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1 Introduction

Understanding how scientific discoveries contribute to firms’ development of new products and

services has long concerned managers, policymakers, and academics (Stokes, 1997; Teece, 2020).

Managers in innovation-intensive industries are often challenged to identify and use science that

can drive their firms’ commercial success (e.g., Klevorick et al., 1995; Hounshell and Smith, 1989).

Policymakers, too, have long sought to realize the economic value of scientific research, leading to

numerous initiatives such as the funding of land-grant colleges in the 19th century to the Bayh-

Dole Act of 1980. Yet, despite these efforts, fundamental questions about the contribution of

science to commercial outcomes remain an active area of research (Arora et al., 2018).

In this paper, we argue that a methodological barrier impedes our understanding of how science

contributes to commercial outcomes: the unobservability of firms’ beliefs about the commercial

potential of scientific discoveries (Marx and Hsu, 2022). To address this challenge, we develop

a novel measure that quantitatively approximates these beliefs by using large language models

and neural networks.1 This measure enables us to distinguish between the ex-ante commercial

potential of a scientific finding and its eventual realization reflected in firms’ R&D investments

and related decisions and outcomes.

Understanding the distinction between commercial potential and its realization is crucial be-

cause only a fraction of science, as reflected in natural and applied sciences and engineering

publications, contributes to commercial applications (Klevorick et al., 1995). Assessing the contri-

bution of science using only ex-post measures, such as backward citations to the scientific literature,

poses significant challenges. Such measures are problematic due to selection issues, unobserved

heterogeneity, and the potential conflation of ex-ante commercial potential with other determi-

nants of commercial outcomes. Prior research has emphasized the limitations of relying solely on

ex-post measures (Azoulay et al., 2007; Marx and Hsu, 2022; Lane and Bertuzzi, 2011). While

econometric approaches like twin discoveries (Bikard, 2020) provide less biased estimates of fac-

tors influencing commercialization outcomes, they do not address the core issue: the inability to
1Both the code and the data are publicly available. The code can be accessed at

github.com/CommercialPotentialScience, and the data is available at zenodo.org/records/10815144. We
provide the measure for 5.2 million U.S.-affiliated articles published since 2000. Commercial potential scores for
all English-language scientific articles published since 2000 are also available at scientifiq.ai
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observe commercial potential directly.

This limitation restricts our ability to: (1) properly identify the factors affecting firms’ utiliza-

tion of scientific research due to omitted variable bias associated with unobserved heterogeneity

(Bikard and Marx, 2020; Marx and Hsu, 2022); (2) examine the characteristics of scientists, insti-

tutions, and firms that shape the commercialization of science (i.e., explore when specific factors

are most effective through heterogeneous treatment effects); and (3) evaluate the extent to which

commercial opportunities arising from science are unrealized. We suggest that a measure of firms’

beliefs in commercial potential could address these limitations, providing a valuable tool for ana-

lyzing firms’ decisions in industries where science significantly influences innovation. For instance,

do drug firms’ choices to commercialize a new drug hinge on the drug candidate’s inherent com-

mercial potential, or are they driven by the firms’ superior commercialization capabilities, such

as access to distribution channels? With a measure of commercial potential, it becomes easier to

determine whether the discovery of a drug candidate or other moderating factors primarily drive

behavior and performance. By quantifying the commercial potential of the science underlying an

invention, we can better distinguish the roles of science versus other related factors in shaping

firms’ innovative performance.2

To develop our ex-ante commercial potential measure, we employ an ensemble of machine learn-

ing algorithms, including large language models and neural networks. These models are trained

on scientific article abstracts to produce ex-ante, out-of-sample, and out-of-training-time-period

predictions of an article’s commercial potential, independent of factors influencing its realization.

In this context, commercial potential represents the likelihood that a firm perceives an article as

contributing to its economic gain. We operationalize this as the ex-ante probability that a scien-

tific article is later cited in a renewed patent. This approach assumes that such citations reflect a

firm’s belief in the value of the underlying scientific finding or idea (Kuhn et al., 2020; Marx and

Fuegi, 2020).

Validating our measure using standard holdout samples, we achieve an average AUROC of 0.82,
2The extent of this omitted variable problem varies across industries, depending on the reliance of firms’ inven-

tions on science. R&D managers in industries such as pharmaceuticals, computers, semiconductors, communication
equipment, medical devices, aerospace, and navigation equipment report substantial reliance on academic and gov-
ernment research in science and engineering (Cohen et al., 2002).
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with a range of 0.80 to 0.84.3 To further test the measure, we conduct two additional validation

exercises. In the first, we analyze commercial outcomes, such as patent citations and renewals,

for over 5.2 million academic papers from US-based research universities. The results strongly

confirm the predictive power of our measure: articles with high commercial potential, as identified

by our model, are significantly more likely to be commercialized, evidenced by their citation in

renewed patents. For instance, an article in the top quartile of our measure is more than 20 times

more likely to be cited by a renewed patent than an article in the bottom quartile.

We conduct a second exercise that validates our measure against outcomes that, arguably,

more closely approximate firms’ beliefs about commercializability than patent citations. Lever-

aging detailed data on the progression of science through the technology transfer process of a

major research university, we validate our measure against the decisions of two key actors: (1)

technology transfer office (TTO) personnel who are trying to anticipate firms’ decisions and (2)

the firms themselves, who are acting on their judgments of an invention’s commercializability. The

TTO dataset includes comprehensive information on faculty invention disclosures, TTO financial

investments, patenting activity, and firms’ agreements, licensing, and revenue—all outcomes our

model was not trained on. Our findings confirm that our measure of the commercial potential of

science robustly predicts these outcomes, further supporting its validity.

Finally, we present two applications focusing on firms’ use of science to demonstrate the abil-

ity of the measure to address omitted variable bias associated with unobserved heterogeneity and

heterogeneous treatment effects (e.g., the moderating role of commercial potential). The first

application explores how universities’ and researchers’ reputations shape firms’ use of scientific

research. We find that firms disproportionately target high-potential research from prominent

universities, neglecting comparably commercializable research from less prominent universities.

Moreover, we find this effect of reputation is driven more by the reputation of individual researchers

than that of institutions. The second application investigates whether the “privatization” of sci-

entific knowledge (i.e., patenting) by research institutions limits its diffusion across firms, showing

how patenting and commercial potential interact to influence the use of scientific knowledge. Our
3For AUROC comparisons with related studies, see Appendix A.3.
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results suggest that university patenting decisions primarily reflect the science’s commercial po-

tential and that high-commercial-potential science diffuses more widely when patented.

In addition to the substantive findings noted above, our study can contribute to the study of

innovation more generally. Most importantly, it develops a novel, scalable method to measure

ex-ante commercial potential, addressing challenges that traditional outcome-based measures and

natural experiments are not designed to overcome (Azoulay et al., 2007; Marx and Hsu, 2022). For

example, it allows scholars to address selection biases by disentangling whether performance gains

stem from access to commercially promising ideas versus complementary resources such as skilled

teams, organizational structures, and commercialization capabilities. Additionally, using such a

measure can facilitate the study of firm heterogeneity by examining how commercial potential

may interact with other firm- and market-level variables to influence outcomes. By quantitatively

approximating what is otherwise a key unobservable input into a range of decisions, the measure

itself can potentially advance our understanding of how firms choose among options to realize

value from scientific knowledge, choose across uncertain technological trajectories, source external

innovation, or assess startup commercialization paths. Finally, the measure can allow us to address

an otherwise unanswerable question (e..g, Christensen and Bower, 1996): To what degree do firms’

innovation strategies forego potentially commercializable inventive opportunities?

In addition to its application to the study of innovation, our time-varying models that employ

large language models and deep learning to train classifiers for ex-ante measures of commercial

potential are suited to firms’ decisions where conditions change over time. Specifically, our method

of estimating a new model for every year, where model weights evolve, confers an ability to account

for dynamic business environments, and it is just such environments in which firms typically

operate. Another way in which our application of large language models is distinctive is our

approach to the fact that such models offer predictions and are thus subject to varying degrees

of uncertainty. Accordingly, to better ground subsequent use of our measure, we conduct Monte

Carlo dropout simulations to quantify how the degree of uncertainty varies across the range of

values, allowing us to identify where our predictions of commercial potential are most uncertain.

These features make our methodology well-suited for evaluating a wide range of strategic choices,
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such as acquisition potential, alliance opportunities, employee potential, market-entry, and even

identifying risks like competitive threats.

2 Data and Methods

This section describes the data, training methodology, and performance of the models devel-

oped to measure the commercial potential of a scientific article. Based on the abstract text of a

scientific article, the measure predicts the likelihood that a renewed patent cites that article. We

interpret this quantity as reflecting a firm’s belief that the knowledge or information in the article

has commercial potential, meaning it contributes to the firm’s economic advantage. We elaborate

on this definition in Section 2.1.

We develop our measure using a transformer-based Large Language Model (LLM) and deep

neural networks. Our approach involves training binary classifiers to categorize textual data into

predefined classes—whether the scientific article has commercial potential. First, we label articles

as having commercial potential if they are cited by at least one renewed patent within the training

time frame. As detailed below, we train our models using over 420,000 scientific articles published

between 2000 and 2020, training one model per year both to avoid data leakage as well as to reflect

the changing technological and economic conditions affecting the commercialization of science.

Next, we fine-tune the language model with our labeled dataset, associating each abstract

with its commercial potential class. This process identifies regions in a high-dimensional space

that correlate with patent citation patterns, allowing us to categorize new abstracts as having high

or low commercial potential based on learned patterns. We use SciBERT (Beltagy et al., 2019),

a model trained on 1.14M scientific articles, derived from BERT, a foundational model developed

by Google AI in 2018 (Devlin et al., 2018).

2.1 Renewed patents as a proxy for commercializability

Identifying scientific discoveries with commercial potential at the time of publication, especially

at scale, is a complex task. It requires a clear definition of commercial potential and the selection

of appropriate data to evaluate it. We define commercial potential as the probability that a firm

anticipates a scientific article will contribute to its economic gain—often, though not exclusively,

through developing a marketable product or process. We use patent citations to academic articles
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to assess firms’ beliefs about this potential, assuming such citations reflect firms’ reliance on

academic research for commercial purposes (Marx and Fuegi, 2020). Our goal of predicting firms’

beliefs or expectations about the commercial potential of a scientific contribution rests on the

assumption that these expectations drive firms’ decisions to build upon that science. Consequently,

our measure focuses on scientific findings with more immediate commercial impact on outcomes

such as patents rather than the long-term potential of early-stage research that may take decades

to commercialize. Unsurprisingly, among papers that are eventually cited, the average time to the

first citation in a renewed patent is 3.5 years.

Although patent data has limitations, it is arguably the most suitable source for our purposes.

Patent data are abundant, a critical attribute for training machine learning models, and they

encompass a diverse range of firms, including private companies and smaller entities, offering a

comprehensive sample across industries and firm sizes. Moreover, patent data provide detailed

insights into firms’ beliefs about the commercial potential of inventions across fields, industries, and

periods. This richness is essential for our objective: training machine learning models to predict

ex-ante firms’ beliefs about the commercializability of inventions—i.e., commercial potential.

Patent citations to articles are, however, proxies for measuring firms’ beliefs about an article’s

commercial potential. The question is how closely these citations approximate those beliefs. Firms

typically patent to protect inventions they intend to incorporate into new products or processes.

For instance, research indicates a 60% likelihood that a patented invention in the U.S. will be

embodied in a new product or process (Chuang et al., 2024). However, firms also patent for de-

fensive reasons, to deter litigation, block competitors, enhance bargaining power in cross-licensing

negotiations, or as a signaling strategy (Cohen et al., 2000). We argue that all these patenting

motives—whether or not the patent is ultimately embodied in a product—reflect beliefs about the

invention’s contribution to the firm’s economic performance. For example, when firms patent nu-

merous substitutes to safeguard a core product, as DuPont did with nylon in the 1930s (Hounshell

and Smith, 1989), those patents enhance the firm’s economic position even if unused in products.

Supporting this view, Arora et al. (2008) estimates that, for those inventions that are patented,

patenting itself adds nearly 50% more value than if those inventions were not patented, aligning
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with findings from Schankerman (1998).

Firms may revise their expectations about the value of a patented invention as they gather new

information. To account for this, we use patent renewals as an additional signal of expected eco-

nomic value (Kuhn et al., 2020; Schankerman, 1998; Pakes, 1986). The rationale is that renewing

a patent—an action requiring payment of fees every four years—signals a firm’s confidence that

the invention will yield future economic benefits. Thus, we operationalize a firm’s belief about the

commercial potential of a scientific article by whether it is cited in a patent that is renewed at

least once.4 Renewal decisions, like initial patent filings, are forward-looking indicators of firms’

beliefs about future profits. While citations in renewed patents are a useful proxy for assessing

the commercial potential of scientific discoveries, alternative patent-based measures exist. For

example, Kogan et al. (2017) compute stock market reactions to patent grants as a measure of

private patent value. However, this approach is limited to publicly traded firms, excluding private

companies, whose patents account for only 22% of publications cited in renewed U.S. patents.

Furthermore, stock market reactions may not directly reflect firms’ beliefs about commercializ-

ability. Nonetheless, Section 3.4 shows a strong correlation between our renewal-based measure

and Kogan et al. (2017)’s stock market-based measure of patent value.

2.2 Scientific articles and patent data

We use Dimensions.AI as our source of scientific article data.5 The dataset includes over 139

million publications, including titles, abstracts, sources, author information, fields of research, and

other metadata. We limit our analysis to peer-reviewed journal articles and conference proceed-

ings to ensure data quality beyond standard cleaning (e.g., removing duplicates or missing data).

Furthermore, we focus on eleven scientific fields covering most natural and applied sciences and

engineering, excluding social sciences. The fields are: Agricultural, veterinary, and food sciences;

Biological sciences; Biomedical and clinical sciences; Chemical sciences; Earth sciences; Engineer-

ing; Environmental sciences; Health sciences; Information and computing sciences; Mathematical
4Due to data limitations, we focus on first renewals at four years, though model performance remains consistent

when using renewals at eight or twelve years.
5Dimensions is a research and innovation database that contains detailed information on publications, patents,

grants, clinical trials, and policy documents.
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sciences; and Physical sciences. The resulting sample comprises 50,362,042 academic papers.

We source patent citations for scientific papers from the Reliance on Science dataset (Marx

and Fuegi, 2020, 2022). The dataset contains 22,660,003 linkages between 3,017,441 patents and

4,017,152 papers. We merged the Reliance on Science dataset with Dimensions using the DOI

(Digital Object Identifier—a unique, universal identifier). This procedure matched all 4,017,152

papers in the Reliance on Science dataset to those in our Dimensions subsample.

Next, we use data from the United States Patent and Trademark Office (USPTO). We collect

assignee information and renewal status for each patent citing a paper. Using the patent number,

we merge the Reliance on Science and USPTO patent datasets. After merging, we find that one

or more renewed patents cite 4.93% of papers in our training sample. For this analysis, we assume

that firms do not commercially apply papers not cited by a renewed patent.

2.3 Commercial potential model: Training

2.3.1 Year-based model training: Out of sample, out of time-period predictions

We train the commercial potential models by developing one model per year from 2000 to 2020,

resulting in 21 models. Each model is trained independently using the same procedure with time-

constrained data. For each focal model year (e.g., t), the articles and their labels (i.e., whether

they are cited in a renewed patent) are truncated one year prior (t − 1) to maintain temporal

integrity.

This approach of using a moving temporal window offers two benefits. First, it includes only

information up to the year before the focal year, preventing data leakage and avoiding upward bias

in our predictions.6 This ensures our commercial potential measure is predictive of out-of-sample

and out-of-time observations, mirroring the expectations driving firms’ decision-making processes.

Second, this approach captures the dynamic nature of knowledge, enabling our models to learn

from recent data and assess research’s commercial potential based on up-to-date information.7

For each focal year t, allowing for the four-year interval before a first renewal, we use articles
6Our predictions are also subject to potential data leakage introduced by the LLM (SciBERT). See Appendix

B.4 for a discussion of this concern.
7Alternatively, using all past data to train one model would entail learning from over two decades of research

for the most recent periods, biasing the model toward older years and dampening model performance.
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published from t− 14 to t− 5 and citation and renewal data from t− 14 to t− 1. For instance, for

the 2020 model, which measures the commercial potential of articles published in 2020, we train

on articles published from 2006 to 2015 and label them with patent and renewal data up to 2019.

We impose a five-year gap between the article data and the focal year because patents can only

be renewed four years after their grant. Thus, no article published after 2015 will be labeled as

having commercial potential, as there is insufficient time for a citing patent to be renewed by the

end of 2019.8 For articles in the sample, we allow patent citations and renewals up to 2019. For

example, we label an article published in 2012 as “high commercial potential” if it is cited by a

patent in 2015 that is renewed in 2019. Figure A.1 in Online Appendix A schematically represents

the process.

2.3.2 Training sample and process

We take the following steps to construct the training set for each yearly model. First, from the

sample of articles defined in Section 2.2, applying the relevant temporal constraints, we randomly

select a balanced set of 20,000 articles along with their patent citation data. For example, to train

the 2020 model, we randomly sample 10,000 articles published between 2006 and 2015 cited in a

renewed patent by 2019 (commercial potential) and 10,000 articles not cited in a renewed patent

by 2019 (no commercial potential).

Note two key points. First, we use a fraction of the available data to train each model (20,000

observations each). In machine learning, using a subset of data to minimize computational costs

is common practice, provided that model performance remains high, and the sample is representa-

tive. Second, we “artificially” balance the training sample by undersampling, meaning we sample

fewer observations from the majority class (no commercial potential), so both classes are equally

represented during training. This step is necessary because classification tasks—particularly neu-

ral networks tend to perform better on balanced datasets (Miric et al., 2022). In Online Appendix

A.7, we provide details on both points and show that performance converges with a training size
8We could omit this step and still truncate the data, but, by omitting it, we would be including numerous

articles in the training set for these four years, all classified as lacking commercial potential, resulting in biased
estimates.
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of 20,000 articles per year and that the best performance is reached with a balanced sample.

Next, once the training sample is created, we follow best practices by splitting it into three

subsets: training, validation, and test sets. Typically, 75% of the data is used for training, 12.5%

for validation, and 12.5% for testing. In a neural network classifier, the model is trained through

multiple iterations (epochs) to adjust internal weights and minimize prediction errors. The training

set optimizes these weights, while the validation set evaluates the model’s performance on unseen

data during each epoch. This configuration means the validation set is involved in training and

guiding adjustments in subsequent epochs. Consequently, the test set, kept entirely separate from

training, is used only after the model is fully trained to provide an unbiased evaluation of its

generalization performance on new data. This split ensures the model’s performance is evaluated

using a strict hold-out sample.

Finally, we feed the abstracts and their labels to the classifier for training (using only the

training and validation samples). Details of the training process, including the language model,

tokenization, and transformer architecture for computing text embeddings, are provided in Online

Appendix A.2. Two points are worth noting. First, the text is preprocessed using standard

practices. SciBERT processes up to 512 tokens (approx. 512 words) per abstract. Only 1% of

abstracts exceed this limit and are truncated. These longer abstracts are evenly distributed across

classes, indicating no bias in our results. Second, we framed the task as binary classification and

used a sigmoid activation function in the network’s final layer. All models were trained for five

epochs, with peak performance typically achieved within the first three epochs.

