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1 Introduction

It has long been recognized by the literature (e.g., Broecker, 1990; Riordan, 1993; Hauswald and
Marquez, 2003) that competition among informed financial intermediaries in the credit market is
central to the efficiency of financial systems. Of significant importance, banks hold a diverse array
of lending-related information, including financial data on customers, collateral evaluations, and
market and economic trends, not to mention state-of-the-art data analytics. Moreover, as shown in
Blickle, Parlatore, and Saunders (2023), certain banks may accumulate specialized knowledge by
concentrating on lending to particular industries, through the acquisition and analysis of diverse
information on the business practices of individual firms and industries.

Despite the remarkable technological advancement that could significantly impact the industrial
landscape of the banking sector, the prevailing literature (Marquez, 2002; Hauswald and Marquez,
2003; He, Huang, and Zhou, 2023) on information-based credit market competition predominantly
focuses on binary signal realizations, neglecting the complexities of the advanced practices men-
tioned above. To this goal, we study credit market competition with specialized lending, where one
(specialized) lender with general and specialized signals competes against another (non-specialized)
lender with a general signal only. Importantly, the specialized lender’s extra continuous signal is
crucial in setting its equilibrium fine-tuned loan pricing. This novel multi-dimensional information
setting, incorporated into an otherwise classic credit market competition model (a la Broecker,
1990), allows us to study private-information-based pricing in specialized lending.

Taking as a starting point the finding in (Blickle, Parlatore, and Saunders, 2023) that banks
specialize their lending to certain industries, we motivate our model with a simple empirical exercise.
Using regulatory loan-level data from the Y14-Q Schedule H database maintained by the Fed, for
each year in our sample, we compute the difference between the average interest rate of loans granted
by specialized banks in their industry of specialization and those of their loans in other industries.
Figure 1 shows these measures since 2012. There, we see specialized lenders consistently charge
around 40 basis points less for loans in their specialized industry. This difference is on “winning
bids” rather than “bids”—as our loan-level data is based on granted loans, not loan offers—which
is an important distinction through the lens of our credit market equilibrium model. Equally
important, Figure 1 shows that specialized lenders are less likely to encounter non-performing
loans in their industry of specialization. The empirical regularity documented in Figure 1, which
is robust to more stringent econometric specifications and potential competition among specialized
banks (as shown in Section 4.2), suggests that specialized lenders can identify better borrowers and
“undercut” the non-specialized opponent lenders in their specialized industries.

The existing information-based models, e.g., Broecker (1990) and Marquez (2002), fail to deliver
the above empirical regularity. There, each lender has a binary signal and actively competes
only upon receiving a positive signal realization, offering interest rates drawn from a completely
randomized mixed strategy. Hence, in these canonical models, the interest rate per se carries no
information. As Section 4.1 shows, a stark information rent effect dominates in that canonical
setting, under which the loans on the book of a stronger lender (with a more precise signal) tend
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Figure 1: Differences in interest rates and loan performance between specialized and non-
specialized lenders. We define specialized lenders as those with more than 4% over-investment in an
industry, where over-investment is measured as deviations from a diversified portfolio LoanAmountb,i,t∑

s
LoanAmountb,i,t

−
LoanAmounti,t∑

i
LoanAmounti,t

for bank b in industry i at time t. The red solid line (left-hand side scale) plots the average
difference between loan annual interest rates in the bank’s specialized industry and those outside of its
specialized industry. The dashed black line (right-hand side scale) plots the average annual differences in
the fraction of non-performing loans when comparing loans in a bank’s specialized industry against its other
loans. The patterns are robust to various specifications of specialized lenders and volume-based weights;
for details, see Appendix B. For a more in-depth discussion of measures of bank specialization, see Blickle,
Parlatore, and Saunders (2023).

to have higher interest rates. This prediction is counterfactual in light of Figure 1.
In our model, a specialized bank competes with a non-specialized bank. Each lender has a

“general” information signal on the loan quality from data processing. Moreover, the specialized
lender has access to an additional signal from “specialized” information about the borrower, based
on which the lender decides an interest rate to offer. We further assume that, while the general
signal is binary and decisive in that each lender makes an offer only upon receiving a positive general
signal, the specialized signal—which differentiates our paper from existing models—is continuous
and guides the fine-tuned interest rate offering of the specialized bank.1

As highlighted in Section 2.2, our main analysis focuses on a multiplicative structure (similar
to the O-ring theory) so that project success requires two distinct fundamental states “general”
and “specialized” to be favorable;2 and the aforementioned two types of signals—general and

1Besides providing analytical convenience, this loan-making rule matches the lending practices observed in prac-
tice. Essentially, in our model, the specialized bank acquires two signals, one being “principal” while the other being
“supplementary;” the former determines whether to lend while the latter affects the detailed pricing terms. The
principal signal can also represent the result of a credit screening test, while the supplementary signal serves the role
of internal ratings (of borrowers who are qualified for credit).

2This setting is quite general, as the general and specialized fundamental states can potentially overlap. To the
extreme, these two fundamental states coincide entirely, and our model becomes the standard setting where one single
fundamental state dictates the overall quality of the project.
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specialized—inform the lenders regarding these two states, respectively. In Section 3, we fully
characterize the competitive credit market equilibrium with specialized lending in closed form. In
equilibrium, the specialized bank’s interest rate schedule is decreasing in its specialized signal. Since
the successful project’s payoff is capped, our specialized bank—even conditional on a positive gen-
eral signal—withdraws from the competition after receiving a sufficiently unfavorable specialized
signal. In contrast, the non-specialized bank behaves just like in Broecker (1990) fully randomizing
its interest rate offers. Therefore by incorporating both general and specialized signals, our model
delivers the key result of private-information-based pricing.3

We derive a unique credit market equilibrium, which can fall into two distinct categories de-
pending on the competitiveness of the banking industry. In the first category of equilibria, the
winner’s curse dominates, pushing the non-specialized “weak” bank to earn zero profits; we call it a
zero-weak equilibrium. In this case, the non-specialized bank randomly withdraws when receiving
a positive general signal, consequently yielding more monopoly power to its specialized opponent.
In the second category of equilibria, the winner’s curse is less severe and the non-specialized bank
makes a positive profit in equilibrium (therefore always participates upon a positive general signal);
we call it a positive-weak equilibrium.

We discuss the model’s implications in Section 4. We focus on the empirical regularity that
loans of specialized lenders have lower rates, which we call the “negative interest rate wedge.”
First, we highlight the difference between bids (i.e., offered interest rates) and winning bids (offered
rates accepted by the borrower). This distinction is crucial when loan rejections are an important
part of equilibrium strategies, as is typical in credit competition models. Although the standard
winner’s curse effect pushes the weaker lender to quote higher interest rates, in credit market
competition models like He, Huang, and Zhou (2023) the weak lender also responds by rejecting
loan applications. In equilibrium the strong lender exerts its monopolistic power by quoting the
maximum interest rate randomly (which might be accepted in equilibrium), resulting in a higher
expected rate for granted loans by specialized lenders. We call this the information rent effect.

In contrast, by modeling specialized signals, we explicitly incorporate the specialized lender’s
“undercutting” to win creditworthy borrowers, favoring a lower expected rate for granted loans
by specialized lenders. We call this the “private-information-based pricing” effect. We highlight
that this effect prevails especially in the positive-weak regime: there the specialized bank has less
monopoly power and hence makes more aggressive offers to get good borrowers, as explained above.4

3Conceptually, this is similar to the common value auction setting in Milgrom and Weber (1982), where the
informed buyer who privately observes a continuum of signal realizations bids monotonically based on its private
information (see literature review for more details). In addition, one could extend the range of quoted interest rates
by borrowers to include infinity and interpret r = ∞ as “rejection;” this way the lenders in the classic credit market
competition model in Broecker (1990) also have private-information-based pricing. However, Figure 1 is constructed
based on interest rates of granted loans, which excludes r = ∞; we stress this point in Section 4.1 where we discuss
the distinction between “bids” and “winning bids.”

4Consistent with information-based pricing, Butler (2008) finds local investment banks charge lower fees and issue
municipal bonds at lower yields than non-local underwriters. On the other hand, Degryse and Ongena (2005) finds
that local banks charge higher interest rates to small firms, consistent with local banks’ strong monopolistic power
over hard-to-evaluate captive borrowers.
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As one of the main results of our paper, Section 4.1 shows that canonical credit competition
models cannot generate the empirical regularity of a “negative interest rate wedge.” We show that
under empirically relevant parameters, the information rent effect dominates in canonical credit
competition models a la Broecker (1990), yielding the counterfactual implications that loans by
specialized lenders have higher rates. In contrast, our private-information-based pricing effect helps
deliver a “negative interest rate wedge.” Our mechanism differs from those of Mahoney and Weyl
(2017) and Crawford, Pavanini, and Schivardi (2018). As we explain toward the end of Section
4.1, in that literature market power (of lenders) and adverse selection (of borrowers) are treated as
two distinct market frictions, whereas our model features the winner’s curse as the only underlying
force for both market power and adverse selection.

We explore several extensions. First, we show our equilibrium characterization is robust to a
generalized information structure that allows for correlated general and specialized signals. The key
to our analytical tractability is the multiplicative structure and its resulting “independence condi-
tional on success,” i.e., all signals, the two general ones and the specialized one, are independent
conditional on project success. Second, we endogenize the information structure by considering two
ex-ante symmetric banks competing in two industries. Lenders can invest in a general information
technology (fixed cost, binary signal of borrower quality) and also acquire costly, firm-specific spe-
cialized information (continuous signal) to become specialized; each lender only needs to invest once
in the general information technology for the two industries but has to acquire the specialized signal
separately for each industry. We provide conditions for a “symmetric” specialization equilibrium,
where each industry has one specialized and one non-specialized lender, as in our baseline model.

The remainder of the paper is organized as follows. After a brief literature review, Section 2
presents the baseline model. Section 3 characterizes the credit market equilibrium and Section 4
explores the economic implications of our model, with several extensions. Section 5 concludes.

Literature Review

Lending market competition and common-value auctions. Our paper builds on Broecker (1990),
which studies lending market competition with screening tests and symmetric lenders (i.e., with
the same screening abilities). Relatedly, Hauswald and Marquez (2003) explores the competition
between an inside bank that can conduct credit screenings and an outside bank without such access,
and He, Huang, and Zhou (2023) consider competition between asymmetric lenders with different
screening abilities under open banking when borrowers control access to data.5 In these models, for
analytical tractability, it is often assumed that private screening yields a binary signal and lenders
participate only when receiving the positive signal realization. In contrast to these papers, we
consider competition between asymmetrically informed lenders with multiple information sources.

Theoretically, credit market competition models are an application of common-value auctions.
5Asymmetric credit market competition can also naturally arise from the bank-customer relationship, as a bank

knows its existing customers better than a new competitor. This idea was explored by a two-period model in Sharpe
(1990) where asymmetric competition arises in the second period (with the corrected analysis of a mixed-strategy
equilibrium offered by Von Thadden (2004)). A similar analysis is present in Rajan (1992).
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Notably, the auction literature typically allows for general signal distributions (other than the bi-
nary signal in the aforementioned papers).6 For instance, Riordan (1993) extends the N -symmetric-
lender model in Broecker (1990) to a setting with continuous private signals. In terms of modeling,
our framework can be viewed as a combination of Broecker (1990) (symmetric bidders with general
signals) and Milgrom and Weber (1982) (asymmetric bidders, one with a specialized signal). Our
model analyzes credit market competition with specialized lenders, an application where asymmet-
ric screening technologies are crucial. Also, in our model lenders are each privately informed with
potentially different general signals. This breaks the Blackwell ordering of the information of two
lenders in Milgrom and Weber (1982), resulting in a considerably more challenging problem.7

Specialization in lending. There is growing literature documenting specialization in bank lending;
for an early paper, see Acharya, Hasan, and Saunders (2006). Paravisini, Rappoport, and Schnabl
(2023) show that Peruvian banks specialize their lending across export markets benefiting borrowers
who obtain credit from their specialized banks. Based on data for US stress-tested banks, Blickle,
Parlatore, and Saunders (2023) shows that banks specialize their portfolios in different industries
in a way consistent with them having larger informational advantages in industries in which they
specialize more. This informational advantage manifests as better loan performance at the cost
of some aggregate profitability in the industry in which the bank specializes relative to all other
industries in the portfolio. Our paper contributes to this literature in two ways. First, we focus on
the effects of competition among specialized and non-specialized lenders within an industry. We
show that specialized banks have fewer non-performing loans issued at lower rates in their portfolios
than non-specialized banks in the same industry, not due to competition among specialized banks.
Second, we provide a framework that can rationalize observed specialization patterns, allowing us
to better understand the economic mechanisms behind them and their implications.8

The connection to imperfect competition and adverse selection in the IO literature. The empirical
pattern and our theoretical analyses on the negative interest rate wedge between asymmetrically
informed lenders are connected to the industrial organization (IO) literature on imperfect compe-
tition and adverse selection (Mahoney and Weyl, 2017; Crawford, Pavanini, and Schivardi, 2018;
Yannelis and Zhang, 2023). As we explain in detail in Section 4.1, different from the IO literature
which takes market power (of lenders) and adverse selection (of borrowers) as two independent
market frictions, our theory is based on “asymmetric information” which is a more primitive as-
sumption, with winner’s curse faced by asymmetrically informed lenders as the only underlying
economic force. Strictly speaking, in our model, there is no “market power” enjoyed by the spe-
cialized lender as money from any funding source is perfectly fungible; and, there is no “adverse

6The early papers on this topic include Milgrom and Weber (1982) and Engelbrecht-Wiggans, Milgrom, and
Weber (1983), and later papers such as Hausch (1987); Kagel and Levin (1999) explore information structures where
each bidder has some private information, which is the information structure adopted in Broecker (1990).

7More precisely, one bidder knows strictly more than the other bidder. In this setting, one can show that the
under-informed bidder always makes zero profit; see also Engelbrecht-Wiggans, Milgrom, and Weber (1983).

8Our paper also connects to the growing literature on fintech disruption; see Berg, Fuster, and Puri (2021); Vives
(2019), for instance, for a review of fintech companies competing with traditional banks in originating loans.

5



selection” from borrowers either, as both types of borrowers will take loans at any interest rate.9

2 Model

In this section, We lay out the model and define the equilibrium accordingly.

2.1 General Setting

We consider a credit market competition model with two dates, one good, and risk-neutral agents
(two lenders and one borrower). There are two lenders (banks) indexed by j ∈ {A, B}, where Bank
A (B) is the specialized (non-specialized) lender.

