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1. Introduction

Factor models have been a central framework for modeling stock returns. Many asset pricing

theories, such as the CAPM and Intertemporal-CAPM, imply factor structures for returns. The arbi-

trage pricing theory (APT) of Ross (1976) implies that risk premia are linked to common factors via

no-arbitrage conditions, leading to statistical representations of approximate factor models (Huber-

man (1982), Chamberlain and Rothschild (1983)). Following these theoretical insights, Connor and

Korajczyk (1986, 1988) proposed to estimate latent factors by Principal Component Analysis (PCA).

Recently, latent factor models have been used to address the “factor zoo” conundrum in asset

pricing (Subrahmanyam (2010), Cochrane (2011)). This literature aims to condense the large number

of characteristics associated with return spreads into a small number of pricing factors. While some

recent papers use machine learning tools, e.g., elastic nets (Kozak et al. (2020)), regression trees

(Bryzgalova et al. (2023)), and neural nets (Chen et al. (2023)), the majority of estimation methods

for latent factor models are based on PCA. However, PCA estimations have several drawbacks. First,

PCA factors often have little economic interpretation since they comprise many original test assets.

Second, PCA factors have limited success in capturing the cross-section of expected returns (see, e.g.,

Lettau and Pelger (2020a,b)). Third, PCA estimations require a relatively long time series to obtain

reliable results. Fourth, results based on recursive out-of-sample estimations in short samples tend

to have poor properties.

This paper proposes an estimation method for multidimensional panels called 3D-PCA that ad-

dresses these shortcomings. Standard PCA is based on eigenvectors and eigenvalues of the data’s

covariance (or second-moment) matrix, which “flattens” the data and removes any multidimension-

ality of the data set. In contrast, 3D-PCA is specifically designed to exploit the panel structure of

the data. In the empirical part of the paper, I estimate 3D-PCA using portfolios constructed from

size/characteristic quintile double-sorts for a set of characteristics. Hence, the panel of portfolios

has three dimensions: the characteristic, the size quintile, and the quintile of the characteristic

sort. 3D-PCA specifies a small set of vectors for each of the three dimensions that serve as “build-

ing blocks” for portfolio weights that determine a factor. Different combinations of these building

blocks yield different factor weights and, therefore, distinct factors. Since factors are based on the

same building blocks, their factor weights are related and subject to restrictions. The restrictions

can be expressed as proportionality conditions along the dimensions of the panel data. Factors

that share a subset of building blocks share features implied by the common building blocks. The

restrictions imply that the number of free parameters in 3D-PCA is several orders of magnitudes
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smaller than that for comparable PCA estimations. While these restrictions limit the set of possible

factor weights, I show that factors with familiar long-short structures are permissible. In particular,

the Fama-French factors SMB, HML, ... satisfy the restrictions and are, therefore, special cases of

3D-PCA factors.

I find that factors estimated by 3D-PCA have appealing features and dominate models with PCA

and Fama-French factors along several dimensions. First, 3D-PCA factors have straightforward eco-

nomic intuitions given by the structures of the estimated building block. These building block

vectors have level, slope, and curvature patterns found in many PCA estimations. Factor weights

are given by level, slope, and curvature combinations along the different data dimensions. Some

resulting factors have familiar patterns along the size and characteristic-quintile dimensions related

to long-only averages, small-minus-big, and high-minus-low. In contrast to the SMB and HML factors,

3D-PCA factors combine these patterns with multiple characteristics. For example, some factors are

based on (approximately) equal weights across all characteristics, while others are based on only a

few characteristics. However, all factors can be interpreted as interactions of the estimated building

block vectors.

Second, Sharpe ratios of 3D-PCA factors are substantially higher than those of PCA and Fama-

French factors. The highest Sharpe ratio of estimated 3D-PCA factors is 1.08, and six 3D-PC factors

have annualized Sharpe ratios above 0.5. In contrast, only a single PCA factor exceeds this bench-

mark, consistent with Lettau and Pelger (2020a,b) who also find low Sharpe ratios of PCA factors.

Third, 3D-PCA factors capture the cross-section of portfolio returns substantially better than PCA

and Fama-French factors. Cross-sectional models with three to five 3D-PCA factors estimated in-

sample or out-of-sample capture between 65% and 76% of the variation inmean returns. Comparable

models with Fama-French or PCA factors have substantially higher pricing errors.

While 3D-PCA pricing errors are smaller for all characteristics, the fit for momentum, rever-

sals, and variance-related portfolios is substantially better than that of PCA and Fama-French factor

models. Many factor models do not capture returns of small/low portfolios (e.g., the small/low-BM

portfolio). While these portfolios are also the most mispriced in 3D-PCA models, their pricing errors

are substantially smaller than those for PCA and Fama-French models.

Fourth, while PCA estimations typically require long time series, 3D-PCA can be estimated in

short samples. In the data set used in this paper, estimations of 3D-PCA with as little as 12 time

series observations yield robust factor estimates. 3D-PCA estimates are substantially more stable for

a given sample length than those from PCA models. The reason is that the construction of 3D-PCA

factors imposes restrictions on factor weights, as mentioned above. Hence, fewer free parameters
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must be estimated. In contrast, PCA can be interpreted as an unrestricted estimation of factor

weights. The difference in degrees-of-freedom is stark for all specifications I consider. For example,

in the benchmark case, the weight matrix underlying 3D-PCA factors has only 48 free parameters,

while the PCA weight matrix requires estimating 7,372 parameters.

Finally, 3D-PCA performs substantially better in recursive out-of-sample estimations than PCA.

When estimated in rolling 10-year windows, out-of-sample 3D-PCA factors are highly correlated

with their in-sample counterparts. In contrast, out-sample PCA factors are only weakly related to

in-sample PCA factors. Indeed, out-of-sample 3D-PCA factors have a slightly better cross-sectional

fit than in-sample factors, suggesting that the recursive estimation picks up some time variation in

the correlation structure of the test portfolios. In contrast, models with out-of-sample PCA factors

have substantially higher pricing errors.

The 3D-PCA model can be estimated using tensor methods, which generalize vector and matrix

algebra to higher dimensions. Formally, an 𝑛-dimensional panel data set forms an 𝑛-dimensional

tensor. For example, a 3-dimensional tensor is a cuboid. The standard PCA of a 2-dimensional matrix

can be written in terms of its singular value decomposition (SVD). Tucker (1966) provides a tensor

decomposition that generalizes thematrix SVD to𝑛-dimensional tensors, see Kolda and Bader (2009)

for a survey of tensor methods and Lettau (2023) for an application to mutual funds. The 3D-PCA

model is an implication of the Tucker decomposition and can be estimated using standard iterative

numerical methods. Finally, I extend the model to allow for arbitrary dimensions and factorizations.

This paper contributes to the literature on extensions of PCA for latent factor estimation. Connor

et al. (2012), Fan et al. (2016), and Kim et al. (2021) allow factor betas to be nonparametric functions

of observed characteristics. Kelly et al. (2019) propose a related Instrumented-PCA (I-PCA) model in

which factor betas are linear in characteristics. Gu et al. (2021) extend I-PCA to nonlinear specifica-

tions. Lettau and Pelger (2020a,b) show that standard PCA may not be able to identify weak factors.

Their Risk Premium PCA (RP-PCA) estimator can overcome this limitation when weak factors have

high Sharpe ratios. 3D-PCA can be combined with methods that are based on PCA estimations. For

example, 3D-PCA factors can be used in place of PCA factors in Kozak et al. (2020)’s shrinkage es-

timator of the stochastic discount factor and the three-pass model of Giglio and Xiu (2021). Babii

et al. (2022) study an alternative tensor decomposition.

The rest of the paper is organized as follows. Section 2 presents an example that illustrates

the intuition of high-dimension factor models. Section 3 introduces the data set used in the paper.

Section 4 introduces general 3D-PCA model and its estimation. The empirical results are described

in Section 5. Section 6 extends 3D-PCA to arbitrary dimensions, and section 7 concludes.

3



2. Example: 2D-PCA

Consider the nine portfolios formed by a 2-dimensional portfolio sort as the intersection of

three size (ME) and three book-to-market (BM) portfolios that are used to form SMB and HML.1 Let

𝗥𝑡 =[𝑅𝑝𝑞,𝑡] be the 3-by-3 matrix of excess returns of (𝑝,𝑞)-portfolios where 𝑝 and 𝑞 are size and

BM terciles, respectively. Factors are constructed as linear combinations of the test assets. Let

𝗪=[𝑤𝑝𝑞] a 3-by-3 matrix of weights so that the associated factor is given by

𝐹𝑡 =∑
𝑝,𝑞

𝑤𝑝𝑞𝑅𝑝𝑞,𝑡 = vec(𝗪)⊺vec(𝗥𝑡). (1)

The literature has considered various methods to determine factor weights 𝗪. For example, Fama

and French (1993) use fixed weights to construct their SMB and HML factors:

𝗪SMB =⎛⎜
⎝

−1 −1 −1
0 0 0
1 1 1

⎞⎟
⎠

𝗪HML =⎛⎜
⎝

−1 0 1
−1 0 1
−1 0 1

⎞⎟
⎠
. (2)

Alternatively, factors can be estimated by PCA, so that factor weights are given by the eigenvectors

of the second-moment matrix of returns, E𝑡[vec(𝗥𝑡)vec(𝗥𝑡)⊺].

Instead, I consider factor weights that are constructed from separate vectors for the ME and BM

dimensions. Let

𝘃𝑃 =⎛⎜
⎝

𝑣𝑃
1

𝑣𝑃
2

𝑣𝑃
3

⎞⎟
⎠

𝘃𝑄 =⎛⎜
⎝

𝑣𝑄
1

𝑣𝑄
2

𝑣𝑄
3

⎞⎟
⎠

(3)

⇒𝗪𝑝𝑞 =𝘃𝑃𝘃𝑄⊺ , (4)

so that𝗪𝑝𝑞 is a 3-by-3matrix of weights given by the outer product of 𝘃𝑃 and 𝘃𝑄. The factor weight of

portfolio (𝑝,𝑞) is therefore 𝑤𝑝𝑞 =𝑣𝑃
𝑝 𝑣𝑄

𝑞 . Suppose there are two such vectors for the size dimension,

as well as for the BM dimension, and collect them in the (3×2) matrices

𝗩𝑃 =[𝘃𝑃
1 ,𝘃𝑃

2], 𝗩𝑄 =[𝘃𝑄
1 ,𝘃𝑄

2 ]. (5)

Factors are formed by combining the columns of 𝗩𝑃 and 𝗩𝑃. Since both matrices have two columns,

there are four possible combinations, so four different factors can be created. In other words, the

columns of 𝗩𝑃 and 𝗩𝑃 form the building blocks of factor weights.

1SMB and HML are constructed using a 2-by-3 sort, but I use a 3-by-3 structure for consistency with the rest of the
paper.
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To develop further intuition, consider the following specific example

𝗩𝑃 =𝗩𝑄 =⎛⎜
⎝

1 −1
1 0
1 1

⎞⎟
⎠
. (6)

Combining the columns of 𝗩𝑃 and 𝗩𝑄 yields weights of four factors:

𝗪11 =𝘃𝑃
1 𝘃𝑄⊺

1 =⎛⎜
⎝

1 1 1
1 1 1
1 1 1

⎞⎟
⎠

𝗪12=𝘃𝑃
1 𝘃𝑄⊺

2 =⎛⎜
⎝

−1 0 1
−1 0 1
−1 0 1

⎞⎟
⎠

(7)

𝗪21 =𝘃𝑃
2 𝘃𝑄⊺

1 =⎛⎜
⎝

−1 −1 −1
0 0 0
1 1 1

⎞⎟
⎠

𝗪22=𝘃𝑃
2 𝘃𝑄⊺

2 =⎛⎜
⎝

1 0 −1
0 0 0

−1 0 1
⎞⎟
⎠
, (8)

which can be collected in the (9×4)-matrix of factor weights 𝗪2D = [vec(𝗪11),vec(𝗪12), vec(𝗪21),

vec(𝗪22)]. Note that 𝗪2D can also be expressed using the Kronecker product ⊗∶𝗪2D =𝗩𝑃 ⊗𝗩𝑄. The

vector of four factors is given by 𝗙2D,𝑡 =𝗪⊺
2Dvec(𝗥𝑡).

Comparing the weight matrices in (7) and (8) to (2) shows that 𝗪21 is identical to SMB weights

and that 𝗪12 is equal to HML weights. Hence, the Fama-French factors are special cases of 2D-PCA.

Furthermore, the rows and columns of each weight matrices are proportional. In addition, the rows

of 𝗪11 and 𝗪21 are proportional as are the rows of 𝗪12 and 𝗪22. The columns have similar propor-

tionality properties. Of course, these patterns arise because the weight matrices are constructed

from the same building blocks. i.e., the columns of 𝗩𝑃 and 𝗩𝑄.

The patterns in the weight matrices can also be understood as restrictions imposed by the con-

struction of the weight matrices in (3) and (4). The (9×4)-matrix of factor weights 𝗪2D has 36

elements while the 𝗩𝑃 and 𝗩𝑄 matrices have a total of 12 elements. Hence, the elements of 𝗪2D

are subject to 24 restrictions. In the general model introduced below, 𝗩𝑃 and 𝗩𝑄 are assumed to

be orthonormal, which imposes six additional restrictions, so that 𝗪2D has six degrees of freedom.

On the one hand, the 𝗪2D matrix is highly parametrized, and the set of feasible 𝗪2D is limited; on

the other hand, the parametrization allows for long/short patterns often found in pricing factors.

In PCA, the weight matrix 𝗪 is composed of eigenvectors and is, therefore, orthonormal but not

subject to other restrictions. The PCA weight matrix has 36 elements, and orthonormality imposes

seven restrictions. Hence, the weight matrix has 36-7=29 free parameters, more that double the

number of free parameters of 𝗪2D.
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3. Data

The data set consists of excess returns of double-sorted portfolios of 11 characteristics: book-to-

market (BM), operating profitability (OP), investment (INV) 2, momentum (MOM), long and short-term

reversal (REV, SREV), accruals (AC), beta (BETA), net share issuance (NSI), daily variance (VAR), and

daily residual variance (RVAR). Each set of double-sorted portfolios is based on the intersection of

five size (ME) quintile portfolios and five quintiles of characteristic 𝑐∈(BM, OP, ..., RVAR). The total

number of portfolios is 11×25=275. The size and characteristic quintiles are denoted P1 to P5

and Q1 to Q5, respectively. The sorts are arranged so that the high-return portfolios are in the top

quintile and the low-return portfolios are in the first quintile. For example, since small stocks have

higher average returns than big stocks, P5 refers to the quintile with the smallest stocks, and P1 is

the quintile with the biggest stocks.3 The data set has 724 monthly observations from July 1963 to

October 2023. All data are downloaded from Ken French’s website.

Figure 1 shows heatmaps of annualized mean returns of the 5-by-5 quintiles for each of the 11

characteristics.4 The bottom right panel shows the mean across all characteristics. The annualized

mean excess return of the CRSP value-weighted index (CRSP-VW) over the sample period is 7.29%.

Portfolios with mean returns that are higher (lower) than the mean CRSP-VW return are plotted

in blue (red). As usual, the highest and lowest returns are associated with the highest and lowest

quintiles, although the pattern is not always monotonic. The small-highmomentum portfolios MOM-

P5Q5 and MOM-P4Q5 have the highest mean returns (15.2% and 14.3%, respectively) followed by the

P4Q5 RVAR and VAR portfolios (13.8% and 13.6%). The RVAR and VAR P5Q1 portfolios have a

negative average excess return, while the means of SREV and MOM P5Q1 portfolios are below 1%.

Note that the interaction of size and characteristics quintiles varies across characteristics. While

the size effect is positive for all Q5 quintiles, it reverses in Q1 portfolios for some characteristics

but not others. For example, the return of the big-stock P1Q1 BM portfolio is 6.9%, which is higher

than the mean of the small-stock BM-P5Q1 portfolio (3.0%). On the other hand, the returns of the

AC-P5Q1 accruals portfolio are higher than those of the AC-P1Q1 portfolio.

Table 1 reports annualized means, standard deviations, and Sharpe ratios of long-short portfo-

lios for each characteristic. SMB𝑐 is the difference between the small-stock portfolios (P5) and the

big-stock portfolios (P1) of the double sort of characteristic 𝑐 averaged of all characteristic quintiles.

HML𝑐 is constructed accordingly, but is the difference of Q5 and Q1 portfolios averaged over all

2INV is defined as asset growth.
3Thus, P1 (P5) correspond to high (low) OP, NSI, REV, and SREV.
4Sharpe ratios are plotted in Figure C.1 in the Appendix.
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size quintiles. Finally, CROSS𝑐 is the average of the P1Q1 and P5Q5 portfolios minus the average of

the P1Q5 and P5Q1 portfolios. SMB𝑐 is positive for all characteristics; hence, small stocks earn, on

average, higher returns than big stocks in double-sorts. However, there is substantial variation in

the magnitudes of the size premium. SMB𝑐 of OP is 3.91%, three times the SMB𝑐 of SREV. The average

SMB𝑐 across all characteristics is 2.75%. For most characteristics, the premium in the characteristic

dimension is larger than the size premium. The average HML𝑐 of MOM is 10.43% and is by far the

largest in the sample. The second largest HML𝑐 is SREV, 7.37%. In contrast, HML𝑐 of BETA is only

0.7%. The average HML𝑐 is 4.83%, substantially larger than the average SMB𝑐.

Recall that CROSS𝑐 captures the difference between the low/low and high/high, and the low/ high

and high/low corner portfolios. The third column of Table 1 shows that there is large variation of

mean CROSS𝑐 returns across characteristics. The reason is that the size premium inverts across the

Q1 to Q5 quintiles for some characteristics but not for others. CROSS𝑐 is high for the characteristic

with inverted size premia and low for those without inversion. The highest CROSS𝑐 returns of 13.70%

and 13.10% are associated with VAR and RVAR, respectively, which also the highest among all long-

short portfolios shown in the table. As shown in Figure 1, the size premium is positive for their

Q5 portfolios (P5Q5-P1Q5 is positive) but strongly negative for the Q1 portfolios (P5Q1-P1Q1 is

negative). As a result the return of the CROSS𝑐 portfolios are particularly high and outstrips their

HML𝑐 by a factor of three. CROSS𝑐 of SREV, BM, and MOM are also high. On the other hand, CROSS𝑐

of AC and BETA is negative since the size premium is positive for the Q1 and Q5 portfolios.

