (1− δ)Dt + zYt

z is a scaling parameter to track how output translates into a measure of data. This model

originates in the examples of Wilson (1975) and is enriched in Farboodi and Veldkamp (2021)

and Jones and Tonetti (2020).

While this data feedback loop is at the core of how AI may lead to market power accrued

by some firms in some markets, empirically, it appears that there may be limits to the

operation of the data feedback loop. In a study of Amazon’s retail forecasting, Bajari et al.

(2019). They note that statistical learning theory implies that there are diminishing returns

to the size of the dataset in terms of prediction performance, even though observations

across a greater period of time should improve forecast accuracy. However, as Amazon’s
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data covers millions of products, as the number of products considered expands, this should

improve prediction performance. They found, however, that the number of products had

little impact on prediction performance, even though as the number of observations per

product increased, prediction performance did improve. Over time, however, there was a

trend towards better performance, suggesting a ‘learning by doing’ type effect that comes

from improvements in organisational practices and other investments.2 This analysis, of

course, does not take into account interactions with the competitive environment between

firms. Calvano et al. (2023) examine this theoretically using a commonly used approach

underlying consumer recommendation systems and show that, while more data may lead to

more concentration, the end result may be lower prices and higher consumer surplus.3

2.2 Competition with Data Feedback

A natural way of modelling the data feedback loop is to assume that when a firm is able

to attract customers, it can use the data generated by those customers to improve product

quality for any future customer it might supply. For instance, if Ni is a measure of the

data gathered from past customers – perhaps an index of the number of periods that it has

attracted a large number of customers in a market – then one component of a consumer’s

willingness to pay for their product is fi(Ni) which is a non-decreasing function. There is

another component of a consumer’s willingness to pay for i’s product is a stand-alone value,

si(≥ 0), which does not depend on data gathered and used by i but is something intrinsic

to the product that i offers. Suppose there is a continuum of [0, 1] identical consumers in

the market in any period. It is assumed that, in a period, the total willingness to pay for i’s

product, si+ fi(Ni) is the same for all consumers and consumers care about si+ fi(Ni)− pi,

where pi’s price in that period when selecting a product to purchase. Consumers purchase a

product from only one firm in the market at a time. It will, however, be assumed that there

are no constraints on consumers from choosing to buy from one firm today and selecting

another in the future; i.e., there are no direct switching costs.

This is the set-up of Hagiu and Wright (2023) for what they term ‘across consumer’

learning. For our purposes here, the idea is that past experience with consumers generates

training data to provide improved product quality for consumers in the future. Thus, it has

the ingredients of a data feedback loop, as the greater the number of customers a firm has

in the past will determine the product quality offerings to all consumers in the future. This,

2In other studies, there is more evidence of a data feedback loop. See, for example, Schaefer and Sapi
(2023).

3Similarly, Zhou (2022) shows that while improved information for search may create pressures for firms
to increase prices, changes in the way improved information causes consumers to search may create downward
pressure on prices.
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in turn, potentially leads them to attract more future customers, completing the loop.

The simplest setup involves i ∈ {I, E} with an incumbent (I) and an entrant (E). Each

has a marginal cost of production of c and no fixed costs, meaning they will both always be

active in the market even if they do not produce anything. Suppose each has data at the

outset equivalent to (NI , NE) with NI > NE (as would be expected from an incumbent).

They compete over an infinite number of discrete time periods with discount factor, δ ∈ (0, 1).

Because consumers are symmetric in their preferences, when these firms compete on the basis

of price, all consumers are choosing to buy from either I or E in a period. Specifically, they

purchase from I in the first period if:

sI + fI(NI)− pI ≥ sE + fE(NE)− pE

There is, however, more at stake for each firm when setting its price than just supplying

consumers in the present period. By winning now, they secure data that they can use to

improve product quality and make them more competitive in the future. Therefore, each

firm may want to discount their price today in order to acquire training data to increase

future profits.

Given this, what is the total value to a firm i of winning the market in the current

period? One way to examine this is to suppose there were just two periods. In this case,

working backwards, if, say, firm I had been the market leader in the first period, then the

second-period profits of each would be, for E, max{sE+fE(NE)−sI−fI(NI+1), 0} and, for

I, max{sI + fI(NI + 1)− sE − fE(NE), 0}; with the profits if E was the first-period winner

being analogous.4 There are, therefore, three possible outcomes:

1. E always wins in period 2, if sE + fE(NE)− sI − fI(NI + 1) ≥ 0;

2. I always wins in period 2, if sI + fI(NI)− sE − fE(NE + 1) ≥ 0; or

3. the firm that wins period 1, wins period 2, if fI(NI) − fE(NE + 1) ≤ sE − sI ≤
fI(NI + 1)− fE(NE).

Turning to period 1, the firm that wins that period will be able to extract the difference in

surplus it offers in period 2. Thus, for instance, E will win in period 1 if:

sE + fE(NE) + δ(sE + fE(NE + 1)− sI − fI(NI))

≥ sI + fI(NI) + δ(sI + fI(NI + 1)− sE − fE(NE))

4That is, if E had won period 1, second-period profits would be for E, max{sE + fE(NE + 1) − sI −
fI(NI), 0} and, for I, max{sI + fI(NI)− sE − fE(NE + 1), 0}.
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or

sE − sI ≥ ∆(NI , NE)

where

∆(NI , NE) ≡
(1 + δ)(fI(NI)− fE(NE))

1 + 2δ
+
δ(fI(NI + 1)− fE(NE + 1))

1 + 2δ

Here ∆(NI , NE) represents I’s data advantage. If this is positive, the standalone value of

E must exceed that of I for E to win. Notice that while I’s data advantage is higher if

NI > NE, it also depends on the relative marginal benefits from data each gets from winning

in period 1 and also on the discount factor. Importantly, NI > NE does not imply that

∆(NI , NE) ≥ 0.

What is going on here is that firms are willing to subsidise consumers in period 1 in order

to improve their prospects for competition in period 2. Note, however, that this does not

guarantee a socially optimal outcome in either period. The condition for socially optimality

in the two period model is that E wins if:

sE + fE(NE) + δ(sE + fE(NE + 1))

≥ sI + fI(NI) + δ(sI + fI(NI + 1))

which does not align with the competitive outcome as sI + fI(NI) ̸= sE + fE(NE). The

condition for E to win places excessive weight on first-period surpluses because that surplus

also is extracted as profit by the winning firm in the second period. However, Hagiu and

Wright (2023) show that in the infinite horizon game, this distortion is spread over infinitely

many periods and so disappears, thereby, implying the competitive outcome is also socially

optimal.

In the infinite horizon game, the data advantage takes the following form:

∆(NI , NE) = (1− δ)

(
∞∑
j=0

δjfI(NI + j)−
∞∑
j=0

δjfE(NE + j)

)

If sE − sI > ∆(NI , NE), then E wins in all periods otherwise I wins in all periods. Im-

portantly, because sE − sI > ∆(NI , NE) even if NI > NE, I’s initial data advantage may

not even allow it to preserve market leadership from the start. In other words, this model

exhibits a data feedback loop, but the shape of the data-enabled learning functions, fE(.)

and fI(.), might be such that the cycle favours the firm that is initially lagging. Intuitively,

Hagiu and Wright (2023) show via an induction argument that if a firm wins in the current

period, it wins in all periods and, therefore, the current period competition is effectively
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N iN i Ni

fi(Ni) = βi max{min{Ni, N i} −N i, 0}

Figure 2: S-Curve Data-Enabled Learning Function

‘for the market.’ This involves the accumulated, discounted difference in surplus in future

periods with the expectation that as the advantage of the market leader grows over time,

the discounts offered to consumers to maintain that leadership fall.

