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Causal inference is of central interest in many empirical applications, yet often challenging because 
of the presence of endogenous regressors. The classical approach to the problem requires using 
instrumental variables that must satisfy the stringent condition of exclusion restriction. At the 
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correction in order to realize its full potential, the authors detail a process of checking data 
requirements and identification assumptions to determine when and how to use copula correction 
methods, and illustrate its usage using empirical examples.
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Many research questions in marketing, management, economics, and health sciences are in-

terested in matters of causality rather than simply questions of association. Frequently,

these questions are tackled by using relevant data to estimate structural regression mod-

els representing causal relationships. A pervasive issue in these empirical investigations is

the presence of endogenous regressors, which can arise when the regressors representing the

causes (e.g., an economic program to be evaluated, marketing mix variables, etc.) are not

randomly assigned in the data; the regressors thus correlate with unobservables (e.g., un-

observed product characteristics or common market shocks) in the structural error term

(Villas-Boas and Winer 1999). Estimation methods that ignore the presence of regressor-

error dependence, such as the ordinary least squares (OLS) method, can lead to severe bias

in the estimates of structural model parameters (i.e., endogeneity bias).

Given the ubiquity of endogenous regressors and the importance of addressing endogene-

ity bias, a large body of literature is devoted to developing appropriate methods to solve

or mitigate the endogeneity issue. The instrumental variable (IV) method is the classical

econometric approach to correct for endogeneity bias (Wooldridge 2010). This method relies

on the existence of valid and strong IVs to satisfy the stringent requirement of exclusion

restriction (ER), which makes IVs difficult to find and justify in practice (Ebbes et al. 2005;

Ebbes, Wedel, and Böckenholt 2009; Park and Gupta 2012). When there exists theory or

knowledge about the underlying mechanism of endogeneity, an alternative approach is to

model the exact process of yielding the observed values of the endogenous regressors, which

is then estimated jointly with the structural model of primary interest. For instance, in esti-

mating a consumer demand model, a supply-side model reflecting researchers’ beliefs about

the managerial decisions determining the supply-side marketing mix variables (such as price

and promotions) can be specified and jointly estimated with the demand model (e.g., Sudhir

2001; Yang, Chen, and Allenby 2003; Manchanda, Rossi, and Chintagunta 2004). When the

supply-side model is specified correctly, this approach can successfully correct for endogeneity

bias in parameter estimates of the demand model.
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Recently, there have been growing interests in endogeneity correction methods that re-

quire neither observed IVs nor knowledge to correctly specify an auxiliary supply model

(Ebbes, Wedel, and Böckenholt 2009; Papies, Ebbes, and Van Heerde 2017; Rutz and Wat-

son 2019; Papies, Ebbes, and Feit 2023; Park and Gupta 2024). These instrument-free

methods exploit higher moments (HM, Lewbel 1997), identification via heteroscedastic error

structures (IH, Rigobon 2003), latent IVs (LIV, Ebbes et al. 2005), semiparametric odds

ratio endogeneity model (SORE, Qian and Xie 2024), and copulas1 (Park and Gupta 2012;

Becker, Proksch, and Ringle 2022; Christopoulos, McAdam, and Tzavalis 2021; Tran and

Tsionas 2021; Eckert and Hohberger 2023; Haschka 2022; Yang, Qian, and Xie 2024a,b;

Liengaard et al. 2024; Breitung, Mayer, and Wied 2024; Hu, Qian, and Xie 2025) to control

for endogeneity.

Copula correction methods provide substantial advantages for addressing the prevalent

and thorny issue of endogenous regressors. These methods directly address the regressor-

error dependence using copulas, a widely used multivariate dependence model applicable in

many practical applications (Danaher 2007; Danaher and Smith 2011). Unlike the traditional

IV approach and other IV-free methods, copula correction methods do not require the en-

dogenous regressor to contain an exogenous component (either observed or latent) satisfying

the stringent exclusion restriction condition that is hard to justify in practical applications.

Thus, copula correction is feasible in many situations under appropriate conditions. Al-

though copula correction originally required endogenous regressors to be uncorrelated with

exogenous regressors and have sufficient nonnormality, limiting its applicability, the recent

two-stage copula endogeneity correction (2sCOPE) approach by Yang, Qian, and Xie (2024a)

simultaneously relaxes these restrictions and provides a versatile and general framework for

further development (e.g., Liengaard et al. 2024; Yang, Qian, and Xie 2024b; Hu, Qian, and

Xie 2025).

Furthermore, one can implement copula correction by including copula control functions

1“Copula” was introduced by Sklar (1959) from the Latin “to link”, as a function linking two variables. Copulas

encompass different forms, but we use ‘copulas’ here to speak synonymously with Gaussian copulas (GC).
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derived from existing regressors as additional regressors in the structural regression model

to control for endogeneity. Thus, copula correction using the control function is straight-

forward to apply in a wide array of settings, including both linear and nonlinear models

(e.g., discrete choice models) and the challenging slope endogeneity problem. We show that

copula correction using control functions does not require normal structural error and copula

regressor-error dependence structure as originally believed, thereby significantly increasing

the applicability and robustness of copula correction.

Focusing on copula correction, the objectives of this article are: (a) to raise awareness

of the importance to address endogenous regressors in empirical studies and improve un-

derstanding of theoretical rationales for using copula correction; (b) to provide a synthesis

of recent advances that broaden the understanding, applicability, and robustness of copula

corrections; (c) to provide practical guidance and delineate a process of checking data re-

quirements and identification assumptions to aid appropriate usage of copula correction; and

(d) to demonstrate use of copula endogeneity correction in practical applications.

With these objectives in mind, the rest proceeds as follows. The next section starts with

an overview of why and when to use copula correction and how it addresses endogeneity.

We also survey various disciplines and substantive marketing areas where copula correction

has been used, as well as important variations in the use and implementation of copula

correction. Next, we present relevant methodological background: how the copula handles

endogeneity, how copula transformation is performed in the correct way, how to generalize

copula correction for correlated exogenous regressors, close-to-normal endogenous regressors,

in fixed-effects and mixed-effects panel data models (with and without slope endogeneity),

how copulas should be used for moderated endogenous regressors, and pitfalls resulting from

misuse of copula methods. We synthesize the literature to provide a theoretical and empiri-

cal foundation for appropriate use of copula correction methods. Given significant advances

made since Park and Gupta (2012)’s study, clear guidelines for using the expanded copula

correction toolbox are much needed. Thus, building upon recent advances and our eval-
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uations of various copula implementations, we provide an updated guidance on when and

how to use copula correction, accessible to academics and practitioners alike. We discuss

boundary conditions, data requirements, and underlying identification assumptions for ap-

plying copula correction, and create a ‘cookbook’ for how copulas should be applied based on

the latest research, in a flowchart with checkpoints of data requirements and identification

assumptions that characterize the settings where copula correction methods are useful and

where they may fail. We then provide two empirical examples to walk through this process

of applying copula correction. Finally, we close with conclusions and implications.

THEORETICAL RATIONALE FOR ENDOGENEITY CORRECTION

USING COPULAS

Why and When Use Copula Correction?

Empirical examples of endogenous regressors abound, as described in the next section.

For concreteness, consider here the running example of estimating the following linear struc-

tural model using nonexperimental data:

Yi = µ+ αPi + β′Wi + Ei, (1)

where i = 1, · · · , I indexes cross-sectional units or markets across spatial regions or over time;

Yi is a scalar response variable (e.g., log-transformed volume of ice cream sold in market i);

Pi contains the endogenous regressor (log-transformed price), and Wi contains a vector of

exogenous control variables affecting both the endogenous regressor Pi and the response Yi

(i.e., the two arrows from W to P and Y in Figure 1.a). The model parameters are (µ, α, β),

among which α captures the causal or independent effect of Pi and is of primary interest.

The exogenous control variables in W are determined outside the system (e.g., weather)

or under control by researchers such that no dependence between Wi and Ei exists (i.e., no

arrow between W and E in Figure 1.a) and thus Cov(Wi, Ei) = 0. Unlike Wi, the endogenous

regressor Pi, however, can be affected by unobservables, such as unobserved common market

shocks or product attributes (Villas-Boas and Winer 1999) contained in Ei, leading to the

dependence between Pi and Ei (i.e., the arrow connecting E to P in Figure 1.a).
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Figure 1: Directed Acyclic Graph (DAG) for Endogeneity

Copula endogeneity correction’s advantages contributing to its wide usage include broad

applicability and high feasibility, as compared with alternative methods (Table 1). The

directed acyclic graph (DAG) in Figure 1.a explicitly includes the unobserved error term

E and highlights the important role of P -E dependence. In this case, the distribution of

the endogenous regressor P provides information about model parameters via its association

with E. Thus, estimation methods ignoring the regressor-error dependence, such as ordinary

least squares (OLS), assume the incorrect DAG in Figure 1.b and can yield severely biased

model parameter estimates (i.e., endogeneity bias). Attempts to make P − E independent,

such as randomly assigning P via experiments or measuring and including all confounders in

W , are often infeasible (Germann, Ebbes, and Grewal 2015). By contrast, copula correction

does not impose the exogeneity assumption on all regressors as OLS does; it considers the

general DAG in Figure 1.a that includes the DAG in Figure 1.b as a special case and requires

neither experiments nor measuring all confounders (Table 1).

As the classical approach to addressing endogeneity bias, the instrumental variable (IV)

method assumes the DAG in Figure 1.c, another special case of the DAG in Figure 1.a. The

IV, W , needs to not only affect P (relevance), but also be exogenous (no arrow between

W and E) and have no direct effects on Y (i.e., β = 0 in Figure 1.c, the untestable ER

condition assuming no arrow between W and Y ). The conditions of relevance and ER are

typically in conflict: although the IV approach has a strong theoretical basis, finding good

and valid IVs can be very challenging in practice, which demands more flexible ways to

handle regressor endogeneity. Other IV-free methods (LIV, IH, HM) decompose P into

endogenous and exogenous parts, with the exogenous part (W in Figure 1.c) satisfying the
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stringent ER condition (Park and Gupta 2012; Qian and Xie 2024). Unlike IV and these

other IV-free methods, copula correction does not need to argue for any exogenous variable

in W to satisfy the stringent ER condition or to causally affect P .2 Thus, copula correction

substantially increases the feasibility of endogeneity correction.

To summarize, Table 2 lists some common use cases for copula correction.

Table 2: Common Use Cases for Copula Correction

• When experiments are infeasible or cannot balance all confounders∗; rich data are expensive,

impossible to collect, or fail to completely/accurately measure all relevant confounders; or valid and

strong IVs are unavailable.

• When one wants to conduct multi-methods causal inference as robustness checking to cross-

validate each other (Germann, Ebbes, and Grewal 2015; Papies, Ebbes, and Van Heerde 2017; Qian

and Xie 2024). Examples are when IVs exist but are imperfect with questionable validity or weak

relevance; control variables included in rich data methods have questionable comprehensiveness,

accuracy, or validity of exogeneity (Yang, Qian, and Xie 2024a).

• When a combination of multiple methods is required to address endogeneity. For example,

an IV for the treatment variable is available but potential moderators are endogenous and have no

IVs available. In this case, copula correction can be used together with the IV to handle multiple

endogenous regressors. Similarly, copula can be combined with other methods to address remaining

endogeneity (e.g., after regression adjustment for a rich set of control variables) or used together with

SORE (Qian and Xie 2024) to handle a mixture of continuous and discrete endogenous regressors.

∗: Examples are (1) randomization of price levels conducted in a focal firm experiment may not balance
competitors’ responses to these price levels (Rutz and Watson 2019); (2) events or thresholds in natural
experiments may be nonrandom and have concomitant events.

Why Does Copula Correction Work?

Copula correction first proposed by Park and Gupta (2012) is based on the idea that

adequately capturing regressor-error dependence can resolve endogeneity issues and yield un-

biased causal estimates. Copula correction employs Gaussian copula (GC) to link marginal

distributions of regressors and the error together to obtain their joint distribution. The GC

model has desirable properties, making it frequently used and widely applicable in many

empirical studies to robustly capture multivariate dependence (Danaher 2007; Danaher and

2Empirical association between W and P (Figure 1.e) is sufficient for copula correction (Yang, Qian, and Xie

2024a).
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Figure 2: Disciplines using Copula Endogeneity Correction. n=511

Smith 2011). In particular, GC models with nonparametric empirical marginals capture

regressor-error dependence irrespective of (potentially complex) marginal distributions while

preserving the regressors’ important distributional features that are critical for model iden-

tification. Copula correction also demonstrates robustness to a range of departures from the

GC assumption. Consequently copula correction has broad applicability and become a great

resource in the toolkit for handling regressor endogeneity in a wide range of fields (Figure

2). In many empirical applications including those in marketing (Web Appendix Table W1),

copula correction yields credible findings that are consistent with theoretical predictions,

attesting to its effectiveness and applicability.

Furthermore, the later methodological background section shows that copula correction

works under both data generating processes in Figure 1.a and Figure 1.d and possesses the

desirable property of double robustness: when a GC model adequately captures either the

regressor-error dependence or regressor-U dependence (where U is the endogenous part of the

error term as depicted in Figure 1.d), the copula corrects endogeneity bias. Consequently, the

GC regressor-error dependence assumption is only a sufficient but not necessary condition

for copula correction to work. Such double robustness considerably weakens the already mild
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GC regressor-error dependence assumption and increases the applicability and robustness of

copula correction. Similarly, copula correction using control functions does not require the

structural error to be normally distributed (Table 1), demonstrating robustness to a range

of departures from the identification assumptions listed in Table 1 (Web Appendix C).

IMPACTS OF COPULA ENDOGENEITY CORRECTION

Largely due to the aforementioned advantages, copula correction has gained increasing

popularity in empirical research since Park and Gupta (2012)’s study for addressing en-

dogeneity. Although the focus here has been on marketing applications, copula correction

has been extensively used in diverse fields outside marketing such as addressing potential

endogeneity of a country’s competitiveness measured by currency exchange rate in macroe-

conomic studies (e.g., Christopoulos, McAdam, and Tzavalis 2021), firms’ R&D activity in

finance studies (e.g., Boikos et al. 2023), and employee’s feeling of control in organization

management studies (e.g., Loignon et al. 2024). Figure 2 breaks down by discipline the

Google Scholar citations for book chapters and journal publications (n=511) using copula

endogeneity correction where each slice matches journals and journal fields as defined by the

Australian Business Dean’s Council. Strategy and information systems are the two most

common business disciplines outside marketing to use copula endogeneity correction. Focus-

ing on the marketing field, Table 3 breaks down by various characteristics of publications

that applied copula correction and appeared in leading marketing journals from 2013 to 2024

(an extensive list of papers appears in Web Appendix A).

A common use for copula correction stems from applications of the marketing mix (price,

product, place, and promotion) of goods and services. A primary reason for this is such re-

gressors are often correlated with the error term in a regression model because of uncaptured

managerial knowledge in decision-making (i.e., setting prices is often related to the cost of

production; advertising budgets are often set as a percentage of sales). For instance, Park

and Gupta (2012) initially use copulas for price, noting “there are unmeasured product char-

acteristics, or demand shocks, that influence not only consumer decisions but also retailer

10



Table 3: Publications Using Copula Correction in Leading Marketing Journals

Characteristics Number Characteristics Number Characteristics Number

Endogenous Regressors Outcome Type Sample Size

Product 19 Continuous 77 ≤ 100 1

Price 31 Discrete Choice 15 101—1000 33

Place 9 Count 2 1001—5000 8

Promotion 26 5001—50000 17

Sales Force & CRM 17 Panel Data 58 ≥ 50001 28

Other 33

Note: “Other” includes word-of-mouth, warranty claims, store visits, etc. The list of journals includes

Journal of Marketing, Journal of Marketing Research, Marketing Science, Journal of Consumer Research,

Journal of the Academy of Marketing Science, Journal of Retailing, International Journal of Research in

Marketing, and Journal of Consumer Psychology. See Web Appendix Table W1 for a detailed list of papers

with their substantive areas. The total of unique journal publications is n=87.

pricing decisions” (p.582). Danaher (2023) uses copulas for price when looking at optimal

advertising targeting of consumers. The concern for pricing here is that managers may set

prices relative to the cost of production or perceived valuations by consumers. In their

study of electronics and appliance sales, Datta et al. (2022) use copulas for line length, price,

and distribution; retailers may stock more models of brands that sell better, which may get

increased sales from greater distribution reach. Besides line length, product features can

encompass elements like R&D spending, such as Walmart’s sustainability mandate for its

suppliers (Gielens et al. 2018), or in movies where the brand equity of actors may be endoge-

nous due to the number of movie appearances, award nominations, or award wins (Mathys,

Burmester, and Clement 2016). Advertising also commonly uses copulas, since managers

often set advertising budgets as a percentage of sales or relative to a competitor or industry

benchmark. In modeling the conversion of customers to contact an insurance agent, Guitart,

Hervet, and Gelper (2020) use copulas for the focal brand’s advertising, particularly in its

relation to when and where the brand’s primary competitor is advertising.

Another area using copula correction is salesforce and customer relationship management

(CRM). Endogeneity can arise in this area because allocating particular sales personnel

to particular clients or incentivizing sales personnel may be correlated with unobserved

variables, like the motivation and/or ability of the sales personnel or the value of clients.

Atefi et al. (2018) use copulas for salesforce training, and Burchett, Murtha, and Kohli
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(2023) use copulas for salesperson’s interactions with secondary items (either other people

or objects like computers) when talking with customers. CRM endogeneity may occur in

efforts to connect with customers, such as donation frequency and amounts (Schweidel and

Knox 2013), or communications with buyers (Ludwig et al. 2022).

Copula correction can also be found in areas other than traditional marketing mix and

sales efforts. A recurring explanation for the use of copula correction listed in the studies

in Web Appendix Table W1 is where reverse causality or common shocks could affect the

endogenous regressors. In retail research, for instance, Gijsbrechts, Campo, and Vroegrijk

(2018) examine household grocery spending and use copulas for visiting hard discounters

(i.e., stores with very low prices), since this becomes habit reinforcing for consumers to

then spend their budget there. With social media, Fossen and Bleier (2021) use copulas

to examine endogeneity when studying if online program engagement of television shows

(word-of-mouth volume and deviation) affects audience size. The testing is warranted since

increasing audience size may reversely cause an increase in word-of-mouth activities.

In these cases, copula correction provides a feasible approach to controlling for the thorny

regressor endogeneity issue and offers opportunities for optimal managerial decision making,

as further illustrated in the following running example.

Example 1: Price Sensitivity Estimation. Store managers and policy-makers are often

interested in learning price sensitivity for category demand growth. This example estimates

price sensitivity for the diapers’ category using store scanner purchase data from the IRI

Academic data set for the years 2002-2006 (261 weeks) for one focal store in the Buffalo, NY

market. In this instance, price was typically treated as endogenous because of unobserved

variables (e.g., product characteristics, retailer pricing decisions, number of shelf facings)

that, when omitted from a model, become part of the structural error. It is expected that

these unobserved characteristics induce positive correlation between price and the error term,

thereby causing the OLS estimate of price sensitivity biased toward zero (i.e., less negative).

As shown in a later section, the OLS price elasticity estimate in this data set is -1.367,
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Figure 3: Example 1: Impact of copula correction on price sensitivity estimation. OLS:
ordinary least squares; CC:copula correction.

which is significantly less than the price elasticity estimate of -2.205 from copula endogeneity

correction (Figure 3), a 61% difference reflecting the large impact of a “wrong” estimate.

Using the OLS price estimate, the manager will underestimate consumer price sensitivity

and mistakenly set the price too high, resulting in lost revenue and profit. The analysis in

the later section shows that using the OLS price estimate will yield 30% less profit compared

to using the copula corrected price sensitivity estimate (Figure 3).

