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1 Introduction

A mainstay of neoclassical capital theory is that capital accumulation increases wages, at

least in the long-run. This is one of the key mechanisms via which economic growth gener-

ates “shared prosperity” (Acemoglu and Johnson, 2023). Evidence from long-run economic

growth is broadly consistent with this prediction: capital-labor ratios have increased rapidly

in most industrialized economies in the 20th century, and this was accompanied by growth of

labor earnings (Barro and Sala-i-Martin, 2008; Acemoglu, 2009; Gordon, 2016). Neverthe-

less, the slowdown—or even secession—of US real wage growth over the last four decades has

raised concerns about the relationship between economic growth and wage growth. Several

authors have linked the decline in the labor share of national income and the slowdown of

wage growth to rapid capital accumulation (Blanchard, 1995; Karabarbounis and Neiman,

2014), while others have suggested that adverse effects for labor have followed from invest-

ment in automation technologies (Autor, Levy and Murnane, 2003; Acemoglu and Autor,

2011; Acemoglu and Restrepo, 2018, 2019; Acemoglu and Johnson, 2023).

Similar questions arise in the context of international capital flows. Neoclassical capital

theory implies that an increase in foreign capital flows should benefit labor. This has not

always been the case in reality, and ideas going back to the appropriate technology literature

of the 1960s and 70s suggests that the consequences of capital flows may be more nuanced

because more capital often leads to the adoption of more capital-intensive production tech-

niques, which can have adverse effects for workers (Atkinson and Stiglitz, 1969; Schumacher,

1973; Stewart, 1977; Diwan and Rodrik, 1991; Basu and Weil, 1998; Acemoglu, 2015).

In this paper, I start by presenting the foundations of the neoclassical conclusion. When

factor markets are competitive and aggregate production exhibits constant returns to scale,

more capital always leads to higher wages and greater labor demand. I then explain that

this prediction critically depends on the assumption that more capital does not change the

production possibilities set of firms or the types of techniques they use. When this is the

case, greater capital intensity of production can harm labor.

The heart of the paper develops a tractable model of endogenous technology choice,

building on Acemoglu (2007, 2010). I show how greater capital abundance typically leads to

greater automation—meaning a change in the organization of production such that capital

becomes more important and labor becomes less important, for example, because capital is

now used for tasks previously performed by labor (Acemoglu and Restrepo, 2018, 2019).
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I use this framework to show how greater capital abundance can reduce wages and labor

demand. I show that this can happen when the menu of technologies enables a strong

automation response.

A well-known regularity is that wages have increased in most of the industrialized world

for much of the 20th century even as there was rapid capital accumulation and technological

change. Does this mean that configurations in which greater capital leads to lower wages

are not empirically relevant? In the last part of the paper, I show that the answer to this

question is no. I embed the ideas developed earlier in the paper in an extended endogenous

growth model, in which the equilibrium involves both a choice over the extent of automation

and over the growth rate of labor-augmenting technology. The economy admits a balanced

growth path in which equilibrium wages and income per capita increase because of steady

labor-augmenting technological change, but the bias of technology in favor or against labor is

also determined by economic forces. Using this framework, I establish that while equilibrium

wages always continue to increase in the long run, a higher saving rate can both reduce wages

upon impact and also depress their long-run growth rate.

This paper is most closely related to my previous work, Acemoglu (2007, 2010) and

Acemoglu and Restrepo (2018). Acemoglu (2007) provided a general framework for the

analysis of the equilibrium bias of technology. The micro-founded model of technology

choice presented here is based on that paper. Acemoglu (2007) develops this framework

to investigate the conditions under which an increase in the supply of skilled labor shifts

technology in a “skill-biased” direction (this is the weak equilibrium bias result), and the

more stringent conditions under which greater abundance of skilled labor increases the long-

run skill premium (this is the strong equilibrium bias result). Acemoglu (2010) uses a similar

framework to study the conditions under which the scarcity of labor encourages innovation, as

it has been observed in key historical episodes (Habakkuk, 1962; Mokyr, 1990; Allen, 2009).

The focus here is on the effects of capital on wages, which has not featured in previous work.

I will show, nonetheless, that there are important parallels between the strong equilibrium

bias result in Acemoglu (2007) and the possibility here that greater capital intensity reduces

wages via the automation response. The modeling of automation in this paper builds on

Zeira (1998), Acemoglu and Zilibotti (2001), Acemoglu and Autor (2011), and especially

Acemoglu and Restrepo (2018, 2019). These papers do not investigate the relationship

between the direction of technology and the abundance of capital, though Acemoglu and
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Restrepo (2018) consider how capital accumulation and equilibrium labor shares impact the

balance between automation and new tasks.

The rest of the paper is organized as follows. Section 2 demonstrates that with exogenous

technology, competitive factor markets and constant returns to scale, increasing the capital

stock of the economy always raises wages. This section also highlights the importance of the

exogenous technology assumption for this result. Section 3 builds on Acemoglu (1998, 2007,

2010) and provides a simple framework for endogenizing technology and its response to the

abundance of capital. Section 4 reviews previous results about how endogenous and directed

technology changes the relationship between factor supplies and factor prices. Specifically,

it presents simplified versions of the weak and strong bias results of Acemoglu (1998, 2002,

2007). The strong bias results also have intuitions closely related to those I explore in the

context of the relationship between capital and wages, as shown in Section 5. The results in

this section establish that an increase in the capital stock of the economy can reduce, rather

than increase, equilibrium wages when technology responds to this change in factor supplies.

Section 6 provides worked-out examples of how a higher capital stock can lead to lower

wages in a number of simple economies. Section 7 embeds these ideas into an endogenous

growth model with multiple types of technologies—one corresponding to automation and

the other to labor-augmenting technology. It establishes that, along the balanced growth

path, wages increase together with capital deepening, but a higher saving rate can increase

capital abundance and lead to a decline in wage levels. Section 8 concludes.

2 Capital and Wages in the Neoclassical Growth The-

ory

Until Section 7, I focus on static economies, where technology choices are also made statically.

In this section, I demonstrate that in the neoclassical world with constant returns to scale,

greater capital abundance always increases wages. This result is also exposited in the context

of a static model. The terminology introduced in this section will be used throughout the

rest of the paper.

