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1 Introduction

We study a model where households make decisions according to a dual-process

framework widely used in the cognitive psychology literature to describe human

decision making (see, e.g., Stanovich and West (2000)). System 1 uses heuristics to

make quick decisions that require little or no effort but are prone to biases and sys-

tematic errors. System 2 uses mental effort to make slower, more deliberate decisions

that are more accurate. Our paper builds on the elegant formulation of dual process

reasoning proposed by Ilut and Valchev (2023).

In our model, households make errors in their purchase decisions because of

cognitive costs. Monopolistic producers, for whom these errors result in high levels

of demand relative to the rational optimum, have an incentive to keep their prices

constant to discourage households from activating System 2 and reconsidering their

purchasing decisions. This behavior generates a novel type of price inertia.

This form of inertia is consistent with the “sticky winners” phenomenon docu-

mented by Ilut, Valchev, and Vincent (2020): firms that receive a high demand real-

ization are less likely to change their prices.

Our model offers a natural explanation for a puzzling empirical regularity doc-

umented by Karrenbrock (1991), Neumark and Sharpe (1992), Borenstein, Cameron,

and Gilbert (1997), and Peltzman (2000) known as ”rockets and feathers”: prices in-

crease rapidly when costs rise but decrease slowly when costs fall. This phenomenon

arises naturally in our model from the strategic interaction between monopolistic

producers and households.

When costs rise significantly, all firms increase prices to avoid losses, so costs and

prices rise together. When costs fall, the firms that benefit from favorable demand

have an incentive to keep their prices constant so that households do not reoptimize

their purchase decisions. So, on average, prices decline by less than costs.

Price stability is generally optimal from a societal standpoint in cashless economies
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with sticky prices because it eliminates the relative price distortions produced by in-

flation (see Woodford (2003)). In our model, price stability is not optimal because of

the strategic interaction between monopolists and boundedly rational households.

When average inflation is zero, firms that receive favorable demand due to behav-

ioral mistakes maintain their prices. The other firms increase or decrease their prices

slightly to try to obtain a more favorable demand. As a result, sizeable behavioral

mistakes become ingrained, and households choose a significantly inefficient con-

sumption bundle. It is generally optimal to deviate from zero inflation to reduce this

inefficiency.

We now discuss three observations consistent with the importance of System 1 in

consumer behavior. The first is “shrinkflation,” a situation where manufacturers re-

duce product sizes while keeping prices constant. The UK Office for National Statis-

tics (2019) found 206 instances between September 2015 and June 2017 where prod-

ucts were downsized, yet their prices remained largely unchanged. Budianto (2024)

documents that 35 percent of the products included in the U.K. consumer price index

between 2012 and 2023 have suffered changes in quantity.

This practice suggests that some manufacturers are prepared to incur consider-

able expenses to keep prices stable, presumably to avoid triggering a re-optimization

of household purchasing decisions.1

The second phenomenon is the increasing adoption of subscription-based busi-

ness models, such as streaming or software-as-a-service, and the tendency for sub-

scription prices to remain stable. This stability can be interpreted as a tactic produc-

ers use to dissuade households from engaging System 2 and reassessing the value of

their subscriptions.2

1President Biden deemed shrinkflation important enough to merit discussion in a February 2024
Super Bowl video broadcast. The president noted that “sports drinks bottles are smaller, a bag of
chips has fewer chips, but they’re still charging us just as much [...] ice cream cartons have shrunk in
size but not in price. [...] Some companies are trying to pull a fast one by shrinking the products little
by little and hoping you won’t notice.”

2See Della Vigna and Malmendier (2006) for evidence that consumers often fail to assess the value
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Amazon Prime subscription prices are remarkably sticky. Initially offered at an

annual rate of $79 in 2011, the fee has only been adjusted a few times: to $99 in

2014, $119 in 2018, and $139 in 2022. These adjustments were often accompanied

by enhancements in service offerings, including the introduction of Amazon Prime

Day, which served to justify the higher fees.

Netflix provides a case study of both price stability and shrinkflation. The stan-

dard subscription price remained at $7.99 from November 2010 until May 2014. At

that point, the price was increased to $8.99, but only for new subscribers. Exist-

ing subscribers were grandfathered in at the $7.99 rate for an additional two years.

Concurrently, Netflix rolled out a new basic plan priced at $7.99, which offered

only standard-definition video on a single screen, a downgrade from the two high-

definition screens available under the regular plan. The price for this basic plan

remained unchanged until 2019.

The third observation consistent with the elements of our model is that conve-

nient prices that are slightly below a round number (e.g., $9.99 instead of $10) are

widely used (Kashyap (1995) and Blinder, Canetti, Lebow, and Rudd (1998)), and

less likely to change than other prices (Levy, Lee, Chen, Kauffman, and Bergen (2011)

and Ater and Gerlitz (2017)). This practice can be interpreted as a way to exploit Sys-

tem 1 thinking, creating the perception that the price is lower than its actual value.

Our paper is organized as follows. Section 2 discusses the related literature. Sec-

tion 3 describes our model. Section 4 shows that our model is consistent with the

rockets and feathers phenomenon. Section 5 discusses optimal fiscal and monetary

policy. Section 6 summarizes our findings.

of subscription services rationally.
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2 Related literature

Our paper builds on the cognitive psychology literature (e.g., Evans and Stanovich

(2013) and Stanovich and West (2000)), which distinguishes between two modes of

decision-making: low-cost, heuristic thinking (System 1) and high-cost, analytical

reasoning (System 2).

Ilut and Valchev (2023) develops a formulation of the dual-system framework

and uses it to study the household consumption-savings behavior in an incomplete

markets environment. In familiar contexts, where beliefs about the policy function

are precise, households rely on prior beliefs to make decisions. In unfamiliar situ-

ations, where beliefs are imprecise, households draw costly signals to update their

beliefs about the policy function. These dynamics can generate endogenous learning

traps, where households live hand-to-mouth, resulting in income inequality.

Building on Ilut and Valchev (2023), we model household decisions regarding

consumption of differentiated products. We show how strategic interactions be-

tween firms and boundedly rational consumers give rise to a new form of price

stickiness.

The cognitive costs in our model are consistent with the findings of Afrouzi, Di-

etrich, Myrseth, Priftis, and Schoenle (2024). Using survey evidence, these authors

show that households prefer inflation to be zero. Seen through the lens of our model,

this finding reflects the fact that household cognitive costs are minimized when in-

flation is zero.

Our paper is linked to the literature on limited attention, limited information, or

costly control by firms, including Mankiw and Reis (2002), Maćkowiak and Wieder-

holt (2009), Costain, Nakov, and Petit (2019), and Ilut, Valchev, and Vincent (2020).

In addition, our work relates to prior research on the strategic interaction be-

tween firms and consumers. Matějka (2015) show that firms strategically adopt a

limited set of reference prices in the presence of inattentive consumers. De Clippel,
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Eliaz, and Rozen (2014) explore how limited household attention impacts compe-

tition. Rotemberg (1982) provides a framework where consumer anger over price

changes incentivizes firms to limit price adjustments.

The mechanism in our model complements those that produce asymmetric price

adjustments in menu cost models (see, e.g., Ellingsen, Friberg, and Hassler (2006)

and Burstein and Hellwig (2007)). Using a New Keynesian model with menu costs,

Cavallo, Lippi, and Miyahara (2023) show that prices tend to rise faster than they fall

following significant cost shocks, such as the 2022 surge in energy prices. This phe-

nomenon occurs because firms adjust prices more frequently when profit margins

are under pressure. In order for these models to generate substantial price asymme-

tries, menu costs must be relatively large–around 1 percent of revenue.

An extended version of our model could potentially shed light on micro-level

price rigidities that traditional models struggle to explain (see, for example, Al-

varez, Le Bihan, and Lippi (2014)). These phenomena include the presence of small

price changes (Klenow and Kryvtsov (2008) and Eichenbaum, Jaimovich, Rebelo,

and Smith (2014)), the coexistence of high-frequency price changes with sticky refer-

ence prices (Eichenbaum, Jaimovich, and Rebelo (2011)), the presence of downward-

sloping hazard rates (Campbell and Eden (2010)), and the observation that price ad-

justments for new products are larger and more frequent (Argente and Yeh (2022)).