2.4 Commercial potential model: Out of sample performance

Using the estimated models, we make predictions for the hold-out test sample and evaluate

performance.9 The 21 models achieved an average AUROC of 0.82, ranging from 0.80 to 0.84 across

yearly models. Similarly, we analyze model performance by scientific field, finding that Health

Sciences and Physical Sciences achieve the highest AUROC scores, while Chemical Sciences and
9Note that we do not report the out-of-time-period performance in this section. We report the crude performance

metrics of the models using a hold-out sample per standard procedures. In section 3, we conduct a deeper evaluation
of our models with out-of-sample and out-of-time period predictions. Most importantly, in Section 4, we externally
evaluate our models’ performance on commercial outcomes that the models were never trained on.
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Information and Communication Sciences score lower.10

We tested various hyper-parameters to identify the training configuration with the highest

out-of-sample performance. The optimal combination was a batch size of 32, a learning rate of

1e-5, and a dropout rate of 0.3.11 Additionally, we evaluated our classifier using different language

models—SciBERT, BERT, and Specter 2.0 (Cohan et al., 2020; Singh et al., 2022)—another state-

of-the-art model for scientific document representation. SciBERT consistently outperformed the

other models, improving AUROC by 2.8% over Specter 2.0 and 7.4% over BERT. Online Appendix

A.6 provides a detailed analysis and performance metrics based on these hyper-parameters and

language models. Furthermore, to ensure the robustness of the results and confirm that they

are not due to a random draw, we employ cross-validation by training the model five times and

computing performance metrics on the hold-out sample for each run. The results are consistent

with the reported performance (see Online Appendix A.7).

2.4.1 Model limitations and robustness

While comparable to prior research, our classifier’s performance faces three limitations. First,

predicting commercial potential from text is inherently complex, comparable to the challenging

tasks facing other efforts using machine learning, including, for instance, Liang et al. (2022)’s

models predicting invention success (AUROC 0.71-0.76) and Guzman and Li (2023)’s startup

success predictions (AUROC 0.60-0.65). Second, although partially addressed by our training

approach using a moving temporal window, the model’s effectiveness may still be constrained by

the evolution of commercial language patterns. Moreover, it may be subject to bias introduced

by authors’ intentional use of language to overstate the commercial potential of their discoveries.

Finally, to the degree that our model predictions do not hold, it is unclear whether such errors are

due to model or human error.12 While there is little we can do to address the first limitation, we
10See Online Appendices A.3 for AUROC interpretation details and detailed performance metrics for each yearly

model; A.4 for examples of articles from the top and bottom 25 percentiles of commercial potential; and A.5 for
field-level performance metrics.

11Batch size refers to the number of training subsamples processed by the neural network at each epoch; learning
rate controls how much the model adjusts weights in response to error; dropout rate helps prevent overfitting by
randomly removing connections between neurons during training.

12For instance, consider a scenario where the model forecasts that a renewed patent should cite an article, but it
does not. This discrepancy could arise from two possibilities. First, the model’s prediction is incorrect, indicating
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address the other two.

Commercially framed abstracts and model bias: To validate that our model classifies

commercial potential based on substantive scientific content rather than superficial language dif-

ferences across articles, we conducted two analyses. A log-odds ratio analysis revealed that words

most associated with commercial potential primarily reflected scientific and technical concepts

rather than generic commercial terms (see Online Appendix B.1). In an experimental exercise,

we also prompted ChatGPT to rewrite 50,000 abstracts to provide them with more “commercial

flavor”. We found no significant change in the model’s classifications or predictive ability (see

Online Appendix B.2), suggesting our model robustly identifies commercial potential tied to the

scientific finding or result rather than linguistic style or framing.

Model uncertainty: We use Monte Carlo dropout estimation to assess our model’s uncer-

tainty and robustness against other potential biases. Through repeated simulations with dropout

at prediction time, we found our model’s predictions were particularly stable for high commercial

potential cases (i.e., scores at the 80th percentile) showing low uncertainty in this critical region

(see Online Appendix B.3 for details).

2.5 Secondary model: Scientific potential

In addition to commercial potential, scientific potential can influence commercialization deci-

sions because the scientific promise of an idea or discovery may also correspond to commercial

applicability (e.g., CRISPR). This is especially true for science in what Stokes calls Pasteur’s

Quadrant (Stokes, 1997). Thus, we control for an article’s scientific potential to isolate the inde-

pendent effect of commercial potential, as the two may be correlated.

To measure scientific potential, we adapted the methodology developed to measure commercial

potential. The main differences follow. First, we use academic citations as an indicator of the

eventual realization of a paper’s scientific potential. We develop a classification variable using

the number of academic citations a paper receives, and we define high scientific realization if the

number of scientific citations for a given paper is above the median in our sample: 16 citations.

that decision-makers were justified in not utilizing the scientific knowledge from the article (indicative of a model
error), or second, the model’s prediction is accurate, suggesting that the decision-makers overlooked or misjudged
the commercial value of the information in the article (suggesting human error).
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That is, papers cited 16 times or fewer are categorized as having low scientific potential, while

those cited more than 16 times are classified as having high scientific potential. Second,our moving

time windows are simplified because, with scientific citations, we do not face the truncation issues

that we faced with patent renewals. We train 21 models and truncate academic citations to the

focal year, but in this case, the window used for training is t− 10 to t− 1. These models perform

satisfactorily, with an average accuracy and AUROC of 0.71. We provide more details on the

methodology and performance of these models in Online Appendix A.3.2.

3 Out of sample, out of time-period validation

In this section, we expand our validation exercise to include the scientific contributions of U.S.

research universities, examining publications from 2000 through 2020. For articles published after

each of our 21 models’ training periods, we investigate whether those predicted to have significant

commercial potential are eventually commercialized (i.e., cited in at least one renewed patent).13

3.1 Commercial Potential at U.S. Research Institutions

Our dataset comprises 5,211,133 articles across the eleven academic fields described above.14

We focus on articles authored by researchers affiliated with commercially active U.S. research

institutions. We use the ‘R1: Doctoral Universities – Very high research activity’ designation from

the 2021 Carnegie Classification of Institutions of Higher Education to identify these institutions.

Additionally, we identify commercially active research institutions by their membership in the

Association of University Technology Managers (AUTM), requiring at least 0.5 full-time equivalent

(FTE) staff dedicated to technology transfer. These criteria yield 126 U.S. universities. Our results

are robust to alternative delineations of our institutional sample, including all U.S. universities

regardless of AUTM membership. In Table 1, we describe the variables used in this exercise and
13This exercise differs from the usual training-test validation split used to calculate the AUROC in Section 2.4,

where we randomly divide the training sample into training, test, and validation groups without looking at whether
the training data came after the test sample data. In contrast, the validation method we use in this section is both
out-of-sample and out-of-time-period, providing temporal generalization for our models and predictions. Refer to
Section 2.3.1 for a clarification on how the year-based models are constructed.

14For each article published in a given year (e.g., 2017), we compute a commercial potential score using a model
trained using data only until the prior year, with training data (e.g., articles, citations, and renewals) restricted to
articles published or citations and renewals generated before the focal year (e.g., 2016 and earlier). This approach
ensures that our scores are less likely to be contaminated by information from future years, making our commercial
potential predictions in this exercise both out-of-sample and out-of-time-period.
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the rest of the paper. In Table 2, Panel A, and Table 3, Panel A, we present the relevant statistical

characteristics and correlations between this sample’s key variables of interest.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

We first conduct a descriptive analysis. As shown in Table C.1, Online Appendix C, articles in

the top quartile of commercial potential are 21 times more likely to be cited by renewed patents

(15.56%) compared to those in the bottom quartile (0.72%).

We test the predictive validity of our commercial potential measure using our sample of over five

million articles. First, we estimate a linear probability model predicting the likelihood of a paper

being cited in a renewed patent based on its commercial potential. We then assess the additional

variance explained by our measure alongside institution and field-year fixed effects. Next, we test

the incremental predictive validity of our measure by including other citation-based predictors for

commercial potential, such as the authors’, institutions’, and journals’ lagged h-indices. These

tests assess the additional predictive value of our commercial potential measure above and beyond

these ex-post citation-based measures. We estimate the following specification:

yi = β0 + β1ϕi,t−1 + β2ψi,t−1 + βαhigh
i,t−1 + ιit + θit + ϵi (1)

where for paper i published in year t, yi indicates whether it is cited by at least one renewed

patent. Additionally, ϕi,t−1 represents the commercial potential and ψi,t−1 the scientific potential,

as determined by models trained with data up to year t−1. αhighi, t− 1 is a binary vector indicating

if the focal paper is associated with institutions, authors, and journals of high commercial and

scientific prominence. For institutions and authors, assessment of prominence is based on whether

their commercial and scientific H-indices are in the top 20% at t − 1. Similarly, journals are

considered high-prominence if their scientific and commercial impact factors are in the top 20%

(see Table 1 for details on how we compute H-indices at the paper level). The term ιit denotes
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an institution fixed effect, and θit represents a grouped field-year fixed effect at the paper level.

These fixed effects account for technological shocks and trends across the paper’s field in year t.

Table 4 shows that adding our commercial potential measure to a model with 126 institution

and 210 field-year fixed effects increases R2 by 42% (from 0.090 to 0.128), significantly enhancing

explanatory power. Next, comparing models 2 and 3, we find that model 2—containing only our

commercial potential measure—has 10% greater explanatory power than a model with six ex-post

citation-based predictors. In model 4, testing the incremental predictive validity of our measure,

we observe a 19.8% increase in R2 compared to model 3. This indicates that our measure explains

nearly 20% more variation beyond fixed effects and other ex post commercial impact measures,

substantially adding new information. Finally, we introduce our full specification in Table 4,

Model 5. Our measure remains significant and substantially contributes to explanatory power

even when accounting for other commercial potential proxies. A one standard deviation increase

in commercial potential from the mean increases the likelihood of a patent citation from 7.40% to

12.1%—a 63.5% increase.

Additionally, the coefficients for controls reflecting the commercial track records of researchers,

institutions, and journals are substantially reduced upon including our measure (see Figure C.1,

Online Appendix C). Specifically, a researcher’s commercial prominence decreases by 33%, an

institution’s by 23%, and a journal’s by 24%. In contrast, variables linked to scientific prominence

do not display similar coefficient changes. Our results further validate our measure of science’s

commercial potential. It is worth noting that the model incorporates fixed effects at the institution

level, effectively accounting for most of the variation across institutions.

[Table 4 about here.]

3.2 Time horizon of the commercial potential measure

Scientific commercialization typically involves significant time lags, often up to 20 years (Adams,

1990; IIT, 1968), and we expect shorter time horizons to be associated with higher commercial

potential. Confirming our prior, the analysis in Table C.2 (Online Appendix C) reveals that arti-

cles classified with high commercial potential are indeed commercialized more quickly. Articles in

the top quartile of commercial potential are twice as likely to receive patent citations within their
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first year compared to those in the bottom quartile (36.66% vs. 18.26%). To enhance the rigor of

our analysis, we also performed a Kaplan-Meier survival analysis (Figure C.2, Online Appendix

C), which yields even more pronounced differences, further confirming our expectation that our

measure of commercial potential increases with temporal proximity to realization.

3.3 Cross-field robustness

Given the limitations of renewed patents as commercialization proxies, we examine how field-

level differences in patent propensity(Schankerman, 1998) or even innate commercializability may

affect the predictive performance of our measure, we test field-specific predictive performance in

a simple linear probability model of the likelihood of a paper being cited in a renewed patent

as a function of commercial potential—which compares to Model 2 in Table 4. Detailed results

are reported in Online Appendix C, Table C.3. We find that across all fields in our sample,

the predictive performance of our measure remains strong. However, some fields show higher

variance explained and larger coefficients. For instance, Biological Sciences has the highest variance

explained at 13.5% and a coefficient of 0.187 for commercial potential, while Earth Sciences shows

the lowest variance explained at 2.7% with a coefficient of 0.056.

3.4 Validating against Kogan et al. patent values

We also compare our measure with a patent-based measure of value, notably the patent value

estimates developed by Kogan et al. (2017), which are patent values estimated based on stock

market reactions to patent grants. This approach provides a useful proxy for commercialization,

as market reactions reflect expected revenue. However, this method’s limitation is that it only

allows us to analyze patents from publicly traded firms. Results are reported in Online Appendix

C, Table C.4. We show that our measure, generated using data only from before the patent was

granted, strongly predicts the estimated patent values. Our commercial potential measure also

predicts patent value controlling for factors such as patent class (CPC), the number of scientific

papers a patent builds upon, and the number of future patent citations it receives.15

15Thus, though trained on a binary, categorical variable representing the existence of a citation, our measure
predicts this intensity-based measure, as well as other intensity-based variables such as licensing agreements or
revenue, as shown below. This phenomenon is frequently observed in machine learning classification tasks. It
can arise from the strong correlation between the features that predict the occurrence of an event and those that
influence the magnitude or intensity of the event, conditional on its realization. In particular, embeddings from
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4 External Validity: Commercial Potential and Tech Transfer

A limitation of these validation exercises is that they test the measure against patent citations,

proxies for firms’ beliefs about commercializability. In this section, we test the measure against

outcomes marking the progression of science through a major university’s technology transfer

process that reflect university and firm decisions about commercializability. Providing detailed

information from a major university’s technology transfer office (TTO), the dataset encompasses

all invention disclosures and subsequent actions and outcomes, including patenting, licensing,

agreements, revenue, TTO investments per invention, licensee type (startup or established firm),

inventor identity, and history with the TTO. We exclude inventions disclosed before 2000 and those

not linked to an active researcher at disclosure. The resulting dataset includes 5,219 invention

disclosures from January 2000 to December 2020.

One crucial element missing from the TTO data is the linkage between scientific articles and in-

vention disclosures. To match faculty articles to invention disclosures, we follow three steps. First,

we match our two primary datasets: (a) Dimensions, containing academic publication information,

and (b) the TTO dataset. We extract the names of all researchers affiliated with the TTO’s univer-

sity from Dimensions. Next, we apply a fuzzy matching algorithm to align researchers’ names in

Dimensions with those who disclosed inventions in the TTO data. The resulting matched dataset

links publications and invention disclosures by author name. From 2000 to 2020, 4,367 researchers

in Dimensions are matched to the TTO data, linking to 53,180 unique publications and 4,505

inventions. Shared authorship between a paper and an invention does not, however, guarantee a

direct match. Therefore, we take two additional steps to establish a match. First, we assess the

temporal proximity between a paper and an invention disclosure. Second, we evaluate the textual

similarity between the article and the invention disclosure.

We introduce a measure called “time gap” to assess the temporal relationship between academic

papers and invention disclosures. It calculates the years between a paper’s publication and its

corresponding invention disclosure. We use the invention disclosure year as the reference point,

marked as time ‘0’. The time gap is between the paper’s publication and the disclosure year.

large language models often encode latent signals that capture an event’s likelihood and underlying characteristics
related to its intensity, even though the model is explicitly trained on binary outcomes.
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For example, a paper published in 2013 and disclosed in 2015 has a negative two-year time gap.

Similarly, a 2020 paper linked to the same invention by the same author has a positive five-year

time gap. We determine a paper’s influence on an invention—matching a paper to an invention—

based on whether the time gap falls within a time window of [-1, 3] years. This range is based on

discussions with the TTO and its guidelines, which advise inventors to disclose inventions before

public dissemination to maintain patenting options in jurisdictions without a one-year grace period

post-publication. Research also indicates that scientific publications leading to patents are often

temporally close to each other (Azoulay et al., 2007; Marx and Fuegi, 2020). This method identifies

3,173 researchers linked to 19,381 publications and 3,127 inventions.16

Our final step in matching publications with inventions relies on textual similarity. We use

BERT to generate textual embeddings for both paper and invention titles. We calculate the cosine

similarity between their title embeddings for each potential publication-invention pair (sharing a

common author and within the [-1, 3] year window). Our analysis indicates that matches with

similarity scores above 0.5 likely represent publications that have contributed to an invention.17

This three-step process matched 13,445 unique publications to 2,728 inventions, linked through

2,717 researchers. Each invention is associated with a median of 2 publications, consistent with

studies on paper-patent pairs (e.g., Marx and Fuegi, 2020). We then prepare two datasets for our

analyses. The first, article-level dataset includes information about each article, such as its link to

a TTO-disclosed invention, commercial and scientific potential, citations by renewed patents, and

other relevant characteristics. This dataset comprises 96,564 articles, with 13,445 (13.92%) linked

to an invention disclosure. Table 2, Panel B, provides the summary statistics for these articles.

The second dataset is aggregated at the invention disclosure level. Here, we examine the

relationship between a disclosure’s commercial potential and outcomes such as TTO investment,

patent filings, licensing agreements, and revenue generation. As inventions are often linked to

multiple articles, we average each invention’s relevant variables (commercial potential, scientific
16An invention may have multiple inventors. Thus, it can be matched to publications from multiple researchers.

Similarly, a publication can be linked to multiple inventions if it has authors with multiple disclosures or multiple
authors who have disclosed inventions within the time window.

17We also applied this procedure using the publications’ abstracts and the inventions’ descriptions. While we
observed similar results, title-based matching proved less prone to errors.
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potential, and patent citations). This dataset includes 2,728 inventions. Table 2, Panel C, provides

the summary statistics for these inventions.18

4.1 TTO results

In the first analysis, we regress our commercial potential measure on four sets of variables: 1)

faculty decisions to disclose inventions to the TTO; 2) TTO experts’ evaluations of commercial-

izability; 3) firms’ decisions to contract with the university for intellectual property access; and

4) revenue realization. We examine the relationships between our measure and key commercial-

ization stages: disclosure of article-linked inventions to the TTO, TTO investment and patenting

decisions, licensing and agreements, and revenue generation. In addition to the actual commercial

outcome of revenue, note that these stages reflect the decisions, and thus the expectations of com-

mercializability, of three types of actors–faculty, TTO experts, and firm managers. The analysis

also controls for the invention’s scientific potential and inventors’ prior experience with the TTO.

We assume scientists disclose inventions to the TTO partly based on their beliefs about their

research’s commercializability. Figure 1 shows a density plot of the commercial potential of sci-

entific articles, our primary variable of interest. The figure compares university-associated papers

not linked to TTO invention disclosures with those linked, clearly showing that the latter have

much greater commercial potential, providing a foundation for our analyses. Similarly, Table D.1,

Online Appendix D, show the relationship between an article’s commercial potential and its likeli-

hood of TTO disclosure. The findings show that articles in the lowest quartile have a 4.62% chance

of disclosure, while those in the highest quartile have a 24.74% chance—a 5.35-fold increase.

[Figure 1 about here.]

To test the relationship between commercial potential and commercial outcomes, we estimate

the following linear probability model:

yi,t = β0 + β1ϕi,t−1 + β2ψi,t−1 + β3log(αhs
i,t−1 + 1) + θit + ϵi, (2)

where for a scientific discovery in article i published in year t, yi,t is a binary variable indicating
18In Table 3, Panels B and C, we present the correlations between the key variables of interest.
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whether it is linked to an invention commercial outcome. ϕi,t−1 denotes the article’s commercial

potential from the model trained with data up to year t − 1, and ψi,t−1 its scientific potential.