There are two broad cases where the shape of the data-enabled learning functions might

be decisive. First, suppose that fi(Ni) = βiNi. In this case,

∆(NI , NE) = βI

(
NI +

δ

1− δ

)
− βE

(
NE +

δ

1− δ

)
In this case, if βE > βI , even if βINI > βENE, E may prevail if sE − sI > ∆(NI , NE).

Second, suppose that for some Ni a limit is reached whereby fi(Ni) = fi(N̄i) for all Ni ≥ N̄i.

For instance, the data-enabled learning function may take the form as in Figure 2. In

this case, notice that if I has already reached its limit, then ∆(N̄I , NE) = fI(N̄I) − (1 −
δ)
∑∞

j=0 δ
jfE(NE+j). Thus, any discount that I offers to continue to lead the market at this

point is purely defensive; that is, it prevents E from obtaining a data advantage. However,

this also implies that with a high enough discount factor and with N̄E >> N̄I , I’s blocking

ability will be limited.

The pressure of intertemporal competition determines what share of surplus accrues to

consumers. Consumers benefit when firms set prices lower in order to maintain or obtain a

future data advantage. Any increase in the data advantage of I (weakly) decreases consumer

surplus. This effect is stronger if I and E are evenly matched so that even the firm that is

behind finds it optimal to offer a subsidy in competition. In this situation, increasing NI

leads to a reduction in subsidization by E, lowering consumer surplus.

Thus, if policies are directed at improving consumer welfare, those policies need to main-

tain that competitive pressure. For instance, Hagiu and Wright (2023) demonstrates that a
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policy that required firms to share data would have ambiguous effects. When one firm is at

a clear disadvantage (for instance, if sI − sE is extremely high or extremely low), by closing

that gap, competitive pressure is increased, and consumers benefit. However, when there is

already close competition, data sharing reduces the incentives of the losing firm to discount

and apply pressure to the winning firm as the consequences of losing are diminished. In this

situation, consumers are worse off when data is shared.5

2.3 Trade in Data

This section examines the power firms might have resulting from control of their own data

that may impact the extent of competition they face. A firm generates data that is used

to train AI algorithms by observing aspects of their production as well as interactions with

their own consumers. Jones and Tonetti (2020) argue that such data is not only useful to

the firm gathering it but to other firms that may not be in direct competition with the firm.

For instance, consider self-driving cars. If Tesla (firm i) observes the outcomes from total

distance travelled, qi, that data may be useful to others developing self-driving cars, such as

Uber or Waymo. They formalise this as the total data input used for training by i, Di is

equal to αxiqi + (1 − α)B where xi is the fraction of data generated, and B is a bundle of

data that is purchased by i. B is larger the more data that is shared/sold which for firm i

is x̃i.

Absent any other considerations (such as consumer privacy), the firm will capture as

much data as possible; i.e., xi = 1. The amount of data shared, x̃i, is also a choice of the

firm. If the purchasers of B are incumbent competitors to i, this may mute the amount of

data that i will be willing to release. However, as B is an aggregate of data collected from

all firms, it is arguable that, in many situations, the marginal increment to B from i’s data

is relatively small. Thus, if ps,i is the price per unit of data sold by firm i, then the firm will

set that price to maximise ps,iDs,i where Ds,i = x̃iqi.

What is the demand curve facing the firm as a data seller? Jones and Tonetti (2020)

assume that data is exchanged through an intermediary. That intermediary purchases data

from firms and then assembles it into the bundle, B, before selling the bundle to firms. The

aggregator function for B takes a CES form:

B =

(
1

N
1
ϵ

∫ N

0

D
ϵ−1
ϵ

s,i di

) ϵ
ϵ−1

5Interestingly, when one firm has reached its limit of data-enabled learning while the other has not, that
firm has a greater incentive to take actions that limit learning or data acquisition by their rival than their
rival does to take counter actions. This is explored further with respect to input data mergers below.
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where ϵ < 1 is the elasticity of substitution between data supplied by firms across N sectors.

The data intermediary chooses each Ds,i given ps,i to maximise:

pbNB −
∫ N

0

ps,iDs,idi

Taking the derivative of this with respect to Ds,i, setting it equal to 0 and re-arranging gives:

ps,i = pbN

(
B

NDs,i

) 1
ϵ

Thus, firms face a constant elasticity demand function for their data and will exercise some

market power over its provision.

2.3.1 Innovation Game

It is now time to more carefully specify firm choices. It is assumed that there are N sectors

in the economy over which shared data is potentially valuable. Each sector has at most

two firms present at any given time – an incumbent (I) and a potential entrant (E). In

this regard, the individual sector market structure follows the assumptions of Segal and

Whinston (2007). Each firm has a common discount factor, δ ∈ (0, 1) and time is discrete

with an infinite horizon. At any given point in time, one of these firms holds a patent

for a product that offers superior quality to previous products in that consumers in that

sector value the product ∆ more than the previous generation; that is, if there have been j

generations of a product, the value of the current generation to consumers is j∆. Moreover,

consumer value can be enhanced further using an AI trained on available data so that total

consumer value is (j − 1)∆ + γDi∆ for sector i.6 Here, γ > 1 is a parameter that controls

the importance of data in generating value from the latest product. There is a continuum

of identical consumers in each sector of measure 1. Thus, if the firm charges a price to

consumers of γDi∆,7 that becomes their total revenue. In that regard, effectively qi = 1 for

all i and, therefore, Di = αxi + (1−α)B. Thus, the flow profits for the patent holder of the

highest-value product are:

πm = γDi∆− pbB + ps,ix̃i

The other firm, E, engages in research and development each period towards the next

generation of product for the sector. They choose an innovation rate, ϕi ∈ [0, 1], at a

6The assumption that AI only enhances consumer value on the increment between the jth and (j− 1)th
products is made to simplify calculations in what follows.

7This assumes that the previous generation of the product, j − 1, is freely available.
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1− ϕ

E chooses ϕ

ϕ

No innovation

I maintains leadership, earns πm

Innovation

I loses leadership, earns πI + δVE

E gains leadership, earns πE + δVI

cost is c(ϕ)

Figure 3: Per Period Outcomes

diffentiable, increasing and (strictly) convex cost of c(ϕi) where c(0) = 0 and c′(1) = ∞.

In each period, t, with probability 1− ϕi they fail to innovate and with probability ϕi they

innovate, secure a patent and can enter into competition with the current incumbent. That

initiates one period of competition where both firms are present in the product market. Let

DE denote E’s data during that period when they have not been able to generate training

data of their own. E can, however, purchase data to assist in enhancing product value and,

therefore, DE = (1 − α)B at a cost to them of pbB. That said, if E manages to supply

consumers upon entry, then at the end of that period, they are able to sell that data when

they are assumed to become the monopolist incumbent. Moreover, it will allow them to

collect training data for the next period. This allows them to earn ps,ix̃i+ δα∆xi more than

they would if they did not succeed in selling to any customers during the competitive period.