At the macro level, our mechanism provides insights into monetary policy non-

neutrality. Unlike common menu-cost models (Golosov and Lucas Jr (2007)), where

firms with large price gaps dominate adjustments, our framework allows for hetero-

geneous endogenous adjustment costs. Firms with small price gaps may still adjust

prices. As a result, monetary policy might be more effective.

Finally, our work complements other explanations for the rockets and feathers

phenomenon. For instance, Tappata (2009) shows that search costs and partial con-

sumer information lead to less price dispersion when costs are high. As a result,

consumers search less, and if costs unexpectedly drop, prices remain high. Con-
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versely, if costs rise unexpectedly, firms compete more, causing prices to increase

with costs.

3 Model

In this section, we describe the household problem, the monopolistic producers’

problem, the government’s fiscal and monetary policy, and the economy’s equilib-

rium.

3.1 Household problem

There is a representative household that maximizes its utility,

U =
C1−σ − 1

1 − σ
− N1+η

1 + η
−
ˆ 1

0
biIidi, σ, η > 0,

The variable N denotes the labor supply, Ii is the cognitive cost of using System 2

to choose how much of good i to buy, and bi > 0 is the weight of Ii on utility. We

discuss the cognitive cost in more detail below. Consumption, C, is a composite of

differentiated goods, ci,

C =

(ˆ 1

0
c

θ−1
θ

i di

) θ
θ−1

, θ > 1. (1)

The household maximizes utility subject to the budget constraint,
ˆ 1

0
Picidi ≤ WN +

ˆ 1

0
Πidi − T , (2)

where Pi is the nominal price of good i, W is the nominal wage, Πi is the nominal

profits of firm i, and T is nominal lump-sum taxes.

The representative household observes ω, the vector with the relevant state vari-

ables,

ω =

[
W, Pi,

ˆ 1

0
Πidi − T

]
.
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Fully rational solution The familiar solution to this maximization problem is

c∗i (ω) =

(
Pi

P

)−θ

C∗ (ω) ,

[C∗ (ω)]σ [N∗ (ω)]η = w, (3)

C∗ (ω) = wN∗ (ω) +

´ 1
0 Πidi − T

P
, (4)

where the superscript ∗ denotes the optimal value of different variables.

The price of aggregate consumption, P, is given by

P =

(ˆ 1

0
P1−θ

i di

) 1
1−θ

. (5)

The variable w denotes the real wage rate,

w ≡ W
P

.

Bounded rationality solution Now, consider the household problem with bounded

rationality. Throughout, we use the formulation of dual process reasoning proposed

by Ilut and Valchev (2023).

Households observe the vector of relevant state variables, ω, but cannot solve

for the optimal values of c∗i (ω) and N∗(ω). They have prior beliefs about x∗i (ω) –

the optimal level of ln
[
c∗i (ω)

]
– and can use costly signals to update these beliefs.

Once households choose the values of ci, the labor demand, N, is chosen to satisfy

the budget constraint.

Period t = 0 In order for System 1 to be well defined at t = 1, we need to con-

sider a pre-period, t = 0, in which households observe prices and make purchase

decisions.3

3For simplicity, we omit time subscripts whenever the interpretation is clear.
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For any two states ω and ω′, the household starts any period t with normally

distributed beliefs about each x∗i (ω), N (xi,t−1 (ω) , σi,t−1 (ω, ω′)), where

xi,t−1 (ω) ≡ Et−1 [x∗i (ω)]

and

σi,t−1
(
ω, ω′) ≡ Covt−1

[
x∗i (ω) , x∗i

(
ω′)] .

We assume that the household is only uncertain about the relationship between

the optimal demand for good i and its nominal price, Pi. For simplicity, we omit

the dependence of optimal demand on the remaining state variables, and write

N
(
xi,t−1 (Pi) , σi,t−1

(
Pi, P′

i
))

.

The household observes Pi,t and chooses σ2
ϵ,i,t– the variance of si,t, i.e. the noisy

signal about x∗ (Pi,t). This signal is given by

si,t = x∗ (Pi,t) + σϵ,i,tϵi,t,

where ϵi,t follows a standard normal distribution.

Once the value of si,t is realized, the household chooses its log-demand x̃i,t (Pi,t)

to minimize the expected value of the mean squared error:
ˆ ∞

−∞
[z − x̃i,t (Pi,t)]

2 gi (z) dz,

where gi(z) is the posterior distribution for the rational log demand for good i.

The solution to this problem is to set x̃i,t equal to the mean of the posterior distri-

bution

x̃i,t = xi,t (Pi,t) .

The cognitive cost, Ii,t, associated with the choice of σ2
ϵ,i,t takes a form familiar from

the rational inattention literature (see, e.g., Maćkowiak, Matějka, and Wiederholt

(2023))

Ii,t = κ ln

[
σ2

i,t−1 (Pi,t)

σ2
i,t (Pi,t)

]
, κ > 0,
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where Ii,t is proportional to the average entropy reduction produced by the signal.

The optimal precision of the signal is the one that minimizes the variance of the

posterior plus the cognitive cost, σ2
i,t (Pi,t) + Ii,t, subject to the condition that the

variance of the posterior must be lower than or equal to the variance of the prior.

The optimal variance of the signal is the one that results in the following variance

of the posterior:

σ2
i,t (Pi,t) =

{
κ, if σ2

i,t−1 (Pi,t) > κ,
σ2

i,t−1 (Pi,t) , if σ2
i,t−1 (Pi,t) ≤ κ.

We make two assumptions. First, σ2
i,−1 (Pi) = σ2

c > κ, for all Pi and all i, so house-

holds draw a signal in the pre-period for all realizations of the initial price, Pi,0. Sec-

ond, σi,−1
(

Pi, P′
i
)
= 0 for all Pi ̸= P′

i , so households believe that x∗i (Pi) is uninfor-

mative about x∗i
(

P′
i
)

. This independence assumption is important to keep System

1 simple. When the covariance σi,−1
(

Pi, P′
i
)

is not zero, using System 1 requires the

household to solve a complex inference problem that combines signals obtained for

different prices.

The posterior mean for xi,0 (Pi,0) is

xi,0 (Pi,0) = xi,−1 (Pi,0) + α [x∗ (Pi,0) + σϵϵi,0 − xi,−1 (Pi,0)] ,

where

α ≡ 1 − κ

σ2
c

,

σϵ ≡
√

κ

α
.

The household does not draw signals for the optimal policy associated with prices

not observed in the pre-period. For these prices, the posterior distribution is equal

to the prior,

xi,0 (Pi) = xi,−1 (Pi) , Pi ̸= Pi,0.
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Period t = 1 Given the signals drawn in the pre-period, the prior variance at t = 1

is

σ2
i,0 (Pi) =

{
σ2

c , if Pi ̸= Pi,0,
κ, if Pi = Pi,0.

If Pi,1 = Pi,0, households find themselves in a familiar situation and rely on System

1 to make decisions. If Pi,1 ̸= Pi,0, the situation is unfamiliar, and the household

activates System 2:

xi,1 (Pi,1) =

{
xi,0 (Pi,0) , if Pi,1 = Pi,0,
xi,0 (Pi,1) + α [x∗ (Pi,1) + σϵϵi,1 − xi,0 (Pi,1)] , if Pi,1 ̸= Pi,0.

As in Ilut and Valchev (2023), we assume that the mean of the prior in the pre-

period coincides with the fully rational value of log demand to ensure that our re-

sults are not generated by ex-ante biases, xi,−1 (Pi) = x∗ (Pi). Under this assumption,

we obtain

xi,1 (Pi,1) =

{
x∗ (Pi,0) + ασϵϵi,0, if Pi,1 = Pi,0,
x∗ (Pi,1) + ασϵϵi,1, if Pi,1 ̸= Pi,0.