Project. At t = 0, the firm needs to borrow one dollar to invest in a (fixed-scale) risky project
that pays a random cash flow y at t = 1. The cash flow realization y depends on the project’s
quality denoted by θ ∈ {0, 1}. For simplicity, we assume that

y =

1 + r, when θ = 1,

0, when θ = 0,
(1)

where r > 0 is exogenously given, i.e., only a good project has a positive NPV. We will later refer
to r as the interest rate cap or the return of a good project. The project’s quality θ is unobservable
to lenders, and the prior probability of a good project is q ≡ P (θ = 1).

Credit market competition. At date t = 0, each bank j can choose to make a take-it-or-leave-
it interest rate offer rj ≤ r of a fixed loan amount of one to the borrower or to make no offer (i.e.,
exit the lending market), which we normalize as rj = ∞. The borrower accepts the offer with the
lowest rate if it receiving multiple offers.10

Information technology. Banks have access to information about the borrower’s project quality
before choosing whether to make an offer. We assume that both lenders have access to “general”
data (say financial and operating data), which they can process to produce a general-information-
based private signal gj . We call these information “general” signals. We assume that these general
signals are binary, i.e., gj ∈ {H, L}, with a realization H (L) being a positive (negative) signal; and

9Our paper is also related to the literature on the nature of information in bank lending. Berger and Udell (2006)
provides a comprehensive framework of the two fundamental types of bank lending technology, i.e., relationship
lending and transactions lending, in the SME lending market; these two types of lending are related to the role
played by information as highlighted by Stein (2002); Paravisini and Schoar (2016). Recently, based on Harte Hanks
data, He, Jiang, Xu, and Yin (2023) show a significant rise in IT investment within the U.S. banking sector over
the past decade, particularly among large banks, and their causal link between communication IT spending and
the enhancement of banks’ capacity in generating and transmitting soft information motivates our modeling of the
specialized signal as the outcome of interactions with borrowers.

10We implicitly assume that borrowers obtain some (however small) private benefit, so it is strictly optimal to take
the project even for the type θ = 0. One important implication is that it is irrelevant whether borrowers privately
know θ or not, as both types of borrowers always pool in equilibrium.
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that, conditional on the (relevant) state, general signals are independent across lenders. Besides
following the traditional structure presented in Broecker (1990), this modeling of general signals
also captures the coarseness with which some general information is used in practice. For example,
as a leading example of “general information,” credit scores are binned in five ranges even though
scores are computed at a much granular level and go from 300 to 850.

Additionally, we endow Bank A with a signal s, which captures the bank being “specialized.”
As the major departure from the existing literature, this additional signal is as a specialized-
information-based private signal, which is collected, for example, after due diligence or face-to-face
interactions with the borrower after on-site visits. We assume that the specialized signal s is con-
tinuous, and its distribution is characterized by the Cumulative Distribution Function (CDF) Φ(s)
and probability density function (pdf) ϕ(s). Besides providing mathematical convenience, the con-
tinuous distribution captures “specialized” signals resulting from research tailored to the particular
borrower and, therefore, allows for a more granular assessment of the borrower’s quality.

The information structure is incomplete unless we specify the correlations between the funda-
mental states and the two types of signals, to which we turn in the next section.

2.2 The Setting with a Multiplicative Structure

General and specialized fundamental states. Our main analysis focuses on the specific set-
ting with a multiplicative structure for the state θ, so that

θ ≡ θgθs ≡

1, when θg = θs = 1,

0, when either θg = 0 or θs = 0.
(2)

Here, θg ∈ {0, 1} captures the “general” state and θs ∈ {0, 1} captures the “specialized” state; they
jointly determine the project’s success θ, in that the project fails when either state fails.

We further assume that general and specialized states are independent, so that the prior prob-
ability of the state being “1” is simply q = qgqs with qg ≡ P (θg = 1) and qs ≡ P (θs = 1). This
independence, together with the independence of the noise across signals, implies complete inde-
pendence between the generalized and specialized signals (for Bank A).

The distribution of the signals conditional on the state reflects the information technology. We
assume that conditional on the state, the signal realizations are independent across borrowers.
It is straightforward to allow for correlated signals conditional on the state (see He, Huang, and
Parlatore (2024)). For general information signals, which are assumed to be binary, we assume

P
(
gj = H |θg = 1

)
= αu ∈ [0, 1] , P

(
gj = L |θg = 0

)
= αd ∈ [0, 1] , for j ∈ {A, B} . (3)

Here, the information technology is not indexed by lender j—that is to say, lenders have the
same technology to process general information that comes from “general” sources like financial
statements, an assumption that we relax in Section 4.3.

In (3), 1−αu and 1−αd capture the probabilities of Type I and Type II errors, respectively. The
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bad-news signal structure in He, Huang, and Zhou (2023) corresponds to αu = 1 and a symmetric
signal structure has αu = αd = α ∈ (0.5, 1] as in Hauswald and Marquez (2003) and He, Jiang,
and Xu (2024). Our main numerical illustration focuses on the latter case, although our solution
is robust to any {αu, αd} structure.

For the continuous specialized signal, without loss of generality, we directly work with the
posterior of the specialized state being good θs = 1 given its signal realization, i.e.,

s = Pr[θs = 1|s] ∈ [0, 1]. (4)

Note
∫ 1

0 sϕ (s) ds ≡ qs in order to satisfy prior consistency, where ϕ(s) denotes the pdf of s.

General signals being decisive. The specialized Bank A has both general and specialized
signals {gA, s} while Bank B only has a general signal gB. Throughout we assume that the general
signal is “decisive” for lending: Bank j bids only if it receives gj = H. Therefore the general signal
serves as “pre-screening” for Bank A, i.e., it rejects the borrower upon gA = L while upon gA = H

it makes a pricing decision based on its specialized signal s. We impose the following parameter
restrictions to ensure the pre-screening general signal is decisive.

Assumption 1. (Decisive general signals)
i) Bank A rejects the borrower upon an L general signal, regardless of any specialized signal s:

qg (1 − αu) r < (1 − qg) αd. (5)

ii) Bank B is willing to participate (i.e., rB < ∞) if its general signal gB = H:

qgαuqsr > qgαu (1 − qs) + (1 − qg) (1 − αd) ; (6)

Under Condition (5), the loan is negative NPV to Bank A upon gA = L, even for the most
favorable specialized signal s = 1. This condition implies that Bank B, which only has the general
signal and is uncertain about the realization of the specialized fundamental, also rejects the loan
upon receiving gB = L. Condition (6) states that upon gB = H, Bank B is willing to lend at r if
it is the monopolist lender.

2.3 Discussions on Model Assumptions

There are several model assumptions that are worth discussing further.

Multi-dimensional information structure and its general applications. Our setting with
multiple states admits many other interpretations besides general and specialized states. Consider
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the following multi-dimensional multiplicative setting,

θ =

θg︷ ︸︸ ︷
N̂∏

n=1
θn ·

θs︷ ︸︸ ︷
N∏

n=N̂+1

θn, (7)

with independent binomial states (or characteristics) θn ∈ {0, 1} where n ∈ {1, 2, ..., N}; as shown,
our model sets θg ≡

∏N̂
n=1 θn and θs ≡

∏N
n=N̂+1 θn. One can always “relabel” to suit the context of

a specific application. In a companion paper, He, Huang, and Parlatore (2024) interpret
∏N̂

n=1 θn

and
∏N

n=N̂+1 θn as the “hard” and “soft” fundamental states, respectively.

Independence between general and specialized states. The assumption that the general
state θg and the specialized state θs are independent is for ease of exposition only. Section 4.3
shows that independence can be relaxed while maintaining tractability. In a companion paper that
explores the “span of information” He, Huang, and Parlatore (2024) allows for the two “hard” and
“soft” fundamental states to be potentially correlated, which implies the general signals and the
specialized signal for Bank A are correlated. For more details, see Section 4.3.

Principal and supplementary signals and comparison to the literature. The equilibrium
loan-making rule of the specialized bank is practically relevant. Essentially, the specialized bank
has two signals—the general one is “principal” that determines whether to lend, and the other
specialized one is “supplementary” which helps its loan pricing.11 This is in sharp contrast to
the existing literature mentioned in the introduction where lenders make loan offers randomly
only conditional on the most favorable realization of their (binary) signals. As shown in Section
4.1, our setting—by decoupling the lender’s ex-post loan assessment from its ex-ante technology
strength—helps deliver the empirical regularity of lower granted loan rates by specialized banks.

Endogenous information structure. In our main analysis, we take the lenders’ information
technologies—specifically, Bank A being the specialized lender—as given. Section 4.4 endogenizes
this “asymmetric” information technology in a “symmetric” setting with two firms, a and b, where
Bank A (B) endogenously becomes specialized by acquiring both “general” and “specialized” signals
of the firm a (b), while non-specialized Bank B (A) only acquires the “general” signal of the firm
a (b). There, the key difference between these two signals is that a lender j only needs to invest
once—say installing IT equipment and software—to get two general signals, one for each firm, while
specialized signal needs to be collected individually for each firm.

11Alternatively, the principal signal represents the result of a credit screening test, while the supplementary signal
serves the role of internal ratings (of borrowers who are qualified for credit). This ranking portrays the key role
played by hard information for large banks when dealing with new borrowers. Indeed, as documented on page
1677 of Crawford, Pavanini, and Schivardi (2018), Italian large banks list the factors they consider in assessing any
new loan applicant’s creditworthiness, with the following order of importance: i) hard information from the central
bank (financial statement data); ii) hard information from Credit Register; iii) statistical-quantitative methods; iv)
qualitative information (i.e., bank-specific soft information codifiable as data); v) availability of guarantees; and vi)
first-hand information (i.e., branch-specific soft information).
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2.4 Credit Market Equilibrium Definition

We now formally define the credit market equilibrium with specialized lending. Before doing so,
we define the banks’ strategies and their associated profits.

Bank strategies. In equilibrium, each lender makes a potential offer only upon receiving a
positive general signal H—recall Assumption 1 guarantees that the general signals are “desicive”
for both lenders in making the loan offer or not. Conditional on making offers, we define the space
of interest rate offers to be R ≡ [0, r] ∪ {∞}. Here, r is the exogenous interest rate cap (or, project
return) imposed in Section 2.1 and ∞ captures the strategy of not making an offer. The endogenous
support of the equilibrium interest rates offered will be a sub-interval of [0, r]; so with a slight abuse
of terminology we refer to that sub-interval as the “support” of the interest rate distribution even
though loan rejection (r = ∞) could also occur along the equilibrium path.

We denote Bank A’s pure strategy by rA (s) : [0, 1] → R, which induces a distribution of its
offers denoted by F A (r) ≡ Pr

(
rA ≤ r

)
according to the underlying distribution of the specialized

signal. We take as given that Bank A uses pure strategy, though later we formally prove this result
in Proposition 1. On the other hand, Bank B randomizes conditional on gB = H, in which case we
use F B (r) ≡ Pr

(
rB ≤ r

)
to denote the cumulative distribution of its interest rate offers. Because

the domain of offers includes rejection r = ∞, it is possible that F j (r) = P
(
rj < ∞|gj = H

)
≤ 1

for j ∈ {A, B}.

The borrower picks the lower interest rate if possible. For instance, conditional on gA = gB = H,
if Bank B quotes rB, then its winning probability 1 − F A(rB) equals the probability that Bank
A with s offers a rate higher than rB—note, this includes the event of Bank A with gA = H but
rejecting the borrower (rA(s) = ∞), presumably because of an unfavorable specialized signal. Upon
ties rA = rB < ∞, borrowers randomly choose the lender with probability one half, although the
details of the tie-breaking rule do not matter (ties occur as zero-measure events in equilibrium).
When rA = rB = ∞, no bank wins the competition as they both reject the borrower.

Definition 1. (Credit market equilibrium) A competitive equilibrium in the credit market (with
decisive general signals) consists of the following lending strategies and borrower choice:

1. A lender j rejects the borrower or rj = ∞ upon gj = L for j ∈ {A, B}; upon gj = H,

i) Bank A offers rA (s) : [0, 1] → R ≡ [0, r] ∪ {∞} to maximize its expected lending profits
given gA = H and s, which induces a distribution function F A (r) : R → [0, 1];

ii) Bank B offers rB ∈ R to maximize its expected lending profits given gB = H, which
induces a distribution function F B(r) : R → [0, 1];

2. Whenever receiving at least one offer, the borrower chooses the lowest offer as long as
min{rA, rB} < ∞.

The following lemma shows that the resulting equilibrium strategies in our setting are still
well-behaved as established in the literature (Engelbrecht-Wiggans, Milgrom, and Weber (1983);
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Broecker (1990)). The key steps of the proof are standard, though we make certain adjustments
due to the presence of both discrete and continuous signals.

Lemma 1. (Equilibrium Structure) In any equilibrium, there exists an endogenous lower bound
of interest rate r > 0, so that the two distributions F j (·), j ∈ {A, B} share a common support [r, r]
(besides ∞ as rejection). Over [r, r) both distributions are smooth, i.e. no gap and atomless, so
that they admit well-defined density functions. At most one lender can have a mass point at r.

Bank profits and optimal strategies. Denote by gAgB ∈ {HH, HL, LH, LL} the event of
two general signal realizations, where HL represents Bank A’s (B’s) general signal being H (L).
Denote by pgAgB the joint probability of any collection of realizations of general signals; e.g., pHH ≡
P
(
gA = H, gB = H

)
= qgα2

u + (1 − qg) (1 − αd)2 . Similarly, denote by µgAgB ≡ P
(
θg = 1

∣∣∣gA, gB
)

the posterior probability of the general state being one conditional on gAgB; for instance,

µHH = qgα2
u

qgα2
u + (1 − qg) (1 − αd)2 .

And, since {θg, θs} are independent, the posterior of project success given {HH, s} is

P
(

θ = 1| gA = H, gB = H, s
)

= µHH · s. (8)

For Bank A who receives gA = H and s, its profit πA (r |s) by quoting r ∈ [r, r] equals

πA (r |s) ≡ pHH︸ ︷︷ ︸
gA=gB=H

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

[µHHs (1 + r) − 1] + pHL︸︷︷︸
gA=H,gB=L

[µHLs (1 + r) − 1] . (9)

Bank A can also choose to exit by quoting r = ∞, in which case πA (∞ |s) = 0. We then denote
Bank A’s optimal interest rate offer by

rA (s) ≡ arg max
r∈R

πA (r |s) .