The standard deviations of all SMB𝑐 and CROSS𝑐 portfolios are between 12% and 18% and thus

comparable. In contrast, the volatilities of the HML𝑐 vary across characteristics. The volatility of the

ACC HML𝑐 is only 4.91% and thus particular low. The reason is that the corresponding Q1 and Q5

AC portfolios are highly correlated; the mean correlation across the five size portfolios is 0.91. As a

result, the volatility of the long-short portfolio is low. This pattern is also true for OP, INV, and NSI

portfolios but to a lesser extent (their mean correlations are between 85% and 90%). However, the

correlations of the MOM and VAR Q1 to Q5 portfolios are below 0.7, so their HML𝑐 portfolios are

more volatile. The differences in volatilities of HML𝑐 portfolios will be important for the estimation

of the factor models considered in the rest of the paper.

4. 3-dimensional factor models: 3D-PCA

The standard method to estimate latent factors from time series of portfolio returns is to “flat-

ten” the multidimensional panel into a 2-dimensional matrix and apply PCA. Since PCA treats each

column the same, any information related to the construction of the portfolios is lost. In the context
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of the data set described in the previous section, the portfolio construction is 3-dimensional: charac-

teristic/size quintile/characteristic quintile. In this section, I describe a 3-dimensional factor model

that exploits the multidimensional structure of the portfolios. Section 6 shows how the model can

be extended to arbitrary dimensions.

The data is assembled in a four-dimensional panel 𝓧𝓧𝓧=[𝑥𝑡𝑐𝑝𝑞], where the first dimension is time,

the second dimension corresponds to characteristics, the third and fourth dimensions are the size

and characteristic percentile portfolios. Hence, 𝑥𝑡𝑐𝑝𝑞 is the excess return of the portfolio given by

the 𝑝-th size and 𝑞-th characteristic portfolio of characteristic 𝑐 in period 𝑡. The data set consists

of 𝑃×𝑄 double-sorted portfolios of 𝐶 characteristics observed over 𝑇 periods. The total number of

portfolios is 𝑁=𝐶𝑃𝑄. Let 𝗫(𝑇) be the (𝑇×𝐶𝑃𝑄)-dimensional matrix whose columns are the time

series of portfolio returns.

4.1. From matrices to tensors

Multidimensional panels can be represented as tensors, which generalize the notions of vectors

and matrices to higher dimensions. For example, a 3-dimensional tensor is a cubeoid, while the

data set used in this paper forms a 4-dimensional tensor. While tensor notation is more complex

and differs from the familiar matrix notation in several ways, tensor algebra is a straightforward

extension of matrix algebra, see Kolda and Bader (2009) and Lettau (2023).

Throughout the paper, I use the following notation:

scalar: 𝑥∈ℝ
vector: 𝘅∈ℝ𝐼

matrix: 𝗫∈ℝ𝐼1×ℝ𝐼2

𝑚-th order tensor: 𝓧𝓧𝓧∈ℝ𝐼1×ℝ𝐼2×⋯×ℝ𝐼𝑚 .

Hence, a zero-order tensor is a scalar, a first-order tensor is a vector, a second-order tensor is a

matrix, and a third-order tensor is a cuboid. Each of the 𝑚 dimensions of a tensor is called a mode.

The slice of a 𝑚-dimensional tensor is given by the 𝑚−1-dimensional tensor when one of the in-

dices is fixed at a given value. For example, a 𝑡-slice of 𝓧𝓧𝓧 is a 3-dimensional tensor of size (𝐶×𝑃×𝑄),

𝓧𝓧𝓧(𝑡)𝑐𝑝𝑞, consisting of𝑁 portfolio returns in period 𝑡. A fiber of𝓧𝓧𝓧 is a vector that is obtained by fixing

all indices but one. For example, the mode-𝑡 fiber, 𝘅(𝑐𝑝𝑞)𝑡, is the (𝑇×1) vector of the time series of the

𝑝-th size quintile and 𝑞-th quintile portfolio of characteristic 𝑐. Figure C.2 shows a 3-dimensional

tensor and its fibers and slices. When the context is clear, I will sometimes write 𝓧𝓧𝓧(𝑡)𝑐𝑝𝑞 and 𝘅(𝑐𝑝𝑞)𝑡

as 𝓧𝓧𝓧𝑡 and 𝘅𝑡.
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A tensor can be matricized by stacking its fibers in a matrix. For example, 𝗫(𝑇) =mat𝑇(𝓧𝓧𝓧) is the

(𝑇×𝐶𝑃𝑄)matrix whose rows are the 𝑡-fibers 𝘅(𝑐𝑝𝑞),𝑡. In other words, the columns of 𝗫(𝑇) are the time

series of returns of the𝐶𝑃𝑄 portfolios. Figure C.3 shows thematricization of a 3-dimensional tensor

along each dimension. Similarly, 𝘅=vec(𝓧𝓧𝓧) denotes the vectorized tensor of dimension(𝑇𝐶𝑃𝑄×1).

The 𝑛-mode product, denoted ×𝑛, is the multiplication of a tensor and a conforming matrix along

the 𝑛-th dimension. For example, the mode-1 product of a (𝐼×𝐽×𝐾) tensor 𝓧𝓧𝓧 and a (𝐿×𝐼) matrix

𝗔1 is equal to a (𝐿×𝐽×𝐾) tensor 𝓧𝓧𝓧 ×1𝗔1 (see Figure C.4). Note that the standard matrix product can

be written in tensor notation: 𝗔1𝗫𝗔⊺
2 =𝗫×1𝗔1×2𝗔2.

Let 𝗮1,…,𝗮𝑚 be 𝑚 vectors of lengths 𝑖1,…,𝑖𝑚. The outer product ∘ of the 𝑚 vectors is a 𝑚-

dimensional tensor of size (𝑖1×⋯×𝑖𝑚): 𝓧𝓧𝓧=𝗮1 ∘⋯∘𝗮𝑚. Panel C of Figure C.4 illustrates the outer

product of three vectors. Note that the outer product of two vectors 𝗮1 ∘𝗮2=𝗮1𝗮⊺
2=𝗫 yields a (𝑖1×𝑖2)

matrix 𝗫.

4.2. The 3D-PCA model

High-dimensional factormodels are a natural extension of standard 2-dimensionalmodels, which

can summarized as follows. The singular value decomposition (SVD) of a matrix 𝗫 of asset returns

is given by

𝗫=𝗨(1)𝗛𝗨(2)⊺, (9)

where the columns of 𝗨(1) and 𝗨(2) are the eigenvectors of 𝗫𝗫⊺ and 𝗫⊺𝗫, respectively, and 𝗛 is

the diagonal matrix of the square roots of the corresponding non-zero eigenvalues. Since 𝗨(1) and

𝗨(2) are orthogonal, (9) can be written in factor form. Factors are linear combinations of asset

returns and are given by 𝗙=𝗨(1)𝗛=𝗫𝗨(2) where the columns of 𝗨(2) are the factor weights. The

truncated 𝐾-factor model uses only eigenvectors of the 𝐾 largest eigenvalues so that (9) becomes

an approximation: 𝗫≈𝗨(1)
𝐾 𝗛𝐾𝗨(2)⊺

𝐾 . Note that the SVD can be written in tensor notation as

𝗫=𝗛×1𝗨(1) ×2𝗨(2) (10)

𝗙=𝗛×1𝗨(1) =𝗫×2𝗨(2)⊺ . (11)

Tucker (1966) shows that the matrix SVD can be extended to higher dimensional tensors. The

Tucker decomposition states that a 𝑚-dimensional tensor can be written in terms of a “small” 𝑚-

dimensional “core” tensor and 𝑚 matrices. The Tucker decomposition with (𝐾𝑇,𝐾𝐶,𝐾𝑃,𝐾𝑄) factors

is given by

𝓧𝓧𝓧≈𝓖𝓖𝓖 ×1 𝗩(𝑇) ×2 𝗩(𝐶) ×3 𝗩(𝑃) ×3 𝗩(𝑄), (12)
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where ×𝑛 denotes the 𝑛-mode tensor product. 𝓖𝓖𝓖 is a (𝐾𝑇×𝐾𝐶×𝐾𝑃×𝐾𝑄) core tensor and 𝗩(𝑇), 𝗩(𝐶),

𝗩(𝑃), 𝗩(𝑄) are (𝑇×𝐾𝑇),(𝐶×𝐶),(𝑃×𝐾𝑃),(𝑄×𝐾𝑄) matrices, respectively. As in the SVD, each 𝗩(𝑖) is

normalized to be orthonormal. When 𝐾𝑇 =𝑇,𝐾𝐶 =𝐶,𝐾𝑃 =𝑃,𝐾𝑄 =𝑄, the inequality in (12) becomes

an equality. Figure C.5 shows the Tucker decomposition of a 3-dimensional tensor. The matrix SVD

(10) is a special case of the tensor Tucker decomposition (12) when 𝓧𝓧𝓧 is 2-dimensional. The 𝗩(𝑖)

matrices correspond to 𝗨(𝑖)) and 𝓖𝓖𝓖 corresponds to 𝗛. Kolda and Bader (2009) provide a detailed

treatment of the Tucker decomposition while Lettau (2023) develops the intuition in the context of

a finance application.

The 3D-PCA model is based on a simplified version of the Tucker decomposition (12) and is de-

fined as follows. Since we are interested in the factor structure of the portfolios, the time dimension

does not have to be factored, which suggests a partial Tucker decomposition with 𝐾𝐶,𝐾𝑃, and 𝐾𝑄

factors for the 𝐶,𝑃, and 𝑄 dimensions:5

𝓧𝓧𝓧≈𝓕𝓕𝓕 ×2 𝗩(𝐶) ×3 𝗩(𝑃) ×4 𝗩(𝑄). (13)

𝓕𝓕𝓕 is a (𝑇×𝐾𝐶×𝐾𝑃×𝐾𝑄)-dimensional tensor and𝗩(𝐶),𝗩(𝑃), and𝗩(𝑄) arematrices of dimensions (𝐾𝐶×𝐶),

(𝐾𝑃×𝑃), and (𝐾𝑄×𝑃), respectively.6 𝓕𝓕𝓕 has the interpretation of factors similar to the factors in the

SVD decomposition (11). To see this, multiply both sides of (13) by 𝗩(𝐶)⊺ ,𝗩(𝑃)⊺ , and 𝗩(𝐶)⊺ :

𝓕𝓕𝓕≈𝓧𝓧𝓧 ×2 𝗩(𝐶)⊺ ×3 𝗩(𝑃)⊺ ×4 𝗩(𝑄)⊺ . (14)

Note that (14) has a similar form as the PCA factors in (11). The difference is that PCA factors are

the product of a matrix with a weight matrix, while 3D-PCA factors are given by multiplying a tensor

by three weight matrices.

Using the properties of the 𝑛-mode product, (13) can be written in terms of matrices. Define 𝗪3D

as the Kronecker product of 𝗩(𝐶),𝗩(𝑃), and 𝗩(𝑄):

𝗪3D =𝗩(𝐶) ⊗𝗩(𝑃) ⊗𝗩(𝑄), (15)

which is a (𝐶𝑃𝑄×𝐾𝐶𝐾𝑃𝐾𝑄)-dimensional matrix. Note that 𝗪3D is orthonormal since the 𝗩(𝑖) matrices

are orthonormal. Recall that 𝗫(𝑇) is the (𝑇×𝐶𝑃𝑄) matrix whose columns are the time series of

portfolio returns. Multiplying 𝗫(𝑇) by 𝗪3D yields a matrix of factors:

𝗙(𝑇) =𝗫(𝑇)𝗪3D. (16)

𝗙(𝑇) is a (𝑇×𝐾𝐶𝐾𝑃𝐾𝑄)-dimensional matrix with columns 𝐹𝑐𝑝𝑞. Note that 𝗙(𝑇) is the matricized factor

5All results reported in the paper are similar when the full Tucker model is used.
6In the full decomposition (12), 𝓕𝓕𝓕 can be obtained by 𝓕𝓕𝓕=𝓖𝓖𝓖 ×1 𝗩(𝑇).
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tensor, 𝗙(𝑇) =mat𝑇(𝓕𝓕𝓕) and 𝗪 is the matrix of factor weights. Each of its 𝐾𝐶𝐾𝑃𝐾𝑄 columns is a

(𝐶𝑃𝑄×1) vector of weights that yields a factor when multiplied by 𝗫(𝑇).

A key property of the 3D-PCA model is that the weight matrix 𝗪3D is determined by the Tucker

matrices 𝗩(𝐶),𝗩(𝑃), and 𝗩(𝑄). The intuition of constructing the columns of𝗪 is as follows. Let 𝘃(𝐶)
𝑐 ,𝘃(𝑃)

𝑝 ,

and 𝘃(𝑄)
𝑞 be the 𝑐-th, 𝑝-th, and 𝑞-th columns of 𝗩(𝐶),𝗩(𝑃), and 𝗩(𝑄), respectively. Their outer product

𝓦𝓦𝓦𝑐𝑝𝑞 =𝘃(𝐶)
𝑐 ∘𝘃(𝑃)

𝑝 ∘𝘃(𝑄)
𝑞 is a three-dimensional tensor of dimension (𝐶×𝑃×𝑄) with elements

𝑤𝑐𝑝𝑞,𝑖𝑗𝑘 =𝑣(𝐶)
𝑐𝑖 𝑣(𝑃)

𝑝𝑗 𝑣(𝑄)
𝑞𝑘 for 𝑖=1,…,𝐶,𝑗=1,…,𝑃,𝑘=1,…,𝑄, (17)

where 𝑣(𝐶)
𝑐𝑖 ,𝑣(𝑃)

𝑝𝑗 and 𝑣(𝑄)
𝑞𝑘 are the 𝑖-th, 𝑗-th, and 𝑘-the elements of 𝘃(𝐶)

𝑐 ,𝘃(𝑃)
𝑝 , and 𝘃(𝑄)

𝑞 respectively. 𝓦𝓦𝓦𝑐𝑝𝑞

is comprised of weights that can be used to construct factors. The (𝑐,𝑝,𝑞)-factor is given by

𝐹𝑐𝑝𝑞,𝑡 =∑
𝑖
∑
𝑗
∑
𝑘

𝑤𝑐𝑝𝑞,𝑖𝑗𝑘 𝑥𝑡𝑖𝑗𝑘 (18)

= vec(𝓦𝓦𝓦𝑐𝑝𝑞)⊺𝘅𝑡. (19)

Repeating this procedure for all combinations of (𝑐,𝑝,𝑞) yields 𝐾𝐶𝐾𝑃𝐾𝑄 factors that are collected

in 𝓕𝓕𝓕. The columns of the 𝗩(𝐶),𝗩(𝑃), and 𝗩(𝑄) matrices can be understood as building blocks that

create the set of factor weights. The total number of vectors is 𝐾𝐶 +𝐾𝑃 +𝐾𝑄, which creates 𝐾𝐶𝐾𝑃𝐾𝑄

different factors.

Since the factor weights of 3D-PCA are given by outer products of a small number of vectors,

they are subject to restriction. For example, all 2-dimensional slices of the 𝓦𝓦𝓦𝑐𝑝𝑞 factor tensors are

proportional. To see this, fix 𝑐,𝑝 and 𝑞 and consider the slices of 𝓦𝓦𝓦𝑐𝑝𝑞 corresponding to character-

istics. Recall that 𝓦𝓦𝓦𝑐𝑝𝑞 =𝘃(𝐶)
𝑐 ∘𝘃(𝑃)

𝑝 ∘𝘃(𝑄)
𝑞 . Hence, the slice corresponding to characteristic 𝑖 is given

by 𝑣(𝐶)
𝑐𝑖 (𝘃(𝑃)

𝑝 ∘𝘃(𝑄)
𝑞 ).7 Hence all 𝑐-slices are proportional to the (𝑃×𝑄)-dimensional matrix 𝘃(𝑃)

𝑝 ∘𝘃(𝑄)
𝑞 .

Next, consider the weight tensor 𝓦𝓦𝓦𝑐′𝑝𝑞 that is created by the outer product of the same 𝑣(𝑃)
𝑝 and 𝑣(𝑄)

𝑞

vectors but a different vector 𝑣(𝐶)
𝑐′ . Since 𝓦𝓦𝓦𝑐′𝑝𝑞 =𝘃(𝐶)

𝑐′ ∘𝘃(𝑃)
𝑝 ∘𝘃(𝑄)

𝑞 , all 𝑐-slices 𝑣(𝐶)
𝑐′𝑖 (𝘃(𝑃)

𝑝 ∘𝘃(𝑄)
𝑞 ) are also

proportional to 𝘃(𝑃)
𝑝 ∘𝘃(𝑄)

𝑞 . Therefore, all factor weights that stem from the same columns of 𝗩(𝑃)⊺

and 𝗩(𝑄)⊺ are proportional. The same argument holds for combinations of columns of 𝗩(𝐶)⊺ and 𝗩(𝑃)⊺ ,

and columns of 𝗩(𝐶)⊺ , and 𝗩(𝑄)⊺ . Therefore, the set of factor weights of the 3D-PCA model is subject

to within-factor and across-factor restrictions.

It is helpful to compare the factors based on the Tucker decomposition (13) to factors estimated

by PCA. To compute PCA, 𝓧𝓧𝓧 has to be written as a matrix. Unfolding along the time dimensions

yields the (𝑇×𝐶𝑃𝑄) matrix 𝗫(𝑇). Note that in contrast to 3D-PCA, estimating PCA using 𝗫(𝑇) does

7See Figure C.6 for an illustration.z
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not take the multidimensional structure of the triple-sorted portfolios into account. Factor weights

are given by the eigenvectors of 𝗫⊺
(𝑇)𝗫(𝑇). The only restriction imposed by PCA is that the columns

of the weight matrix are orthonormal. In this sense, PCA yields unrestricted factor weights, while

3D-PCA factor weights are subject to restrictions.