Consider a neoclassical, constant returns to scale aggregate production function

F (L,K, θ),

where L is labor used in production, K is the capital stock of the economy, and θ is an index
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of technology. Throughout, factor markets are assumed to be competitive, and the aggregate

production function F is continuously differentiable and exhibits constant returns to scale

(is linearly homogeneous in L and K). Throughout, I use subscripts to denote derivatives.

I also simplify the discussion by assuming that there is a representative household in

the background (though its preferences do not play a major role until Section 7). Labor is

inelastically supplied, and in this section I normalize its total supply to L = 1.

Given the differentiability of the production function and competitive markets, the

equilibrium wage is given by w = FL (L,K, θ). Or exploiting constant returns to scale

and defining the capital-labor ratio as k = K/L and per capita production function as

f(k, θ) ≡ F (L,K, θ)/L by

w = f(k, θ)− kfk(k, θ).

I next prove the following result:

Proposition 1 Holding θ constant, a higher capital stock always raises equilibrium wages.

That is,
dw

dK
≥ 0.

Moreover, this inequality is strict whenever fkk < 0.

The proof is straightforward and follows immediately from the fact that

dw

dK
= −kfkk (k, θ) ≥ 0,

since fkk (k, θ) ≤ 0 by constant returns to scale (and concavity of the aggregate production

function).

Intuitively, with a constant returns to scale production function, capital and labor are q-

complements—meaning that an increase in the use of one of these factors raises the marginal

product of the other, or FLK ≥ 0. This feature is implied because, under constant returns to

scale, FLK is proportional to −kfkk, and fkk ≤ 0. Hence, more capital always increases the

marginal product of labor. So long as the wage is proportional to labor’s marginal product

(as it is in a perfectly competitive labor market), the conclusion follows.

It is also straightforward to embed this result in a standard (exogenous or endogenous)

growth model. For example, a higher saving rate starts raising the capital stock immediately

and takes the economy towards a new steady state (balanced growth path) with higher

capital-labor ratio. After the rise in the saving rate, the wage rate starts increasing (relative
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to the baseline) and the new steady state will have permanently higher wages. I will contrast

this result to the pattern that obtains in a dynamic economy with a menu of technologies

and Section 5.

The fact that we are holding technology fixed is important for these results. Imagine we

also had dθ
dK
6= 0. In that case, greater capital abundance would change the aggregate pro-

duction function (e.g., alter how important capital and labor are in the production process),

and this would also impact wages. For example, if θ corresponds to a measure of automation

and we have dθ
dK

> 0 (more capital and encourages more automation) and ∂w
∂θ
< 0 (automa-

tion reduces wages; see Acemoglu and Restrepo, 2019), then the overall impact of greater

capital abundance could be to reduce wages.

To explore these issues in detail, we need a way of endogenizing technology choices, which

is what I start with in the next section.

3 Endogenizing Technology

This section is based on Acemoglu (2007). I provide a brief exposition to avoid repetition

and economize on space.

Each firm i ∈ F has access to a production function

yi = α−α (1− α)−1 F (Li, Ki,Θ)αqi (Θ)1−α , (1)

where Li is the firm’s employment, Ki is its capital stock, qi(Θ) is the quantity of inter-

mediate good embedding technology Θ, α ∈ (0, 1), and Θ = (θ1, . . . , θN) ∈ O ⊂RN is a

measure of technology that applies to all firms in the economy. I assume throughout that O
is a lattice (see Topkis, 1998), and F is again taken to be a neoclassical production function

with constant returns to scale. I use lower case yi to denote the output of firm i, and use Y

to denote net aggregate output below. The term α−α (1− α)−1 is included as a convenient

normalization.

This production structure is similar to models of endogenous technology (e.g., Romer,

1990, Grossman and Helpman, 1991, Aghion and Howitt, 1992), but is somewhat more

general since it does not impose that technology necessarily takes a factor-augmenting form.

The monopolist can create (a single) technology Θ ∈ O. The cost of inventing this

technology is Γ(Θ). I often set this cost to zero, which is without loss of any generality, since

Θ is already part of the production function, so any additional costs can be incorporated into
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F . In line with Romer’s (1990) emphasis that technology has a “non-rivalrous” character

and can thus be produced at relatively low cost once invented, I assume that once Θ is

created, the intermediate good embodying technology Θ can be produced at constant per

unit cost normalized to 1−α units of the final good (this is also a convenient normalization).

The monopolist can then set a (linear) price per unit of the intermediate good of type Θ,

denoted by χ.1

I continue to assume that labor is inelastically supplied, with total supply denoted by

L̄, and I take the supply of capital, K̄, as given as well. All factor markets are, once

again, competitive, and each firm takes the available technology, Θ, and the price of the

intermediate good embodying this technology, χ, as given and maximizes

max
Li,Ki,qi(Θ)

π(Li, Ki, qi (Θ) | Θ, χ) = α−α (1− α)−1 F (Li, Ki,Θ)αqi (Θ)1−α−wLi−RKi−χqi (Θ) ,

(2)

which gives the following simple inverse demand for intermediates of type Θ as a function

of its price, χ, and the factor employment levels of the firm as

qi
(
χ, Li, Ki | Θ

)
= α−1F (Li, Ki,Θ)χ−1/α. (3)

The problem of the monopolist is to maximize its profits:

max
Θ,χ,[qi(χ,Li,Ki|Θ)]i∈F

Π = (χ− (1− α))

∫
i∈F

qi
(
χ, Li, Ki | Θ

)
di− Γ(Θ) (4)

subject to (3). Given the supplies of labor and capital, market clearing requires:∫
i∈F

Lidi ≤ L̄ and

∫
i∈F

Kidi ≤ K̄. (5)

An equilibrium is a set of firm decisions {Li, Ki, qi (χ, Li, Ki | Θ)}i∈F , technology choice

and pricing decisions by the technology monopolist (Θ, χ), and factor prices (w,R) such

that {Li, Ki, qi (χ, Li, Ki | Θ)}i∈F solve (2) given (w,R) and (Θ, χ); (5) holds; and (Θ, χ)

maximize (4) subject to (3).

This definition emphasizes that factor demands and technology are decided by different

agents (the former by the final good producers, the latter by the technology monopolist).

This is an important feature both theoretically and as a representation of how technology

is determined in practice (see Acemoglu, 2007, for more discussion). Since factor demands

1See Acemoglu (2007) for the oligopolistic competition case and also for environments exhibiting techno-
logical externalities, which give identical results so far as the comparative statics of technology are concerned.
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and technology are decided by different agents, F (Li, Ki,Θ) need not be jointly concave in

(Li, Ki,Θ). Instead, it is sufficient that F is concave in (Li, Ki), which is already assume

given our constant returns to scale restriction.