To understand Eq. (9), recall that Bank A cannot observe gB when making an offer. With
probability pHH , both banks get favorable general signals and Bank A quoting r wins with prob-
ability 1 − F B(r), whereas with probability pHL it faces no competition as Bank B with gB = L

withdraws itself. Standard winner’s curse logic implies that whether Bank B participates in the
loan market affects Bank A’s perceived borrower quality (regarding the general fundamental state)
captured by µHH or µHL. Importantly, since Bank B randomizes its strategy upon gB = H, from
the perspective of Bank A winning the price competition against Bank B is not informative about
borrower quality.

This last observation is in sharp contrast with the problem of the non-specialized Bank B, who
understands that the outcome of competition against its specialized opponent is informative about
θs. More specifically, besides the possibility of the competitor’s unfavorable general information as
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mentioned above, the non-specialized lender B knows that rA (s) > rB upon winning the competi-
tion. Because the equilibrium rA (s) is decreasing, an important equilibrium property that we will
verify later, upon winning Bank B infers an unfavorable specialized signal. Taking these inferences
into account, Bank B’s lending profit when quoting r is

πB (r) ≡ pHH︸ ︷︷ ︸
gA=gB=H

[
1 − F A (r)

]
︸ ︷︷ ︸

B wins

E
[
µHHθs (1 + r) − 1| r ≤ rA (s)

]
+ pLH︸︷︷︸

gA=L,gB=H

[µLHqs (1 + r) − 1] .

(10)
Bank B’s optimal strategy F B(·) maximizes its expected payoff

max
F B(·)

∫
R

πB (r) dF B (r) . (11)

As it is standard in equilibria in mixed strategies, the profit-maximizing Bank B is indifferent
between any r on its support.

3 Credit Market Equilibrium Characterization

To characterize the credit market equilibrium, in Section 3.1 we first take the equilibrium non-
specialized Bank B’s profit πB as given and solve for the other equilibrium objects. We then solve
for πB in Section 3.2, and Section 3.3 completes the construction of the credit market equilibrium.

3.1 Solving for the Pricing Strategies of the Lenders

Solving for rA (s). Following Milgrom and Weber (1982), we start by solving for Bank A’s
equilibrium strategy rA (s). Suppose that rA (s) is decreasing, which we shall verify later. Bank B

who plays mixed strategies must make a constant profit πB ≥ 0 from any interest rate along the
equilibrium support. When Bank B rejects the borrower upon H with some probability we must
have πB = 0. Our goal is to characterize both lenders’ strategies by taking πB as given.

Conditional on gA = H, when Bank B quotes r = rA (s), it wins the borrower only when A’s
specialized signal is below s. Bank B, therefore, updates its beliefs about the borrower’s quality
accordingly—its posterior for the specialized state is

∫ s
0 tϕ (t) dt. On the other hand, conditional

on gA = L, Bank B wins the borrower for sure. Plugging rB = rA (s) in Bank B’s lending profits
in Eq. (10), we have the following indifference condition:

πB =
[
pHHµHH

∫ s

0
tϕ (t) dt + pLHµLHqs

]
︸ ︷︷ ︸

B’s expected loan quality (lending benefit)

(
1 + rA (s)

)
− (pHHΦ (s) + pLH)︸ ︷︷ ︸

B’s expected loan size (lending cost)

. (12)

Eq. (12) holds for any rA (s) ∈ [r, r), which implies that

rA (s) = πB + pHHΦ (s) + pLH

pHHµHH
∫ s

0 tϕ (t) dt + pLHµLHqs
− 1. when s ∈ [ŝ, 1] . (13)
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where ŝ is the highest specialized signal realization so that Bank A quotes r:

ŝ ≡ sup
{

s| rA (s) = r
}

. (14)

We discuss several relevant boundaries in Bank A’s equilibrium strategy based on Eq. (13).
First, because Bank A with the highest specialized signal s = 1 quotes r in equilibrium, we can
derive r as an affine function of πB by setting s = 1 in Eq. (13):

r = rA (1) = πB + pHH + pLH

(pHHµHH + pLHµLH)qs
− 1 ⇔ πB = (1 + r) · (pHHµHH + pLHµLH)qs

pHH + pLH
. (15)

Intuitively, in equilibrium, both lenders share the same endogenous lower bound r. From the
perspective of Bank B, quoting r guarantees winning and hB = H is the only information without
any inference from competition. Therefore Bank B’s profit is determined by the expected loan
quality conditional on hB = H, i.e., its gross rate offer 1 + r multiplied by the probability of good
borrower (pHHµHH + pLHµLH)qs and scaled by the lending probability pHH + pLH .

Second, we define x ≤ ŝ as the threshold such that πA (r| x) = 0. It is straightforward to
show that rA (s) = r for s ∈ [x, ŝ), and rA (s) = ∞ for s ∈ [0, x). Note that x = ŝ can occur in
equilibrium (which, as we will show, occurs when πB > 0).

Proposition 1 below shows that Bank A’s strategy rA(s) is always decreasing in equilibrium (no
ironing needed). Define its inverse function (correspondence) of rA (s) to be

sA(r) ≡


rA(−1)(r), when r ∈ [r, r),

[x, ŝ), when r = r,

[0, x), when r = ∞.

(16)

Here, we take the convention that rA(x) = r. The two relevant cutoffs for Bank A’s strategy can
be written as ŝ = sup sA(r), i.e., the highest signal that Bank A quotes r, and x = sup sA(∞), i.e,
the highest signal under which Bank A rejects the borrower.

Solving for F B(·). Recall Bank B is indifferent among all rates on the support. In equilibrium,
B’s strategy is pinned down to support rA (·) in Eq. (13) as A’s optimal strategy. The first-
order-condition (FOC) that maximizes Bank A’s objective in Eq. (9), which balances the lower
probability of winning against the higher payoff from served borrowers, is

pHH

(
−dF B (r)

dr

)
[µHHs (1 + r) − 1] +

{
pHH

[
1 − F B (r)

]
µHHs + pHLµHLs

}
= 0. (17)

That Bank A’s equilibrium strategy rA (·) in Eq. (13) satisfies Eq. (17) helps us pin down
F B(·), which, as we now show, solves a simple differential equation. To this end, we first consider
Bank B who maximizes the expression in Eq. (12) and understands the corresponding marginal
borrower type (with a specialized signal) is sA (r) when quoting r. Writing everything in terms of
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r; when Bank B marginally cuts its quote by dr, it gets ϕ
(
sA(r)

)
(−sA′ (r))dr additional borrower

type with quality µHHsA (r) if there is competition, which occurs with probability pHH . This gain
should equal to the marginal lower payoff from the borrower types who are already served, implying
Bank B’s FOC (12) to be

pHH

[
ϕ
(
sA(r)

)
· (−sA′ (r))

]
︸ ︷︷ ︸

additional borrower type

[
µHHsA (r) (1 + r) − 1

]
= pHHµHH

∫ sA(r)

0
tϕ (t) dt + pLHµLHqs︸ ︷︷ ︸

existing borrower types

.

(18)
Solving for pHH

[
µHHsA (r) (1 + r) − 1

]
using Bank B’s FOC in Eq. (18) and plugging it in Eq.

(17) which captures Bank A’s FOC, we have

dF B (r)
dr

pHHµHH
∫ sA(r)

0 tϕ (t) dt + pLHµLHqs

ϕ (sA(r)) sA′ (r)

+pHH

[
1 − F B (r)

]
µHHsA(r)+pHLµHLsA(r) = 0.

One can show that the above equation yields the following ordinary differential equation (ODE),
which pins down F B(·):

d

dr

 pHHµHH

[
1 − F B (r)

]
+ pHLµHL

pHHµHH
∫ sA(r)

0 tϕ (t) dt + pLHµLHqs

 = 0. (19)

The intuition behind the ODE in Eq. (19) is as follows. At any interest rate r, both lenders are
competing for the same marginal borrower type with an expected profit of µHH ·sA(r) ·(1+r)−1.12

Denote by Qj(r) the total quality of borrowers of Bank j when offering interest rate r. Then,

QA(r) = pHHµHHsA(r)
[
1 − F B (r)

]
+ pHLµHLsA(r),

QB(r) = pHHµHH

∫ sA(r)

0
tϕ (t) dt + pLHµLHqs.

QA and QB differ in that A observes s while B only knows that it gets borrower types with
s < sA(r) (if gA = H) or qs (if gA = L). For Bank A, the marginal effect of price cutting on
borrower quality is 1

µHH

[
QA(r)
sA(r)

]′
, where the division inside the bracket adjusts for the quality of the

specialized fundamental of the marginal borrower type. Then, Bank A’s optimal pricing strategy
equates the above marginal benefit to the associated marginal cost of price cutting, which is dr

12This term shows up in both optimization conditions, i.e., (17) for Bank A and (18) for Bank B).
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multiplied by the expected borrower quality QA(r). Therefore we must have

[
QA(r)

µHHsA(r)

]′

dr ·
[
µHHsA(r) (1 + r) − 1

]
︸ ︷︷ ︸

MB on marginal borrower type

= QA(r)dr︸ ︷︷ ︸
MC on existing borrower types

⇔ µHHsA(r)
µHHsA(r) (1 + r) − 1

=

[
QA(r)
sA(r)

]′
QA(r)
sA(r)

, (20)

which is equivalent to (17). On the other hand, for Bank B the marginal effect on borrower quality
is 1

µHH

QB′(r)
sA(r) ,13 implying an optimality condition of

QB′(r)
µHHsA(r)

dr ·
[
µHHsA(r) (1 + r) − 1

]
︸ ︷︷ ︸

MB on marginal borrower type

= QB(r)dr︸ ︷︷ ︸
MC on existing borrower types

⇔ µHHsA(r)
µHHsA(r) (1 + r) − 1

= Q′B(r)
QB(r)

.

(21)
This is exactly (18). Combining (20) and (21), we derive the key ODE in Eq. (19):

[
QA(r)
sA(r)

]′
QA(r)
sA(r)

= Q′B(r)
QB(r)

⇔ d

dr

[
QA(r)/sA(r)

QB(r)

]
= 0. (22)

Two additional pieces help us solve for F B(·) based on (19). First, F B (r) = 0, which says that
Bank B never offers rates below the endogenous lower-end support, gives the boundary condition.
Second, we have derived r(πB) in (15) as a function of πB. Focusing on the interior of the strategy
space, we have:

1 − F B (r) =
∫ sA(r)

0 tϕ (t) dt

qs
, for r ∈ (r, r) (23)

It is clear that F B(r) < 1 for r ∈ [r, r), because F B (r−) = 1
qs

∫ 1
sA(r−)=ŝ tϕ(t)dt < 1; and Bank B’s

strategy on the boundary r depends on whether it is profitable in equilibrium. More precisely, it
either places a mass of 1 − F B(r−) = 1

qs

∫ ŝ
0 tϕ (t) dt > 0 on r if πB > 0, or quotes r = ∞ (i.e.,

withdraws) if πB = 0.14

Illustration of lenders’ pricing strategies. Figure 2 illustrates the equilibrium strategies
for both lenders for two cases, πB > 0 and πB = 0 indicated by the subscripts “+” and “0,”
respectively. The exogenous parameter that drives the different profits for Bank B is r, which we

13Readers might notice the important difference between the two lenders’ marginal effects of cutting their prices
on the quantity. For Bank A who observes the specialized signal realization directly, its pricing decision should not
affect its quality; this is why we scale QA first by s and then take derivative, i.e.,

[
QA(r)
sA(r)

]′
. In contrast, without

observing s directly, Bank B’s price cutting affects its inferred quality of the borrower type (that it wins over Bank
A). Therefore we take the derivative of QB(r), which includes the quality of its borrowers, and then scale by the
quality of marginal borrower type to avoid double counting.

14Although the information technology parameters on the general signals do not enter F B(·) in (23) directly, they
affect F B(·) indirectly via the endogenous lower bound of the support r.
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Figure 2: Equilibrium strategies rA (s) for Bank A (left) and F B (r) for Bank B (right). In
both panels, strategies under r̄+ (i.e., positive-weak equilibrium) are depicted in red with “+” markers while
strategies with r̄0 (i.e., zero-weak equilibrium) are depicted in blue. In the zero-weak equilibrium, Bank A
(but not Bank B) has a point mass at r0 while in the positive-weak equilibrium, Bank B (but not Bank A)
has a point mass at r+. Parameters: qg = 0.8, qs = 0.9, αu = αd = α = 0.8, and τ = 1, where τ captures the
signal-to-noise ratio of Bank A’s specialized information technology as s = E [θs|θs + ϵ] and ϵ ∼ N (0, 1/τ).

denote respectively by r+ and r0, where r+ > r0. As one would expect, the, where greater the
borrower surplus r, the higher the lender’s profits. Panel A (left) depicts Bank A’s pricing strategy
rA(s), which is decreasing, while the right panel plots Bank B’s CDF of its rates F B(r). We also
plot the two signal cutoffs—ŝ, at which Bank A’s strategy hits r, and x, at which Bank A exits.

Figure 2 highlights a key difference between the two types of equilibrium that can arise, one
with πB = 0—we call it the zero-weak equilibrium as the weak bank earns no profits—and the other
with πB > 0—we call it the positive-weak equilibrium as the weak bank makes positive profits. As
shown, if πB = 0 Bank A has a point mass at r0 (corresponding to s ∈ (x0, ŝ0)) but Bank B does
not, while if πB = 0 the opposite holds. This reflects the fierce competition at the interest rate cap
and it is the exact manifestation of the last point in Lemma 1 (otherwise, lenders will undercut
each other at this point).

3.2 Solving for the Equilibrium Profit of Bank B

We now solve for Bank B’s equilibrium profit which pins down the entire equilibrium given the
results in Section 3.1. First, define sbe

A to be the specialized signal under which Bank A quotes r

and breaks even (therefore the superscript “be”). Formally, using πA(·) given in (9) and using the
strategic response of Bank B in Eq. (23), sbe

A is the unique solution to the following equation

0 = πA
(
r
∣∣∣sbe

A

)
= pHH

∫ sbe
A

0 tϕ (t) dt

qs
·
[
µHHsbe

A (1 + r) − 1
]

+ pHL

[
µHLsbe

A (1 + r) − 1
]

. (24)
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As shown in footnote 15, (24) admits a unique solution inside the interval (0, 1). We can define sbe
B

similarly; taking B’s payoff function in (12) and setting r to r, s to sbe
B , and πB to zero give us:15

0 = πB
(
r = r; s = sbe

B

)
= pHH

[
µHH

(∫ sbe
B

0
tϕ(t)dt

)
(1 + r) − Φ

(
sbe

B

)]
+ pLH [µLHqs (1 + r) − 1] .