Defining γ ≡ ασϵ and pi ≡ Pi/P, we can write the demand for good i as

ci = eγϵ̃i c∗i (ω) = eγϵ̃i p−θ
i C∗ (ω) , (6)

where

ϵ̃i ≡
{

ϵi,0, if Pi,1 = Pi,0,
ϵi,1, if Pi,1 ̸= Pi,0.

We can think of these households as following the satisficing approach proposed

by Simon (1956). They are using a solution to their maximization problem that might

not be the global optimum but is satisfactory.

3.2 Firms’ problem

The producers of the differentiated goods are monopolistically competitive and are

not subject to behavioral biases. Firm i produces yi units of good i using labor (ni)
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according to the production function

yi = Ani. (7)

The government provides a labor subsidy at rate τ, which we discuss further below.

The firm makes pricing decisions in period 1, before observing the current demand

shock, ϵi,1.

Suppose that Pi,0 = P0 for all i. If the firm does not change the price, its relative

price is 1/π, where π ≡ P/P0. The resulting profits are

eγϵi,0

[
1
π
− (1 − τ)

w
A

] (
1
π

)−θ

C∗ (ω) .

If the firm decides to change its price to relative price pi, then the realized profits

depend on the demand shock in period one. The firm’s expected profit is

E [eγϵ]
[

pi − (1 − τ)
w
A

]
p−θ

i C∗ (ω) ,

where ϵ is a standard normal random variable. The optimal reset price is

p∗ =
θ

θ − 1
(1 − τ)

w
A

, (8)

so maximal expected profits given a price change are

E [eγϵ]
1
θ

[(
θ

θ − 1

)
(1 − τ)

w
A

]1−θ

C∗ (ω) .

There is a demand shock, ℓ, such that whenever ϵi,0 ≥ ℓ the firm chooses to keep its

price constant. The firm’s optimal pricing policy is

pi =

{
p∗, if ϵi,0 < ℓ,
P0
P ≡ 1

π , if ϵi,0 ≥ ℓ,
(9)

and the value of ℓ is given by

ℓ =


1
2 γ + 1

γ ln
1
θ [(

θ
θ−1)(1−τ) w

A ]
1−θ[

P0
P −(1−τ) w

A

](
P0
P

)−θ , if 1
π > (1 − τ) w

A ,

∞, if 1
π ≤ (1 − τ) w

A .
(10)
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If the System 1 demand is sufficiently high, the firm prefers keeping its nominal price

constant (and its relative price equal to 1
π ) to changing prices and triggering System

2.4

Let

χ ≡ 1 − Φ (ℓ) (11)

denote the fraction of firms that change prices, where Φ (·) is the c.d.f. of the stan-

dard normal distribution. Using equation (8) to substitute (1 − τ) w
A in (10), as well

as equations (9), (11) and (5), it is possible to show that p∗ and χ are functions of π

only, that satisfy:5

1 = χ (π)

(
1
π

)1−θ

+ [1 − χ (π)] [p∗ (π)]1−θ . (12)

This expression resembles the one for Calvo (1983) pricing with one important dif-

ference. Here, the probability of not changing prices, χ (π), is endogenous.

The following lemma characterizes a key property of p∗ (π).

Lemma 1. For all π ≥ θ
θ−1 , p∗ (π) = 1 and χ (π) = 0.

See the Appendix for proof.

This lemma states that whenever inflation is higher than θ/(θ − 1), all firms wish

to reset their price. The reason is that otherwise, they would have negative profits.

When there is deflation, firms have an incentive to lower their price to sell a

higher quantity. But there are firms with a demand shock, ϵi,0, that is high enough to

induce them to keep their nominal price constant, even for high levels of deflation.

It follows that ℓ can be written as

ℓ (π) =

1
2 γ + 1

γ ln
1
θ [p

∗(π)]1−θ

[( 1
π )−(

θ−1
θ )p∗(π)]( 1

π )
−θ , if π < θ

θ−1 ,

∞, if π ≥ θ
θ−1 .

(13)

4When the pre-period price is equal to the optimal reset price but ϵi < ℓ, the firm changes the price
by an infinitesimal amount to get a new demand draw.

5In Lemmas 1 below and 4 in the Appendix, it is shown that these functions are well-defined.
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3.3 Government

The government uses monetary policy to control nominal expenditure. It also im-

plements a uniform ad valorem subsidy on labor costs at a rate τ, which is financed

with lump-sum taxes,
T
P

= τwN. (14)

We consider a simple form of monetary policy according to which µ targets nom-

inal expenditure under full rationality,

µ = π
C∗ (ω)

C0
, (15)

where C0 is normalized to 1. An alternative policy is to target realized nominal

expenditure. One drawback of this alternative is that the resulting equilibrium might

not be unique.

In the Appendix, we also consider a dynamic version of the model in which the

monetary authority follows a Taylor rule. We show that the resulting equilibrium is

locally unique and that our key results are robust to this alternative formulation.

3.4 Equilibrium

We define the equilibrium as follows.

Definition 1. An equilibrium is a set of prices, (p∗, π, w, pi, Pi), allocations, (ci, yi, ni, Πi, N),

and policies, (τn, T ), such that, given productivity A and monetary policy µ, the following

are satisfied:

1. Given ω, ci satisfies equation (6) and N is chosen to satisfy (2) with equality, where

C∗ (ω) and N∗ (ω) solve equations (3) and (4), and P satisfies (5).

2. Given (A, τ, w, π),

Πi ≡
(

Pi − (1 − τ)
W
A

)
ci, (16)

firms produce yi units of output according to (7), and set prices according to (9).
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3. Policies (τn, T ) are set to satisfy (14), and (15) holds.

4. The consumption and labor market clear:

yi = ci, (17)
ˆ 1

0
nidi = N. (18)

Using equations (1), (6) and (9), we can write the following expression for aggre-

gate consumption:

C = ∆u (π)C∗ (ω) , (19)

where

∆u (π) =

{
χ (π)E

[
eγ( θ−1

θ )ϵ | ϵ ≥ ℓ (π)
] ( 1

π

)1−θ

+ [1 − χ (π)]E
[
eγ( θ−1

θ )ϵ
]
[p∗ (π)]1−θ

} θ
θ−1

is a utility distortion arising from bounded rationality and price dispersion.

Equations (6), (7), (17), (18) and (19) imply that

C =
∆u (π)

∆c (π)
AN, (20)

where

∆c (π) = χ (π)E [eγϵ | ϵ ≥ ℓ (π)]

(
1
π

)−θ

+ [1 − χ (π)]E [eγϵ] [p∗ (π)]−θ

is a production distortion arising from both bounded rationality and price disper-

sion. The following Lemma shows that the first-best allocation is not attainable due

to cognitive costs.

Lemma 2. For any π, ∆u (π) < ∆c (π).
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Proof. The result follows from the repeated application of Jensen’s inequality.

Using the property,

E [eaϵ | ϵ ≥ ϵ] = E [eaϵ]
1 − Φ (ϵ − a)

1 − Φ (ϵ)
,

and defining δu (π) and δ (π) as

δu (π) ≡ 1 − Φ
(
ℓ (π)− γ

(
θ − 1

θ

))
, (21)

δ (π) ≡ 1 − Φ (ℓ (π)− γ) , (22)

we obtain,

E
[
eγ( θ−1

θ )ϵ | ϵ ≥ ℓ (π)
]
= E

[
eγ( θ−1

θ )ϵ
] δu (π)

χ (π)
.

E [eγϵ | ϵ ≥ ℓ (π)] = E [eγϵ]
δ (π)

χ (π)
.

The distortions ∆u (π) and ∆c (π) can be simplified as

∆u (π) =
{

E
[
eγ( θ−1

θ )ϵ
]} θ

θ−1
{

δu (π)πθ−1 + [1 − χ (π)] [p∗ (π)]1−θ
} θ

θ−1 , (23)

and

∆c (π) = E [eγϵ]
{

δ (π)πθ + [1 − χ (π)] [p∗ (π)]−θ
}

. (24)

The government’s budget constraint, (14), and the definition of nominal profits, (16),

imply that ´ 1
0 Πidi − T

P
=

ˆ 1

0

(
pi −

w
A

)
cidi.