Meta-analyses of studies that compare estimates after endogeneity correction to uncor-

rected estimates also find similar differences. Bijmolt, Van Heerde, and Pieters (2005) found

price elasticity was -2.47 without endogeneity correction, but -3.74 when corrected. Sethu-

raman, Tellis, and Briesch (2011) found “Advertising elasticity is lower when endogeneity

in advertising is not incorporated in the model” (p.470).3 With personal selling (i.e., sales-

force), models that account for endogeneity have lower elasticity (.282) than models without

endogeneity correction (.373), a significant difference of 0.091 that importantly represents an

over-estimation of 32% (Albers, Mantrala, and Sridhar 2010). The importance of endogene-

ity correction is apparent: without its correction, managers and academics likely experience

under-estimated effects of pricing and advertising and over-estimated effects of salesforce.

3Sethuraman, Tellis, and Briesch (2011) note that the bias when not accounting for endogeneity will depend on the

relationship between the omitted variable (e.g., price, product, or promotions), the endogenous variable (advertising),

and the dependent variable (sales). For instance, price, when omitted, should bias advertising’s effect downward:

price has (-) relationship to sales, but (+) with advertising (i.e., high price brands advertise; low price brands let

their price do the ‘selling’).
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VARIATIONS IN THE USE OF COPULA CORRECTION

Appreciable variations in the use of copula endogeneity corrections exist among re-

searchers and practitioners. These variations can substantially affect the performance of

copula correction, which call for clear guidelines for optimal copula correction given the im-

portance of endogeneity correction and the growing popularity of copula correction. Becker,

Proksch, and Ringle (2022) discovered substantial bias of Park and Gupta (2012)’s copula

corrected parameter estimates if the structural model contains the intercept, and cautioned

the use of copula correction in such models with small to moderate sample sizes. We study

this issue and evaluate an alternative implementation of copula transformation that has

strong theoretical justification and avoids such bias. Recent research also shows that fail-

ure to account for exogenous regressors correlated with endogenous regressors can adversely

affect copula correction’s effectiveness in eliminating endogeneity bias (Haschka 2022; Qian

and Xie 2024; Yang, Qian, and Xie 2024a). Originally, copula correction required sufficient

nonnormality of endogenous regressors, but a recent two-stage copula correction method re-

laxes this requirement, and can handle endogenous regressors that are normally distributed

or close-to-normal (Yang, Qian, and Xie 2024a).

Another important issue arises regarding the best way to address endogeneity bias for

models containing higher-order terms of endogenous regressors. Many applications in dif-

ferent fields are often interested in estimating structural models with higher-order terms of

endogenous regressors, in order to study moderators of causal relationships or to determine

optimal policy and managerial intervention (Aghion et al. 2005; Qian 2007). Considerable

inconsistencies exist regarding how to handle higher-order terms of endogenous regressors

in copula correction (Web Appendix Table W2). While some studies exclude copula gener-

ated regressors for endogenous higher-order terms (often without stating the reason), others

argued for including these generated regressors to control for endogeneity. To illustrate the

impact of variations in using copula correction, consider the following running example.
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Figure 4: Mean price sensitivity estimates per quartile of feature intensity.

Example 2: Moderator of Price Sensitivity Of interest here is that price and a retail

store’s feature advertising likely work together to achieve interactive, synergistic effects on

sales. This can be tested by estimating the interaction term between price and feature

advertisement in a sales model, with feature advertisement as a potential moderator of

price. Blattberg and Neslin (1990) note that feature advertising “may interact with price

discounts. If the consumer is not informed that a price discount is offered, the price elasticity

is likely to be small” (p.347). This suggests a negative sign for the interaction term between

price and feature advertisement.

Figure 4 presents the mean price sensitivity estimates per quartile of feature intensity

for the peanut butter category, predicted from a sales demand model with an interaction

term between price and feature, estimated using the IRI academic data for a store in New

York City. The black (white) bars are price sensitivity estimates estimated with (without)

a copula term for the interaction term. Including the copula term for the interaction term

yields price sensitivity estimates that are the same across different feature intensity (meaning

lack of interactive effect); excluding the copula term yields a greater magnitude of price

sensitivity, and the price sensitivity estimates increase with greater feature advertisement.

As shown later, adding the copula term for the interaction term can induce bias and greatly

increase variability of parameter estimates.
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METHODOLOGICAL BACKGROUND

In this section, we discuss the methodological aspects of the copula endogeneity correc-

tion. Our discussion aims to acquaint readers with the concepts and procedures of copula

correction, to address the inconsistencies in the use of copula correction, and to inform the

decision process guiding the proper use of copula correction.

Accounting for Regressor-Error Dependence Using Copula

A primer on the copula joint estimation approach

To address the endogeneity of P in Equation 1, Park and Gupta (2012) (P&G) propose

two estimation methods based on a GC model for (Pi, Ei) under the assumption of a normal

structural error, Ei ∼ N(0, σ2). The first maximizes the likelihood function derived from the

joint distribution of (Ei, Pi) (Park and Gupta 2012; Tran and Tsionas 2021). The second

uses a generated regressor approach that is straightforward to apply and has been used in

the majority of applications using copula correction. Thus, our discussion here focuses on

the generated regressor approach that estimates the following augmented regression model

Yi = µ+ αPi ++β′Wi + γP ∗
i + ϵi, where P ∗

i = Φ−1(FP (Pi)); (2)

FP (·) denotes the marginal cumulative distribution function (CDF) of P , Φ−1(·) denotes the

inverse CDF of the standard normal distribution, and γ is the coefficient parameter for P ∗.

Under the GC model for (Pi, Ei), the added term P ∗
i in Equation 2 captures the cor-

relation between the endogenous regressor P and the error term E, and consequently the

new error term ϵi in Equation 2 is independent of Pi given P ∗
i in the model. Based on this

result, the P&G procedure includes the copula term P ∗
i as an additional control variable in

the structural model to correct for the endogeneity of P . The computation of the generated

regressor P ∗
i = Φ−1(FP (Pi)) requires an estimate of FP (·), the unknown marginal CDF of

the endogenous regressor Pi. The popular approach is to estimate FP (·) with the empirical

CDF (ECDF), F̂P (·), which assigns probability mass to the uniquely observed values of Pi

in the sample according to their sample frequencies.

For K continuous endogenous regressors (P1, · · · , PK), the P&G generated regressor ap-
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proach estimates the following augmented regression model:

Yi = µ+
K∑
k=1

Pi,kαk ++β′Wi +
K∑
k=1

P ∗
i,kγk + ϵi, where P ∗

i,k = Φ−1(F̂Pk
(Pi,k)); (3)

γk is the coefficient parameter for P ∗
k , and

∑K
k=1 P

∗
i,kγk is the linear combination of the K

copula terms {P ∗
i,k} used to control for the endogenous regressors and thus is denoted as the

copula control function (CCF).

Assumptions of the P&G procedure

For proper use of the P&G procedure, it is important to understand the assumptions

behind the method. The P&G procedure makes the following assumptions.

• Assumption 1. Either the error Ei or Ui is normally distributed.

• Assumption 2. Either (Pi, Ei) or (Pi, Ui) follows a Gaussian copula.

• Assumption 3. Full rank of all regressors and Cov(Wi, Ei) = 0.

• Assumption 4. Pi is continuous and nonnormally distributed.

• Assumption 5: The linear combination of P ∗
i,k,

∑K
k=1 P

∗
i,kγk, is uncorrelated with Wi.

Contrary to the current belief, we show here that the copula control function methods

(including the P&G) do not require a normal error distribution or GC regressor-error depen-

dence and can be derived under substantially weaker conditions (Assumptions 1 and 2). In

fact, the same control function procedure as above can be derived under the DAG in Figure

1.d, which decomposes the structural error as Ei = Ui + ξi, where Ui denotes the error’s

endogenous part representing the (mean zero) combined effects of unobserved confounders,

and ξi is a (mean zero) exogenous disturbance term independent of Ui and all regressors.

It is often plausible to assume Ui is normally distributed as a sum of many confounders’

effects, satisfying Assumption 1 above. Furthermore, in many settings the GC model can

adequately capture the dependence between Ui and the endogenous regressor Pi, satisfying

Assumption 2 above. Then we arrive at the same augmented regression as in Equation 2,

where the independent error term ϵi = ϵUi + ξi, and ϵUi is the remaining error term after

regressing Ui on P ∗
i . The message is intuitive: the exogenous part of Ei, ξi, simply adds

noise but does not affect endogeneity correction. Because ξi does not need to follow a normal
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distribution or any GC assumption in order for the augmented OLS regression to correct

for bias, the identification of the P&G method does not require the structural error Ei be

normally distributed or follow the GC dependence structure jointly with Pi. These weaker

identification assumptions hold for other more recent copula control function methods (see

Web Appendix C).

Although Assumptions 1 and 2 are used in the derivation of the generated regressors,

they are not strictly required. The P&G procedure exhibits robustness to nonnormal error

distributions and alternative non-Gaussian copulas (Park and Gupta 2012). Eckert and

Hohberger (2023) also show that the P&G method performs on par with or better than

the alternative IV estimation with a moderately skewed error distribution, but might not

withstand highly skewed error distributions or arbitrary dependence structures. If a highly

skewed error distribution raises questions about Assumptions 1 and 2, it is advisable to

consider alternative model specifications (e.g., transforming variables).

Assumptions 3 to 5 are needed for ensuring the consistency of augmented OLS regression

in Equation 3. Two important conditions are required for consistency of the augmented

OLS estimates: full column rank of the regressor matrix, and zero correlation between

regressors and the new error term ϵ (Wooldridge 2010). Assumption 3 is essential for common

econometric methods, including OLS and IV regression. Assumption 4 is important and

well established in the literature. If P approaches the normal distribution and consequently

is close to a linear function of P ∗, the resulting collinearity between P and P ∗ can lead

to large standard errors and significant finite sample bias. In the extreme case when P is

normally distributed, the augmented OLS regression fails by violating the full rank condition

of the regressor matrix. In contrast, Assumption 5 was implicit until recently4. When

Assumption 5 is violated, the new error term ϵ in the augmented OLS regression contains

omitted variables correlated with regressors, introducing bias into estimation (Web Appendix

Equation W29). Before describing recent methods that relax Assumptions 4 and 5, the next

4As shown in Yang, Qian, and Xie (2024a), this assumption is weaker than the assumption that exogenous and

endogenous regressors are uncorrelated as suggested in Haschka (2022).
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subsection discusses algorithms to produce generated regressor P ∗, which can substantially

affect copula correction performance.

Proper Construction of Nonparametric Rank-Based Copula Transformation

As noted above, applications of copula endogeneity correction mostly employ the non-

parametric rank-based copula transformation based on the empirical marginal distributions

of regressors (Equation 3). Although convenient and immune to misspecifications of these

nuisance marginal distributions, the empirical copula transformation requires special han-

dling of mapping from ranks to latent copula data. The construction of the empirical rank-

based copula follows two steps, per Equation 3. First, the observations are ordered and

mapped to a ranked percentile according to the empirical cumulative distribution, F (·). The

second step computes the inverse normal CDF of that ranked percentile. Web Appendix

Table W3 presents a toy example of the two-step copula transformation.

During the copula transformation, the observation with the largest rank is technically

the 100th percentile, however, the inverse normal CDF of the 100th percentile is undefined.

To avoid generating undefined latent copula data, one can adjust the copula transformation

for the maximum value of P as follows:

P ∗
i = Φ−1(FP (Pi)) =


Φ−1(Rank(Pi)/n) if Pi < max(P )

Φ−1(n/(n+ 1)) if Pi = max(P ).

(4)

Besides ensuring that the copula transformed values maintain the same rank order as the

original regressor values for any sample size, 5, the percentile adjustment for the maximum

value yields a theoretically valid maximum value of the underlying copula data. A justifica-

tion of this formula is that the expected value of the maximum of a standard normal sample

of size n can be approximated by Φ−1( n−α
n+1−2α

) with a recommended value for α as α = 0.375

(Royston 1982). The use of Φ−1( n
n+1

) can be viewed as setting α = 0 in the formula, which is

simpler to use and leads to an almost identical result as setting α = 0.375 for typical sample

5By contrast, in their example of 100 observations, Papies, Ebbes, and Van Heerde (2017) set the percentile for

the last observation to 0.99, which is the same as the second to last observation even though these two raw data

points do not have the same rank order.
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size (i.e., n >> α) seen in practical studies.

To demonstrate the importance of the empirical copula transformation, consider an al-

ternative empirical copula construction as implemented in R package REndo (Gui et al. 2023)

and used in Becker, Proksch, and Ringle (2022) to set the percentile for the last observation

to a fixed value of 0.9999999:

P ∗
i,F ix = Φ−1(FP (Pi)) =


Φ−1(Rank(Pi)/n) if Pi < max(P )

Φ−1(0.9999999) = 5.1999 if Pi = max(P ),

(5)

where P ∗
Fix means a fixed percentile value is used for the largest rank. The fixed value is

chosen to be 0.9999999 (close to 1) in order to maintain the same rank order after copula

transformation unless sample size is extremely large (i.e, n >1,000,000). However, when

sample size is small or moderate, copula transformation of the maximum can differ substan-

tially from the theoretically predicted value; this becomes an outlier with its covariate values

distant from the centroid of covariate distributions. Such an outlier has high leverage and is

expected to have outsized influence on coefficient estimates in the augmented OLS regression

and adversely impact the performance of copula correction.

To assess the impact of empirical copula construction on the performance of copula

correction, we compare the algorithms in Equations 4 and 5 using simulation studies6 in

which the true parameter values are known. The simulation study employed the same set

up as described in Becker, Proksch, and Ringle (2022) and in Web Appendix B. Data is

simulated from the model Yi = µ+αPi+Ei, with a GC model between E and P and with a

uniform distribution on (0,1) for P . For each simulated data, we apply both our algorithm

in Equation 4 and the one in Equation 5 to obtain P ∗. Park and Gupta (2012) also suggest

integrating the kernel density estimate (IKDE) to obtain the marginal CDF:

F̂P (p) =

∫ p

−∞
f̂P (u)du, (6)

where f̂P (·) is the kernel density estimate and the trapezoidal rule is used for the numerical

6The R codes for simulation studies and empirical examples are available at https://osf.io/by2ge/?view only=

27cc862a9c02446abbafd3a745722603.
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integration. We therefore also include the IKDE in the comparison.7 For the IKDE and both

ECDF algorithms, P ∗
i is added as a generated regressor in the augmented OLS regression to

obtain the corrected estimate of α.

The results are reported in Web Appendix Figure W28 and reveal that judicious handling

of copula transformation is crucial for the performance of copula correction. A key finding of

this study is that the substantial bias of the P&G copula correction method for models with

intercept, discovered in Becker, Proksch, and Ringle (2022), is largely solved by adjusting the

largest rank using Equation 4. The algorithm in Equation 4 results in considerably improved

performance of the P&G copula correction method; the endogenous regressor’s coefficient

estimate bias now becomes negligible when sample size reaches 400 rather than 4,000 (the

curve with squares in Web Appendix Figure W2). Furthermore, even sample sizes as small

as 100 exhibit a bias of about 0.15 for our algorithm9, which is quite smaller than 1.0 using

the algorithm in Equation 5. The theoretical reason is that constructing the empirical copula

using the fixed-value percentile for the largest rank can substantially distort the distribution

of generated regressor P ∗, resulting in suboptimal performance of the P&G copula correction

method and substantial bias in small to moderate samples. Another useful finding is that

although the IKDE approach does not encounter the issue of the largest ranked value having

undefined copula transformation, IDKE can experience severe estimation bias due to the

boundary bias of kernel density estimation (Web Appendix B).10

In conclusion, our analysis provides theoretical justifications of optimal copula trans-

formation algorithm and discovers sources of challenges in using IKDE for copula trans-

formation. These new insights help demystify misinterpretations about copula correction

and promote optimal copula transformation that greatly affects the effectiveness of copula

7We thank referees for the suggestion.
8We also provide an interactive applet interfaced supplement accessible at https://unknown8866.github.io/

histogram-webpage/ for readers to visually explore the results of the simulation study.
9This is not surprising because the copula correction method, like instrumental variables and other IV-free

methods, is a large sample procedure requiring sufficient information for satisfactory performance.
10Interestingly, models without intercept are robust to these methods for copula transformation. IKDE and both

ECDF algorithms (Equations 4 and 5) yield unbiased estimates for models without intercept (Web Appendix Figure

W3).
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correction. We recommend against assigning a fixed percentile value for the largest rank,

instead favoring the algorithm in Equation 4 to produce valid empirical copula construction

regardless of sample size. We also caution the use of IKDE for copula transformation for the

concern of potential boundary bias. Importantly, including an intercept in the model does

not cause concern as long as the last-ranked value of the empirical CDF is properly handled

by using the recommended copula transformation algorithm.

Methods to Relax Assumptions of Copula Correction

The 2sCOPE control function procedure and extensions

Recent methodological developments relax key assumptions and data requirements of

the P&G method, which considerably widens the applicability of copula correction (Table

4). The algorithm in Equation 4, to properly construct empirical copula transformation,

should be used in these methods for optimal performance (Web Appendix B.5); however,

this algorithm itself does not address the limitations of the P&G method. Yang, Qian, and

Xie (2024a) propose a flexible and feasible two-stage copula endogeneity correction (2sCOPE)

framework using control functions. Recent work extends 2sCOPE to enhance its capabilities

and generality (Table 4). The 2sCOPE framework does not require regressor nonnormality

or presume uncorrelatedness between endogenous and exogenous regressors. The methods

leverage correlated exogenous regressors to sharpen structural model parameter estimates;

the 2sCOPE methods include the P&G method as a special case and reduces to the P&G

method when no correlated exogenous regressors exist in the model.

For the augmented OLS regression in Equation 2, the generated regressor (P ∗) does not

use exogenous regressors in W ; this can produce biased estimates when the generated re-

gressor P ∗ is correlated with the exogenous regressors in W . 2sCOPE corrects this issue by

introducing a two-stage process. The idea of 2sCOPE is to remove from the P&G control

function P ∗ the component that is correlated with the exogenous regressors, using the re-

maining cleaned part of P ∗ to control for endogeneity. Under the assumption of Gaussian
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Table 4: Copula Correction Methods with Enhanced Capabilities.

Features Methods

Handle normal endogenous 2sCOPE and its extensions:

regressors Yang, Qian, and Xie (2024a,b); Liengaard et al. (2024)

Handle discrete and continuous exogenous Haschka (2022), SORE (Qian and Xie 2024)

regressors correlated with endogenous 2sCOPE and its extensions:

regressors and handle nonlinear terms Yang, Qian, and Xie (2024a,b); Liengaard et al. (2024)

such as interactions among regressors Breitung, Mayer, and Wied (2024)

Handle heterogeneous copula structure over Liengaard et al. (2024); Yang, Qian, and Xie (2024b)

levels of discrete exogenous regressors

Handle discrete endogenous regressors SORE (Qian and Xie 2024)

with few levels

Permit non-copula identification SORE (Qian and Xie 2024)

strategies

copula for (P,W,E) or (P,W,U) (U is the endogenous part of E in Figure 1.d), we have:

P ∗
i = δ′W ∗

i + Vi. (7)

where δ contains coefficient parameters, W ∗
i is copula transformation of Wi, and Vi is the

component of P ∗
i that is unrelated to the exogenous regressors but is correlated with the

structure error term Ei.
11 With a normal distribution for the error term Ei or for Ui,

either (Vi, Ei) or (Vi, Ui) follows a bivariate normal distribution: the correlation coefficient

captures the endogeneity of P . For instance, both Ei and Vi may contain an additive

component corresponding to the combined effect of omitted variables. The above model

is then obtained when the combined effect and regressors follow a GC model. One can

then include the first-stage residual Vi as an additional regressor in the structural model in

Equation 1 and perform the following augmented OLS regression:

Yi = µ+ αPi + β′Wi + γVi + ωi. (8)

By conditioning on the first-stage residual Vi (the component in P that causes endogeneity

but uncorrelated with exogenous regressors), the new error ωi becomes independent of all

regressors (Pi,Wi, Vi), thereby ensuring the consistency of standard estimation methods.