Note that similar considerations apply to I. If it succeeds in selling to customers during

the competitive period, it will generate data that it can sell as it exits at the end of that

period, providing revenue of ps,ix̃I . However, as it no longer has a productive role following

the competitive period and has effectively lost market leadership, the incumbent has no

incentive to withhold data from sale. Therefore, x̃I = 1.

Given this, I and E engage in Bertrand price competition. There are two outcomes:

1. (I continues to lead in competition with E) Suppose that γDI∆+ ps,i > ∆+ γDE∆+

ps,ix̃i+δα∆.8 Thus, the maximum surplus E could offer customers is ∆+γ(1−α)B∆+

ps,ix̃i+ δα∆−pbB. Given that I can offer more surplus, this means that πI = γDI∆−
pbB+ ps,i− ((γDE + 1)∆− ps,ix̃E + ps,i + δα∆− pbB) = ((γ− δ)α− 1)∆+ ps,i(1− x̃i)

8That is, the entrant’s product is worth j∆+γDE∆ and the incumbent’s product is worth (j−1)∆+γDI∆
to consumers plus the additional revenue I can receive by selling their data and generating training data for
the future, so that the inequality involves the incumbent’s product still being superior to the entrants.
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while πE = 0. Here the fact that xI = 1 and the fact that DI − DE = γα is used to

calculate I’s profit.

2. (E leads in competition with I) Suppose that γDI∆+ps,i < ∆+γDE∆+ps,ix̃i+δα∆.

Thus, the maximum surplus I could offer customers is γDI∆ + ps,i − pbB. Given

that E can offer more surplus, this means that πE = ∆ + γDE∆ − pbB + ps,ix̃i −
(γDI∆+ ps,i − pbB) = (1− γα)∆− ps,i(1− x̃i) while πI = 0.

It is useful to compare these outcomes to a benchmark case where all data was collected and

made freely available. This is a benchmark because data is nonrival in nature. In this case,

E would be able to generate a product of value j∆ + γDE∆ where DE = α + (1 − α)N

and would compete against I’s product that has value of (j − 1)∆ + γDI∆ where DI also

equals α + (1 − α)N . In this case, π∗
E = ∆ and π∗

I = 0. Note that when data is not freely

available or available at all, then entrant profit is lower and incumbent profit is higher than

the benchmark case. Moreover, observe that π∗
E is less than πI (where I remains the leader)

and πE (where E is the leader); that is, the sum of profits, πE + πI is less than π∗
E + π∗

I .

Following Segal and Whinston (2007), the innovation choice of E is examined as a Markov

perfect equilibrium of the dynamic game. Let VE be E’s expected present discounted profit

and let VI be I’s expected present discounted profit (evaluated at the beginning of a period).

If the probability that E innovates is ϕ, each of these can be calculated from the following:

VE = δVE + ϕ (πEδ(VI − VE))− c(ϕ) (VE)

VI = πm + δVI + ϕ (πI − πm + δ(VE − VI)) (VI)

In each period, E chooses ϕ to maximise its expected present discounted profits. If w =

πE + δ(VI −VE) is the benefit from successfully innovating (that Segal and Whinston (2007)

term the innovation prize), the optimal innovation level is:

Φ(w) =ϕ∈[0,1] {ϕw − c(ϕ)}

Φ(w) is an innovation supply (IS) function whose inverse is graphed in Figure 4. Note that

it is upward-sloping due to the assumptions on c(.).

The innovation prize, w, is determined by subtracting (VE) from (VI) and solving for

(VI − VE) and then substituting that into w = πE + δ(VI − VE) to give W (ϕ):

W (ϕ) = πE + δ
ϕπI + (1− ϕ)πm − ϕπE + c(ϕ)

1− δ + 2δϕ
(IB)

This is depicted in Figure 4 and is downward sloping. The equilibrium level of innovation,
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ϕ

IS

IB

10

W

W ∗

ϕ̂ ϕ∗

Socially optimal IB

Figure 4: Socially Optimal and Equilibrium Innovation Rate

ϕ̂, arises where Φ(w) and W (ϕ) intersect. Importantly, note that changes that impact flow

profits will impact on the level ofW (ϕ) and, thus, the impact of policy changes on innovation

can be assessed by looking at their impact on the (IB) curve only. Note also that the entrant

is not only motivated by the profits they earn when in direct competition with I but also

the value of becoming the incumbent themselves. Thus, policies that increase πE may not

end up encouraging a higher rate of innovation.

2.3.2 Is data an entry barrier?

We are now in a position to examine I’s choice of x̃i when it is the monopoly leader in a sector.

Recall that the inverse demand curve I faces as an information seller is ps,i = pbN
(

B
NDs,i

) 1
ϵ

and substituting this into πm gives:

πm = γDi∆− pbB + pbB
1
ϵ (Nx̃i)

ϵ−1
ϵ

Note that because sectors are infinitesimal, I’s choice of x̃i does not impact on B and,

therefore, does not impact on either πE or πI in the next period should that period consist

of competition nor the next period’s πm if there is no new innovation. Thus, for an interior

solution, the chosen x̃i will satisfy the first order condition:

pbB
1
ϵ

(
ϵ− 1

ϵ

)
(Nx̃i)

− 1
ϵ ≤ 0
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However, the LHS equals ps,iN > 0. Therefore, x̃i = 1. Applied to all sectors B = N .

Therefore,

πm = γDi∆− pbN + pbN = γDi∆

Note, for completeness, that Jones and Tonetti (2020) assume the data intermediary is a

perfectly contestable monopolist with profit, pbN
2 − ps,iN = 0, which implies that pb =

ps,i
N
.

As xi = x̃i = 1, note that γ(α+N(1−α))∆ < ∆(1+γN(1−α))+δα∆ or ∆(1−(γ−δ)α) >
0 so that E becomes the leader in competition with I with πE = (1 − γα)∆ ad πI = 0.

Therefore:

W (ϕ) =
(1− δ(1− ϕ))(1− γα) + (1− ϕ)γ(α +N(1− α))

1− δ + 2δϕ
∆

By contrast, the socially optimal IB curve is found by allowing E to utilise I’s data fully,

resulting in:

W ∗(ϕ) =
(1− δ(1− ϕ)) + (1− ϕ)γ(α +N(1− α))

1− δ + 2δϕ
∆

It is clear that W ∗(ϕ) > W (ϕ) for all ϕ (Figure 4). The reason is that if E does not have

I’s data, then I is relatively more competitive and reduces E’s competitive profit by γα∆.