Using equation (8) to substitute w and the boundedly rational demands (6) to sub-

stitute ci, we obtain
´ 1

0 Πidi − T
P

= [1 − ϑ (π, τ)]C∗ (ω) , (25)
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where

1 − ϑ (π, τ) ≡
ˆ 1

0

[
pi −

(
θ − 1

θ

)
1

1 − τ
p∗ (π)

]
p−θ

i di.

Using equation (25) to substitute profits net of taxes in (4), and using (3) to substitute

N∗ (ω), we obtain an expression for C∗ (ω),

C∗ (ω) =


[(

θ−1
θ

) (
1

1−τ

)
p∗ (π)

]1+η

[ϑ (π, τ)]η


1

σ+η

A
1+η
σ+η (26)

Equation (26) describes the aggregate consumption that a fully rational household

would choose. Using (19) and (15), we obtain the equations

C = ∆u (π)


[(

θ−1
θ

) (
1

1−τ

)
p∗ (π)

]1+η

[ϑ (π, τ)]η


1

σ+η

A
1+η
σ+η (27)

and

µ = π
C

∆u (π)
. (28)

Together with equation (12) and the definitions (11), (13), and (21)-(24), given τ, these

equations characterize the equilibrium aggregate consumption C and inflation π.

4 Rockets and Feathers

We now study the impact of cost shocks and show that our model is consistent with

the rockets and feathers phenomenon: prices rise quickly when costs increase but

fall slowly when costs fall.

We establish our results by doing comparative statics for two productivity levels:

A = 1 + υ and A = 1/(1 + υ), where υ > 0. Log inflation responds symmetrically

to cost shocks in the economy with fully rational households since π f = 1/C f .

To study the response of our economy, we set 1 − τ = (θ − 1)/θ and the growth

rate of nominal expenditure, µ, to one.
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Figure 1: The impact of cost shocks on the absolute value of the logarithm of inflation
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A cost increase (a productivity fall from A = 1 to A = 1/(1 + υ)) generates

inflation, while a cost decrease (a productivity rise from A = 1 to A = 1 + υ) creates

deflation. To compare the response of prices to these two types of shocks, we plot

in Figure 1 the absolute value of the logarithm of gross inflation as a function of the

magnitude of the shocks, υ. The orange and blue lines correspond to a cost increase

and decrease, respectively. In a fully rational model, these two lines coincide. In

absolute value, inflation’s response is the same for positive and negative cost shocks.

This symmetry is preserved in our model for infinitesimal cost shocks. However,

for larger cost shocks, prices respond more to cost increases than declines. When

costs rise significantly in our model, all firms increase prices to avoid losses, so costs

and prices rise together. When costs fall, the firms that benefit from favorable de-

mand have an incentive to keep their prices constant so that households do not re-

optimize their purchase decisions. So, on average, prices decline by less than costs.

For cost shocks higher than 43 percent, all firms change their prices. However,

for cost shocks lower than -43 percent, some firms do not lower their prices. As

the absolute value of the cost shock increases, the orange and blue lines in Figure 1

eventually converge.

The following proposition shows the main theoretical result for a configuration

of parameters that makes the equilibrium analytically tractable.

Proposition 1. Suppose σ = 1 and η = 0. Let π∗ (A) be the equilibrium level of inflation

associated with productivity A. There is υ such that if υ ≥ υ,

− ln [π∗ (1 + υ)] < ln
[

π∗
(

1
1 + υ

)]
.

See the Appendix for proof.

This proposition implies that for large enough shocks, the percentage response of

inflation is higher than the percentage response of deflation to cost shocks with the

same absolute value.
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5 Optimal Monetary Policy

We now characterize the optimal values for the labor subsidy rate, τ, and the growth

rate of nominal expenditure, π. We assume that the government has the ability to

implement any desired inflation level.

Social welfare is given by

W (τ, π) =
[C (τ, π)]1−σ − 1

1 − σ
− [N (τ, π)]1+η

1 + η
− κ [1 − χ (π)] ln

(
σ2

c
κ

)
,

where, given an inflation level π and a labor subsidy τ, the equilibrium allocations

must satisfy

C (τ, π) = ∆u (π)


[(

θ−1
θ

) (
1

1−τ

)
p∗ (π)

]1+η

[ϑ (τ, π)]η


1

σ+η

A
1+η
σ+η , (29)

and

C (τ, π) =
∆u (π)

∆c (π)
AN (τ, π) . (30)

We first choose τ given an inflation rate π. Since the fraction of sticky firms χ (π)

does not depend on τ, the problem can be written as

max
C1−σ

1 − σ
− N1+η

1 + η
s.t. C ≤ ∆u (π)

∆c (π)
AN.

Notice that the restriction is equivalent to (30), written in terms of the allocations,

C and N. Given the solution for the optimal C and N, condition (29) determines the

optimal level of τ.

Lemma 3. Given π, the optimal consumption and labor allocations are

Copt (π) =

[
∆u (π)

∆c (π)
A
] 1+η

σ+η

,
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Nopt (π) =

[
∆u (π)

∆c (π)
A
] 1−σ

σ+η

,

corresponding to the labor subsidy rate τ (π) implicitly defined by

∆u (π)


[(

θ−1
θ

) (
1

1−τ(π)

)
p∗ (π)

]1+η

[ϑ (τ (π) , π)]η


1

σ+η

=

[
∆u (π)

∆c (π)

] 1+η
σ+η

.

We now discuss some properties of the optimal inflation rate, π.

Proposition 2 (With high cognitive costs, price stability is better than high inflation).

Let Ws be the welfare level attained when gross inflation, π ≥ θ
θ−1 . Since κ > 0, there is a

value σ2
c such that when the household’s prior uncertainty about the optimal consumption is

higher than σ2
c (σ2

c ≥ σ2
c ), price stability is better than high inflation, W (1) > Ws.

See the Appendix for proof.

The intuition for this proposition is as follows. Recall that when households opt

to gather information regarding the optimal consumption policy, they reduce their

uncertainty to κ. When the prior uncertainty is high, this reduction involves signif-

icant cognitive effort that the households deem justified in times of high inflation.

When inflation is zero, only a few firms adjust their pricing, so households incur

low cognitive costs. Because of these low costs, social welfare is higher than when

inflation is high.

Proposition 3 (Price stability is not optimal). There is a value of π < 1 such that

W (π) > W (1).

See the Appendix for proof.

The intuition for this result is as follows. When average inflation is zero, firms ex-

periencing high demand due to household decision errors do not change their prices.

Other firms slightly increase or decrease their prices to draw a new demand shock.

As a result, sizeable behavioral mistakes become ingrained, leading households to
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select a highly suboptimal consumption basket. Moving away from zero inflation

mitigates this inefficiency by improving consumption choices.

Why is deflation locally better than inflation? The logic is as follows. Due to

cognitive costs, households do not choose the optimal value of ci. Instead, they

consume an amount of good i that is proportional to the optimal value. The planner

would like to reduce the consumption of goods supplied by firms that have sticky

prices, since these firms received large demand shocks that drive consumption far

away from the optimum. When inflation is positive, the relative price of the goods

produced by firms with sticky prices falls, inducing households to consume more

of these goods and exacerbating the impact of behavioral biases. In contrast, when

inflation is negative, the relative price of the goods produced by firms with sticky

prices rises. As a result, the consumption of these goods falls, mitigating the impact

of behavioral biases.

To sharpen our intuition, it is helpful to compare the distortions that emerge in

our economy with those that would arise with Calvo (1983) pricing. In that setup,

firms still face the boundedly rational demands, but change prices with an exoge-

nous probability. Figure 2 plots the distortion ∆c/∆u that arise in both economies.