αhsi, t− 1 denotes the log-transformed scientific H-index of the paper’s author at time t − 1,

referred to as scientific prominence. For papers with multiple authors, αhsi, t− 1 is the maximum

H-index among all authors j, i.e., αhsi, t− 1 = max j(αhsj, t− 1).19 θit is a grouped field-year

fixed effect to account for technological shocks and trends in the field of paper i in year t.

Table 5 shows the analysis results with disclosure as the dependent variable. Model 1 examines

the baseline impact of fixed effects on disclosure rates. Model 2 shows commercial potential

strongly predicts disclosure, increasing explained variation beyond year-field fixed effects from

0.025 to 0.061. A one standard deviation increase (0.31) from the median commercial potential

score (0.57) corresponds to a 7.38 percentage point rise in disclosure probability.

Models 3 to 5 include control variables for scientific potential and researcher H-index, indicat-

ing scientific prominence. Our primary model, Model 5, confirms the significant role of commercial

potential. A one standard deviation increase in commercial potential correlates with a 6.9 percent-

age point rise in disclosure probability—a 46% difference. The coefficient for commercial potential

in Model 5 remains similar to Model 2, confirming its link to researchers’ disclosure decisions.

[Table 5 about here.]

Following specification 2, Table 6 analyzes the relationship between our commercial potential

measure and later-stage technology transfer outcomes, including TTO decisions to patent and

invest, firm agreements, licenses, and revenue, with the article as the unit of observation. Dis-

closure reflects scientists’ decisions, while TTO investment and patenting reflect TTO decisions.

Agreements and licenses reflect firms’ decisions to build on the invention, while revenue reflects a

firm’s commercial outcome. Results are expressed as percentage point increases for a one standard

deviation change in the commercial potential measure. The results show that higher commercial

potential correlates with increased likelihood across all stages.

[Table 6 about here.]
19All specifications are robust to using the average or sum of the authors’ H-indices. Table 1 details how the

H-index is defined.
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Consistent with Table 5, the probability of an invention being disclosed to the TTO increases

by 6.9% (a 44% increase over baseline). The likelihood of receiving TTO investment increases by

5.6% (51% over baseline), and the chances of obtaining a patent rise by 4.5% (49% over baseline).

The data shows a 4.2% increase in the likelihood of reaching an agreement (43% over baseline), a

1.8% increase in securing a license (36% over baseline), and a 0.7% increase in generating revenue

(41% over baseline). These results indicate that higher commercial potential is linked to initial

disclosure and subsequent commercialization stages. Notably, the scientific potential of articles

linked to an invention is unrelated to outcomes except revenue realization. In contrast, faculty

inventors’ scientific prominence relates to TTO decisions and firm licensing. For the TTO and

firms, faculty prominence may signal inventor credibility or serve as a search heuristic for promising

science.

In Table 7, we condition our analysis on the presence of invention disclosure, using it as the

unit of observation. First, we examine the relationship between our commercial potential measure,

aggregated to the level of the invention disclosure20, and two key TTO decisions: TTO investment

in the invention and patenting. TTO investment covers legal costs and marketing expenses. The

amount invested signals the TTO’s belief in the invention’s commercial promise. Therefore, we

expect inventions with high commercial potential to receive greater investment. Second, we analyze

the number of patents the TTO files for an invention as another proxy for its perceived value.

On the right-hand side, alongside our measure of commercial potential, we control for whether

the faculty inventors have prior TTO experience and interact this experience with the invention’s

commercial potential to account for potential TTO preference for experienced teams to reduce

investment risk. Additional controls include the scientific potential of the invention’s associated

science, the authors’ scientific prominence (H-index), and field-year fixed effects. The econometric

specification, which resembles specification 2, is as follows:

yk = β0 + β1ϕk,t−1 + β2α
tto
k,t−1 + β3α

tto
k,t−1ϕk,t−1 + β4ψk,t−1 + β5log(αhs

k,t−1 + 1) + Θkt + ϵk, (3)
20Recall that more than one article is typically linked to a disclosure; the median is two.
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Models 1 to 4 (Table 7) show TTO investment and patenting results. The findings show

that high commercial potential inventions are more likely to receive TTO investment and patent

protection. These results hold in Models 2 and 4 after controlling for the inventor’s prior TTO

experience and the invention’s scientific potential. In Model 2, a one standard deviation increase

in commercial potential raises the probability of investment by 8% (from 50.0% to 54.0%) and

patenting by 9% (from 52.2% to 56.7%). Compared to the prior analysis where articles with com-

mercial potential were 36-51% more likely to see commercial outcomes, this analysis, conditioned

on disclosure, shows smaller, yet notable, differences of 8-9%. This reduced discriminatory power

is due to conditioning on a subset of articles tied to invention disclosure, which, as shown in Figure

1, are more homogeneous in commercial potential. This aligns with the fact that faculty disclosure

decisions already reflect commercializability judgments. After controlling for commercial poten-

tial, prior TTO experience does not affect investment or patenting decisions. However, scientific

prominence and potential are linked to a higher likelihood of TTO investment and patenting deci-

sions. These results raise the question: Do scientific prominence and potential enhance or distract

from the TTO’s assessment of an invention’s commercializability?

[Table 7 about here.]

While Models 1 to 4 findings validate our measure, when the analysis is conditioned on TTO

investment in Models 5 to 9, the predictive power of commercial potential for licensing, startup

formation, VC investment, and revenue generation diminishes significantly.21 Only for agreements

(Model 5) does our commercial potential measure remain predictive through its interaction with

an author’s prior TTO experience. These results suggest that TTO investment decisions capture

much of the predictive value of the commercial potential measure, supporting consistency of our

measure with the expectations of experts.

5 Applications: Reputation, privatization, and firm’s use of science

We demonstrate the utility of our measure through two exercises. The first examines how uni-

versities’ and researchers’ reputations for producing commercializable science influence its use by
21Figures D.1, D.2, and D.3, in Online Appendix D, provide a visual interpretation of the results.
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firms. The second investigates whether the “privatization” (i.e., patenting) of scientific knowledge

by research institutions restricts its diffusion across firms. Beyond their substantive contributions,

these examples highlight how our measure addresses two key methodological challenges: (a) as a

mediator, it mitigates selection bias due to unobserved heterogeneity in commercial potential, thus

ensuring that outcomes are attributed to reputation or privatization rather than the underlying

potential of the science; and (b) as a moderator, it captures the heterogeneous treatment effects

of reputation and privatization on firms’ use of science, the effects depending on their interactions

with the commercial potential of the underlying research.

5.1 Reputation and realization of commercial potential in the U.S.

In this section, we examine how an institution’s or individual researcher’s reputation for pro-

ducing commercializable science influences firms’ use of their research. If reputation drives firms’

use of science, then comparably commercializable science from less prominent universities or in-

dividuals may be overlooked. The challenge lies in disentangling whether reputation serves as a

reliable indicator of research quality or merely reflects past achievements, which may not always

align with the current or future relevance of the science. To paraphrase Azoulay et al. (2014):

Does reputation accurately guide firms to better outcomes, or does it mirror historical success?

At the article level, we examine how the reputation of an institution, researcher, and journal

influences the commercial application of science.22 Our empirical model uses the citation of a

publication in a renewed patent as the dependent variable, indicating a firm’s belief that a finding

is commercializable. The model includes controls for field-year and university fixed effects. We as-

sume a university’s or researcher’s past record of producing commercializable research contributes

to its reputation. As shown in Table 4, however, relying solely on an institution’s or individual’s

history of producing commercialized research to measure reputation does not clarify whether such

histories signal a capacity to generate commercializable science or whether reputation itself leads

the firm to use the science in question irrespective of any capabilities (Bikard and Marx, 2020).

Table 4 further shows that when we include our article-level measure of commercial potential in
22We include the journal’s reputation for publishing commercializable research, as firms searching for useful

science may prioritize journals known for applied work aimed at practical problem-solving.
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the model, we can better isolate past achievement’s role as a reputation driver versus its function

as a signal that allows firms to identify useful science. Accordingly, we include our measure of

commercial potential in the the following estimating equation:

yi = β0 + β1ϕi,t−1 + β2ψi,t−1 + β3α
high
i,t−1 + β4α

high
i,t−1 × ϕi,t−1 + ιit + θit + ϵi (4)

where yi indicates if paper i, published in year t, is cited by at least one renewed patent.

ϕi,t−1 represents the commercial potential, and ψi,t−1 is the scientific potential, both determined

by models trained on data up to year t− 1. αhigh
i,t−1 is a vector of binary variables indicating if the

paper is linked to commercially and scientifically prominent institutions, authors, and journals.

Institution and author prominence is assessed by whether their commercial and scientific H-indices

are in the top 20% at t−1. Journal prominence is assessed by whether its impact factor, including

commercial impact, is in the top 20%. ιit denotes an institution fixed effect, and θit a grouped

field-year fixed effect at the paper level. These account for technological shocks and trends in the

paper’s field in year t.

Model 1 in Table 8 highlights disparities in commercialization rates between institutions. The

significant positive interaction term “Commercial potential x High commercial impact institu-

tion” shows that high commercial potential research from prominent institutions is significantly

more likely to be cited in renewed patents than comparably commercializable research from less

prominent institutions. Holding other variables at their means, top-quartile commercial potential

articles have a 14.65% likelihood of being cited in a renewed patent when originating from a highly

prominent institution, compared to a 12.26% likelihood for similar articles from less prominent

institutions—a 19.49% relative difference. Model 2 demonstrates that institutional prominence re-

mains significant even after controlling for the journal of publication, highlighting the importance

of the journal’s commercial impact factor. Top-quartile commercial potential articles published in

high-impact journals have a 16.29% likelihood of citation in renewed patents, compared to 9.35%

for those in lower-impact journals—a substantial 74% difference.

In Model 3, individual researcher prominence is introduced, rendering institutional coefficients

insignificant, which suggests that researcher prominence largely explains institutional differences,
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perhaps because prominent universities often employ prominent researchers. Articles in the top

quartile authored by prominent researchers have a 17.19% likelihood of citation in renewed patents,

compared to 10.14% for those by non-prominent authors—a 69.52% gap. Further analyses indicate

that such “realization gaps” persist across a range of scientific fields (see Figure E.1, Online

Appendix E).

[Table 8 about here.]

Table 8 highlights two points. First, by incorporating our measure, we control for unobserved

heterogeneity in commercial potential, enabling us to isolate the independent effect of reputa-

tion. Second, the insignificant standalone coefficients for prominent universities, journals, and

researchers, combined with the significant interaction effects, allows to explore heterogeneous

treatment effects. We find that prominence matters primarily when associated with highly com-

mercializable research, suggesting that valuable research from less prominent sources may be

overlooked.

Perhaps most importantly, from both managerial and policy perspectives, our results reveal

that research with commercial potential is more frequently overlooked when the author, jour-

nal, and, to a lesser extent, the institution lack commercial prominence. Why might this occur?

One possibility is that firms and venture capitalists rely on formal and informal search strategies,

prioritizing sources with established records of producing commercially relevant research. As a

result, equally commercializable research from less prominent sources may be overlooked, poten-

tially disadvantaging both firms and society. Our findings suggest that overlooked opportunities

for commercialization are widespread, with much of the high-potential research not utilized by

firms originating from less prominent sources. Specifically, among articles with high commercial

potential that remain unrealized, 64% are produced by researchers and 79% by institutions lacking

prominence (i.e., are in the bottom three quartiles). This pattern highlights the possibility of “lost

ideas”, where the commercial potential of discoveries fail to be realized due to biases in search

strategies favoring more prominent sources.23

23We define high commercial potential articles as those in the top decile, with a score of 0.89 or higher. While
the 0.89 threshold is somewhat arbitrary, we select the top decile because our uncertainty analysis indicates that
articles with scores above 0.85 have minimal measurement error.
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5.2 Privatization of science and the scientific commons

A central debate surrounding the Bayh-Dole Act is whether university patenting practices

restrict the use of academic science by firms, potentially limiting its economic impact. (c.f.,

Dasgupta and David, 1994; NRC, 2011; Nelson, 2004). Most studies addressing this question focus

on the relationship between university patenting and follow-on academic research (c.f., ?Murray

and Stern, 2007; Thursby and Thursby, 2002; Jensen and Thursby, 2001). Another critical question

is whether university patenting restricts the diffusion of academic science to firms, undermining

firms’ abilities to capitalize on science. While transferring scientific knowledge to industry is key to

driving innovation and economic growth, university patenting may impose barriers that limit firms’

access to this knowledge. However, relatively few studies have explored this issue.24 As several

scholars have noted (e.g., Henderson et al., 1998; Murray and Stern, 2007; Mowery et al., 2015),

assessing the true impact of academic patenting on firms’ access to knowledge remains challenging

without observing the counterfactual scenario and controlling for the inherent commercial potential

of the underlying science (Azoulay et al., 2007; Marx and Hsu, 2022).

This section explores how our measure of can enhance understanding of the relationship be-

tween academic research and its utilization. Specifically, we examine the relationship between a

university’s patenting of scientific discoveries and their subsequent utilization while accounting

for the ex-ante commercial potential of the underlying research. By controlling for commercial

potential, we aim to clarify whether observed utilization patterns are shaped by the patenting

process itself versus the intrinsic private economic value of the underlying science, offering a more

precise test of how privatization affects firms’ use of academic discoveries.

[Table 9 about here.]

In Table 9, we consider how academic patenting affects the breadth of university science use

across firms. Estimated with a linear probability model, the dependent variable is a count of dis-

tinct firms using the science.25 Commercial Potential is a binary variable indicating if an article
24One notable exception is Sampat and Williams (2019), which explores genome-related patents and their effects

on both scientific and commercial follow-on innovation. Despite concerns about knowledge restriction, the analysis
finds no significant evidence that gene patents restrict follow-on scientific research or commercial investments.

25We calculate this by compiling all patent assignees citing a paper and removing duplicates. Patent assignee
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is in the top quartile of this university’s distribution, marking it as high commercial potential.

Patented is a binary variable indicating whether the TTO has patented the invention. Compar-

ing model 3 to model 1, we observe that the Patenting coefficient drops 56% after controlling

for commercial potential. Notably, high commercial potential articles linked to TTO-patented

inventions are cited by more firms than those not patented. Model 4 shows that TTO-patented

high commercial potential articles are cited by 55% more firms than comparably commercializable

unpatented articles.26

Given the data are from only one university and the likelihood that unobservables other than

the commercial potential of the underlying science may impact the value of the patented inventions,

these results are tentative. Nonetheless, it appears that university patenting may enhance, rather

than inhibit, firm utilization of science. This effect could stem from the increased visibility of

patented articles or firms interpreting TTO patenting as a signal of valuable research. These

explanations remain speculative, and further research on a broader sample is necessary to confirm

these findings and uncover the underlying mechanisms.27

These results highlight two important points. First, accounting for commercial potential

demonstrates the impact of otherwise unobserved heterogeneity. Notably, in Table 9, the coeffi-

cient on patenting shrinks substantially—from 0.041 to 0.028, a 32% decrease in magnitude—when

commercial potential is included, while the coefficient for commercial potential remains stable.

Second, the effect of university patenting on firms’ use of academic science depends on the com-

mercial potential of the research. Rather than restricting diffusion, patenting appears to enhance

utilization, especially for high commercial potential science. This is evidenced by the significant

interaction between high commercial potential and patenting, with patented articles cited by a

data can be misleading due to naming inconsistencies (e.g., Apple Inc. vs. Apple Computer Inc.) and unaccounted
subsidiaries. Despite these issues, such inconsistencies are likely orthogonal to TTO patenting, so errors should be
evenly distributed across patents, regardless of TTO patenting.

26The results hold for articles associated with university-invested inventions, not just patented ones, showing
nearly identical findings.

27Importantly, these results do not suggest that TTO patenting is the primary driver of academic science’s impact
on corporate innovation. At this university, most high-potential academic science is not disclosed to the TTO (see
Table D.1), with only 15.36% of high-commercial potential articles being patented. While patented articles may
receive citations from more firms, the far larger proportion of unpatented high-potential research highlights that
public disclosure via publication and other channels remain the dominant channels through which academic research
influences firm innovation.
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broader range of firms—55% more, on average—than equally commercializable but unpatented

research. Moreover, including the interaction term reduces the main effect of Patented substan-

tially, from 0.028 to 0.018—a 56% decrease compared to when we did not include commercial

potential in the model (e.g., Patented = 0.041). These findings suggest that failing to account for

the underlying commercial potential of science may lead to incorrect inferences about the impact

of university patenting on the diffusion of science to firms.

6 Discussion

Scientific research drives technological advance and economic growth, yet understanding how

discoveries transition into commercial applications remains challenging. A key difficulty lies in

distinguishing the commercial potential of scientific findings from their eventual commercialization.

Our research addresses this by developing an ex-ante measure of the commercial potential of

scientific discoveries, capturing firms’ expectations about the likelihood that scientific articles will

provide economic benefits. To create this measure, we use LLMs and neural networks to train a

classifier that predicts whether academic articles will be incorporated into firms’ renewed patents.

Moreover, going beyond standard time-invariance classifiers, we develop time-varying models that

are adapted to dynamic environments that tend to characterize the determinants of innovative

activity and performance. Using Monte Carlo dropout simulations we also quantify the predictive

uncertainty of our measure over the range of its values, enabling more informed use. Furthermore,

beyond standard holdout and out-of-sample validations, we conduct an external, cross-domain

validation by analyzing a scientific discovery’s progress through a university’s technology transfer

process. Finally, in two empirical applications, we demonstrate the utility of our measure and

method in permitting more accurate estimation of the treatment effects of different variables

of interest affecting commercialization (i.e., reputation and patenting), and in underscoring the

importance of controlling for the unobserved heterogeneity that can otherwise lead to omitted

variable bias.

Our approach to measuring commercial potential allows strategy and innovation scholars to

investigate research questions across diverse domains, addressing three key empirical challenges.

First, our measure of commercial potential addresses a key issue: omitted variable bias as-
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sociated with unobserved differences in the commercial potential of firms’ options. Ignoring this

unobserved heterogeneity—across R&D projects, individuals, acquisition candidates, or market—

can lead researchers to incorrectly attribute outcomes to firm attributes or decisions, rather than

to unobserved differences in the underlying science’s commercial potential.28

Second, understanding heterogeneous treatment effects is essential for addressing many key

questions bearing on innovative activity and performance. By including commercial potential as

a moderator in models, our measure enables researchers to explore how underlying differences in

commercial potential moderate outcomes that may vary depending on whether the underlying ideas

or technologies have high or low commercial potential. For instance, external sourcing of inventions

may deliver better results for commercially promising technologies(e.g., Thursby and Thursby,

2002; Shane, 2002). Or, the impact of hiring star scientists on firms’ innovative performance

(e.g., Palomeras and Melero, 2010; Marx and Hsu, 2022) may produce varied outcomes based on

the commercial potential of researchers’ prior work. By quantifying these distinctions and using

commercial potential as a moderator, our measure enables researchers to assess how the underlying

science may shape the success of different types of decisions.