(25)
Lemma 2 below shows that the relative ranking between sbe

B and sbe
A fully determines πB and

ŝ. Intuitively, the equilibrium type crucially depends on which lender—when quoting r—hits zero
profit first as s decreases. If sbe

A < sbe
B then Bank B hits zero profit first, and this supports the

equilibrium with πB = 0 with ŝ = sbe
B ; otherwise we have πB > 0 with ŝ = sbe

A .

Lemma 2. Given sbe
A defined in (24), the equilibrium Bank B profit is

πB = max
{[

pHHµHH

∫ sbe
A

0
tϕ (t) dt + pLHµLHqs

]
(1 + r) −

(
pHHΦ

(
sbe

A

)
+ pLH

)
, 0
}

.

When sbe
B < sbe

A we are in the positive-weak equilibrium in which the weak Bank B makes a positive
profit, and x = ŝ = sbe

A . Otherwise, when sbe
B ≥ sbe

A we are in the zero-weak equilibrium where Bank
B earns zero profits, with x < ŝ = sbe

B .

3.3 Credit Market Equilibrium

Credit market equilibrium characterization. The next proposition provides the full analyt-
ical characterization of the credit market equilibrium with specialized lending.

Proposition 1. (Credit Market Equilibrium) In the unique equilibrium, Bank A follows a pure
strategy as in Definition 1. In this equilibrium, lenders reject the borrower upon a low general signal
realization hj = L for j ∈ {A, B}. Otherwise (i.e., when hj = H), their strategies are characterized
as follows, with the equilibrium πB given in Lemma 2.

1. Bank A with a specialized signal s offers

rA (s) =


min

{
πB+pHHΦ(s)+pLH

pHHµHH

∫ s

0 tϕ(t)dt+pLHµLHqs
− 1, r

}
for s ∈ [x, 1],

∞, for s ∈ [0, x).
(26)

The equation pins down r = rA (1) . If s ∈ (ŝ, 1] where ŝ = sup sA(r), rA(·) is strictly
decreasing with its inverse function sA(·) = rA(−1)(·).

15There are several points to make. Regarding the definition of sbe
B , the rate r in (12) is rA(s); we essentially

separate rate r and s in (25). Regarding sbe
A , technically speaking in (24) Bank A quotes r− so that 1 − F B

(
r−) =

1
qs

∫ sbe
A

0 tϕ (t) dt, as (23) requires r ∈ [r, r). Second, we have a unique solution of (24) because πA
(
r
∣∣sbe

A

)
is strictly

increasing in sbe
A , with πA

(
r
∣∣sbe

A = 0
)

< 0 and πA
(
r
∣∣sbe

A = 1
)

= pHH [µHH (1 + r) − 1] + pHL [µHL (1 + r) − 1] > 0;
the latter is implied by Bank A’s willingness to make an offer given gA = H.
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2. Bank B makes an offer with cumulative probability given by

F B (r) =


1 −

∫ sA(r)
0 tϕ(t)dt

qs
for r ∈ [r, r)

1 − 1{πB=0} ·
∫ ŝ

0 tϕ(t)dt

qs
for r = r

, (27)

where 1{X} = 1 if X holds and is zero otherwise. When πB = 0, F B (r) = F B (r−) is the
probability that Bank B makes the offer (and with probability 1

qs

∫ ŝ
0 tϕ (t) dt it withdraws by

quoting rB = ∞); when πB > 0, F B (r) = 1 and there is a point mass of 1
qs

∫ ŝ
0 tϕ (t) dt at r.

The proof for Proposition 1 mainly covers three theoretical issues. First, we show that the
specialized lender always adopts a pure strategy in any equilibrium; that is to say, Bank A’s pure
strategy, which is implicitly taken as given in Definition 1, is a result rather than an assumption.
Second, we prove that the FOC conditions used in the equilibrium construction detailed in Section 3
are sufficient to ensure global optimality. Third, somewhat surprisingly, thanks to the endogenous
adjustment of πB and r, we never need to “iron” a la Myerson (1981) in the interior range for
equilibrium interest rates. In fact, consistent with point 3 in Lemma 1, Bank A never bunches its
quotes—except at the exogenous rate cap r when the zero-weak equilibrium ensues.

Properties of credit market equilibrium. Figure 3 illustrates the main properties of the
credit market equilibrium with specialized lenders. For exposition purposes, we assume that Bank
A’s specialized signal s is obtained from observing θs + ϵ, so that

s = E [θs|θs + ϵ] , (28)

where ϵ ∼ N (0, 1/τ) indicates a white noise, with precision parameter τ , which captures the
signal-to-noise ratio of Bank A’s specialized information technology.

The top two panels in Figure 3 plot both lenders’ pricing strategies conditional on making an
offer; Panel A is the same as that in Figure 2 for convenience while Panel B plots the density
dF B/dr for Bank B.

Formally, we call Bank A’s strategy of rA(s) decreasing in s “private-information-based pricing,”
which has important implications on the equilibrium interest rate differentials studies in Section
4.1. When Bank A’s private assessment of borrower quality is sufficiently low, i.e., s < x, it rejects
the borrower. Panel C further plots the two specialized signal cut-offs for Bank A, i.e., ŝ at which
it starts quoting r and x at which it starts rejecting the borrower.

Finally, Panel D plots the expected profits—E(πA) and πB—for the two lenders, against the
exogenous interest rate cap r. Recall that r can also be interpreted as the return of a good project,
capturing the surplus to be realized from a loan. Thus, a higher total surplus gives rise to less fierce
competition, and as a result, both lenders—including the weak lender B—make positive expected
profits upon a favorable general signal H. This explains Panel D, which shows that πB is strictly
positive for sufficiently high values of r. Put differently, the model features a positive-(zero-) weak
equilibrium when r is relatively high (low).
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Figure 3: Equilibrium strategies and profit. In the top two panels, we plot equilibrium strategies for
both lenders. Panel A depicts rA(s) as a function of s and Panel B plots dF B(r)/dr for as a function r;
strategies with r̄+ are depicted in red with markers while strategies with r̄0 are depicted in blue. Panel C
depicts Bank A’s thresholds ŝ = sup sA(r) and x = sup sA(∞), and Panel D depicts the expected profits
for two lenders. Parameters: qg = 0.8, qs = 0.9, αu = αd = α = 0.8, and τ = 1, where τ captures the
signal-to-noise ratio of Bank A’s specialized information technology as s = E [θs|θs + ϵ] and ϵ ∼ N (0, 1/τ).

For a better illustration, consider the competition at interest rate r. In the positive-weak
equilibrium (high r’s), the non-specialized Bank B has a point mass on this interest rate, enjoying
some “local monopoly power” in competition as it is the only lender in the market when Bank A

rejects the borrower upon s < ŝ = x. This is possible because when the project’s surplus (captured
by r) is sufficiently large, the non-specialized lender B is still profitable by quoting r despite the
winner’s curse. We highlight that the weak lender’s profits come from its conditionally independent
private signal, which could also arise in canonical models; the weak lender’s “local monopoly power,”
however, is a unique feature of our model that arises from Bank A’s informed pricing to withdraw.
(This point will be elaborated on in footnote 19 when we discuss the “private-information-bsaed
pricing effect.”) In contrast, in the zero-weak equilibrium (low r’s), the specialized Bank A, with
a point mass at r (when s ∈ (x, ŝ), as shown in Panel C), is the monopolistic lender while the
nonspecialized Bank B withdraws.
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4 Model Implications and Extensions

We now discuss the economic implications of our model. First, we study the model implied interest
rate wedge, defined as the difference between the rates of loans made by specialized and non-
specialized lenders; we highlight the difference between bids and winning bids on granted loans.
We then explain how our private-information-based pricing helps generate a negative interest rate
wedge, an empirical fact for which we offer detailed evidence based on Y-14 supervisory data. We
then show our theoretical results are robust to a generalized information structure, and finally
endogenize the bank specialization structure that we have assumed so far.

4.1 Specialized Lending: Interest Rate Wedge

As suggested by Figure 1 (and thoroughly established in Section 4.2), the loans on the balance
sheets of specialized lenders tend to have higher quality and lower interest rates. Specialized
lenders with informational advantage are extending higher quality loans in our model, which is
a robust prediction of any information-based model including those canonical ones a la Broecker
(1990) and Marquez (2002). In what follows, we thus focus on the model implications on interest
rates.

Interest rate wedge: bids vs. winning bids

An econometrician observes the granted bank loans accepted by borrowers. Put differently, the
loans we use to calculate loan interest rates are already on the book of the lender who has won
the bidding competition. In our setting, when Bank A makes a loan offer (rA < ∞), it is accepted
by the borrower if rA < rB ≤ ∞—either if there is no offer from Bank B (e.g., when hB = L

so rB = ∞) or Bank A’s rate is lower than that offered by Bank B. Therefore, the theoretical
counterpart of negative rate differentials in Figure 1 is

∆r ≡ E
[
rA
∣∣∣ rA < rB ≤ ∞

]
︸ ︷︷ ︸

interest rate of A’s granted loan

− E
[
rB
∣∣∣ rB < rA ≤ ∞

]
︸ ︷︷ ︸

interest rate of B’s granted loan

< 0, (29)

where
{
ri < rj ≤ ∞

}
denotes the event that Bank i wins the competition.

We call ∆r in (29) the interest rate wedge. There is a crucial difference between the interest
rate wedge calculated from “bids,” i.e., banks’ offered interest rates, and the one calculated from
“winning bids,” i.e., banks’ rates on their granted loans. The winning bid is a first-order statistic
(i.e., the smaller one given two quotes); and in our context of lending competition banks may simply
reject loan applications by quoting ∞ due to winner’s curse. Therefore the winning bid necessarily
requires ri < ∞, which is implied by the conditioning in Eq. (29).

In a nutshell, although the winner’s curse pushes the less informed Bank B to bid higher (often
in the form of withdrawals by quoting r = ∞), the exact force leads to higher winning bids from
the more informed Bank A. An example from He, Huang, and Zhou (2023) illustrates this point
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Figure 4: Example of Lender Bidding Rates in Canonical Models. We plot the density functions
(left scale) and probability mass points (right scale) of lenders’ interest rate offer upon favorable signals in He,
Huang, and Zhou (2023). Our framework nests He, Huang, and Zhou (2023) by setting qs = 1 (degenerate
specialized information), αu

A = αu
B = 1 (bad-news information structure) and αd

A > αd
B (Bank A has better

information technology). Here, the endogenous lower bound for rates is r ≡ (1 − q)
(
1 − αB

d

)
/q.

starkly. There, banks are endowed with general signals only, and for simplicity they assume a bad
news structure, i.e., αj

u = 1 and αj
d < 1 so that only false positives can occur. Banks differ in the

precision of their signals; to capture the idea of specialization, suppose that αA
d > αB

d so Bank A is
relatively more informed. And for illustration purpose, our analysis is conditional on both lenders
making offers (i.e., upon two H general signals).

As shown in He, Huang, and Zhou (2023), the equilibrium CDF of offered rates for both banks,
denoted by F̂ (·), coincides in the interior of the common support r ∈ [r, r), with

F̂ (r) ≡ P (r̃A < r) = P (r̃B < r) =
r − 1−q

q

(
1 − αB

d

)
r − 1−q

q

(
1 − αB

d

) (
1 − αA

d

) .
Figure 4 plots the bidding strategies of both lenders in He, Huang, and Zhou (2023); as shown,
their densities coincide in the interior of the support. The only difference in the lenders’ strategies
is at the upper boundary r: Bank A quotes the monopolistic rate r = r with a positive mass
1 − F̂ (r−) > 0 while Bank B rejects the borrower by quoting r = ∞ with the same probability.
Consistent with the intuition of the winner’s curse, the bidding rates from the less informed Bank
B are higher than those from the more informed Bank A (i.e., first-order stochastic dominance,
because ∞ > r). However, one can formally show that the interest rate wedge calculated from
winning bids goes the opposite way—in these events, Bank A earns a monopolistic profit of rA = r

(which is counted in the winning bids) while Bank B rejects (quoting rB = ∞ which is not counted
in the winning bids).16

16Recall that this discussion only concerns the event of participation from both lenders. In this case, one can
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Because Bank A’s monopoly rent comes from its information advantage, we call this economic
force the “information rent” effect. Combining this with the “private information-based pricing”
effect discussed in Section 3.3 (right after Figure 3), the next section offers some formal theoretical
results on the interest rate wedge.

Economic mechanisms determining the interest rate wedge

Canonical models: the information rent effect. Canonical credit market competition models
parameterize the information technology by the signal’s precision that captures the lenders’ ability
to screen out uncreditworthy borrowers. There, the most natural way to capture “specialized
lending” is by imposing asymmetric screening abilities on general signals (assuming a degenerate
specialized fundamental state which always equals one) along the line of Marquez (2002); He,
Huang, and Zhou (2023), as illustrated in Figure 4.

Regarding the specific information structure of general signals given in (3)), the literature has
primarily focused on the following two parameterizations. The first is the bad news structure
adopted in He, Huang, and Zhou (2023) assuming that αA

d > αB
d (and αA

u = αB
u = 1), based on

which we produce Figure 4. Alternatively, Marquez (2002) and He, Jiang, and Xu (2024) adopt a
symmetric information structure in which αA

u = αA
d > αB

u = αB
d . In the bad news structure, Bank

A makes fewer false positive mistakes than Bank B, while in the symmetric information structure,
A makes fewer false positive and false negative mistakes than B. For ease of exposition, in both
cases, we use αA > αB to denote Bank A having a more informative (binary) signal.

As emphasized before, in these canonical models only quantity decisions (i.e., whether to lend
or not) are based on the signal realizations while pricing decisions (offered interest rates) are
randomized. We have the following proposition.

Proposition 2. (Counterfactual Prediction in Canonical Models.)

1. Under a bad news structure, there exists a threshold r̂ such that ∆r > 0 for r < r̂;

2. Under a symmetric information structure, when α = αA and αB ↑ α, ∆r > 0 for r ≤ 1
q − 1

or q ≥ 1 − α + α2.