To characterize the equilibrium, note that (3) defines a constant elasticity demand curve,

so the profit-maximizing price of the monopolist is given by the standard monopoly markup

over marginal cost and, given our normalizations, is equal to χ = 1. Consequently, qi (Θ) =

qi (χ = 1, Li, Ki | Θ) = α−1F (Li, Ki,Θ) for all i ∈ F . Substituting this into (4), integrating

over the set of firms F and using the fact that F exhibits constant returns to scale and χ = 1,

we have that Π = (χ− (1− α))α−1F (L̄, K̄,Θ)−Γ(Θ) = F (L̄, K̄,Θ)−Γ(Θ). Therefore, the

maximization problem of the monopolist can be expressed as

max
Θ∈O

H(L̄, K̄,Θ) ≡ F (L̄, K̄,Θ)− Γ (Θ) .

Thus we have established:

Proposition 2 Any equilibrium technology Θ∗ is a solution to

max
Θ∈O

H(L̄, K̄,Θ), (6)

and any solution to this problem is an equilibrium technology.

This proposition shows that the equivalence between equilibrium technology and the

maximizers of H(L̄, K̄,Θ) ≡ F (L̄, K̄,Θ)−Γ(Θ). Notice also that the function H inherits all

the properties of the production function F with respect to L and K. However, because of

the monopoly markup, there are distortions, and equilibrium technology is not at the level

that maximizes net output. I now use the fact that the profit-maximizing monopoly price

is χ = 1 and substitute (3) into the production function (1), and then subtract the cost of

technology choice, Γ(Θ), and the cost of production of the machines, (1− α)α−1F (L,K,Θ),

from gross output. This gives net output in this economy as

Y (L̄, K̄,Θ) ≡ 2− α
1− α

F (L̄, K̄,Θ)− Γ(Θ). (7)

Observe that the coefficient in front of F (L̄, K̄,Θ) is always greater than one, so equilibrium

technology will generally fail to maximize net output. A more systematic discussion of

distortions in the direction of innovation is provided in Acemoglu (2023).
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Finally, it can be verified that the equilibrium wage is now

w =
1

1− α
FL(L̄, K̄,Θ),

and thus proportional to the standard wage equation. This wage equation can be rewritten

as

w =
1

1− α
[f(k,Θ)− fk(k,Θ)k]

=
1

1− α
[h(k,Θ) + Γ(Θ)− hk(k,Θ)k] ,

where h(k,Θ) ≡ f(k,Θ)− Γ(Θ).

4 Review of Weak and Strong Bias Results

Here I review the results presented in Acemoglu (2007), which in turn draw on and signifi-

cantly generalize those in Acemoglu (1998, 2002). The focus will be on how the change in the

supply of labor changes the demand for labor and the equilibrium wage. For this purpose, I

consider a setting, as in Acemoglu (2007), where there are potentially several factors, which

would include capital, summarized by the vector Z, and additionally, labor L. I assume

for simplicity that all of these factors are inelastically supplied, with supplies denoted by(
L̄, Z̄

)
. Hence, with analogy to the previous section, equilibrium technology is now given by

the solution to

max
Θ∈O

H(L,Z,Θ).

Definition 1 An increase in technology θj for j = 1, ..., N is (absolutely) biased towards L

at supplies
(
L̄, Z̄

)
if ∂wL/∂θj ≥ 0.

This definition only considers small changes in technology at the current factor propor-

tions
(
L̄, Z̄

)
, which simplifies the results. The more general case is presented in Acemoglu

(2007). I also assume throughout that all the relevant functions are continuously differ-

entiable and the relevant first-order conditions hold (and I discuss this issue further in

footnote).
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Definition 2 Denote the equilibrium technology at factor supplies
(
L̄, Z̄

)
by Θ∗

(
L̄, Z̄

)
and

assume that ∂θ∗j/∂L exists at
(
L̄, Z̄

)
for all j = 1, ..., N .2 Then there is weak (absolute)

equilibrium bias at
(
L̄, Z̄,Θ∗

(
L̄, Z̄

))
if

N∑
j=1

∂wL
∂θj

∂θ∗j
∂L
≥ 0. (8)

This definition requires the (total) induced change in technology resulting from an in-

crease in L to raise the marginal product of labor. The summation ensures that the distinct

effects of different components of technology are taken into account on the demand for labor

and thus the bias of technology.

Proposition 3 Let the equilibrium technology at factor supplies
(
L̄, Z̄

)
be Θ∗

(
L̄, Z̄

)
and

assume that Θ∗
(
L̄, Z̄

)
is in the interior of O and that ∂θ∗j/∂Z exists at

(
L̄, Z̄

)
for all

j = 1, ..., N . Then, there is weak (absolute) equilibrium bias at all
(
L̄, Z̄

)
, meaning that

N∑
j=1

∂wL
∂θj

∂θ∗j
∂L
≥ 0 for all feasible

(
L̄, Z̄

)
, (9)

with strict inequality if ∂θ∗j/∂L 6= 0 for some j = 1, ..., N .

This proposition establishes an unambiguous and at first surprising result: without any

further assumptions on the production technology, an increase in the supply of a factor, say

labor, always induces technology to become more complementary to that factor. Intuitively,

an increase in the supply of factor raises the benefit of technologies that make better use of

that factor, and this leads to change in the bias of technology in favor of that factor.

There is a parallel between Proposition 3 and Samuelson’s LeChatelier principle, which

states that “long-run” factor demand curves are more elastic than “short-run” factor de-

mand curves that hold some factors constant. Proposition 3, on the other hand, states that

long-run changes in marginal products (and factor prices) will be less than those in the short

run because of induced technological change. However, there are also some major differences.