This implies that the socially optimal innovation rate ϕ∗ exceeds the equilibrium rate, ϕ̂. In

effect, there is an entry barrier facing E because it does not have access to I’s data, creating

an asymmetry when competing for consumers.9

The above analysis assumes that when I sells its data to the intermediary, the data is

only disclosed to others through the bundle, B. However, what if such data could be inferred

or possibly leaked as a result of I engaging in the data market in the first place? Suppose

that with probability, ρ, a firm’s individualised data, x̃i could become available to E prior

to the competitive period should it arise. In this case, E[DE] = ραx̃i + (1 − α)B. In this

case, E[ϕ̂(ραx̃i)] is increasing in x̃i. Therefore, in choosing how much data to sell, I would

take this possibility of leakage into account. Thus, I’s first order condition in choosing x̃i

becomes:

pbB
1
ϵ

(
ϵ− 1

ϵ

)
(Nx̃i)

− 1
ϵ +

∂E[ϕ̂]
∂x̃i

(πI − πm + δ(VE − VI)) ≤ 0

If this is an interior solution, then x̃i < 1.

9Jones and Tonetti (2020) note that a regulatory environment that prevented any data sharing would
be a poor outcome as x̃i = 0 for all i. They also examine situations where consumers own data and have
privacy concerns. This also leads to less data sharing, so in the context of the model, this would reduce the
rate of innovation in each sector.

14



2.3.3 Data Neutrality

Given that the level of data barriers to entry are higher in equilibrium when incumbents are

concerned that data sharing should increase the rate of creative destruction specific to their

sector/market, are there policy interventions that could reduce these barriers? Note that, in

equilibrium, the data gathered and used by incumbents internally is greater than the data

they choose to share with others, including, in this model, potential entrants. One policy

intervention that could eliminate this data advantage would be a policy of neutrality where

x̃i is constrained to be no less than xi. In equilibrium, xi = 1 in the absence of this policy

and, therefore, superficially, a policy of neutrality might raise the innovation rate.

This intuition presumes, however, that I does not change xi in response to the policy.

As xi = x̃i, the first order condition for I choosing xi (substituting xi for x̃i) becomes:

γα∆+ pbB
1
ϵ

(
ϵ− 1

ϵ

)
(Nxi)

− 1
ϵ +

∂E[ϕ̂]
∂xi

(πI − πm + δ(VE − VI)) ≤ 0

If this is an interior solution, then x̂i < 1 although x̃i and hence B will be higher under

this policy than in its absence. In equilibrium, πm will equal γ(αx̂i + (1− α)B)∆. This will

increase the rate of innovation if it increases W ; that is, if

∂πE
∂xi

+
δ

1− δ(1− ϕ)

(
(1− ϕ)

∂πm
∂xi

+ ϕ
∂πI
∂xi

)
> 0

Note, however, that ∂πm

∂xi
= −γα∆ and when it leads in competition, ∂πI

∂xi
= 0, as I will

already be replaced next period and so is unconcerned about sharing. Meanwhile, ∂πE

∂xi
= 0

as a higher B provides E with no advantage in competition with I and, in competition, I is

unconcerned about sharing. Thus, this condition becomes:

− δ

1− δ(1− ϕ)
(1− ϕ)γα∆ < 0

In this model, a policy of neutrality reduces the level of data sharing without any impact on

the payoffs of I and E during the competitive stage and thus also reduces the equilibrium

innovation rate.

3 Market Power in Input Data

Input data is the key input to generating a prediction from a given AI algorithm. As

mentioned above, relative to training data, input data can be thought of as a driver of
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competitiveness within a market rather than as something that determines market structure.

Specifically, input data is often generated as a result of ongoing observations in the market,

such as being able to predict changes in demand conditions over time. But it is also the case

that such input data can be shared – or traded in an arms-length market – allowing any

differences in each firm’s predictions to be eliminated. As we will see, whether this occurs

will have important implications for policies designed to take into account any market power

a firm might have with respect to input data.

3.1 Input Data Advantages

Earlier in this paper, we considered the model of Hagiu and Wright (2023) with respect to

firms gathering data over time in order to train superior AI prediction algorithms. Their

model also considers another form of data-enabled learning whereby firms can gather data re-

garding individual customers and create AI algorithms that serve those particular customers

with higher-quality products.

Hagiu and Wright (2023) show that a similar condition determines the winner and loser

in within consumer learning as it did for across consumer learning. Specifically, E will win

a consumer (although not necessarily the whole market) if, for that consumer, sE − sI ≥
∆(NI , NE) where NI and NI now represent data quantities held by each firm about that

consumer. The nature of competition is different, however. When a consumer stays with

a firm, they are granting that firm the ability to improve their product offerings relative

to the competitor and, in the process, charge a higher price for it. Thus, to acquire the

consumer requires a subsidy from the start. Hagiu and Wright (2023) show that this type

of competition can be more beneficial to individual consumers than competition ‘for the

market’ created by across-consumer data. In effect, competition in this situation creates

consumer switching costs that create nuances in our assessment of the impact of firm market

power.10

3.2 Sharing of Input Data

Above, the sharing/trading of training data was considered with respect to its impact on

entry barriers and innovation. Here, we consider the sharing/trading of input data whose

primary impact is on the short-term pricing and output outcomes arising from competition

between firms when the market structure is fixed. Information sharing (of which sharing of

input data is an important component) has extensive literature in industrial organisation

beginning with work such as Vives (1984) and ultimately synthesised by Raith (1996).

10See, for example, Klemperer (1987).
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Here, the model of Jansen (2008) is explored as it nests easily within the two-state setup

pursued throughout this book. Specifically, demand for two firms is symmetric with an

intercept, θ, that is a random variable which is θ with prior probability 1 − ρ and θ̄ with

probability ρ. Each firm i chooses ei which is the probability that it learns θ at a cost of

c(ei) = ηei (η > 0). With probability 1− ei, the firm learns nothing. In this respect, η is a

parameter that captures the cost of predicting the level of demand.

After the first stage, where the firms invest and potentially learn θ, they have an op-

portunity to share that information with their rival firm. If the firm reveals its input data,

that information is verifiable, but what is not verifiable is whether the firm has information

or not. Thus, if they do have a prediction of demand based on input data gathered, with

probability σi(θ) ∈ [0, 1], they disclose that data and, with probability 1− σi(θ), they send

an uninformative message to their rival (which is denoted ‘0’). If a firm does not have a

prediction of demand based on their input data, that uninformative message is the only mes-

sage that firm can send. Firm i’s disclosure rule is Di = {σi(θ), σi(θ̄)}. Each firm chooses

its disclosure rule simultaneously.

Following the information-sharing stage, the firms compete. It is assumed that marginal

costs are 0. Jansen (2008) focuses on Cournot (quantity) competition where each firm i

chooses qi to maximise its profits holding the quantity of the other firm constant. If there

was perfect information regarding θ, firm i would choose qi to maximise:

π(qi, qj; θ) = (θ − qi − γqj)qi

where j ̸= i and γ ∈ (0, 1] represents the degree of product differentiation. This perfect

information outcome arises whenever one firm learns θ and discloses that information to the

other firm. In this case, q̂∗(θ) = θ
2+γ

. Note that πf = q̂∗(θ)2.

There are three possible disclosure strategies for firms: commit to disclose nothing (Di =

{0, 0}), commit to disclose everything (Di = {1, 1}), or disclose selectively (i.e., disclose

when θ = θ but not when θ = θ̄ or Di = {1, 0}). The perhaps surprising thing is that

competing firms might share data with their rival at all. However, as will be shown, in some

cases, this changes a rival’s competitive behaviour in a way that benefits a firm.