It is instructive to compare the number of free parameters of comparable PCA and 3D-PCA mod-

els. Let 𝐾=𝐾𝐶𝐾𝑃𝐾𝑄 be the total number of factors. The matrix of factor weights of the 𝐾-factor

PCA model has 𝐶𝑃𝑄𝐾=𝑁𝐾 elements. Orthonormality implies 2𝐾−1 restrictions, so there are

𝑁𝐾−2𝐾+1 free parameters. Factor weights of the 3D-PCA model are generated by 𝗩(𝐶)⊺ ,𝗩(𝑃)⊺ , and

𝗩(𝑄)⊺ . For example, 𝗩(𝐶)⊺ has 𝐶𝐾𝐶 elements and 2𝐾𝐶 −1 orthonormality restrictions. Thus, the total

number of free parameters in the three matrices is 𝐶𝐾𝐶 +𝑃𝐾𝑃 +𝑄𝐾𝑄 −2(𝐾𝐶 +𝐾𝑃 +𝐾𝑄)+3. For ex-

ample, the data set used in the next section is of size 𝐶=11,𝑃=𝑄=5. For 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =3, PCA

has 7,372 parameters compared to only 48 for 3D-PCA. As we will see in the empirical part of the

paper, this stark difference drastically affects the estimation of both models.

To develop further intuition, consider the special case where𝑀=𝐶=𝑃=𝑄,𝐿=𝐾𝐶=𝐾𝑃=𝐾𝑄, and

the ratio of 𝐿 and 𝑀 is 𝜅=𝐿/𝑀. In this case, PCA weights have 𝑀3𝐿3 −2𝐿3 +1=𝑀6(𝜅−2𝜅/𝑀3 +

1/𝑀6) ∼ 𝓞(𝑀6) free parameters. In contrast, and 3D-PCA weights have 3𝑀𝐿−6𝐿+3=𝑀2(3𝜅−

6𝜅/𝑀+1/𝑀2)∼𝓞(𝑀2) free parameters. Therefore, the number of parameters in PCA grows at rate

𝓞(𝑀6)while it only grows at rate 𝓞(𝑀2) in 3D-PCA. The number of parameters of PCA is significantly

larger than for 3D-PCA, and the difference will be larger the larger the dataset. Of course, imposing

restrictions in an estimation will only improve estimates if the restrictions are (close-to) satisfied in

the data, which is an empirical question.

In matrix-PCA, the contribution of a factor to the overall variation in the data is given by the

associated eigenvalue of the eigenvector that is used to construct the factor. A similar result can be

derived for the 3D-PCA model. Consider first the full Tucker decomposition (12) with 𝐾𝑇 =𝑇,𝐾𝐶 =

𝐶,𝐾𝑃 =𝑃,𝐾𝑄 =𝑄, so that it holds with an equality. Since the 𝗩(𝑖) matrices are orthonormal, the

overall variation of the data tensor 𝓧𝓧𝓧 is equal to the squared norm of the core tensor 𝓖𝓖𝓖:

‖𝓧𝓧𝓧‖2 = ∑
𝑡,𝑐,𝑝,𝑞

𝑥2
𝑡𝑐𝑝𝑞 = ∑

𝑡,𝑐,𝑝,𝑞
𝑔2

𝑡𝑐𝑝𝑞 =‖𝓖𝓖𝓖‖2. (20)

Therefore, the squared elements of the core tensor 𝓖𝓖𝓖 can be interpreted as the contribution of the

corresponding factor to the overall variation of the data and play a similar role as eigenvalues in

matrix-PCA.

In the partial Tucker decomposition (12), 𝓕𝓕𝓕 corresponds to the core tensor, so that ‖𝓧𝓧𝓧‖2=‖𝓕𝓕𝓕‖2.

Recall that 𝗫(𝑇) =mat𝑇(𝓧𝓧𝓧) is the (𝑇×𝐶𝑃𝑄) matrix with columns that are time series of portfolio
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returns. Similarly, 𝗙(𝑇) =mat𝑇(𝓕𝓕𝓕) is the (𝑇×𝐾𝐶𝐾𝑃𝐾𝑄) matrix of time series of factors. Hence,

‖𝓧𝓧𝓧‖2 =‖𝗫(𝑇)‖2 =‖𝗙(𝑇)‖2 (21)

= ∑
𝑐,𝑝,𝑞

(∑
𝑡
𝐹2
𝑐𝑝𝑞,𝑡), (22)

which implies that the contribution of a factor 𝐹𝑐𝑝𝑞 to the overall variation in the data is given by its

time series sum of squares, ∑𝑡𝐹2
𝑐𝑝𝑞,𝑡.

4.3. Estimation

Given (𝐾𝐶,𝐾𝑃,𝐾𝑄), the Tucker decomposition (13) can be written as

𝓧𝓧𝓧=𝓕𝓕𝓕 ×2 𝗩(𝐶) ×3 𝗩(𝑃) ×4 𝗩(𝑄) +𝓔𝓔𝓔, (23)

where 𝓔𝓔𝓔 is the approximation error. The objective is to find 𝓕𝓕𝓕,𝗩(𝐶),𝗩(𝑃), and 𝗩(𝑄) that minimize the

𝑙2-norm of 𝓔𝓔𝓔:

𝓕𝓕𝓕, 𝗩̂(𝐶), 𝗩̂(𝑃), 𝗩̂(𝑄) = argmin‖𝓔𝓔𝓔‖, (24)

subject to the restriction that 𝗩̂(𝐶), 𝗩̂(𝑃), 𝗩̂(𝑄) are orthonormal. There is no closed-form solution to (24),

so the problem has to be solved numerically. One candidate solution is given by the Higher-Order

SVD (HOSVD) as suggested by De Lathauwer et al. (2000). HOSVD solves a series of 2-dimensional

eigenvalue problems that yield estimates of the 𝗩(𝑖) matrices followed by the computation of 𝓕𝓕𝓕. In

the 3-dimensional case considered here, HOSVD is given by the following procedure:

1. Unfold 𝓧𝓧𝓧 along the 𝐶 dimension: 𝗫(𝐶) =mat𝐶(𝓧𝓧𝓧). Compute the SVD of 𝗫(𝐶) and set 𝗩̂(𝐶) to the

first 𝐾𝐶 left singular vectors, i.e. the eigenvectors of 𝗫(𝐶)𝗫⊺
(𝐶).

2. Unfold 𝓧𝓧𝓧 along the 𝑃 dimension: 𝗫(𝑃) =mat𝑃(𝓧𝓧𝓧). Compute the SVD of 𝗫(𝑃) and set 𝗩̂(𝑃) to the

first 𝐾𝑃 left singular vectors, i.e. the eigenvectors of 𝗫(𝑃)𝗫⊺
(𝑃).

3. Unfold 𝓧𝓧𝓧 along the 𝑄 dimension: 𝗫(𝑄)=mat𝑄(𝓧𝓧𝓧). Compute the SVD of 𝗫(𝑄) and set 𝗩̂(𝑄) to the

first 𝐾𝑄 left singular vectors, i.e. the eigenvectors of 𝗫(𝑄)𝗫⊺
(𝑄).

4. Set 𝓕𝓕𝓕=𝓧𝓧𝓧 ×2 𝗩̂(𝐶)⊺ ×3 𝗩̂(𝑃)⊺ ×4 𝗩̂(𝑄)⊺ .

In general, HOSVD does not minimize ‖𝓔𝓔𝓔‖ and is therefore not optimal. Kroonenberg and

de Leeuw (1980) suggested an iterative procedure called Higher-Order Orthogonal Iteration (HOOI)

that has proven to yield efficient solutions in most applications.8 They show that one 𝗩̂(𝑖) can be

solved if the other 𝗩̂(𝑗) and 𝗩̂(𝑘) are known, see the Appendix Appendix A.3 and Kolda and Bader

8HOOI is also known as Alternate Least Square (ALS).
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(2009) for more details. Each step solves a linear problem so that HOOI is computationally feasible

even for large tensors. Typically, HOOI uses the HOSVD estimates as starting values and iterates

until a convergence criterion is satisfied.9

5. Empirical results

In this section, I estimate the 3D-PCA model using the 3-dimensional data set of double-sorted

quintile portfolios of 11 characteristics described in section 3. In addition to the in-sample estima-

tion that uses the entire sample, I also construct out-of-sample estimations that are not subject to a

look-ahead bias using rolling samples of length ℎ. I estimate the 3D-PCA model in each subsample

ending in 𝑡′ =ℎ,...,𝑇−1, and construct factor returns in 𝑡′ +1 by multiplying the portfolio returns

in period 𝑡′ +1 by the factor weights from the subsample ending in 𝑡′. The benchmark window

length is ℎ=120, but I also consider other values for ℎ.

The 3D-PCA model approximates the data tensor with 275 portfolios when 𝐾𝐶<𝐶,𝐾𝑃<𝑃,𝐾𝑄<𝑄.

Therefore, I first compute the proportion of the variation in 𝓧𝓧𝓧 captured by the model for different

combinations of (𝐾𝐶,𝐾𝑃,𝐾𝑄). The 𝑅2 is defined as 𝑅2 =1−‖𝓔𝓔𝓔‖/Var()𝓧𝓧𝓧), where 𝓔𝓔𝓔 is the approxima-

tion error in (23). Figure 2 shows the heatmap of the 𝑅2 for all possible combinations of (𝐾𝐶,𝐾𝑃,𝐾𝑄).

The columns correspond to 𝐾𝐶 and the rows to (𝐾𝑃,𝐾𝑄) combinations. The model with a single fac-

tor in each dimension in the upper left cell captures 83% of the data variation. Increasing 𝐾𝐶 while

keeping 𝐾𝑃 =𝐾𝑄 =1 has a marginal impact on the 𝑅2, suggesting that higher values of (𝐾𝑃,𝐾𝑄) are

required. The most parsimonious models with an 𝑅2 of at least 90% and 95% are 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =2

with a total of 8 factors and 𝐾𝐶 =5,𝐾𝑃 =𝐾𝑄 =3 with 45 factors, respectively. Increasing the number

of factors improves the fit only marginally.

As we will see in the next section, the first three 𝑃 and 𝑄 factors are relevant for capturing the

cross-section of mean returns. Combining 𝐾𝑃 =𝐾𝑄 =3 with 𝐾𝐶 =3 yields a parsimonious model

with 27 factors that captures 93% of the variation in the data. In rolling samples, the 𝑅2 varies

between 89% and 96%, which indicates that the model is stable over time. In the rest of the paper,

the specification with 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =3 will be the benchmark, but I will also consider other cases.

5.1. The cross-section of returns

I first present the critical asset pricing results before investigating the structure and properties of

the estimated factors in the next section. I compare the 3D-PCA results to those obtained from factor

9There are other solution methods, but HOOI remains the most widely used method, see Kolda and Bader (2009).
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models obtained from PCA, Lettau and Pelger (2020a)’s Risk Premium-PCA (RP-PCA), and models

with Fama-French factors. Consider an asset pricing model that consists of 𝐿 factors, 𝗙𝐿
𝑡 , that 3D-

PCA, PCA, or RP-PCA estimate. Given that 3D-PCA and PCA factors are linear combinations of excess

portfolio returns, they are themselves excess returns. I therefore run 𝑁 time-series regressions of

excess returns of portfolios 𝑖=1,…,𝑁 on a constant and factor returns 𝗙𝐿
𝑡 :

𝑅𝑒
𝑖,𝑡+1 =𝛼𝑖 +𝛃⊺

𝑖 𝗙𝐿
𝑡 +𝑒𝑖,𝑡+1, 𝑖=1, ...,𝑁, (25)

where 𝑅𝑒
𝑖,𝑡+1 is the excess return of portfolio 𝑖 in quarter 𝑡+1. The pricing error of portfolio 𝑖 is the

intercept 𝛼𝑖. I evaluate the performance of the model by the (pseudo) cross-sectional 𝑅2:

𝑅2
𝑥𝑠 =1−

1
𝑁 ∑𝑁

𝑖=1𝛼2
𝑖

Var𝑥𝑠(𝑅̄𝑖)
, (26)

where 𝑅̄𝑖 is the mean excess return of portfolio 𝑖 and Var𝑥𝑠(𝑅̄𝑖) is the cross-sectional variance of

mean returns. Note that the pricing errors in the nominator of (26) are not demeaned so that the

mean pricing error is taken into account. As a result, 𝑅2
𝑥𝑠 is not a “proper” 𝑅2 and does not have to

be positive. I also compute the Sharpe ratio that is generated by the factors 𝗙𝐿
𝑡 :

SR=√ ̄𝗙⊺𝝨−1
𝐹 ̄𝗙, (27)

where ̄𝗙=( ̄𝐹1, ..., ̄𝐹𝐿)⊺ is the vector of factor means and 𝝨𝐹 is the variance-covariance matrix of factor

returns.

To obtain parsimonious factor models, I select subsets of the𝐾 factors as follows. I start with the

first factor 𝗙1
𝑡 =[𝐹1𝑡] and estimate (25). I then add each of the remaining 𝐾−1 factors individually

and re-estimate (25). I add the factor that yields the highest 𝑅2
𝑥𝑠 to 𝗙1

𝑡 and obtain 𝗙2
𝑡 . I add the third,

fourth, ... factors using the same recursive procedure and stop when the incremental 𝑅2
𝑥𝑠 becomes

small. Note that the chosen factors for a given 𝐿> 2 might not yield the highest 𝑅2
𝑥𝑠 among all

possible combinations of 𝐿 factors, but this procedure avoids searching over a large set of factor

combinations.

Table 2 reports results for 3D-PCA, Fama-French, PCA, and RP-PCA factors for up to 𝐿=6. The

table shows the cross-sectional 𝑅2
𝑥𝑠, the annualized Sharpe ratio of the included factors, and the

factor added at step 𝐿. Panel A and B report results for in-sample and out-of-sample factors, respec-

tively. Results for models with in-sample 3D-PCA factors are in the first three columns of Panel A.

𝐹3D
𝑐𝑝𝑞 is the 3D-PCA factor that is created by the 𝑐-th, 𝑝-th, and 𝑞-th columns of the 𝗩(𝐶)⊺ ,𝗩(𝑃)⊺ , and

𝗩(𝑄)⊺ matrices, see (17) and (18). The in-sample 1-factor 3D-PCA model that only includes 𝐹3D
111 has

a negative 𝑅2
𝑥𝑠 and thus yields a poor fit. As we will see in the next section, the first factor, 𝐹3D

111, is
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a long-only factor that is highly correlated with the CRSP-VW. Hence, it is not surprising that the

𝑅2
𝑥𝑠 of the factor model with only 𝐹3D

111 is similar to that of the CAPM (-0.58). The model with 𝐹3D
111

and 𝐹3D
112 as factors improves the fit considerably, as indicated by the higher cross-sectional 𝑅2 of

0.37. Adding additional 3D-PCA factors improves the fit further. For example, the model with 𝐿=3

factors captures 65% of the variation in mean returns and the specification with six factors captures

76%s of the variation in mean returns. The third column of the table list the factors that are included

in the respective specifications. I will return to the interpretation of the factors in the next section.

Next, consider factor models based on the CRSP-VW index (MKT) and Fama-French factors SMB,

HML, CMA, RMW, and MOM. The in-sample 𝑅2
𝑥𝑠 of the CAPM is -0.58, confirming the well-established

result that the CAPM cannot capture the cross-section of returns. The negative value of 𝑅2
𝑥𝑠 arises

because the mean pricing error of 1.21% is non-zero. Adding CMA raises 𝑅2
𝑥𝑠 to 0.01. However, at

least five factors are required to render an 𝑅2
𝑥𝑠 above 50%. The model with MKT, CMA, MOM, SMB,

and RMW yields an 𝑅2
𝑥𝑠 of 0.57. Adding the last factor, HML, does not improve the fit of the model

further.

Note that the in-sample Sharpe ratios of 3D-PCA factor models are significantly larger than those

of comparable Fama-French models. For example, the 3D-PCA model with 𝐿=3 factors generates a

Sharpe ratio of 1.57, while the model with MKT, CMA, and MOM as factors has a maximum Sharpe

ratio of 1.00. The Sharpe ratio of the model with six 3D-PCA factors is 1.95 compared to 1.21 for

the model with the MKT and all five Fama-French factors. Hence, factor models based on 3D-PCA

factors yield smaller pricing errors and higher Sharpe ratios than comparable models with Fama-

French models.

The last six columns of Panel A report results for PCA and RP-PCA factors.10 Given 𝐿, the 𝑅2
𝑥𝑠

and Sharpe ratios are lower than those of 3D-PCA models but higher than those of Fama-French

factors. The Sharpe ratios of RP-PCA models are generally higher than those of PCA models, but

their cross-sectional 𝑅2s are similar.

Since in-sample factors are estimated using the entire sample, they are subject to look-ahead

bias. Panel B reports results for factors that are estimated out-of-sample and do not use future

information.11 The out-of-sample 𝑅2
𝑥𝑠 of models with 3D-PCA factors are similar to those with in-

sample 3D-PCA factors but larger for some specifications. For example, the model with 𝐿=4 and

𝐿=5 factors capture 72% and 76% of the variation in mean returns of the 275 portfolios compared

to 67% and 68% for the corresponding in-sample models. The out-of-sample Sharpe ratios of these

10The tuning parameter 𝛾 is set to 15.
11Since the rolling windows are of length ℎ=120, the effective sample starts in July 1973.
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two models are also higher than those for in-sample factors. However, the in-sample Sharpe ratio

of the 𝐿=6 model is significantly higher than its out-of-sample Sharpe ratio. These results suggest

that 3D-PCA estimations are stable over time and that the rolling estimation picks up changes in

the dependence structure of portfolio returns over times that the full-sample estimation ignores. I

will explore this possibility further below.

In contrast to 3D-PCA models, the models with out-of-sample PCA and RP-PCA factors perform

considerably worse than the corresponding in-sample models in most cases. Even 6-factor models

explain no more than 51% and 48%, respectively, of the variation in mean returns, which is lower

than the 𝑅2
𝑥𝑠 of the 6-factor Fama-French model. The Sharpe ratios of out-of-sample PCA and RP-PCA

models are also considerably lower than their in-sample counterparts.