2The assumption that ∂θ∗j /∂L exists at
(
L̄, Z̄

)
entails two restrictions. The first is the usual non-

singularity requirement to enable an application of the Implicit Function Theorem, i.e., that the Hessian
of H with respect to Θ, is non-singular at the point Θ∗. Second, a small change may shift the technology
choice from one local optimum to another, in which case ∂θ∗j /∂L is undefined. This possibility is also ruled

out by this assumption. The assumption that ∂θj/∂L exists at
(
L̄, Z̄

)
can be replaced by an assumption on

primitives as shown in Acemoglu (2007). Here I omit the details.
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First, this proposition concerns how marginal products change as a result of technological

responses to factor supplies—rather than the elasticity of short-run and long-run demand

curves. Second, the result here applies to the equilibrium of an economy, not to the maxi-

mization problem of a single firm. This last distinction is central for the next result I present,

which shows that labor demand curves can be upward-sloping, a possibility that is ruled out

for price-taking firms.

While weak (absolute) bias is about how the technology changes, strong bias is about

how a change in supplies affects factor prices. In competitive factor markets with exogenous

technology, the increase in the supply of a factor, say labor, always reduces its price. Hence,

labor demand curves are downward-sloping. Strong bias applies when this result no longer

holds—that is, the increase in the supply of labor increases the equilibrium wage. This is

now defined more formally.

Definition 3 Denote the equilibrium technology at factor supplies
(
L̄, Z̄

)
by Θ∗

(
L̄, Z̄

)
and

suppose that ∂θ∗j/∂L exists at
(
L̄, Z̄

)
for all j = 1, ..., N . Then there is strong (absolute)

equilibrium bias at
(
L̄, Z̄

)
if

dwL
dL

=
∂wL
∂L

+
N∑
j=1

∂wL
∂θj

∂θ∗j
∂L

> 0.

In this definition, dwL/dL denotes the total derivative, while ∂wL/∂L denotes the partial

derivative holding Θ = Θ∗
(
L̄, Z̄

)
. Recall also that if H is jointly concave in (L,Θ) at(

L̄,Θ∗
(
L̄, Z̄

))
, its Hessian with respect to (L,Θ), ∇2H(L,Θ)(L,Θ), is negative semi-definite at

this point (though negative semi-definiteness is not sufficient for local joint concavity).

Proposition 4 Assume that Θ∗ is in the interior of O and that ∂θ∗j
(
L̄, Z̄

)
/∂L exists at(

L̄, Z̄
)

for all j = 1, ..., N . Then there is strong (absolute) equilibrium bias at
(
L̄, Z̄

)
if and

only if H (L,Z,Θ)’s Hessian in (L,Θ), ∇2H(L,Θ)(L,Θ), is not negative semi-definite at(
L̄, Z̄,Θ∗

(
L̄, Z̄

))
.

Three remarks are useful. First, Proposition 4 shows that with endogenous technol-

ogy, labor (more generally, factor) demand curves can be upward-sloping. With exogenous

technology and price-taking firms, downward-sloping factor demands follow from cost min-

imization when firms take factor prices as given. But the response of technology to factor

supplies implies that demand for a factor increases when its supply does (Proposition 3), and
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this induced response can be larger than the direct impact of the supply increase. Acemoglu

(1998, 2002, 2023) discuss a number of applications of this result and the empirical evidence

from healthcare, agriculture, the energy sector, robotics, and economic history, documenting

the response of technology to factor supplies and the possibility of upward-sloping factor

demand curves.

Second, the proposition provides necessary and sufficient conditions for this result that

turn on a form of “non-convexity”: factor demand curves are downward-sloping when the

production possibilities set is convex, or the maximization problem is concave, in the relevant

factor and technology (e.g., in labor and Θ); conversely, they are upward-sloping when there

is a non-convexity at
(
L̄, Z̄

)
. Third, this result also highlights the importance of technology

and factor demands being decided by different agents. If the same firms chose technology

and factor demands at the same time, then the second-order conditions of their maximization

problem would imply that all factor demands are downward-sloping. However, when labor

is chosen by final good producers, while technology is decided by different firms, as in the

setting here, then this type of non-convexity is not ruled out. Specifically, each agent may

still have a well-defined concave objective function, while their joint problem features a non-

convexity (see Acemoglu, 2007, for further discussion). This is essential for upward-sloping

factor demand curves, and we will see that it is also important for the relationship between

capital and wages.

5 Capital and Wages with Endogenous Technology

In this section, I specialize the economy with endogenous technology to one with a single

dimension of technology, so that Θ = θ, and assume that the equilibrium technology θ∗ is

interior. I normalize labor supply to L̄ = 1. I also set Γ ≡ 0, so that there are no external

costs of choosing different values of θ. This implies that there is no difference between F

and H in this section, and the first-order condition for technology choice is

Fθ(L̄, K̄, θ) = Hθ(L̄, K̄, θ) = 0. (10)

Acemoglu (2007) provides sufficient conditions for this to be the case and for the second-order

conditions to hold with strict inequality (i.e., hθθ(k, θ) < 0). I omit these details here.

We can write the total impact of a greater capital stock on equilibrium wages as

dw

dK
=
∂w

∂K
+
∂w

∂θ

dθ∗

dK
, (11)

11



where ∂w/∂K is the partial derivative, holding technology constant at θ = θ∗, and thus is

identical to the expression derived above:

∂w

∂K
= − 1

1− α
fkk (k, θ∗) k > 0.

Following the same steps as in Acemoglu (2007), we have:

∂w

∂θ
=

1

1− α
[fθ(k, θ

∗)− fθk(k, θ∗)k]

= − 1

1− α
fθk(k, θ

∗)k,

since in the technology equilibrium, fθ(k, θ
∗) = 0.

Now, dθ∗/dK can be obtained from the Implicit Function Theorem from the first-order

condition (10):
dθ∗

dK
= −fθk(k, θ

∗)

fθθ(k, θ∗)
.

Substituting this into (11), we obtain

dw

dK
=

1

1− α

[
−fkk(k, θ∗)k + fθk (k, θ∗)

fkθ(k, θ
∗)k

fθθ(k, θ∗)

]
= − k

(1− α)fθθ(k, θ∗)

[
fkk(k, θ

∗)fθθ(k, θ
∗)− (fθk (k, θ∗))2] .

Since fθθ(k, θ
∗) < 0, dw

dK
> 0 if and only if the square bracketed term is positive. This is

of course nothing but the condition for the joint concavity of the function f in (k, θ). If

technology were chosen by the same agent as labor demand, this would have to be satisfied

by the second-order conditions. But since technology chosen by a monopolist, while labor

demand is decided by final good producers, there is no guarantee that it is satisfied, as

explained in the context of strong bias result above. This discussion establishes:

Proposition 5 With endogenous technology (θ responding to capital), a greater capital

stock can reduce equilibrium wages. That is, dw
dK

< 0 is possible.