In general, as Bank A’s private signal is more precise, the weak lender B is more concerned
about the winner’s curse, i.e., picking up a “lemon” whom the competitor lender rejected. As a
result, B randomly withdraws even after receiving a favorable signal gB = H, effectively making
Bank A a monopolist. This exactly corresponds to the information rent effect, mentioned right
after Figure 3, driving the specialized Bank A to have higher expected winning bids (i.e., rates on
granted loans) than Bank B. This force pushes the model to deliver a negative interest wedge.

formally prove that ∆r > 0. However, from an unconditional perspective, we also need to take into account the
possibility of an unfavorable general signal under which each lender quotes r = ∞. Given a bad news structure, the
stronger Bank A is more likely to receive an unfavorable general signal (which is truth-revealing) and therefore reject
the loan. This force complicates the analysis and we show in Proposition 2 that ∆r > 0 when r is sufficiently small
(i.e., when loan rejection occurs often in equilibrium). Nevertheless, when discussing the result in Proposition 2 we
point out that the threshold of r is too large to be relevant in practice.
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The first part of Proposition 2 concerns the bad news structure; there, the information rent
effect intensifies if the weak lender rejects borrowers more often in the equilibrium. The lower the
exogenous interest rate cap r, the more severe the winner’s curse, and therefore the weak lender
is more likely to reject its loan applications. This explains the first part of Proposition 2, which
says that the canonical models generate ∆r > 0 as long as r is sufficiently low. The threshold r̂

for the rate cap, under empirically relevant parameters calibrated based on U.S. banking data, is
way above 36%, the rate cap imposed by most U.S. usury laws.17 We, therefore, conclude that the
model predictions under the bad news structure are counterfactual in light of Figure 1.

The second part of Proposition 2 considers the symmetric information case. We are unable
to provide a proof for the general case; instead, we consider the limiting case of αB ↑ αA and
show that under empirically relevant primitives calibrated in Appendix A.3,18 we would have the
counterfactual prediction ∆r > 0 even when αB ↑ αA. Presumably, the information rent effect is
stronger when the gap in information technology αA − αB > 0 is larger, which is confirmed in all of
our numerical exercises. Taken together, Proposition 2 therefore allows us to argue that canonical
models generate counterfactual implications on the rate wedge.

Our model: the private-information-based pricing effect. As illustrated by Panel A in
Figure 2, the “private-information-based pricing” says that i) Bank A with a more favorable spe-
cialized signal offers a lower rate, and ii) rejects the borrower when s falls below a certain threshold
x). This naturally pushes us int closer to obtaining a negative interest rate wedge.

However, the early discussion regarding “bids versus winning bids” around Figure 4 suggests that
whether Bank B rejects (by quoting rB = ∞) or not plays a role. As discussed, the counterfactual
prediction ∆r > 0 is more likely to occur if Bank B rejects more often (so Bank A enjoys a higher
information rent). Hence, the private-information-based pricing effect is more likely to prevail in
a positive-weak equilibrium where Bank B never rejects upon receiving a high signal and it even
enjoys some “local monopoly power” as the only lender (when Bank A withdraws upon s < x) by
having a point mass at r. Note that this point mass is the distinct feature of our model with a
private specialized signal compared to canonical settings a la Broecker (1990).19 As a result, when
Bank B never withdraws from the competition upon receiving gB = H, the better-informed Bank

17Even under r = 36%, the parameters that we back out from matching three empirical moments (average loan
approval rate, non-performing loan rates for both specialized and non-specialized lenders) are q = 0.6846, αA = 0.9655
and αB = 0.9512, implying a strictly positive interest rate wedge (0.3%). In fact, under this set of parameters (q
and α’s), the threshold of r̂ takes a value of 395%, which is way above the usury rate of 36%. For more details, see
“Calibration” in Appendix A.3 on page 47.

18We only need to verify the second condition in Part 2 of Proposition 2, which is independent of r. As a brief
summary, we calibrate q and α based on two empirical moments in the U.S. banking industry. First, according to
this Federal Reserve report the non-performing loan (NPL) ratio is about 2%; second, Yates (2020) reports that
that the approval rate for business C&I loans ranges from 55% (small firms) to 80% (large firms). Matching these
two moments in Appendix A.3 we show that the implied parameters satisfy Proposition 2. For instance, taking an
approval rate of 70%, we obtain q = 0.9629 and α = 0.716, which satisfy q ≥ 1 − α + α2.

19In canonical models, although the weak bank may earn some positive profits given a high borrower surplus (say
large q and r), it never has a point mass at r to enjoy “local” monopoly power. To see the intuition, note that because
in canonical settings information is used to determine participation, the strong lender never withdraws upon H; and
since only one lender can have a point mass at r (a result that is similar to Lemma 1 for canonical models), it must
indeed be the strong lender who possesses such a point mass.
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A undercuts rates to win higher quality borrowers while leaving those lemons to Bank B (who then
makes loans with higher winning bids).

Is πB > 0 a necessary condition? A special case. The above discussion suggests that
a profitable weak bank is necessary for a negative interest rate wedge. This is not true. The
following proposition focuses on the special case of r = ∞, and considers a degenerate general
fundamental (so Bank B is uninformed) and a uniformly distributed specialized signal.

Proposition 3. (A Special Case of Uniform Distribution) Suppose that r = ∞ so that
rejection is off equilibrium, general signals are degenerate (qg = 1 or αu = αd = 0.5), and the
specialized signal’s distribution follows ϕ(s) = 1 + ϵ [2 · 1s≤0.5 − 1]. In equilibrium, i) πB = 0
always, ii) ∆r = 0 when ϵ = 0 (i.e., s ∼ U[0, 1]), and iii) ∆r > 0 (∆r < 0) when ϵ > 0 (ϵ < 0) for
infinitesimal ϵ.

Several important implications of this proposition ensue. First, πB > 0 is not necessary for
∆r < 0, as we have πB = 0 always for an uninformed Bank B. Intuitively, when r = ∞, Bank
B never withdraws in equilibrium regardless of its profit. As discussed after Figure 4, it is the
endogenous withdrawal from the weaker bank—not profitability per se—that plays a key role in
driving the difference between bids and winning bids.

Second, when the specialized signal follows a uniform distribution (together with a degener-
ate general signal and r = ∞), the two aforementioned effects—information rent and private-
information-based pricing—equalize, and lenders have the same winning bids on their granted loans.
Then, starting from this benchmark, any tilting toward private-information-based pricing—e.g.,
tilting more probability mass toward favorable specialized signals and therefore lower rates—would
generate a negative interest rate wedge observed in the data.

Model comparative statics on interest rate wedge

Figure 5 plots the comparative statics of interest rate wedge ∆r with respect to model parameters,
with regions of zero-weak and positive equilibria highlighted. The top two panels (A and B)
concern information technology parameters α (precision of general signals) and τ (precision of the
specialized signal). The overall pattern is that when information technology improves—either the
general signal precision α (Panel A) or the specialized signal precision τ (Panel B)—the economy
is more likely to be in the zero-weak equilibrium where the nonspecialized Bank B is sufficiently
“weak” and hence makes zero profits. Note, ∆r is discontinuous when πB turns zero, as Bank B

reallocates a probability mass of 1 − F B(r−) > 0 from r to ∞ (see also Panel B in Figure 3).
Therefore, an improvement in signal precision tends to weaken the non-specialized lender even

further. To see the intuition, observe that i) a higher general signal precision α levels the playing
field on general information and hence effectively enlarges the specialized information advantage
of Bank A, and ii) a higher specialized signal precision τ directly boosts Bank A’s information
advantage. Since the effect of private-information-based pricing tends to dominate in a positive-
weak equilibrium, a sufficiently low information technology parameter helps deliver ∆r < 0.

24



Figure 5: Interest rate wedge. Panel A to Panel D depict ∆r = E
[
rA
∣∣ rA < rB ≤ ∞

]
−

E
[
rB
∣∣ rB < rA ≤ ∞

]
as a function of α, τ , 1/qg and r̄. In Panel C, we vary 1/qg but fixing the project

success probability q, i.e., setting qs = q/qg. The positive-weak equilibrium arises when α or τ lies below a
certain value and 1/qg and r̄ exceed a certain value. Baseline Parameters: r̄ = 0.45, qg = 0.8, qs = 0.9, τ
= 1 and αu = αd = α = 0.8. Note τ captures the signal-to-noise ratio of Bank A’s specialized information
technology as s = E [θs|θs + ϵ] and ϵ ∼ N (0, 1/τ).

Panel C conducts another comparative static which captures the relative importance of general
versus specialized information. More specifically, consider varying 1/qg but fixing the project success
probability q, which implies that qs = q/qg. The companion paper He, Huang, and Parlatore
(2024) explains that this comparative static exercise corresponds to the scenario in which general
signals increase their span so that they cover more fundamental states critical to the success of the
funded project.20 Interestingly, this exercise yields an opposite comparative statics to the standard
information technology parameters (α and τ in the top two panels) modeled as signal precision.
Intuitively, now Bank B, equipped with general information that covers more fundamental states,
becomes relatively stronger (rather than weaker when α and/or τ increase), so the credit market
equilibrium is more likely to be in the region of positive-weak (and delivers a negative interest rate
wedge). Motivated by the recent advancements in big data technology, He, Huang, and Parlatore

20As explained in Section 2.3 where we introduce multi-dimensional fundamental states, He, Huang, and Parlatore
(2024) interpret θg ≡

∏N̂

n=1 θn (θs ≡
∏N

n=N̂+1 θn) as the borrower’s “hard” (“soft”) fundamental state, and model
the expansion of the span of “hard” information by an increase in N̂ (so θg covers more fundamental states). In the
short-run, this expansion of N̂ does not alter the span of the soft signal so that θg and θs overlap (as both have their
own N̂ ’s), but in the long-run the coverage of θs also shrinks so that θg and θs do not overlap. Panel C corresponds
to the long-run scenario. For the short-run scenario, the expansion of N̂ induces a correlation between θs and θg,
which makes the analysis a bit involved but still tractable. For more details, see He, Huang, and Parlatore (2024).
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(2024) employ this framework to study the concept of “hardening soft information.”
Finally, Panel D studies the rate cap r which also captures the total surplus in this economy.

When the total surplus increases, the credit market equilibrium moves to the positive-weak region,
which is intuitive. We observe that ∆r jumps down to be negative first, then increases and turns
even positive when r is sufficiently high. This is consistent with Proposition 3, in that the sign of
∆r does not depend on the sign of πB. This result highlights the robustness of our mechanism of
private-information-based pricing.

Connection to the IO literature on imperfect competition and adverse selection

Our study of the interest rate wedge between asymmetrically informed lenders is related to the in-
dustrial organization (IO) literature on imperfect competition and adverse selection (see (Mahoney
and Weyl, 2017; Crawford, Pavanini, and Schivardi, 2018)). Within that body of literature, market
power (of lenders) and adverse selection (of borrowers) are considered distinct market frictions.
Market power pertains to the situation where the demand for the firm’s (differentiated) products
remains relatively inelastic with respect to its price, whereas adverse selection is characterized by
the observation that the effective revenue of marginal consumers decreases as the firm raises its
price.21 Piecing these two forces together, the key takeaway is an interaction effect: while firms
with greater market power should charge higher prices, this standard force should be attenuated
by adverse selection, which hurts marginal revenue when firms raise their prices.

We highlight two points. First, different from the IO literature which takes market power and
adverse selection as two independent market frictions, our theory takes “information asymmetry” as
the primitive, with winner’s curse faced by asymmetrically informed lenders as the only underlying
economic force. Although one could broadly link the above-mentioned market power and adverse
selection to unobservable borrower types, they are different conceptually. First, strictly speaking,
there is no “market power” enjoyed by the specialized lender in our model; money from any funding
source is perfectly fungible just like in Huang (2023). Moreover, there is no “adverse selection”
from borrowers either, because both types of borrowers will take loans at any interest rate.22

Second, prices in the above-mentioned IO literature are “bids” as opposed to “winning bids;”
for instance, Crawford, Pavanini, and Schivardi (2018) only consider bidding prices. Section 4.1 has
highlighted the importance of distinguishing bids and winning bids in the setting of credit market
competition with endogenous rejection, and future research should study whether this difference
can reverse the conclusions from the IO literature.

21In the insurance market example used in Mahoney and Weyl (2017), a higher insurance premium is associated
with lower-quality insurance buyers and hence a higher service cost. In Crawford, Pavanini, and Schivardi (2018)
which studies the enterprise loan market, a higher interest rate may attract worse borrowers or induce riskier projects,
leading to lower interest revenues.

22To the point of market power, Huang (2023) studies the competition between collateral-backed bank lending
(say Citibank) and revenue-based fintech lending (say Square); borrowers view each dollar the same regardless of the
lender’s identity. To the point of adverse selection, as typical in corporate finance literature (e.g., Tirole, 2010) we
are implicitly assuming that both types of borrower receive nonpledgeable private benefits from the project, so they
strictly prefer to take the loan even if r = r.
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Table 1: Interest Rate and Loan Performance

(1) (2) (3) (4) (5) (6)
Interest Rate Non-Performing Loans

Specialized Bank -0.076*** -0.150*** -0.082*** -0.008*** -0.005*** -0.005***
[0.006] [0.007] [0.007] [0.001] [0.001] [0.001]

Log Loan Amount -0.156*** -0.170*** -0.178*** -0.000 -0.000* -0.001**
[0.002] [0.002] [0.002] [0.000] [0.000] [0.000]

Constant 4.992*** 5.118*** 5.178*** 0.045*** 0.047*** 0.049***
[0.019] [0.018] [0.018] [0.002] [0.002] [0.002]

Year-Quarter FE X X X X X X
Purpose FE X X X X X X
Rating Category (1-3) FE X X X X X X
Bank-Year FE X X X X
Industry-Year FE X X
R2 0.31 0.39 0.4 0.031 0.044 0.047
N 353,544 353,537 351,776 353,544 353,537 351,776

Note: In Columns (1) − (3), we regress the loan rate on the fixed effects specified at the bottom of the table and
a dummy denoting whether the firm is borrowing from a bank that is specialized in the industry in which said firm
operates. We define a bank as specialized if it is over-invested by 4% or more in an industry, relative to what would be
expected from diversification. In Columns (4) − (6), we use the same specifications as in previous columns, but make
use of whether the loan in question ever becomes non-performing at any date it is in our sample after its origination.
A loan becomes non-performing if it is ever in arrears, has not been paid down at maturity, or defaults outright.
Standard errors are clustered at the firm-time level and are heteroskedasticity robust while *, **, and *** indicate
significance at the 10%, 5%, and 1% levels, respectively.