The results in Table 2 are based on models that use all 27 factors. Table 3 reports cross-sectional

𝑅2
𝑥𝑠 for models with subsets of the 27 3D-PCA factors for 𝐿=4 and 𝐿=6. 𝐾𝐶,𝐾𝑃, and 𝐾𝑄 are the num-

ber of factors in the characteristic (C), size-quintile (P), and characteristic-quintile (Q)dimensions,

respectively. For example, the case 𝐾𝐶 =1,𝐾𝑃 =3,𝐾𝑄 =2 has a single characteristic factor, two size-

quintile factors, and three characteristics. For each combination shown in Table 3, I use the same

recursive procedure to pick which 𝐿 factors are included. When the number of possible factors is

lower than 𝐿, I report the 𝑅2
𝑥𝑠 of the model with all factors. Consider first the results for in-sample

factors in Panel A and only one C factor, 𝐾𝐶 =1, reported in the first three columns. The 𝑅2
𝑥𝑠 for

all models that include only the first Q factor, 𝐾𝑄 =1, are negative, indicating that at least two Q-

factors are required to achieve a reasonable fit. On the other hand, models with only one P-factor

(𝐾𝑃 =1) have 𝑅2
𝑥𝑠 of 37% and 46%, respectively, when the second and third Q-factors are included

(𝐾𝑄 =2,3). Combining multiple P and Q factors improves the fit substantially. For example, the 𝑅2
𝑥𝑠

of the specification with 𝐾𝐶 =1,𝐾𝑄 =2,𝐾𝑃 =3 is 55% for 𝐿=4 and 65% for 𝐿=6. However, it has

only eight factors compared to 27 of the full model. The fit of this specification for out-of-sample

factors is slightly higher with 64% and 69%.

I conclude that parsimonious models with 3D-PCA factors successfully capture the cross-section

of mean returns of the 275 portfolios in the sample. They outperform Fama-French and PCA-based

models by a considerable margin. Moreover, the out-of-sample 3D-PCA factors yield as good a fit

as in-sample factors. The rest of this section analyzes the fit in more detail. Since the in-sample

estimations are subject to a look-ahead bias, I focus on the results of out-of-sample estimations of

models with 𝐿=6 factors.

Since it is difficult to visualize the pricing errors along all three dimensions, I aggregate them

by dimensions. For example, the pricing error for a characteristic is the root-mean-square pricing
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error (RMSPE) of the errors of the 25 (𝑃×𝑄) portfolios of that characteristic. I also compute the RMS

pricing errors for all 25 size and characteristic quintile combinations. Figure 3 plots the annualized

RMSPE for each characteristic as well as the mean RMSPE across all 11 characteristics for the 3D-

PCA (in blue), the Fama-French (in orange), and the PCA (in black) models. The average RMSPE of

3D-PCA is 1.23% compared to 1.60% and 1.72% for the Fama-French and PCA models. For some

characteristics, such as OP, REV, and BETA the pricing errors of the 3D-PCA, Fama-French, and PCA

models are similar. For the other characteristics, the 3D-PCA model has the lowest pricing errors

and yields relatively small errors for those characteristics that have a poor fit for the PCA and Fama-

French models. For example, the 3D-PCA pricing errors for VAR and RVAR are below 1.2% while the

errors of the PCA and Fama-French model are around 2% or higher. The highest pricing errors of the

PCA and Fama-French models are for MOM and SREV, respectively. SREV has the highest average

pricing error across all three models.

Next, consider the pricing errors by (𝑃×𝑄) portfolios shown in Figure 4. The heatmaps indicate

higher RMSPE in darker shades. Consider first the 3D-PCA model in Panel A. The four corner port-

folios (and P4Q5) are associated with the highest pricing errors, which is the typical pattern in the

literature. Moreover, the small stock portfolios P5Q1 and P5Q5 have larger errors than the large

stock portfolios P1Q1 and P1Q5. The mean RMSPE across all 25 portfolios is 1.20%. Pricing errors

of the Fama-French, PCA, and RP-PCA models are generally higher than those of the 3D-PCA model.

The difference is particularly large for small/low characteristic quintile portfolios. The RMSPE of

the P5Q1 portfolio are very high and range from 4.82% for PCA to 5.57% for RP-PCA. The pricing

errors of the P4Q1 portfolio are also large and significantly higher than for the 3D-PCA model.

Figure 5 plots the fitted mean returns on the 𝑥-axis and the actual mean returns on the 𝑦-axis,

so that the distance to the 45-degree line is the pricing error of a particular portfolio. To make the

plots readable, they only include the four corner portfolios P1Q1, P1Q5, P5Q1, and P5Q5 of the 11

characteristics. The plots also show the 𝑅2
𝑥𝑠 of only the 44 corner portfolios (instead of the 𝑅2

𝑥𝑠 of

all 275 portfolios in the previous tables and figures) to assess the fit of these portfolios that are

most difficult to price. The fitted returns of the 6-factor 3D-PCA model are shown in Panel A. The

plot confirms the good fit of the model as all portfolios are located relatively close to the 45-degree

line. The portfolios with the largest pricing errors are SREV-P5Q5 (4.13%) and SREV-P5Q1 (-3.63%).

The cross-sectional 𝑅2 of the 44 corner portfolios is 76%. Recall from Table 2 that the 3D-PCA with

𝐿=4 factors has almost as good a fit as the model with six factors, which is confirmed by the plot

in Panel B. The fitted returns of the 4-factor model are virtually identical to those of the 6-factor

model, and the 𝑅2
𝑥𝑠 =73% is only slightly lower.
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The fitted returns of the Fama-French and PCA models with 𝐿=6 factors show that their fit is

significantly worse. The 𝑅2 of the Fama-French and PCA models are 39% and 30%, respectively, and

an order of magnitude lower than those of the 3D-PCA models. The plots show that some portfolios

in both models have large pricing errors (in absolute values). The P5Q1 RVAR, VAR, SREV, NSI, and

BM have pricing errors of at least -4%, and the MOM and SREV P5Q5 portfolios have errors of above

3.5%. The fit of the PCA model is worse. The pricing errors of six portfolios is lower than -4% and

four portfolios have errors above 3.5%.12

The out-of-sample results reported above are based on rolling windows of length ℎ=120. The

rows of Table 4 show the 𝑅2
𝑥𝑠 of out-of-sample 3D-PCA and PCA models for different lengths of

the rolling windows: ℎ=12,36,60,120,180,360. The columns show models with 𝐿=2,4,6,8,10

factors. Note that the results across different values of ℎ are not comparable since the effective

sample starts in period ℎ+1, so the time series regressions (25) span different samples. However,

comparisons of the 3D-PCA and PCA 𝑅2
𝑥𝑠 for a given ℎ are valid.

Consider first the case with only three time series observations, ℎ= 3. The 𝑅2
𝑥𝑠’s of all PCA

models are negative, indicating that estimation in such short samples is infeasible. In contrast, 3D-

PCA models yield a reasonably good fit with 𝑅2
𝑥𝑠 around 50% for all 𝐿>2. Increasing ℎ to 6 and

12 yields 𝑅2
𝑥𝑠 between 50% and 70%. 3D-PCA yields similar fits for window lengths between 12 and

180 while increasing ℎ to 360 deteriorates the 𝑅2
𝑥𝑠 slightly. PCA requires at least 60 time series

observations to yield reasonable results; however, the 𝑅2
𝑥𝑠 is lower than that of 3D-PCA for all cases.

The reason why 3D-PCA estimation is feasible in very short samples is, of course, that the number

of free parameters, in contrast to PCA, is small. Recall from the previous section that the number of

free parameters in PCA is an order of magnitude higher than that of 3D-PCA. In the case considered

here, 3D-PCA has only 48 free parameters compared to 7,372 for PCA, which implies that the factor

weights are more stable in short samples, as I will show in the next section,

In summary, the 3D-PCA models provide robust in-sample and out-of-sample fits of the cross-

section of mean returns of the 275 portfolios in the sample. The model is parsimonious with rel-

atively few free parameters, and can be successfully estimated in very short samples. The speci-

fications with 3D-PCA factors consistently outperform popular benchmark in-sample, particularly

out-of-sample estimations. They provide substantially better fits of the extreme size and character-

istics corner quintiles, which are a challenge for many asset pricing models. The following section

studies the estimates of the components of the 3D-PCA model (13), the properties of the 3D-PCA

12The portfolios are P5Q1 of VAR, RVAR, MOM, SREV, NSI, INV, and the MOM and INV P5Q5 and AC P1Q5 portfolios.
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factors, and the construction of the portfolio weights that underlie the factors.

5.2. Factor weights

The estimation of the 3D-PCA model yields the (𝑇×𝐾𝐶×𝐾𝑃×𝐾𝑄)-dimensional tensor of factors

and three matrices 𝗩(𝐶),𝗩(𝑃), and 𝗩(𝑄) of dimensions (𝐾𝐶×𝐶),(𝐾𝑃×𝑃), and (𝐾𝑄×𝑃), respectively. Re-

call that the weights that generate the factors are determined by the transposes of 𝗩(𝐶),𝗩(𝑃), and 𝗩(𝑄).

I first present the in-sample estimates of the three 𝗩 matrices and then study the implications for

factor weights. Weights derived from the out-of-sample estimation are discussed in the following

subsection.

Figure 6 shows the estimated matrices 𝗩̂(𝑖) as heatmaps with the point estimates displayed in

each cell. Positive values are in blue, and negative values are in red. While the columns have a unit

norm, their signs are not identified. I set the signs so that the interpretations of factors line up

with standard portfolio sorts and risk factors whenever possible. The rows and columns of 𝗩̂(𝐶)

in Panel A correspond to the 11 characteristics and C-factors, 𝑘𝐶 =1,2,3. All elements of the first

columns, 𝘃(𝐶)
1 , are positive and represent “long-only” portfolio weights. The weights are between

0.29 and 0.31, thus similar across characteristics, creating almost an equal-weighting scheme. The

second and third columns include positive and negative values and, therefore, correspond to “long-

short” weights. The largest positive weights of the second factor, 𝘃(𝐶)
2 , are for VAR and RVAR, while

the weight of BETA is by far the lowest, followed by SREV, REV, and AC. The elements of the other

characteristics are small. Hence, the second factor has the interpretation of an (approximately) long-

VAR and RVAR and short-BETA weighting scheme. The third factor, 𝘃(𝐶)
3 , is dominated by MOM with

a value of 0.88, followed by BM (-0.36) and NSI (-0.25) and can be interpreted as a long-MOM and

short-BM factor.

Characteristic weights in the second and third factors are related to the volatilities of long-short

portfolios. Results in Table 1 showed that volatilities of SMB𝑐 portfolios by characteristic are sim-

ilar across characteristics; however, the volatilities of characteristic-specific HML𝑐 portfolios vary

significantly. For example, the HML𝑐 portfolio created by a size/accruals double-sort has a volatility

of 4.91%, whereas HML𝑐 of several other characteristics have standard deviations over 15%. In fact,

the characteristics with the highest HML𝑐 volatilities have the highest weights in 𝘃(𝐶)
2 and 𝘃(𝐶)

3 (in

absolute value), namely, VAR (19.55%), RVAR (17.93%), MOM (17.22%), and BETA (16.86%), followed

by SREV (12.96%) and BM (12.59%). Of course, factor weights depend on the complex correlation

structure of the test assets; however, we will see below that factors with high-minus-low structures

of these factors play an essential role.
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The 𝗩(𝑃) and 𝗩(𝑄) matrices determine factor weights along the size and characteristic dimensions,

respectively. Both follow similar patterns that have a familiar structure. The first P-factor, 𝘃(𝑃)
1 , is

long-only, but the weights increase in P-quintiles, so that the corresponding factor overweighs the

small-stock quintiles and underweight the big-stock quintiles. 𝘃(𝑃)
2 is monotonically increasing in

size quintiles ranging from -0.66 for the P1 to 0.62 for the P5 quintile and has, therefore, a small-

minus-big pattern. In contrast, the P1 and P5 elements of 𝘃(𝑃)
3 are positive, while the P2, P3, and P4

elements are negative, creating a long-small/big and short-medium pattern.

The shape of the 𝗩(𝑄) matrix is similar to that of 𝗩(𝑃). The first Q-factor, 𝘃(𝑄)
1 , is positive and thus

long-only. The second column, 𝘃(𝑄)
2 , is increasing from Q1 to Q5 and has the interpretation of a high-

minus-low factor. Like the third P-factor, the third Q-factor is positive in Q1 and Q5 and negative in

Q2, Q3, and Q4. The columns of 𝗩(𝑃) and 𝗩(𝑄) have therefore a level-slope-curvature pattern often

seen in PCA application. The first “level” factor is long-only with approximately similar values, the

second factor has a “slope” pattern that is monotonically increasing in the quintile portfolios, and

the third factor is convex and resembles “curvature”.

As argued in section 4 the columns of 𝗩(𝐶),𝗩(𝑃), and 𝗩(𝑄) form building blocks for factor weights.

Next, I study the portfolios that can be constructed from the estimated 𝗩̂(𝑖). Consider first the P

and Q-dimensions. The outer product of the 𝑝-th and 𝑞-th columns of 𝗩(𝑃), and 𝗩(𝑄) is the (5×5)

matrix 𝗪(𝑃𝑄)
𝑝𝑞 =𝘃(𝑃)

𝑝 ∘𝘃(𝑄)
𝑞 . The elements of 𝗪(𝑃𝑄)

𝑝𝑞 are weights for the 25 possible (𝑃×𝑄) combinations

of quintile portfolios. Since 𝐾𝑃 =𝐾𝑄 =3, there are nine possible combinations of the columns of

𝗩(𝑃), and 𝗩(𝑄). Each of the nine combinations represents a different weighting scheme for the P and

Q dimensions that can be constructed from the estimates 𝗩̂(𝑃) and 𝗩̂(𝑄).

Figure 7 shows all nine 𝗪(𝑃𝑄)
𝑝𝑞 matrices that are generated by the estimated 𝗩̂(𝑃) and 𝗩̂(𝑄) shown

in Figure 6. The first matrix 𝗪(𝑃𝑄)
11 combines the first columns 𝘃(𝑃)

1 and 𝘃(𝑄)
1 . Since both columns

are long-only, 𝗪(𝑃𝑄)
11 is a positive matrix. Since 𝘃(𝑃)

1 underweights P1, the P1 weights of 𝗪(𝑃𝑄)
11 are

somewhat lower than those P2 to P5 weights. Next, consider combining the first column of 𝗩̂(𝑃) and

and the second column of 𝗩̂(𝑄). 𝘃(𝑃)
1 is long only while 𝘃(𝑄)

2 is monotonic in the Q1 to Q5 quintiles.

Hence, the columns of 𝗪(𝑃𝑄)
12 (Panel B) retain the monotonic structure in the Q-dimension while its

rows, representing the P-dimension, are almost identical. The smaller values (in absolute terms) of

the P1 row is again due to the underweighting of the P1 portfolio in 𝘃(𝑃)
1 . Therefore, 𝗪(𝑃𝑄)

12 has a high-

minus-low structure that is long in high-characteristic quintile Q5 and short in the low-characteristic

quintile Q1 while combined with equally weighing the size dimension. By the same token, the outer

product of the second P-factor and the first Q-factor, 𝗪(𝑃𝑄)
21 , has a similar structure but with the P

and Q dimensions reversed since 𝘃(𝑃)
1 is monotonic in P1 to P5 and 𝘃(𝑄)

1 is long-only. Thus, 𝗪(𝑃𝑄)
21 has
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a small-minus-big pattern with (approximately) equal weights in the Q dimension. In other words,

𝗪(𝑃𝑄)
12 and 𝗪(𝑃𝑄)

21 are similar to HML and SMB but are estimated rather than constructed from fixed

weights.

Combining the first and third columns of 𝗩̂(𝑃) and 𝗩̂(𝑄) generates 𝗪(𝑃𝑄)
13 , shown in Panel C, retains

the approximately equal weighting in the P dimension with the convex structure of 𝘃(𝑄)
3 . Hence, all

P1 to P5 rows have positive Q1 and Q5 and negative Q2, Q3, and Q4 weights. As for 𝗪(𝑃𝑄)
21 , the

pattern is reversed for 𝗪(𝑃𝑄)
31 , so that each column has the curvature pattern in the size dimension.

The 𝗪(𝑃𝑄)
𝑗𝑘 weight matrices mentioned so far combine a ’long-only’ vector with a vector in the

other dimension that has a level, slope, or curvature structure. Thus, all portfolios that can be

generated retain a level, slope, or curvature structure in one dimension with approximately equal

weighting in the other dimension. The outer product of the second columns, 𝘃(𝑃)
2 and 𝘃(𝑄)

2 combine

two monotonic (slope) vectors. The resulting matrix 𝗪(𝑃𝑄)
22 is shown in Panel E. The weights of the

diagonal P1Q1 and P5Q5 corner portfolios are positive, while the weights of the off-diagonal corner

portfolios P1Q5 and P5Q1 are negative. The other elements of 𝗪(𝑃𝑄)
22 are an order of magnitude

smaller. Hence, the pattern is similar to the CROSS portfolios introduced in section 3 (see Table 1).

Almost all results in this paper are based on these six 𝗪(𝑃𝑄)
𝑗𝑘 matrices. For example, the optimal

3D-PCA models reported in Table 3 include only factors based on 𝗪(𝑃𝑄)
11 ,𝗪(𝑃𝑄)

12 ,𝗪(𝑃𝑄)
13 ,𝗪(𝑃𝑄)

22 , and 𝗪(𝑃𝑄)
31 .

The remaining higher order matrices 𝗪(𝑃𝑄)
23 ,𝗪(𝑃𝑄)

32 , and 𝗪(𝑃𝑄)
33 will play no further role. These matrices

combine slope and curvature vectors and create complex P and Q combinations.

Since the 𝗪(𝑃𝑄)
𝑗𝑘 are based on combinations of the same column vectors, they all share common

structures that combine the level, slope, and curvature patterns of the column vectors. Hence,

all 𝗪(𝑃𝑄)
𝑗𝑘 have straightforward economic interpretations. Moreover, some weight matrices exhibit

patterns that resemble long-short portfolios that have been studied in the literature. Rather than

using ad-hoc weights, the weights are estimated from the data.

To obtain weights for all𝑁=275 portfolios,𝗪(𝑃𝑄)
𝑗𝑘 matrices are combined with the columns of the

𝗩̂(𝐶) matrix (see Panel A in Figure 6). The outer product of a (11×1)-dimensional column vector 𝘃(𝐶)
𝑖

and a (25×25)-dimensional matrix 𝗪(𝑃𝑄)
𝑗𝑘 yields a (11×25×25)-dimensional tensor of weights 𝓦𝓦𝓦𝑖𝑗𝑘.