In particular, we have dw
dK
≥ 0 whenever the per capita production function f is jointly

concave in (k, θ), and dw
dK

< 0 whenever f is not locally jointly concave (its Hessian is not

negative semi-definite) in (k, θ).

The parallel between Propositions 4 and 5 is clear. They both require a local failure of

convexity (or the relevant maximization problem not to be locally concave). This reflects the
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fact that in both cases the desired result obtains when the indirect effects working through

the response of technology are more powerful than the direct impact.

It is also interesting to consider the conditions under which this type of indirect technology

effect can be sufficiently powerful. Clearly, when fθk (k, θ∗) is small, the indirect effect will

be weak and the result will be similar to the exogenous technology case. Hence, we need

a strong “complementarity” between technology and capital, which is closely linked to the

presence of “automation-type” technologies. As emphasized in Acemoglu and Autor (2011)

and Acemoglu and Restrepo (2018, 2019), automation corresponds to technologies enabling

capital to take over tasks previously performed by labor. This increases the importance of

capital, raising its marginal product all else equal, and tends to have a negative impact on

the marginal product of labor.

In this context, one might conjecture that the direction of change of θ is important. This

is not necessarily the case, however: the case in which θ corresponds to automation that

complements capital and substitutes for labor, and the one in which it complements labor

and substitutes for capital will have similar properties. This is because in one case a higher

capital stock will increase θ, while in the other it will decrease it.3 Hence, what matters is

that the available technologies feature strong complementarities to either capital or labor,

which will be the case when |fθk (k, θ∗)| is high. In the examples discussed in the next

section, I will always include automation-type technologies and for specificity, will adopt the

convention that higher θ corresponds to more automation (though this is not important as

explained in this paragraph).

6 When Capital Reduces Wages

In this section, I provide several example economies in which a higher capital stock reduces

equilibrium wages.

6.1 An Example with Linear Technology

The simplest economy is one in which the marginal product of labor is independent of capital

and there is an automation-type technology, θ, that affects the importance of capital and

3This is in fact related to the reason why the weak bias result of Acemoglu (2002, 2007) holds regardless of
the elasticity of substitution and the exact details of technology—the direction of change is always dictated
by the (relative) abundance of factors.
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labor. Consider the production function

F (L,K, θ) = (1− θ)L+ θK,

and assume that K > L.

Suppose that the cost of producing this technology is given by Γ(θ), which is assumed to

be nondecreasing and convex. The technology equilibrium will then maximize

H(L,K, θ) = (1− θ)L+ θK − Γ(θ).

Suppose we have an interior solution (which can be guaranteed if we assume that the

derivative of Γ(θ) satisfies Inada-type boundary conditions; in particular, Γ′(0) = 0 and

limθ→1 Γ′(θ) =∞). Then we have

Hθ(L,K, θ) = 0⇐⇒ K − L = Γ′(θ),

with the second-order condition

Hθθ < 0⇐⇒ Γ′′(θ) > 0

always satisfied by assumption.

We also have
dθ

dK
=

1

Γ′′(θ)
> 0,

meaning that a greater stock of capital induces more automation. The equilibrium wage rate

is simply w = 1− θ, because, with the linear production technology, factor supplies do not

affect the marginal product of labor. The impact of θ on the wage can then be computed as

∂w
∂θ

= −1, meaning that more automation always reduces the equilibrium wage.

Moreover, we have ∂w
∂K

= 0, given the linear technology, and thus

dw

dK
=

∂w

∂θ

dθ

dK

= − 1

Γ′′(θ)
< 0.

This establishes:

Proposition 6 With a linear aggregate production function and endogenous technology, a

higher capital stock always (strictly) reduces the equilibrium wage.

Intuitively,with a linear production function, the positive effect of the capital stock on

the wage is removed, and, given the response of automation to capital, a higher capital stock

always reduces the equilibrium wage, establishing Proposition 6.
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6.2 Constant Elasticity of Substitution

This example generalizes the previous one to a constant elasticity setting:4

F (L,K, θ) =
[
(1− θ)L

σ−1
σ + θK

σ−1
σ

] σ
σ−1

.

The cost of choosing the technologies again Γ(θ) > 0, where Γ is increasing, differentiable

and strictly convex, and its derivative Γ′(θ) satisfies the same boundary conditions as in the

previous subsection: Γ′(0) = 0 and limθ→1 Γ′(θ) = ∞. I also assume that K > L. The

maximization problem of the technology monopolist is

max
θ∈[0,1]

H(L,K, θ) =
[
(1− θ)L

σ−1
σ + θK

σ−1
σ

] σ
σ−1 − Γ(θ).

Technology optimality condition is now:

Hθ = 0⇐⇒
σ

σ − 1

(
K

σ−1
σ − L

σ−1
σ

)
F (L,K, θ)

1
σ = Γ′(θ)

(which is always satisfied as equality given K > L and the Inada-type conditions on Γ′(θ)

imposed above).

The second-order condition is Hθθ < 0, and can be written as

σ

(σ − 1)2

(
K

σ−1
σ − L

σ−1
σ

)2

F (L,K, θ)
2−σ
σ − Γ′′(θ) < 0.

In what follows, I assume that this condition is satisfied, and note that for large values of

σ (on which I will focus below), the first term disappears and this second-order condition is

equivalent to −Γ′′(θ) < 0, which is satisfied by assumption.

The response of technology to capital is given by

dθ

dK
=
K−1/σF (L,K, θ)

1
σ + θ

σ−1
K−1/σ

(
K

σ−1
σ − Lσ−1

σ

)
F (L,K, θ)

2−σ
σ

Γ′′(θ)− σ
(σ−1)2

(
K

σ−1
σ − Lσ−1

σ

)2

F (L,K, θ)
2−σ
σ

.

Although the sign of this expression is in general ambiguous, when σ is large, the second term

in the numerator and the second term in the denominator become small, and consequently,

4This is related to, but simplified from, the constant elasticity of substitution representation that Ace-
moglu and Restrepo (2019) derived from a task-based model. The simplification is adopted for expositional
clarity and does not have any substantive implications.
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we have dθ
dK

> 0. In other words, for a sufficiently high elasticity of substitution between

capital and labor, a greater capital stock always induces more automation.