Third, our measure allows researchers to explore novel questions that would otherwise be

difficult to address at scale and across diverse scientific domains. For example, researchers can use

our measure to identify “foregone opportunities” within firms’ R&D pipelines, such as promising

projects with high commercial potential that are overlooked (Christensen and Bower, 1996; Cohen

et al., 2025). Our measure could also highlight overlooked opportunities for startups and spin-outs,

such as when innovations with high commercial potential fail to secure funding or scale effectively.

Beyond these examples, our measure has already been applied by researchers to address em-

pirical challenges in various contexts. For instance, Mumtaz (2025) examines how press coverage

and knowledge diffusion influence firms’ use of science, while Rezaei and Yao (2025) investigate

how government funding reduces technical uncertainty and attracts venture capital investments

in neurotechnology, using our measure of commercial potential as a key control to account for
28As discussed in the paper, there are valid econometric approaches to address selection, such as identifying twin

discoveries (Bikard, 2018; Marx and Hsu, 2022) or using an instrumental variable, but, among other issues, they
are costly. They cannot always be applied at scale.
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selection effects. Similarly, Yue (2025) uses both commercial and scientific potential as dependent

variables. Focusing on highly applied research in artificial intelligence, the study finds that cor-

porate support of AI projects increases their commercial potential but diminishes their scientific

potential.

Our measure can also contribute to the study of what is considered to be one of the three key

industry-level drivers of firms’ incentives to invest in technical advance apart from appropriability

and demand conditions—“technological opportunity”—the extent to which an industry’s science

base makes technical advance easier (i.e., less costly) (Cohen, 2010). Despite its importance as a

determinant of R&D, technical advance, market structure, and entry (e.g., Nelson, 1982; Geroski,

1994; Sutton, 1998), there is no consensus on how to operationalize technological opportunity

empirically. Existing measures remain limited to technology and industry dummies or survey-

based approaches from the 1980s (Klevorick et al., 1995). Thus, we propose that our measure of

commercial potential, aggregated and matched to industries or submarkets, offers a promising first

step toward operationalizing this much discussed but empirically elusive determinant of innovative

activity.29

Our work, of course, has limitations. Relying on patent data and assuming that citations from

renewed patents reflect the commercial potential of scientific contributions can be questioned,

though this assumption is widely accepted (Kuhn et al., 2020). Furthermore, many scientific

contributions reach the market without an associated patent. Moreover, the model may only

partially capture commercial potential due to variable, indirect paths to commercialization and

long time horizons before contributions are embodied in new products (cf., Adams, 1990; IIT,

1968). Our NLP-based technique may miss non-textual factors influencing the decision to use a

scientific contribution in technology development, and we do not analyze the nature of prediction

errors. Such errors likely add noise to our measure of commercial potential. However, we see

promise in the methodology as more data are incorporated into the models.

29An example of the construction of such a measure builds on Branstetter et al. (2022), who match scientific
articles to the different therapeutic classes of the drug industry. By weighting each article with our measure of
commercial potential, Cohen et al. (2025) use this measure of technological opportunity to analyze firms’ investment
choices across therapeutic classes.
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Figure 1: Bi-weight kernel density estimates of the distributions of the commercial potential of 1) articles published
at this university not associated with an invention disclosure (solid line) and 2) articles associated with inventions
disclosed to the Technology Transfer Office (dashed line). Articles tied to an invention are more likely to have high
commercial potential.
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Table 1: Variable descriptions.

Variable Measure Description of measure

Disclosed Disclosed Binary variable representing whether an article is tied to an invention disclosed to the TTO.

Investment Investment Amount invested ($) by the TTO to pursue the commercialization of an invention. Includes different natures of
expenses, such as patenting and marketing expenses. The majority of the specifications use a binary variable,
indicating whether an invention received any investment.

Patents Patents Number of patents the TTO filled to protect a given invention. The majority of the specifications use a binary
variable, indicating whether at least one patent was filed.

Agreements Agreements Number of commercial agreements—of any nature—associated with an invention. The majority of the specifi-
cations use a binary variable, indicating whether at least one agreement was established.

Licenses Licenses For each invention, number of licensing agreements with third parties, such as firms or other institutions. The
majority of the specifications use a binary variable, indicating whether at least one licensing agreement was
established.

Revenue Revenue Amount of revenue ($) generated by the invention. The majority of the specifications use a binary variable,
indicating whether the invention generated a positive revenue.

Startup Startup Binary variable indicating whether the invention has been commercialized via Startup.

VC Invest-
ment

VC Invest-
ment

Conditional on Startup, binary variable indicating whether the startup has raised venture capital financing.

Authors’
TTO Expe-
rience

Authors’
TTO Expe-
rience

Binary variable representing whether at least one of the authors/inventors associated with the invention, prior
to the focal disclosure, has disclosed an invention to the TTO.

Commercial
potential

ϕ =
P(Patent
renewal |
patent cite
> 0)

Probability that the focal article will be cited by at least one patent that, in turn, will be renewed. The
probability is the output of our primary model, which uses the abstract text of the focal article to cast the
prediction.

Scientific po-
tential

ψ = P(Paper
cite > 16)

Probability that more than 16 academic articles will cite the focal article. The probability is the output of our
secondary model (Scientific potential), which uses the abstract text of the focal article to cast the prediction.

Author
scientific
prominence

Max of au-
thors’ scien-
tific H-index

Author H-index at time t−1, excluding the focal article. If a paper is authored by more than one author, we use
the maximum of the authors’ scientific H-indices. The H-index captures the productivity and impact of an author
and is calculated by counting the number of an author’s publications that have been cited by other authors at
least that same number of times. Formally, the H-index can be defined as hindex = max{i ∈ N : g(i) ≥ i},
where g(i) represents the number of cites of the paper with index i.

Author
commercial
prominence

Max of
author’s
commercial
H-index

Author commercial H-index at time t − 1, excluding the focal article. If a paper is authored by more than
one author, we use the maximum of the authors’ commercial H-indices. Similar to the scientific H-index, the
commercial H-index is calculated by counting the number of publications cited by patents.

Institution
scientific
prominence

Max of in-
stitutions’
scientific
H-index

Institution H-index is computed as the author scientific H-index, but we use the institution as the focus of
analysis and, thus, the papers affiliated with an institution. If a paper is authored by more than one institution,
we use the maximum of the institutions’ scientific H-indices.

Institution
commercial
prominence

Max of in-
stitutions’
commercial
H-index

Idem as institution H-index, but using patent citations to papers instead of academic citations.

Journal
scientific im-
pact factor

Journal im-
pact factor

For every year, the average number of citations of articles published in the last two years in the focal journal
(source: Marx and Fuegi (2020, 2022)).

Journal
commercial
impact fac-
tor

Journal
commercial
impact fac-
tor

For every year, the average number of patent citations to articles published in the last two years in the focal
journal (source: Marx and Fuegi (2020, 2022)).
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Table 2: Summary statistics. Panel A summarizes U.S. scientific research published between
2000 and 2020 in U.S. R1 Universities with an active TTO. Panel B summarizes the relevant
features for articles whose authors were affiliated with the TTO’s university at the time of
publication, 2000-2020. Panel C summarizes the relevant features of the articles associated
with disclosed inventions, 2000-2020. For confidentiality reasons, invention-level outcomes
are removed (Investment, Patents, Agreements, Licensing, Revenue, Startup, and VC fund-
ing).

Panel A: Articles from R1 U.S. Universities
with active TTOs (N = 5,211,133)

Mean SD
Commercial potential 0.49 0.33
Scientific potential 0.66 0.24
Cited by patent 0.10 0.30
Cited by renewed patent 0.07 0.26
Institution(s) commercial prominence 68.70 40.54
Institution(s) scientific prominence 411.40 227.77
Journal commercial impact factor 0.02 0.05
Journal scientific impact factor 3.08 3.05
Author(s) commercial prominence 4.23 4.76
Author(s) scientific prominence 32.39 25.59

Panel B: Articles from TTO’s university (N = 96,564)
Mean SD

Commercial potential 0.52 0.31
Scientific potential 0.73 0.20
Academic cites 62.54 210.09
Patent cites 0.71 5.77
Cited by patent 0.11 0.31
Cited by renewed patent 0.08 0.27
Author(s) scientific prominence 45.26 31.04
Disclosed 0.14 0.35

Panel C: TTO inventions (N = 2,728)
Mean SD

Commercial potential 0.73 0.21
Scientific potential 0.76 0.15
Academic cites 74.95 140.32
Patent cites 2.41 9.38
Cited by patent 0.46 0.50
Cited by renewed patent 0.37 0.48
Author(s) scientific prominence 49.47 28.76
Author(s) TTO experience 0.68 0.46
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Table 4: Linear probability model estimating the probability of a paper being cited by at least one
renewed patent. Model 1 shows the baseline effects of the fixed effects (publication field-year and
university). Model 2 shows the effect of our commercial potential measure, ϕi,t−1—a 42.22% increase
in explained variation from Model 1. Model 3 contains potential correlates of commercialization
outcomes: the commercial and scientific prominence of the originating universities and authors,
with prominence measured using the H-index at time t− 1 (log(H-indext−1), as well as commercial
and scientific impact journal. Model 4 presents the results with the commercial potential measure
(ϕi,t−1), and Model 5 adds our scientific potential measure (ψi,t−1) as an additional control. Fixed
effects are incorporated at the field-year and university levels in all specifications.

DV: Cited by renewed patent (1) (2) (3) (4) (5)
Commercial potential 0.181 0.148 0.142

(0.019) (0.015) (0.015)
High commercial impact institution 0.009 0.007 0.007

(0.002) (0.002) (0.002)
High scientific impact institution 0.002 0.005 0.004

(0.002) (0.002) (0.002)
High commercial impact journal 0.051 0.038 0.039

(0.005) (0.004) (0.004)
High scientific impact journal -0.011 -0.010 -0.011

(0.006) (0.005) (0.005)
High commercial impact researcher 0.096 0.064 0.064

(0.008) (0.006) (0.006)
High scientific impact researcher -0.004 -0.001 -0.003

(0.002) (0.002) (0.002)
Scientific potential 0.036

(0.005)
Constant -0.015 0.040 -0.023 -0.043

(0.009) (0.004) (0.009) (0.011)
Publication field - year FE Yes Yes Yes Yes Yes
University-FE Yes Yes Yes Yes Yes
Observations 5,211,133 5,211,133 5,211,133 5,211,133 5,211,133
R-squared 0.090 0.128 0.116 0.139 0.140
Standard errors clustered at the publication field-year level and the university level
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Table 5: Linear probability models estimating, for a publication published at year
t, the likelihood of disclosure as a function of commercial potential. The dependent
variable is a binary variable indicating whether a paper is associated with an
invention disclosed to the TTO. Model 1 presents the baseline impact of the fixed
effects (field-year) on disclosure. Model 2 shows that the measure of commercial
potential, ϕi,t−1, trained with data up to t − 1, predicts whether a scientific
publication will be associated with a disclosure well above the fixed effects. Model
5 presents the full specification, controlling for the scientific potential (ψi,t−1) and
the scientific prominence of a publication’s authors at time t−1 (log(H-indext−1 +
1)). Fixed effects are included at a publication field-year level in all models.

DV: Disclosed (1) (2) (3) (4) (5)
Commercial Potential 0.238 0.232 0.221

(0.016) (0.016) (0.016)
Scientific Potential 0.140 0.034 0.012

(0.012) (0.009) (0.008)
Author Scientific Prominence 0.027

(0.004)
Constant 0.139 0.015 0.037 -0.007 -0.083

(0.000) (0.008) (0.009) (0.008) (0.014)
Publication field - Year FE Yes Yes Yes Yes Yes
Observations 96,564 96,564 96,564 96,564 96,564
R-squared 0.025 0.061 0.029 0.061 0.064
Standard errors clustered at the Publication Category - Year level

Table 6: Linear probability model estimating the likelihood that a publication published at time t
is associated with an invention that (1) is disclosed to the TTO, (2) receives TTO investment, (3)
the TTO files patents for it, (4) leads to commercial agreements, (5) leads to licensing to firms, and
(6) generates positive revenue. All dependent variables are binary. Commercial Potential—ϕi,t−1,
trained with data up to t − 1—strongly predicts all the outcome variables. The models control for
the scientific potential (ψi,t−1) and the scientific prominence of a publication’s authors at time t − 1
(log(H-indext−1 + 1)). Fixed effects are included at a publication field-year level in all models.

(1) (2) (3) (4) (5) (6)
Disclosed Investment Patent Agreement License Revenue

Commercial Potential 0.221 0.180 0.146 0.137 0.057 0.023
(0.016) (0.013) (0.011) (0.011) (0.006) (0.003)

Scientific Potential 0.012 -0.002 0.002 0.013 0.010 0.013
(0.008) (0.007) (0.006) (0.006) (0.005) (0.003)

Author Scientific Experience 0.027 0.026 0.019 0.026 0.014 0.002
(0.004) (0.003) (0.002) (0.002) (0.002) (0.001)

Constant -0.083 -0.092 -0.066 -0.089 -0.045 -0.013
(0.014) (0.012) (0.010) (0.011) (0.007) (0.004)

Publication field - Year FE Yes Yes Yes Yes Yes Yes
Observations 96,564 96,564 96,564 96,564 96,564 96,564
R-squared 0.064 0.058 0.048 0.054 0.026 0.015
Standard errors clustered at the Publication field - Year level
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Table 8: Linear probability models estimating the likelihood of a paper being cited by at least one
renewed patent, focusing on the commercial potential (ϕi,t−1) and its interactions with indicators of
high prominence related to institutions, researchers, and journals. High prominence is defined by binary
variables indicating if an article’s affiliated institution, researcher, or journal ranks in the top 20 percentile
of the H-index or journal impact factor. The model includes fixed effects for both field year and university.
Interaction terms reveal that publications with high commercial potential are more likely to be cited in
renewed patents when associated with high-impact institutions, researchers, or journals.

DV: Cited by renewed patent (1) (2) (3)
Commercial potential 0.164 0.140 0.117

(0.017) (0.014) (0.012)
Scientific potential 0.033 0.035 0.032

(0.005) (0.005) (0.005)
High commercial prominence institution -0.007 -0.008 -0.004

(0.008) (0.007) (0.006)
Commercial potential x High commercial prominence institution 0.039 0.040 0.023

(0.018) (0.017) (0.015)
High scientific prominence institution -0.002 -0.003 -0.002

(0.007) (0.006) (0.006)
Commercial potential x High scientific prominence institution 0.021 0.021 0.015

(0.015) (0.014) (0.013)
High commercial impact journal -0.032 -0.030

(0.008) (0.008)
Commercial potential x High commercial impact journal 0.127 0.120

(0.014) (0.014)
High scientific impact journal 0.039 0.039

(0.011) (0.012)
Commercial potential x High scientific impact journal -0.081 -0.083

(0.019) (0.020)
High commercial prominence researcher -0.007

(0.012)
Commercial potential x High commercial prominence researcher 0.098

(0.019)
High scientific prominence researcher -0.003

(0.003)
Commercial potential x High scientific prominence researcher 0.003

(0.007)
Constant -0.032 -0.036 -0.031

(0.010) (0.009) (0.009)
Publication field - year FE Yes Yes Yes
Institution FE Yes Yes Yes
Observations 5,211,133 5,211,133 5,211,133
R-squared 0.130 0.137 0.144
Standard errors clustered at the publication field-year level and the institution level
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Table 9: Models 1 to 4 estimate the count of different firms citing an article in
their patents. High Commercial Potential is a binary variable indicating whether
the article is a the top quartile of commercial potential, and Patented is a binary
variable indicating whether the article is associated with an invention patented
by the TTO. Fixed effects are included at a publication field-year level for all
models.

DV: Number of citing firms (1) (2) (3) (4)
High Commercial Potential 0.062 0.059 0.057

(0.009) (0.009) (0.009)
Patented 0.041 0.028 0.018

(0.006) (0.005) (0.004)
High Commercial Potential x Patented 0.022

(0.007)
Constant 0.017 0.029 0.015 0.016

(0.002) (0.000) (0.002) (0.002)
Publication field - Year FE Yes Yes Yes Yes
Observations 96,564 96,564 96,564 96,564
R-squared 0.073 0.058 0.074 0.075
Standard errors clustered at the Publication field - Year level
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Appendix A Commercial potential model: Training and performance
In this section, we provide additional details regarding the training process and the models’

performance.

A.1 Year-based models
Figure A.1 provides a schematic representation of how the training sample is created. As

described in section 2.3.1, commercial potential models are developed for each year from 2000 to
2020, resulting in 21 distinct models. Each model is trained independently using data from prior
years, avoiding data leakage. This method ensures that only information available up to the year
preceding each focal year is used, preventing the models from learning from future data. For each
focal year t, articles from the preceding ten years (from t − 14 to t − 5) are used for training.
These articles are labeled using patent citation and renewal data up to t − 1. A five-year gap
is imposed between article publication and the focal year to allow for patent renewals, ensuring
that only commercially relevant articles are included. This approach maintains out-of-sample and
out-of-time validity, avoiding bias in estimating commercial potential.

Figure A.1: Schematic representation of year-based training sample construction.
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A.2 Processing the input text
Our methodology relies on large language models and natural language processing (NLP) tech-

niques, which use text as input. Specifically, we use the abstracts of the articles in which findings
are reported. The pre-trained language model we use is SciBERT (Beltagy et al., 2019), which in
turns derives from BERT, a language model created by Google (Devlin et al., 2018). Pre-trained
language models, such as BERT and SciBERT, create accurate representations of documents in
a high-dimensional space. This is achieved through algorithms that convert text documents into
embeddings—numeric vectors serving as representations of the document’s content. This capabil-
ity is highly valuable, as it enables various tasks based on these embeddings. Because its trained
with scientific, domain-specific text, SciBERT provides state-of-the-art performance in a wide
range of natural language processing tasks for scientific domains, improving BERT’s performance.
We tested whether this holds in our classification task and, indeed, our models’ performance
increases when using SciBERT instead of BERT.

SciBERT relies on transformers (Vaswani et al., 2017), a novel type of neural network architec-
ture.30 In short, as opposed to previous natural language processing techniques, transformers can
model long-range dependencies and learn contextual representations, being able to “understand”
complex semantic relationships within and across documents.31 The first step we undertake con-
sists of “tokenizing” the abstracts, i.e., converting each abstract into an array of discrete linguistic
units—usually, units are words, parts of words, numbers, symbols, and stems. We tokenize using
the version that SciBERT’s authors recommend, scibert-scivocab-uncased, which is expected to
yield the highest performance.32

The tokenizer maps each word into an integer based on the model’s vocabulary and adds
special tokens such as sentence separators, padding, and classification task-specific codes. For
each token, the tokenizer looks for its pre-trained embeddings (Token Embeddings)—a vector
representing each word in a high-dimensional space in relation to an extensive vocabulary. In
addition, the tokenizer adds information regarding the position of each token in the text, both in
the sentence (Segment Embeddings) and in absolute terms (Position Embeddings). Combining the

30At a high level, a transformer model consists of multiple layers of self-attention and feed-forward neural net-
works, enabling it to weigh the probabilities of different parts of the input sequence (i.e., sentences of the text) and
process it in parallel. The attention mechanisms allow transformers to learn contextual representations of words
and phrases.