For K continuous endogenous regressors (P1, · · · , PK), the 2sCOPE procedure described

11Although Equation 7 includes no intercept, the implementation of 2sCOPE includes the intercept, which is more

general and performs well in simulation studies.
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Table 5: Summary of the 2sCOPE Estimation Procedure

Stage 1:

• Obtain empirical CDFs for each regressor in Pi and Wi, F̂Pk
(·) and F̂Wl

(·);
• Compute P ∗

i,k = Φ−1(F̂Pk
(Pi,k)) and W ∗

i,l = Φ−1(F̂Wl
(Wi,l)) using copula transformation

algorithm defined in Equation 4;

• Regress P ∗
i,k on W ∗

i and obtain residual Ci,k = P ∗
i,k − δ′kW

∗
i (Equation 9), which removes

the component related to exogenous regressors.

Stage 2:

• Add Ci,k to the outcome structural regression model as a generated regressor to control

for endogeneity of Pk. The augmented regression model takes the form of Equation 9 (or

Equation 11 when the model contains higher-order or interaction terms of regressors).

in Table 5 estimates the following augmented regression model:

Yi = µ+
K∑
k=1

Pi,kαk + β′Wi +
K∑
k=1

Ci,kγk + ωi, where Ci,k = Vi,k = P ∗
i,k − δ̂′kW

∗
i ; (9)

P ∗
i,k = Φ−1(F̂Pk

(Pi,k)), W
∗
i,l = Φ−1(F̂Wl

(Wi,l)) for the lth (l = 1, · · · , L) variable in W , and∑K
k=1Ci,kγk is the linear combination of the K residual terms {Vi,k} used to control for the

endogenous regressors. The algorithm in Equation 4 is used for copula transformation of

regressors including discrete exogenous regressors inW . Evaluations show 2sCOPE performs

well with multiple continuous endogenous regressors and multiple exogenous regressors con-

sisting of both continuous and discrete control covariates (Web Appendices E2 and E3 in

Yang, Qian, and Xie 2024a).12

This two-step procedure (2sCOPE) first regresses each P ∗
i,k on W ∗

i and then adds these

first-stage residual terms {Vi,k} to control for endogeneity. In this aspect,
∑K

k=1 Vi,kγk serves

as a control function to correct for endogeneity bias in a similar manner to the control func-

tion approach of Petrin and Train (2010). Unlike Petrin and Train (2010), 2sCOPE requires

no IVs that must satisfy the stringent condition of exclusion restriction, a much stronger

requirement than exogeneity. Furthermore, no arguments for the nature and direction of

correlation between W and P are needed: empirical association is sufficient when using

12One could also eliminate discrete control covariates from the structural model before applying 2sCOPE by using

within group demeaning of the outcome and continuous regressors with groups formed by combinations of discrete

covariates, in a similar way to the fixed-effect transformation of panel data to remove fixed-effects. Alternatively,

one can apply Stage 1 of 2sCOPE to only group-demeaned continuous regressors and include residuals as generated

regressors, while leaving the outcome unchanged. Our experience shows these approaches yield similar results.
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2sCOPE. Thus, 2sCOPE greatly increases the practicality of endogeneity correction.

The 2sCOPE method extends the P&G method in three important aspects. First, unlike

P&G, 2sCOPE adds the first-stage residual terms as the control function instead of P ∗. As a

result, the control function in 2sCOPE accounts for correlated exogenous regressors. Second,

2sCOPE does not require endogenous regressors to have a nonnormal distribution. Even if

the endogenous regressor is normally distributed, 2sCOPE can identify the model as long

as one correlated W is continuous13 and nonnormally distributed, which is feasible in many

empirical applications. Third, while exogenous regressors are not used for generating the

CCF in P&G, 2sCOPE can leverage these exogenous regressors to sharpen the structural

model estimates. If a powerful exogenous regressor is available and included in the model

to generate the CCF, 2sCOPE can eliminate P&G’s finite sample bias caused by insufficient

nonnormality of endogenous regressors, and increase the accuracy of the parameter estimates.

The 2sCOPE is derived based on the following assumptions:

• Assumption 1. The error Ei or its endogenous component Ui is normally distributed.

• Assumption 2. Either (Pi, Wi, Ei) or (Pi, Wi, Ui) follows a Gaussian copula.

• Assumption 3. Full rank of all regressors and Cov(Wi, Ei) = 0.

• Assumption 4. Either the continuous Pi or one correlated and continuous regressor in

Wi is nonnormal.

Assumption 1 shows that the error term does not need to be normally distributed. Assump-

tion 2 means that 2sCOPE continues to have the double robustness property: regressor-error

dependence does not need to follow a GC relationship as long as GC adequately captures

the dependence between the regressor and Ui, the endogenous part of the error. As shown

in Yang, Qian, and Xie (2024a), 2sCOPE increases modeling robustness and reduces depen-

dence on model assumptions as compared with the P&G method. As a result, 2sCOPE has

increased robustness to small sample size, normality of endogenous regressors, and violations

of Gaussian copula dependence. Assumption 3 is not specific to 2sCOPE, but a standard

13Discrete exogenous regressors with few levels have high multicollinearity with their copula transformed values

and thus are uninformative to help identify models with normally distributed endogenous regressors.
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assumption invoked in other commonly used econometric methods, such as OLS, 2SLS using

IVs, and the P&G method. When W is not exogenous (i.e., Cov(Wi, Ei) ̸= 0), bias may arise

in the coefficient estimates of endogenous regressors for all these methods (Web Appendix

E.11 in Yang, Qian, and Xie 2024a). It is important to justify the exogeneity of the control

variables in W for these methods (e.g., based on institutional knowledge when specifying

the econometric model) or remove control variables suspected to be endogenous. Finally,

Assumption 4 is less stringent than P&G’s Assumption 4 (nonnormal distribution of P ),

while 2sCOPE eliminates Assumption 5 in P&G.

The 2sCOPE procedure assumes that the GC dependence structure is homogeneous (As-

sumption 2). Recent studies (Liengaard et al. 2024; Yang, Qian, and Xie 2024b) relax this

assumption and provide a robustness check of 2sCOPE to the assumption. Liengaard et al.

(2024) permits the GC dependence structure and the copula correction terms to vary by

the levels of discrete exogenous regressors. When the levels of combinations of all discrete

regressors are not small, this approach may lead to sparse data insufficient for ECDF estima-

tion and a larger number of copula parameters and copula correction terms than necessary,

resulting in inflated estimation variance and estimation bias. Thus, it is important to have

sufficient sample size and meet data requirements (shown later in the Flowchart in Figure

5) within each level of combinations of discrete exogenous regressors.14 Yang, Qian, and Xie

(2024b) propose a more flexible 2sCOPE estimator based on a general-location heterogeneous

GC model (see Web Appendix Table W13).

Breitung, Mayer, and Wied (2024) propose another copula correction procedure that

accounts for correlated exogenous regressors. Although termed as a nonparametric control

function, their approach invokes the assumptions of normality for Ui (endogenous part of the

structure error Ei) and a degenerated GC dependence15 between Ui and the error term in a

14Simulation results (Figure 2 in Liengaard et al. 2024) show the finite sample estimation bias remains before

sample size reaches between 1600 and 3200 observations for an exogenous regressor with two levels. The finite sample

bias depends on the normality of regressors and correlations between endogenous and exogenous regressors.
15Specifically, the correlation coefficient in the GC model is fixed at 1 or -1 (i.e., a deterministic relationship) such

that Ui is a linear function of the copula transformed error term for the endogenous regressor. Such a one-to-one

deterministic relationship appears to be a strong assumption that is unlikely to hold in practice.
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linear additive model, capturing the dependence of the endogenous regressor on exogenous

regressors. One concern is that many endogenous regressors have complex features (e.g.,

bounded, truncation, discrete, or highly skewed) for which linear dependence models are

known to be untrue or inadequate 16, which is why more general and plausible multivariate

dependence models such as copula models are needed (Park and Fader 2004; Chen 2007;

Danaher and Smith 2011; Park and Gupta 2012). We thus recommend copula correction

procedures using these more flexible multivariate dependence models, such as 2sCOPE and

Haschka (2022). In addition, we will describe below the SORE model (Qian and Xie 2024)

and the general location copula model (Yang, Qian, and Xie 2024b), both of which nest the

linear dependence models as special cases.

Likelihood-based copula correction procedures

Haschka (2022) generalizes P&G to fixed-effects (FE) linear panel data models. Because

the fixed-effects transformation alters the error covariance structure, a generalized least

squares (GLS) transformation is applied to address nonspherical errors and collapse panel

data to pooled observations with spherical errors. Haschka (2022) then develops a copula

correction method by maximizing the joint likelihood of a GC model for the error and all

explanatory variables. We will detail the method in the later section “Copula Correction in

Panel Data”.

Qian and Xie (2024) propose an endogeneity bias correction procedure that accounts for

regressor-error dependence using a flexible semiparametric odds ratio endogeneity (SORE)

model. The semiparametric odds ratio model is often used in marketing and other fields as a

flexible multivariate model to measure dependence (Chen 2007), model multivariate missing

data and selective sampling (Qian and Xie 2011, 2022), and combine data with sensitive

elements (Qian and Xie 2014, 2015; Feit and Bradlow 2021). The SORE model encompass a

16Examples include the percentage of trained salespeople that takes on continuous values in [0, 1] (Atefi et al.

2018), or brand price that takes on values between minimum and maximum prices (Qian and Xie 2011). Assuming

linear additive models on such regressors can mismeasure dependence and produce poor model fitting and biased

predictions. The linear additive equation commonly used in the first stage regression for such endogenous regressors

in two-stage least squares (2SLS) using IVs is not a dependence model but simply a projection (Wooldridge 2010).

2SLS achieves identification through exclusion restriction rather than dependence modeling.
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number of existing dependence models including copulas and is capable of capturing both GC

and non-copula dependence structures. SORE requires a special estimation algorithm that

eliminates potentially high-dimensional nuisance parameters in the nonparametric baseline

distribution function, and maximizes the profile likelihood concentrating on the parameter

of interest. Likelihood-based model selection measures (such as AIC/BIC) help select proper

odds ratio dependence functions, encoding regressor endogeneity and identification strategies.

Distinct from other IV-free methods, SORE can handle discrete endogenous regressors with

few levels (Table 4), including binary endogenous regressors or count endogenous regressors

with small means, and consequently it is applicable to many applications involving these

regressors. In this aspect, SORE nests as special cases the Heckman’s treatment selection

models (Heckman 1976) and offers alternative treatment effect identification strategies.

Optimal Copula Estimation of Endogenous Moderating and Nonlinear Effects

Many applications in different fields are interested in estimating structural models with

higher-order terms of endogenous regressors to gain deeper understanding of causal mech-

anisms. Copula correction methods can handle these nonlinear terms (Table 4). However,

considerable confusion and variation exist in how to handle these higher-order endogenous re-

gressors. In this section we consider the best copula approach to handling these higher-order

terms via both theoretical proof and empirical evaluations.

Consider the following general model containing higher-order terms of regressors:

Yi = µ+ α′
1Pi + α′

2f1(Pi) + α′
3f2(Pi,Wi) + β′Wi + ηf3(Wi) + Ei, (10)

where Pi is a vector of K continuous and endogenous regressors, and Wi is a vector of

exogenous regressors. The structural model in Equation 10 expands the model in Equation

1 to include higher-order endogenous terms, namely f1(Pi) and f2(Pi,Wi), and higher-order

exogenous terms, f3(Wi). Below are examples of these higher-order terms:

• Polynomial functions of a scalar Pi: α
′
2f1(Pi) = α2P

2
i

• Interaction of two endogenous regressors Pi = (P1i, P2i): α
′
2f1(Pi) = α2P1iP2i

• Interaction of endogenous and exogenous regressors: α′
3(Pi,Wi) = α3PiWi
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Because higher-order terms of endogenous regressors, f1(Pi) and f2(Pi,Wi), are also en-

dogenous, it is tempting to control their endogeneity by adding separate copula correction

terms for them. However, the point of not needing these copula correction terms for these

higher-order terms is clearly shown in the following augmented OLS regression, including

only copula correction terms for the first-order endogenous terms (i.e., main effects):

Yi = µ+ α′
1Pi + α′

2f1(Pi) + α′
3f2(Pi,Wi) + β′Wi + ηf3(Wi) + γ′Ci,main + ϵi, (11)

where Ci,main = (Ci,1, · · · , Ci,K) contains copula correction terms for main terms Pi only, and

Ci,k = Vi,k, k = 1, · · ·K, are the first-stage residual terms defined in Equation 9. Because

the new error term ϵ is independent of P and W under the GC model, ϵ is also independent

of f1(P ), f2(P,W ) and f3(W ), all of which are deterministic functions of P and W . Thus,

once the copula correction terms for main effects Cmain are included as control variables in

Equation 11, the new error term ϵ is already independent of (and uncorrelated with) these

high-order terms, so extra correction terms for f1(P ) and f2(P,W ) are not needed. This

simplicity of handling higher-order endogenous regressors is a merit of copula correction.

Although it is unnecessary to add the copula correction terms for higher-order terms,17

a further question is what will happen if the additional copula generated regressors for the

higher-order terms are included. Will doing this lead to better or worse performance of

copula correction? The issue with adding unnecessary regressors Cf1(Pi) and Cf2(Pi,Wi) is

the significant collinearity between these higher-order copula terms and their co-varying

constituents (P , f1(P ), f2(P,W ), and Cmain). This substantially decreases precision of

coefficient estimates, and makes copula correction methods perform worse than otherwise,

shown formally by Theorem 1 in Web Appendix D.

Additionally, simulation studies in Web Appendix E demonstrate substantial harmful

effects if correction terms for higher-order terms are added to control for their endogene-

ity. These effects include large magnitude of finite sample bias and inflated variability of

17Papies, Ebbes, and Van Heerde (2017) (p. 615) noted this point for the P&G method. Our analysis (1) extends

this result to more general copula methods (see Equation 11 and Web Appendix Tables W7 and W10 for 2sCOPE)

and (2) demonstrates a stronger result that adding the unnecessary high-order copula correction terms is suboptimal

and has significant adverse effects using both theoretical proof and empirical evaluation.

29



structural model parameter estimates, as predicted by the theoretical results in the above.

Copula Correction in Panel Data

Copula correction can also address various sources of bias in panel data (Park and Gupta

2012; Haschka 2022; Yang, Qian, and Xie 2024a,b). Haschka (2022) generalizes copula

endogeneity correction to the following fixed-effects (FE) panel data model

yit = µi + P ′
itα +W ′

itβ + eit, (12)

where yit denotes the dependent variable (e.g., store sales) for cross-sectional unit i =

1, · · · , N at occasions t = 1, · · · , T ; the fixed effect parameter µi capture the effects of

time-constant (unobserved) variables (e.g., store size and market characteristics that do not

change over time); Pit denotes endogenous regressors (e.g., price) such that Cov(Pit, eit) ̸= 0

due to time-varying unobservables (e.g., unmeasured consumer tastes or brand attributes

varying over time), where the error eit ∼ N(0, σ2
e); Wit denotes exogenous control variables

(e.g., prearranged promotions, quarter time periods). The parameters α and β capture the

effect of Pit and Wit, respectively. Given fixed-effects µis, all regressors in (Pit,Wit) must be

time-varying. Since fixed-effect parameters µis can be correlated with the regressors Pit and

Wit, the fixed-effects transformation (Wooldridge 2010, p.302-303) is often used to eliminate

these incidental intercept parameters. Because fixed-effects transformation changes the panel

error structure to be nonspherical (nondiagonal covariance matrix), the GLS transformation

is applied to handle nonspherical errors and collapses data to the pooled case with spherical

errors ξ̃it
iid∼ N(0, σ2

ξ ). Haschka (2022) then developed an efficient MLE estimation procedure

that maximizes the likelihood of a GC model for the error and all explanatory variables to

address regressor endogeneity.

Panel studies often need to consider slope heterogeneity. As shown in extant marketing

studies, consumers’ heterogeneous responses to marketing mix variables (e.g., price slope

coefficients) are ubiquitous and substantial bias can arise when ignoring such slope hetero-

geneity. Thus, it is important to allow for individual-specific slope coefficients in marketing

studies, by employing panel data models with random coefficients or mixed-effects (i.e.,
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both fixed-effects and random coefficients). Extending the copula MLE method to these

more general models with endogenous regressors can be challenging, because the model like-

lihood contains new intractable integrals of complex functions that involve products of copula

density functions (Yang, Qian, and Xie 2024a).

For greater generality and computational tractability, Yang, Qian, and Xie (2024a,b)

propose copula control function approaches for the following more general panel data model:

yit = µi + P ′
itαi +W ′

itβi + eit, (13)

where individual-specific parameters (µi, αi, βi) can be treated as fixed-effects, random-

effects, or a mixture of fixed-effects and random-effects. The model includes the FE panel

model in Equation 12 as a special case. Their copula control functions involve no numeri-

cal integrals and can be implemented straightforwardly using standard software programs,

assuming all regressors are exogenous.

To account for regressor endogeneity, Yang, Qian, and Xie (2024b) capture the regressor-

error dependence using the following general location GC model that takes into account the

panel data structure:

pit = αip + eit,p, and wit = αiw + eit,w, (14)

where the regressors pit and wit are allowed to depend on unit-specific mean levels αip and

αiw. The error terms in (13) and (14) then follow the GC model, capturing the regressor

endogeneity of pit and the dependence among endogenous and exogenous regressors. Assum-

ing a homogeneous GC model, a two-stage copula control function approach estimates the

following augmented panel regression model:

yit = µi + P ′
itαi +W ′

itβi +
K∑
k=1

γkCit,k + ωit, (15)

where the copula term Cit,k = (P̃it,k)
∗ − δ′k(W̃it)

∗; P̃it,k and W̃it are the time demeaned value

of Pit,k and Wit (i.e., subtracting each unit’s averages over time of Pit,k and Wit from the

original values of Pit,k and Wit).
18 Thus, the procedure is to apply the 2sCOPE in Table 5

18The time demeaning removes the effects of all time-constant confounders and is recommended for handling

endogenous regressors that vary over both i and t. Endogenous regressors that vary only over t or only over i do not

need time-demeaning.
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to the time-demeaned regressors. The new error term ωit is shown to be uncorrelated with

all regressors in the augmented panel regression model in Equation 15, thereby eliminating

the regressor-error dependence (Yang, Qian, and Xie 2024b). Copula correction assuming

homogeneity is found to be robust to heterogeneous endogeneity across panel units (Haschka

2022; Yang, Qian, and Xie 2024b). When the panel is sufficiently long, Yang, Qian, and

Xie (2024b) explicitly permit the copula dependence to vary across panel units and recover

estimates of panel-specific endogeneity.19 One can also treat slope coefficients as fixed-effects

to account for slope endogeneity: dependence between regressor coefficients (αi, βi) and the

regressors. For example, prices observed in historical data could be set by retailers with

knowledge about their consumers’ price sensitivity; retailers may charge lower prices in

markets with greater price sensitivity. Yang, Qian, and Xie (2024b) employ the mean group

(MG) estimator to estimate the augmented panel regression model in Equation 15 with slope

endogeneity. Specifically, the MG estimator fits a separate augmented panel model to each

panel, and then pools the estimates across all panels to obtain average estimates.

Copula correction can also be applied to address regressor endogeneity in random coeffi-

cients logit (RCL) models for panel discrete choice outcomes (Park and Gupta 2012; Yang,

Qian, and Xie 2024a). In RCL models, the endogeneity of price is modeled as the depen-

dence between product price and unobserved time-varying product characteristics. One can

then map an RCL model specified at the consumer level to an aggregate linear model for the

product utility averaged across all consumers (Berry, Levinsohn, and Pakes 1995), for which

copula correction for linear models can be directly applied to address regressor endogeneity.