4.2 Lower Rates and Better Performance: Empirical Evidence

Our model’s two main testable predictions pertain to differences in loan pricing and performance
between specialized and nonspecialized banks, and we have provided supporting evidence based on
raw differences shown in Figure 1. In this section, we conduct a more rigorous empirical analysis
of these two testable hypotheses, using supervisory data collected by the Federal Reserve System
(Y14Q-H.1) which covers all C&I loans to which a stress-tested bank has committed over one
million USD between 2012 and 2023. In Appendix B, we provide further details on the data,
variable construction, and regression specifications.

To determine whether a bank is specialized in an industry, we look at their “excess specializa-
tion” as defined in Blickle, Parlatore, and Saunders (2023). More specifically, we say that a bank
b is specialized in industry s at time t if they are “over-invested” by over 4% relative to the overall
share of industry s in the overall C&I lending portfolio in our sample, i.e.

LoanAmountb,s,t∑
s LoanAmountb,s,t

− LoanAmounts,t∑
s LoanAmounts,t

≥ 4%.

Under this threshold, the average bank specializes in 2.8 industries; the average overinvestment is
8.9% for specialized banks, while only 0.2% for nonspecialized ones. Our analyses below are robust
to using 3% or 5% as a threshold.
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Baseline results. We consider the following specification that relates our variable of interest
ylibst, either the loan rate or performance, for a bank b’s loan l to borrower i in industry s in quarter-
year t, to a dummy Specializedbst that denotes whether the bank b in question is specialized in the
industry s at time t:

ylibst = β0 + β1 · Specializedbst + β2 · Sizelt + ξbt + σst + ϕrating-category + ωloan-purpose + ϵlibst. (30)

The inclusion of controls and fixed effects in (30) deserves further discussion. In our model,
loans are fixed-size and have the same purpose. Hence, we control for the loan’s size and purpose
to ensure these characteristics do not drive our findings.

Similarly, our model is conditional on firm characteristics that are observable to both lenders.
Banks can partially assess the riskiness of the loan from many observable characteristics such as
EBIT, ROA, and assets-to-debt. Ideally, we would control for these observables to compare loans
to firms with the same “observable” riskiness. However, over 75% of the firms in our sample are
private firms, for many of which we do not have data on performance. Hence, computing traditional
risk metrics is difficult. To address this issue, we use banks’ internal risk ratings, which contain
limited inside information because they must be defensible to Federal Reserve examiners. Using
these ratings, we classify the banks as high-risk, mid-risk, and safe based on the internal ratings of
the loans. We add the potentially time-varying dummies ϕrating-category,t in our regression (30) to
capture the public information on the borrower/loan riskiness.

Columns (1) − (3) in Table 1 show a negative correlation between banks being specialized and
their loan rates in their industry of specialization, where we subsequently introduce bank-year and
industry-year fixed effects to control for any time-varying heterogeneity among banks and industries.
This is the empirical counterpart to the negative interest rate wedge we studied in the previous
section. Magnitude-wise, the identified negative wedge (8∼15 bps) is below the raw difference
of about 40 bps shown in Figure 1, presumably due to better control in our richer specification
in the regression in Eq. (30). Furthermore, Columns (4) − (6) in Table 1 show a significantly
negative correlation between specialization and non-performance.23 As one would expect if bank
specialization is driven by the banks’ informational advantage as modeled in this paper, specialized
lenders pick higher quality loans, which are less likely to turn non-performing later.

Specialization versus competitiveness of loan market Generally speaking, the competitive-
ness in the loan market in an industry is an important determinant of loan prices. In our model,
bank competition is quite stark: the winner takes it all in that a firm borrows from one lender only.
Hence, although firm-fixed effects are usually used to control for borrower-specific time-varying fac-
tors, it is inappropriate to include them in our regression because the firms sorting into specialized
and non-specialized banks is a key feature of the mechanism we highlight. To partially address the
issue, we include the time-varying rating category dummies in our regression in Eq. (30) to absorb

23Non-performing loans are those that fall into arrears, are not paid down by the end of their maturity, default
or require renegotiation due to covenant violation issues. The average non-performance rate of loans throughout our
sample is around 5%.
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Table 2: Interest Rate and Loan Performance: Controlling for Lending Market Com-
petition among Specialized Banks

(1) (2) (3) (4) (5) (6)
Interest Rates Non-Performing Loans

Specialized Bank -0.454*** -0.179*** -0.112*** -0.019*** -0.007 -0.007
[0.037] [0.036] [0.038] [0.005] [0.005] [0.005]

Log Loan Amount -0.157*** -0.171* -0.178** -0.000 -0.001* -0.001**
[0.002] [0.002] [0.002] [0.000] [0.000] [0.000]

Competitive Industry -0.149*** -0.125*** -0.012*** -0.011***
[0.008] [0.007] [0.001] [0.001]

Interaction: Spec. Bank* Comp. Ind. 0.407*** 0.047 0.032 0.012** 0.004 0.002
[0.037] [0.037] [0.039] [0.005] [0.005] [0.005]

Constant 5.120*** 5.230*** 5.178*** 0.055*** 0.056*** 0.049***
[0.020] [0.020] [0.020] [0.002] [0.003] [0.002]

Year-Quarter FE X X X X X X
Purpose FE X X X X X X
Rating Category (1-3) FE X X X X X X
Bank-Year FE X X X X
Industry-Year FE X X
R2 0.31 0.39 0.4 0.031 0.044 0.047
N 353,544 353,537 351,776 353,544 353,537 351,776

Note: In Columns (1) − (3), we regress the loan rate on the fixed effects specified at the bottom of the table and
a dummy denoting whether the firm is borrowing from a bank that is specialized in the industry in which said firm
operates. We define a bank as specialized if it is over-invested by 4% or more in an industry, relative to what would
be expected from diversification. We interact our variable of interest with a dummy that takes the value of 1 if the
industry in question has a “competitive” lending market among specialized lenders, i.e., there are more than one bank
that specializes in that industry. In Columns (4) − (6), we use the same specifications as in previous columns, but
with “non-performing” indicator as the dependent variable. A loan becomes non-performing if it is ever in arrears,
has not been paid down at maturity, or defaults outright. Standard errors are clustered at the firm-time level and
are heteroskedasticity robust while *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

(observable) borrower-specific time-varying factors.
Additionally, competition in our model is between asymmetrically informed lenders while in

practice competition may also occur among specialized banks. To ensure that our results are not
driven by competition among specialized banks, Table 2 expands Table 1 with additional control
for a bank being specialized in a “competitive” industry, where we define the loan market being
competitive for an industry if two or more banks specialize in it. More specifically, we add the
dummy “Competitive Industry,” which indicates whether there is competition among specialized
lenders in that industry, and the interaction between “Specialized Bank” and “Competitive Indus-
try.” Under the alternative mechanism, the specialized lender charges lower rates only because it
faces fiercer competition from other specialized banks, and therefore the significantly negative effect
on “Specialized Bank” in Table 1 would be fully absorbed by the interaction term in Table 2.

Columns (1) − (3) in Table 2 support the economic mechanism proposed by our model, not
the alternative. We observe a negative coefficient for “Competitive Industry,” potentially because
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industries with more specialized lenders have better quality borrowers.24 But the coefficients of
the interaction term are either positive or insignificant across all three specifications (Columns
(1) − (3)), inconsistent with the alternative mechanism of competition among specialized lenders.
Finally, the results on loan performance are not as robust as those on interest rates; while the
point estimates in Columns (4) − (6) are negative in all our specifications, they are not statistically
significant in our most saturated specifications.

4.3 Generalized Information Structure

As explained in Section 2.2, we have assumed a multiplicative setting with two independent funda-
mental states—the general and specialized states. This assumption has two key important features
that drive the tractability of our model, and our solution techniques apply to any generalized
information structure that maintains these two desirable features.

Two key properties for model tractability

Decisive general signal. In many scenarios the computer-based general information signal is
usually used as pre-screening and decisive for loan granting, while the specialized signal collected
by the specialized bank tailors interest rate terms (see Section 2.3). To capture this commonly
observed lending practice, the multiplicative structure makes the “general” state decisive in project
success, making such lending strategies more likely to arise in equilibrium.

Independence conditional on project success. Formally,
g̃A ⊥⊥ g̃B ⊥⊥ s̃ | θ = 1 . (31)

Conditional on project success, all signals—including the specialized one by lender A and two
general ones by both lenders—are independent of each other. One can easily verify that our setting
in Section 2.3 with independent general and specialized states satisfies (31), although tractability
does not rely on independent general and specialized states. Consider the following example studied
by He, Huang, and Parlatore (2024) with θ = θ1θ2θ3, θg = θ1θ2 and θs = θ2θ3. This information
structure generalizes (7) in Section 2.3, while still satisfies (31).25 Since our setting below allows the
general and specialized signal to be correlated, it can be used to study credit market applications
such as data sharing and credit registries that induce correlated lender signals.

Equilibrium characterization under generalized information structure

We now solve for the credit market equilibrium under a general information structure, with two
major assumptions as outlined above. First, lenders only participate given an H general signal,
with parameter restrictions in the same spirit as Assumption 1 but tailored for the generalized

24This hypothesis is further supported by the negative coefficients for “Competitive Industry” in columns (4)−(6),
where we take the non-performing dummy as the dependent variable.

25The multiplicative structure in (7) is the key: θ = 1 implies that all fundamental states {θn, n ∈ 1, ..., N} take
the value of one. Unconditionally, however, the pair-wise correlations of {g̃A, g̃B , s} are all positive, simply because
the general state θg and specialized state θs are correlated.

30



information structure; details are provided in Appendix A.5. Second, conditional on the project’s
state θ = 1, signals are independent across general and specialized and across lenders. Since the
major derivation is also available in He, Huang, and Parlatore (2024), we keep the presentation
minimal here (with detailed analysis available in Appendix A.5).

Consider a specialized signal z ∼ ϕz (z) for z ∈ [z, z] where both z and z can be unbounded.
Denote by µgAgB (z) ≡ P

(
θ = 1

∣∣∣gA, gB, z
)

the posterior probability density for θ = 1, i.e., the
state of project success. Without loss of generality, we assume that µHH (z) strictly increases in z

(as we can always use µHH (z) as a signal; recall the posterior s serves as the signal in the baseline
model given in Section 2). This implies that just as in the baseline, there exists ẑ at which Bank A

starts quoting r, and zx below which it starts rejecting borrowers. Let µgAgB ≡ P
(

θ = 1| gA, gB
)

denote the posterior probability of θ = 1 based on general signals.
Let pgAgB (z) ≡ P

(
gA, gB, z

)
, pgAgB ≡ P

(
gA, gB

)
, and αj

u ≡ P
(
gj = H

∣∣ θ = 1
)

for j ∈ {A, B}
(so two lenders can differ in their precisions in general signals). Finally, let ϕz (z| θ = 1) be the
density of z conditional on θ = 1. The following proposition generalizes Proposition 1.

Proposition 4. (Credit Market Equilibrium under General Information Structure) Lender
j ∈ {A, B} rejects the borrower (by quoting r = ∞) upon gj = L; when gj = H, lender j may make
offers from a common support [r, r] (or reject) with the following properties.

1. Bank A who observes a specialized signal z offers

rA (z) =


min

{
πB+

∫ z

z
pHH(t)dt+pLH∫ z

z
pHH(t)·µHH(t)dt+pLHµLH

− 1, r

}
, for z ∈ [zx, z]

∞, for z ∈ [z, zx) .

(32)

This equation pins down r = rA(z), ẑ = sup
{

z : rA(z) = r
}

, and zx = sup
{

z : rA(z) = ∞
}

.

2. Bank B makes an offer by randomizing its rate according to:

F B (r) =


αA

u

αB
u

[
1 −

∫ zA(r)
z ϕz ( t| θ = 1) dt

]
, for r ∈ [r, r) ,

1 − 1{πB=0} ·
{

1 − αA
u

αB
u

[
1 −

∫ ẑ
z ϕz ( t| θ = 1) dt

]}
, for r = r.

(33)

3. The endogenous non-specialized Bank B’s profit πB ≥ 0 is determined similarly as Lemma 2,
with detailed expression provided in Appendix A.5.

Proposition 4 shows that the simple equilibrium structure survives under the more generalized
information structure. This is because lenders only consider the marginal good type borrower who
is payoff relevant, so the key argument in the baseline model still applies given signals’ indepen-
dence conditional on project success. As a result, the effects of specialized and general signals on
equilibrium strategies are separable, and a simple characterization as in Proposition 4 ensues.
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4.4 Information Acquisition and Endogenous Specialization

Although the information structure is likely to be fixed in the short run, in the long run, banks
can choose what type of information—general and/or special— they want to have about borrowers.
In this section, we study the lender’s information acquisition problem and derive conditions under
which the information structure assumed in the baseline model is an equilibrium outcome.

Setting and information acquisition technologies. We introduce another borrower firm—
which we call b—in addition to the borrower firm a in our baseline model. We may equally interpret
a and b as different industries. Two types of technologies respectively relate to “general” information
and “specialized” information. For the “general” information technology, a lender j invests once in
equipment at a cost of κg, which allows the lender to process data (say financial and operating data)
and produce a private general information signal gj

i ∈ {H, L} for each firm i = a, b. This captures
the idea that general information is collected via standardized and transferable data such as credit
reports and income statements, so once the IT equipment, software, and APIs are installed, credit
analysis is easy to implement on multiple firms. As before gj

i ∈ {H, L} are independent (across two
lenders and two firms) conditional on the general fundamental θg.

For the “specialized” information technology, a lender needs to collect specialized information on
firms one by one. Lender i specializes in firm j if it spends κs to acquire a specialized- information-
based private signal sj

i , whose distribution follows the CDF Φ(s) and pdf ϕ(s) for s ∈ [0, 1]. If a
bank wants to acquire specialized information about both firms, it needs to pay 2κs.

We are interested in the following equilibrium: Bank A (B) endogenously specializes in firm a

(b)—i.e., acquires both general and specialized signals on firm a (b)—and competes with the other
non-specialized Bank B (A) who only acquires general signal on firm a (b). Given this equilibrium
structure, we omit the indexation for firm i from now on when referring to the specialized signals.
The baseline model analyzed in Section 3 is the subgame for either firm following the equilibrium
information acquisition strategies.

Incentive compatibility conditions. Banks make their information acquisition decisions simul-
taneously, and we assume that information acquisition is observable when banks enter the credit
market competition game. Therefore a lender’s deviation from the proposed equilibrium informa-
tion acquisition will lead to a different information structure in the credit market competition, and
we need to derive equilibrium lending profits in all possible subgames following a deviation.