31A possible limitation of our analysis is that the training sample for SciBERT (Beltagy et al., 2019) comprised
82 percent life science articles and 18 percent computer science articles. Although these two fields represent a large
share of the entire corpus of published articles, this could represent a limitation given that we are also trying to
evaluate the commercial potential of articles from fields other than life sciences and computer science.

32SciBERT’s tokenizer uses its wordpiece vocabulary based on a subword segmentation algorithm created to
match best the corpus of scientific papers used to train the model (scivocab) (Beltagy et al., 2019).
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three embeddings produces a unique embedding for each token in the abstract, which serves as the
input to the first layer of the neural network. This final embedding captures information about the
token’s relative position within a document, enabling the contextualization of its meaning when
fine-tuning the models.

It is worth noting that, for computational reasons, SciBERT, like BERT, is limited to processing
up to 512 tokens per document. There are various techniques to handle longer documents, but a
simple analysis of the abstracts we use to train our model reveals that only 1% of them contain
more than 512 tokens. Additionally, there are no differences in the average number of tokens
between the classes (which could create bias in our findings). Therefore, we truncate the abstracts
at 512 tokens. Figure A.2 shows the distribution of abstracts’ length. Once the abstracts have
been processed by the tokenizer, they are input to the neural network and the model is fine tuned
based on the labels.

Figure A.2: Abstract’s token length distribution
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A.3 Models’ performance

A.3.1 Commercial potential

Figures A.3 and A.4 detail performance metrics for each of the 21 commercial potential models we
trained. We report the performance of our year-based models using several measures: precision,
recall, F1-score, accuracy, and the Area Under the Receiver Operating Characteristic (AUROC).
The average AUROC across the 21 models is 0.82, ranging from 0.84 to 0.80. The AUROC is a
performance metric that measures a model’s ability to distinguish between classes. It represents
the area under the ROC curve, which plots the true positive rate against the false positive rate
at various threshold levels. An AUROC of 1.0 indicates perfect classification, while 0.5 suggests
performance equivalent to random guessing. As is common in many machine learning tasks,
AUROC is preferred over metrics like accuracy because it does not depend on a fixed classification
threshold (e.g., 0.5). In the analysis conducted along the paper, we similarly avoid using a fixed
0.5 threshold for defining commercial potential. Instead, we rely on the continuous variable or
percentile indicators, making AUROC a more suitable metric as it better captures the model’s
overall ability to discriminate between classes across different thresholds.

For context, Manjunath et al. (2021) report an AUROC of 0.83 in their model predicting
patent citations of articles. However, they only use PubMed abstracts in the life sciences and do
not consider patent renewals. Similarly, Koffi and Marx (2023) employ a BERT-derived measure
of science commercializability. However, they do not report sufficient detail to permit comparison
with our methods or results. In contrast, Liang et al. (2022) created a model based on the text of
inventions disclosed to Stanford’s Technology Transfer Office (TTO), aiming to predict commercial
value generation, achieving an AUROC of 0.76. While our use of natural language processing is
distinct in using academic paper text to predict citations from renewed patents, other work has
also implemented NLP models. These papers use patent text and other indicators (e.g., author,
patent, and institution characteristics) to predict patent value, measured by forward citations,
use in commercialized products, or market responses to patenting by public firms (Chuang et al.,
2024; Hsu et al., 2020).
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precision recall f1-score support precision recall f1-score support
Not cited by ren. patent 0.786 0.680 0.729 1224 Not cited by ren. patent 0.754 0.766 0.760 1267
Cited by ren. patent 0.728 0.823 0.773 1276 Cited by ren. patent 0.755 0.744 0.749 1233
Macro avg 0.757 0.751 0.751 2500 Macro avg 0.755 0.755 0.755 2500
Weighted avg 0.757 0.753 0.751 2500 Weighted avg 0.755 0.755 0.755 2500

Accuracy 0.753 Accuracy 0.755
AUROC 0.836 AUROC 0.834

precision recall f1-score support precision recall f1-score support
Not cited by ren. patent 0.763 0.743 0.753 1263 Not cited by ren. patent 0.797 0.690 0.739 1308
Cited by ren. patent 0.744 0.764 0.754 1237 Cited by ren. patent 0.703 0.807 0.752 1192
Macro avg 0.753 0.753 0.753 2500 Macro avg 0.750 0.748 0.745 2500
Weighted avg 0.753 0.753 0.753 2500 Weighted avg 0.752 0.746 0.745 2500

Accuracy 0.753 Accuracy 0.746
AUROC 0.831 AUROC 0.820

precision recall f1-score support precision recall f1-score support
Not cited by ren. patent 0.767 0.740 0.753 1245 Not cited by ren. patent 0.740 0.721 0.731 1241
Cited by ren. patent 0.751 0.777 0.764 1255 Cited by ren. patent 0.732 0.751 0.741 1259
Macro avg 0.759 0.758 0.758 2500 Macro avg 0.736 0.736 0.736 2500
Weighted avg 0.759 0.758 0.758 2500 Weighted avg 0.736 0.736 0.736 2500

Accuracy 0.758 Accuracy 0.736
AUROC 0.837 AUROC 0.811

precision recall f1-score support precision recall f1-score support
Not cited by ren. patent 0.758 0.678 0.716 1207 Not cited by ren. patent 0.792 0.684 0.734 1280
Cited by ren. patent 0.726 0.798 0.761 1293 Cited by ren. patent 0.710 0.811 0.757 1220
Macro avg 0.742 0.738 0.738 2500 Macro avg 0.751 0.748 0.746 2500
Weighted avg 0.742 0.740 0.739 2500 Weighted avg 0.752 0.746 0.746 2500

Accuracy 0.740 Accuracy 0.746
AUROC 0.810 AUROC 0.823

precision recall f1-score support precision recall f1-score support
Not cited by ren. patent 0.753 0.714 0.733 1248 Not cited by ren. patent 0.741 0.727 0.734 1252
Cited by ren. patent 0.729 0.766 0.747 1252 Cited by ren. patent 0.731 0.745 0.738 1248
Macro avg 0.741 0.740 0.740 2500 Macro avg 0.736 0.736 0.736 2500
Weighted avg 0.741 0.740 0.740 2500 Weighted avg 0.736 0.736 0.736 2500

Accuracy 0.740 Accuracy 0.736
AUROC 0.818 AUROC 0.811

2002 2003

2004 2005

2006 2007

2008 2009

2000 2001

Figure A.3: Commercial potential models’ performance (1/2)
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precision recall f1-score support precision recall f1-score support
Not cited by ren. patent 0.762 0.710 0.735 1262 Not cited by ren. patent 0.781 0.656 0.713 1226
Cited by ren. patent 0.724 0.774 0.748 1238 Cited by ren. patent 0.713 0.823 0.764 1274
Macro avg 0.743 0.742 0.741 2500 Macro avg 0.747 0.740 0.739 2500
Weighted avg 0.743 0.742 0.741 2500 Weighted avg 0.747 0.741 0.739 2500

Accuracy 0.742 Accuracy 0.741
AUROC 0.834 AUROC 0.823

precision recall f1-score support precision recall f1-score support
Not cited by ren. patent 0.744 0.707 0.725 1218 Not cited by ren. patent 0.786 0.639 0.705 1200
Cited by ren. patent 0.734 0.769 0.751 1282 Cited by ren. patent 0.716 0.839 0.773 1300
Macro avg 0.739 0.738 0.738 2500 Macro avg 0.751 0.739 0.739 2500
Weighted avg 0.739 0.739 0.738 2500 Weighted avg 0.749 0.743 0.740 2500

Accuracy 0.739 Accuracy 0.743
AUROC 0.812 AUROC 0.813

precision recall f1-score support precision recall f1-score support
Not cited by ren. patent 0.814 0.622 0.705 1285 Not cited by ren. patent 0.788 0.654 0.714 1242
Cited by ren. patent 0.680 0.849 0.755 1215 Cited by ren. patent 0.707 0.826 0.762 1258
Macro avg 0.747 0.736 0.730 2500 Macro avg 0.747 0.740 0.738 2500
Weighted avg 0.749 0.732 0.729 2500 Weighted avg 0.747 0.740 0.738 2500

Accuracy 0.732 Accuracy 0.740
AUROC 0.806 AUROC 0.816

precision recall f1-score support precision recall f1-score support
Not cited by ren. patent 0.815 0.613 0.700 1248 Not cited by ren. patent 0.800 0.607 0.690 1262
Cited by ren. patent 0.691 0.861 0.766 1252 Cited by ren. patent 0.678 0.845 0.753 1238
Macro avg 0.753 0.737 0.733 2500 Macro avg 0.739 0.726 0.721 2500
Weighted avg 0.753 0.737 0.733 2500 Weighted avg 0.740 0.725 0.721 2500

Accuracy 0.737 Accuracy 0.725
AUROC 0.810 AUROC 0.811

precision recall f1-score support precision recall f1-score support
Not cited by ren. patent 0.789 0.664 0.721 1221 Not cited by ren. patent 0.796 0.623 0.699 1225
Cited by ren. patent 0.721 0.830 0.772 1279 Cited by ren. patent 0.700 0.847 0.767 1275
Macro avg 0.755 0.747 0.747 2500 Macro avg 0.748 0.735 0.733 2500
Weighted avg 0.754 0.749 0.747 2500 Weighted avg 0.747 0.737 0.734 2500

Accuracy 0.749 Accuracy 0.737
AUROC 0.820 AUROC 0.804

precision recall f1-score support
Not cited by ren. patent 0.751 0.708 0.729 1192
Cited by ren. patent 0.747 0.786 0.766 1308
Macro avg 0.749 0.747 0.747 2500
Weighted avg 0.749 0.749 0.748 2500

Accuracy 0.749
AUROC 0.824

2015

2016 2017

2018 2019

2020

2010 2011

2012 2013

2014

Figure A.4: Commercial potential models’ performance (2/2)
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A.3.2 Scientific potential

To measure scientific potential, we adapted the methodology originally designed to assess com-
mercial potential, with two adjustments to suit the scientific context. First, we used academic
citations as a measure of a paper’s realized scientific potential. To classify papers, we defined a
threshold based on the sample median of 16 citations. Papers cited 16 times or fewer are catego-
rized as having low scientific potential, while those with more than 16 citations are classified as
having high scientific potential. Second, while we also trained models based on temporal windows,
these were simplified for this exercise. Unlike commercial potential, scientific citations are not
subject to truncation issues related to renewals. Consequently, we employed a straightforward
moving time window for training, spanning from t − 10 to t − 1, and trained 21 models using
academic citations truncated to the focal year.

The models demonstrated satisfactory performance, achieving an average accuracy and AU-
ROC of 0.71. We also conducted experiments with varying thresholds and configurations. To
maintain consistency with the primary model’s training sample, we used a balanced dataset and
experimented with different language models and hyper-parameters. Notably, the same configura-
tion that yielded the highest performance for the commercial potential models also produced the
best performance for the scientific potential models.

In Table A.1, we report the average performance metrics of the scientific potential models.

Table A.1: Scientific potential model performance (av-
erage of all models: 2000-2020)

Precision Recall F1-score

≤ 16 scientific citations 0.73 0.71 0.72

> 16 scientific citations 0.70 0.72 0.71

Accuracy 0.71

Micro-averaged ROC AUC 0.71
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A.4 Examples of scientific articles and their commercial potential

Table A.2: Selected scientific articles in the top 25 percentile of commercial potential.
Title Field Institution Journal Year Patent

cites
Citing
patent
re-
newed?

High-resolution mapping of protein
sequence-function relationships

Biological
Sciences

U. of
Washing-
ton

Nature
Methods

2010 26 Yes

Combination strategies to enhance anti-
tumor ADCC

Biomedical
and Clin-
ical
Sciences

Stanford Immunotherapy 2012 9 Yes

Engineering Tumor-Targeting Nanopar-
ticles as Vehicles for Precision
Nanomedicine

Engineering Rutgers Med one 2019 0 No

Species-Specific and Inhibitor-
Dependent Conformations of
LpxC—Implications for Antibiotic
Design

Chemical
Sciences

Duke Chemical
Sciences &
Biology

2011 6 Yes

Multi-Scale 2D Temporal Adjacency
Networks for Moment Localization with
Natural Language

Information
and Com-
puting
Sciences

U. of
Rochester

IEEE Trans-
actions on
Pattern
Analysis
and Machine
Intelligence

2021 0 No

Nanophotonic projection system Physical
Sciences

California
Institute
of Tech-
nology

Optics Ex-
press

2015 8 Yes

Conserved and Divergent Features of
Mesenchymal Progenitor Cell Types
within the Cortical Nephrogenic Niche of
the Human and Mouse Kidney

Biological
Sciences

U. of
Southern
California

Journal of
The Ameri-
can Society
of Nephrol-
ogy

2018 0 No

Self-Healing Polyurethanes with Shape
Recovery

Engineering U. of
Florida

Advanced
Functional
Materials

2014 7 Yes

Exploring mechanisms of FGF signalling
through the lens of structural biology.

Biological
Sciences

New York
U.

Nature
Reviews
Molecular
Cell Biology

2013 8 Yes

A high-energy-density sugar biobattery
based on a synthetic enzymatic pathway

Chemical
Sciences

Virginia
Tech

Nature Com-
munications

2014 11 Yes
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Table A.3: Selected scientific articles in the bottom 25 percentile of commercial potential.

Title Field Institution Journal Year Patent
Cites

Citing
Patent
Re-
newed?

Extinction and Nebular Line Proper-
ties of a Herschel-selected Lensed Dusty
Starburst at z = 1.027

Physical
Sciences

Cornell
Univer-
sity

International
Journal of
Mass Spec-
trometry

2015 0 No

An exotic invasive shrub has greater
recruitment than native shrub species
within a large undisturbed wetland

Biological
Sciences

University
of Wis-
consin

Plant Ecol-
ogy

2012 0 No

Dynamic programming solutions for de-
centralized state-feedback LQG prob-
lems with communication delays

Information
and Com-
puting
Sciences

California
Institute
of Tech-
nology

Advances in
computing
and commu-
nications

2012 1 Yes

Effects of natural weathering on mi-
crostructure and mineral composition of
cementitious roofing tiles reinforced with
fique fibre

Engineering Pennsylvania
State
Univer-
sity

Cement and
Concrete
Composites

2011 0 No

Thermodynamic database for the Co-Pr
system

Chemical
Sciences

Iowa
State
Univer-
sity

Data in Brief 2016 0 No

Hydrostatic equilibrium profiles for gas
in elliptical galaxies

Physical
Sciences

Yale Uni-
versity

Monthly No-
tices of the
Royal Astro-
nomical Soci-
ety

2010 0 No

A Multilevel Quasi-Static Kinetics
Method for Pin-Resolved Transport
Transient Reactor Analysis

Engineering U. Michi-
gan

Nuclear Sci-
ence and En-
gineering

2016 0 No

Turbulent cross-helicity in the mean-field
solar dynamo problem

Physical
Sciences

Stanford The As-
trophysical
Journal

2011 0 No

A 4-year study of invasive and native spi-
der populations in Maine

Biological
Sciences

U. Mas-
sachusetts

Canadian
Journal of
Zoology

2011 0 No

Intrusion of a Liquid Droplet into a Pow-
der under Gravity

Biomedical
and Clin-
ical
Sciences

Princeton
Univer-
sity

Langmuir 2016 0 No
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A.5 Performance metrics by scientific field
Figure A.5 presents the average performance metrics (AUROC and F1-Score) for the 21 year-

based models across different scientific fields, revealing significant variation. Health sciences,
Physical sciences, and Biological sciences all show strong performance with an average AUROC
exceeding 0.85. While the F1-scores for Health sciences and Physical sciences are around the
overall mean, the F1-score for Biological sciences is notably high, indicating a strong balance
between precision (the accuracy of positive predictions) and recall (the ability to identify all
relevant positive cases) in predicting commercial potential within this field.

Conversely, Information and Communication sciences exhibit lower performance, with an AU-
ROC of 0.73 and an F1-score of 0.69. This may be due to the inherent nature of the field, where
innovations in computer science and software are less frequently patented compared to other disci-
plines. Additionally, the fast-paced evolution and lower patent propensity in these areas can make
it more challenging to capture commercial potential using traditional patent-based indicators.

Figure A.5: Performance by field
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A.6 Model performance by hyper-parameter and language model
In this section, we analyze the impact of various hyper-parameters and language models on

the performance of our classifiers. Specifically, we examine how the models perform with different
dropout rates, learning rates, and batch sizes, as well as with three distinct language models.
The performance metrics under consideration include precision, recall, and F1-score, as our goal
is to optimize the models in terms of achieving a strong balance between precision and recall. In
all instances, the area under the receiver operating characteristic curve (AUROC) and accuracy
improve when the key metrics—precision, recall, and F1-score—are optimized.

Our models are influenced by multiple variables. In addition to hyper-parameters and the
choice of a language model, factors such as training size, year, number of epochs, and the use
of a balanced sample may impact performance. Exploring all these variables simultaneously is
challenging and would result in thousands of comparisons, with prohibitively high computational
costs. Therefore, we adopt an iterative approach, where we explore variables incrementally and
assume that certain choices remain constant across other models or variables. This approach
allows us to manage complexity and resource constraints while still improving model performance.

We conduct this analysis by focusing exclusively on the year 2000, which exhibits average
model performance as shown in Section A.3 and, thus, we consider to be representative. Models
are trained following the methodology detailed in the paper and evaluated using a hold-out test
sample. We train models based on the following combinations of hyper-parameters: dropout rates
of 0.1, 0.2, 0.3; learning rates of 1e-5, 2e-5, 3e-5; batch sizes of 8, 16, and 32; and training sizes
of 500, 1,000, 2,000, 5,000, and 10,000. This results in the training of 131 distinct models.33

Once we obtain the performance metrics for these experiments, we average them based on each
hyper-parameter.

We find that a batch size of 32 results in substantially better performance across all evaluated
metrics. This may be due to the fact that a larger batch size allows the model to compute
more stable gradient estimates during training, leading to more reliable weight updates. Likewise,
larger batches can better capture patterns and correlations in the data, which can help improve
the model’s generalization ability (see Figure A.6a).

We find that a dropout rate of 0.3 yields the best results across all performance metrics,
suggesting that a moderate amount of regularization through dropout prevents over-fitting without
discarding too much information. As the dropout rate decreases, there is a consistent decline in

33Given the exponential increase in computation time and costs, we did not train models with a sample size
of 20,000 (which would require an additional 27 models). As the performance gains when doubling the sample
size from 10,000 to 20,000 are minimal (as shown in the next sections) we deemed the additional computation
unnecessary.
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precision, recall, and AUROC, which suggests that excessive dropout leads to under-fitting (see
Figure A.6b).

We find that a learning rate of 1e-5 outperforms higher learning rates across all metrics (though
the difference is small between 1e-5 and 2e-5). This learning rate allows for more gradual updates
to the model weights, leading to improved convergence and generalization. Conversely, a higher
learning rate of 3e-05 causes fluctuations in the model’s performance, particularly in precision and
recall, indicating that the model is making overly aggressive updates during training (see Figure
A.6c).