In this Calvo economy, there is no selection – all firms have the same likelihood of

changing prices. Consequently, as depicted in Figure 2, the distortion reaches its

lowest point when prices are stable (π = 1). In contrast, in our economy, the distor-

tion is minimized when the rate of inflation is negative (π < 1). The reason is the

selection effect. Firms with large demand shocks do not change their prices, result-

ing in a relatively high distortion under price stability. When inflation is very high –

π ≥ θ
θ−1 – or very low – π → 0 –, the distortion is the same as in the Calvo economy

under price stability. There is no price dispersion, and the distortion is solely due to

the dispersion in demand shocks.
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6 Conclusion

This paper studies a model where households make decisions according to a dual

process framework. This framework gives rise to a new kind of price rigidity that

emerges from the interaction between consumers and monopolistic suppliers. There

is a range of cost shocks for which some producers refrain from adjusting prices so

that households do not reassess their purchasing decisions.

Our model explains the intriguing ”rockets and feathers” phenomenon: prices

rise quickly when costs increase but fall slowly when costs fall. The model is also

consistent with an important empirical regularity documented by Ilut et al. (2020):

firms that receive a high demand realization are less likely to change their prices.

Unlike in other cashless economies with sticky prices, price stability is not opti-

mal in our model.

We predict that the advent of Artificial Intelligence will make the strategic ex-

ploitation of the type of consumer behavioral biases present in our model more

prevalent.
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7 Appendix

This appendix contains the proofs of our three propositions, a characterization of

the properties of the price distribution generated by the model, as well as a deriva-

tion of the rockets and feathers result in an infinite-horizon model where policy is

conducted through a Taylor rule.

7.1 Proof of Lemma 1

Proof. Let

v (p, p∗) ≡
[

p −
(

θ − 1
θ

)
p∗
]

p−θ,

v∗ ≡ v (p∗, p∗) ,

and

v (π, p∗) ≡ v
(

1
π

, p∗
)

.

Whenever v (π, p∗) > 0, we can use equations (8) and (10) to write

ℓ (π, p∗) ≡ ln
{

E [eγϵ]
v∗

v (π, p∗)

}
.

We first show that for all π ≥ θ
θ−1 , equation (12) implies that v (π, p∗) ≤ 0.

Suppose that this property does not hold, i.e. π ≥ θ
θ−1 but v (π, p∗) > 0. Then

v (π, p∗) > 0 ⇐⇒
[

1
π
−
(

θ − 1
θ

)
p∗
] (

1
π

)−θ

> 0 ⇐⇒ p∗ < 1,

which implies that

(p∗)1−θ > 1.

From equation (12),

πθ−1 =
1 − (1 − χ) (p∗)1−θ

χ
.
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Therefore

πθ−1 =
1 − (1 − χ) (p∗)1−θ

χ
< 1.

This inequality contradicts the initial assumption that π ≥ θ
θ−1 > 1. Therefore

v (π, p∗) ≤ 0, and ℓ (π, p∗) = ∞ for all π ≥ θ
θ−1 . In addition, χ = 0, and equa-

tion (12) implies

p∗ = 1.

7.2 Lemmas regarding p∗ (π)

This section shows additional lemmas regarding p∗ (π). The following lemma shows

that p∗ (π) is well-defined for π < θ
θ−1 . Let

f (π, p∗) = χ (π, p∗)
(

1
π

)1−θ

+ [1 − χ (π, p∗)] (p∗)1−θ

and

χ (π, p∗) ≡ 1 − Φ [ℓ (π, p∗)] ,

where

ℓ (π, p∗) ≡


1
γ ln

{
E [eγϵ]

v(p∗,p∗)
v( 1

π ,p∗)

}
, if v

(
1
π , p∗

)
> 0,

∞, if v
(

1
π , p∗

)
≤ 0.

We now show that the equation

f (π, p∗) = 1,

has a unique solution p∗ (π) for any π < θ
θ−1 .

Lemma 4. For π < θ
θ−1 , f (π, p∗) = 1 has a unique solution for p∗ that involves v (π, p∗) >

0.
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Proof. For fixed π < θ
θ−1 , we have that if

1
π

≤
(

θ − 1
θ

)
p∗ ⇐⇒ p∗ ≥

(
θ

θ − 1

)
1
π

> 1,

then v (π, p∗) ≤ 0. Therefore ℓ (π, p∗) = ∞, χ (π, p∗) = 0, and

f (π, p∗) = χ (π, p∗)
(

1
π

)1−θ

+ [1 − χ (π, p∗)] (p∗)1−θ

= (p∗)1−θ < 1.

On the other hand, as p∗ → 0,

v
(

1
π

, p∗
)
≡
[

1
π
−
(

θ − 1
θ

)
p∗
] (

1
π

)−θ

→
(

1
π

)1−θ

,

and

v (p∗, p∗) =
1
θ

[(
θ

θ − 1

)
p∗
]1−θ

→ ∞,

which means again that ℓ (π, p∗) → ∞, and therefore

f (π, p∗) → ∞.

Since limp∗→0 f (π, p∗) = ∞ and f (π, p∗) < 1 for all p∗ ≥ θ
θ−1

(
1
π

)
, all that is left

to be done is to show that f (π, p∗) is strictly decreasing for p∗ ∈
(

0,
(

θ
θ−1

)
1
π

)
, in

which case we are assured there is a unique solution in this region.

We have

eγℓ(π,p∗) = E [eγϵ]
v (p∗, p∗)

v
(

1
π , p∗

) ⇐⇒ γℓ (π, p∗) = ln (E [eγz])+ ln [v (p∗, p∗)]− ln
[

v
(

1
π

, p∗
)]

.

and

dv (p∗, p∗)
dp∗

= (1 − θ)
1
θ

[(
θ

θ − 1

)]1−θ

(p∗)1−θ 1
p∗

= − (θ − 1) v (p∗, p∗)
1
p∗

,
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and

vp∗

(
1
π

, p∗
)
= −

(
θ − 1

θ

)(
1
π

)−θ

,

so

γℓp∗ (π, p∗) = − (θ − 1)
1
p∗

+

(
θ−1

θ

) (
1
π

)−θ

[
1
π −

(
θ−1

θ

)
p∗
] (

1
π

)−θ

= (θ − 1)

 p∗ − 1
π[

1
π −

(
θ−1

θ

)
p∗
]

p∗

 .

Therefore, we have

fp∗ (π, p∗) = χp∗ (π, p∗)
(

1
π

)1−θ

− χp∗ (π, p∗) (p∗)1−θ − (θ − 1) [1 − χ (π, p∗)] (p∗)−θ

= −ϕ [ℓ (π, p∗)]
γ

(θ − 1)

 p∗ − 1
π[

1
π −

(
θ−1

θ

)
p∗
]

p∗

 [( 1
π

)1−θ

− (p∗)1−θ

]
−

− (θ − 1) [1 − χ (π, p∗)] (p∗)−θ .

But

p∗ − 1
π

,

and (
1
π

)1−θ

− (p∗)1−θ ,

have the same sign. Therefore fp∗ (π, p∗) < 0, which completes the proof.

Lemma 5. For π < θ
θ−1 , the function p∗ (π) has elasticity

p∗′ (π)

p∗ (π)
π =

χ (π)
(

1
π

)1−θ
− Ω (π)

Ω (π) + [1 − χ (π)] [p∗ (π)]1−θ
,

where

Ω (π) ≡ ϕ [ℓ (π)]

γ

[
p∗ (π)− 1

π

] {(
1
π

)1−θ
− [p∗ (π)]1−θ

}
1
π −

(
θ−1

θ

)
p∗ (π)

> 0,
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and ℓ (π) has semi-elasticity

ℓ′ (π)π =
1
γ
(θ − 1)

 p∗ (π)− 1
π

1
π −

(
θ−1

θ

)
p∗ (π)

 [ 1

Ω (π) + [1 − χ (π)] [p∗ (π)]1−θ

]
.

Proof. The proof follows from the total differentiation of (12).