Denote by Πi
j (Ig

A, Is
A, Is

B, Is
B) the expected lending profits of bank j in firm i when the infor-

mation structure in firm i is given by (Ig
A, Is

A, Ig
B, Is

B, ), where Ig
j and Is

j take value of one if bank j

acquired general and specialized signals in firm i, respectively, and zero otherwise. The symmetry
on industries implies that a bank’s expected lending profits in firm i only depend on the information
structure in that industry but not on the industry itself, i.e.,

Πa
j (Ig

A, Is
A, Is

B, Ig
B) = Πb

j (Ig
A, Is

A, Ig
B, Is

B) . (34)
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Therefore, we drop index i from the expected lending profits. Moreover, we focus on Bank A’s
incentives in what follows since the no deviation conditions for banks A and B are symmetric.

Bank A can deviate along three dimensions: it can choose not to acquire general information,
it can choose not to acquire specialized information about firm a, and it can choose to acquire
specialized information in firm b. Bank A’s incentives to deviate along these dimensions will depend
on the costs of acquiring information. As one would expect, the lower the cost of acquiring general
information, the more likely Bank A has incentives to acquire general information and not deviate
along this dimension. For deviations along the specialized information dimension, the cost of
acquiring specialized information has to be low enough such that it is worth acquiring specialized
information in firm a and having an informational advantage over Bank B in this firm but high
enough such that it is not worth acquiring specialized information in firm b to stop being the less
informed lender. This intuition can be formally stated in the following incentive compatibility
constraints. Bank A does not want to deviate by

1. not acquiring general information:
ΠA (Ig

A = 1, Is
A = 1, Ig

B = 1, Is
B = 0) − ΠA (Ig

A = 0, Is
A = 1, Ig

B = 1, Is
B = 0)+

ΠA (Ig
A = 1, Is

A = 0, Ig
B = 1, Is

B = 1) − ΠA (Ig
A = 0, Is

A = 0, Ig
B = 1, Is

B = 1) ≥ κg; (G)

2. not acquiring general information nor specialized information in firm a:
ΠA (Ig

A = 1, Is
A = 1, Ig

B = 1, Is
B = 0) − ΠA (Ig

A = 0, Is
A = 0, Ig

B = 1, Is
B = 0)+

ΠA (Ig
A = 1, Is

A = 0, Ig
B = 1, Is

B = 1) − ΠA (Ig
A = 0, Is

A = 0, Ig
B = 1, Is

B = 1) ≥ κg + κs; (NI)

3. not acquiring specialized information in firm a:
ΠA (Ig

A = 1, Is
A = 1, Ig

B = 1, Is
B = 0) − ΠA (Ig

A = 1, Is
A = 0, Ig

B = 1, Is
B = 0) ≥ κs; (Sa)

4. and, acquiring specialized information in firm b:
ΠA (Ig

A = 1, Is
A = 1, Ig

B = 1, Is
B = 1) − ΠA (Ig

A = 1, Is
A = 0, Ig

B = 1, Is
B = 1) ≤ κs. (NSb)

Essentially, constraints (G) and (NI) impose an upper bound on κg so that Bank A wants to
acquire general information. Analogously, constraints (NI) and (Sa) impose an upper bound on κs

so that Bank A wants to acquire specialized information in firm a, while Constraint (NSb) imposes
a lower bound on κs to ensure it does not want to be specialized in firm b.

Deviation payoffs. We aim to show that there exist cost parameters κg and κs such that the
conditions above hold for some parameterization. Thus, we need to characterize the deviation
payoffs. The expressions for ΠA (Ig

A, Is
A, Ig

B, Is
B) are in Appendix A.6. One noteworthy point is that

ΠA (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 1) corresponds to a generalization of Riordan (1993), where each
(symmetric) lender has a continuous special signal and also a binary general signal.

Parameter conditions for equilibrium with specialized lending. In our setting an unin-
formed bank always makes zero equilibrium profits (Milgrom and Weber, 1982):

ΠA (Ig
A = 0, Is

A = 0, Ig
B = 1, Is

B = 0) = ΠA (Ig
A = 0, Is

A = 0, Ig
B = 1, Is

B = 1) = 0.
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It then follows that Constraint (NI) is equivalent to the participation constraint of Bank A. More-
over, this condition implies that for any acquisition cost of specialized signal κs such that (Sa) is
satisfied, we can always find a cost of general information κg small enough to satisfy (G) and (NI).
Therefore an equilibrium with lending specialization emerges as long as κs satisfies the bounds
imposed by (Sa) and (NSb). Intuitively, we need that the benefits from acquiring specialized in-
formation to become the more informed lender (e.g., getting sa

A for Bank A, which is part of the
equilibrium strategy in the baseline) are greater than the benefits from acquiring specialized in-
formation to stop being the less informed lender (e.g., getting sb

A for Bank A which deviates from
our equilibrium in the baseline). This is confirmed in Figure 6 in Appendix A.6, which depicts the
range of information acquisition costs κg and κs so that the conjectured information structure with
a specialized lender and the ensuring lending competition indeed form an equilibrium.

5 Concluding Remarks

One of banks’ main roles in the economy is producing information to allocate credit. In this paper,
we show that the nature of information produced by banks affects the credit market equilibrium and
the degree of competition among banks. By considering specialized and general information, we
can explain empirical patterns in bank lending specialization—the negative interest rate wedge—
that are unexplained by canonical models where information technology is solely characterized by
the signal’s precision. In a companion paper with a similar credit market competition setting,
He, Huang, and Parlatore (2024) distinguishes between the quality (signal precision) and breadth
(information span) of information, a distinction that is crucial to understanding the changing land-
scape in the credit market due to technological advances related to data gathering and processing
that lead to the hardening of soft information.

From a modeling perspective, including a continuously distributed signal within a credit market
equilibrium enables us to examine private-information-based pricing, a pertinent aspect of signifi-
cant importance in the banking sector in practice. Furthermore, by incorporating both specialized
and general information—which reflect potentially many more underlying states—among asym-
metric lenders, our paper markedly advances the field of common-value auction literature involving
such asymmetrically informed lenders in which each lender possesses private information (in con-
trast to Milgrom and Weber (1982) where one bidder knows strictly more than the other). We
fully characterize the equilibrium in closed form and anticipate broader applications based on our
framework and solution methodology.
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A Technical Appendices

A.1 Credit Competition Equilibrium

Proof of Lemma 1

Proof. Note that the property of no gaps implies common support [r, r]. This is because, if a
bank’s interest rate offering has a larger lower bound or a smaller upper bound interest rate than
its competitor’s, this is one example of gaps in the first bank’s support.

To show that the distributions have no gap, suppose that, say, the support of Bank B’s interest
rate offering F B has a gap (r1, r2) ⊂ [r, r].Then F A should have no weight in this interval either,
as any rA (s) ∈ (r1, r2) will lead to the same demand for Bank A and so a higher r will be more
profitable. It follows that at least one lender, whose competitor’s interest rate offering does not
have a mass point at r1 (it is impossible that both distributions have a mass point at r1), has a
profitable deviation by revising r1 to r ∈ (r1, r2). Contradiction.

Regarding point mass, suppose that one distribution, say F B has a mass point at r̃ ∈ [r, r).
Then Bank A would not quote any rA (s) ∈ [r̃, r̃ + ϵ] and it would strictly prefer quoting rA = r̃ − ϵ
instead. In other words, the support of F A must have a gap in the interval [r̃, r̃ + ϵ]. This contradicts
the property of no gaps which we have shown. Finally, it is impossible that both distributions have
a mass point at r.

A.2 Proof of Proposition 1

Proof. This part proves that Bank A’s equilibrium interest rate quoting strategy as a function of
specialized signal rA (s) is always decreasing; this implies that the FOC that helps us derive Bank
A’s strategy also ensures the global optimality.

Write Bank A’s value ΠA (r, s) as a function of its interest rate quote and specialized signal, in
the event of gA = H and s. (We use π to denote the equilibrium profit but Π for any strategy.)
Recall that Bank A solves the following problem:

max
r

ΠA (r, s) = pHH︸ ︷︷ ︸
gA=H,gB=H

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

[µHHs (1 + r) − 1] + pHL︸︷︷︸
gA=H,gB=L

[µHLs (1 + r) − 1] (35)

with the following FOC:

0 = pHH

[
−dF B (r)

dr

]
︸ ︷︷ ︸

lost customer

µHHs (1 + r) − 1︸ ︷︷ ︸
customer return

+ pHH

[
1 − F B (r)

]
︸ ︷︷ ︸

customer

µHHs︸ ︷︷ ︸
MB of customer

+pHLµHLs. (36)

One useful observation is that on the support, it must hold that µHHs (1 + r) − 1 > 0; otherwise,
µHLs (1 + r) − 1 < µHHs (1 + r) − 1 ≤ 0, implying that Bank A’s profit is negative (so it will exit).

Lemma 3. Consider s1, s2 in the interior domain with corresponding interest rate quote r1 and
r2. The marginal value of quoting r2 for type s = s1 is

ΠA
r (r2, s1) = s2 − s1

µHHs2 (1 + r2) − 1

{
pHH

[
1 − F B (r2)

]
µHH + pHLµHL

}
and its sign depends on the sign of s2 − s1.
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Proof. Evaluating the FOC (36) of type s1 but quoting r2:

ΠA
r (r2, s1) = pHH

[
−dF B (r2)

dr

]
[µHHs1 (1 + r2) − 1] + pHH

[
1 − F B (r2)

]
µHHs1 + pHLµHLs1.

(37)
FOC at type s2 yields

ΠA
r (r2, s2) = pHH

[
−dF B (r2)

dr

]
[µHHs2 (1 + r2) − 1] + pHH

[
1 − F B (r2)

]
µHHs2 + pHLµHLs2 = 0,

or
dF B (r2)

dr
=

pHH

[
1 − F B (r2)

]
µHHs2 + pHLµHLs2

pHH [µHHs2 (1 + r2) − 1]
. (38)

Plugging in this term to (37), ΠA
r (r2, s1) becomes

− µHHs1 (1 + r2) − 1
µHHs2 (1 + r2) − 1

{
pHH

[
1 − F B (r2)

]
µHHs2 + pHLµHLs2

}
+ pHH

[
1 − F B (r2)

]
µHHs1 + pHLµHLs1

=
[

s1 − µHHs1 (1 + r2) − 1
µHHs2 (1 + r2) − 1 · s2

]{
pHH

[
1 − F B (r2)

]
µHH + pHLµHL

}
= (s2 − s1) ·

pHH

[
1 − F B (r2)

]
µHH + pHLµHL

µHHs2 (1 + r2) − 1 ,

which is the claimed marginal benefit of quoting r2 for type s1. Its sign depends on s2 − s1 because
the denominator is positive as we noted right after Eq. (36).

Lemma 3 has three implications. First, as long as rA (·) is (strictly) increasing in some segment,
then Bank A would like to deviate in this segment. To see this, suppose that r1 > r2 when s1 > s2
for s1, s2 arbitrarily close. Because Lemma 1 has shown that Bank A’s strategy is smooth, r2 is
arbitrarily close to r1. Then ΠA

r (r2, s1) < 0, implying that the value is convex and the Bank A at
s1 (who in equilibrium is supposed to quote r1) would like to deviate further.

Second, the monotonicity implied by Lemma 3 helps us show that Bank A uses a pure strategy.
To see this, for any ŝ ≥ s1 > s2 that induce interior quotes r1, r2 ∈ [r, r), however close, in
equilibrium we must have sup rA(s1) < inf rA(s2) by monotonicity. Combining this with Part 3
of Lemma 1, i.e., the induced distribution F A(·) is atomless except for at r and has no gaps, we
know that Bank A must adopt a pure strategy in the interior of [r, r), or for s ≤ ŝ. Finally, on
s < ŝ Bank A can quote either r or ∞ which generically gives different values; this then rules out
randomization.

Third, if rA (·) is decreasing globally over S, then the FOC is sufficient to ensure global opti-
mality. Consider a type s1 who would like to deviate to ř > r1; then

ΠA (ř, s1) − ΠA (r1, s1) =
∫ ř

r1
V A

r (r, s1) dr.

Given the monotonicity of r (s), we can find the corresponding type s (r) for r ∈ [r1, ř]. From
Lemma 3 we know that

ΠA
r (r, s1) = (s (r) − s1)

pHH

[
1 − F B (r)

]
µHH + pHLµHL

µHHs (r) (1 + r) − 1
,

which is negative given s (r) < s1. Therefore the deviation gain is negative. Similarly, we can show

38



a negative deviation gain for any ř < r1.
Next, we show that rA (·) is single-peaked over the space of S = [0, 1].

Lemma 4. Given any exogenous πB ≥ 0, rA (·) single-peaked over S = [0, 1] with a maximum
point.

Proof. When r ∈ [r, r), the derivative of rA (s) in Eq. (13) with respect to s is

drA (s)
ds

=

pHHϕ (s)


M1(s)<0, and M ′

1(s)<0︷ ︸︸ ︷
pHHµHH

[∫ s

0
tϕ (t) dt − sΦ (s)

]
+

M2(s)?0, but M ′
2(s)<0︷ ︸︸ ︷

pLHµLHqs −
(
πB + pLH

)
µHHs


(pHHµHH

∫ s
0 tϕ (t) dt + pLHµLHqs)2 .

As
∫ s

0 tϕ (t) dt < sΦ (s), the first term in the bracket M1 (s) < 0, and

M ′
1 (s) = −pHHµHHΦ(s) < 0.

For M2 (s) = pLHµLHqs −
(
πB + pLH

)
µHHs, it has an ambiguous sign, but is decreasing in s. This

implies that M1 (s) + M2 (s) decreases with s. It is easy to verify that M1(0) + M2(0) > 0 and
M1(1) + M2(1) < 0. Therefore rA(s) first increases and then decreases, i.e. single-peaked.

Suppose that the peak point is s̃; then Bank A should simply charge r (s) = r̃ for s < s̃ for
better profit. This is the standard “ironing” technique and we therefore define the following ironed
strategy formally (here, we also take care of the capping r ≤ r):

rA
ironed (s) ≡ sup

t∈[s,1]
min

(
rA (t) , r

)
.

By definition rA
ironed (s) is monotonely decreasing.