Here, we examine each strategy in turn and determine outcomes under an assumption

of symmetry with Di = Dj (symmetric disclosure rules) and e1 = e2 = e (symmetric data

investments).

Disclose everything: If at least one firm is informed, then the competitive outcome

will be the same as the complete information case; that is, the quantity chosen by each firm

is q̂f (θ) = q̂∗(θ). This happens with probability 1 − (1 − e)2, resulting in expected profits
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are E[πf |θ] = ρθ̄2+(1−ρ)θ2

(2+γ)2
. If neither is informed, which occurs with probability (1 − e)2,

then each firm’s posterior equals their prior on θ, and they base their choices on expected

demand ρθ̄ + (1 − ρ)θ − pi − γpj. Expected profits in this eventuality are E[q̂f ] = E[θ]
1+γ

and

E[πf ] = E[θ]2
(2+γ)2

. Thus, E[πf |e] = (1− (1− e)2)ρθ̄
2+(1−ρ)θ2

(2+γ)2
+ (1− e)2 (ρθ̄+(1−ρ)θ)2

(2+γ)2
.

Disclose nothing: When neither firm discloses anything, the belief a firm has is that

with probability, e, their rival knows θ and does not know it otherwise. If a firm learns

θ, it bases its quantity choice on that knowledge, while if it does not learn θ, it bases

its choice on E[θ] = ρθ̄ + (1 − ρ)θ. In equilibrium, the output of a firm that knows θ is

q̂0(θ) = q̂f (θ)+ γ(1−e)
(2+γ)(2+γe)

(θ−E[θ]) while the output of a firm that does not know θ is q̂0(0) =

q̂f (θ)− 2+γe
(2+γ)(2+γe)

(θ − E[θ]). Thus, E[π0|e] = e(ρq̂0(θ̄)2 + (1− ρ)q̂0(θ)2) + (1− e)E[q̂0(0)2].
Disclose only when demand is low In this case, when one firm discloses, the prob-

ability a firm assigns to whether their rival knows demand is 0 when demand is low. By

contrast, no disclosure may mean that the firm has observed high demand or has obtained

no prediction. Thus, in the absence of disclosure, a firm assesses that its rival knows with

probability e that demand is high. Given this, the posterior probability that demand is

higher for a firm that does not observe its own prediction is:

ρ̃ =
ρ

ρ+ (1− ρ)(1− e)

Therefore, the equilibrium quantities for a firm who knows θ, θ̄ and does not observe or

receive a prediction are:

q̂s(θ) = q̂f (θ)

q̂s(θ̄) = q̂f (θ) +
2 + γ(1− ρ̃)(θ̄ − θ)

(2 + γ)(2 + γ(1− ρ̃)e)

q̂s(0) = q̂f (θ) +
2ρ̃(θ̄ − θ)

(2 + γ)(2 + γ(1− ρ̃)e)

Thus, E[πs|e] = e(ρq̂s(θ̄)2 + (1− ρ)q̂f (θ)2) + (1− e)E[q̂s(0)2].
Jansen (2008) finds that the rankings of these various equilibrium quantities (and with

them expected profits) are as follows:

q̂0(θ) < q̂s(θ) = q̂f (θ) < q̂f (0) = q̂0(0) < q̂s(0) < q̂f (θ̄) < q̂s(θ̄) < q̂0(θ̄)

Put simply, conditional on receiving a prediction, the more disclosure there is, the lower the

variance associated with a firm’s observation of a prediction. Given this, we can see that the

effect of an increase in e is on equilibrium outputs. When there is no disclosure, if e is higher,

each firm believes it is more likely their rival is informed. Informed firms with low demand
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expect a less aggressive response from their rivals, and so expand output, whereas the reverse

is true when there is high demand. No similar effects occur, of course, when everything is

disclosed, but the effects are asymmetric under strategic disclosure of low demand only.11

This analysis allows Jansen (2008) to characterise the ex ante expected profits for the

firm under each regime, taking into account a given investment, e, in input data.

Proposition 1 Ex ante, expected equilibrium profits are lowest under a regime whereby dis-

closure is only of low demand predictions. (i) If γ > 2
√
2 − 2, ex ante expected profits are

greatest under full disclosure. (ii) If If γ < 2
√
2 − 2 then, for sufficiently low (high) e, ex

ante expected profits are greatest under no disclosure (full disclosure).

Intuitively, if a firm receives no information from its rival, its profits are higher under no

disclosure than full disclosure. However, given levels of input data generation, disclosure of

input data from a competitor will generate some additional profits. Depending on the degree

of differentiation (a proxy for market power), one factor outweighs the other. Specifically,

the lower the degree of differentiation, the higher the returns from full disclosure of input

data, especially if it is expensive to generate that input data.

These potential equilibrium quantity and profit outcomes influence the choice by each

firm in their input data to generate a demand prediction (ei). Jansen (2008) shows that

expected equilibrium profits for firm i when the disclosure regime is l ∈ {f, 0, s} and i’s

investment is ei and expected rival investment is e is:

Πl(ei, e) = E[πl(θ)]− ψl(e) + ei(ψ
l(e)− η)

where

ψl(e) ≡ E[πl(θ)]− πl(0)− eE[σl(θ)(πl(θ)− πl(0)]

Here, E[πl(θ)] − ϕl(e) is expected profit to i in the absence of any input data generated by

i; e.g., this is eE[πf (θ)] + (1 − e)πf (0) under full disclosure and π0(0) under no disclosure.

The remaining part of the expected profit is ei(ψ
l(e)− η), which is the contribution to profit

arising from a firm’s own input data generation. Thus, in equilibrium, ψl(e) is the marginal

benefit from input data generation that must be equated to the marginal cost of η. That

marginal benefit, ψl(e), itself has two components. The first is the marginal value of using

a prediction versus not using one. The second is a substitution (or ‘free rider’) effect from

their rival’s input data generation and disclosure (E[πl(θ)] − πl(0)). Figure 5 shows the

11Jansen (2008) shows that when firms cannot commit to a disclosure regime and can choose to disclosure
after observing their own demand prediction, the only equilibrium outcome is disclosure when demand is
low. This critically relies on e < 1. When e = 1, other equilibrium outcomes are possible and consistent
with other papers in the literature full information outcomes result.
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Figure 5: Input Data Investments

equilibrium investments in input data as a function of η. Notice that those investments are

lower when there is a full disclosure regime.

This leads, however, to a rather remarkable result: the ex ante expected equilibrium

profit outcomes for a firm under full disclosure and no disclosure are exactly the same. Note

that, from 5, if ψf (0) > η, then e0i = 1 for both firms under no disclosure. The equilibrium

profit of the firms is, therefore, Π0[ê0] = E[πf (θ)] − η. By contrast, under full disclosure,

there is lower input data investment, êf < 1 (where êf satisfied ψf (êf ) = η). The lower

input data generation lowers profits losing firms (1 − êf )ψf (êf ) but there is also reduced

investment cost with savings of (1− êf )η. These are, of course, equal in equilibrium, and so

Πf [êf ] = Π0[ê0]. A similar argument holds for η > ψf (0).12

Typically, the ex ante expected profits are higher for ‘strategic’ disclosure, whereby only

low-demand outcomes are shared. This reverses the profit ranking compared to the case

where e is exogenous. However, when the level of differentiation is sufficiently low (i.e.,

γ is high), these are out-ranked by the profits from full or no disclosure when input data

generation costs are sufficiently high.