Lemma 6. The function p∗ has the following properties:

1. p∗ (1) = 1;

2. If π > 1, p∗ (π) > 1;

3. If π < 1, p∗ (π) < 1.

Proof. These properties follow directly from equation (12).

Lemma 7. ℓ (π) is minimized at π = 1, with ℓ (1) = 1
2 γ. Therefore, χ (π) and δ (π) are

maximized at 1.

Proof. From Lemma 5, sign [ℓ′ (π)] = sign
[

p∗ (π)− 1
π

]
. Therefore ℓ (π) is decreas-

ing for π < 1, and increasing for π > 1, which implies that ℓ is minimized at π = 1.

Equations (11) and (22) imply that χ and δ are decreasing in ℓ. It follows that χ (π)

and δ (π) are maximized at π = 1.

Lemma 8. p∗′ (π) has exactly one maximum in
(

1, θ
θ−1

)
and exactly one minimum in

(0, 1).

Proof. At any extremum, Lemma 5 implies that

Ω (π) = χ (π)

(
1
π

)1−θ

.

Now

Ω (π) =
ϕ [ℓ (π)]

γ

[
p∗ (π)− 1

π

] {(
1
π

)1−θ
− [p∗ (π)]1−θ

}
1
π −

(
θ−1

θ

)
p∗ (π)

,
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so

ϕ [ℓ (π)]

γ

[
p∗ (π)− 1

π

] {(
1
π

)1−θ
− [p∗ (π)]1−θ

}
1
π −

(
θ−1

θ

)
p∗ (π)

= χ (π)

(
1
π

)1−θ

⇐⇒ E [ϵ | ϵ ≥ ℓ (π)]

γ
=

1
π −

(
θ−1

θ

)
p∗ (π)[

p∗ (π)− 1
π

] {(
1
π

)1−θ
− [p∗ (π)]1−θ

} ( 1
π

)1−θ

. (31)

Consider the function

g (a) = E [ϵ | ϵ ≥ a] =
ϕ (a)

1 − Φ (a)
.

The first derivative is

g′ (a) =
−aϕ (a) [1 − Φ (a)]− ϕ (a) [−ϕ (a)]

[1 − Φ (a)]2

=
−aϕ (a)

1 − Φ (a)
+ E [ϵ | ϵ ≥ a]2

= −aE [ϵ | ϵ ≥ a] + E [ϵ | ϵ ≥ a]2

= {E [ϵ | ϵ ≥ a]− a}E [ϵ | ϵ ≥ a] > 0,

so g (a) is an increasing function.

Consider the region π ∈
[
1, θ

θ−1

]
. As we have shown before, ℓ (π) is strictly

increasing in this region. Therefore

E [ϵ | ϵ ≥ ℓ (π)]

γ

is strictly increasing in π. Moreover,

lim
a→∞

ϕ (a)
1 − Φ (a)

= lim
a→∞

−aϕ (a)
−ϕ (a)

= ∞.

Now, let’s look at

h (π) ≡
1
π −

(
θ−1

θ

)
p∗ (π)[

p∗ (π)− 1
π

] {(
1
π

)1−θ
− [p∗ (π)]1−θ

} ( 1
π

)1−θ

.
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As π → 1, the numerator is clearly finite and positive, whereas the denominator

goes to zero, so limπ→1+ h (π) = ∞. As π → θ
θ−1 , h (π) → 0. it follows that there

must be at least one value of π in this region that solves equation 31.

Suppose that we can show that at any solution for π ∈
[
1, θ

θ−1

]
, h′ (π) < 0. It

would then follow that there is exactly one solution. Suppose there are two solutions.

By continuity, there must be another solution in between. But then, the derivative

has to be positive at that solution, which is a contradiction.

Note that h (π) has to be strictly positive in
(

1, θ
θ−1

)
. So we can take logs and

differentiate to obtain

h′ (π)

h (π)
=

[(
1
π

)1−θ
]′

(
1
π

)1−θ
+

− 1
π2

1
π −

(
θ−1

θ

)
p∗ (π)

−
1

π2

p∗ (π)− 1
π

−

[(
1
π

)1−θ
]′

(
1
π

)1−θ
− [p∗ (π)]1−θ

= − (θ − 1)
(

1
π

)2−θ


[p∗ (π)]1−θ(

1
π

)1−θ
[(

1
π

)1−θ
− [p∗ (π)]1−θ

]
−

− 1
π2

 1
θ p∗ (π)[

1
π −

(
θ−1

θ

)
p∗ (π)

] [
p∗ (π)− 1

π

]
 .

which must be strictly negative in this region. The argument is exactly the same for

π ∈
(

0, θ
θ−1

)
.

We have shown that p∗′ (π) has exactly one extremum in
(

1, θ
θ−1

)
and exactly

one extremum in (0, π).

Lemma 5 implies that p∗′ (1) > 0. Since at π = θ
θ−1 , p∗ (π) = 1 and the derivative

is continuous if there were a minimum in
(

1, θ
θ−1

)
there would also have to be a

maximum, contradicting the assumption that there is only one extremum. The same

argument holds for π ∈ (0, 1).
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7.3 Proof of Proposition 1

Proof. Set σ = 1 and η = 0. The equilibrium conditions become

C = ∆u (π) p∗ (π) A (32)

and

1 = π
C

∆u (π)
(33)

Substituting C yields the equilibrium condition

1
A

= e [π∗ (A)] , (34)

where

e (π) ≡ πp∗ (π) .

It is evident that e (π) → 0 as π → 0 and e (π) → ∞ as π → ∞. Therefore, a solution

to (34) exists. Moreover,

e′ (π)

e (π)
π = 1 +

p∗′ (π)

p∗ (π)
π =

1

Ω (π) + [1 − χ (π)] [p∗ (π)]1−θ
,

where the last equality follows from (5). Therefore e (π) is strictly increasing in π. It

follows that the solution to (34) is unique, and that π∗′ (A) < 0.

Consider a shock υ such that

π∗
(

1
1 + υ

)
=

θ

θ − 1
.

Substituting in (34) we get

1 + υ =
θ

θ − 1
.

Now consider cost shocks 1 + υ ≥ θ
θ−1 . We want to show that π∗ (1 + υ) > 1

1+υ .

Since e (π) is strictly increasing, we simply need to show that e
(

1
1+υ

)
< 1

1+υ . Now

g
(

1
1 + υ

)
<

1
1 + υ

⇐⇒ p∗
(

1
1 + υ

)
< 1.
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But since 1 + υ ≥ θ
θ−1 , 1

1+υ ≤ 1. By Lemma 6, p∗
(

1
1+υ

)
< 1.

There are rockets and feathers when the increase in cost is such that all firms

raise prices ( 1
1+υ < θ−1

θ ). The reason is that for a symmetric fall in costs, some firms

with favorable demand still keep their prices constant. Since e (·) is continuous,

π∗ (A) is also continuous. This property implies that even when the cost rise does

not induce all firms to increase prices, there are values of υ that produce rockets and

feathers.

7.4 Proof of Proposition 2

Proof. Let
∆u (π)

∆c (π)
≡ ζ (π)

At any π ≥ θ
θ−1 , ζ (π) = ζs, a constant that is independent from π. Therefore

Copt (π) = Cs and Nopt (π) = Ns are also independent from inflation. We can write

Copt (1) =
[

ζ (1)
ζs

] 1+η
σ+η

Cs,

and

Nopt (1) =
[

ζ (1)
ζs

] 1−σ
σ+η

Ns.

Substituting C (1) and N (1) in W (1) we get

W (1)−Ws =


[

ζ (1)
ζs

] (1+η)(1−σ)
η+σ

− 1


[

C1−σ
s − 1
1 − σ

− N1+υ
s

1 + υ

]
+

[
ζ(1)
ζs

]1−σ
− 1

1 − σ
+ κχ (1) ln

(
σ2

c
κ

)
.