Since 𝐾𝐶 =𝐾𝑃 =𝐾𝑃 =3, each of the 27 combinations of 𝑖,𝑗,𝑘=1,2,3 represents the weight tensor

𝓦𝓦𝓦𝑖𝑗𝑘 of a factor 𝐹3D
𝑖𝑗𝑘. As for the 𝗪(𝑃𝑄)

𝑗𝑘 matrices, the 𝓦𝓦𝓦𝑖𝑗𝑘 tensors retain the structure of the vectors

and matrices on which they are built. Recall that the first column of 𝗩̂(𝐶) is long-only with similar

weights for all characteristics. Hence, all factor weights based on 𝘃(𝐶)
1 will also have this property.

The second column, 𝘃(𝐶)
2 , is long in VAR and RVAR, and short in BETA, while the third column is

long in MOM and short in BM and NSI. As before, factor weights derived from these columns retain
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their structures.

The factor weight matrix 𝗪3D is (275×27)-dimensional matrix 𝗪3D. Figure 8 shows a subset of

rows of 𝗪3D as a heatmap. For each characteristic, I plot weights of the P1Q1, P1Q3, P1Q5, P3Q1,

P3Q3, P3Q5, P51Q1, P5Q3, and P5Q5 portfolios. Each column of the heatmap corresponds to the

weights of a factor 𝐹3D
𝑖𝑗𝑘. Positive weights are in blue, and negative weights are in red. While the

heatmap is complex, common structures emerge from the figure. The first nine columns show

factors 𝐹3D
1•• that are based on the first column of 𝘃(𝐶)

1 , the next nine columns correspond to factors

generated by 𝘃(𝐶)
2 , and the last nine columns are computed from 𝘃(𝐶)

3 . The heatmap shows that

factors 𝐹3D
2•• are dominated by VAR, RVAR, and BETA, while factors 𝐹3D

3•• depend on MOM, BM, and

NSI.

By the same token, factors 𝐹3D
•12 and 𝐹3D

•21 retain the HML and SMB structures of 𝗪(𝑃𝑄)
12 and 𝗪(𝑃𝑄)

21 .

For example, the Q5 weights of 𝐹3D
112,𝐹3D

212 and 𝐹3D
312 are positive, the Q3 weights are close to 0, and the

Q1 weights are negative. Similarly, 𝐹3D
121,𝐹3D

221 and 𝐹3D
321 have the same structure but for size quintiles

P5, P3, and P1. The other factors have similar interpretations.

For comparison, Figure 9 plots the corresponding weight matrix derived from a PCA estimation

with 27 factors. Aside from the first long-only factor, PCA weights show little common structure.

For example, factors are not related to particular characteristics but involve portfolios of many

characteristics. In contrast, 3D-PCA factors are associated with all characteristics (𝐹3D
1••) or small

subsets of characteristics (𝐹3D
2•• and 𝐹3D

3••). Moreover, the weights of most PCA factors do not have

clear patterns across size and characteristic quintiles. Figure C.9 shows heatmaps of factor weights

of the first nine PCA factors. Only two factors have easily interpretable patterns.13 The weights

of the second and fifth factors are related to size. 𝐹PC
2 reflect big-minus-small since its weights are

positive for P1 and negative for P5 quintiles. The weights of the fifth factor are positive for P1 and

P5 quintiles and negative for P3, creating a “size-curvature” pattern.

5.3. Time-variation in factor weights

In the out-of-sample estimation, factor models are estimated in rolling windows with ℎ data

points. In the benchmark specification, ℎ is set to 120 months. Figure 10 plots the first four 3D-PCA

factor weights (left column) and PCA weights (right column). Each panel shows the time series of all

𝑁=275 portfolio weights of a given factor and reports the average time series standard deviation

in the top left corner. The estimates of the weights of the first (long-only) 3D-PCA factors in Panel

13Since the signs of PCA factor weights are not identified, I normalize the signs so that the mean returns of PCA factors
are positive.
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A are stable over time; however, they “fan” out between 2000 and 2010. The pattern of the weights

of the first PCA factor (Panel B) is similar, but the estimates are not as stable over time. The average

standard deviation is 0.58% compared to 0.36% for the first 3D-PCA factor.

The behaviors of the second, third, and fourth 3D-PCA factors in Panels C, E, and G are similar.

The weights show little variation over time, and their average standard deviations are between 0.62%

and 0.79%. As for the first factor, the 2000 to 2010 period is associated with somewhat higher

instability. In contrast to the 3D-PCA estimates, the weights of the second to fourth PCA factors

are significantly more unstable throughout the sample. Their mean standard deviations range from

2.32% to 4.73% and are an order of magnitude higher than those of 3D-PCA factors. On average, the

standard deviations of the 27 PCA factors is 5.05% compared to 1.84% for 3D-PCA factors.

The results in Figure 10 are based on estimations in rolling windows of length ℎ=12 months.

Figure 11 plots the means standard deviation of all 27 factor weights of 3D-PCA (in blue) and PCA

(in orange) for different values of ℎ ranging from 12 to 600 months. 3D-PCA weights are more

stable than PCA weights for any choice of ℎ. The mean standard deviation of 3D-PCA is 4.07% for

subsamples with only 12 time series observations decreases to below 2% for ℎ=120 and below 1%

for ℎ=360. For PCA, the average standard deviation is 5.28% for ℎ=12 and declines slowly for

longer subsamples. Windows with about 360 observations are required for a standard deviation

that compares to 3D-PCA estimations with only 12 time series observations. These results suggest

that the estimation of 3D-PCA factor weights in shorter samples is more reliable than that of PCA

estimation.

As noted above, the period between 2000 and 2010 showed different behavior of subsample

weights in Figure 10. To investigate this behavior, I compute pairwise correlations of all 𝑁=275

portfolios in rolling windows of length 24. Panel A of Figure 12 plots the mean correlation across

time. Until the early 1990s, the average correlation tends to be above 0.8 but then declines to

between 0.7 and 0.8. In early 2000, there is a precipitous drop to below 0.5 before correlations rise

again until the end of the sample. The decline in the average correlation coincides with the fanning

out of portfolio weights in subsamples that include the early 2000s. To pinpoint the change in the

behavior of returns, I compute the cross-sectional standard deviation of portfolio returns in each

month. The time series of standard deviations are plotted in Panel B in orange while blue line shows

an MA(12). The cross-sectional standard deviation spikes in February 2000 to a value of 12.33; by

far the highest value in the sample.14 This change in the behavior of returns affects the estimation

14Portfolio returns exhibit an unusually large spread across most characteristic quintiles in February 2000, causing the
cross-sectional spread to spike.
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of factors in all subsamples, including February 2000. Since subsamples include 120 months, the

effect vanishes after 2000.

5.4. Factor returns

Table 5 shows the 3D-PCA and PCA factors with the highest annualized Sharpe ratios (in absolute

value). The annualized Sharpe ratios of the CRSP-VW index and Fama-French factors SMB, HML, RMW,

CMA, and MOM are included as benchmarks. The Sharpe ratio of the CRSP-VW index is 0.42. MOM

has the highest Sharpe ratio of 0.50 among the Fama-French factors, followed by RMW and CMA

with 0.46 and 0.42, respectively. The Sharpe ratios of HML and SMB are 0.32 and 0.20.

The 3D-PCA factor with the highest Sharpe ratios is 𝐹3D
112. Its in-sample SR is 1.23 is higher than

the SR of the CRSP-VW index by a factor of three and higher than the highest SR of the Fama-French

factors (MOM) by a factor of 2.5. Recall that 𝐹3D
112 combines the first column of 𝗩̂(𝑃) and the second

column of 𝗩̂(𝑄), which corresponds to “level” in the size dimension and “slope” in the characteristic

dimension. The factor 𝐹3D
122 has the second highest SR with 0.90 𝐹3D

122 combines the second columns

of 𝗩̂(𝑃) and 𝗩̂(𝑄) to create a “cross” factor that is long in the P1Q1 and P5Q5 quintiles and short in

P1Q5 and P5Q1 quintiles. This strategy has a positive return for most characteristics (see Table 1).

Combined with the long-only first column of 𝗩̂(𝐶), the resulting factor has a positive mean return

and a high Sharpe ratio. The third highest Sharpe ratio (in absolute terms) of -0.72 is due to 𝐹3D
113.

𝐹3D
113 combines the first column of and third columns of 𝗩̂(𝑃) and 𝗩̂(𝑄) to create a “‘curvature” factor

that is long in the Q1 and Q5 quintiles and short in Q2, Q3, and Q4 quintiles. On average, the return

of this factor is negative.

Note that the four factors with the highest Sharpe ratios are based on the first column of 𝗩̂(𝐶),

which implies an (approximately) equal weighting of all characteristics. The factor with the fifth high-

est Sharpe is 𝐹3D
222 and thus based on the second columns of 𝗩̂(𝐶), 𝗩̂(𝑃), and 𝗩̂(𝑄). Recall from Figure 6

that the second column of 𝗩̂(𝐶) is dominated by positive weights of VAR and RVAR and a large nega-

tive weight of BETA. Hence, 𝐹3D
222 has the interpretation of a “cross” strategy in the size/characteristic

dimensions that is long in VAR and RVAR and short in BETA. The 𝐹3D
223 and 𝐹3D

213 factors in Table 5 are

also based on the second column of 𝗩̂(𝐶) and also represent long VAR/RVAR-short BETA strategies.

The results for out-of-sample 3D-PCA factors are reported in Panel B. Note that except 𝐹3D
222, the

same factors have high Sharpe ratios out-of-sample as in-sample. Second, the out-of-sample Sharpe

ratios are comparable to their in-sample counterparts, which shows that the high in-sample Sharpe

ratios are not due to a look-ahead bias. In contrast, the Sharpe ratios of out-of-sample PCA factors

are generally lower than those of in-sample PCA factors. Three PCA factors have Sharpe ratios
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around 0.7, but only 𝐹PC
3 has a comparable Sharpe ratio out-of-sample.

Panel A of Table 6 shows the pairwise correlations of out-of-sample factors with their in-sample

counterparts. Although out-of-sample 3D-PCA models are estimated in relatively short rolling win-

dows with 120 monthly observations, their returns are generally closely aligned with returns of

full-sample factors. Except for 𝐹3D
213, the correlations of factors that are constructed using the first

and second columns of 𝗩̂(𝐶) shown in the first two rows of Panel A are over 0.9. The correlations of

3D-PCA factors that stem from the third column of 𝗩̂(𝐶) are somewhat lower but still at least 77%.

The average correlation across all 27 factors is 0.91. In contrast, correlations of most out-of-sample

and in-sample PCA and RP-PCA factors are substantially lower. Only the correlations of the first two

factors are above 90%. The correlations drop off quickly for higher-order factors, below 0.2 beyond

the seventh factor. These results suggest that the relative stability of out-of-sample 3D-PCA factor

weights shown in Figure 10 implies that out-of-sample factors are highly correlated with in-sample

factors. On the other hand, the instability of out-of-sample PCA weights yields out-of-sample factors

that do not resemble the in-sample factors.

Recall from (22) that the contribution of a 3D-PCA factor to the overall variation in the data is

given by its sum of squares, ∑𝑡𝐹2
𝑐𝑝𝑞. Table 7 reports the sum of squares for the 27 3D-PCA factors.

Consider first the results for in-sample factors in Panel A. As in many PCA applications, the first

factor captures the majority of the data variation. The sum of squares of 𝐹3D
111 is 573.92, which is

an order of magnitude larger than the second largest sum of squares, which is 28.52 for 𝐹3D
121. It is

instructive to compare the two factors that are created by slope factors in the P and Q dimensions

with the level factors in the other dimensions, i.e. 𝐹3D
121, which has a small-minus-big structure, and

𝐹3D
112, which has a high-minus-low structure (see Figure 6). The sum of squares of 𝐹3D

121 is 28.52 and

considerably higher than that of 𝐹3D
112 (5.45). Therefore, 𝐹3D

121 captures a higher portion of the data

variation than 𝐹3D
112. On the other hand, 𝐹3D

112 has a higher Sharpe ratio (see Table 5) and plays an

essential role in cross-sectional factor models (see Table 2). Hence, these two factors both play

important but different roles. Other factors that contribute to the variation in the data are 𝐹3D
212,𝐹3D

131,

and 𝐹3D
312. The pattern is similar for out-of-sample factors; the factors that capture the most variation

are identical, see Panel B.

6. Extension to (𝑛,𝑚)D-PCA

The 3D-PCAmodel can be extended to tensors of arbitrary dimensions Let𝓧𝓧𝓧 be a𝑚-dimensional

tensor of size (𝐼1×𝐼2×⋯×𝐼𝑚). Suppose we are interested in factoring only a subset 𝒩 of the dimen-

sions. Let 𝒩′ be the set of unfactored dimensions. Without loss of generality, assume that 𝓧𝓧𝓧 is
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arranged so that the first 𝑛 dimensions are factored. Hence 𝒩={1,…,𝑛} and 𝒩′ ={𝑛+1,…,𝑚}.

The implied factor model is called (𝑛,𝑚)D-PCA, where 𝑛 of 𝑚 dimensions are factored.

Let 𝐾𝑗, 𝑗∈𝒩 be the number of factors for the factored dimensions. Then, the partial-𝒩 Tucker

decomposition is given by

𝓧𝓧𝓧≈𝓕𝓕𝓕𝒩 ×1 𝗩(1)
𝒩 ×2 𝗩(2)

𝒩 ⋯ ×𝑛 𝗩(𝑛)
𝒩 (28)

where 𝗩(𝑗)
𝒩 are (𝐼𝑗×𝐾𝑗)-dimensional matrices and 𝓕𝓕𝓕𝒩 is a (𝐾1×⋯ ×𝐾𝑛 ×𝐼𝑛+1 ×⋯ ×𝐼𝑚)-dimensional

tensor. Hence, the factored dimensions of 𝓕𝓕𝓕𝒩 are of length 𝐾𝑗 while the unfactored dimensions

have the same size as 𝓧𝓧𝓧, 𝐼𝑗. As for 3D-PCA, the factors of the (𝑛,𝑚)D-PCA model are given by 𝓕𝓕𝓕𝒩

and can be constructed as linear combinations of the elements of 𝓧𝓧𝓧:

𝓕𝓕𝓕𝒩 =𝓧𝓧𝓧 ×1 𝗩(1)⊺
𝒩 ×2 𝗩(2)⊺

𝒩 ⋯ ×𝑛 𝗩(𝑛)⊺
𝒩 . (29)

As before, the columns of 𝗩(1)⊺
𝒩 ,…,𝗩(𝑛)⊺

𝒩 matrices are the building blocks of factor weights. The

difference of (𝑛,𝑚)D-PCA compared to 3D-PCA is that the factor weights are based on a subset of

the 𝑚 dimensions of 𝓧𝓧𝓧.

The factor tensor 𝓕𝓕𝓕𝒩 can be written as a matrix by folding the unfactored dimensions in 𝒩′ as

rows and the factored dimensions in 𝒩 as columns: 𝗙𝒩 =mat𝒩(𝓕𝓕𝓕𝒩). The matrix of factors 𝗙𝒩 has

∏𝑘∈𝒩′ 𝐼𝑘 rows and ∏𝑗∈𝒩𝐾𝑗 columns. Each column of 𝗙𝒩 corresponds to one of the ∏𝑗∈𝒩𝐾𝑗 factors.

We can apply this model to the data set used in this paper. 𝓧𝓧𝓧 is a 𝑚=4-dimensional panel with

dimensions time, characteristics, size-quintiles, and characteristic-quintiles. The 3D-PCA model in

section 4 factored all dimensions but time; hence it is equivalent to a (3,4)D-PCA model. As an

alternative, consider the case where only the size-quintile and characteristic-quintile dimensions

are factored, yielding a (2,4)D-PCA model. 𝓕𝓕𝓕𝒩 is (𝑇×𝐶×𝐾𝑃×𝐾𝐶)-dimensional factor tensor and the

factor matrix 𝗙𝒩 =mat𝒩(𝓕𝓕𝓕𝒩) has 𝑇𝐶 rows and 𝐾𝑃𝐾𝑄 columns. In the 3D-PCA model, the factor

matrix 𝗙(𝑇) is (𝑇×𝐾𝐶𝐾𝑃𝐾𝑄)-dimensional so that each row corresponds to factors in a given month.

In contrast, in the (2,4)D-PCA model, each row of 𝗙𝒩 corresponds to the 𝐾𝑃𝐾𝑄 factors of a charac-

teristic in a month. In other words, factors are estimated for each characteristic in each month. The

interpretation of the factors is as follows. Suppose one factor’s weights have a high-minus-low struc-

ture across characteristic quintiles. Then, the corresponding column of 𝗙𝒩 includes monthly factor

observation of this high-minus-low factor for all characteristics. For example, the BM elements rep-

resent the time series of the estimated high-minus-low factor for the book-to-market ratio, which is

related to the Fama-French HML factor. The difference is that factor weights are estimated by the

(2,4)D-PCA model rather than fixed. By the same token, RMW, CMA, and MOM are related to the OP,
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INV, and MOM entries of the columns of 𝗙𝒩 .

Figure 13 shows the estimates of the 𝗩̂(𝑃)
𝒩 and 𝗩̂(𝑄)

𝒩 matrices, which are almost identical to the

corresponding matrices of the 3D-PCA shown in Figure 6. Hence, they have the same level, slope,

and curvature interpretation, so that factor weights, given by the outer products of combinations

of columns of 𝗩̂(𝑃)
𝒩 and 𝗩̂(𝑄)

𝒩 , are similar to those of 3D-PCA shown in Figure 7. Table 8 shows

the Sharpe ratios of the nine in-sample and out-of-sample factors for each characteristic. The 𝐹𝒩
11

factor is a combination of the first columns of 𝗩̂(𝑃)
𝒩 and 𝗩̂(𝑄)

𝒩 . Since both columns are long-only and

(approximately) equal-weighted, 𝐹𝒩
11 is (approximately) an equal-weighted average of the 25 double-

sorted portfolios for each characteristic. The Sharpe ratios range from 0.41 for NSI to 0.51 for

REV. The combination of the first column of 𝗩̂(𝑃)
𝒩 and the second column of 𝗩̂(𝑄)

𝒩 yields a factor, 𝐹𝒩
12 ,

with weights that have the familiar high-minus-low pattern along the characteristic dimension. As

mentioned above, this factor is related to the Fama-French factors, whose Sharpe ratios are reported

in Table 5. The in-sample Sharpe of BM-𝐹𝒩
12 is 0.48, which is substantially higher than that of HML

(0.32). In fact, Sharpe ratios of all 𝐹𝒩
12 factors are higher than those of the corresponding Fama-

French factors: 0.52 for OP-𝐹𝒩
12 compared to 0.46 for RMW, 0.67 for INV-𝐹𝒩

12 compared to 0.45 for

CMA, and 0.69 for MOM-𝐹𝒩
12 compared to 0.50 for MOM.