The equilibrium wage rate is

w = (1− θ)L−
1
σF (L,K, θ)

1
σ ,

and the impact of θ on the wage can be written as

∂w

∂θ
= −L−

1
σF (L,K, θ)

1
σ +

1− θ
σ − 1

L−
1
σ

(
K

σ−1
σ − L

σ−1
σ

)
F (L,K, θ)

2−σ
σ .

Moreover, we have
∂w

∂K
=

(1− θ)θ
σ

L−
1
σK−

1
σF (L,K, θ)

2−σ
σ .

Then
dw

dK
=
∂w

∂K
+
∂w

∂θ

dθ

dK
.

The sign of this expression is in general ambiguous. But notice that as σ gets large, ∂w
∂K
→ 0,

and ∂w
∂θ
→ −1 (as in the previous example). Moreover, in this case we also have dθ

dK
> 0,

as noted above. Therefore, there exists σ∗ such that for all σ > σ∗, a greater capital stock

reduces wages. This discussion establishes:

Proposition 7 With a constant elasticity of substitution aggregate production function,

there exists σ∗ < ∞, such that whenever the elasticity of substitution between capital and

labor σ is greater than σ∗, a higher capital stock reduces the equilibrium wage.

6.3 A Cobb-Douglas Economy

I now discuss a simple Cobb-Douglas production function, which will be a key ingredient of

the full growth model in the next section. Suppose now that

F (L,K, θ) = (1− θ)L1−θKθ, (12)

and also set Γ = 0 and assume that K >> L, so that ln k > 1. This functional form is

also related to automation. Acemoglu and Restrepo (2018, 2019) show that when there is

automation and tasks are combined with the unit elasticity of substitution, the equilibrium

representation of aggregate output takes a Cobb-Douglas form, with exponents corresponding

to the extent of automation, as in (12).
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The equilibrium wage in this case is

w = (1− θ)2kθ.

Moreover, the first-order condition for technology choice is

−kθ + (1− θ)kθ ln k = 0,

which is always satisfied at an interior solution provided that ln k > 1. The second-order

condition is

− ln k < 0,

which is also satisfied since we have already imposed that ln k > 0. Hence, we have that

equilibrium technology satisfies

1− θ∗ =
1

ln k
.

Next, observe that
∂w

∂k
= θ(1− θ)2kθ−1 > 0,

while
∂w

∂θ
= −2(1− θ)kθ + (1− θ)2kθ ln k,

which can be negative or positive. Nevertheless, using the optimal technology relationship

to substitute out ln k, we obtain

∂w

∂θ
∝ −2(1− θ∗) + (1− θ∗) = −(1− θ∗),

and thus higher θ always reduces wages.

Finally, we have
dθ∗

dK
=

1

k(ln k)2
> 0.

Therefore, a higher capital stock always induces greater automation, increasing θ. Moreover,

this indirect effect of capital on wages becomes negative and dominates the direct effect

provided that the capital-labor ratio is not too high. Specifically,

dw

dK
=

∂w

∂k
+
∂w

∂θ∗
dθ∗

dK

= kθ
∗−1

[
θ∗(1− θ∗)2 − 2(1− θ∗) 1

(ln k)2
+ (1− θ∗)2 1

ln k

]
= kθ

∗−1(1− θ∗)2 [θ∗ − (1− θ∗)]

= −kθ∗−1(1− θ∗)2(1− 2θ∗).
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This expression is negative if and only if

θ∗ <
1

2
⇐⇒ ln k < 2.

Hence we have:

Proposition 8 With the Cobb-Douglas production function given in (12), a higher capital

stock reduces the equilibrium wage provided that ln k < 2.

Intuitively, when there is more capital, technology adjusts (the direction of greater au-

tomation), and this can create a negative indirect effect on the equilibrium wage. As em-

phasized in Acemoglu and Restrepo (2018, 2019), in general the impact of automation on

the equilibrium wage can be negative or positive. When the negative displacement effect

is stronger than the positive productivity effect (due to the fact that automation increases

productivity by substituting cheaper capital for labor), the overall impact is negative. When

the displacement effect is weaker than the productivity effect, the overall impact is positive.

So we obtain a negative relationship between capital and wages, when the direct positive

effect of the capital stock on the wage is not too large, the automation response is strong,

and the productivity effect from automation is not too large. This intuition also sheds light

on why there is no negative relationship between capital and wages when ln k is greater than

2. In this case, θ is already high, so a further increase does not create much displacement

but raises productivity, and via this channel, it tends to boost the equilibrium wage.

7 Endogenous Growth with a Menu of Technologies

For much of the 20th century, capital accumulation in the industrialized world went hand-

in-hand with rising wages (e.g., Barro and Sala-i- Martin, 2008; Acemoglu, 2009; Gordon,

2016). Hence, the simple negative relationship highlighted in the previous two sections

cannot account for the long-run relationship between capital and wages. In this section, I

develop an endogenous growth model with a menu of technologies—automation and labor-

augmenting technological change—and show that secular increases in the equilibrium wage

can coexist together with a negative relationship between capital intensity and labor demand.

Specifically, I consider a dynamic economy in discrete time with two technologies, Θt =

(θt, At) and assume that the aggregate production function is

Yt = (1− θt)Kθt
t (AtL)1−θt . (13)
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I assume, to simplify the analysis of dynamics, that the economy is inhabited by a

representative household with a constant saving rate s ∈ (0, 1) and normalize labor supply

to L = 1. Hence aggregate and per capita consumption is

Ct = (1− s) (1− θt)Kθt
t At

1−θt .

I continue to assume that labor is inelastically supplied and normalize it to L = 1. I also

simplify the notation by assuming that capital does not depreciate. The evolution of the

capital stock is then given by

Kt+1 = Kt + s (1− θt)Kθt
t At

1−θt . (14)

The cost of choosing technology combination (θt, At) at time t is assumed to be

γ

(
At
At−1

)
Yt,

where γ is differentiable, increasing and strictly convex, with derivative denoted by γ′. I also

impose the following Inada-type condition: γ′(1) = 0. This specification implies that current

increases in the labor-augmenting technology At build on past advances. Additionally, Yt is

included in the cost so that the cost of increasing At over time is proportional to current

output.

Note finally that varying θt has no external technology costs beyond its impact via (13),

as in the Cobb-Douglas example in the previous section.

Let us define

kt ≡
Kt

At
.