As σ2
c → ∞, the first two terms go to a finite number. The third term goes to

infinity. Therefore there must be σ2
c such that σ2

c ≥ σ2
c implies that W (1) −Ws >

0.
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7.5 Proof of Proposition 3

Proof. Let

Ã (π) ≡ ζ (π) A.

For any π,

W ′ (π) = Ã (π)
(1+η)(1−σ)

σ+η −1 Ã′ (π) + κ ln
(

σ2
c

κ

)
χ′ (π) .

At π = 1, ℓ′ (π) = 0, so χ′ (1) = δ′u (1) = δ′ (1) = 0. Since Ã (π) = Aζ (π),

W ′ (1) ∝ ζ̂ (1) ,

where ζ̂ (π) ≡ d ln ζ(π)
d ln(π)

.

At π = 1,

ζ̂ (1) = θ

[
δu (1)− χ (1)

δu (1) + 1 − χ (1)
− δ (1)− χ (1)

δ (1) + 1 − χ (1)

]
.

Since δu = 1 − Φ
[
ℓ−

(
θ−1

θ

)
γ
]

and δ = 1 − Φ (ℓ− γ), δu (1) < δ (1). Therefore

ζ̂ (1) < 0 and W ′ (1) < 0.

8 Price Distribution

We now describe the equilibrium relation between the optimal relative reset price,

p∗ (π), and the inflation rate. For analytical convenience, we measure inflation with

the price index for an economy with fully rational households, which we denote by

π.

Figure 3 illustrates the properties described in lemmas 1, 6, and 8.

The intuition for the behavior of the reset price is as follows. When inflation

is sufficiently high, nominal marginal costs are such that the profit margin at the

old price is negative. As a result, all producers reset their prices, and therefore the

relative reset price is equal to one.
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Figure 3: Reset relative price as a function of the inflation rate
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As gross inflation goes to zero (and inflation goes to -100 percent), the real price

charged by sticky firms, P0
P = 1

π goes to infinity. In this case, almost no firm has

a demand shock ϵi that makes it worthwhile to keep a real revenue near zero. In

the limit, all producers reset their prices, again implying that the relative reset price

must equal one.

When gross inflation is equal to one, the definition of P implies that the reset

price is also equal to one regardless of the fraction of sticky firms:

1 = χ (π)πθ−1 + [1 − χ (π)] [p∗ (π)]1−θ

which implies that

p∗(1) = 1.

In this case, the old price is equal to the nominal reset price, P∗, since p∗ (π) = 1

implies that P∗ = P = P0. Therefore, firms with ϵi,0 ≥ ℓ (1) keep their price, and

firms with ϵi,0 < ℓ (1) change their price by an infinitesimal amount to induce the

household to draw a new signal.

Figure 4 shows that the minimum demand shock that makes it worthwhile for

firms to keep their price is minimized at π = 1. The old price maximizes the rational

component of demand, so it takes a relatively small demand shock to induce firms

to keep their price. This fact implies that the fraction of firms with sticky prices and

high demand is large around π = 1.

We now explore the non-monotonicity of the reset price with respect to the rate of

inflation implicit in lemma 6. This non-monotonicity reflects the interplay between

the intensive and extensive margins of price adjustment. Using the definition of P,

1 = χ (π) (π)θ−1 + [1 − χ (π)] [p∗ (π)]1−θ ,

we obtain another expression for the elasticity p̂∗ (π) ≡ p∗′(π)
p(π)

π:

p̂∗ (π) = p∗ (π) + φ (π) χ̂ (π) ,
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where

p∗ (π) ≡
[

χ (π)

1 − χ (π)

] [ 1
π

p∗ (π)

]1−θ

> 0,

φ (π) ≡
(

1
θ − 1

) [
χ (π)

1 − χ (π)

]{(
1
π

)1−θ

− [p∗ (π)]1−θ

}
,

and

χ̂ (π) ≡ χ′ (π)

χ (π)
π.

It is easy to show that φ (π) > 0 when π > 1 and φ (π) < 0 when π < 1.

The first term of f̂ (π), f (π), relates to the intensive margin of price adjustment,

and the second term, φ (π) χ̂ (π), to the extensive margin.

Along the intensive margin, there is a positive relation between the relative reset

price and inflation (p∗ (π) > 0). If inflation is high, sticky firms charge a low rel-

ative price. In equilibrium, flexible firms must charge a high relative price so that

Ei

[
p1−θ

i

]
= 1.

Along the extensive margin, there is a negative relation between the relative reset

price and inflation (φ (π) χ̂ (π) < 0). If inflation is high, the fraction of sticky firms

is low (χ̂ (π) < 0) because fewer demand shocks make keeping a low nominal price

with high nominal marginal costs worthwhile. Flexible firms must charge a smaller

relative price so that in equilibrium Ei

[
p1−θ

i

]
= 1.

It turns out that there is a gross inflation level π > 1 such that if π > π, the effect

of the extensive margin dominates and p̂∗ (π) < 0.

The dynamics of deflation are analogous to those of inflation. As inflation be-

comes more negative, the firms that change prices reduce these prices by more (the

intensive margin). But, since more firms change prices (the extensive margin), prices

do not have to fall by much to ensure that the harmonic mean of the relative prices

is one. Again, there is an inflation level π such that if π < π, p∗ (π) > p∗ (π).
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8.1 Taylor Rule

To analyze the response of inflation to the cost, υ, under a Taylor rule, we consider a

deterministic infinite-period version of the model. There is a pre-period, t = 0, with

an exogenous price level P0 and System 1 demands. After this pre-period, time is

indexed by t ≥ 1.

We assume that the household is fully rational from t = 2 onwards. In each

period t, utility from consumption and labor is

Ut =
C1−σ

t − 1
1 − σ

− N1+η
t

1 + η
,

where

Ct =

(ˆ 1

0
c

θ−1
θ

i,t di

) θ
θ−1

.

In each period t, the household invests in nominal government bonds, Dt+1, at

price 1/Rt, where Rt is the gross nominal interest rate. The flow-of-funds constraint

is ˆ 1

0
Pi,tci,tdi +

Dt+1

Rt
≤ WtNt +

ˆ 1

0
Πi,tdi + Dt − Tt.

As in the main text, production of good i is conducted by a monopolistically

competitive firm with the following production function

yi,t = Atni,t.

The flow-of-funds constraint of the government is

Dt + τn,tWtNt =
Dt+1

Rt
+ Tt.

The monetary authority sets interest rates according to the Taylor rule

Rt =
1
β

π
ϕ
t , ϕ > 1.

We define an equilibrium in this economy as follows.
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Definition 2. An equilibrium is a sequence of prices {Wt, Pi,t}∞
t=1, allocations, {ci,t, Nt, Dt+1, Πi,t}∞

t=1,

and policies {τn,t, Tt, Rt}∞
t=1 such that, given P0 and the productivity sequence {At}∞

t=1,

1. For t ≥ 2, {ci,t, Nt, Dt+1}∞
t=2 maximize

∞

∑
t=2

βt−2Ut

subject to the flow-of-funds constraints and a transversality condition.

2. For t = 1,

ci,1 = eγϵ̃i,1 p−θ
i,1 C∗

1 ,

ϵ̃i,1 =

{
ϵi,0, if Pi,1 = P0

ϵi,1, if Pi,1 ̸= P0
,

ϵi,t ∼ N (0, 1) ,

D2 = D∗
2 ,

and N1 is chosen to satisfy the flow-of-funds constraint in period 1. C∗
1 and D∗

2 are the

period-1 aggregate consumption and savings plans for period one that maximize
∞

∑
t=1

βt−1Ut

subject to the flow-of-funds constraints and a transversality condition.

3. In each period t, firms choose Pi,t, ni,t and yi,t to maximize expected profits Et [Πi,t]

subject to yi,t = Atni,t and yi,t = ci,t.

4. Policies satisfy the flow-of-funds constraints

Dt + τn,tWtNt =
Dt+1

Rt
+ Tt,

and the nominal interest rate satisfies

Rt =
1
β

π
ϕ
t ,

where πt ≡ Pt
Pt−1

.
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5. The labor market clears:
´ 1

0 ni,tdi = Nt.