The Sharpe ratios of the 𝐹𝒩
13 are all negative. Since the weights underlying 𝐹𝒩

13 have a convex

curvature structure along characteristic quintiles, the inverse weights that are long in the middle

quintiles and short in the top and bottom quintiles generate a factor with a positive mean return.

The three highest (absolute) in-sample Sharpe ratios in Panel A are due to 𝐹𝒩
13 factors. The NSI-𝐹𝒩

13

factor has the highest (absolute) Sharpe ratio among all factors with -0.94, followed by RVAR-𝐹𝒩
13 and

VAR-𝐹𝒩
13 with Sharpe ratios of -0.86 and -0.78, respectively. Sharpe ratios of the other (2,4)D-PCA

factors are generally smaller except for VAR and RVAR 𝐹𝒩
22 and 𝐹𝒩

23 factors, which are intersection of

slopes in size and characteristic quintiles and slope in size and curvature in characteristic quintiles,

respectively. The Sharpe ratios of out-of-sample (2,4)D-PCA follow the same patterns as their in-

sample counterparts, confirming that the recursive estimation in short rolling windows yields stable

results.

7. Conclusion

This paper considers an estimation method, 3D-PCA, for latent factors in multidimensional pan-

els that exploits the structure of the data set. Factor weights are constructed from a small number

of dimension-specific building blocks. The implied factor weights are subject to a set of constraints.
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Consequently, 3D-PCA has a relatively small number of free parameters compared to standard mod-

els based on PCA. The model is an implication of the Tucker tensor decomposition, which general-

izes the matrix SVD to higher dimensions. The weights and factors can be estimated by numerical

recursive methods.

I estimate 3D-PCA using a 4-dimensional panel of time series of size and characteristic-sorted

portfolio returns for a set of characteristics. The estimated building blocks that determine the factor

weights have familiar level, slope, and curvature patterns. The factor weights are given by interac-

tions of level, slope, and curvature across size, and characteristic quintiles. The factor weights can

be estimated in short samples and are stable over time. In contrast, PCA requires longer samples

and exhibits instability over time.

3D-PCA have substantially higher in-sample and out-of-sample Sharpe ratios than Fama-French

and PCA factors. The 3D-PCA factors with the highest Sharpe ratios are related to slope and cur-

vature along characteristic quintiles. Moreover, 3D-PCA factor models capture the cross-section of

expected return in in-sample and out-of-sample estimations. Parsimonious models with 3D-PCA

factors yield smaller pricing errors than larger models with Fama-French or PCA factors.
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Table 1: Long-short portfolios

Mean Std. Dev.
𝑐 SMB𝑐 HML𝑐 CROSS𝑐 SMB𝑐 HML𝑐 CROSS𝑐

BM 2.23 4.93 9.10 15.27 12.59 17.61
OP 3.91 3.86 0.22 14.19 9.16 14.30
INV 2.58 4.17 4.97 14.58 8.05 13.99
MOM 2.91 10.43 8.30 13.31 17.22 16.21
REV 2.42 4.06 3.17 13.18 10.41 15.83
SREV 1.30 7.37 9.26 13.84 12.96 15.51
AC 3.10 2.61 -1.28 15.68 4.91 12.86
BETA 3.33 0.70 -0.00 13.42 16.86 16.86
NSI 3.28 5.22 4.72 15.82 9.28 13.64
VAR 2.58 4.48 13.70 14.69 19.55 17.52
RVAR 2.60 5.31 13.10 14.47 17.93 16.97
Mean 2.75 4.83 5.93 14.40 12.63 15.57

Note: The table reports annualized means and standard deviations of long-short portfolios. SMB𝑐 is the difference of the small
stock portfolios (P5) and the big stock portfolios (P1) of the double sort of characteristic 𝑐 averaged of all characteristic quintiles.
HML𝑐 is constructed accordingly but is the difference of Q5 and Q1 portfolios averaged over all size quintiles. CROSS𝑐 is the is
the average of the P1Q1 and P5Q5 portfolios minus the average of the P1Q5 and P5Q1 portfolios. The sample is from July 1967
to October 2023.



Table 2: Cross-sectional 𝑅2
𝑥𝑠 and Sharpe ratios

3D-PCA Fama-French PCA RP-PCA
𝐿 𝑅2

𝑥𝑠 SR 𝐹𝑖 𝑅2
𝑥𝑠 SR 𝐹𝑖 𝑅2

𝑥𝑠 SR 𝐹𝑖 𝑅2
𝑥𝑠 SR 𝐹𝑖

A: In-sample

1 -0.45 0.46 𝐹3D
111 -0.58 0.42 MKT -0.45 0.45 𝐹PC

1 -0.45 0.46 𝐹RP
1

2 0.37 1.33 𝐹3D
112 0.01 0.78 CMA 0.18 0.85 𝐹PC

3 -0.04 0.93 𝐹RP
3

3 0.65 1.57 𝐹3D
313 0.06 1.00 MOM 0.39 1.04 𝐹PC

4 0.38 1.03 𝐹RP
2

4 0.67 1.59 𝐹3D
312 0.19 1.01 SMB 0.53 1.07 𝐹PC

2 0.58 1.24 𝐹RP
4

5 0.68 1.60 𝐹3D
131 0.57 1.21 RMW 0.62 1.31 𝐹PC

7 0.65 1.68 𝐹RP
7

6 0.76 1.95 𝐹3D
122 0.58 1.21 HML 0.70 1.37 𝐹PC

5 0.74 1.74 𝐹RP
5

B: Out-of-sample

1 -0.53 0.50 𝐹3D
111 -0.70 0.46 MKT -0.55 0.48 𝐹PC

1 -0.54 0.49 𝐹RP
1

2 0.43 1.17 𝐹3D
112 0.02 0.85 CMA 0.27 0.92 𝐹PC

3 0.08 0.88 𝐹RP
3

3 0.65 1.29 𝐹3D
312 0.09 1.02 MOM 0.42 1.03 𝐹PC

4 0.28 1.03 𝐹RP
4

4 0.72 1.65 𝐹3D
122 0.17 1.02 SMB 0.49 1.04 𝐹PC

2 0.43 1.04 𝐹RP
2

5 0.76 1.67 𝐹3D
131 0.57 1.23 RMW 0.50 1.04 𝐹PC

5 0.46 1.13 𝐹RP
10

6 0.76 1.68 𝐹3D
133 0.57 1.23 HML 0.51 1.04 𝐹PC

6 0.48 1.18 𝐹RP
19

Note: The table shows cross-sectional 𝑅2
𝑥𝑠 and annualized Sharpe ratios of models with 3D-PCA factors (𝐹3D

𝑐𝑝𝑞), Fama-French
factors (MKT, SMB, HML, RMW, CMA, MOM), PCA factors (𝐹PC

𝑗 ), and RP-PCA factors (𝐹RP
𝑗 ). Pricing errors 𝛼𝑖 are the intercepts in

time series regressions of portfolio excess returns on factors. 𝐿 is the number of factors and 𝑅2
𝑥𝑠 =1−

1
𝑁 ∑𝑁

𝑖=1𝛼2
𝑖

Var𝑥𝑠(𝑅̄𝑖) . 3D-PCA factors
are based on a partial Tucker decomposition with 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =3 factors. PCA and RP-PCA factors are based on models with
𝐾𝐶𝐾𝑃𝐾𝑄 =27 factors. The columns denoted 𝐹𝑖 show the 𝐿-th factor that is added to the model with 𝐿−1 factors. Panel A shows
results for in-sample factors, and Panel B reports results for out-of-sample factors estimated in rolling samples of length ℎ=120
months. The sample is from July 1967 to October 2023.



Table 3: Cross-sectional 𝑅2
𝑥𝑠 for subsets of 3D-PCA factors

𝐾𝐶 =1 𝐾𝐶 =2 𝐾𝐶 =3
𝐾𝑃 =1 𝐾𝑃 =2 𝐾𝑃 =3 𝐾𝑃 =1 𝐾𝑃 =2 𝐾𝑃 =3 𝐾𝑃 =1 𝐾𝑃 =2 𝐾𝑃 =3

A: In-sample 𝐿=4
𝐾𝑄 =1 -0.45 -0.41 -0.36 -0.52 -0.35 -0.23 -0.52 -0.07 0.15
𝐾𝑄 =2 0.37 0.47 0.55 0.56 0.56 0.58 0.67 0.67 0.67
𝐾𝑄 =3 0.46 0.60 0.56 0.56 0.56 0.58 0.67 0.67 0.67

B: In-sample 𝐿=6
𝐾𝑄 =1 -0.45 -0.41 -0.36 -0.52 -0.35 -0.22 -0.52 -0.09 0.26
𝐾𝑄 =2 0.37 0.47 0.65 0.56 0.60 0.67 0.70 0.70 0.76
𝐾𝑄 =3 0.46 0.62 0.70 0.58 0.65 0.67 0.67 0.71 0.76

C: Out-of–sample 𝐿=4
𝐾𝑄 =1 -0.53 -0.50 -0.40 -0.54 -0.44 -0.08 -0.56 -0.37 0.03
𝐾𝑄 =2 0.43 0.57 0.64 0.51 0.58 0.64 0.65 0.72 0.72
𝐾𝑄 =3 0.43 0.57 0.64 0.51 0.58 0.64 0.66 0.72 0.72

D: Out-of–sample 𝐿=6
𝐾𝑄 =1 -0.53 -0.50 -0.40 -0.54 -0.44 -0.04 -0.56 -0.39 0.11
𝐾𝑄 =2 0.43 0.57 0.69 0.51 0.60 0.69 0.64 0.72 0.76
𝐾𝑄 =3 0.43 0.60 0.69 0.48 0.62 0.69 0.66 0.73 0.76

Note: The table shows cross-sectional 𝑅2
𝑥𝑠 for models with subsets of 3D-PCA factors for different combinations of 𝐾𝐶,𝐾𝑃, and

𝐾𝑄. The numbers of factors in the time series regressions are 𝐿=4 and 𝐿=6. Panels A and B show results for in-sample factors,
and Panels C and D report results for out-of-sample factors estimated in rolling samples of length ℎ=120 months. The sample
is from July 1967 to October 2023.



Table 4: Cross-sectional 𝑅2
𝑥𝑠 – Rolling windows of length ℎ

Number of factors 𝐿
ℎ 2 4 6 8 10

A: 3D-PCA
3 0.42 0.48 0.51 0.53 0.54
6 0.46 0.55 0.58 0.59 0.60

12 0.45 0.65 0.67 0.68 0.69
36 0.40 0.66 0.75 0.76 0.78
60 0.39 0.61 0.69 0.76 0.78

120 0.43 0.72 0.76 0.76 0.76
180 0.27 0.50 0.60 0.67 0.70
360 0.01 0.33 0.46 0.53 0.55

B: PCA
3 -0.33 -0.23 -0.19 -0.17 -0.17
6 -0.23 -0.11 -0.07 -0.05 -0.04

12 -0.13 -0.10 -0.09 -0.08 -0.08
36 -0.12 0.04 0.09 0.12 0.12
60 0.09 0.35 0.41 0.43 0.44

120 0.26 0.48 0.50 0.51 0.51
180 -0.13 0.34 0.46 0.48 0.49
360 -0.51 0.18 0.29 0.34 0.37

Note: The table shows cross-sectional 𝑅2
𝑥𝑠 of models with out-of-sample 3D-PCA factors and PCA factors for different window

lengths ℎ. 𝐿 is the number of factors. 3D-PCA factors are based on a partial Tucker decomposition with 𝐾𝐶=𝐾𝑃=𝐾𝑄=3 factors.
PCA and RP-PCA factors are based on models with 𝐾𝐶𝐾𝑃𝐾𝑄 =27 factors. The sample is from July 1967 to October 2023.



Table 5: 3D-PCA factors – Sharpe ratios

3D-PCA PCA Fama-French
𝐹3D
𝑐𝑝𝑞 SR 𝐹PC

𝑖 SR 𝐹FF
𝑖 SR

A: In-sample

𝐹3D
112 1.23 𝐹PC

16 0.71 MOM 0.50
𝐹3D
122 0.90 𝐹PC

3 0.71 RMW 0.46
𝐹3D
113 −0.72 𝐹PC

7 0.70 CMA 0.45
𝐹3D
123 −0.58 𝐹PC

4 0.57 MKT 0.42
𝐹3D
222 0.46 𝐹PC

21 0.49 HML 0.32
𝐹3D
111 0.46 𝐹PC

11 0.47 SMB 0.20
𝐹3D
223 −0.43 𝐹PC

1 0.45
𝐹3D
213 −0.41 𝐹PC

19 0.40

B: Out-of-sample

𝐹3D
112 1.08 𝐹PC

3 0.80 CMA 0.50
𝐹3D
122 0.85 𝐹PC

1 0.48 RMW 0.48
𝐹3D
113 −0.79 𝐹PC

4 0.40 MKT 0.46
𝐹3D
123 −0.72 𝐹PC

27 0.34 MOM 0.43
𝐹3D
223 −0.55 𝐹PC

10 −0.26 HML 0.30
𝐹3D
111 0.50 𝐹PC

7 0.23 SMB 0.20
𝐹3D
213 −0.45 𝐹PC

2 0.21
𝐹3D
132 0.43 𝐹PC

20 −0.20

Note: The table shows the 3D-PCA and PCA factors with the highest annualized Sharpe ratios (in absolute value) and the Sharpe
ratios of the Fama-French factors SMB, HML, RMW, CMA, and MOM. The 3D-PCA factors are derived from a partial Tucker decom-
position with 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =3. The sample is from July 1967 to October 2023.



Table 6: Correlation of in-sample and out-of-sample factors

A: 3D-PCA

𝐹3D
•11 𝐹3D

•12 𝐹3D
•13 𝐹3D

•21 𝐹3D
•22 𝐹3D

•23 𝐹3D
•31 𝐹3D

•32 𝐹3D
•33

𝐹3D
1•• 1.00 0.92 0.93 0.99 0.96 0.97 0.98 0.97 0.98

𝐹3D
2•• 0.91 0.98 0.87 0.95 0.94 0.92 0.92 0.94 0.92

𝐹3D
3•• 0.89 0.84 0.83 0.77 0.80 0.82 0.86 0.79 0.80

B: PCA

𝐹PC
1 to 𝐹PC

9 1.00 0.95 0.83 0.59 0.49 0.49 0.31 0.18 0.05
𝐹PC
10 to 𝐹PC

20 0.16 0.09 0.16 0.04 -0.01 -0.01 0.09 0.14 0.14
𝐹PC
19 to 𝐹PC

27 0.11 0.01 0.03 -0.03 -0.02 0.00 0.06 0.07 0.08

C: RP-PCA

𝐹RP
1 to 𝐹RP

9 1.00 0.90 0.75 0.53 0.66 0.39 0.39 0.08 0.23
𝐹RP
10 to 𝐹RP

20 0.18 0.15 0.20 0.15 0.06 -0.01 0.02 0.14 0.07
𝐹RP
19 to 𝐹RP

27 0.14 0.07 0.06 -0.02 0.07 0.13 0.13 0.01 0.01

Note: The tables reports correlations of in-sample and corresponding out-of-sample 3D-PCA factors (Panel A), PCA factors (Panel
B), and RP-PCA factors (Panel C). 𝐹3D

𝑐𝑝𝑞 factor corresponding to the 𝑐-th column of 𝗩(𝐶)⊺ , the 𝑝-th column of 𝗩(𝑃)⊺ , and the 𝑞-th
column of 𝗩(𝑄)⊺ . The • symbol can take values of 1, 2, or 3. The first three rows in Panels B and C report correlations of the
first nine PCA and RP-PCA factors, the second and third rows show correlations for the 10th to 18th and 19th to 27th factors,
respectively. The sample is from July 1967 to October 2023.



Table 7: 3D-PCA factors – Sums of 𝐹2
𝑡

𝐹3D
•11 𝐹3D

•12 𝐹3D
•13 𝐹3D

•21 𝐹3D
•22 𝐹3D

•23 𝐹3D
•31 𝐹3D

•32 𝐹3D
•33

A: In-sample
𝐹3D
1•• 573.92 5.45 3.48 28.52 0.54 0.50 5.80 0.35 0.33

𝐹3D
2•• 0.50 15.15 1.05 0.35 1.07 0.26 0.11 0.53 0.20

𝐹3D
3•• 0.68 5.03 0.73 0.33 0.70 0.22 0.13 0.29 0.14

B: Out-of-sample
𝐹3D
1•• 488.71 5.05 3.05 24.67 0.51 0.45 5.47 0.31 0.28

𝐹3D
2•• 0.35 13.33 0.82 0.29 0.99 0.22 0.10 0.44 0.18

𝐹3D
3•• 1.17 3.90 0.86 0.33 0.60 0.22 0.14 0.29 0.15

Note: The table reports means of squared factors of the 27 in-sample and out-of-sample 3D-PCA factors that are derived from a
partial Tucker decomposition with 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =3. 𝐹3D

𝑐𝑝𝑞 factor corresponding to the 𝑐-th column of 𝗩(𝐶)⊺ , the 𝑝-th column of
𝗩(𝑃)⊺ , and the 𝑞-th column of 𝗩(𝑄)⊺ . The • symbol can take values of 1, 2, or 3. The sample is from July 1967 to October 2023.