I take the initial endowment of capital K0 and the initial labor-augmenting technology A0

to be such that ln k0 > 1, as imposed in the previous section in the context of the analysis

of the Cobb-Douglas economy.

With this notation, the equilibrium wage is

wt = (1− θt)2Atk
θt
t . (15)

Moreover, the first-order conditions for the two components of technology are given as

−kθtt + (1− θt)kθtt ln kt = 0,
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and
(1− θt)Yt

At
=

1

At−1

γ′
(

At
At−1

)
Yt.

Rearranging these equations, we obtain

1− θt =
1

ln kt
, (16)

as in the previous section, and also

1− θt =
At
At−1

γ′
(

At
At−1

)
.

Therefore, 1 − θt = (1 + gt)γ
′ (1 + gt), where 1 + gt = At

At−1
. This equation always holds in

equilibrium given the assumption that γ′(1) = 0. For notational convenience I define:

1− θ = Z(1 + g) ≡ (1 + g)γ′(1 + g), and

1 + g = G(1− θ) ≡ Z−1(1− θ).

Notice that because Z is increasing, so is G. Moreover, in what follows, I assume that G is

strictly concave.5 With this notation, we can write

1 + gt = G(1− θt). (17)

Finally, rewriting (14) in terms of the effective capital-labor ratio kt, equilibrium dynamics

satisfy

kt+1 =
1

1 + gt+1

[
kt + s(1− θt)kθtt

]
, (18)

where I used the fact that At+1/At = 1 + gt+1. Given the initial conditions k0 and A0, a

dynamic equilibrium path {kt, At, θt}∞t=0 is characterized by equations (16), (17) and (18).6

Equilibrium aggregate output and consumption can be obtained from these variables. Fi-

nally, the equilibrium wage rate is given by (15).

Let us define a balanced growth path (BGP) as an equilibrium in which θ∗t and kt are

constant, and A∗t grows at a constant rate gt = g∗. Then a BGP, represented by (k∗, θ∗, g∗),

satisfies:7

5The elasticity of the γ′′ function being less than 2, i.e.,−(1 + g)γ′′′(1 + g)/γ′′(1 + g) < 2 for all g > 0, is
sufficient for the concavity of G.

6There is no initial condition for θ, which is not a state variable and adjusts immediately. Hence, θ0 is
an equilibrium object.

7To obtain this, substitute from (16) and (17) into (18), use the fact that, for any x > 0, x−
1

ln x = e−1,
and then impose kt = kt+1 = k∗.
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G

(
1

ln k∗

)
− 1 = +

s

e

1

ln k∗
, (19)

with

1− θ∗ =
1

ln k∗
, and (20)

g∗ = G

(
1

ln k∗

)
− 1, (21)

Notice also that the BGP growth rate of wages is given by g∗ in view of (15) and the fact

that kt and θt are constant.

I will also assume that

G(1) < 1 +
s

e
, and (22)

G

(
1

2

)
> 1 +

1

2

s

e
.

The conditions in (22) ensure that the (unique) solution to (19) satisfies ln k∗ ∈ (1, 2), as I

explain below.8

Proposition 9 Suppose G is strictly concave and satisfies (22). Then there exists a unique

BGP where labor-augmenting technology At, the capital stock Kt, GDP Yt, and aggregate

consumption Ct all grow at the rate g∗ and the effective capital-labor ratio k∗ is constant and

satisfies (19) with ln k∗ ∈ (1, 2). Given k∗, θ∗ is constant and satisfies (20), with θ∗ < 1/2,

while g∗ is given by (21).

This unique BGP is globally stable, meaning that starting with any initial conditions k0

and A0, the dynamic equilibrium converges to the unique BGP (k∗, θ∗, g∗). Moreover, this

convergence is monotone.

Proof. First I prove that a BGP (k∗, θ∗, g∗) satisfies (19), (20) and (21) and exists.

A preliminary step is to establish that (16), (17) and (18) define a well-defined dynamical

8In terms of γ, (22), can be written as

1 <

(
1 +

sB

e

)
γ′
(

1 +
sB

e

)
and

1

2
>

(
1 +

1

2

sB

e

)
γ′
(

1 +
1

2

sB

e

)
.
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Figure 1: Existence and uniqueness of the BGP. G
(

1
ln k

)
− 1 is the left-hand side of (19),

while s
e

1
ln k

is the right-hand side. The two curves both start at 0, and given the concavity of
G, there can be at most one intersection where the left-hand side intersects the right-hand
side from above. The first condition in (22) ensures that there is always such an intersection
and hence a unique BGP.

system. With the same steps as outlined before the proposition, equation (18), combined

with (16), can be written as

G

(
1

ln kt+1

)
kt+1 =

(
1 +

s

e

1

ln kt

)
kt for all kt > 0. (23)

The left-hand side of (23) satisfies G(1)e < e + sB by (22), and limk→∞G(1/ ln k)k = ∞,

and thus for any kt, there exists a solution kt+1 ∈ (e,∞) to this equation by the Intermediate

Value Theorem. Moreover, because G(1/ ln k)k is strictly increasing, this solution is unique,

establishing that this relationship defines a first-order difference equation. The effective

capital-labor ratio k must be constant in BGP, and hence, its BGP value k∗ can be written

as a fixed point of this difference equation, which gives (19).

Given (22), the Intermediate Value Theorem ensures the existence of a solution ln k∗ ∈
(1, 2). Since G is concave and given (22), (19) can have at most one solution on k ∈ (0,∞),

as illustrated in Figure 1, and (22) guarantees that this solution is between ln k = 1 and

ln k = 2.

Next, I verify that this BGP is globally stable under (22). The preceding argument
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establishes that (23) is a well-defined difference equation and has a single fixed point, and

moreover, as implied by Figure 1, the left-hand side of (23) intersects the right-hand side

from above. More formally, first observe that the left-hand side of (23), G (1/ ln k) k, is

strictly increasing in k whenever γ is convex, as assumed. This follows since:

d ln
(
G
(

1
ln k

)
k
)

d ln k
= 1−

G′
(

1
ln k

)
G
(

1
ln k

) ( 1

ln k

)2

= 1− 1

ln k

1

G
(

1
ln k

) γ′′(G( 1
ln k))

γ′(G( 1
ln k))

+ 1
> 0.

Moreover, the right-hand side of (23),
(
1 + s

e
1

ln k

)
k, is also increasing in k, which follows by

direct differentiation as well.