Obtaining Standard Errors

For copula correction methods performing joint estimation in one step (Qian and Xie

2024), standard errors by inverting the Hessian matrix can be straightforwardly obtained

as a byproduct of the estimation procedure. For copula correction methods using two-step

19This general-location heterogeneous GC model (Yang, Qian, and Xie 2024b) for long panel can also be applied to

grouped data formed by discrete exogenous regressors (Web Appendix F Equation W30) that generalizes Liengaard

et al. (2024).
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procedures, bootstrapping is applied to obtain proper standard errors in order to account

for additional uncertainty associated with obtaining generated regressors in the first step

(Park and Gupta 2012). Starting with the original dataset consisting of n independent

observations, bootstrapping resamples the data and randomly draws n observations from

the original dataset with replacement, and then calculates the copula corrected model esti-

mates on the bootstrap sample. This simulation process is repeated many times to obtain

a distribution for each model estimate. The standard deviation of this bootstrap distribu-

tion then estimates the standard error of the estimate. For panel data, cluster bootstrap

should be used to resample independent cross-sectional units instead of individual observa-

tions (Haschka 2022). That is, only the cross-sectional units (clusters) are resampled, while

all the observations within the sampled clusters are retained and unchanged. This ensures

the bootstrap samples retain dependence structures among panel observations existing in

the original data. Simulation studies have shown the bootstrap produces reliable standard

error estimates with single or multiple endogenous regressors, with or without correlated

exogenous regressors (Park and Gupta 2012; Haschka 2022; Yang, Qian, and Xie 2024a).

GUIDANCE FOR PRACTICAL USE

As described in the preceding sections, considerable advances have been made since

Park and Gupta (2012)’s study, with more flexible and general copula correction methods

becoming available. We also show that variations in implementing copula correction have

substantial impacts on its effectiveness to correct endogeneity. Informed by these findings

and advances, this section describes a procedure guiding practical usage of copula correction

methods.

Figure 5 presents a step-by-step flowchart20 for the steps and checkpoints in using copula

correction. Before entering the flowchart, one should ensure the model is appropriately

specified and theoretically supported, with pertinent control variables included in W and

the regressor matrix being full rank. To ensure exogeneity of W , include only necessary

20A web selector tool is available at https://unknown8866.github.io/flowchart-webpage/
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Figure 5: Flowchart for Copula Procedure.
Note: Pmain denotes the first-order terms of endogenous regressors. W denotes exogenous control variables
and Cov(W,E) = 0.
a: For multiple endogenous regressors (Pmain,1, · · · , Pmain,K), a less stringent condition for using P&G is

no correlation between
∑K

k=1 P
∗
main,kγk (the linear combination of copula transformations of all the

first-order endogenous regressor terms) and each W . Use the stabilized copula transformation formula in
Equation 4 especially when the model includes the intercept.
b: W is sufficiently nonnormal if normality test p < .001 and sufficiently relevant to Pmain if F statistics
> 10.

exogenous control variables. Control variables believed to be endogenous should be treated as

endogenous regressors or removed from the model. When the need to use copula correction is

confirmed using Table 2 (the start of the flowchart), assess the plausibility of GC dependence

in the focal application. The double robustness property of copula correction using control

functions means that copula correction can be used with departures from GC regressor-error

dependence, as long as GC adequately captures the dependence between regressors and U

(the combined effects of all unobserved confounders). Copula correction also works with

a nonnormal error distribution. However, out of an abundance of caution and for optimal

robustness, consider revising model specifications (e.g., transform variables or add more

control variables) if the error distribution is suspected to be highly skewed.
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If copula correction is chosen, follow the rest of the flowchart to determine appropriate

copula correction methods. As shown previously, copula correction only needs to include

CCFs corresponding to the first-order terms Pmain of endogenous regressors, even when the

structural model contains higher-order terms of endogenous regressors. Thus, the flowchart

only needs to consider Pmain. Furthermore, when the structural model includes an intercept,

the copula transformation should use the algorithm in Equation 4 to avoid the estimation

bias discovered in Becker, Proksch, and Ringle (2022). When conditions are met, the P&G

method can be followed, but more recent research relaxes these conditions and presents the

path to perform copula correction when these conditions are not met.

Step 1. This step checks whether the endogenous regressor Pmain has sufficient support.

The copula procedures is designed to handle sufficiently continuous endogenous regressors.

Use SORE (Qian and Xie 2024) to handle binary or discrete endogenous regressors with only

a few levels, or nominal endogenous regressors whose levels have no natural ordering.

Step 2. This step checks whether Pmain is normally distributed or not. If Pmain is normally

distributed, the P&G method cannot be used because the model is unidentified. However,

the 2sCOPE procedure shows even if Pmain is normally distributed, it can still be a candidate

for copula correction through 2sCOPE. Yet, this route follows a different path, as seen in

Figure 5 and discussed more below in Step 3.b. The literature notes that more powerful

tests for normality, such as the Shapiro-Wilk test or Anderson-Darling test, might not fully

rule out nonidentification, because these tests can detect small departures from normality

that are insufficient for copula correction (Becker, Proksch, and Ringle 2022; Eckert and

Hohberger 2023). Yet, the Kolmogorov-Smirnov (KS) test is relatively conservative among

the most commonly used normality tests; a p-value less than 0.05 from the KS normality test

has been shown to perform well for ruling out finite sample bias due to insufficient regressor

nonnormality (Yang, Qian, and Xie 2024a). The KS test compares the focal empirical CDF

distribution - a quantity linked to copula transformation - with the reference CDF, and is an

overall comprehensive measure to quantify nonnormality. Furthermore, as the performance
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of copula correction improves with sample size when everything else is fixed, measures for

sufficient regressor nonnormality should depend on sample size: a minor departure from

normality that is insufficient for a small sample can become sufficient when sample size is

large. The p-value from the KS normality test satisfies this condition. Thus, the p-value

from the KS test is used to inform sufficient nonnormality of regressors.

Step 3. This step marks one of the biggest shifts in copula usage since Park and Gupta

(2012), consisting of two disjoint steps (3.a and 3.b), depending on the outcome of Step

2. The data requirements in this step are established using comprehensive factorial design

simulation experiments to assure satisfactory performance of copula correction across a wide

range of conditions in finite samples (Web Appendix E.8 in Yang, Qian, and Xie 2024a).

3.a. If the endogenous regressor Pmain has sufficient nonnormality (KS p-value < 0.05)

in Step 2 above, Step 3 will check an additional condition to determine if the P&G method

can be used. As noted previously, the P&G method requires its control function (i.e.,∑K
k=1 P

∗
main,kγk forK endogenous regressors) be uncorrelated with exogenous regressors. The

correlation between P&G’s control function and each exogenous regressor can be checked us-

ing Fisher’s Z test for correlation. When this condition is met and sample size is small, the

P&G method may be preferred because a simpler and valid model is more efficient than

a more general method21. Otherwise, one should use 2sCOPE to handle correlated exoge-

nous regressors. Alternatively, an MLE copula procedure (either the one-step SORE or the

two-step procedure of Haschka 2022) can be used. Since Pmain already has sufficient nonnor-

mality, there is no need for correlated exogenous regressors to be nonnormally distributed.

3.b. If the endogenous regressor Pmain is found to have insufficient nonnormality (KS

p-value > 0.05) in Step 2, then one cannot use the P&G method, but can use 2sCOPE

to leverage correlated exogenous regressors to achieve model identification. In order to

compensate for the lack of nonnormality of endogenous regressor P , at least one exogenous

and continuous regressor W needs to satisfy the following two conditions: (1) sufficient

21For a large sample size, 2sCOPE has negligible effciency loss relative to P&G and is the preferred method.
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nonnormality, and (2) sufficient association with the endogenous regressor P . A conservative

rule of thumb for such a W is the p-value from the KS test on W being < 0.001 and a strong

association with P (F statistic for the effect ofW ∗ on P ∗
main > 10 in the first-stage regression).

When these conditions are met, even when Pmain is normally distributed, 2sCOPE is expected

to yield estimates with negligible bias. When these conditions are not met, Yang, Qian, and

Xie (2024a) suggest gauging potential bias of 2sCOPE for data at hand via a bootstrap

procedure described there, and using 2sCOPE only if the potential bias is small.

As seen above, only one of 3.a or 3.b is taken in Step 3. Importantly, if P already has

sufficient nonnormality that leads to 3.a, there is no need to do 3.b to check if any continuous

W has sufficient nonnormality and is associated with P . These conditions are only checked if

we need to find a useful W to compensate for the lack of nonnormality of P . In 3.b, 2sCOPE

uses W to tease out an exogenous part of the endogenous regressor for model identification.

A good starting place to find such W is in the exogenous control variables pre-existing in the

OLS or IV regressions. Unlike IVs, these control variables (e.g., exogenous demand shocks)

do not need to satisfy the stringent exclusion restriction condition. That is, these W s do

not have to be excluded from the structural model (e.g., Equation 1), and can affect the

outcome directly and not through the endogenous regressors. Such W s are more readily

available than IVs, and because empirical association between the candidate W and P is

sufficient, researchers using copula correction do not need to argue for the causal pathways

between W and P like in the case of IVs.

Step 4. The final step is to apply the appropriate copula procedure using either con-

trol functions or likelihood-based joint estimation. For control functions, if the generated

regressor is not statistically significant, this suggests the endogenous regressor Pmain is not

sufficiently correlated with the error term, and endogeneity is unlikely. Thus, non-significant

generated regressors should be dropped and the model re-estimated. Marketing studies have

dropped copula correction terms at the p > 0.10 level (e.g., Datta et al. 2022), suggesting

even marginally significant copula correction terms are still worth retaining. If no generated
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regressor is significant, the model can be estimated in a more traditional manner (i.e., OLS).

COPULA IMPLEMENTATION EXAMPLES

In this section, we illustrate use of the flowchart to guide the implementation of copula

correction via two examples using weekly store sales data from the IRI Academic data set

(Bronnenberg, Kruger, and Mela 2008). To correct for price endogeneity, the first example

examines the main effect of price, while the second example examines higher-order moder-

ating effects captured by the interaction between price and store feature (i.e., weekly store

flyer promoting products).

Example 1: Main Effects Application of Copula Correction

Returning to our running Example 1, the outcome of interest is the weekly sale volume

in the diaper category for one focal store in the Buffalo, NY market in the years 2002-2006,

where volume is measured in diaper counts. Price is defined on an equitable volume across

UPCs, since pack sizes vary in diapers per pack. IRI additionally collected information on

whether UPCs were featured in the store’s weekly flyer that week. Category price and feature

are evaluated as market-share weighted averages of UPC-level price and feature, respectively.

Knowledge of category price elasticity is critical for retailers or category managers to set

optimal pricing and increase category demand that is the first source of profitable growth, and

for policymakers to design interventions (e.g., gasoline tax). Price is commonly considered

endogenous in category demand models (Nijs et al. 2001; Park and Gupta 2012; Li, Linn, and

Muehlegger 2014). In this example, price was treated as endogenous because of unobserved

variables (e.g., retailer pricing decisions, number of shelf facings) that, when omitted from

a model, become part of the structural error. For brevity, we use “Price” and “Volume”

hereafter to refer to the log-transformed category price and sales volume, respectively. The

impacts of price and feature advertising appear in the following model:

Volumet = µ+ αPt + β′Wt + Et. (16)

In the model, Pt is the endogenous regressor as log-transformed price. Wt is a vector of control

variables including feature, week, and binary variables for quarters 2, 3, and 4. We treat
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feature as exogenous because decisions to promote items in the store flyer are made well in

advance of implementation, and thus are unlikely to be correlated with weekly unobservables

(Chintagunta 2002; Sriram, Balachander, and Kalwani 2007). The week variable is included

as a control variable to account for a small but significant trend in price increases over time.

One solution to price endogeneity is to use an IV approach, where the diaper price

of another store in the same market was used as an IV. Prices are correlated for both

stores, with the belief that wholesale prices are similar for products sold by the two stores

(relevance), but uncaptured product characteristics (including retailer decisions like shelf

facings and shelf location) are unlikely related to wholesale prices (ER). However, the ER

assumption is untestable and the IV may be not strong enough. This is one of the use cases

for copula correction as listed in Table 2: use multiple methods (both IV estimation and

copula correction here) to cross-validate results and increase robustness of causal inference.

Before we present the results, below we walk through the steps of the Figure 5 flowchart.

Step 1. Is Pmain continuous? The endogenous regressor, Price, is a continuous measure,

ranging from $0.140 to $0.262 per diaper, with a mean of $0.221, median of $0.224, and

standard deviation of $0.018.

Step 2. Is Pmain normally distributed? Figure 6 shows somewhat skewness to the left

for the price variable. However, the skewness is not strong enough to reject the KS test

for normality (D = 0.08, p > 0.05) at the 0.05 level of significance. This means that the

endogenous regressor may not have sufficient nonnormality. One solution is to leverage

related exogenous regressors with sufficient nonnormality via 2sCOPE as described next.

Step 3.b. Is at least one W sufficiently nonnormal and correlated with Pmain? The first-

stage regression shows only one exogenous regressor is sufficiently correlated with the price

(F -stat > 10): feature (F = 16.8). The regressor, feature, is highly skewed (Figure 6) and

nonnormally distributed based on the KS test (D = 0.14, p < 0.0001).

Step 4. Perform 2sCOPE estimation. The above steps show that conditions have been

verified such that the 2sCOPE method can be used to handle the price endogeneity. The
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Figure 6: Distributions of Price and Feature in Example 1.

standard errors are obtained using 500 bootstrap samples.

Table 6 compares 2sCOPE to OLS and 2SLS using the IV. The 2sCOPE estimation

results show that the copula correction term Cprice (i.e., the first-stage residual) is significant

(Est. = 0.077, SD = 0.037, p < 0.05), indicating the presence of price endogeneity, so we

retain the CCF in the model to control for price endogeneity.

The results show that while price has the smallest absolute effect in the OLS model (Est.

= -1.367, SE = 0.137, p < 0.01), the effect is greatest in the 2SLS model (Est. = -2.470, SE

= 0.661, p < 0.01); the 2sCOPE price estimate falls in between and is much closer to the

2SLS price estimate (Est. = -2.205, SE = 0.446, p < 0.01). Compared to 2SLS using IV, the

2sCOPE results are not unlike that of 2SLS, within one SD of the 2SLS price estimates. The

2SLS price estimate differs somewhat from the 2sCOPE price estimate by 12.0%. Although

the correlation in prices between the two stores is significant and passes the weak instruments

test (F = 13.89, p < 0.01), the correlation is not especially strong (r = 0.218). Thus, the

difference between 2sCOPE and 2SLS seen here could be because the other store’s price as an

IV is not particularly strong, and a strong IV is not always readily available. In such cases,

cross-validating results from different methods (IV correction and IV-free copula correction)

can increase the robustness of causal estimation. The 2sCOPE shows that price is positively

correlated with the error term (Est. = 0.366, SE = 0.160, p < 0.05), indicating the presence

of price endogeneity. This finding is consistent with the result of the Wu-Hausman test (H

= 3.56, p < 0.07) from 2SLS, which also suggests endogeneity was likely present. Overall,
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Table 6: Estimation Results for Example 1

Parameters OLS 2SLS 2sCOPE

Intercept 6.005 (0.205)*** 4.371 (0.978)*** 4.763 (0.668)***

Price -1.367 (0.137)*** -2.470 (0.661)*** -2.205 (0.446)***

Feature 0.298 (0.095)*** 0.059 (0.178) 0.124 (0.124)

Week -0.002 (0.000)*** -0.002 (0.000)*** -0.002 (0.000)***

Q2 -0.019 (0.031) -0.014 (0.035) -0.018 (0.036)

Q3 -0.018 (0.032) -0.034 (0.036) -0.029 (0.035)

Q4 -0.018 (0.032) -0.061 (0.041) -0.044 (0.035)

Cprice 0.077 (0.037)**

ρ 0.366 (0.160)**

Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < 0.10, ** is p

< 0.05, *** is p < 0.01

the comparison with 2sCOPE shows that without endogeneity correction, managers would

severely under-estimate price elasticity based on the OLS findings for this store, by 38.0%.

Example 2: Copula Estimation of Endogenous Interactions

We now examine what to do when an endogenous regressor has a higher-order effect,

such as a squared term or interaction (moderation) with another variable. For brevity,

we speak to these higher-order effects simply as interactions. The “METHODOLOGICAL

BACKGROUND” section provided studies with simulated data showing that including a

copula for the interaction term may induce bias and inflated estimation variability, and that

the best course is to only include copula correction terms for the main effects.

To show how copula correction is applied with interactions of endogenous regressors and

examine the adverse effects of including higher-order copula correction terms in an empirical

application, we extend the sales response model in Equation 16 to include an interaction

term (Pt ∗ Ft) between price and feature as follows:

Volumet = µ+ α ∗ Pt + β′Wt + ϕPt ∗ Ft + Et, (17)

where Pt and Ft are category price and feature, respectively, and Wt includes Ft, week,

and binary variables for quarters 2, 3, and 4. We use the IRI academic data set for a new

store and product category, a New York City store and its peanut butter sales for the years

2001-2003 (156 weeks), allowing for price and feature to work together as an interaction.

Such interactions are common to both academics and managers, as marketing efforts often
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Table 7: Estimation Results for Example 2

Parameters OLS 2SLS 2sCOPE 2sCOPE W/Int

Intercept 6.038 (0.165)*** 6.688 (0.359)*** 6.544 (0.256)*** 6.344 (0.307)***

Price -0.453 (0.274)* -1.554 (0.606)** -1.314 (0.430)** -0.999 (0.518)*

Feature 1.513 (0.234)*** 0.646 (0.487) 0.837 (0.388)** 0.619 (0.420)

Price*Feature -2.125 (0.379)*** -0.950 (0.694) -1.167 (0.661)* 0.148 (0.825)

Week 0.001 (0.000)*** 0.001 (0.000)*** 0.001 (0.000)*** 0.001 (0.000)***

Q2 -0.028 (0.034) -0.020 (0.036) -0.022 (0.033) -0.038 (0.041)

Q3 -0.083 (0.035)** -0.099 (0.038)*** -0.096 (0.034)*** -0.089 (0.045)**

Q4 -0.090 (0.036)** -0.081 (0.038)** -0.080 (0.035)** -0.066 (0.039)*

Cprice 0.069 (0.028)** 0.058 (0.030)*

CPrice∗Feature -0.168 (0.098)*

ρ1 0.185 (0.082)** 0.128 (0.086)

ρ2 -0.456 (0.229)**

Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < 0.10, ** is p

< 0.05, *** is p < 0.01

work together. Of interest here is that price and feature advertising likely work together

to achieve interactive, synergistic effects on sales. This can be tested by estimating the

interaction term between price and feature advertisement in the above sales model, with

feature advertisement as a potential moderator of price. Like Example 1, we follow the same

steps in Figure 5 to guide the selection of the appropriate copula method. Web Appendix F

describes the walk-through of these steps, which concludes that 2sCOPE should be used.22

Table 7 presents the 2sCOPE result with the copula correction term (i.e., the first-stage

residual) for price only. The results show the price copula correction term (i.e., the first-

stage residual) is significant (Est. = 0.069, SE = 0.028, p < 0.05), indicating the presence

of endogeneity. Like Example 1, we also compare the results to OLS and 2SLS, as well as to

when a copula correction term for the interaction term is also included (2sCOPE W/Int).

Similar to Example 1, price has the smallest absolute effect in the OLS model (Est. =

-.453, SE = 0.274, p < 0.10) and the greatest absolute effect in the 2SLS model (Est. =

-1.554, SE = 0.606, p < 0.05). The 2sCOPE estimate falls in between, closer to 2SLS in

both effect and SE (Est. = -1.314, SE = 0.430, p < 0.05). The closeness to 2SLS is more

22Web Appendix Table W12 presents the results of the P&G method from the two examples, even though P&G

did not satisfy the data requirements according to the flowchart in Figure 5. The results there show appreciable

differences in some model estimates, more so for Example 2.
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expected here since the usage of another store’s price is a strong instrument (r = 0.90, p <

0.01), as 2SLS rejects the test for weak instrument (F = 21.567, p < 0.01); the Wu-Hausman

test also suggests endogeneity (W= 4.863, p < 0.03). Without correcting for endogeneity in

this example, managers would under-estimate the price elasticity by 65.5% in OLS.

Importantly, the 2sCOPE results point to a contrast with 2sCOPE when a copula cor-

rection term CPrice∗Feature is included for the interaction between price and feature. Here,

the price estimate is substantially smaller and becomes insignificant (Est. = -.999, SE =

0.518, p > 0.05 under column “2sCOPE W/Int” in Table 7), which can lead to the incorrect

conclusion that price had no significant effect on sales. A more striking difference regards

the estimate of the interaction term Price*Feature. The Price*Feature estimates from 2SLS

and 2sCOPE (excluding the copula interaction term) are both negative and close: the 2SLS

Est. = -0.950 (SE = 0.694, p > 0.10) and 2sCOPE Est. = -1.167 (SE = 0.661, p < 0.10).