3.3 Input Data Mergers

The above analysis considers sharing data amongst competitors within a market. In some

situations, there has been concern about sharing input data about consumers who make

purchases in different markets. The idea is that data gathered in one market can be valuable

to sellers in another market who serve the same consumers. This has also been the rationale

12This result relies on the linearity of input data generation costs. If these were convex, Jansen (2008)
shows that full disclosure profits are higher than profits under no disclosure.
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behind some cross-market merger investigations by antitrust authorities.

de Corniere and Taylor (2023) provide a simple model to analyse such cases.13 They

assume there is one market, A, that is served by a monopolist and another market, B,

that is served by duopolists, B1 and B2. If qA customers are served in market A, it is

assumed that this creates qA is data that potentially can be used by firms in market B.14 If

neither B firm has access to A-data, their profits are π(0, 0). If one has access but the other

doesn’t, the profits are π(qA, 0) for the firm with access and π(0, qA) for the firm without

access. And if both have access, their profits are π(qA, qA). It is assumed that data increases

profits – i.e., π(qA, 0) > π(0, 0) – and rival data reduces profits – i.e., π(0, qA) < π(0, 0) and

π(qA, qA) < π(qA, 0). It is assumed that these data effects do not impact consumer behaviour

in market A (perhaps because they are myopic to its effect).

The model involves, first, A collecting data, then data trade (if any) occurring, followed

by competition and the realisation of profits in market B. Of key importance is whether the

data trade that occurs prior to competition involves A selling data exclusively to one firm or

non-exclusively to both. If A chooses to offer data exclusively, the payment they can receive

is π(qA, 0) − π(0, qA) whereas if they offer the data non-exclusivity, the payment from any

one firm is π(qA, qA)− π(0, qA). Thus, A will prefer non-exclusivity if:

π(qA, 0)− π(0, qA) ≤ 2(π(qA, qA)− π(0, qA)) ⇔ π(qA, 0) + π(0, qA) ≤ 2π(qA, qA)

That is, if non-exclusivity results in higher total B-market profits.

Interestingly, this same condition determines whether exclusivity is optimal even if A

and, say, B1 have merged, implying that B1 always has access to A’s data. The maximum

A can receive by also selling the data to B2 is π(qA, qA)− π(0, qA). However, for that trade

to be worthwhile, it must be the case that it exceeds π(qA, qA) − π(qA, 0). In other words,

that π(qA, 0)+π(0, qA) ≤ 2π(qA, qA). Otherwise, A will not trade following the merger. This

means that in comparing the merger to the non-merger outcome, there is no effect change

in the amount of data traded.

A merger does potentially have an effect on A’s incentives; specifically, its choice of

qA will not just be driven by what it can earn in market A but also what it might earn

from selling its data. To understand that, suppose that the demand for A’s product is

qA = max{α − pA, 0}, and it faces no production costs. In setting qA, the monopolist looks

to maximise qA(α − qA) + R(qA) where R(qA) are A’s expected data revenues. Now, if, for

some reason, A cannot sell data, then, by acquiring B1, it allows B1 to utilise that data.

13Chen et al. (2022) have a related model regarding the impact of data-driven mergers that focuses on
foreclosure issues and does not take into account pre-merger data trading that might occur.

14The fact that the data units are the same as the customer units is a notational convenience.
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Thus, the merged firm’s profits will be qA(α − qA) + π(qA, 0). As π(qA, 0) is increasing in

qA, this means that after the merger, A will set qA higher. This will benefit both consumers

in the A market, who face a lower price, and consumers in the B market, who now get the

benefits of data being used to, say, increase product quality for B1 and reduce prices, at least

in quality-adjusted terms.

What happens if data trade is possible? Suppose that, prior to the merger, exclusive

data selling was optimal so that R(qA) = π(qA, 0) − π(0, qA). Then pre-merger, A chooses

qA to maximise qA(α− qA) + π(qA, 0)− π(0, qA). By contrast, post-merger, A will not trade

data outside of the merged entity and so will choose qA to maximise qA(α − qA) + π(qA, 0).

In this case, because π(0, qA) is decreasing in qA, A will have an incentive to set qA lower

following the merger. This will result in higher prices and lower consumer surplus in both

markets.15

What if data trade was non-exclusive prior to the merger? Then R(qA) = 2(π(qA, qA)−
π(0, qA)) and A’s objective is to maximise qA(α− qA)+2(π(qA, qA)−π(0, qA)). Post-merger,

this objective will be qA(α− qA)+2π(qA, qA)−π(0, qA). So, once again, the merger will lead

to higher prices and lower consumer surplus in both markets.

The conclusion of this analysis suggests that assessing the impact of a merger on market

power will critically depend on whether input data can be traded pre-merger or not. Even if

A is acquiring the one firm it has an exclusive data arrangement with; this will still have the

effect of changing A’s incentives and potentially reducing consumer surplus in both markets.

de Corniere and Taylor (2023) show that these conclusions depend critically on how data

impacts the B market. For instance, if data allows price discrimination that also harms

consumers, then the merger, by reducing the amount of input data used in the B market,

may have some benefits for consumers.

In summary, the implication of this section is that assessments of how input data may

impact market power in other markets depend critically on the type of and level of incentives

to share or trade that input data. The conditions for that inform regulators of the likely

changes that may occur to that trade or to the generation of input data following, say, a

merger or perhaps the impact of other policies such as privacy laws.

15Hagiu and Wright (2023) whose model was exposited earlier have a related implication in their environ-
ment. There, if one of the competing firms acquires a firm in another market for the purpose of gathering
additional consumer data, then this can lead to socially inefficient outcomes as the rents accrue to the firm
being acquired rather than consumers. Moreover, it may be the case that a firm that has already reached
the threshold of data usage may have an incentive to acquire the outside firm in order to block its rival from
the acquisition. They term this a ‘killer data acquisition.’
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4 Market Power in Predictions

As AI develops, there may emerge firms whose main product is to sell AI predictions. At the

moment, the closest to this that has developed in markets is where firms predict the quality

of matches between consumers and firms. This has had an impact on advertising markets.

In this section of the paper, models where predictions are bought and sold are examined. To

be sure, some of the models with training or input data involve similar considerations, but

these particular models rest on the quality of the prediction output and, hence, arguably are

more about those outputs than the inputs driving them.

4.1 Predictions of Match Quality

In modern digital platforms, advertisers engage in various targeting strategies that involve

limiting the reach of advertising to those consumers to which advertising will be more ef-

fective; that is, where they have a higher predicted match quality. This has advantages to

those selling advertising space as scarce advertising inventory (itself limited by the amount

of consumer attention on a platform) can be optimised with respect to revenue per unit of

space.16 However, due to differences in data, different platforms have different capabilities

to provide predictions of match quality. If relevant data were more freely available, this

would impact competition for the provision of such predictions and potentially competition

between platforms. Here, how such market power in predictions of match quality manifests

itself is examined.