It is worth noting that the analysis uses the average performance metrics across all experiments.
These results are consistent also with the maximum performance achieved. Specifically, the model
with the highest performance across all considered metrics—precision, recall, F1-score, AUROC,
and accuracy—has the following configuration: a dropout rate of 0.3, a learning rate of 1e-05, a
batch size of 32, and a training size of 10,000.

(a) Average performance by batch size (b) Average performance by drop out rate

(c) Average performance by learning rate

Figure A.6: Comparison of average performance by hyper-parameters (batch size, dropout, and learning rate.

Next, employing this optimal configuration, we analyze the performance across different lan-
guage models, comparing BERT (Devlin et al., 2018), SPECTER 2.0 (Cohan et al., 2020; Singh
et al., 2022), and SciBERT (Beltagy et al., 2019). These three are state-of-the-art models in
natural language processing.
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BERT (Devlin et al., 2018) is a general-purpose language model pre-trained on a large corpus
of diverse text, making it suitable for a wide range of tasks. While its broad focus might limit
performance in specialized domains, it could also mitigate overfitting by capturing general language
patterns, thus making it more robust when applied to various types of data.

SPECTER 2.0 (Cohan et al., 2020; Singh et al., 2022) is designed specifically for scientific
document embeddings, optimizing performance for citation-based tasks. This specialization makes
it particularly suited for analyzing research articles and predicting commercial potential from
patent citations, as it has been trained to capture relationships between scientific publications
more effectively.

Finally, SciBERT (Beltagy et al., 2019) is a variant of BERT pre-trained specifically on scien-
tific text, which enhances its ability to understand the specialized scientific language. However,
SciBERT’s fine-tuning on a subset of fields—primarily biological and computer sciences—might
limit its generalizability across other scientific domains.

The comparison of BERT, SPECTER 2.0, and SciBERT reveals significant differences in per-
formance across various metrics. SciBERT is superior in all metrics except precision, where
SPECTER 2.0 performs better. When considering the area under the receiver operating char-
acteristic curve (AUROC), SciBERT outperforms SPECTER by a 2.78% increase and BERT by
a 7.46% increase. Similarly, SciBERT shows the highest accuracy, with a 1.45% gain compared
to SPECTER and a 7.29% increase over BERT. In terms of the F1-score, SciBERT improves by
4.44% over SPECTER 2.0 and 7.51% over BERT (see Figure A.7).

Figure A.7: Language model performance
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A.7 Model performance by training size, cross-validation, and balance
Following the same approach as in the previous section, we now analyze the model’s perfor-

mance using different training sizes: 500, 1,000, 2,000, 5,000, 10,000, and 20,000. For this analysis,
we fix the other hyper-parameters at their optimal values as per the previous analyses: a dropout
rate of 0.3, a learning rate of 1e-05, a batch size of 32, and we use SciBERT as the language model.

Furthermore, to account for potential variations in performance metrics due to the randomly
created training samples, we apply cross-validation (CV), a technique used to assess the gener-
alizability of a model by dividing the dataset into multiple subsets—folds. Recall that in our
neural network architecture, the model is trained on both the training and validation sets, and
then evaluated on a hold-out test set. Under CV, this process is repeated five times.

We partition the training data into five equally sized folds. In each iteration, one fold is treated
as the validation set, while the remaining four folds are used as the training and validation set.
This process is repeated so that each fold is used as the validation set once, allowing the model
to be trained and evaluated on different subsets of the same sample size.

In summary, for each defined sample size, we train five models, each with a different composition
of training, validation, and test sets. The results from these five models are then averaged to yield
a more robust estimate of the model’s performance.

As expected, larger training sizes result in improved performance across all metrics. The
model’s ability to generalize increases as more training data is provided, leading to more reliable
and consistent predictions. While small sample sizes may occasionally show high performance,
the cross-validation (CV) exercise reveals that this is primarily due to the limited sample size on
which the model is evaluated. Smaller training sizes exhibit high variability in the performance
metrics, making it difficult to draw any conclusive insights from them. Finally, diminishing returns
are observed as the training size becomes sufficiently large, indicating that there is little need to
increase the sample size beyond 20,000 observations.

In Figure A.8, we plot both the ROC and F1-score metrics for each fold in the cross-validation
process, alongside the overall average. This visualization helps to illustrate not only the individual
performance of each fold but also the consistency of the model across different subsets of the
data. By plotting the averages, we can clearly observe trends in model performance as training
sizes increase, allowing us to assess how well the model generalizes and how the variability in
performance decreases with larger training sets.

Finally, it is worth considering the effect of balancing the training sample across classes on
model performance. To investigate this, we once again use the optimal conditions identified earlier
and examine the model’s performance across different sample balances. By doing so, we aim to
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Figure A.8: Training size

understand how varying the balance between classes impacts key metrics such as precision, recall,
and F1-score.

As Figure A.9 shows, increasing the balance of the training sample leads to more reliable
and consistent performance across all metrics. Notably, the model achieves its most balanced
performance in terms of F1-score when the sample is well-balanced, indicating that a balanced
dataset enables the model to capture relevant patterns more effectively. This observation aligns
with established research in machine learning and neural networks, confirming the well-known
importance of data balance in achieving optimal model performance (Miric et al., 2022).

Figure A.9: Balance
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Appendix B Model limitations and robustness
While our classifier demonstrates reasonable performance, there is potential for further en-

hancement. Three primary factors may be influencing its performance:

1. Diverse Academic Fields: Our models are trained to classify articles across various fields,
from Biology to Engineering to Computer Science. Textual features indicative of commercial
potential may significantly vary between these disciplines. This diversity necessitates com-
promises in parameter settings, consequently limiting the model’s overall performance. For
comparison, Manjunath et al. (2021) focused their model exclusively on the life sciences and
biomedical fields, utilizing over 20 million articles from PubMed. They achieved an AUROC
of 0.83, highlighting the benefits of field-specific models.

2. Complexity of Task: Predicting commercial potential from textual data is inherently
complex and uncertain, making it challenging even for expert human analysis. While most
natural language processing (NLP) classification tasks, such as identifying specific emotions
in text, report accuracies above 95%, these tasks typically involve more straightforward in-
formation within the text. For more complex tasks, lower performance is expected. For
instance, Liang et al. (2022) trained two NLP models to predict the financial success of
inventions disclosed to Stanford’s Technology Transfer Office. Their BERT-based model
achieved an AUROC of 0.76, while the simpler TF-IDF-based model reached 0.71. Simi-
larly, Guzman and Li (2023) used doc2vec to predict the early-stage success of startups and
reported AUROCs between 0.60 and 0.65.

3. Changing language: The language signaling commercial potential may change over time,
and our model is confined, per above, to a circumscribed sample period. This focus narrows
our model’s capacity to capture the nuanced dynamics of token emergence, usage, and
interconnections and the detailed content in full texts, tables, and figures of articles that
may affect the accuracy of our model predictions.

B.1 Commercial potential articles and most representative words
A concern is whether the classification task is influenced by the use of certain words that are not

fundamentally related to the scientific content, but may superficially suggest greater commercial
potential in a scientific contribution. For instance, the model could disproportionately classify
abstracts with a “commercial flavor” as having higher commercial potential. In this scenario,
the primary determinant of the results would be the language employed rather than the intrinsic
scientific research and its potential commercial applications. That is, the model’s predictions could
be biased.
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Indeed, previous studies suggest that the way ideas are written, beyond the inherent qualities
being conveyed, influences the adoption of novel concepts and products. For example, Lakshmi-
narayanan et al. (2017) and Koffi and Marx (2023) identify gender differences in how researchers
describe their findings, with men tending to use more positive or boastful language—although the
mechanisms behind these differences remain unclear. In a related domain, Zunino et al. (2019)
finds that technological products described with overly familiar or creative language are less likely
to be adopted, while Pontikes (2012) show that ambiguous wording and concepts can make new
products less appealing to consumers, hindering adoption. However, these studies focus on text
from firms’ press releases in industries like smartphones and software, where claims are not formally
evaluated, leaving the incentives to emphasize commercialization unclear. In contrast, scientific
authors should have little motivation to exaggerate the commercial aspects of their work, as the
peer-review process would likely moderate such claims.

Whether our commercial potential measure is subject to such bias is ultimately an empiri-
cal question. To investigate this, we conduct two additional analyses to assess whether specific
language usage affects the commercial potential measures generated by our algorithm.

We begin with an exploratory analysis to identify the words most likely to be associated with
each class in our classification task. This analysis is interesting in and of itself, as it reveals which
words are most indicative of commercial potential or the lack thereof. Furthermore, it helps detect
whether our measure is biased toward commercially oriented language. If words with commercial
connotations appear more frequently in abstracts classified as having commercial potential, it may
suggest a potential bias, indicating that the mere presence of these words could be driving the
algorithm’s classification results. Additionally, since the terminology used to convey commercial
applications may vary across fields, we conduct this analysis at the field level

To analyze the distinctive vocabulary associated with different classes in our dataset, we em-
ployed two different, complementary methods. It is important to recognize, however, that the use
of transformer models and neural networks in calculating the commercial potential measure means
that the ranked words resulting of the following two exercises are merely indicative of how the
presence or absence of specific words might influence the score for a given abstract. In practice,
the impact of these words can vary significantly depending on their combinations, semantic simi-
larities, and contexts within the abstracts—which is precisely the advantage of relying on neural
networks over bags of words—, leading to different results. This is further explored in the next
section, B.2.
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B.1.1 Words more likely in one class vs. the other: Log-odds ratio

First, we run a log-odds ratio calculation. This method enables us to quantify the relative impor-
tance of words within each class compared to their overall distribution across the entire corpus.
That is, with this method we are able to detect words that are disproportionately likely to be
present in one class versus the other. We proceed as follows.34

First, we randomly sample 100,000 abstracts from our sample of articles to avoid large com-
putational costs, and we classify abstracts as having commercial potential if they are in the top
20% of commercial potential score, normalized by year and field. Next, we process the abstracts.
We remove stop words, punctuation and numbers, and sparse terms to reduce noise (those terms
occurring less than 120 times across the entire corpus, representing a frequency below 0.1%). Next,
we compute the probability of each word occurring within a given class by dividing its count in a
class by the total word count for that class.35 Next, we calculate the overall probability of each
word across all classes. Finally, we compute the log-odds ratio by taking the natural logarithm of
the ratio between the word’s class-specific probability and its overall probability.36

Tables B.1 and B.2 present the results. For each scientific field, we plot the top 15 words
most likely to appear in one class versus the other in terms of the centered log-odds ratios (“Log-
Odds”). For example, under Biological Sciences, “reprogramming” and “metastatic” are words
over-represented in abstracts classified as “Commercial potential” while little present in articles
classified as “No commercial potential”. Conversely, “dispersal” and “nest” are words more likely
to appear in articles with “No commercial potential” than otherwise.

34We make the code available in our public repository, under the file compot_words.ipynb. The code contains all
the steps detailed here with further detail.

35We apply Laplace smoothing by adding a small constant (α = 1) to each word count. This step avoids zero
probabilities, which could otherwise lead to undefined logarithmic values during subsequent calculations.

36To further refine these values, we center the log-odds ratios by subtracting the mean log-odds across all classes
for each word. This centering step allowed us to focus on the deviation of a word’s association with a particular
class relative to the other classes, providing a more intuitive understanding of class-specific vocabulary.
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Table B.1: Most representative words per class, Log-Odds Ratio (1/2)

Commercial potential No commercial potential Commercial potential No commercial potential
Word Log-Odds Word Log-Odds Word Log-Odds Word Log-Odds

Agricultural, Veterinary and Food Sciences Chemical Sciences
vaccine 1.45 litter 1.82 potent 1.22 orbital 1.80
proteins 0.92 annual 1.44 inhibitors 1.21 relaxation 1.51
assay 0.90 cover 1.39 therapeutic 1.08 equation 1.35
gene 0.87 fertilizer 1.35 targets 0.93 dft 1.32
viral 0.87 irrigation 1.33 receptor 0.92 ground 1.30
vitro 0.85 forests 1.26 delivery 0.92 agreement 1.19
genome 0.84 plots 1.23 discovery 0.90 calculation 1.17
genes 0.83 trees 1.21 vivo 0.89 symmetry 1.10
virus 0.82 season 1.14 inhibitor 0.89 neutron 1.02
cells 0.78 forest 1.12 probes 0.88 calculations 0.99
molecular 0.76 soil 1.12 platform 0.87 parameter 0.98
mice 0.75 tree 1.02 cancer 0.84 bands 0.96
isolate 0.72 ecosystem 1.01 agents 0.81 calculated 0.94
expression 0.71 year 0.99 peptides 0.79 energies 0.92
sequence 0.71 survey 0.98 analogues 0.78 polarization 0.90

Biological Sciences Earth Sciences
reprogramming 1.09 dispersal 2.30 algorithms 1.27 holocene 1.88
metastatic 1.08 nest 2.23 oil 1.15 rift 1.85
egfr 1.04 forests 2.21 shale 1.01 arc 1.79
antiviral 0.96 climate 2.16 detection 0.99 lava 1.78
metastasis 0.94 season 2.15 acid 0.99 pleistocene 1.72
engineered 0.91 america 2.10 permeability 0.99 antarctic 1.60
therapeutics 0.90 ocean 2.08 image 0.98 monsoon 1.46
oncogenic 0.87 predators 2.07 classification 0.97 lithosphere 1.43
abeta 0.85 lake 2.06 wells 0.89 younger 1.43
glycosylation 0.85 breeding 2.05 mission 0.84 belt 1.41
site-specific 0.83 north 2.05 retrieval 0.84 century 1.34
pik 0.83 land 2.04 particle 0.83 phytoplankton 1.34
angiogenesis 0.82 spring 2.03 fracture 0.83 warm 1.32
nucleic 0.82 summer 2.03 nucleation 0.81 warming 1.31
viral 0.81 characters 2.02 pore 0.80 subduction 1.30

Biomedical and Clinical Sciences Engineering
xenografts 1.72 residents 2.61 hydrogel 1.74 soil 2.32
transgene 1.67 educational 2.33 scaffold 1.45 asphalt 1.95
neutralizing 1.54 youth 2.27 hydrogels 1.40 fire 1.91
aav 1.50 interviews 2.26 scaffolds 1.34 flames 1.89
plasmid 1.50 aor 2.25 regeneration 1.24 weld 1.77
ctl 1.50 attitudes 2.17 microfluidic 1.21 sand 1.70
foxp 1.47 schools 2.10 culture 1.08 boiling 1.64
antigen-specific 1.45 school 2.09 vitro 1.04 turbulence 1.58
mscs 1.39 income 2.06 video 1.01 equations 1.55
ligands 1.39 faculty 2.04 collagen 1.01 concrete 1.53
gag 1.38 attending 2.03 cmos 0.99 rotor 1.47
engineered 1.36 fistula 2.01 engineered 0.98 fatigue 1.42
xenograft 1.35 mace 1.98 differentiation 0.94 turbine 1.40
mirnas 1.32 psychological 1.98 nanofibers 0.94 flame 1.37
kinases 1.32 lvad 1.97 drug 0.93 seismic 1.32
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Table B.2: Most representative words per class, Log-Odds Ratio (2/2)

Commercial potential No commercial potential Commercial potential No commercial potential
Word Log-Odds Word Log-Odds Word Log-Odds Word Log-Odds

Environmental Sciences Mathematical Sciences
toxicity 0.52 biodiversity 1.69 design 1.29 spin 2.02
treatment 0.51 forest 1.27 algorithms 0.96 decays 1.70
exposure 0.50 local 0.98 efficient 0.87 algebra 1.45
concentration 0.44 coastal 0.98 bayesian 0.87 theories 1.38
soils 0.39 conservation 0.91 regression 0.84 gauge 1.38
potential 0.38 climate 0.72 optimization 0.82 algebras 1.15
samples 0.35 national 0.63 algorithm 0.81 decay 1.15
fish 0.34 change 0.59 computational 0.76 quantum 1.04
contaminated 0.33 areas 0.58 estimation 0.74 formula 1.03
conditions 0.31 scenarios 0.57 network 0.70 invariant 1.00
systems 0.30 sediment 0.54 propose 0.69 symmetry 0.99
measured 0.29 ecological 0.54 networks 0.69 conjecture 0.97
food 0.29 management 0.53 modeling 0.62 mass 0.92
including 0.27 spatial 0.52 markov 0.61 let 0.89
air 0.26 biomass 0.51 treatment 0.59 operators 0.89

Health Sciences Physical Sciences
gait 1.34 violence 1.99 tissue 1.69 stellar 2.29
alzheimers 1.32 girls 1.86 phantom 1.68 photometric 2.10
muscle 1.29 schools 1.86 graphene 1.49 gev 2.09
muscles 1.20 stigma 1.76 imrt 1.46 halo 2.06
devices 1.19 inequalities 1.71 tumor 1.24 galaxies 2.01
speed 1.07 thematic 1.71 delivery 1.22 planets 2.01
ankle 1.05 end-of-life 1.68 microscopy 1.22 planet 1.97
knee 1.01 readiness 1.68 lung 1.18 cosmological 1.93
device 0.97 household 1.56 technology 1.18 higgs 1.92
peak 0.94 parental 1.48 device 1.17 photometry 1.91
driving 0.85 climate 1.44 carrier 1.15 flare 1.90
nicotine 0.79 coping 1.42 scanning 1.12 star 1.90
subjects 0.79 low-income 1.37 planning 1.07 redshifts 1.89
parameters 0.78 semi-structured 1.36 films 1.06 boson 1.89
detection 0.77 poverty 1.32 patients 1.06 mag 1.88

Information and Computing Sciences
malware 0.84 students 2.36
malicious 0.75 librarians 1.78
query 0.69 education 1.49
queries 0.67 behaviour 1.46
enables 0.61 genetic 1.38
scalable 0.59 fuzzy 1.36
camera 0.58 influence 1.24
device 0.57 science 1.19
retrieval 0.57 workshop 1.18
overhead 0.54 academic 1.12
speech 0.53 engineering 1.04
video 0.49 theory 1.03
protocols 0.49 university 0.84
semantic 0.48 course 0.84
authentication 0.48 numerical 0.81
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Across all eleven scientific fields, we find that the most prominent words in articles classified as
having “Commercial potential” are predominantly scientific or technical in nature, with few words
related to generic terms or commercialization aspects. For example, a relevant set of words speaks
to potential problems to address, such as “virus”, “metastasis”, “cancer”, “detection”, “regenera-
tion”, “contaminated”, “alzheimers”, “retrieval”, “estimation”, and “lung”. A second predominant
set of words refers to techniques, such as “vitro”, “delivery”, “markov”, and “microscopy”. Finally,
another set of concepts refers to a potential solution, such as “vaccine”, “therapeutics”, “antiviral”,
“nanofibers”, “graphene”, and “networks”.