By contrast, 2sCOPE including the copula term for Price*Feature yields an interaction es-

timate with the opposite sign and larger SE (Est. = 0.148, SE = 0.825, p > 0.10). These

results mark an important point: when adding copula correction terms, only copula terms

for the main effects should be included, and no copula terms for higher-order terms should

be included. Adding the unnecessary higher-order copula terms can exacerbate the multi-

collinearity issue (Web Appendix Table W15) and lead to substantially varied and biased

estimates.

Managerial and Academic Implications

The two examples highlight both how copulas can correct for endogeneity to remove bias

in estimation, as well as how copulas should be correctly specified in models with interactions.

Example 1 showed that without the copula, the OLS estimate for price elasticity was severely

under-estimated (Est. = -1.367) compared to both 2SLS (Est. = -2.470) and 2sCOPE (Est.

= -2.205). The result showed price elasticity in OLS was 38% lower than 2sCOPE. We also

noted that the instrument was significant but not particularly strong, attributing to the

difference between 2SLS and 2sCOPE estimates.
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Controlling for endogeneity in price elasticity estimates can have important managerial

implications. Price elasticity estimates are often a crucial piece of information for managers

to set the optimal pricing that maximizes profit. Let the profit function p(Price) = V ∗

(Price−Cost), where V is the sale volume and cost is the marginal cost. The maximum profit

is then the value of Price that satisfies the condition ∂ ln p(Price)
∂Price

= 0. Following the Amoroso-

Robinson relation, the profit-maximizing price is Priceoptim = α
1+α

Cost, where α is the price

elasticity. In Example 1, we find the optimal pricing is Priceols =
−1.367

−1.367+1
Cost = 3.72∗Cost

if the OLS price elasticity estimate is used, and Pricecop = −2.205
−2.205+1

Cost = 1.83 ∗ Cost if

the 2sCOPE estimate is used. Because of the price endogeneity associated with the scanner

panel data, the biased OLS estimate underestimates the size of price elasticity, meaning that

OLS considers consumers less price sensitive than they actually are. Thus, the manager will

set the price more aggressively; in Example 1, using the OLS price elasticity estimate means

the manager will set price at approximately 100% higher than the actual optimal price.

This considerable difference in optimal pricing based on the OLS and 2sCOPE price elas-

ticity estimates results in a substantial profit difference as well. It can be shown that the prof-

its achieved at the different prices has the following relationship: ln pcop
pols

= α ln[Pricecop/Priceols]+

ln[(Pricecop − Cost)/(Priceols − Cost)], where pcop and pols refer to the profit achieved

when using the 2sCOPE and OLS price elasticity estimates, respectively. For Example

1, pcop
pols

= 1.46, which corresponds to a loss of 31% in profit when using the incorrect OLS

price elasticity estimate, compared to using the correct 2sCOPE estimate (Figure 3).

Example 2 presented the case of the interaction between an endogenous and exogenous

regressor. Like Example 1, price elasticity in the absence of feature was substantially under-

estimated in OLS (Est. = -0.453) than 2SLS (Est. = -1.554) or 2sCOPE (-1.314). The OLS

price elasticity estimate was nearly a third that of 2sCOPE.

Furthermore, 2sCOPE including a copula term for the interaction term biased the price

elasticity estimate downwards (Est. = -0.999), about 30% lower as compared with the

estimate of -1.314 from 2sCOPE excluding this copula term. This bias in the price elasticity
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estimate becomes even larger as feature intensity increases. Including the copula term for

the endogenous interaction term of Price*Feature yields a severely biased interaction effect

estimate; while 2sCOPE without this unnecessary copula term had a negative estimate of

-1.176, 2sCOPE including this term (2sCOPE W/Int) produced a positive estimate of 0.148

(Table 7). As shown in Figure 4, including the unnecessary copula term for Price*Feature

yields price sensitivity estimates that are the same across different feature intensity (meaning

lack of interactive effect); excluding this copula term yields much greater magnitude of price

sensitivity that increases with greater feature advertisement. Such drastic differences in price

elasticity estimates can have substantive managerial implications, including the optimal price

setting and profit maximization, as demonstrated in Example 1.

CONCLUSION

The instrument-free copula correction has been increasingly used to address endogeneity

bias given its practical advantages and feasible implementation. Yet, like all other causal

estimation procedures designed for use with nonexperimental data, the validity of copula

correction requires correct implementation of the method and demands boundary conditions

and data requirements to be met in its empirical applications.

This study contributes to the field in three areas. One, we discuss the theoretical ratio-

nales of copula correction and provide a review for how copula correction has been used in

marketing and other fields to correct for endogeneity, across substantive areas, and how it

has been applied (and misapplied). Two, we elucidate the identification assumptions and

data requirements of copula correction and build on recent advances to provide an updated

best practices “cookbook” for both managers and academics to follow in applying and im-

plementing the copula procedures (Table 1 and Figure 5). The cookbook also informs how

to modify analysis when certain conditions are not met. Three, we evaluate implementation

variations (such as optimal copula transformations and higher-order effects of moderation)

and demystify misconceptions of copula correction, showing theoretically and with real-world
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data best practices for copula correction usage.

We demonstrate that existing variations in the implementation of copula correction have

substantial impacts on its performance. Our discussions on the methodological aspects of

the copula method informs optimal and theoretically sound implementation for copula cor-

rection. We present a theoretically grounded way of constructing copula transformation that

avoids the potential finite sample bias problem and substantially improves the performance

of copula correction. We show that excluding the copula terms for higher order endogenous

regressors is optimal and considerably outperforms including these copula terms. To our

knowledge, these are the first theoretical results justifying the optimal implmentation of

these aspects affecting the performance of copula correction.

We also discuss the latest extensions that expand the applicability, flexibility and ro-

bustness of copula correction, highlighting endogeneity correction when the conditions and

requirements of the prior copula correction approach are not met by the data at hand. For

cases where the endogenous regressors have insufficient nonnormality, and the traditional

method (Park and Gupta 2012) fails to work, we describe how a two-stage copula correction

(2sCOPE) and its extensions as well as other copula correction procedures can still work by

leveraging related and nonnormally distributed exogenous regressors.

We synthesize the above discussions into a flowchart with easy-to-follow checkpoints and

data requirements. This guide is practical for researchers - in both academia and industry -

to employ copula correction methods. In addition to making the copula code available, we

illustrate its usage in two empirical examples for two different product categories.

Future avenues of research are teeming, such as extending the flexible 2sCOPE framework

for more generality (e.g., Yang, Qian, and Xie 2024b; Liengaard et al. 2024; Hu, Qian, and

Xie 2025), adapting copula correction to Bayesian inference (e.g., Haschka 2024), exploring

methods to further reduce the dependence on the GC assumption (e.g., Qian and Xie 2024;

Hu, Qian, and Xie 2025), improving computational efficiency especially for computationally

intensive procedures (e.g., the MLE procedures), to name a few. Hu, Qian, and Xie (2025)
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propose a two-stage nonparametric copula control function (2sCOPE-np) that generalizes

and robustifies the existing copula correction methods. Another research direction is the

new empirical applications of copula correction. A great variety of quantitative models are

used in empirical studies with new ones emerging constantly. Opportunities to adapt copula

correction to new types of data or models abound.
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Ebbes, Peter, Michel Wedel, Ulf Böckenholt, and Ton Steerneman (2005), “Solving and Testing for

Regressor-error (in)dependence When No Instrumental Variables Are Available: With New

Evidence for the Effect of Education on Income,” Quantitative Marketing and Economics,

3 (4), 365–392.

Eckert, Christine and Jan Hohberger (2023), “Addressing Endogeneity Without Instrumental Vari-

ables: An Evaluation of the Gaussian Copula Approach for Management Research,” Journal

of Management, 49(4), 1460–1495.

Feit, Elea McDonnell and Eric T Bradlow “Fusion modeling,” “Handbook of Market Research,”

pages 147–180, Springer (2021).

Fossen, Beth L and Alexander Bleier (2021), “Online program engagement and audience size during

television ads,” Journal of the Academy of Marketing Science, 49, 743–761.

Germann, Frank, Peter Ebbes, and Rajdeep Grewal (2015), “The Chief Marketing Officer Mat-

ters!,” Journal of Marketing, 79 (3), 1–22.

Gielens, Katrijn, Inge Geyskens, Barbara Deleersnyder, and Max Nohe (2018), “The New Regulator

in Town: The Effect of Walmart’s Sustainability Mandate on Supplier Shareholder Value,”

Journal of Marketing, 82(2), 124–141.

Gijsbrechts, Els, Katia Campo, and Mark Vroegrijk (2018), “Save or (over-) spend? The impact of

hard-discounter shopping on consumers’ grocery outlay,” International Journal of Research

in Marketing, 35 (2), 270–288.

Gui, Raluca, Markus Meierer, Patrik Schilter, and René Algesheimer (2023), “REndo: Internal
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APPLICATIONS OF COPULA CORRECTION

See Table W1 next page.
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Table W1: Examples of Substantive Areas in Marketing with Applications of Copula 
Endogeneity Correction 

Study Product Price Place Promotion 
SFa & 
CRM Othera 

Burmester et al 2015       x     
Datta, Foubert, and van Heerde 2015       x     
Mathys, Burmester, and Clement 2016 x     x     
Datta, Ailawadi, and van Heerde 2017   x x x     
Lenz, Wetzel, and Hammerschmidt 
2017           x 
Atefi et al 2018         x   
Gielens et al 2018 x     x     
Gijsbrechts, Campo, and Vroegrijk 
2018           x 
Guitart, Gonzalez, and Stremersch 
2018   x   x     
Lamey et al 2018   x   x     
Lim, Tuli, and Dekimpe 2018   x         
Ter Braak and Deleersnyder 2018 x x       x 
Wetzel et al 2018         x   
Carson and Ghosh 2019         x   
Keller, Deleersnyder, and Gedenk 2019   x         
Nath et al 2019           x 
Schulz, Shehu, and Clement 2019           x 
Vieira et al 2019       x   x 
Zhao et al 2020 x           
Bombaij and Dekimpe 2020           x 
Bornemann, Hattula, and Hattula 2020 x           
Campo et al 2021 x x         
Guitart, Hervet, and Gelper 2020       x     
Heitmann et al 2020 x x   x   x 
Homburg, Vomberg, and Muehlhaeuser 
2020     x     x 
Magnotta, Murtha, and Challagalla 
2020         x   
Shehu, Papies, and Neslin 2020   x         
Vomberg, Homburg, and Gwinner 
2020         x   
Maier and Wieringa 2021           x 
Aydinli et al 2021   x       x 
De Jong, Zacharias, and Nijssen 2021           x 
Garrido-Morgado et al 2021 x x         
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Guitart and Stremersch 2021   x   x   x 
Liu et al 2021   x         
Van Ewijk et al 2021   x   x     
Bachmann, Meierer, and Näf 2021         x   
Cron et al 2021         x   
Dhaoui and Webster 2021           x 
Fossen and Bleier 2021           x 
Hoskins et al 2021           x 
Kidwell et al 2021           x 
Lamey, Breugelmans, and ter Braak 
2021           x 
Sawant, Hada, and Blanchard 2021           x 
Bhattacharaya, Morgan, and Rego 2022           x 
Borah et al 2022 x     x   x 
Cao 2022 x         x 
Danaher 2022   x         
Datta et al 2022 x x x       
Janani et al 2022         x   
Krämer et al 2022         x x 
Ludwig et al 2022         x   
Maesen et al 2022   x x       
Moon, Tuli, and Mukherjee 2022             
Nahm et al 2022   x         
Rajavi, Kushwaha, and Steenkamp 
2022 x x x x     
Scholdra et al 2022 x x x x     
Van Ewijk, Gijsbrechts, and 
Steenkamp 2022a x x x x     
Van Ewijk, Gijsbrechts, and 
Steenkamp 2022b x x x x     
Widdecke et al 2022   x   x     
Zhang et al 2022   x         
Wiseman et al 2022         x   
Xu et al 2022         x   
Wiegand, Peers, and Bleier 2022       x   x 
Cao et al 2023           x 
Gielens et al 2023 x x         
Umashankar, Kim, and Reutterer 2023           x 
Burchett, Murtha, and Kohli 2023         x   
Dall-Olio and Vakratsas 2023 x x   x     
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Maesen and Lamey 2023 x x         
Zhang and Liu-Thompkins 2023         x   
Kan et al 2023   x   x     
Kumar et al 2023           x 
Sok, Danaher, and Sok 2023         x   
Cascio Rizzo et al 2024           x 
Elhelaly and Ray 2024           x 
Ma et al 2024   x x       
Tian et al 2024           x 
Geyskens et al 2024   x   x     
Wiles et al 2024       x     
Chaker et al 2024         x   
Yazdani, Gopinath, and Carson 2024           x 
Kanuri, Hughes, and Hodges 2024           x 
Özturan, Deleersnyder, and Özsomer 
2024       x     
Sklenarz et al 2024           x 
Maesen 2024 x x   x     
Friess et al 2024         x   
Vafainia et al 2024       x     
Note: a “SF” is Saleseforce and “Other” includes word-of-mouth, warranty claims, 
store visits, etc.  
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Table W2: Examples of Applications Involving Higher-order Endogenous Terms.

Study Higher-Order Endogenous Regressors CHI∗

Burmester eta al. (2015) Ad Stock * Publicity Stock Yes

Blauw and Franses (2016) Mobile Phone Ownership2 Yes

Lenz, Wetzel, and Hammerschmidt (2017) Corporate Social Responsibility2 No

Lamey et al. (2018) Promotion Intensity * Store context No

Gielens et al. (2018) R& D * Retailer Power No

Yoon et al. (2018) Knowledge * Government Activity Yes

Atefi et al. (2018) Trained Percentage2 Yes

Trained Percentage *Performance Diversity

Guitart, Gonzalez, and Stremersch (2018) Advertising * Price No

Wetzel et al. (2018) Recruitment Spend * Brand Age No

Keller, Deleersnyder, and Gedenk (2019) Price Index * Price Premium No

Heitmann et al. (2020) Complexity *Segment Typicality No

Vomberg, Homburg, and Gwinner (2020) Failure Culture* Reacquisition Policies No

Guitart and Stremersch (2021) Ad Stock2, Price2, Informational2 Yes

Magnotta, Murtha, and Challagalla (2020) Salesperson Training*Salesperson Incentive No

Homburg, Vomberg, and Muehlhaeuser (2020) Direct Channel Usage*Formalization No

Liu et al. (2021) Price Discount2, order Coupon2 Yes

Kramer et al. (2022) Industrial Service Share2 Yes

CHI: copula correction terms for high-order terms of endogenous regressors included.
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WEB APPENDIX B: OPTIMAL ALGORITHM FOR COPULA

TRANSFORMATION

This section summarizes further results from simulation studies regarding the proper

construction of copula transformation. We also provide an interactive applet interfaced sup-

plement accessible at https://unknown8866.github.io/histogram-webpage/ for readers

to visually explore the results of the simulation study with the source R code available at

https://osf.io/by2ge/?view only=27cc862a9c02446abbafd3a745722603.

Simulation Study Setup

In this study, we use the following data generating process (DGP) that is the same as

specified in Equations 1-4 in Becker, Proksch, and Ringle (2022): E∗
t

P ∗
t

 = N


 0

0

 ,

 1 0.50

0.50 1


 (W1)

Et = Φ−1(Φ(E∗
t )) (W2)

Pt = Φ(P ∗
t ) (W3)

Yt = µ+ αPt + Et = −1Pt + Et, (W4)

where Yt, Pt, and Et represent the dependent variable, endogenous regressor, and the error

term, respectively. The DGP specifies a linear model with the endogenous regressor P

following a uniform distribution, and a correlation coefficient of 0.50 between P ∗
t and the

error term Et. The simulation study varies in sample size N from 100 to 60,000 (100, 200,

400, 600, 800, 1,000, 2,000, 4,000, 6,000, 8,000, 10,000, 20,000, 40,000, 60,000). For each
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sample size, we generate 1,000 datasets from the above DGP.

For each generated data set, we apply OLS, the Park and Gupta (P&G) method using the

algorithm in Equation 5 to obtain generated regressor, the P&G method using the algorithm

in Equation 4, and the integrating kernel density estimates (IKDE) to obtain the generated

regressor in estimating the structural model. While the intercept term µ = 0 in the DGP,

the estimation does not assume this a-priori but instead estimates the intercept parameter

jointly with other model parameters. The difference between the average of the estimates

across 1,000 simulated datasets and its true value is the bias of an estimator, which is plotted

in Figure W2 for α (discussed further below).

An Example of Copula Transformation

To demonstrate how the empirical rank-based copula transformation is constructed, con-

sider the example of the selling price of twenty goods from a small retailer, as shown in Table

W3. The construction of the empirical rank-based copula follows two steps, per Equation

3. First, the observations are ordered and mapped to a ranked percentile according to the

empirical cumulative distribution, F (·). For example, the first observation (of twenty) is 1
20
,

or 5% of the cumulative observations; the second observation is 2
20
, or 10%, and so on. The

second step computes the inverse normal CDF of that ranked percentile as shown in the

column “Price*”: an observation in the bottom 5% (or fifth percentile) maps onto the far

left end of a standard normal distribution, in this case about -1.6449 standard deviations

below 0.

One item from Table W3 is of particular importance: the last observation is technically

the 100th percentile, however, the inverse normal CDF of the 100th percentile is undefined.
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This is because the probability (reflected as F ) must be between 0 and 1. The latent copula

data, Price*, for the 20th observation here reflects an adjustment, where F (·) becomes the

observation count divided by the observation count plus one (i.e., n
n+1

= 20
21
). That is, we

compute the copula transformation using Equation 4. Besides ensuring that the copula

transformed values maintain the same rank order as the original regressor values for any

sample size 23, the percentile adjustment for the maximum value yields a theoretically valid

maximum value of the underlying copula data, and stabilizes the copula transformation

without producing an extremely transformed value.

Table W3: Example Creation of the Rank-based Gaussian Copula

Obs Price F (Price) Price∗ Obs Price F (Price) Price∗

1 $14.00 0.05 -1.6449 11 $32.10 0.55 0.1257

2 $15.20 0.10 -1.2816 12 $33.00 0.60 0.2533

3 $16.30 0.15 -1.0364 13 $34.60 0.65 0.3853

4 $16.50 0.20 -1.0364 14 $34.90 0.70 0.3853

5 $21.00 0.25 -0.6745 15 $37.00 0.75 0.6745

6 $24.20 0.30 -0.5244 16 $42.00 0.80 0.8416

7 $27.00 0.35 -0.3853 17 $43.50 0.85 1.0364

8 $29.00 0.40 -0.2533 18 $44.10 0.90 1.2816

9 $29.50 0.45 -0.2533 19 $45.00 0.95 1.6449

10 $30.00 0.50 0.0000 20 $47.80 0.9524+ 1.6684

+: To avoid generating undefined latent copula data, the rank for the maximum value of Price is
changed from 1 to n/(n+1), which is 20/21=0.9524 for the sample size n = 20 here.

Comparison with Integrating Nonparametric Kernel Density Estimation

This subsection aims to examine whether the bias problem discovered in Becker, Proksch,

and Ringle (2022) can be resolved by employing the approach of integrating nonparametric

23By contrast, in their example of 100 observations, Papies, Ebbes, and Van Heerde (2017) set the percentile for

the last observation to 0.99, which is the same as the second to last observation even though these two raw data

points do not have the same rank order.