Here, the environment of Bergemann and Bonatti (2015) is developed. Their motivation

began with “cookies,” which were information gathered by websites on the identity and other

information of users who visited those websites. That information may be gathered directly

by platforms or sold through intermediate markets. However, in terms of their implications,

the cookies represent not so much data (or, specifically, input data) but training data that

allows a richer prediction of the match quality of any given consumer. So long as that

consumer can be tracked (also made possible by cookies), when they visit a website, they

are accompanied by a prediction of match quality for advertisers on that site.

There is a unit continuum of consumers (i ∈ [0, 1]), a unit continuum of firms (or “ad-

vertisers”) (j ∈ [0, 1]), a single publisher (or website) and initially, a monopolist provider

of match predictions. Each consumer and advertiser generates a potential match value, v,

uniformly distributed on [0, 1]. Each advertiser chooses qij ≥ 0 directed at consumer i, which

is the probability that consumer i is aware of j’s product or match intensity. Given this, the

16For discussions see Athey and Gans (2010) and Bergemann and Bonatti (2011).
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expected profit of an advertiser choosing q is:

π(v, q) = vq − cm(q)

where c is the cost of advertising space andm(q) is the amount of advertising space purchased

to generate q. While Bergemann and Bonatti (2015) consider more general environments,

here the focus will be on a linear cost environment where m(q) = q.

Advertisers purchase predictions of match values, v, can a given set of consumers, A ⊂ V .

That is, if advertisers purchase a prediction that includes match value v that allows it to

identify all consumers with that match value. So, while predictions are for the match value

of a given identified consumer, i, the thing that advertisers are interested in is the type of

consumers predicted. Thus, their demand for predictions is with respect to the predicted

match value rather than the match value of a specific consumer. Put simply, advertisers

only care about match value and so their willingness to pay for predictions is with respect

to v rather than the vij for specific i’s. One thing this framing allows is that if the advertiser

purchases predictions, A, i.e., the targeted set, it also receives a signal regarding whether a

consumer visiting a website is in its complement, AC , the residual set. This will play an

important role in what follows.

If an advertiser knew v, then it would choose to advertise if v > c and not otherwise.

Thus, an advertiser’s complete information profits are π(v) = max{v−c, 0}. If the advertiser
purchases a prediction for a set A, it will be able to achieve this level of profits on that

set. On the residual set, however, it may also choose to set q∗(AC) = 1 if and only if

E[v|v inAC ] ≥ c. While it is often thought that an advertiser will want information on

those consumers with the highest v as these are the consumers it wants to target with ads,

that is, positive targeting, this specification immediately exposes a distinct strategy, negative

targeting, where advertisers obtain information on those consumers with the lowest v and

then explicitly do not advertise to them. Thus, in purchasing predictions, an advertiser

using positive targeting will choose a threshold, v∗, thereby setting A = [v∗, 1] while under

negative targeting, a threshold is chosen, thereby setting A = [0, v∗]. The choice of strategy

and threshold will depend on c and also on the price of predictions, p.

The threshold, v∗, depends on whether positive or negative targeting is adopted. Under

positive targeting, the surplus from an ad is v − c, and so the advertiser will purchase

predictions up to the point of indifference; that is, v∗ − c = p or v∗ = c+ p. Under negative

targeting, the benefit of a prediction is to avoid advertising to a consumer and saving c− v,

which implies the point of indifference will be c − v∗ = p or v∗ = p − c. It is the cost of

advertising space, c, that will determine which targeting strategy is optimal. If c is higher,
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the advertiser wants to limit ads to a select group of the highest-value consumers, so positive

targeting is optimal. If c is relatively low, the advertiser finds it optimal to advertise to a

wide set of higher-value consumers, and so negative targeting is optimal. Thus, it can be

shown that the optimal set of predictions, A(c, p) is:

A(c, p) =

[0,max{c− p, 0}] if c < 1
2
;

[min{c+ p, 1}, 1] if c ≥ 1
2
.

One feature of this is that the advertiser always chooses a different q on the targeted set and

the residual set – with advertisements shown to the targeted set and not the residual set

under positive targeting and advertisements shown to the residual set and not the targeted

set under negative targeting.17

Given this specification of demand, we are now in a position to examine the price of

predictions (p), assuming first a monopoly seller of predictions before considering the be-

haviour of many sellers. Interestingly, while it is natural to assume that predictions are a

straightforward input into advertising, it turns out that the pricing strategy is more subtle

than simply pricing an input. Predictions allow advertisers to concentrate their advertising

on a smaller set of consumers and thus, predictions are an option to concentrate whenever

advertising space becomes more expensive. In other words, while intuition would suggest

that prediction purchases complement advertising decisions because, when advertising space

is relatively cheap, negative targeting is optimal, prediction purchases may substitute for

advertising decisions. Thus, the monopoly price of predictions is given by:

p∗(c) =

argmaxp[p(c− p)] if c < 1
2
,

argmaxp[p(1− c− p)] if c ≥ 1
2
,

and therefore

p∗(c) = 1
2
min{c, 1− c}

It follows from the earlier equation of prediction demand that the equilibrium level of pre-

diction sales is:

A(c, p∗(c)) =

[0, c
2
] if c < 1

2
;

[1+c
2
, 1] if c ≥ 1

2
.

Finally, profits rise with c until c = 1
2
and then fall thereafter. This implies that predictions

are most valuable when advertising space is neither very expensive nor very cheap. When

17The fact that these two strategies are demarcated by c = 1
2 is due to the assumption that v is uniformly

distributed on [0, 1].
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advertising space is very expensive or very cheap, prediction only alters the optimal adver-

tising action (i.e., advertising to none or advertising to all) for a small set of consumers and,

hence, has little value.

What happens when there are more sellers of predictions? Clearly, if more than one seller

had access to the complete set of predictions, V , then competition would be in Bertrand

and fall to the unit price of a prediction. In this case, advertisers would gain, relative

to the monopoly provider case, a greater amount in surplus where advertising space is of

intermediate cost. However, Bergemann and Bonatti (2015) analyses an interesting form of

multiple seller environment where each seller has exclusive predictions for a specific consumer

set i. Therefore, there is a continuum of sellers, each setting a price of p for that consumer.

This might arise when consumers sell their data to a platform or when data is exchanged,

and providers purchase data on individuals.

To keep the analysis simple, suppose that c is sufficiently high that positive targeting

is optimal. Advertisers then are interested in purchasing a prediction set A = [v2, 1]. The

question is what determines the threshold, v2. If the advertiser does not purchase predictions

for v < v2, then, under positive targeting, it will set q = 0 for those consumers. Thus, their

willingness to pay, p(v, v2) for a prediction with valuation v < v2 is:

p(v, v2) ≡ (π(v, q∗(v))− π(v, q∗([0, v2]))

Given that match values are identically distributed, a symmetric pricing equilibrium can be

reformulated as a prediction seller choosing a threshold, v2 to maximise:

argmax
v
p(v, v2)(1− F (v))

This differs from the monopoly problem in that the residual advertising intensity, q∗([v, v2]),

cannot be influenced by any one seller. Interestingly, the monopolist has a greater incentive

to lower prices and expand supply. By expanding supply, the gap between the complete

and incomplete profits of the marginal advertiser is increased (reducing v2) and requiring

the monopolist to lower price. This also changes the composition of the residual set –

decreasing the average value in that set. This means that the marginal advertiser just

outside the targeted set has a higher value of information, creating a further incentive to

lower prices and expand supply. By contrast, this positive externality coming from the

change in composition is not internalised by competing sellers. They, therefore, have a lower

incentive to reduce prices. In equilibrium, prices, therefore, will be higher when prediction

sellers are fragmented.