Condition 1 states that the household is fully rational from period two onwards.

Condition 2 states that in period one, consumption of the differentiated goods solve

the bounded rationality problem in the main text, nominal government savings are

rationally chosen, and labor is chosen to satisfy the budget constraint. Condition

3 incorporates the fact that because the household is rational from period two on-

wards, and prices are not rigid, the problem of the firm is static.

We consider the equilibrium associated with ad valorem subsidies satisfying

1 − τn,t =
θ − 1

θ
, t ≥ 1

and a productivity sequence

At = 1, t ≥ 2.

Equilibrium For t ≥ 2 From period two onwards, consumption and labor satisfy

the conditions

ci,t = p−θ
i,t Ct, t ≥ 2,

Cσ
t Nη

t = wt, t ≥ 2,

1
β

(
Ct+1

Ct

)σ

= Rt. t ≥ 2.

The price level is given by

P1−θ
t =

ˆ 1

0
P1−θ

i,t di.

Since the consumer is fully rational and 1 − τn,t = θ−1
θ , it follows that all firms set

the nominal price to

Pi,t =
Wt

At
,

which implies that pi,t ≡ Pi,t/Pt = 1 and wt ≡ Wt
Pt

= At = 1. It follows that

ci,t = Ct = Nt = 1.
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Since the government sets the nominal interest rate according to an interest rate

rule with a zero inflation target, it is able to implement a locally unique solution with

πt = 1, t ≥ 2.

Firms’ Problem At t = 1 The problem of the firms in period 1 is identical to that

described in the main text. Therefore

pi,1 =

{
p∗1 , if ϵi,0 ≥ ℓ
1

π1
, if ϵi,0 < ℓ

,

where

p∗1 ≡ w1

A1

and

ℓ ≡

E [eγϵ]
1
θ (p∗1)

1−θ(
1

π1
− θ−1

θ p∗1
)(

1
π1

)−θ , 1
π1

> θ−1
θ p∗1

∞, 1
π1

≤ θ−1
θ p∗1

.

Using

P1−θ
1 =

ˆ 1

0
P1−θ

i,1 di

It follows that p∗1 can be implicitly defined as the same function of inflation used in

the main text, i.e., p∗1 = p∗1 (π1).

Household’s Problem at t = 1 As before, to obtain the boundedly rational de-

mands in period 1, we need to characterize the rational plans in that period. From

the point of view of period 1, the conditions that characterize the solution to the

utility-maximization problem include

c∗i,t = p−θ
i,1 C∗

t ,

(C∗
t )

σ (N∗
t )

η = wt,
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1
β

(
C∗

t+1
C∗

t

)σ

=
Rt

πt+1
,

∞

∑
t=1

Q1,tPtC∗
t =

∞

∑
t=1

Q1,t

[
WtN∗

t +

ˆ 1

0
Πi,tdi − Tt

]
+ D1,

Qk,t ≡
{

1 , if t = k
∏t−1

τ=k
1

Rτ
, if t > k

,

It is convenient to also consider the equations

∞

∑
t=2

Q2,tPtC∗
t =

∞

∑
t=2

Q2,t

[
WtN∗

t +

ˆ 1

0
Πi,tdi − Tt

]
+ D∗

2

P1C∗
1 +

D∗
2

R1
= W1N∗

1 +

ˆ 1

0
Πi,1di + D1 − T1.

Plugging the equilibrium variables in the utility-maximization problem of period 1,

we conclude that the rational plans in period 1 satisfy

C∗
t = C∗

2 , t ≥ 2,

N∗
t = N∗

2 , t ≥ 2,

(C∗
2 )

σ (N∗
2 )

η = 1.

Combining the intertemporal household and government budget constraints from

period two onwards,

∞

∑
t=2

Q2,tPtC∗
t =

∞

∑
t=2

Q2,t

[
WtN∗

t +

ˆ 1

0
Πi,tdi − Tt

]
+ D∗

2

⇐⇒
∞

∑
t=2

Q2,tPtC∗
t =

∞

∑
t=2

Q2,t

[
WtN∗

t +

ˆ 1

0
Πi,tdi − τn,tWtN∗

t

]
− D2 + D∗

2

⇐⇒ 1
1 − β

C∗
2 =

1
1 − β

N∗
2 +

D∗
2 − D2

P2
.

From condition 2 in the equilibrium definition, D2 = D∗
2 and therefore

C∗
2 = N∗

2 .
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Combining with the intratemporal condition for consumption and labor in period 2,

C∗
2 = N∗

2 = 1.

Using the intertemporal budget constraint for period 1,

∞

∑
t=1

Q1,tPtC∗
t =

∞

∑
t=1

Q1,t

[
WtN∗

t +

ˆ 1

0
Πi,tdi − Tt

]
+ D1

⇐⇒ P1C∗
1 +

1
R1

1
1 − β

P1C∗
2 = W1N∗

1 +
1

R1

1
1 − β

P1N∗
2 +

ˆ 1

0
(Pi,1ci,1 − W1ni,1) di

⇐⇒ C∗
1 = w1N∗

1 +

ˆ 1

0

(
pi,1 −

w1

A1

)
ci,1di.

Since

ci,1 = eγϵ̃i,1 p−θ
i,1 C∗

1 ,

We obtain the same expression for rational consumption in period 1:

C∗
1 =

{
[A1p∗1 (π1)]

1+η

[ϑ (π1)]
η

} 1
σ+η

.

Equilibrium Conditions in Period 1 Using the fact that C∗
2 = 1, the Euler equation

in period 1 implies
1
β

(
1

C∗
1

)σ

= R1.

Combining with the Taylor rule, we obtain the two equilibrium conditions

C∗
1 =

{
[A1p∗1 (π1)]

1+η

[ϑ (π1)]
η

} 1
σ+η

, (35)

and

C∗
1 = π

− ϕ
σ

1 . (36)

As in the static model, equilibrium consumption can be obtained through

C1 = ∆u (π1)C∗
1
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Rockets and Feathers Consider again productivity levels

A1,H = 1 + υ

and

A1,L =
1

1 + υ
,

with υ > 0. Let π1,L (υ) be the equilibrium inflation associated with an increase in

costs of size υ, and π1,H (υ) the equilibrium inflation associated with a decrease in

costs also of size υ. We can now show an analogous rockets and feathers proposition.

Proposition 4 (Rockets and Feathers With Taylor Rule). Suppose σ = 1 and η = 0. If

ϕ > 1, there is υ such that if υ ≥ υ,

|ln π1,L (υ)| > |ln π1,H (υ)| .

Proof. With σ = 1 and η = 0, the equilibrium conditions (35) and (36) become

C∗
1 = A1p∗1 (π1)

and

C∗
1 = π

−ϕ
1 .

Combining the two, the equilibrium condition for inflation is

1
A1

= p∗1 (π1)π
ϕ
1 .

Let eTaylor (π1) ≡ p∗1 (π1)π
ϕ
1 . If ϕ > 1, it is still true that eTaylor is strictly increasing

in inflation, since

eTaylor (π1) = e (π1)π
ϕ−1
1 .

As in proposition 1, e (π1) is strictly increasing. When ϕ > 1, so is eTaylor (π1). There-

fore, the equilibrium is locally unique, and inflation decreases in A1.
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As before, there is a value of υ such that π1,L = θ
θ−1 and p∗1 (π1,L) = 1:

1 + υ =

(
θ

θ − 1

)ϕ

.

To show that for this υ, |ln π1,L (υ)| > |ln π1,H (υ)|, we need only to show that

eTaylor

(
θ − 1

θ

)
<

(
θ − 1

θ

)ϕ

.

Substituting,

p∗1 (π1,H (υ))

(
θ − 1

θ

)ϕ

<

(
θ − 1

θ

)ϕ

⇐⇒ p∗1 (π1,H (υ)) < 1.

This inequality holds, since θ−1
θ < 1, in the region where p∗1 < 1. This statement

completes the proof.
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