16



kernel density estimation (IKDE) to obtain the copula correction term (Park and Gupta

2012). The IKDE method first estimates the marginal density function fP (p) of the contin-

uous regressor P using the following Epanechnikov kernel nonparametric method

f̂P (P = p) =
1

nb

n∑
i=1

K

(
p− Pi

b

)
, (W5)

where K(·) is the user-supplied kernel function and b is the bandwidth parameter that exerts

a strong influence on the density estimation. The optimal bandwidth value is unknown but

there are some suggestions for choosing the bandwidth. When using the Epanechnikov

kernel K(x) = 0.75(1 − x2)I(|X| ≤ 1), the rule-of-thumb for determining the bandwidth

is b = 0.9n−1/5min(s, IQR/1.34), where s is the sample standard deviation and IQR is

the interquartile range. The IKDE approach then integrates the marginal density function

estimate to obtain the marginal CDF as follows

F̂P (p) =

∫ p

−∞
f̂P (u)du, (W6)

where the trapezoidal rule can be used for the above numerical integration (Park and Gupta

2012).

It is unclear if the IKDE approach to obtaining the copula correction terms outperforms

the approach of using empirical CDF. On the one hand, the IKDE approach does not en-

counter the problem of the last observation having infinite value of copula latent data as

empirical CDF encounters. On the other hand, the nonparametric KDE methods are sub-

ject to boundary bias (e.g., Cid and von Davier 2015, Karunamuni and Alberts 2005), which

is an important drawback of KDE density estimation. The boundary bias of KDE estimation

is particularly severe for variables with bounded support or for density estimation near the
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Figure W1: Boundary Bias of Nonparametric Kernel Density Estimates. Dotted line
denotes the true density function of the uniform distribution on [0, 1]. Solid line denotes

the KDE estimates.

boundaries of the support of the density to be estimated (Karunamuni and Alberts 2005).

Large sample size is required to control or mitigate the boundary bias. Figure W1 illustrates

boundary bias of kernel density estimation in four simulated datasets at sample size ranging

from N=100 to N=100,000 when the true density function is the uniform distribution on

[0,1]. We observe density estimation bias near the two ends of the uniform distribution,

although the boundary bias decreases with increasing sample size.

Figure W2 shows the bias of α, evaluated as the difference between the mean parameter

estimate averaged over 1,000 simulated data sets and its true value, for different estimation

methods at sample sizes ranging from 100 to 60,000 (Figure W2 x-axis). OLS, as the curve

with circles in Figure W2, exhibits substantial bias (> 1.5) in the coefficient estimate α for
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Figure W2: Bias of the endogenous regressor.

endogenous regressor P . Furthermore, this bias remains the same regardless of sample size.

Consistent with Becker, Proksch, and Ringle (2022), the P&G method using Equation 5 (the

curve with cross marks in Figure W2) substantially reduces the bias in the OLS estimates,

but does not resolve the endogeneity in many situations: substantial bias remains after

copula correction in small to moderate sample sizes. The endogenous regressor’s coefficient

estimation bias only becomes negligible for sample sizes larger than 4,000. The finite sample

bias for P&G copula regression with intercept discovered in Becker, Proksch, and Ringle

(2022) is a significant problem that needs addressing, so as to ensure appropriate use of

copula correction. This is relevant because prior to Becker, Proksch, and Ringle (2022),

users of copula correction were unaware of such surprisingly severe bias concerns.
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A key finding in Figure W2 is that the substantial bias of the P&G copula correction

method for models with intercept, discovered in Becker, Proksch, and Ringle (2022), is

largely solved by adjusting the largest rank using Equation 4. The algorithm in Equation

4 results in considerably improved performance of the P&G copula correction method; the

endogenous regressor’s coefficient estimate bias now becomes negligible when sample size

reaches 400 rather than 4,000 (the curve with squares in Figure W2). Furthermore, even

sample sizes as small as 100 exhibit a bias of about 0.15 for our algorithm24, which is quite

smaller than 1.0 using the algorithm in Equation 5.

Figure W2 examines the impacts of boundary bias of IKDE on copula correction using the

same DGP as specified in Equations 1-4 in Becker, Proksch, and Ringle (2022) (i.e., Equa-

tions W1 to W4). We implemented the IKDE approach using the R function density(P,

kernel="epanechnikov") for nonparametric kernel density estimation and the R function

CDF() that integrates the KDE estimates to the cumulative distribution function using the

trapezoidal rule. Figure W2 shows that copula correction using the IKDE approach has

larger bias across all sample sizes than the approaches using the ECDF. This can arise from

the severe boundary bias of KDE for estimating the density near the boundaries of the sup-

port. By contrast, the ECDF can automatically account for the bounded support of the

uniform distributions and avoid such severe boundary bias.

Models Without Intercept

Figure W3 plots the estimation results when estimating the model in Equation W4 with-

out intercept. All settings remain the same as those when estimating the models with

24This is not surprising because the copula correction method, like instrumental variables and other IV-free

methods, is a large sample procedure requiring sufficient information for satisfactory performance.
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Figure W3: Bias of the endogenous regressor without intercept.

unknown intercept, except that the estimation now assumes the intercept parameter µ is

known a-priori and consequently we estimate all the other model parameters given the a-

priori known intercept value. The difference between the average of the estimates across

1,000 simulated datasets and its true value is the bias of an estimator, which is plotted

in Figure W3 for α. Results in Figure W3 show large OLS estimation bias that remains

constant across all sample sizes. Interestingly, in this case, no bias at any sample size for

all algorithms to generate copula transformation (IKDE, fixed ECDF, or adaptive ECDF).

This means that unlike the case of estimating models with intercept, choice of algorithms

for handling the infinite value of copula transformation of the last-rank observation does

not matter, and all three algorithms work well to correct OLS estimation bias across all

considered sample sizes.

21



Copula Transformation with Correlated Regressors

In this section, we assess the impact of copula transformation on the 2sCOPE procedure.

The data generating process (DGP) is summarized below:
P ∗
t

W ∗
t

E∗
t


∼ N




0

0

0


,


1 ρpw ρpe

ρpw 1 0

ρpe 0 1




= N




0

0

0


,


1 0.5 0.5

0.5 1 0

0.5 0 1




, (W7)

Et = G−1(UE,t) = G−1(Φ(E∗
t )) = Φ−1(Φ(E∗)) = 1 · E∗

t , (W8)

Pt = H−1(UP,t) = H−1(Φ(P ∗
t )), Wt = L−1(UW,t) = L−1(Φ(W ∗

t )), (W9)

Yt = µ+ α · Pt + β ·Wt + Et = 0 + (−1) · Pt + 1 ·Wt + Et, (W10)

where E∗
t and P ∗

t are correlated (ρpe = 0.5), generating the endogeneity problem; W ∗
t is

exogenous and uncorrelated with E∗
t ; W

∗
t and P ∗

t are correlated (ρpw = 0.5), and thereforeWt

and Pt are correlated, which calls for the use of 2sCOPE. We consider the following estimation

methods: (1) OLS regression of Equation (W10); (2) 2sCOPE using the fixed algorithm for

copula transformation of P and W (Equation 5); (3) 2sCOPE using the adaptive algorithm

for copula transformation of P and W (Equation 4). In the simulation, we use the uniform

distribution on [0,1] for Pt and the exponential distribution Exp(1) with rate 1 for Wt.

Models are estimated on all generated datasets, providing the empirical distributions of

parameter estimates.

Figure W4 shows that the fixed algorithm also negatively affects the performance of

copula correction, while the adaptive algorithm avoids the bias.
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WEB APPENDIX C: DOUBLE ROBUSTNESS PROPERTY OF COPULA

CORRECTION

This section demonstrates the double robustness of copula correction using control func-

tion such that the regressor-error dependence does not need to follow GC dependence. Con-

sider the following structural equation model according to the data generating process from

Figure 1.d:

Yi = µ+ α · Pi + β ·Wi + Ei (W11)

Ei = Ui + ξi (W12)

where Ui denotes the endogenous part of the error Ei and captures the joint effects of all

unobserved confounders, and ξi denotes the exogenous disturbance term that is independent

of Pi, Wi and Ui. With the intercept µ in the model and, without loss of generality, both Ui

and ξi have zero means.

As noted in the main text, the exogenous part of Ei, ξi, simply adds noise but does

not affect endogeneity correction. Because ξi does not need to follow a normal distribution

or any GC assumption in order for the augmented OLS regression to correct for bias, this

means that the identification of the model for copula correction using control functions does

not require the structural error Ei be normally distributed or follow the GC dependence

structure jointly with regressors.

We illustrate this double robustness property of copula correction using a simulation

study. We generate Pt,Wt, Ut using the same GC distribution as in Equations W7 to W9

(i.e., replacing Et with Ut in these equations). In the simulation, we use the Gamma (1,1)
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distribution for Pt and the exponential distribution Exp(1) with rate 1 for Wt. We consider

two distributions for ξt: uniform on [-0.5,0.5] and the lognormal(0,1)-e0.5 distribution. Thus,

the error term Ei = Ui + ξi will not follow a normal distribution because of nonnormality of

ξi. Furthermore, Ei will not follow a GC model with regressors. However, Assumptions 1

and 2 of 2sCOPE still holds because Ui is normally distributed and follow a GC model with

regressors. Thus, we expect 2sCOPE to be able to recover true parameter values. We then

compute Yi using Equation W11 with parameters values given in Table W4. Sample size is

set to n=1,000 per dataset. For each dataset, we apply OLS and the 2sCOPE estimation

described in Table 5. A total of 1,000 datasets were generated.

Table W4: Results of the Simulation Study: Double Robustness of Copula Correction

Distribution Skewness OLS 2sCOPE

of ξt of Et Param. True Mean SE Mean SE

U[-0.5,0.5] 0.00 µ 1 0.69 0.05 1.00 0.06

α 1 1.57 0.04 1.00 0.07

β -1 -1.26 0.03 -1.00 0.04

σE 1.04 0.91 0.02 1.04 0.04

Lnorm(0,1)- e0.5 3.68 µ 1 0.69 0.11 1.00 0.14

α 1 1.57 0.08 1.00 0.16

β -1 -1.26 0.08 -1.00 0.11

σE 2.37 2.31 0.27 2.37 0.26

Table W4 reports the mean and standard deviation of the model estimates across 1,000

simulated data sets. As shown in Table W4, OLS has large bias for both distributions of ξt.

As expected, 2sCOPE corrects for the OLS estimation bias and recovers the true parameter

values despite the error term E is nonnormally distributed and does not follow a GC model

with regressors, demonstrating the double robustness property of the 2sCOPE method in

that a GC regressor-error dependence is not required.
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Table W5: Results of the Simulation Study: Robustness of Copula Correction with a
misspecified U distribution.

Distribution Skewness OLS 2sCOPE

of ξt of Et Param. True Mean SE Mean SE

U[-0.5,0.5] 0.00 µ 1 0.57 0.07 0.99 0.09

α 1 1.78 0.06 1.01 0.13

β -1 -1.35 0.05 -1.00 0.07

σE 1.44 1.26 0.07 1.43 0.09

Lnorm(0,1)- e0.5 2.99 µ 1 0.57 0.12 0.99 0.16

α 1 1.78 0.10 1.02 0.22

β -1 -1.35 0.09 -1.01 0.13

σE 2.57 2.47 0.30 2.57 0.30

Table W5 evaluates the performance of copula correction when the distribution of Ut

follows a nonnormal distribution. That is, we use the same simulation set up as above

except that Ut = t−1
4 (Φ(U∗

t )) instead of Ut = U∗
t , where t4 represents the CDF for the t-

distribution with 4 degrees of freedom. Thus, both Ut and Et are nonnormally distributed,

violating Assumptions 1 and 2 of the 2sCOPE procedure. As shown in Table W5, 2sCOPE

can still correct for the OLS estimation bias and recover the true model parameters well.

The results shows that although Assumptions 1 and 2 are used in the derivation of 2sCOPE,

these assumptions are not strictly required; 2sCOPE demonstrates desirable robustness to

the violations of Assumptions 1 and 2.
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WEB APPENDIX D: PROOF OF OPTIMALITY OF EXCLUDING

HIGHER-ORDER COPULA TERMS.

Theorem 1. Optimality of excluding higher-order copula terms. Let (θ̂Main
k ), k =

1, · · · , K, denote the structural model parameter estimates when only the copula terms for

the main endogenous effects are included to correct for endogeneity, and (θ̂All
k ), k = 1, · · · , K,

denote the corresponding estimates when copula terms for both the main effects and higher-

order endogenous regressors are included. This yields:

Var(θ̂All
k ) ≥ Var(θ̂Main

k ) for k = 1, · · · , K.

Thus, θ̂Main
k yields optimal copula estimation of structural model parameters with less vari-

ance and mean squared errors than θ̂All
k , for all k.

Proof: Consider the OLS regression of the model when only the copula main terms are

included to correct for endogeneity:

Y = Xθ + ϵ, V (ϵ) = σ2
cIn, (W13)

where X includes the intercept, the regressors in the structural model, and Cmain (the copula

generated regressors for the main effects); θ collects all the coefficients of these regressors.

Math symbols in bold represent matrices and vectors. The variance of the estimates using

copula terms for main effects only is:

V (θ̂Main) = σ2
c (X

′X)−1. (W14)

Then after introducing additional copula terms C for higher-order terms into the model in
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Equation (W13), we have:

Y = Xθ +Cϕ+ ϵ1, V (ϵ1) = σ′2
c In, (W15)

According to linear regression theory, the new estimates after entering the copula higher-

order terms C in the model become:

θ̂All = (X′X)−1X′(Y −Cϕ̂), ϕ̂ = (C′RC)−1C′RY, (W16)

V (θ̂All) = σ′2
c

[
(X′X)−1 +M(C′RC)−1M′], (W17)

where M = (X′X)−1X′C, R = In −P, and P = X(X′X)−1X′. Note that P is the projec-

tion matrix representing the orthogonal projection that maps the responses to the fitted

values, and R = In −P represents the orthogonal projection that maps the responses to the

residuals. Given that the newly added higher-order copula terms in C are highly correlated

with the higher-order terms in the structural model (as well as other copula terms already

included in the model), the extra variability in Y explained by adding C is small. Thus,

σ′2
c ≈ σ2

c and:

V (θ̂)All − V (θ̂)Main ≈ σ2
c

[
(X′X)−1 +M(C′RC)−1M′ − (X′X)−1

]
(W18)

= σ2
c

[
M(C′RC)−1M′]. (W19)

Since the matrix M(C′RC)−1M′ is positive semi-definite, all the diagonal elements are

greater than or equal to zero. For each of the K structural model parameters:

Var(θ̂All
k ) ≥ Var(θ̂Main

k ) for k = 1, · · · , K. (W20)

The magnitude of variance inflation is inversely related to C′RC, which represents the
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matrix of sum of squared residuals, obtained from regressing C on X. Thus, the higher the

correlation between the extra higher-order term C and existing regressors in X, the smaller

the sum of squares, which leads to greater variance inflation of Var(θ̂All
k ). Q.E.D.
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WEB APPENDIX E: SIMULATION STUDIES ILLUSTRATING THE

HARMFUL EFFECTS OF INCLUDING HIGHER-ORDER COPULA

TERMS

The theoretical proof in the preceding section shows that copula terms for higher-order

effects are not only unnecessary, but also substantially inflate estimation variability: the

higher the correlations between the extra higher-order copula term and other regressors, the

greater the estimation variance inflation. The empirical application of peanut butter sales in

the main text further demonstrates this adverse bias: omitting the higher-order copula term

yields model estimates closest to that of two-stage least squares using instrumental variables;

including the copula interaction term produces the opposite sign for the coefficient estimate

of the endogenous interaction term, and greater estimation variability.

In addition to the above theoretical results and real data analysis, this section presents

empirical evidences using simulated data to demonstrate (1) that there is no need to add

correction terms for higher-order terms of endogenous regressors to control for their endo-

geneity, and more importantly, (2) harmful effects occur if correction terms for higher-order

terms are added to control for their endogeneity. These effects include potential finite sam-

ple bias and inflated variability of structural model parameter estimates, as predicted by

the theoretical results in the previous section. The simulation study below highlights the

magnitude of such harmful effects: larger standard errors (by up to 5-times as shown in our

simulation studies), substantial estimation bias (about 30% of parameter values), and sig-

nificant loss of statistical power to detect moderating and nonlinear effects (e.g., a reduction

of power from 80% to 10% in Figure W7, much further below).
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Case I: Interaction Between Two Endogenous Regressors

Data were simulated from the following structural regression model with an interaction

between two endogenous regressors, P1 and P2:

Y = α0 + α1P1 + α2P2 + α3P1 ∗ P2 + E (W21)
E∗

P ∗
1

P ∗
2


= N




0

0

0


,


1 ρE1 ρE2

ρE1 1 ρ12

ρE2 ρ12 1




E = H−1

E (Φ(E∗)) = Φ−1(Φ(E∗)), P1 = H−1
P1

(Φ(P ∗
1 )), P2 = H−1

P2
(Φ(P ∗

2 )).(W22)

In this simulation, we set HP1(·) as the CDF of the uniform distribution on [4, 6], HP2(·)

as the CDF of the truncated standard normal with a lower bound of 0, and parameters

α0 = 0, α1 = 1, α2 = −1, α3 = 1, ρE1 = ρE2 = 0.5, ρ12 = −0.5. For each simulated data set,

the following three estimation procedures were applied regressing Y on the following sets of

regressors:

OLS: P1, P2

Copula-Main: P1, P2, CP1 , CP2

Copula-All: P1, P2, CP1 , CP2 , CP1∗P2

where CP1 = Φ−1(F̂P1(P1)), CP2 = Φ−1(F̂P2(P2)), and CP1∗P2 = Φ−1(F̂P1∗P2(P1 ∗ P2)) are

the copula correction terms. That is, we use the P&G method for copula correction since

the model contains no exogenous regressors. The OLS estimation regresses Y on P1, P2

and P1 ∗ P2 without any correction for the endogeneity of these regressors. Copula-Main
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adds two copula correction terms, CP1 and CP2 , to control for the endogeneity of these three

regressors, where:

CP1 = Φ−1(ĤP1(P1)), CP2 = Φ−1(ĤP2(P2)). (W23)

In addition to CP1 and CP2 , Copula-All adds the copula correction term CP1∗P2 , where:

CP1∗P2 = Φ−1(ĤP1∗P2(P1 ∗ P2)) (W24)

and ĤP1 , ĤP2 and ĤP1∗P2 denote the empirical marginal distribution functions of P1, P2 and

P1 ∗ P2 in the observed sample, respectively.

Bias and SEs of parameter estimates Across simulations, sample sizes (N) of 200, 500,

5,000, and 50,000 are examined. For each sample size N, we generate 5,000 data sets as repli-

cates to systematically evaluate average performance (estimation bias and variability) for the

three estimation methods. The simulation results appear in Table W6. As expected, OLS re-

gression yields significant bias for all model parameters at all sample sizes. For example, even

for a large sample size of N=5,000, the OLS regression without any correction terms yields

large bias for the regression parameter estimates (α̂1 : 2.281 [0.018]; α̂2 : −1.549 [0.099]; α̂3 :

1.432 [0.021]) and the error standard deviation (σ̂ : 0.298 [0.006]). Copula-Main corrects

for the endogenous bias (α̂1 : 1.002 [0.058]; α̂2 : −1.017 [0.080]; α̂3 : 1.003 [0.015]), demon-

strating that there is no need to additionally include the copula correction term, CP1∗P2 .

Furthermore, Copula-Main performs substantially better in both estimation bias and vari-

ability for all parameter estimates than Copula-All which includes CP1∗P2 . In fact, Copula-

All yields significantly biased parameter estimates, even at the large sample size of N=5,000

(α̂0 : 0.202 [0.318]; α̂2 : −0.713 [0.240]; α̂3 : 0.929 [0.058]); bias decreases as sample size
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increases, but remains apparent even for a sample size as large as 50,000, as including the

copula term for the interaction P1 ∗ P2 causes significant estimation bias.

The same conclusion - that Copula-Main performs substantially better than Copula-All

in terms of both estimation bias and variability for all parameter estimates - applies to all

other sample sizes, except for the intercept parameter (α0) at small sample size N=200. The

exception likely results from both a small sample size and strong multicollinearity induced

by the interaction term; however, the bias in the intercept estimate bears less practical

implication, since the intercept parameter is often of less interest.

Copula-All also yields less precise estimates (larger standard errors) than Copula-Main;

underlined standard errors in Table W6 highlight much larger SE for Copula-All versus

Copula-Main. This imprecision includes an SE 3.00-times that for α2 and 3.86-times that

for α3 compared to Copula-Main at a sample size of 5,000.