Overall, we find little evidence that the classification is based on generic or commercially
oriented words. Note, however, that this exercise relies only on simple counts and is not indicative
of how these words drive the aggregate results. For example, words like “patients”, “results”,
“study”, “using”, “data”, “cells”, and “model” appear in more than 25,000 abstracts, but most of
them are not present on the words listed in tables B.1 and B.2. Conversely, the word “xenografts”,
present in table B.1 under Biomedical and Clinical Sciences with a high log-odds ratio (1.72),
appears, in all its forms, in 425 documents, the majority classified as “Commercial potential”
articles. However, this word is unlikely to drive any of our results, since it only appears 425 times
out of 100,000. Note that we did impose a threshold on the word frequency to avoid sparse terms
(over 110 times, or more than 0.1%). However, this threshold is rather arbitrary and is difficult
to set it in a rigorous way. To better understand what words are most predictive of commercial
potential, we additionally run the following exercise.

B.1.2 Words most predictive of commercial potential: Linear regression

To get a sense of which words are most predictive of commercial potential, taking into account their
overall frequency, we conduct a text-based regression analysis—linear probability model (LPM).
As in the previous exercise, we run the analysis that follows by field, using the same sample of
100,000 abstracts, randomly selected from the main dataset.37

We first pre-process the text by cleaning it and removing common English stopwords. The
cleaned text is then transformed into a Document-Term Matrix (DTM), representing the frequency
of words across documents. To reduce noise, sparse terms are removed, and documents with
no words are excluded to ensure that only meaningful data is retained. The resulting matrix
represents each document by its word frequencies, which serve as the independent variables (X)
in the regression analysis. The dependent variable (y) represents commercial potential, classified

37We also make this code available in our repository, under the file ‘bow_compot_words.R‘.
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as 1 if the document falls in the top 20th percentile of commercial potential, normalized by field
and year.

The goal of the regression analysis is to identify the terms most predictive of commercial
potential. To achieve this, we employ an iterative technique using a forward stepwise selection
method (fast_forward with BIC crietrion).38 This approach iteratively adds variables (words)
to the model based on their explanatory power. During each iteration, the algorithm evaluates
which word, if added, would provide the greatest improvement in explanatory power. The process
continues until no further improvement is possible or the maximum number of variables is reached.
For ease of interpretability and to be able to compare the results with those of the previous exercise,
where we had 30 words per field, we set the maximum number of variables to 30.

Results are presented in Tables B.3 to B.6. For each scientific field, we display the words
identified by the iterative algorithm as most predictive of commercial potential, along with their
corresponding coefficients. We do not report standard errors as these are all negligible. It is
important to note that this method selects the words most predictive of commercial potential,
regardless of the direction of the prediction. Therefore, one needs to pay attention to the sign of
the coefficient to determine whether the word predicts “Commercial potential” or “No commercial
potential”. Additionally, we provide the variance explained by each LPM at the bottom of the
table.

In this case, the results differ somewhat from the previous exercise. While many words are
scientific and technical in nature, such as “cancer”, “viral”, “cell”, “virus”, “enzyme”, “clinical”,
“muscle”, “quantum”, and “crystal”, the frequency of more generic words is notably higher in this
analysis. Words like “capable”, “demonstrated”, “able”, “critical”, “different”, “influence”, and
“significant” show some of the largest coefficients. Although these terms do not directly convey
commercialization concepts, they do emphasize the importance and relevance of the results.

This suggests that words like these are indeed present in articles classified as having commercial
potential. However, the question of whether this language drives the classification (and thus
introduces bias) or if it reflects or is confounded with the underlying scientific ideas remains
open. Specifically, we do not yet know whether articles using this language are genuinely more
promising, either scientifically or commercially. Notably, the variance explained by these words
in predicting commercial potential in prominent fields such as Chemical Sciences, Engineering,
Computing Sciences, Biological Sciences, and Biomedical and Clinical Sciences ranges from 4.7%

38We set the criterion for the optimization process as the Bayesian Information Criterion (BIC), a statistical
measure used to balance model fit and complexity. The BIC-based forward selection allows the algorithm to
efficiently choose a subset of words that best predict the commercial potential while avoiding the risk of overfitting
by including irrelevant or redundant terms.
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to 10.5%.
It is important to recall that our measure is based solely on the text of the abstracts. This

means that only words can explain the commercial potential in our model, leaving 90% to 95%
of the variation in commercial potential scores explained by the remaining words in the abstracts
and their interactions. To address this issue, we devised a novel experimental method, presented
in the next section.
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Table B.3: Most representative words per class, Bag-of-words regression (1/4)
Agri., Vet., and Food Sciences Biological Sciences Biomedical and Clinical Sciences
word estimate word estimate word estimate
probes 0.310 biochemical 0.088 including 0.052
capable 0.163 critical 0.049 multiple 0.046
cancer 0.124 family 0.043 developed 0.037
chain 0.121 via 0.038 however 0.021
ability 0.091 roles 0.030 analyzed -0.005
able 0.082 activity 0.026 data -0.006
demonstrated 0.080 cells 0.023 failure -0.008
viral 0.070 different -0.004 patients -0.009
humans 0.068 four -0.017 associated -0.013
products 0.063 field -0.018 introduction -0.018
cell 0.061 influence -0.019 determine -0.019
specific 0.057 relative -0.023 five -0.020
virus 0.050 significant -0.025 duration -0.022
potential 0.048 conditions -0.026 assessed -0.023
analysis 0.036 affect -0.027 highest -0.025
detected 0.025 rates -0.027 differences -0.026
species -0.021 overall -0.029 methods -0.029
study -0.025 species -0.029 incidence -0.030
treatments -0.028 order -0.031 evaluate -0.031
average -0.038 determine -0.033 center -0.031
significant -0.044 related -0.034 patient -0.034
management -0.044 time -0.037 groups -0.035
conducted -0.053 observed -0.044 academic -0.036
areas -0.055 behavior -0.044 age -0.037
relationship -0.070 photosynthetic -0.047 admitted -0.041
included -0.071 total -0.049 conclusions -0.044
usa -0.080 assessed -0.049 medical -0.044
southern -0.084 conducted -0.057 lowest -0.048
sampled -0.086 decreased -0.063 appropriate -0.049
abstract -0.094 abstract -0.082 choice -0.051

R-squared: 0.145 R-squared: 0.072 R-squared: 0.066
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Table B.4: Most representative words per class, Bag-of-words regression
(2/4)

Chemical Sciences Earth Sciences Engineering
word estimate word estimate word estimate
efforts 0.240 organization 0.394 flexible 0.101
describe 0.114 processing 0.184 overcome 0.085
toward 0.113 mission 0.129 composed 0.078
expression 0.086 become 0.115 efficient 0.036
simple 0.074 challenges 0.082 show 0.025
binding 0.067 existing 0.078 field -0.013
containing 0.056 work 0.068 material -0.013
can 0.032 address 0.067 stress -0.026
reaction -0.017 methods 0.051 presented -0.027
characterized -0.018 images 0.050 soil -0.029
structure -0.019 paper 0.046 results -0.033
energy -0.022 can 0.037 initial -0.034
crystal -0.027 information 0.037 analytical -0.036
hydrogen -0.028 different 0.029 behavior -0.036
present -0.032 new 0.023 function -0.037
state -0.036 data 0.016 boundary -0.042
temperature -0.038 observed -0.022 laboratory -0.042
found -0.038 layer -0.027 particular -0.043
determined -0.039 area -0.028 formulation -0.045
diffraction -0.039 river -0.030 analysis -0.045
xray -0.039 local -0.030 distributions -0.046
analysis -0.041 warming -0.034 criteria -0.048
dynamics -0.042 basin -0.036 tests -0.050
experimental -0.045 recent -0.042 taken -0.053
spectroscopy -0.045 regional -0.050 examined -0.060
measured -0.052 period -0.052 identified -0.063
constant -0.060 scales -0.056 predict -0.064
energies -0.066 suggest -0.059 criterion -0.065
agreement -0.070 strong -0.059 investigate -0.067
terms -0.071 observatory -0.176 numerically -0.093

R-squared: 0.100 R-squared: 0.134 R-squared: 0.047
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Table B.5: Most representative words per class, Bag-of-words regression (3/4)
Environmental Sciences Health Sciences Computing Sciences

word estimate word estimate word estimate
polymers 0.457 faster 0.113 preserving 0.162
transferred 0.441 generate 0.112 commodity 0.160
cellular 0.417 muscle 0.104 appearance 0.117
volatile 0.348 commonly 0.082 efficiently 0.086
crucial 0.192 available 0.064 propose 0.080
physicochemical 0.186 performed 0.060 encryption 0.074
enzyme 0.165 common 0.048 highly 0.070
recovered 0.151 clinical 0.044 applications 0.065
ratio 0.141 body 0.043 challenges 0.059
median 0.130 measured 0.037 protocols 0.053
presence 0.129 test 0.033 devices 0.048
biosolids 0.129 can 0.029 techniques 0.047
chemicals 0.103 data 0.024 object 0.046
degradation 0.095 time 0.022 across 0.043
exposed 0.083 performance 0.018 services 0.036
biological 0.082 measures 0.017 image 0.035
including 0.074 physical -0.021 using 0.033
using 0.063 nursing -0.023 users 0.027
chemical 0.049 nurses -0.026 multiple 0.026
potential 0.032 among -0.028 existing 0.024
adsorption 0.029 implementation -0.030 service 0.021
management -0.016 education -0.033 model -0.018
change -0.027 practice -0.037 results -0.032
data -0.028 article -0.038 research -0.035
sediment -0.032 national -0.045 article -0.044
ecological -0.034 experience -0.045 development -0.048
quality -0.034 findings -0.046 give -0.067
biodiversity -0.047 completed -0.048 theory -0.069
forest -0.048 participation -0.051 solve -0.091
waters -0.095 explore -0.055 considering -0.107

R-squared: 0.281 R-squared: 0.117 R-squared: 0.105
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Table B.6: Most representative words per class, Bag-
of-words regression (4/4)

Mathematical Sciences Physical Sciences
word estimate word estimate
biological 0.314 photonic 0.215
collection 0.163 design 0.143
inference 0.144 grid 0.123
finding 0.122 reduce 0.117
experiments 0.119 lasers 0.109
design 0.103 demonstrate 0.103
network 0.103 imaging 0.095
bayesian 0.085 diameter 0.088
article 0.076 crystal 0.087
experimental 0.069 based 0.070
interest 0.066 images 0.066
may 0.060 various 0.065
problems 0.059 quantum 0.027
data 0.058 simulation 0.026
can 0.052 also -0.017
properties 0.050 component -0.018
method 0.046 density -0.021
provide 0.044 lines -0.021
different 0.043 model -0.023
problem 0.041 star -0.028
develop 0.027 stellar -0.037
algebra -0.024 limit -0.040
action -0.029 observed -0.043
prove -0.030 present -0.047
certain -0.051 turbulence -0.056
theory -0.053 find -0.059
infinite -0.060 mag -0.065
invariant -0.061 decay -0.068
special -0.082 functions -0.070
characterization -0.136 facility -0.094

R-squared: 0.226 R-squared: 0.152
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B.2 Revamping abstracts’ commercial orientation with an LLM
While in the previous section we show that words associated with the commercial potential

class are mostly scientific or technical in nature, we do find that certain words are more generic.
However, this analysis does not fully address whether commercially oriented words are influencing
the results. One the one hand, to classify an abstract, our methodology employs transformers,
which consider combinations of words and their semantic meaning within a document, rather than
individual words alone. On the other, it is also possible that these words appear only in abstracts
that are indeed commercially promising, particularly since these are abstracts of papers published
in peer-reviewed journals and that, thus, are potentially tuned down.

To conduct a more comprehensive analysis, we use a Large Language Model—OpenAI’s ChatGPT—
to re-write a random sample of abstracts and make them more “commercially appealing”. This
process allows us to compare the measure and its predictive performance taking into account at the
same time both the underlying scientific promise of the abstract and how the abstract is written
in its entirety.

We proceed as follows. First, we randomly sample 50,000 abstracts from the scientific papers
detailed in Section 2, for the years 2010 to 2020.39 Next, we revamp these 50,000 abstracts with
ChatGPT, via API. The abstracts were revamped in June 2023 using ChatGPT’s version gpt-3.5-
turbo-0613. The specific prompt provided to ChatGPT was: “Please act as if you are an academic
researcher, and now you are editing the abstract of your paper to make it more commercial. Let
the readers have the impression that the paper should have some commercial application, but do
not add any new information. Keep all the original details for the revamped text and remember
that the revamped text should be proper for academic journals”.

A key assumption is that the scientific concepts described in the revamped abstracts are not
altered. Additionally, this process is designed to avoid introducing any new information. Visual
inspection confirms that the revamped abstracts—those modified by ChatGPT—contain more
commercially oriented language and descriptions of potential commercial applications, while pre-
serving the original scientific content. Figure B.1 provides a side-by-side comparison of an original
abstract and its revamped version. The figure visually highlights the matching scientific and
technical concepts using color coding. As shown, none of the scientific content has been altered,
suppressed, or added. However, ChatGPT has introduced language (highlighted in black, bold,
and italics) that not only emphasizes the commercial aspects of the findings but also explicitly
suggests potential commercial applications within the relevant industry.

39We limit the sample to not incur in high computational costs.
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Figure B.1: Commercially revamped abstract: Original vs. ChatGPT text. The colors correspond to the scientific
concepts and descriptions, with matching color codes for easy comparison. New language added by ChatGPT,
emphasizing the commercial applicability of the findings, remains in black and is highlighted in bold and italics. As
can be seen, ChatGPT preserves the underlying scientific content of the abstract while only adding commercially-
oriented language and potential commercial applications.
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After altering the 50,000 abstracts using more commercial language, we use our models to
compute their commercial potential.40 This results in a sample of 100,000 abstracts, each with
its commercial potential score. The treatment group consists of revamped abstracts, while the
control group contains abstracts in their original form. This allows us to compare the commercial
potential scores between the treatment and control groups and assess whether abstracts with a
“commercial flavor” receive higher commercial potential scores.

Figure B.2 displays the distribution of commercial potential scores based on treatment condi-
tion. The distribution of commercial potential for abstracts in the treatment group—those that
were revamped—appears to be more tighten as opposed to that of the control group, increasing
the number of abstracts with scores in the mid-range (approximately between 0.2 and 0.75) and
reducing the number of abstracts at the tails. This suggests that commercially revamping ab-
stracts has no effect on the commercial potential measure for abstracts with high probabilities of
having commercial potential.

Figure B.2: Bi-weight kernel density estimates of the distributions of the commercial potential for 1) articles in the
treatment group (commercially revamped using ChatGPT) and 2) articles in their original form (control group,
represented by the dashed line). Articles in the treatment group tend to have higher scores in the middle range of
the distribution. However, this effect does not hold at the tails, for articles with high commercial potential.

In Table B.7, we further analyze the impact of commercially revamping abstract text on com-
40Each revamped abstract commercial potential is computed with the model corresponding to the year in which

the original article was published. As noted, ChatGPT is not introducing any new scientific knowledge and, thus,
not introducing any source of bias other than the “commercial flavor”.
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mercial potential scores using OLS regression analysis. To control for differences in commercial
potential across fields and year, all the models include both year and field fixed effects. Likewise,
because the revamped abstracts are significantly longer (mostly words and sentences are added,
while preserving the original content), we also control for the length of the abstract. Model 1
regresses the treatment condition on the commercial potential measure. On average, revamping
abstracts have no significant effect on the commercial potential of a paper. Likewise, aligned with
the distribution shown in Figure B.2, Models 2 and 3 show that revamped abstracts are less likely
to be at both ends of the tail (binary variables). Especially, as per Model 2, revamping abstracts
does not increase the commercial potential of abstracts at the top of the commercial potential
distribution.

Finally, Model 4 shows the predictive ability of revamped versus original abstracts by regressing
commercial potential on renewed patent citations (binary variable indicating whether an article
received at least one renewed patent citation), with the pertinent controls. As expected, the
treatment is not correlated with renewed patent citations, as we randomized the abstracts into
treatment and control group. As expected also, abstracts with high commercial potential scores
are more likely to be cited in a renewed patent. Finally, and most important, the interaction
“Commercial potential × Treatment” is not significant, suggesting that indeed revamping an
abstract has virtually no effect on the prediction of renewed patent citations.41

41It is important to note that this analysis pools together all the articles from both the treatment and control
groups and then computes the percentile scores to define whether an article has high commercial potential, regardless
of treatment condition. This design is crucial because it allows us to test whether authors could “game” the
algorithm by using commercially oriented language, or, in other words, whether our results are biased toward these
articles. The following analysis shows that, for high commercial potential articles, if a revamped article is pooled
with the rest of the articles, it will not receive an artificial boost from the same baseline scores. In results not
reported here, we find that when comparing only revamped articles, the discriminatory power of our algorithm
remains strong. That is, if all articles are revamped, the algorithm is still able to effectively discern articles with
high commercial potential from those with low commercial potential. However, this specification is less practical,
as in the “real world”, some authors might intentionally revamp abstracts while others do not (Lakshminarayanan
et al., 2017).
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Table B.7: Models 1 to 3 are OLS models regressing commercial potential on treatment condition—whether
an abstract has been commercially revamped using ChatGPT. Model 1 uses the raw commercial potential
score as a dependent variable, while models 2 and 3 use a binary variable indicating whether an abstract is in
the top or bottom 20%, respectively. Revamped abstracts are not, on average, likely to change the commercial
potential score. However, revamped abstracts are less likely to be at the tails of the distribution. Model 4
assess the effect of treatment on predictive ability. We use as a dependent variable a binary variable indicating
whether an abstract is cited by a renewed patent. All models control for the length of the abstract, since the
revamped abstracts are substantially longer, and include scientific field and year fixed effects.

(1) (2) (3) (4)
Commercial High Commercial Low Commercial Renewed

Potential Potential (top 20%) Potential (bottom 20%) Patent
Treatment (revamped) 0.021 -0.213 -0.131 -0.017

(0.020) (0.050) (0.019) (0.011)
Abstract length (characters) 0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000)
Commercial potential 0.088

(0.029)
Commercial potential × Treatment (revamped) 0.028

(0.018)
Constant 0.540 0.321 0.299 -0.005

(0.016) (0.028) (0.019) (0.015)
Publication field - Year FE Yes Yes Yes Yes
Observations 100,000 100,000 100,000 100,000
R-squared 0.204 0.275 0.182 0.067
Standard errors clustered at the Publication field - Year level
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B.3 Model uncertainty quantification with Monte-Carlo Drop Out
To conclude our analysis on the bias and robustness of our model’s scores, we employ a formal

Monte Carlo Dropout method, as proposed by Gal and Ghahramani (2016). This approach allows
us to quantify the uncertainty of the model’s predictions across the entire range of predictions,
providing a deeper understanding of its applicability and reliability.

The Monte Carlo Dropout method (e.g. Gal and Ghahramani, 2016) is a technique in neural
networks where the “connections” between neurons are randomly deactivated (or dropped out).
By repeatedly applying this technique to the same input data and randomly dropping different
connections each time, we can assess the confidence in the model’s predictions and its reliance
on particular sets of words (tokens). In sum, for a given abstract, this method generates a set
of predictions using the same network (model), with each prediction based on different word
combinations due to varying dropped connections from the network.