Table 8: (2,4)D-PCA – Sharpe ratios of factors

𝐹𝒩
11 𝐹𝒩

12 𝐹𝒩
13 𝐹𝒩

21 𝐹𝒩
22 𝐹𝒩

23 𝐹𝒩
31 𝐹𝒩

32 𝐹𝒩
33

A: In-sample
BM 0.47 0.48 -0.29 -0.09 0.43 -0.22 -0.13 0.08 0.03
OP 0.46 0.52 -0.36 0.04 -0.03 -0.34 -0.07 0.04 -0.31
INV 0.48 0.67 -0.44 -0.07 0.26 -0.46 -0.02 0.17 0.09
MOM 0.43 0.69 -0.18 -0.02 0.27 -0.20 -0.02 0.11 -0.06
REV 0.51 0.47 -0.22 -0.07 0.12 -0.13 -0.11 0.09 -0.09
SREV 0.42 0.67 -0.34 -0.13 0.30 0.06 -0.24 -0.07 -0.08
AC 0.45 0.74 -0.42 -0.03 -0.06 -0.18 -0.06 0.30 -0.04
BETA 0.49 0.11 -0.53 -0.01 0.01 -0.16 -0.02 -0.00 0.00
NSI 0.41 0.74 -0.94 0.02 0.24 -0.07 -0.06 0.15 -0.18
VAR 0.46 0.35 -0.78 -0.06 0.70 -0.61 -0.15 0.37 -0.05
RVAR 0.46 0.43 -0.86 -0.06 0.72 -0.68 -0.14 0.29 0.15

B: Out-of-sample
BM 0.50 0.43 -0.33 -0.10 0.40 -0.20 -0.15 0.17 -0.11
OP 0.49 0.58 -0.45 0.05 0.06 -0.30 -0.13 -0.05 -0.29
INV 0.51 0.65 -0.45 -0.07 0.14 -0.49 -0.05 0.33 0.03
MOM 0.47 0.63 -0.28 -0.01 0.37 -0.14 -0.13 0.18 -0.05
REV 0.55 0.38 -0.19 -0.09 0.02 -0.18 -0.13 0.10 -0.06
SREV 0.46 0.58 -0.45 -0.12 0.26 0.06 -0.35 -0.24 -0.06
AC 0.48 0.56 -0.42 -0.02 -0.05 -0.26 -0.09 0.32 -0.07
BETA 0.53 0.12 -0.52 -0.05 0.03 -0.18 -0.05 0.05 0.12
NSI 0.45 0.65 -0.91 0.04 0.25 -0.25 -0.07 0.18 -0.17
VAR 0.50 0.31 -0.80 -0.07 0.70 -0.77 -0.27 0.44 -0.19
RVAR 0.50 0.39 -0.91 -0.07 0.72 -0.82 -0.25 0.35 0.02

Note: The tables reports annualized Sharpe ratios of in-sample and out-of-sample (2,4)D-PCA factors The sample is from July
1967 to October 2023.



Figure 1: Means of portfolio returns
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Notes: The figure shows heatmaps of annualized mean returns of the 275 portfolios. Each panel shows the 5×5-double sorted
portfolios of a characteristic. The bottom-right panel shows the mean across all 11 characteristics. Portfolios with means that
are lower (higher) than the mean of the CRSP-VW return (6.61%) are in red (blue). The sample is from July 1967 to October 2023.



Figure 2: Time series 𝑅2 of 3D-PCA s
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Notes: This figure plots 𝑅2 of 3D-PCA estimated in rolling windows of length ℎ=120. The 𝑅2 is defined as 𝑅2=1−‖𝓔𝓔𝓔‖/Var(𝓧𝓧𝓧),
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Figure 3: Pricing errors – Characteristics
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Notes: The figure shows aggregated pricing errors based on a model with 3D-PCA (in blue), Fama-French (in orange), and PCA
(in black) factors. The number of factors in the cross-sectional models is set to 𝐿=6. Pricing errors are aggregated by the 11
characteristics by computing the RMSPE of the 5×5-double sorted portfolios of each characteristic. Factors are derived from
out-of-sample estimations of a 3D-PCA model with 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =3 and a PCA model with 27 factors. The sample is from July
1967 to October 2023.



Figure 4: Pricing errors – Quintile portfolios
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Notes: The figure shows heatmaps of pricing errors aggregated by the 25 size/characteristic quantile combinations. The number
of factors in the cross-sectional models is set to 𝐿=6. Factors are derived from out-of-sample estimations of a 3D-PCA model
with 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =3 and a PCA model with 27 factors. The sample is from July 1967 to October 2023.



Figure 5: Fitted vs. actual means of corner portfolios

A: 3D-PCA (𝐿=6)
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B: 3D-PCA (𝐿=4)
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C: Fama-French (𝐿=6)
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D: PCA (𝐿=6)
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Notes: The figure shows fitted mean returns on the 𝑥-axis and means of observed returns on the 𝑦-axis. The plots include the
corner portfolios P1Q1, P1Q5, P5Q1, and P5Q5 of all 11 characteristics. Factors are derived from out-of-sample estimations of a
3D-PCA model with 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =3 and a PCA model with 27 factors. The number of factors in the cross sectional models is
set to 𝐿=6 in Panels A, C, and D to 𝐿=4 in Panel B. The sample is from July 1967 to October 2023.



Figure 6: 3D-PCA – 𝗩̂(𝑖) matrices
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Notes: The heatmaps shows estimates of the 𝗩̂(𝐶), 𝗩̂(𝑃), and 𝗩̂(𝑄) matrices of the 3D-PCA model (14) with 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =3.
Negative values are plotted in red and positive ones in blue. The model is estimated by HOOI. The sample is from July 1967 to
October 2023.



Figure 7: 3D-PCA weights 𝗪(𝑃𝑄)
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Notes: The heatmaps shows the (5×5) matrices 𝗪(𝑃𝑄)
𝑝𝑞 , 𝑝,𝑞=1,2,3 that are given by the outer product of the column vectors of

𝗩̂(𝑃), and 𝗩̂(𝑄)∶𝗪(𝑃𝑄)
𝑝𝑞 =𝘃(𝑃)
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𝑞 . 𝗩̂(𝑃), and 𝗩̂(𝑄) are from the estimation of a partial Tucker model (13) with 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =3.

Negative values are plotted in red and positive ones in blue. The model is estimated by HOOI. The sample is from July 1967 to
October 2023.



Figure 8: 3D-PCA weight matrices 𝗪̂3D
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Figure 9: PCA weight matrices 𝗪̂PC
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OP-P5Q1 OP-P5Q1
OP-P5Q3 OP-P5Q3
OP-P5Q5 OP-P5Q5
INV-P1Q1 INV-P1Q1
INV-P1Q3 INV-P1Q3
INV-P1Q5 INV-P1Q5
INV-P3Q3 INV-P3Q3
INV-P5Q1 INV-P5Q1
INV-P5Q3 INV-P5Q3
INV-P5Q5 INV-P5Q5

MOM-P1Q1 MOM-P1Q1
MOM-P1Q3 MOM-P1Q3
MOM-P1Q5 MOM-P1Q5
MOM-P3Q3 MOM-P3Q3
MOM-P5Q1 MOM-P5Q1
MOM-P5Q3 MOM-P5Q3
MOM-P5Q5 MOM-P5Q5
REV-P1Q1 REV-P1Q1
REV-P1Q3 REV-P1Q3
REV-P1Q5 REV-P1Q5
REV-P3Q3 REV-P3Q3
REV-P5Q1 REV-P5Q1
REV-P5Q3 REV-P5Q3
REV-P5Q5 REV-P5Q5

SREV-P1Q1 SREV-P1Q1
SREV-P1Q3 SREV-P1Q3
SREV-P1Q5 SREV-P1Q5
SREV-P3Q3 SREV-P3Q3
SREV-P5Q1 SREV-P5Q1
SREV-P5Q3 SREV-P5Q3
SREV-P5Q5 SREV-P5Q5

AC-P1Q1 AC-P1Q1
AC-P1Q3 AC-P1Q3
AC-P1Q5 AC-P1Q5
AC-P3Q3 AC-P3Q3
AC-P5Q1 AC-P5Q1
AC-P5Q3 AC-P5Q3
AC-P5Q5 AC-P5Q5

BETA-P1Q1 BETA-P1Q1
BETA-P1Q3 BETA-P1Q3
BETA-P1Q5 BETA-P1Q5
BETA-P3Q3 BETA-P3Q3
BETA-P5Q1 BETA-P5Q1
BETA-P5Q3 BETA-P5Q3
BETA-P5Q5 BETA-P5Q5

NSI-P1Q1 NSI-P1Q1
NSI-P1Q3 NSI-P1Q3
NSI-P1Q5 NSI-P1Q5
NSI-P3Q3 NSI-P3Q3
NSI-P5Q1 NSI-P5Q1
NSI-P5Q3 NSI-P5Q3
NSI-P5Q5 NSI-P5Q5
VAR-P1Q1 VAR-P1Q1
VAR-P1Q3 VAR-P1Q3
VAR-P1Q5 VAR-P1Q5
VAR-P3Q3 VAR-P3Q3
VAR-P5Q1 VAR-P5Q1
VAR-P5Q3 VAR-P5Q3
VAR-P5Q5 VAR-P5Q5

RVAR-P1Q1 RVAR-P1Q1
RVAR-P1Q3 RVAR-P1Q3
RVAR-P1Q5 RVAR-P1Q5
RVAR-P3Q3 RVAR-P3Q3
RVAR-P5Q1 RVAR-P5Q1
RVAR-P5Q3 RVAR-P5Q3
RVAR-P5Q5 RVAR-P5Q5



Notes for Figures 8 and 9: The figures show heatmaps of factor weights of P1Q1, P1Q3, P1Q5, P3Q1, P3Q3,
P3Q5, P51Q1, P5Q3, and P5Q5 portfolios of the 11 characteristics. Figures 8 shows weights of the 27 3D-PCA
factors based ona partial Tucker decomposition with 𝐾𝐶=𝐾𝑃=𝐾𝑄=3 and Figures 9 shows weights based on
PCA with 27 factors. The 3D-PCA factor 𝐹𝑐𝑝𝑞 is based on the 𝑐-th column of 𝗩(𝐶)⊺ , the 𝑝-th column of 𝗩(𝑃)⊺ ,
and the 𝑞-th column of 𝗩(𝑄)⊺ . Negative values are plotted in red and positive ones in blue. The sample is
from July 1967 to October 2023.



Figure 10: Weights – Rolling windows
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Notes: The figure plots the time series of factor weights estimated in rolling samples of length ℎ= 120 of 3D-PCA factors
𝘄3D

111,𝘄3D
112,𝘄3D

121 and 𝘄3D
122 (left panels) and the first four PCA (right panels) factors. The 3D-PCA factor 𝐹𝑐𝑝𝑞 is based on the

𝑐-th column of 𝗩(𝐶)⊺ , the 𝑝-th column of 𝗩(𝑃)⊺ , and the 𝑞-th column of 𝗩(𝑄)⊺ . 3D-PCA factors are based on a partial Tucker
decomposition with 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =3 while PCA factor are based on an estimation with 27 factors. Each plot shows the time
series of the factor weights of the 275 portfolios. 𝜎̄ is the average standard deviation of the 275 time series in each plot. The
sample is from July 1967 to October 2023.



Figure 11: Std. dev. of weights in rolling windows of length ℎ
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Notes: The figure plots the standard deviations of out-of-sample 3D-PCA (in blue) and PCA (in orange) factors for different window
lenghts ℎ ranging from 12 to 720 months. 3D-PCA factors are based on a partial Tucker decomposition with 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =3
while PCA factor are based on an estimation with 27 factors. The sample is from July 1967 to October 2023.



Figure 12: Correlations and standard deviations over time

A: Rolling 2-year windows
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Notes: The top panel plots correlations of portfolios in rolling 24-month samples. In each subsample I compute the correlation
matrix of all 275 portfolios and compute the mean correlation by characteristic. The plot shows the time series of mean correla-
tion of the 11 characteristics. The bottom panel shows the 12-month moving average of the cross-sectional standard deviation
across all 275 portfolios in each month. The sample is from July 1967 to October 2023.



Figure 13: (2,4)D-PCA – 𝗩̂(𝑖) matrices

A: 𝗩̂(𝑃)
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B: 𝗩̂(𝑄)
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Notes: The heatmaps shows estimates of the 𝗩̂(𝑃) and 𝗩̂(𝑄) matrices of the (2,4)D-PCA model (29) with 𝐾𝑃 =𝐾𝑄 =3. Negative
values are plotted in red and positive ones in blue. The model is estimated by HOOI. The sample is from July 1967 to October
2023.



Appendix A. Appendix

Appendix A.1. Tensor operations

Let 𝓧𝓧𝓧 be a (𝑇×𝑁×𝐶)-dimensional tensor. A 3-dimensional tensor can expressed as collections
of one-dimensional fibers and 2-dimensional slices. Fibers are vectors and correspond to rows and
columns of a matrix, while slices are matrices. Fibers are defined by fixing every index but one
so that 𝓧𝓧𝓧 has fibers along each mode, denoted by 𝘅(𝑛𝑐)𝑡,𝘅(𝑡𝑐)𝑛, and 𝘅(𝑡𝑛)𝑐, respectively.15 Slices are
created by fixing all but two indices and are written as 𝗫(𝑡)𝑛𝑐,𝗫(𝑛)𝑡𝑐,𝗫(𝑐)𝑡𝑛.16

A tensor can be written as amatrix by unfolding one dimension. For example, unfolding𝓧𝓧𝓧 along
the first dimension arranges the dimension-1 fibers as columns of the unfolded matrix 𝗫(1), which
is of dimension (𝑇×𝑁𝐶). Correspondingly, unfolding 𝓧𝓧𝓧 along the second and third dimensions
yields a (𝑁×𝑇𝐶)-matrix 𝗫(2) and a (𝐶×𝑇𝑁)-matrix 𝗫(3), respectively.

The inner product of two tensors of equal dimensions is the sum of the products of the indi-
vidual tensor elements as follows:

⟨𝓧𝓧𝓧,𝓨𝓨𝓨⟩= ∑
𝑡,𝑛,𝑐

𝑥𝑡𝑛𝑐𝑦𝑡𝑛𝑐

and the norm of 𝓧𝓧𝓧 is ‖𝓧𝓧𝓧‖= ⟨𝓧𝓧𝓧,𝓧𝓧𝓧⟩1/2. The outer product ∘ of two vectors 𝗮∈ℝ𝑇 and 𝗯∈ℝ𝑁 is
defined as17

𝗫=𝗮 ∘ 𝗯=𝗮𝗯⊺ ∈ℝ𝑇×ℝ𝑁,

so that 𝗫 is a (𝑇×𝑁) matrix. The outer product of three vectors, 𝗮∈ℝ𝑇,𝗯∈ℝ𝑁,𝗰∈ℝ𝐶, yields a
3-dimensional (𝑇×𝑁×𝐶) tensor

𝓧𝓧𝓧=𝗮 ∘ 𝗯 ∘ 𝗰∈ℝ𝑇×ℝ𝑁×ℝ𝐶. (A.1)

Tensors can be multiplied by vectors and matrices of appropriate dimensions. Since tensors have
arbitrary dimensions, the mode multiplied by the matrix must be explicitly specified. The product
of a tensor𝓧𝓧𝓧 and amatrix𝗔𝑛 is called𝑛-modemultiplication, where𝑛 specifies themodemultiplied
by 𝗔𝑛. For example, the mode-1 product of the (𝑇×𝑁×𝐶) tensor 𝓧𝓧𝓧 and the (𝑆×𝑇) matrix 𝗔1 is
equal to a (𝑆×𝑁×𝐶) tensor 𝓨𝓨𝓨 given by

𝓨𝓨𝓨=𝓧𝓧𝓧 ×1 𝗔1.

The 𝑛-mode product tensor is constructed by multiplying each mode-𝑛 fiber by each row vector
of 𝗔1. In general, the 𝑛-mode is written as 𝓧𝓧𝓧×𝑛𝗔𝑛. The number of columns of 𝗔𝑛 must equal the
𝑛-mode dimension of 𝓧𝓧𝓧 while the 𝑛-mode dimension of 𝓧𝓧𝓧×𝑛𝗔𝑛 is equal to the number of rows of
𝗔𝑛. The 𝑛-mode product can be chained:

𝓨𝓨𝓨=𝓧𝓧𝓧 ×1 𝗔1 ×2 𝗔2 ×3 𝗔3

where𝗔2 and𝗔3 are conformingmatrices. The order of the multiplications in the chain is irrelevant.

15See Panels B, C, and D of Figure C.2.
16See Panels E, F, and G of Figure C.2.
17Panel A of Figure C.4 shows an example for 𝑇=5,𝑁=4,𝐶=3.



The 1-mode product of a (2×2×3) tensor with a (5×2) matrix is illustrated in Panel A of Fig-
ure C.4. Each mode-1 fiber of 𝓧𝓧𝓧 is a vector of length 2 and is multiplied by each of the row vectors
of 𝗔1 so that 𝓧𝓧𝓧 with mode-1 dimension 𝑇 is transformed into the product tensor 𝓨𝓨𝓨 with mode-1
dimension 𝑆. All other dimensions are the same. Panel C shows an example of a mode-2 product.
Note that 𝗔2 is a (2×4) matrix but is displayed as a (4×2) matrix. It is standard practice to rotate
tensors, matrices, and vectors in illustrations so that the mode dimensions match.18

The standard matrix products can be written in 𝑛-mode tensor notation. Let 𝗫,𝗔1, and 𝗔2 be
(𝑇×𝑁), (𝑆×𝑇), and (𝑈×𝑁) matrices, respectively. Then 𝗔1𝗫=𝗫×1 𝗔1 is a (𝑆×𝑁) matrix, 𝗫𝗔⊺

2 =
𝗫×2 𝗔2 is a (𝑇×𝑈) matrix, and 𝗔1𝗫𝗔⊺

2 =𝗫×1 𝗔1 ×2 𝗔2 is a (𝑆×𝑈) matrix.

Appendix A.2. The Singular Value Decomposition (SVD) of a matrix

Let 𝗫 be a (𝑇×𝑁) data matrix with 𝑇𝑁 observations 𝑥𝑡𝑛.19 The SVD of 𝗫 is given by

𝗫=𝗨(1)𝗛𝗨(2)⊺ (A.2)

=
𝗆𝗂𝗇(𝑀,𝑁)

∑
𝑖=1

ℎ𝑖 𝘂(1)
𝑖 𝘂(2)⊺

𝑖 , (A.3)

where 𝗨(1) is a (𝑇×𝑇) matrix of eigenvectors 𝘂(1)
𝑡 of 𝗫𝗫⊺ as columns, 𝗨(2) is a (𝑁×𝑁) matrix of

eigenvectors 𝘂(2)
𝑡 of 𝗫⊺𝗫 as columns, and 𝗛 is a diagonal (𝑇×𝑁) matrix with diagonal elements ℎ𝑖

that are the squares roots of non-zero eigenvalues of 𝗫𝗫⊺. The eigenvalues are in descending order
and the eigenvectors in 𝗨(1) and 𝗨(2) are ordered accordingly.