Overall Estimation Efficiency and Accuracy We further compare the efficiency of Copula-

Main and Copula-All using the D-error measure (Arora and Huber 2001, Qian and Xie

2022). The D-error measure is defined as |Σ|1/K where Σ is the variance-covariance matrix

of the regression coefficient estimates, and K is the number of explanatory variables in

the structural regression model. A larger D-error value means lower efficiency, with a ∆%

increase in D-error corresponding to a ∆% larger sample size required to achieve the same

level of estimation precision. As shown in Table W6, the D-error inflation for Copula-All is

about 3-times at N=5,000. In this case, Copula-All requires about 3-times the sample size

in order to achieve approximately the same accuracy for estimating α1, α2 and α3 jointly as

Copula-Main. The variance inflation for the Copula-All estimate of α3, the coefficient for the
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Table W6: Results from Case I: Interaction of Endogenous Regressors.

N Method α0(= 0) α1(= 1) α2(= −1) α3(= 1) σ(= 1) D-error

200 OLS -7.627 2.282 -1.546 1.433 0.294

(0.464) (0.093) (0.501) (0.106) (0.031) —

Copula-Main -0.358 1.046 -1.187 1.043 0.963

(1.363) (0.271) (0.417) (0.079) (0.121) 0.0293

Copula-All -0.058 1.012 -0.794 0.930 1.028

(1.364) (0.270) (0.468) (0.107) (0.134) 0.0368

500 OLS -7.624 2.281 -1.546 1.432 0.297

(0.290) (0.058) (0.312) (0.066) (0.019) —

Copula-Main -0.119 1.019 -1.104 1.024 0.99

(0.899) (0.179) (0.254) (0.047) (0.076) 0.0117

Copula-All 0.176 0.974 -0.702 0.923 1.051

(0.902) (0.178) (0.331) (0.077) (0.086) 0.0165

5000 OLS -7.623 2.281 -1.549 1.432 0.298

(0.092) (0.018) (0.099) (0.021) (0.006) —

Copula-Main -0.012 1.002 -1.017 1.003 1.000

(0.291) (0.058) (0.080) (0.015) (0.024) 0.0011

Copula-All 0.202 0.968 -0.713 0.929 1.044

(0.318) (0.061) (0.240) (0.058) (0.041) 0.0031

50000 OLS -7.621 2.281 -1.551 1.433 0.298

(0.029) (0.006) (0.031) (0.007) (0.002) —

Copula-Main 0.001 1.000 -1.003 1.000 1.000

(0.092) (0.018) (0.025) (0.005) (0.008) 0.00011

Copula-All 0.064 0.990 -0.912 0.978 1.013

(0.133) (0.023) (0.158) (0.038) (0.023) 0.00051

Table presents the averages of the estimates and standard errors in the parenthesis over the
repeated samples. Bold numbers highlight the estimates with bias of at least 0.05. Underlined
numbers highlight the cases where the standard errors of the estimates from Copula-All are
inflated by at least 50% compared with the corresponding ones from Copula-Main. The P&G
method is used for copula correction since the model contains no exogenous regressors.
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Figure W5: Ratio of mean squared errors of structural model estimates, with using the
copula interaction term (Copula-All) to those without using the copula interaction term

(Copula-Main).
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interaction term, is much larger and equals (0.058
0.015

)2 ≈ 15 when N=5,000. This means 15-times

the sample size is required for Copula-All to achieve the same estimation accuracy of the

interaction term as Copula-Main. Regarding overall estimation efficiency, the D-error ratios

for Copula-All to Copula-Main increase as sample size increases, from 1.26-times (N=200)

to 1.41-times (N=500) to 2.82-times (N=5,000) to 4.64-times (N=50,000).

We also compute the ratio of mean squared error (MSE) of the structural estimate α̂k,

comparing Copula-All to Copula-Main (where MSE(α̂k) = Bias2(α̂k)+Var(α̂k), measuring

overall estimation accuracy). Notably, Copula-All increases MSEs for all model parameter

estimates, with the harmful effects being largest for the interaction parameter estimate α̂3,

whose MSE is more than 80-times that of Copula-Main when sample size N=50,000 (Figure

W5).
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Case II: Interaction Between an Endogenous Regressor and an Exogenous

Regressor

We simulated data from the following structural regression model with an interaction

term between an exogenous regressor X and an endogenous regressor P :

Y = α0 + β1W + α1P + α2W ∗ P + E
P ∗

W ∗

E∗


= N




0

0

0


,


1 ρpw ρpe

ρpw 1 0

ρpe 0 1




E = H−1

E (Φ(E∗)) = Φ−1(Φ(E∗)), P = H−1
P (Φ(P ∗)),W = L−1

W (Φ(W ∗)) (W25)

where HP (·) is the CDF of the truncated standard normal on [0,∞], and LW (·) is the

CDF of a uniform distribution on [4, 6], and we set α0 = 0, β1 = 1, α1 = −1, α2 = 1 and

ρpe = 0.5, ρpw = −0.5 with sample sizes of 200, 500, 5,000, and 50,000. For each sample size,

we generated 5,000 repeated samples.

For each generated sample, we then apply three estimation procedures: OLS, 2sCOPE-

Main and 2sCOPE-All. 2sCOPE is used to handle correlated regressors P and W . The OLS

regresses Y on P , W and W ∗P without any correction for the endogeneity of P and W ∗P .

2sCOPE-Main adds one copula correction term, CP = P ∗ − δ̂1W
∗ (Equation 11) to control

for endogeneity of P and W ∗ P , where P ∗ and W ∗ are copula transformations of P and

W using the ECDFs ĤP (·) and L̂W (·) estimated from data, respectively. In addition to CP ,

2sCOPE-All adds the copula correction term CW∗P = (W ∗ P )∗ − δ̂2W
∗, where (W ∗ P )∗ is

a copula transformation of the interaction term W ∗ P using its ECDF ĤW∗P (·) estimated
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from data. ĤP (·), L̂W (·), and ĤW∗P (·) denote the empirical marginal distribution functions

of P , W , and W ∗ P in the observed sample, respectively. Results over 5,000 simulated

samples are summarized in Table W7.

As expected, the OLS regression without any correction terms yields large bias for the

regression parameter estimates and the error standard deviation σ in the structural regres-

sion model. 2sCOPE-Main corrects for the endogenous bias, demonstrating that there is

no need to additionally include the correction term for the interaction term of P and W .

Importantly, 2sCOPE-All, which adds the unnecessary copula correction term for the in-

teraction term, yields less precise estimates (larger standard error of estimates as shown in

Table W7) than 2sCOPE-Main, increasing the D-error by more than 100% in some cases.

Furthermore, significant estimation bias in parameter estimates for α1 exists for 2sCOPE-All

which decrease as sample size increases, but still remains for a sample size as large as 50,000

(Table W7). The results demonstrate the substantial adverse effects of adding unnecessary

copula terms for interactions: significant finite sample estimation bias and inflated standard

errors.
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Table W7: Results from Case II: Interaction between Endogenous and Exogenous
Regressors

N Method α0(= 0) β1(= 1) α1(= −1) α2(= 1) σ(= 1) D-error

200 OLS -2.388 1.312 -1.281 1.274 0.829

(0.902) (0.174) (0.876) (0.182) (0.041) —

2sCOPE-Main -0.126 1.020 -1.047 1.026 0.987

(1.342) (0.223) (0.884) (0.208) (0.127) 0.0425

2sCOPE-All -0.141 1.028 -0.796 0.964 1.016

(1.371) (0.229) (1.305) (0.315) (0.152) 0.0651

500 OLS -2.351 1.306 -1.302 1.278 0.832

(0.561) (0.109) (0.549) (0.115) (0.026) —

2sCOPE-Main -0.013 1.000 -1.039 1.014 0.997

(0.842) (0.140) (0.543) (0.126) (0.083) 0.0159

2sCOPE-All -0.052 1.013 -0.791 0.946 1.024

(0.855) (0.144) (0.905) (0.232) (0.110) 0.0298

5000 OLS -2.338 1.303 -1.312 1.280 0.833

(0.179) (0.034) (0.169) (0.035) (0.008) —-

2sCOPE-Main 0.018 0.997 -1.009 1.003 1.001

(0.242) (0.045) (0.165) (0.036) (0.025) 0.0016

2sCOPE-All 0.025 1.002 -0.896 0.970 1.009

(0.272) (0.057) (0.469) (0.112) (0.041) 0.0039

50000 OLS -2.350 1.305 -1.298 1.277 0.833

(0.056) (0.011) (0.054) (0.011) (0.003) —

2sCOPE-Main 0.000 1.000 -1.000 1.000 1.000

(0.070) (0.011) (0.055) (0.013) (0.008) 0.0002

2sCOPE-All -0.002 1.001 -0.948 0.991 1.002

(0.083) (0.017) (0.166) (0.042) (0.014) 0.0004

Table presents the averages of the estimates and standard errors in the parenthesis over the
repeated samples. Bold numbers highlight the estimates with bias of at least 0.05. Underlined
numbers highlight the cases where the standard errors of the estimates from 2sCOPE-All are
inflated by at least 50% compared with the corresponding ones from 2sCOPE-Main.
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Case III: A Squared Term of an Endogenous Regressor

Data were simulated from the following model (subscript t omitted for simplicity):

Y = α0 + α1P + α2P
2 + E, E∗

P ∗

 = N


 0

0

 ,

 1 ρ

ρ 1




E = H−1
E (Φ(E∗)) = Φ−1(Φ(E∗)), P = H−1

P (Φ(P ∗)), (W26)

where HP (·) is the CDF for the marginal distribution of P , α0 = 0, α1 = −1, α2 = 1

and ρ = 0.7. We set HP (·) as the CDF of the truncated standard normal distribution on

[−0.5, 0.5]. For each simulated data set, the following three estimation procedures were

applied using OLS regression of Y on the following sets of regressors:

OLS: P, P 2

Copula-Main: P, P 2, CP

Copula-All: P, P 2, CP , CP 2

where CP = Φ−1(ĤP (P )) and CP 2 = Φ−1(ĤP 2(P 2)) are the copula correction terms for

endogenous regressors P and P 2, respectively; ĤP and ĤP 2 denote the empirical marginal

distribution functions of P and P 2 in the generated sample, respectively. Copula-Main

indicates including copula correction terms for the main effect only, while Copula-All signifies

including copula correction for all terms involving endogenous regressor P (i.e., higher-order

terms). That is, we use the P&G method for copula correction since the model contains no

exogenous regressors.
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Across simulations, sample sizes (N) of 200, 500, 5,000, and 50,000 are examined. For each

sample size N, we generate 5,000 data sets as replicates to systematically evaluate average

performance (estimation bias and variability) of different estimation methods. Averages and

standard deviations (SD) of parameter estimates over these 5,000 data sets are computed for

each method. The difference between the average of the estimates and its true value is the

bias of one estimator; the SD of the parameter estimates over these 5,000 repeated samples

is the standard error (SE) of the parameter estimate, capturing estimation variability.

Table W8 presents the simulation results. For each parameter, we report the average

of the estimates and SE in the parenthesis computed using 5,000 generated data sets. As

expected, OLS yields significant estimation bias at all values of N. For example, when N=200,

the OLS regression yields large bias in the parameter estimates (α̂1 : 1.413 [0.188]) and the

error standard deviation (σ̂ : 0.726 [0.037]) in the structural regression model. Copula-Main

corrects for the endogenous bias (α̂1 : −0.964 [1.049]; σ̂ : 1.013 [0.202]), demonstrating that

there is no need to additionally include CP 2 . Meanwhile, Copula-All yields substantial bias

for the coefficient parameter of P 2 (α̂2 : 0.771 [2.214]) because adding unnecessary generated

regressor CP 2 leads to the finite sample bias problem. In contrast, Copula-Main eliminates

the majority of the bias and performs much better in this small sample size with only small

bias and the SE reduced by approximately 70% (α̂2 : 0.922 [0.797]). In a large sample size

(n=5,000), the finite sample bias in Copula-All is reduced. Yet, Copula-All continues to

yield less precise estimates (i.e. larger standard errors) than Copula-Main.
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Table W8: Results from Case III: Endogenous Squared Terms.

N Method α0(= 0) α1(= −1) α2(= 1) σ(= 1) D-error

200 OLS 0.000 1.413 0.986 0.726

(0.078) (0.188) (0.742) (0.037) —

Copula-Main -0.001 -0.964 0.922 1.013

(0.099) (1.049) (0.797) (0.202) 0.835

Copula-All 0.009 -0.957 0.771 1.020

(0.190) (1.057) (2.214) (0.203) 2.338

500 OLS 0.001 1.410 0.982 0.728

(0.048) (0.118) (0.472) (0.024) —

Copula-Main 0.001 -0.978 0.951 1.005

(0.057) (0.640) (0.483) (0.126) 0.309

Copula-All 0.004 -0.974 0.889 1.008

(0.120) (0.641) (1.393) (0.126) 0.891

5000 OLS 0.000 1.413 1.003 0.728

(0.015) (0.036) (0.146) (0.007) —

Copula-Main 0.000 -1.000 0.994 1.001

(0.019) (0.192) (0.157) (0.038) 0.030

Copula-All 0.000 -1.000 0.997 1.001

(0.037) (0.192) (0.427) (0.038) 0.082

50000 OLS 0.000 1.415 1.001 0.728

(0.005) (0.012) (0.047) (0.002) —

Copula-Main 0.000 -1.004 1.000 1.001

(0.006) (0.060) (0.050) (0.012) 0.003

Copula-All 0.000 -1.004 0.999 1.001

(0.012) (0.060) (0.137) (0.012) 0.008

Table presents the averages of the estimates and standard errors in the parenthesis over the
repeated samples. Bold numbers highlight the estimates with bias of at least 0.05. Underlined
numbers highlight the cases where the standard errors of the estimates from Copula-All are
inflated by at least 50% compared with the corresponding ones from Copula-Main. The P&G
method is used for copula correction since the model contains no exogenous regressors.
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We also compute the ratio of mean squared error (MSE) of the structural estimate α̂k,

comparing Copula-All to Copula-Main (where MSE(α̂k) = Bias2(α̂k)+Var(α̂k), measuring

overall estimation accuracy). Notably, Copula-All increases MSEs for all model parameter

estimates, with the harmful effects being greatest for the squared term estimate α̂2, whose

MSE is more than 6-times that of Copula-Main for all sample sizes (Figure W6).
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Figure W6: Ratio of mean squared errors of structural model estimates, with using the
copula square term (Copula-All) to those without using the copula square term

(Copula-Main).

Such a large magnitude of variance inflation has important inferential consequences and

managerial implications. Figure W7 shows substantial loss of power of Copula-All to detect

the presence of the squared term (P 2) for sample size up to 5,000. For example, when sample

size is 1,000, the statistical power to detect the squared effect is about 8-fold for Copula-Main

(≈ 80% power) of that for Copula-All (≈ 10% power).
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Figure W7: Statistical Power to detect the squared term P 2 with the copula squared
term (Copula-All) and without the copula squared term (Copula-Main).
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Mean-Centering Regressors

Lastly, we examine whether mean-centering resolves the under-performance of Copula-

All. One may suspect that mean-centering might reduce the multicollinearity issue and

improve the performance of Copula-All. However, as shown below, mean-centering regressors

does not overturn the sub-optimal performance of adding the unnecessary copula correction

for higher-order terms, demonstrating again that these unnecessary copula correction terms

should be omitted from empirical models.

A common practice for researchers in economics, management, and other fields is to

mean-center the regressors before estimating models with higher-order terms. One argu-

ment for this practice is that by mean-centering the regressors, the correlation - and resulting

collinearity problem - between the linear and higher-order terms (e.g., quadratic terms or

interaction terms) is reduced (Aiken and West 1991; Kopalle and Lehmann 2006). How-

ever, Echambadi and Hess (2007) showed that mean-centering regressors does not alleviate

collinearity problems in moderated regression models. Namely, none of the parameter esti-

mates and sampling accuracy of main effects, simple effects, interactions, or R2 is changed

by mean-centering. By main effect and simple effect, we refer to the regression coefficient

for a first-order term with and without mean-centering, representing the effect of a regressor

when its moderators are set at their mean values and at zero (or absence of the attribute

quantified by these moderators), respectively.

To illustrate this point, consider the following structural regression model with an inter-

action term:

Y = α0 + α1P1 + α2P2 + α3P1 ∗ P2 + E
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For the purposes of ease in interpretation or reducing the correlation between the linear and

interaction terms, mean-centering regressors is often employed, which leads to the following

equivalent model with parameter transformation:

Y = αc
0 + αc

1(P1 − P̄1) + αc
2(P2 − P̄2) + αc

3(P1 − P̄1) ∗ (P2 − P̄2) + E, (W27)

where the parameters for the models before and after mean-centering have the following

one-to-one relationship:

αc
0 = α0 + α1P̄1 + α2P̄2 + α3P̄1P̄2

αc
1 = α1 + α3P̄2

αc
2 = α2 + α3P̄1

αc
3 = α3. (W28)

As shown above, the regression coefficient αc
1 for the centered linear term P1 − P̄1 repre-

sents the effect of P1 when P2 is equal to its mean value P̄2. Thus, αc
1 represents the main

effect: the effect of P1 when the other variables are at their mean values. In contrast, the

coefficient using uncentered data, α1, represents the simple effect: the effect of P1 when the

other variables are at zero (or absence of the attribute quantified by these other variables).

The differences in estimates and standard errors between α1 and αc
1 are due to the two coef-

ficients having different substantive meanings, and both effects can be of substantive interest

(Echambadi and Hess 2007). Quadratic terms can be considered a special case of the above

model because a quadratic term can be considered as the interaction term of a regressor with

itself. The relationship between parameters for models with quadratic terms before and af-

ter mean-centering can be derived similarly. Echambadi and Hess (2007) showed that the
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relationships in Equation W28 also holds for the OLS estimates of these model parameters.

However, our setting differs from the case of moderated regression models considered in

(Echambadi and Hess 2007 ), since we consider the more general case of endogeneity bias

correction of structural regression models with endogenous higher-order regressors. Although

the relationships in Equation W28 hold exactly for OLS estimates (Echambadi and Hess

2007) for all data sets, such relationships only hold approximately for copula corrected

estimates because copula generated regressors involve probability integral transformations.

Specifically, we use the same data generating process for Cases I, II, and III to generate data.

When estimating models, we first mean-center all the first-order terms of the regressors, and

then construct the higher-order terms using these mean-centered first-order terms. Copula

correction terms are then constructed using these new regressors based on centered versions of

the first-order terms of regressors. Because these copula correction terms involve probability

integral transformation, the estimates and sampling accuracy of main effects, simple effects,

and interactions can change after mean centering, which differs from the case of Echambadi

and Hess (2007) in which all regressors are exogenous.

For the models giving results in Tables W6, W7, and W8, we apply the OLS (without

any correction), Copula-Main, and Copula-All to estimate the corresponding mean-centered

structural regression models, with results summarized in Tables W9, W10, and W11, respec-

tively. The true values for the parameters in the models after mean-centering are also listed

in Tables W9 to W11. The mean values of the regressors (P̄1, P̄2) used to compute these

true parameter values are: ϕ(a)−ϕ(b)
Φ(b)−Φ(a)

, where ϕ(·) denotes the density function of the standard

normal; when the marginal distribution of the regressor is the truncated standard normal

on [a, b], and a+b
2

when it is the uniform distribution on [a, b].
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Because copula correction terms for higher-order terms are not invariant to mean-centering,

the ratios of the D-error for Copula-All to that of Copula-Main using mean-centered data

will not be the same as those in Tables W6, W7, and W8, using uncentered data. Still,

the same conclusion of inflated variability of estimates for Copula-All is apparent, and the

D-error measure ratios are all above 2. This finding is consistent with that of Echambadi

and Hess (2007) in that mean-centering regressors does not alleviate collinearity problems

in moderated regression models. Furthermore, mean-centering seemingly shifts the vari-

ance inflation from the regression coefficient estimates of first-order terms to those of the

higher-order terms, and may hurt the estimation of the higher-order terms in some cases.