This approach captures the variability in scores due to random dropout, allowing us to better
understand the validity of our measure. This is particularly valuable for assessing the robustness
of our model’s predictions under different linguistic variations and helps quantify uncertainty using
statistics like mean, standard deviation.

Since this technique is computationally intensive, we used a random sample of 110,000 articles,
with 5,000 articles randomly selected for each year in our sample (2000-2020). The results of this
analysis are presented in Figure B.3, where we plot for each abstract in the subsample, its mean
and 95% confidence interval (left axis), and uncertainty (right axis).42 For an easy interpretation,
we sort the observations from lowest commercial potential score to largest. As the analysis shows,
our model is quite proficient at the extremes of the distribution, effectively identifying papers
with high and low commercial potential. The greatest uncertainty occurs in the middle of the
“commercial potential” distribution.

42We measure uncertainty using entropy, a measure of uncertainty or variability for random variables. We treat
each observation’s probability of commercial potential as a random variable and, using Monte Carlo simulations, we
generate probability estimates across multiple simulation runs. Given that Monte Carlo methods rely on repeated
random sampling to approximate the properties of a probability distribution, each run of the simulation yields a
potentially different probability estimate due to the inherent randomness of the sampling process. To quantify the
uncertainty associated with these varying estimates, entropy can be calculated for the distribution of the probability
estimates produced by the simulation. Specifically, the entropy H is computed as H(X) = −

∑n
i=1 P (xi) logP (xi).
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Figure B.3: .
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B.4 Data leakage originating from SciBERT
The use of SciBERT’s embeddings in our model (and, in turn, BERT’s) raises concerns about

potential temporal data leakage, which we consider to be critical in a predictive exercise employing
machine learning (Kapoor and Narayanan, 2023). Recall that, simply put, our training process
occurs in two steps. First, the abstracts are “translated” into high-dimensional numeric vectors
using the pre-trained language model (SciBERT). Second, our neural network learns associations
between these high-dimensional vectors and our outcome variable (renewed patent citations).
In traditional cases, temporal data leakage occurs when future information about the outcome
inadvertently enters the training data, directly biasing the model’s predictions. For our exercise,
this would mean that training data used to predict whether a paper will be cited by a renewed
patent inadvertently contains future citation information. To prevent this, we ensure that all
outcome information (i.e., citations from renewed patents) is strictly confined to each training
period, and we train separate models for each year of publication (see Section 2.3.1 and Appendix
A.1). In other words, we avoid data leakage in the second step of our training process.

However, we still could face a subtler form of potential leakage due to our reliance on SciBERT.
Since SciBERT’s training data includes texts published up to 2018, the embeddings computed
in our first step reflect the vocabulary and associations characteristic of research leading up to
that year. For example, papers and scientific concepts present in SciBERT’s training corpus,
particularly those that were commercially or scientifically successful and, thus, more prominent,
could have better defined representations, with higher embedding precision.

This would affect not only how pre- and post-SciBERT training papers are positioned in the
multidimensional embedding space. It also means that, when predicting the commercial potential
of a paper published in, for example, 2010, the paper’s embeddings could reflect associations
SciBERT absorbed from the paper itself and from later research trends. That is, this temporal
leakage could affect the embeddings computed in the first step with SciBERT, which are used as
input for the second step.

For example, consider a paper on mRNA technology published in 2010. If the LLM was trained
with data only up to 2010, the model might treat mRNA research as part of general molecular
biology, without any particular emphasis on its commercial or clinical potential. However, if the
LLM is trained with subsequent data, up to 2018, and the model has seen substantial references
to mRNA in the context of commercial and therapeutic breakthroughs—particularly in vaccine
development, which emerged as a significant application by 2018—, then the model would embed
this 2010 paper in a region of the space associated with commercially relevant research, alongside
other papers that later became crucial in the biotechnology and pharmaceutical industries. In
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embedding space, this paper would therefore be positioned not only by its content but also by
associations learned from later trends. mRNA’s rise to prominence between 2010 and 2018 would
mean that SciBERT, trained with post-2010 data, would “know” that mRNA is a field of high
commercial and scientific relevance.

This positioning in the embedding space becomes highly influential in the second step of our
process. When the classifier receives these embeddings, it interprets papers in this region as
having high patent citation potential simply because they share embedding characteristics with
other high-impact research. Here, SciBERT’s embedding implicitly encodes mRNA’s later success,
so the classifier could predict a high likelihood of citation not based on inherent content alone but
rather on associations from future data that SciBERT has encoded. This is where temporal
leakage plays a role: the embedding first step indirectly incorporates future knowledge (mRNA’s
commercial success), which may lead the classifier to favor papers that SciBERT “knows” are
impactful based on post-2010 developments.

The question, then, is whether this leakage, which affects input representations in the first
step, systematically impacts our models’ predictions on commercial potential in the second step,
leading to systematic bias. We pose that this is not clear ex-ante and that, ultimately, it is a
challenging question and a limitation of our paper. We do have, however, some empirical evi-
dence suggesting that SciBERT embeddings do not introduce systematic bias into our predictions.
Consider the following. If this leakage were biasing our predictions, we would expect a sharp de-
cline in performance in the years following SciBERT’s training period, once leakage was no longer
inflating model performance (Kapoor and Narayanan, 2023). However, this is not the case: all
performance metrics we use (precision, recall, F1-score, accuracy, and AUROC) remain stable pre-
and post-SciBERT training, as shown in Figures A.3 and A.4. In fact, the average post-training
performance slightly improves across all metrics except for the ROC curve, which experiences a
minimal decline of 0.43% (from 82.0 to 81.6%). None of these differences are statistically signif-
icant. Similarly, the Monte-Carlo Drop Out simulations reported in the previous section, when
analyzed by year, yield similar trends from 2016 to 2020, suggesting that there is no difference in
our models’ uncertainty before and after SciBERT’s training.

While speculative, we argue that, if anything, the potential leakage and its corresponding
temporal variation in representation is more likely to increase noise than to bias predictions con-
sistently. In order to bias predictions, BERT and SciBERT should embed structured informa-
tion about science commercialization. We argue that this is not necessarily the case. First, the
corpora used to train BERT primarily consist of general text, limiting its ability to capture sys-
tematic information about science commercialization. BERT was trained on two large datasets:
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the English Wikipedia (2.5 billion words), with a cut-off around 2018, and the BooksCorpus (800
million words), first introduced in 2015 and created specifically for training language models—the
Bookscorpus is a corpus comprising over 11,000 unpublished English books over a wide range
of generic topics and writing styles. Most important, the Bookscorpus does not contain explicit
information on science commercialization.

Second, SciBERT was trained specifically on a corpus of scientific literature, with texts mainly
in the biomedical and computer science fields, up to approximately 2018. Although SciBERT
better captures scientific terminology and research language, it is primarily tuned to the language
and associations common within academic research communities rather than systematic knowledge
of which discoveries become commercially relevant. For example, no patent information was used to
train SciBERT, and abstracts and texts of scientific articles usually refrain from directly conveying
commercial applications.

As a result, while both BERT and SciBERT might capture a few anecdotal breakthroughs
that became commercially impactful (as the depicted with the mRNA example), they are unlikely
to contain comprehensive or structured information about science commercialization trends. This
limits their capacity to systematically encode predictive indicators of commercial potential, instead
reflecting general scientific discourse up to their respective cutoffs.

This does not mean, again, that our process is free from leakage. It is indeed possible that,
while no systemic bias is introduced, the embeddings for abstracts published before SciBERT’s
pre-training period are more tight, i.e., have higher precision, due to the data leakage. This would
ultimately introduce noise into the predictions. When embeddings are based on vocabulary and
associations from SciBERT’s pre-training period, they are likely more consistent and cohesive,
allowing the classifier to form a stable decision boundary between classes. However, for new
articles, containing new terms or associations that SciBERT did not encounter during training,
embeddings may lack precision, leading to greater variability in representation. This inconsistency
means that the classifier may struggle to draw a clear boundary between classes, as embeddings
for newer terms or fields are noisier. As a result, predictions for these cases are less reliable, with
error margins around predictions increasing due to the added noise.

Bias, on the other hand, would mean that misclassification follows a consistent pattern, sys-
tematically favoring one class over the other. In the context of SciBERT embeddings, this would
occur if newer articles were consistently represented in a way that misled the classifier into, for
example, underestimating their patent citation potential. To draw an analogy with linear regres-
sion (though our model is, of course, not linear), consider the following. Essentially, leakage could
alter the distribution of the inputs, X, on the right-hand side of the equation. For instance, if
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SciBERT were trained up to 2010 rather than 2018, the embeddings might capture a different
vocabulary and connections between words, which would shift the distribution of X. However,
since our training follows the structure of PatentCitationst+1 = F (Xt−1), the model’s coefficients
(beta) remain unaffected by data leakage, as outcomes used for training are always out-of-sample.
The main impact is that there may be more (or less) noise in the X values, which could affect the
standard errors, i.e., the variability of our estimates.
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Appendix C Out of sample, out of time-period validation

Figure C.1: Effect of commercial potential on variable coefficients in models predicting renewed patent citations
to research articles. Upon introducing the commercial potential measure, a considerable shrinkage in coefficients
is observed for variables associated with commercialization aspects. Researcher commercial experience shows a
notable reduction of 33%, institution experience by 23%, and journal by 24%. It is worth noting that the model
incorporates fixed effects at the institution level, effectively accounting for most of the variation across institutions.
In contrast, variables linked to scientific experience do not display similar changes in coefficients. The variations
in these variables are either not significant or marginal.

C.1 Time horizon of the commercial potential measure
Table C.2 relates our commercial potential measure to the lag between the publication year of

an article and the filing year of the first renewed patent citing the article. Our sample includes
all papers published in the U.S. in the 2000-2020 period in the scientific and engineering fields of
analysis described above. We create lag buckets that are based on lag quartiles. That is, 25% of
the papers are cited in renewed patents either in years 0 or 1, 25% of the papers are cited in years
2 or 3, 25% of the papers are cited in years 4 or 5, and 25% of the papers are cited in year six and
onwards. We find that articles in the top quartile of commercial potential are substantially more
likely to be cited faster.
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Table C.1: Percentage distribution of articles produced by
U.S. organizations between 2000-2020 binned in four quartiles
of commercial potential. Articles in the top quartile are 21.61
times more likely to be cited by a renewed patent than articles
in the bottom quartile.

Commercial Not cited or Cited by

Potential cited by renewed Total

Quartile non-renewed patent patent

1 1,293,401 9,383 1,302,784

99.28% 0.72% 100.00%

2 1,257,142 45,641 1,302,783

96.50% 3.50% 100.00%

3 1,174,594 128,189 1,302,783

90.16% 9.84% 100.00%

4 1,100,060 202,723 1,302,783

84.44% 15.56% 100.00%

Total 4,825,197 385,936 5,211,133

92.59% 7.41% 100.00%

Table C.2: Patent citation lag (year) by commercial potential quartile.

Quantiles Time lag

of compot 0, 1 years 2,3 years 4, 5 years 6+ years Total

1 61 80 62 131 334

18.26% 23.95% 18.56% 39.22% 100.00%

2 294 322 216 370 1,202

24.46% 26.79% 17.97% 30.78% 100.00%

3 1,009 998 632 763 3,402

29.66% 29.34% 18.58% 22.43% 100.00%

4 2,028 1,662 902 940 5,532

36.66% 30.04% 16.31% 16.99% 100.00%

Total 3,392 3,062 1,812 2,204 10,470

32.40% 29.25% 17.31% 21.05% 100.00%
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Likewise, Figure C.2 plots the equivalent Kaplan-Meier survival curves by commercial potential
quartile, where the time of the event is the first time a paper receives a patent citation. Kaplan-
Meier estimates provide a robust assessment of the findings, as the methodology is well-suited
for our analysis in that accounts for varying time-to-event data and considers the timing and
distribution of events, such as the lag between article publication and patent citation.

Figure C.2: Kaplan-Meier survival curves by commercial potential quartile.
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C.2 Robustness of a renewed patent-based measure
Table C.3 examines the predictive performance of our commercial potential measure by field.

Table C.3: Linear probability model estimating the probability of a paper being cited by at least one
renewed patent using Commercial potential as a main predictor. The models are conditional on scientific
field. Fixed effects are incorporated at the field-year and university levels in all specifications.

(1) (2) (3) (4)
Cited by Cited by Cited by Cited by

renewed patent renewed patent renewed patent renewed patent
Commercial potential 0.187 0.183 0.271 0.056

(0.037) (0.044) (0.047) (0.019)
Constant -0.011 -0.023 -0.054 0.003

(0.022) (0.024) (0.029) (0.003)
Field Biological Sciences Biomed. and Clinical Sciences Chemical Sciences Earth Sciences
Publication field - year FE Yes Yes Yes Yes
University-FE Yes Yes Yes Yes
Observations 719,652 1,735,510 349,721 182,733
R-squared 0.135 0.116 0.138 0.027

(5) (6) (7)
Cited by Cited by Cited by

renewed patent renewed patent renewed patent
Commercial potential 0.211 0.057 0.070

(0.042) (0.018) (0.020)
Constant -0.026 0.001 -0.002

(0.023) (0.003) (0.005)
Field Enginnering Environmental Sciences Health Sciences
Publication field - year FE Yes Yes Yes
University-FE Yes Yes Yes
Observations 813,421 84,553 355,089
R-squared 0.119 0.030 0.042

(8) (9) (10)
Cited by Cited by Cited by

renewed patent renewed patent renewed patent
Commercial potential 0.185 0.070 0.166

(0.037) (0.017) (0.032)
Constant -0.016 0.001 -0.004

(0.024) (0.003) (0.009)
Field Information and Computing Sciences Mathematical Sciences Physical Sciences
Publication field - year FE Yes Yes Yes
University-FE Yes Yes Yes
Observations 372,088 183,502 414,864
R-squared 0.126 0.035 0.088
Standard errors clustered at the publication field-year level and the university level
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In Table C.4, we examine the relationship between our commercial potential measure and a
continuous measure of patent values. Specifically, we use the patent values computed by Kogan
et al. (2017) (KPSS), which derive patent value based on stock market reactions following the
announcement of a patent grant.

Our approach is as follows. For all patents in the KPSS sample as of 2022 (which includes
USPTO patents assigned to publicly listed companies), we identify the scientific papers associated
with these patents and aggregate the commercial potential measure of the papers cited by each
patent at the patent level. We experiment with different aggregation methods and find that the
using the maximum commercial potential value assigned to a given patent via its citing papers
correlates most strongly with patent value. We believe this method captures the essence of a
patent’s commercial potential, as it reflects the most impactful scientific contribution behind the
patent. Likewise, 50% of the patents in this sample only have 2 or less paper citations and 75%
of the patents have 4 or less paper citations.

Table C.4: OLS regressions predicting patent value as
a function of Commercial potential. Patent values are
logged and derived from Kogan et al. (2017). Model 2
adds the number of papers cited in a patent as a control,
and Model 3 adds the number of forward patent citations.
All models include fixed effects at the patent class level.

(1) (2) (3)
KKPS KKPS KKPS

Commercial potential 0.297 0.246 0.220
(0.076) (0.077) (0.078)

Num. cited sci. papers 0.004 0.004
(0.001) (0.001)

Forward pat. cites 0.156
(0.011)

Constant 2.116 2.133 1.962
(0.060) (0.061) (0.063)

CPC-Year FE Yes Yes Yes
Observations 301,626 301,626 301,626
R-squared 0.098 0.099 0.108
Standard errors clustered at the CPC-Year level
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Appendix D Commercial potential and technology transfer at a leading
U.S. university

Table D.1: Percentage distribution of articles in the TTO university binned in four quar-
tiles of commercial potential. Articles in the top quartile are 5.35 times more likely to be
associated with an invention disclosed to the TTO than articles in the bottom quartile.

Commercial

Potential Not disclosed Disclosed Total

Quartile

1 23,026 1,115 24,141

95.38% 4.62% 100.00%

2 21,875 2,266 24,141

90.61% 9.39% 100.00%

3 20,049 4,092 24,141

83.05% 16.95% 100.00%

4 18,169 5,972 24,141

75.26% 24.74% 100.00%

Total 83,119 13,445 96,564

86.08% 13.92% 100.00%
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Figure D.1: Probability that the TTO will invest into (Panel A) and patent (Panel B) an invention based on the
average commercial potential of the articles associated with the invention.
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Figure D.2: Probability that an invention will garner agreements (Panel A) and licensing deals (Panel B), as well
as generate revenue to the TTO (Panel C) based on the average commercial potential of the articles associated
with the invention.
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Figure D.3: Probability that an invention will be commercialized via a Startup (Panel A) and, conditional on
Startup, that will raise venture capital funds as a function of the average commercial potential of the articles
associated with the invention.
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Appendix E Illustrative applications

Figure E.1: Fractional-polynomial estimation of the probability of renewed patent citation as a function of com-
mercial potential, by scientific field. Curves are plotted based on the commercialization impact of the institutions
associated with an article—the solid line represents articles produced at institutions in the top 20% and the dashed
line from the bottom 20%. The figure includes a 95% confidence interval for the estimation.
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(a) Panel A. Differences in the translation of scientific research into commercial
applications—patent citations. The figure on the left plots the share of articles cited
by at least one renewed patent over all articles. The figure on the right plots the share
of high commercial potential articles cited by at least one renewed patent over high
commercial potential articles.

(b) Panel B. Differences in the production of high commercial potential research. The figure on
the left plots the total number of high commercial potential articles produced. The figure on
the right plots the share of high commercial potential articles over the total number of articles
produced.

Figure E.2: Differences in the production and translation of scientific research produced between 2000 and 2015
across randomly selected U.S. universities.

92


	Introduction
	Data and Methods
	Renewed patents as a proxy for commercializability
	Scientific articles and patent data
	Commercial potential model: Training
	Year-based model training: Out of sample, out of time-period predictions
	Training sample and process

	Commercial potential model: Out of sample performance
	Model limitations and robustness

	Secondary model: Scientific potential

	Out of sample, out of time-period validation
	Commercial Potential at U.S. Research Institutions
	Time horizon of the commercial potential measure
	Cross-field robustness
	Validating against Kogan et al. patent values

	External Validity: Commercial Potential and Tech Transfer
	TTO results

	Applications: Reputation, privatization, and firm's use of science
	Reputation and realization of commercial potential in the U.S.
	Privatization of science and the scientific commons

	Discussion
	Commercial potential model: Training and performance
	Year-based models
	Processing the input text
	Models' performance
	Commercial potential
	Scientific potential

	Examples of scientific articles and their commercial potential
	Performance metrics by scientific field
	Model performance by hyper-parameter and language model
	Model performance by training size, cross-validation, and balance

	Model limitations and robustness
	Commercial potential articles and most representative words
	Words more likely in one class vs. the other: Log-odds ratio
	Words most predictive of commercial potential: Linear regression

	Revamping abstracts' commercial orientation with an LLM
	Model uncertainty quantification with Monte-Carlo Drop Out
	Data leakage originating from SciBERT

	Out of sample, out of time-period validation
	Time horizon of the commercial potential measure
	Robustness of a renewed patent-based measure

	Commercial potential and technology transfer at a leading U.S. university
	Illustrative applications