The SVD of 𝗫 implies a factor representation

𝗫=𝗙𝑁𝗕⊺
𝑁, (A.4)

where 𝗙𝑁 =𝗫𝗨(𝟮) =𝗨(1)𝗛 and 𝗕𝑁 =𝗨(2) are of dimensions (𝑇×𝑁) and (𝑁×𝑁), respectively. The
columns of 𝗙𝑁 are factors, and the columns of 𝗕𝑁 are factor loadings. Factor models (A.4) are
not unique and can be rotated by any nonsingular (𝑁×𝑁) matrix 𝗦: 𝗫=𝗙𝑁𝗦𝗦−1𝗕⊺

𝑁. The standard
normalization assumes that 𝗨(1) and 𝗨(2) are orthonormal and that 𝗛 is diagonal.

It is also possible to compute the SVD of the (𝑁×𝑇) matrix 𝗫⊺ instead of 𝗫. The isomorphic
factor representation for 𝗫⊺ is given by 𝗫⊺ =𝗙𝑇𝗕⊺

𝑇, where 𝗙𝑇 =𝗫⊺𝗨(𝟭) =𝗨(2)𝗛⊺ and 𝗕𝑇 =𝗨(1). The
representations are equivalent, but the roles of 𝗨(1) and 𝗨(2) are reversed so that factors of the SVD
of 𝗫 become factor loadings in the SVD of 𝗫⊺, and vice versa.

Suppose we want to approximate 𝗫 by a matrix 𝗫̂𝐾 that can be written in terms of lower-
dimensional matrices such that

𝗫=𝗫̂𝐾 +𝗘𝐾, (A.5)

where 𝗫̂𝐾 =𝗨(1)
𝐾 𝗛𝐾𝗨(2)⊺

𝐾 , (A.6)

and 𝗛𝐾,𝗨(1)
𝐾 ,𝗨(2)

𝐾 are (𝐾×𝐾),(𝑇×𝐾),(𝑁×𝐾) matrices. The optimal 𝗫̂𝐾 minimizes the mean-squared-
error (MSE)

MSE(𝗫̂𝐾)=
1

𝑀𝑁 ‖𝗘𝐾‖2,

18There is no “transpose” operator for tensors, and it may be helpful to think about tensor multiplications without
the notion of a matrix transpose.

19The row index 𝑡 is generic and does not necessarily have to be a “time” index.



where ‖𝗘‖=√∑𝑡,𝑛𝑒2
𝑡𝑛 is the Frobenius matrix norm. Eckart and Young (1936) showed that the

solution is given by the truncated SVD, i.e., setting 𝗛𝐾 to the first 𝐾 rows and columns of 𝗛 and
𝗨(1)

𝐾 ,𝗨(2)
𝐾 to the first 𝐾 columns of 𝗨(1),𝗨(2):

𝗫̂𝐾 =𝗨(1)
𝐾 𝗛𝐾𝗨(2)⊺

𝐾 . (A.7)

The truncated SVD (A.7) is equivalent to the 𝐾-factor model

𝗫=𝗙𝐾𝗕⊺
𝐾 +𝗘𝐾, (A.8)

where 𝗙𝐾 =𝗨(1)
𝐾 𝗛𝐾 and 𝗕𝐾 =𝗨(2)

𝐾 are (𝑇×𝐾) and (𝑁×𝐾) matrices, respectively. Thus, the truncated
SVD equals the first 𝐾 principal components of 𝗫⊺𝗫. I will refer to this model as SVD-PCA through-
out the paper.

The truncated SVD has an alternative representation useful for understanding tensor decompo-
sitions. 𝗨(1)

𝐾 𝗛𝐾𝗨(2)⊺
𝐾 is equivalent to the weighted sum of the outer products of the column vectors

of 𝗨(1)
𝐾 and the row vectors of 𝗨(2)⊺

𝐾 . This can be seen by writing (A.7) as

𝗫̂𝐾 =
𝐾

∑
𝑡=1

𝐾

∑
𝑛=1

ℎ𝑡𝑛 𝘂(1)
𝑡 𝘂(2)⊺

𝑛⏟⏟⏟⏟⏟⏟⏟
𝑇×𝑁

(A.9)

=
𝐾

∑
𝑘=1

ℎ𝑘𝑘 𝘂(1)
𝑘 𝘂(2)⊺

𝑘 . (A.10)

The second equality follows from the fact that 𝗛𝑘 is a diagonal matrix. 𝗫̂𝐾 is the weighted sum of 𝐾
matrices with dimensions (𝑇×𝑁), which are the outer vector product of the eigenvectors 𝘂(1)

𝑘 and
𝘂(2)⊺

𝑘 of 𝗫𝗫⊺ and 𝗫⊺𝗫, respectively. Each 𝑘 in the summation corresponds to a factor in the 𝐾-factor
representation (A.8). The advantage of representation (A.9) is that it shows the contribution of
each of the 𝐾 factors in the model’s fit. Since the eigenvectors are normalized, the 𝐾 outer vector
products 𝘂(1)

𝑘 𝘂(2)⊺
𝑘 are of the same magnitude, so the weight of the contribution of each factor 𝑘 is

approximately equal to the 𝑘-th eigenvalue.
In the truncated SVD (A.5)-(A.7) the number of factors is 𝐾. Note that we could define an

asymmetric SVD that has different numbers of factors for the two dimensions:

𝗫̂(𝐾1,𝐾2) =𝗨(1)
𝐾1 𝗛𝐾1,𝐾2 𝗨

(2)⊺
𝐾1 , (A.11)

where 𝗛𝐾1,𝐾2 ,𝗨
(1)
𝐾1 ,𝗨

(2)
𝐾2 are (𝐾1×𝐾2),(𝑁×𝐾1),(𝑁×𝐾2) matrices. However, since 𝗛𝐾1,𝐾2 is diagonal, the

asymmetric SVD reduces to a 𝐾-factor SVD where 𝐾=min(𝐾1,𝐾2). In contrast to the 2-dimensional
matrix SVD, the core tensor 𝓖𝓖𝓖 in the Tucker decomposition is not diagonal. Consequently, the
number of factors can differ by dimension.20

Appendix A.3. Higher-Order Orthogonal Iteration (HOOI)

The objective is to find 𝓖𝓖𝓖 and orthonormal 𝗩(𝑇),𝗩(𝑁),𝗩(𝐶) such that

‖𝓔𝓔𝓔‖=‖𝓧𝓧𝓧−𝓕𝓕𝓕 ×2 𝗩(𝐶) ×3 𝗩(𝑃) ×4 𝗩(𝑄)‖

20The CP tensor decomposition is a special case of the Tucker decomposition and restricts that the core tensor 𝓖𝓖𝓖 is
diagonal, which implies that the number of factors is the same, 𝐾𝑖 =𝐾.



is minimized. Given the loading matrices 𝗩(𝑖), the optimal core tensor 𝓕𝓕𝓕 satisfies

𝓕𝓕𝓕=𝓧𝓧𝓧 ×2 𝗩(𝐶)⊺ ×3 𝗩(𝑃)⊺ ×4 𝗩(𝑄)⊺. (A.12)

Since the 𝗩(𝑖) matrices are orthonormal, the squared norm of the approximation error 𝓔𝓔𝓔=𝓧𝓧𝓧−𝓧𝓧𝓧
can written as

‖𝓔𝓔𝓔‖2 =‖𝓧𝓧𝓧‖2 −2⟨𝓧𝓧𝓧, 𝓕𝓕𝓕 ×2 𝗩(𝐶) ×3 𝗩(𝑃) ×4 𝗩(𝑄)⟩+‖𝓕𝓕𝓕 ×2 𝗩(𝐶) ×3 𝗩(𝑃) ×4 𝗩(𝑄)‖2 (A.13)
=‖𝓧𝓧𝓧‖2 −2⟨𝓧𝓧𝓧 ×2 𝗩(𝐶)⊺ ×3 𝗩(𝑃)⊺ ×4 𝗩(𝑄)⊺, 𝓕𝓕𝓕⟩+‖𝓕𝓕𝓕‖2 (A.14)
=‖𝓧𝓧𝓧‖2 −2⟨𝓕𝓕𝓕, 𝓕𝓕𝓕⟩+‖𝓕𝓕𝓕‖2 (A.15)
=‖𝓧𝓧𝓧‖2 −‖𝓕𝓕𝓕‖2 (A.16)
=‖𝓧𝓧𝓧‖2 −‖𝓧𝓧𝓧 ×2 𝗩(𝑃)⊺ ×3 𝗩(𝑃)⊺ ×4 𝗩(𝑄)⊺‖2. (A.17)

Suppose we know 𝗩(𝐶) and 𝗩(𝑃). Then 𝗩(𝑄) can be obtained as

max
𝗩(𝑄)

‖𝓧𝓧𝓧 ×2 𝗩(𝐶)⊺ ×3 𝗩(𝑃)⊺ ×4 𝗩(𝑄)⊺‖. (A.18)

This maximization problem can be rewritten in matrix form as

max
𝗩(𝑄)

‖𝗩(𝑄)⊺𝗪𝑄‖ (A.19)

where 𝗪𝑄 =𝗫(𝑄)(𝗩(𝐶) ⊗ 𝗩(𝑃)). (A.20)

The optimal 𝗩(𝑄) is given by the first 𝐾𝑄 left singular vectors of 𝗪𝑄. Since one 𝗩(𝑖) can be computed
if the other two are known, we can use the following recursive algorithm known as Higher-Order
Orthogonal Iteration (HOOI):

1. Pick initial values for 𝗩(𝐶),𝗩(𝑃).
2. Compute 𝗩(𝑄) as the first 𝐾𝑄 left singular vectors of 𝗫(𝑄)(𝗩(𝐶) ⊗ 𝗩(𝑃)).
3. Compute 𝗩(𝐶) as the first 𝐾𝐶 left singular vectors of 𝗫(𝐶)(𝗩(𝑃) ⊗ 𝗩(𝑄)).
4. Compute 𝗩(𝑃) as the first 𝐾𝑃 left singular vectors of 𝗫(𝑃)(𝗩(𝐶) ⊗ 𝗩(𝑄)).
5. Repeat Steps 2. to 4. recursively until a convergence criterion is satisfied.
6. Compute 𝓕𝓕𝓕=𝓧𝓧𝓧 ×2 𝗩(𝐶)⊺ ×3 𝗩(𝑃)⊺ ×4 𝗩(𝑄)⊺.

The literature has developed numerous numerical improvements of the HOOI estimator; see, for
example, Andersson and Bro (1998). Several other algorithms exist, including nonlinear Newton-
Grassmann optimization (Elden and Savas (2009)). Starting values of the 𝗩(𝑖) matrices can be set
by HOSVD.

The HOOI estimator converges after 20 to 40 iterations for the data set used in this paper. In
addition to setting the initial 𝗩(𝑖) using the method described above, I also choose initial values
randomly. The numerical computations are robust and converge to the same optimum.



Table B.1: Cross-sectional 𝑅2
𝑥𝑠 for subsets of 3D-PCA factors – All combinations

𝐾𝐶 =1 𝐾𝐶 =2 𝐾𝐶 =3
𝐾𝑃 =1 𝐾𝑃 =2 𝐾𝑃 =3 𝐾𝑃 =1 𝐾𝑃 =2 𝐾𝑃 =3 𝐾𝑃 =1 𝐾𝑃 =2 𝐾𝑃 =3

A: In-sample 𝐿=4
𝐾𝑄 =1 -0.45 -0.41 -0.36 -0.52 -0.35 -0.22 -0.52 -0.07 0.15
𝐾𝑄 =2 0.37 0.47 0.55 0.56 0.56 0.58 0.67 0.67 0.67
𝐾𝑄 =3 0.46 0.60 0.60 0.56 0.60 0.60 0.67 0.67 0.67

B: In-sample 𝐿=6
𝐾𝑄 =1 -0.45 -0.41 -0.36 -0.52 -0.35 -0.22 -0.52 -0.09 0.26
𝐾𝑄 =2 0.37 0.47 0.65 0.56 0.60 0.69 0.70 0.70 0.76
𝐾𝑄 =3 0.46 0.62 0.70 0.58 0.65 0.70 0.70 0.73 0.76

C: Out-of–sample 𝐿=4
𝐾𝑄 =1 -0.53 -0.50 -0.40 -0.54 -0.44 -0.08 -0.56 -0.37 0.03
𝐾𝑄 =2 0.43 0.57 0.64 0.51 0.58 0.64 0.65 0.72 0.72
𝐾𝑄 =3 0.43 0.57 0.64 0.51 0.58 0.64 0.66 0.72 0.72

D: Out-of–sample 𝐿=6
𝐾𝑄 =1 -0.53 -0.50 -0.40 -0.54 -0.44 -0.04 -0.56 -0.39 0.11
𝐾𝑄 =2 0.43 0.57 0.69 0.51 0.60 0.69 0.64 0.72 0.76
𝐾𝑄 =3 0.43 0.60 0.69 0.48 0.64 0.69 0.66 0.73 0.76

Note: The table shows cross-sectional𝑅2
𝑥𝑠 for models with subsets of 3D-PCA factors derived from a partial Tucker decomposition

with 𝐾𝐶=𝐾𝑃=𝐾𝑄=3 factors for 𝐿=5. C𝑖, P𝑗, and Q𝑘 denote the factors 𝐹3D
𝑖𝑗𝑘 that are included in the time-series estimations. For

example, the combination (C1, P12, Q123) includes factors 𝐹3D
𝑖𝑗𝑘 where 𝑖=1,𝑗=1,2,𝑘=1,2,3. Panel A shows results for in-sample

factors, and Panel B reports results for out-of-sample factors estimated in rolling samples of length ℎ=120 months. The sample
is from July 1967 to October 2023.



Figure C.1: Sharpe ratios of portfolio returns
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Notes: The figure shows heatmaps of annualized Sharpe ratios of the 275 portfolios. Each panel displays the 5×5-double sorted
portfolios of a characteristic. The bottom-right panel shows the mean Sharpe ratio across all 11 characteristics. Portfolios with
Sharpe ratios that are lower (higher) than the Sharpe ratio of the CRSP-VW return (0.42) are in red (blue). The sample is from July
1967 to October 2023.



Figure C.2: Tensor fibers and slices

A: Tensor 𝓧𝓧𝓧∶ (5×4×3)

B: Mode-1 fibers 𝘅(𝑛𝑐)𝑡 C: Mode-2 fibers 𝘅(𝑡𝑐)𝑛 D: Mode-3 fibers 𝘅(𝑡𝑛)𝑐

E: Horizontal slices 𝗫(𝑖)𝑗𝑘 F: Lateral slices 𝗫(𝑗)𝑖𝑘 G: Frontal slices 𝗫(𝑘)𝑖𝑗



Figure C.3: Tensor as matrices

A: Tensor 𝓧𝓧𝓧∶ (5×4×3)

B: 𝗫(1)∶ (5×12)

C: 𝗫(2)∶ (4×15)

D: 𝗫(3)∶ (3×20)



Figure C.4: 𝑛-mode Tensor multiplication

A: 1-mode product

𝓧∶ (2×4×3)

𝓧×1𝗔1∶ (5×4×3)𝗔1∶ (5×2)

B: 2-mode product

𝓧∶ (2×4×3)

𝗔2∶ (2×4)

𝓧×2𝗔2∶ (2×2×3)

C: Outer product 𝓧𝓧𝓧=𝗮∘ 𝗯 ∘𝗰

=𝗮∶ (5×1)

𝗯∶ (4×1)

𝗰∶ (3×1)

𝓧𝓧𝓧∶ (5×4×3)



Figure C.5: Tucker Decomposition 𝓧𝓧𝓧=𝓖𝓖𝓖×1𝗩1×2𝗩2×3𝗩3

≈

𝓧𝓧𝓧∶ (6×5×4)

𝗩1∶ (6×3)

𝗩2∶ (5×2)

𝗩3∶ (4×2)

𝓖𝓖𝓖∶ (3×2×2)



Figure C.6: Proportionality of 𝐶-slices of weight tensor 𝓦𝓦𝓦𝑐𝑝𝑞 =𝘃(𝐶)
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𝑞 )

𝑣𝐶
𝑐,4 (𝘃𝑃𝑝 ∘ 𝘃𝑄

𝑞 )

𝑣𝐶
𝑐,5 (𝘃𝑃𝑝 ∘ 𝘃𝑄

𝑞 )



Figure C.7: Time series 𝑅2 of 3D-PCA rolling windows
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3D-PCA (0.93)

Notes: This figure plots the time series 𝑅2 of 3D-PCA estimated in rolling windows of length ℎ=120. The 𝑅2 is defined as
𝑅2 =1−‖𝓔𝓔𝓔‖/Var(𝓧𝓧𝓧), where 𝓔𝓔𝓔=𝓧𝓧𝓧−𝓧𝓧𝓧 and 𝓧𝓧𝓧 is the approximation of 𝓧𝓧𝓧 given by a 3D-PCA model with 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =3 . The
figure plots the 𝑅2 in each subsample. The 𝑅2 for the in-sample estimation is in parentheses. The sample is from July 1967 to
October 2023.



Figure C.8: Level, slope, curvature

A: P-dimension
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B: Q-dimension
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Notes: The heatmaps show the (5×5) matrices 𝗪(𝑃𝑄)
𝑝𝑞 , 𝑝,𝑞=1,2,3 that are given by the outer product of the column vectors of

𝗩̂(𝑃)⊺ , and 𝗩̂(𝑄)⊺∶𝗪(𝑃𝑄)
𝑝𝑞 =𝘃(𝑃)

𝑝 ∘𝘃(𝑄)
𝑞 . 𝗩̂(𝑃)⊺ , and 𝗩̂(𝑄)⊺ are from the estimation of a partial Tucker model (13) with 𝐾𝐶 =𝐾𝑃 =𝐾𝑄 =3.

Negative values are plotted in red and positive ones in blue. The model is estimated by HOOI. The sample is from July 1967 to
October 2023.



Figure C.9: PCA – Factor weights
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Figure C.10: Cumulative log returns of PCA factors
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Notes: The figure shows cumulative log-returns of first six PCA factors. In-sample factors are plotted in blue, and out-of-sample-
factors are in orange. PCA factors are based on an estimation with 27 factors. The sample is from July 1967 to October 2023.



Figure C.11: Cumulative log returns of Fama-French factors
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Notes: The figure shows cumulative log returns of Fama-French factors. The sample is from July 1967 to October 2023.
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