It is important to note, however, that this does not imply that mean-centering affects

the estimation of the same first-order effects. As explained above, the regression coefficients

for a first-order term (with and without mean-centering) represent different effects of one

regressor evaluated at different values of its moderator: these regression coefficients represent

the main effects when mean-centering regressors and the simple effects when using uncentered

data. As such, regression coefficients for a first-order term with and without mean-centering

are not directly comparable, although both main and simple effects can be of substantive

interest (Echambadi and Hess 2007). When using the parameter estimates based on the

centered data to compute the simple effects, we again find finite sample bias and inflated

standard errors for the estimates of simple effects (results not shown here), as occurred

when using uncentered data. In sum, we conclude that mean-centering does not overturn

the under-performance of Copula-All relative to Copula-Main.
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Table W9: Results from Case I with Mean-Centering: Interaction of Endogenous
Regressors With Mean-Centering

N Method αc
0(= 8.192) αc

1(= 1.798) αc
2(= 4) αc

3(= 1) σ(= 1) D-error

200 OLS 8.259 3.425 5.619 1.432 0.294

(0.208) (0.071) (0.084) (0.105) (0.031) —

Copula-Main 8.172 1.897 4.072 1.041 0.967

(0.208) (0.279) (0.257) (0.080) (0.124) 0.0316

Copula-All 8.180 1.896 4.069 1.101 0.972

(0.215) (0.279) (0.266) (0.281) (0.124) 0.0734

500 OLS 8.262 3.425 5.615 1.431 0.297

(0.134) (0.045) (0.051) (0.065) (0.02) —

Copula- Main 8.184 1.838 4.018 1.025 0.990

(0.133) (0.179) (0.166) (0.047) (0.077) 0.0123

Copula-All 8.189 1.838 4.020 1.057 0.992

(0.137) (0.178) (0.174) (0.173) (0.078) 0.0293

5000 OLS 8.263 3.424 5.612 1.433 0.298

(0.042) (0.014) (0.017) (0.021) (0.006) —

Copula-Main 8.191 1.803 3.999 1.003 1.000

(0.042) (0.057) (0.051) (0.015) (0.024) 0.0011

Copula-All 8.192 1.803 3.999 1.009 1.000

(0.043) (0.057) (0.054) (0.052) (0.024) 0.0028

50000 OLS 8.263 3.424 5.613 1.433 0.298

(0.013) (0.004) (0.005) (0.007) (0.002) —

Copula-Main 8.192 1.799 3.999 1.000 1.000

(0.013) (0.018) (0.017) (0.005) (0.008) 0.0001

Copula-All 8.192 1.799 3.999 1.002 1.000

(0.014) (0.018) (0.017) (0.017) (0.008) 0.0003

See the same note under Table W8.
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Table W10: Results from Case II with Mean-centering: Interaction between Endogenous
and Exogenous Regressors With Mean-centering.

N Method αc
0(= 8.192) βc

1(= 1.798) αc
1(= 4) αc

2(= 1) σ(= 1) D-error

200 OLS 8.232 2.322 5.088 1.273 0.831

(0.195) (0.130) (0.129) (0.184) (0.041) —

2sCOPE-Main 8.191 1.823 4.045 1.024 0.995

(0.196) (0.241) (0.433) (0.195) (0.127) 0.0434

2sCOPE-All 8.198 1.821 4.044 1.066 1.017

(0.226) (0.250) 0.(461) (0.704) (0.131) 0.1459

500 OLS 8.234 2.331 5.096 1.273 0.833

(0.131) (0.078) (0.081) (0.113) (0.027) —

2sCOPE-Main 8.190 1.805 4.001 1.004 1.005

(0.132) (0.159) (0.291) (0.127) (0.088) 0.0169

2sCOPE-All 8.193 1.805 4.003 1.022 1.014

(0.147) (0.161) (0.303) (0.462) (0.090) 0.0475

5000 OLS 8.236 2.325 5.088 1.276 0.833

(0.041) (0.024) (0.027) (0.036) (0.008) —

2sCOPE-Main 8.191 1.798 3.999 1.000 1.001

(0.041) (0.049) (0.088) (0.040) (0.027) 0.0017

2sCOPE-All 8.191 1.798 3.998 1.000 1.002

(0.045) (0.050) (0.093) (0.148) (0.027) 0.0044

50000 OLS 8.237 2.325 5.088 1.277 0.833

(0.012) (0.008) (0.008) (0.012) (0.003) —

2sCOPE-Main 8.192 1.799 4.002 1.000 1.000

(0.012) (0.015) (0.027) (0.012) (0.008) 0.0002

2sCOPE-All 8.191 1.799 4.002 1.002 1.000

(0.015) (0.015) (0.029) (0.043) (0.008) 0.0004

See the same note under Table W7.
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Table W11: Results from Case III with Mean-centering: Endogenous Squared Terms
With Mean-Centering

N Method αc
0(= 0) αc

1(= −1) αc
2(= 1) σ(= 1) D-error

200 OLS 0.000 1.414 0.993 0.727

(0.080) (0.188) (0.737) (0.037) —

Copula-Main -0.001 -0.967 0.912 1.007

(0.085) (1.008) (0.785) (0.193) 0.790

Copula-All 0.000 -0.959 0.857 1.022

(0.196) (1.019) (2.353) (0.194) 2.396

500 OLS 0.000 1.414 0.995 0.729

(0.049) (0.117) (0.458) (0.024) —

Copula-Main 0.000 -0.993 0.949 1.005

(0.052) (0.628) (0.495) (0.125) 0.311

Copula-All 0.001 -0.999 0.936 1.011

(0.116) (0.631) (1.380) (0.125) 0.871

5000 OLS -0.001 1.413 1.002 0.728

(0.016) (0.038) (0.151) (0.007) —

Copula-Main -0.001 -0.993 0.995 0.999

(0.017) (0.201) (0.159) (0.040) 0.031

Copula-All -0.002 -0.993 1.008 0.999

(0.036) (0.202) (0.417) (0.040) 0.085

50000 OLS -0.001 1.415 1.000 0.728

(0.005) (0.013) (0.045) (0.002) —

Copula-Main 0.000 -1.003 1.000 1.001

(0.005) (0.062) (0.048) (0.012) 0.003

Copula-All 0.000 -1.003 0.998 1.001

(0.012) (0.062) (0.137) (0.012) 0.009

See the same note under Table W8.
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WEB APPENDIX F: ADDITIONAL MATERIALS FOR THE

IMPLEMENTATION EXAMPLES

In Example 2, we follow the same steps in Figure 5 to guide the selection of the appro-

priate copula method. The walk-through of these steps are as follows:

Step 1. Is Pmain continuous? Price is a continuous measure here, ranging from $0.957

to $1.963 per pound, with a mean of $1.714, median of $1.798, and standard deviation of

$0.195.
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Figure W8: Price Distribution in Example 2.

Step 2. Is Pmain normally distributed? Unlike Example 1, the price variable in Example

2 is highly skewed (Figure W8) and rejects the KS test for normality (D = 0.23, p < 0.001)

at the 0.05 level of significance. The flowchart in Figure 5 show that what is needed is either

Pmain or one related W is nonnormally distributed; there is no need for both Pmain and W

to be nonnormally distributed. This means that when the endogenous regressor already has

sufficient nonnormality, we do not need to check any exogenous regressor W for sufficient

nonnormality and sufficient association with P , like what was needed in Figure 6 of Example

1. To determine if we should use P&G or 2sCOPE, we next check the uncorrelatedness
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between the linear combination of copula transformations of Pmain with each W . When

Pmain is a scalar, this condition reduces to check the uncorrelatedness between P ∗
main and

each W .

Step 3.a. Is P ∗
main correlated with W? The copula transformation of endogenous regressor

price, P ∗, is correlated with the following exogenous regressors at the 0.10 level of significance:

week (r = 0.21, p < 0.05), feature (r = -.76, p < 0.01), Q3 (r = -.16, p < 0.06), and Q4 (r

= 0.16, p < 0.04). This indicates we should use 2sCOPE for endogeneity correction.

Step 4. Perform 2sCOPE estimation. Until now, the steps had been met to indicate

price was a candidate to use the 2sCOPE method.

Although the P&G method was not selected in both examples according to the flowchart

in Figure 5, Table W12 presents the results of applying P&G methods to the two implemen-

tation examples. In Example I, the parameter estimates of 2sCOPE and P&G are similar

except the coefficient estimate for Feature (0.124 for 2sCOPE vs 0.276 for P&G vs 0.059 for

2SLS). The differences between P&G and 2sCOPE estimates are more pronounced in Ex-

ample II. Besides the Feature coefficient estimate, we observed differences for Price (-1.314

for 2sCOPE vs -0.999 for P&G) and Price*Feature (-1.167 for 2sCOPE vs -1.621 for P&G).

Furthermore, in agreement with the 2SLS result, 2sCOPE identifies the presence of price

endogeneity (0.069 for the coefficient of copula term Cprice, p-value < 0.05) while P&G does

not (0.046 for the coefficient of copula term Cprice, p-value > 0.10) (Table W12).

Theoretically, the bias of P&G method can be viewed as an omitted variable bias. With

one endogenous regressor P and one exogenous regressor W in the model, the bias of the

P&G method that ignores the correlation between the endogenous regressor (P ) and the

exogenous regressors (W ) comes from the omitted variable σ −qρ
1−q2

W ∗
i , absorbed into the
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Table W12: Estimation Results

Example I Example II

Parameters 2sCOPE P&G 2sCOPE P&G

Intercept 4.763 (0.668)*** 4.748 (0.683)*** 6.544 (0.256)*** 6.344 (0.346)***

Price -2.205 (0.446)*** -2.204 (0.468)*** -1.314 (0.430)** -0.999 (0.592)*

Feature 0.124 (0.124) 0.276 (0.092)*** 0.837 (0.388)** 1.255 (0.434)***

Price*Feature -1.167 (0.661)* -1.621 (0.779)**

Week -0.002 (0.000)*** -0.002 (0.001)*** 0.001 (0.000)*** 0.001 (0.000)***

Q2 -0.018 (0.036) -0.023 (0.031) -0.022 (0.033) -0.029 (0.033)

Q3 -0.029 (0.035) -0.022 (0.028) -0.096 (0.034)*** -0.088 (0.032)***

Q4 -0.044 (0.035) -0.014 (0.032) -0.080 (0.035)** -0.086 (0.035)**

Cprice 0.077 (0.037)** 0.078 (0.039)** 0.069 (0.028)** 0.046 (0.037)

ρ1 0.366 (0.160)** 0.412 (0.181)** 0.185 (0.082)* 0.203 (0.226)

Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < 0.10, ** is p

< 0.05, *** is p < 0.01

error term in the augmented regression model (Appendix of Haschka 2022). Consequently,

the bias of the P&G method for α due to ignoring the correlations between P and W is:

σ
−qρ

1− q2
[Cov(P,W ∗)/Var(P )] , (W29)

where σ is the variance of the structural error, ρ is the correlation between P and the

structural error, q is the correlation between P and W , Cov(P,W ∗) is the partial association

between P and the omitted variable W ∗ given P ∗ and W , and the variance of P is Var(P).

The formula sheds light on the sources affecting the sign and magnitude of the bias of the

P&G method. For example, if the explained part of the variation in the dependent variable

is large (i.e., small σ), we can expect the bias of P&G due to ignoring the correlation

between P and W to be minimal. The stronger the correlation between P and W (i.e.,

larger q), the larger the bias of P&G. Also, if P has a wide variation relative to the partial

covariance between P and W ∗ given P ∗ and W , the bias of P&G would be small. Given
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a value of Var(P ), the smaller the partial covariance between P and W ∗ given P ∗ and W ,

the smaller omitted variable bias of the P&G method. However, a ’too small’ value of the

partial covariance between P and W ∗ given P ∗ and W may mean high collinearity between

P and P ∗ (or between W and W ∗) such that the remaining partial covariance Cov(P,W ∗)

given P ∗ and W can only take small values. This can cause P&G estimates to suffer from

finite sample bias due to insufficient regressor nonnormality. Thus, the overall bias due

to both ignoring the regressor dependence and insufficient regressor nonnormality can be

complicated. Furthermore, in practice, the true values of ρ (the magnitude of endogeneity)

is unknown, preventing an accurate assessment of the sign or magnitude of the bias for P&G.

Fortunately, the alternative 2sCOPE method is easy to apply and account for the de-

pendence between regressors. Because 2sCOPE employs the GC models, the computational

complexity increases at a much slower rate than other multivariate models as the number

of dimensions increases (Danaher and Smith 2011). Thus, it is computationally feasible to

run these more general copula correction methods to account for the dependence between

regressors. As shown in Yang, Qian, and Xie (2024a), the estimation efficiency loss (i.e., the

increase in standard errors) of 2sCOPE relative to P&G is negligible when the endogenous

and exogenous regressors have no or weak correlations and 2sCOPE is the preferred method

unless sample size is very small. When exogenous and endogenous regressors are correlated,

2sCOPE not only can remove the bias of P&G, but also can possibly increase estimation

efficiency and reduce standard errors by leveraging correlated exogenous regressors.

Next we consider appropriateness of using 2sCOPE-HGC in the examples. The general-

location heterogeneous GC (HGC) model (Yang, Qian, and Xie 2024b) for panel data can

also be applied to grouped data formed by discrete exogenous regressors that generalizes
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Liengaard et al. (2024). Let W = (Wc,Wd) where Wc and Wd denote the continuous and

discrete exogenous regressors, respectively. The general-location HGC model permits the

location and the GC dependence of the error term and continuous regressors to vary by

Wd in different ways. The 2sCOPE-HGC procedure follows a modified two-stage estimation

process (Web Appendix Table W13) with the following augmented regression model

Yi = µ+
K∑
k=1

Pi,kαk + β′Wi +
K∑
k=1

{
Ci,kγk0 +

G−1∑
j=1

Ci,kI(gi(wd) = j) ∗ γkj

}
+ ωt, (W30)

where Ci,k = (P̃i,k)
∗|gi(Wd) − δ′gi(Wd),k

(W̃c,i)
∗|gi(Wd). (W31)

Inside the copula term Ci,k, P̃i,k = Pi,k − P̄mi
k ,W̃c,i = Wc,i − W̄mi

c , where P̄mi
k and W̄mi

c are

the group mean of Pk and Wc for observations in the same group mi as the observation

i and the groups {mi} are formed by the observed levels of combinations of the discrete

regressors. Thus, P̃mi
k and W̃mi

k are simply within-group demeaned Pk and Wc to account

for potential effects of discrete regressors on the location of continuous regressors. The

model further permits the GC dependence structure of the demeaned continuous regressors

and the error term to vary by the group variable gi(Wd) defined on Wd. The notation

∗|gi(Wd) in Equation W31 denotes empirical copula transformation using only observations

within the group gi(wd), across which the GC dependence may vary. The 2sCOPE-HGC is

more general than that of Liengaard et al. (2024) in that 2sCOPE-HGC allows for different

sets of discrete exogenous regressors to separately affect the location and GC dependence

structure. For example, two discrete exogenous regressors Wd1 and Wd2 may both affect the

location but the dependence structure only vary by Wd1.

It is important to have sufficient sample size and meet data requirements (shown in the

Flowchart in Figure 5) within each level of combinations of discrete exogenous regressors
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in order to apply 2sCOPE-HGC. Both examples contain quarters as the discrete exogenous

regressors. In Example I, within each group of observations formed by the quarters, no data

satisfy the requirement in Figure 5. The test for normality of price fails to reject normality

in all groups formed by quarters, and within no group the F-stat for any W have F > 10. So

this means data in Example I do not satisfy the data requirement for 2sCOPE-HGC while

the 2sCOPE meets data requirements. In Example II, the price variable in Quarter 3 rejects

normality (p < 0.02). For other quarters, the price variable fails to reject the normality

assumption and no W variable is found to have sufficient relevance (F>10) with the price

variable in groups formed in these quarters. Thus, strictly speaking, 2sCOPE-HGC does not

satisfy all data requirements and one should be cautious about applying 2sCOPE-HGC to

this example as well, although to a lesser extent. However, for illustration purposes, the result

of 2sCOPE-HGC for this example is presented in Table W14. We observe that 2sCOPE-

HGC yielded results that largely agree with 2sCOPE than with OLS. Furthermore, none of

the interactions between the Cprice and quarters (i.e., Cprice ∗ Q2, Cprice ∗ Q3, Cprice ∗ Q4)

is statistically significant. Thus we conclude that no evidence supports the HGC model.

Overall, the more parsimonious 2sCOPE is preferred.

Table W13: Estimation Procedure for 2sCOPE-HGC

Stage 1:

• Do group demeaning of Pi,k and Wc,i and obtain the demeaned regressors (P̃i,k, W̃c,i).

• Within each of the subgroups {gi(Wd)} across which GC dependence may vary, apply

Stage 1 of the 2sCOPE to the demeaned continuous regressors (P̃i,k, W̃c,i) and obtain

residual Ci,k = (P̃i,k)
∗|gi(Wd) − δ′gi(Wd),k

(W̃c,i)
∗|gi(Wd) (Equation W31).

Stage 2:

• Add Ci,k and the interaction terms between Ci,k and the indicator variables for the (non-

reference) levels of the group variable (Equation W30).
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Table W14: Further Estimation Results for Example 2

Parameters OLS 2SLS 2sCOPE 2sCOPE-HGC

Intercept 6.038 (0.165)*** 6.688 (0.359)*** 6.544 (0.256)*** 6.378 (0.353)***

Price -0.453 (0.274)* -1.554 (0.606)** -1.314 (0.430)** -1.037 (0.591)*

Feature 1.513 (0.234)*** 0.646 (0.487) 0.837 (0.388)** 1.072 (0.487)**

Price*Feature -2.125 (0.379)*** -0.950 (0.694) -1.167 (0.661)* -1.513 (0.740)**

Week 0.001 (0.000)*** 0.001 (0.000)*** 0.001 (0.000)*** 0.001 (0.000)***

Q2 -0.028 (0.034) -0.020 (0.036) -0.022 (0.033) -0.024 (0.033)

Q3 -0.083 (0.035)** -0.099 (0.038)*** -0.096 (0.034)*** -0.093 (0.036)***

Q4 -0.090 (0.036)** -0.081 (0.038)** -0.080 (0.035)*** -0.085 (0.036)***

Cprice 0.069 (0.028)** 0.049 (0.045)

Cprice∗Q2 0.033 (0.056)

Cprice∗Q3 0.016 (0.069)

Cprice∗Q4 -0.051 (0.050)

Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < 0.10, ** is p

< 0.05, *** is p < 0.01.
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Table W15: VIF Results in Example 2

Parameters 2sCOPE 2sCOPE W/Int

Est. (SE) VIF Est. (SE) VIF

Intercept 6.544 (0.256)*** — 6.344 (0.307)*** —

Price -1.314 (0.430)** 27.9 -0.999 (0.518)* 29.1

Feature 0.837 (0.388)** 59.3 0.619 (0.420) 61.5

Price*Feature -1.167 (0.661)* 18.8 0.148 (0.825) 29.1

Week 0.001 (0.000)*** 1.2 0.001 (0.000)*** 1.2

Q2 -0.022 (0.033) 1.5 -0.038 (0.041) 1.6

Q3 -0.096 (0.034)*** 1.7 -0.089 (0.045)** 1.7

Q4 -0.080 (0.035)** 1.7 -0.066 (0.039)* 1.7

Cprice 0.069 (0.028)** 3.2 0.058 (0.030)* 3.2

CPrice∗Feature -0.168 (0.098)* 6.2

Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < 0.10, **

is p < 0.05, *** is p < 0.01. Regression models with interaction terms will often yield high VIF values

because of high correlations between variables and their interactions. Such high VIF values do not imply

problems in terms of estimation and inference for models with interaction terms (Kalnins and Hill 2023, p.72,

and Echambadi and Hess 2007). However, in the case of copula correction, adding the unnecessary copula

term CPrice∗Feature for interaction term exacerbates the multicollinearity issue that substantially increases

the VIF for the interaction term estimate from 18.8 to 29.1, cause inflated standard errors, and introduce

potential finite sample bias as shown in our simulation studies.
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