Now consider any kt ∈ (e, k∗). Then (23) implies that kt+1 < k∗. To see this, observe

that:

G

(
1

ln kt+1

)
kt+1 =

(
1 +

s

e

1

ln kt

)
kt

<

(
1 +

s

e

1

ln k∗

)
k∗

= G

(
1

ln k∗

)
k∗,

where the first line repeats (23), while the second line uses the fact that the right-hand side

of (23) is strictly increasing, as stated above, and kt < k∗.

Next, also observe that kt+1 > kt. This follows because

G

(
1

ln kt+1

)
kt+1 =

(
1 +

s

e

1

ln kt

)
kt > G

(
1

ln kt

)
kt,

in view of the fact that kt < k∗. Since the left-hand side of (23) is strictly increasing, as

established above, the outer inequality implies that kt+1 > kt.

These two steps together imply kt+1 ∈ (kt, k
∗), and thus the effective capital-labor ratio

monotonically converges to the BGP k∗ from below. With the same argument, starting with

any kt > k∗, we have kt+1 ∈ (k∗, kt), guaranteeing that this time there will be monotonic

convergence from above to the unique BGP k∗. Given this, θt and gt also monotonically

converge to their unique BGP values (θ∗, g∗), and this completes the proof.

Proposition 9 establishes the existence of a unique and globally stable BGP, in which

there is constant labor-augmenting technological change, but in addition, the extent to
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Figure 2: Wage dynamics after a permanent increase in the saving rate s at time T . This
reduces the capital stock at T +1, and reduces the new equilibrium wage w̃T+1 below what it
would have been without the change in saving rate. The growth rate of the new equilibrium
wage converges to a lower value than its growth rate g̃∗ than the growth rate before the
change in the saving rate g∗.

which tasks are automated is also endogenously determined. In addition, the assumption

that G
(

1
2

)
> 1 + 1

2
s
e

(imposed in (22)) ensures that this unique BGP involves ln k∗ < 2,

placing us in the range where a greater capital stock reduces the equilibrium wage.

Let us next consider the comparative dynamics of this BGP in response to an increase

in the saving rate s. It is straightforward to verify that this raises the BGP effective capital-

labor ratio k∗ given by (19). Consequently, the BGP value of θ∗ also increases from (20),

but the growth rate of labor-augmenting technology At decreases from (21). Hence, even

though wages continue to grow in the BGP, their growth rate is reduced. In addition, we

can trace the full equilibrium response of wages to this increase in the saving rate of the

economy. As soon as the saving rate increases, θt also increases with kt as dictated by (16).

What about At? From (17), greater θt leads to a lower rate of increase of At. Hence, the

immediate impact of the higher saving rate is to reduce the equilibrium wage relative to the

counterfactual of a constant saving rate.9

9Whether the equilibrium wage actually declines depends on how strong the response of At is. Holding
At constant, the increase in θ between T and T + 1 would lead to a lower equilibrium wage, since we are
in the range where ln k∗ ∈ (1, 2). However, between these two dates, At increases as well. If γ′ is high
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We summarize this discussion in the next proposition and Figure 2 (proof in the text).

Proposition 10 Consider a permanent increase in the saving rate s. This immediately

reduces the equilibrium wage relative to the baseline of constant saving rate and also depresses

the rate of labor-augmenting productivity growth. In the long run, the economy converges to

a new BGP in which technology involves greater automation and the growth rate of the

equilibrium wage is lower.

The consequences of Proposition 10 are illustrated in Figure 2. Until time T , the saving

rate is constant at s and the economy is assumed to be in BGP, so the equilibrium wage

grows at the rate g∗. At T , the saving rate increases to s′ > s. This leads to a larger increase

in the capital stock at time T + 1, KT+1, and the new equilibrium wage w̃T+1 drops below

wT+1. Thereafter, the rate of labor-augmenting technological change slows down, so the

growth rate of the equilibrium wage w̃t converges to g̃∗ < g∗. Hence, this proposition shows

that the economic forces highlighted in our static model are present in this dynamic setup.

In particular, greater capital abundance induces further automation, potentially harming

workers. This possibility does not contradict the growth of equilibrium wages together with

technological change and capital accumulation along the BGP.

8 Conclusion

A celebrated result in neoclassical growth theory maintains that a greater capital stock—

and hence capital accumulation—raises labor demand and equilibrium wages. This is a

critical channel for “shared prosperity”: any process of capital accumulation, e.g., because

investment has become more profitable, firms have greater retained earnings, or capitalists

have greater wealth, will create a powerful force towards some of these gains being shared

with workers, whose incomes depend on the labor market wage.

The last several decades during which wages have stagnated in the United States and

have increased only slowly in many other industrialized nations create a challenge for this

perspective, however.

In this paper, I argued that the impact of a greater stock of capital on wages is more

complex, because technology responds to the availability of more abundant capital. Under

and the equilibrium gT is low, the effect through θ can dominate and we may first get a decline in the
equilibrium wage. But in any case, the equilibrium wage always falls below its counterfactual trajectory
under the constant saving rate.
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reasonable conditions, a greater capital stock induces further automation, and automation

could reduce (real) wages.

I showed that the conditions under which more capital reduces equilibrium wages are

strongly tied to the conditions under which the demand for labor (or other factors) are

upward-sloping, because of technology responses (e.g., Acemoglu, 2002, 2007). I then illus-

trated how simple economies with broadly neoclassical features can reverse this result as

soon as the direction of technology is endogenize.

The last part of the paper shows that the economic forces I have emphasized do not imply

that wages should fall steadily along the process of economic growth with capital accumu-

lation. I constructed a model of endogenous growth with a menu of technologies, whereby

firms decide both the extent of automation and the pace of labor-augmenting technological

change. The long-run equilibrium of the economy involves constant wage growth. Never-

theless, an increase in the saving rate has both a negative impact effect and leads to lower

long-run growth rate of wages, because it induces greater automation.

Future interesting directions of research include more detailed analysis of the interplay

between capital accumulation, technology choices and wages in models in which there are

non-competitive elements in product or labor markets, as well as even richer menus of tech-

nologies available to firms. An even more important area for future research is the empirical

exploration of the channels highlighted here. These include both careful estimation of the

impact of greater capital stock on labor demand, and the modeling and estimation of the

joint dynamics of capital, technology (automation) and equilibrium wages.
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