Selling predictions can result in subtle external effects that impact incentives to purchase
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predictions when purchasers are competing against one another. Here, this is not the case

but the sales of one prediction impact on the marginal value of other predictions (positively)

and multiple sellers do not internalise these effects. The end result can be reduced prediction

sales in the market.

4.2 Bundling Attention and Prediction

Online platforms attract consumer attention and sell that attention to advertisers. Suppose

any given consumer values one and only one of k products, and there are Nk consumers.

If all consumers are observationally identical to the platform, then an advertiser of one of

the k products has a probability of 1
k
of being a match with a consumer they advertise to.

Consequently, an advertiser’s willingness to pay to place an ad in front of one consumer

on a platform is v
k
where v is the value of a correct match (i.e., the amount the advertiser

expects to earn from the consumer). If, on the other hand, the platform is able to predict

matches with perfect accuracy, an advertiser’s willingness to pay for an ad placed in front of

the correct match is v. Thus, an advertiser who wants to ensure that the correct consumer

sees their advertisement will either purchase N ads (if the match can be predicted perfectly)

or Nk ads if there is no prediction. In each case, the expected payoff to the advertiser

is Nv, while the cost depends on the price charged by the platform to advertise to each

consumer. In either case, the maximum the platform can charge for a targeted (predicted)

or non-targeted campaign is Nv (Athey and Gans, 2010).

Suppose that advertising value, v, is distributed uniformly on [0, 1]; that is, there is a

continuum of advertisers for each product with differing values from advertising. Then, if

ads are non-targeted, if there is advertising space of a ads per consumer, then the platform

can supply at most Na campaigns and so its profits are (1− a)Na. When ads are targeted,

the platform can supply Nka campaigns and so its profits are (1− ka)Nka. Note, however,

that the platform can also choose a and for the non-targeted case, it would choose a∗n = 1
2

and for the targeted case it would choose a∗t = 1
2k
< a∗n. In the end, profits in each case

would be N
4
and the campaign price would be 1

2
with each ad price being k times lower in the

non-targeted than the targeted case. In other words, when advertising space can be freely

chosen, there is no payoff to the platform from being able to predict matches. However,

if a is limited, then in the non-targeted case, profits will be lower with targeting, allowing

the platform to better allocate that scarce ad space efficiently. In this case, prediction will

increase a platform’s profits.

This demonstrates that what makes prediction valuable is whether there is scarcity, in

this case, in attention. What limits the ability to show ads is the amount of consumer
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attention that can be ‘sold.’ This may come from simple cognitive constraints but also from

other factors, such as advertisements being annoying for consumers, creating incentives for

them to avoid advertisements if there are too many of them (Anderson and Gans, 2011).

Of course, advertising does not exist in a vacuum, and it is a potentially essential tool that

firms can use in competition with one another. Prat and Valletti (2022) show that this creates

more potential for platforms to bundle attention and prediction together with consequent

impacts on competition, not just in prediction but also in advertisers’ own markets. They

assume that each of the k products is currently served by a monopolist incumbent firm that

does not, in fact, need to advertise because consumers are already aware of their product.

This would seem to be bad news for platforms, except that for each market, there is a

potential entrant. Entrants can enter successfully if consumers are made aware of their

product. Suppose that the monopolist in each market earns πm per consumer while if there

is competition, its per consumer profit falls to πc, which is the same as the entrant.

Prat and Valletti (2022) demonstrate that this potential competition now creates an

incentive for both the incumbent and entrant to advertise. The entrant needs to advertise to

a consumer just once so that the consumer is aware of its product. Thus, their willingness

to pay for a single ad is πc. On the other hand, the incumbent can, by purchasing ads to

every consumer interested in their product, that is, a ads, preserve their monopoly profits.

Therefore, the incumbent’s willingness to pay for a ads is πm − πc. Importantly, this means

that a platform will want to sell a campaign to the incumbent or the entrant and not both.

It will be profitable to sell to the incumbent if πm − πc > πc or πm > 2πc. Otherwise, it is

profitable to sell to the entrant.18

This analysis assumes that there is only a single platform capturing a consumer’s atten-

tion. If consumers multi-home across more than one platform, then it remains the case that

the entrant only needs to place an ad on a single platform to give it an entry opportunity.

However, for the incumbent, being able to block the entrant requires advertising on all plat-

forms. As an entrant is willing to pay up to πc on each platform, if there are J platforms

upon which a consumer’s attention is distributed, the incumbent must pay at least Jπc to

block the entrant. Thus, the incumbent will only find this worthwhile if πm − πc > Jπc,

which is a condition less likely to hold as J increases. Thus, a platform’s ability to broker

attention and sell targeted ads is critically related to the exclusivity of the access it has to

any given consumer.

What does this analysis imply for the value of prediction itself? When prediction does

not allow for ad-targeting, both the incumbent and entrant have a 1
k
chance that the ad

18Prat and Valletti (2022) show this in a framework where each ad slot is auctioned off by a second-price
auction, and this same condition drives whether the incumbent or entrant purchases an ad campaign.
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shown to a given consumer is relevant to serve their intention of blocking or information, re-

spectively. However, interestingly, incumbents benefit from advertising by other incumbents

because each of their ads has a 1
k
probability of being a blocking ad for their own consumer.

This suggests that incumbent blocking is easier to achieve under non-targeting than with

targeting. Indeed, if incumbents purchase J ads as before, then in total, they will purchase

kJ ads, and all entrants will be blocked. However, any given incumbent could choose not

to purchase any ads. In this case, the chance that their entrant is able to ‘breakthrough’ is

still very small. While working out the precise strategy is complex, the fact that incumbent

advertising under non-targeting creates positive externalities for other incumbents implies

that there is more chance that entrants in some markets will actually enter. By contrast,

with targeting, that possibility can be reduced to zero.

5 Conclusion

Precisely how market power might impact the various markets that constitute the provision

of AI is an open question. This paper has examined some of the theories that outline the main

trade-offs in assessing market power in markets for training data, input data and predictions

themselves. Of course, by separating out these analyses, some of the linkages between those

markets have not been considered. For instance, what happens if firms are integrated into

two or more of these markets and have market power in one or more of them? On the one

hand, this may enable those firms to take advantage of dynamic effects and feedback loops

that might be present to take advantage of continuous learning opportunities. At the same

time, this may ultimately lead to a situation where competitive entry is difficult as it would

require operations in all of those markets. Finally, the focus here has been on markets that

are responsible for generating AI. However, AI is itself an input into many other industries

and markets and thus, the potential for the leverage of market power in either direction is

something that could prove relevant for policy responses to mitigate market power in AI.
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