We now argue that in equilibrium, πB and r adjust so that rA (·) is always monotonely decreasing
over [x, 1]. (Since we define rA (s) = ∞ for s < x, monotonicity over the entire signal space [0, 1]
immediately follows.) There are two subcases to consider.

1. Suppose that r̃ = r. In this case, rA (s) in Eq. (13) used in Lemma 3 and 4 does not apply
to s < s̃ because the equation is defined only over the left-closed-right-open interval [r, r) .
Instead, rA (s) in this region is determined by Bank A’s optimality condition: as rA does
not affect the competition from Bank B (which equals F B (r−)), Bank A simply sets the
maximum possible rate rA (r) = r unless it becomes unprofitable (for s < x). (This is our
zero-weak equilibrium with πB = 0, and there is no “ironing” in this case.)

2. Suppose that r̃ < r; then bank A quotes r̃ for all s < ŝ. But this is not an equilibrium—Bank
A now leaves a gap in the interval [r̃, r], contradicting with Lemma 1 (there, we rule out gaps
in equilibrium). Intuitively, Bank A is too aggressive, and Bank B always would like to raise
its quotes inside [r̃, r] to r. In equilibrium, πB and r adjust upward, so that the peak point
s̃ coincides with r, resulting in no “ironing” in this case either. (This is our positive-weak
equilibrium with πB > 0.)
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Proof of Lemma 2 We explain the logic of the proof here. Note that sbe
B is the highest specialized

signal under which Bank A’s offer hits r, given πB = 0. Moreover, recall that sbe
A is the level of

the specialized signal under which Bank A just breaks even when quoting r. If sbe
B < sbe

A , then we
know s hits sbe

A (i.e., Bank A hits zero profit) first when s goes down from the top, implying that
Bank A will lose money upon at s = sbe

B < sbe
A . Combining these two pieces, we know that quoting

r at sbe
B —which is under the implicit assumption of πB = 0—must be off-equilibrium for Bank A.

Therefore in equilibrium πB > 0 and Bank A withdraws itself upon s < x = ŝ = sbe
A . If on the

other hand sbe
B ≥ sbe

A , we are in the alternative scenario where ŝ = sbe
B and πB = 0; Bank A who is

making a positive profit at sbe
B will keep quoting r for s < sbe

B , until s < x upon which it exits.

Proof. First, we argue that equilibrium ŝ ≡ arg sups

{
s : rA (s) ≥ r

}
either equals sbe

A or sbe
B . To

see this, if πB = 0, we have ŝ = sbe
B by construction. If πB > 0, then Bank B always makes an offer

upon H, i.e., F B (r) = 1. We also know that F B (r−) = 1 −
∫ sA(r)=ŝ+

0 tϕ(t)dt

qs
< 1, because Bank

A must reject the borrower when s realizes as close to 0 and so ŝ > 0. Hence, F B (r) has a point
mass at r. It follows that F A (r) is open at r: ŝ = x and πA

(
rA (ŝ) |ŝ

)
= 0, which is exactly the

definition of sbe
A , so ŝ = sbe

A in this case.
Now we prove the claim in this lemma. In the first case of sbe

B < sbe
A , we have ŝ ≤ sbe

A and

thus Bank A’s probability of winning when quoting rA = r is at most
∫ sbe

A
0 tϕ(t)dt

qs
≥
∫ ŝ

0 tϕ(t)dt

qs
=

1−F B (r−). The definition of sbe
A says that Bank A upon sbe

A breaks even when quoting rA
(
sbe

A

)
= r

and facing this most favorable winning probability
∫ sbe

A
0 tϕ(t)dt

qs
. Then upon a worse specialized signal

sbe
B < sbe

A , Bank A must reject the borrower because offering r leads to losses, which rules out ŝ = sbe
B .

According to our earlier observation of ŝ = sbe
B or sbe

A , we have ŝ = sbe
A and πB > 0 in this case,

where πB could be characterized from Eq. (12) at r = r.
In the second case of sbe

B ≥ sbe
A , we have ŝ ≤ sbe

B and thus Bank B’s probability of winning when
quoting rB = r is at most Φ

(
sbe

B

)
≥ Φ (s) = 1 − F A (r−). The definition of sbe

B says that Bank

B breaks even when quoting rB = r and facing this most favorable winning probability Φ
(
sbe

B

)
.

Then if the competition from A were more aggressive, say 1 − F A (r−) = Φ
(
sbe

A

)
, Bank B would

make a loss when quoting r, so ŝ = sbe
A cannot support an equilibrium. Hence, in this case, ŝ = sbe

B

and πB = 0. In addition,

0 =pHH
∫ sbe

A
0 tϕ (t) dt

qs

[
µHHsbe

A (1 + r) − 1
]

+ pHL

[
µHLsbe

A (1 + r) − 1
]

=pHH
∫ sbe

B
0 tϕ (t) dt

qs
[µHHx (1 + r) − 1] + pHL [µHLx (1 + r) − 1]

≥pHH
∫ sbe

A
0 tϕ (t) dt

qs
[µHHx (1 + r) − 1] + pHL [µHLx (1 + r) − 1] ,

where the first equality is the definition of sbe
A , the second equality is Bank A’s equilibrium break-

even condition 0 = πA (r|x), and the last inequality uses sbe
B ≥ sbe

A in this case. Hence, x ≤ sbe
A ≤

sbe
B = ŝ.
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A.3 Proof of Proposition 2 and Calibration

This part studies canonical models where each lender has a (general) binary signal gj for j ∈ {A, B},

P(gj = H|θ = 1) = αj
u, P(gj = L|θ = 0) = αj

d.

F j(r) with j ∈ {A, B} indicates the distribution of lender j’s interest rate offering.

Lemma 5. For any r ∈ [r, r), we have

F B (r)
F A (r)

= αA
u

αB
u

,
dF B (r) /dr

dF A (r) /dr
= αA

u

αB
u

.

Proof. For any r ∈ [r, r), lenders’ profit functions are

πA = pHH︸ ︷︷ ︸
B gets H

(
1 − F B (r)

)
︸ ︷︷ ︸

wins

[µHH (r + 1) − 1] + pHL︸︷︷︸
B gets L

[µHL (r + 1) − 1] , (39)

πB = pHH︸ ︷︷ ︸
A gets H

(
1 − F A (r)

)
︸ ︷︷ ︸

wins

[µHH (r + 1) − 1] + pLH︸︷︷︸
A gets L

[µLH (r + 1) − 1] . (40)

These two equations imply that

F B (r)
F A (r)

= pHH [µHH (r + 1) − 1] + pHL [µHL (r + 1) − 1] − πA

pHH [µHH (r + 1) − 1] + pLH [µLH (r + 1) − 1] − πB
. (41)

And, evaluating Eq. (39), (40) at r = r and using F A (r) = F B (r) = 1 gives lenders’ profits:

πA (r) = pHH [µHH (r + 1) − 1] + pHL [µHL (r + 1) − 1] ,

πB (r) = pHH [µHH (r + 1) − 1] + pLH [µLH (r + 1) − 1] .

Using these in Eq. (41), we have

F B (r)
F A (r)

= (pHHµHH + pHLµHL) (r − r)
(pHHµHH + pLHµLH) (r − r)

=
P
(
gA = H, θ = 1

)
P (gB = H, θ = 1)

= αA
u

αB
u

.

Here, F B (r) = αA
u

αB
u

F A (r) immediately implies that dF B(r)/dr
dF A(r)/dr

= αA
u

αB
u

.

Proof of Proposition 2

Part 1: Bad-news information structure. This structure corresponds to

αA
u = αB

u = 1, 1 > αA
d > αB

d > 0;

i.e., lenders only make Type II mistakes. In this part, we use αj ≡ αj
d as a lender’s signal precision,

which captures the probability that bad-type borrowers are correctly identified as L, and αA > αB.

Proof. From Lemma 5, lender bidding strategies F A (·) , F B (·) over [0, r] ∪ {∞} satisfy

F B (r) =
{

F A (r) , r ∈ [0, r) ,

F A (r−) , r = r.

41



We use this result to express ∆r as a function of F B (r). Specifically,

E
[

rA
∣∣ rA < rB ≤ ∞

]
=

pHH

∫ r

r

[
1 − F B (r)

]
rdF A (r) + pHL

∫ r

r
rdF A (r)

pHH

∫ r

r
[1 − F B (r)] dF A (r) + pHL

=
pHH

∫ r

r

[
1 − F B (r)

]
rdF B (r) + pHHr

[
1 − F B (r)

]2 + pHL

[
r −
∫ r

r
F B (r) dr

]
pHH

∫ r

r
[1 − F B (r)] dF B (r) + pHH [1 − F B (r)]2 + pHL

= r −
pHH

∫ r

r

{
1
2 − [1−F B(r)]2

2

}
dr + pHL

∫ r

r
F B (r) dr

pHH

{
− [1−F B(r)]2

2 + 1
2

}
+ pHH [1 − F B (r)]2 + pHL

,

and

E
[
rB
∣∣∣ rB < rA ≤ ∞

]
=

pHH
∫ r

r

[
1 − F A (r)

]
rdF B (r) + pLH

∫ r
r rdF B (r)

pHH
∫ r

r [1 − F B (r)] dF B (r) + pLHF B (r)

=
pHH

∫ r
r

[
1 − F B (r)

]
rdF B (r) + pLH

[
rF B (r) −

∫ r
r F B (r) dr

]
pHH

∫ r
r [1 − F B (r)] dF B (r) + pLHF B (r)

=r −
pHH

∫ r
r

{
1
2 − [1−F B(r)]2

2

}
dr + pLH

∫ r
r F B (r) dr

pHH

{
1
2 − [1−F B(r)]2

2

}
+ pLHF B (r)

.

Hence,

∆r ≡ E
[

rA
∣∣ rA < rB ≤ ∞

]
− E

[
rB
∣∣ rB < rA ≤ ∞

]
=

pHH

∫ r

r

{
1
2 − [1−F B(r)]2

2

}
dr + pLH

∫ r

r
F B (r) dr

pHH

{
1
2 − [1−F B(r)]2

2

}
+ pLHF B (r)

−
pHH

∫ r

r

{
1
2 − [1−F B(r)]2

2

}
dr + pHL

∫ r

r
F B (r) dr

pHH

{
− [1−F B(r)]2

2 + 1
2

}
+ pHH [1 − F B (r)]2 + pHL

.

(42)

Now we plug in the expressions of F B (r) to show that the canonical model leads to counterfactual
predictions when r is relatively small. From He, Huang, and Zhou (2023),

F B (r) = r − r

r − r (1 − αA)
,

and the key terms are accordingly∫ r

r
F B (r) dr = r − r − αAr ln

(
r

r
− 1 + αA

)
+ αAr ln αA,

∫ r

r

1
2

−

[
1 − F B (r)

]2
2

 dr = r

2
·

(
r
r − 1

)2

r
r − 1 + αA

.

Let M (r) ≡ r
r −

(
1 − αA

)
. Multiply ∆r by both denominators in Eq. (42) (which are positive as

42



the probability of lending), and one can show that

∆r ∝pHH · rαA

2 ·
(

M − αA

M

)2(
pHHαA

M
+ pLH

)
+ pHH

2

[∫ r

r

F B (r)

]
(pLH + pHL)

(
αA

M

)2

+ pLHpHL
αA

M

[∫ r

r

F B (r)

]
+ (pHL − pLH) pHH

2 · r ·
(
M − αA

)2

M
− (pHL − pLH) pHH

2

[∫ r

r

F B (r) dr

]
.

Note that only the last term − (pHL − pLH) pHH
2

[∫ r
r F B (r) dr

]
is negative. In addition, this term

approaches zero as r → r = (1−q)(1−αB)
q , and

∂
[∫ r

r F B (r) dr
]

∂r
= 1 − αA

M
> 0.

Therefore, there exists some threshold r̂ such that when r ≤ r̂, the canonical model has counter-
factual prediction ∆r > 0.

Part 2: Symmetric information structure. This structure corresponds to

αj ≡ αj
u = αj

d ∈
(1

2
, 1
]

, for j ∈ {A, B}.

In this context, the specialized lender Bank A’s signal is more precise, αA > αB.

Lemma 6. E
[
rA
∣∣∣ rA < rB ≤ ∞

]
≥ E

[
rB
∣∣∣ rB < rA ≤ ∞

]
is equivalent to the following inequality

P
(
xA = H

)
αB

αA

∫ r
r F B (r) dr + pHH

∫ r
r F A (r) rdF B (r) − pHHr αB

2αA

(
F B (r)

)2

pHH

[
1 − F B (r) + αB

2αA (F B (r))2
]

+ pHL

≤
P
(
xB = H

) ∫ r
r F B (r) dr + pHH

∫ r
r F A (r) rdF B (r) − pHH

αB

2αA

(
F B (r)

)2
r

pHH

[
F B (r) − αB

2αA (F B (r))2
]

+ pLHF B (r)
.

Proof. The expected rate of a lender’s loan is

E
[
rA
∣∣∣ rA < rB ≤ ∞

]
≜

pHH︸ ︷︷ ︸
B gets H

∫ r
r

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

rdF A (r) + pHL︸︷︷︸
B gets L

∫ r
r rdF A (r)

pHH
∫ r

r [1 − F B (r)] dF A (r) + pHL

, (43)

E
[
rB
∣∣∣ rB < rA ≤ ∞

]
≜

pHH︸ ︷︷ ︸
A gets H

∫ r
r

[
1 − F A (r)

]
︸ ︷︷ ︸

B wins

rdF B (r) + pLH︸︷︷︸
A gets L

∫ r
r rdF B (r)

pHH
∫ r

r [1 − F A (r)] dF B (r) + pLHF B (r)
. (44)

In the first step, we rewrite the equations as functions of dF B (r) and dr which are continuous
at r. Using integration by parts and Lemma 5, we have∫ r

r
rdF A (r) = rF A (r)

∣∣∣r
r

−
∫ r

r
F A (r) dr = r −

∫ r

r
F A (r) dr = r − αB

αA

∫ r

r
F B (r) dr.
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In the last step, although Lemma 5 does not apply at r = r, it is of zero measure. Similarly, the
probability of Bank A winning in competition is∫ r

r

[
1 − F B (r)

]
dF A (r) =

∫ r

r
dF A (r) −

∫ r

r
F B (r) dF A (r)

=︸︷︷︸
integration by parts

1 −
[
F B (r) −

∫ r

r
F A (r) dF B (r)

]

=︸︷︷︸
F A= αB

αA F B

1 − F B (r) +
∫ r

r

αB

αA
F B (r) dF B (r)

=1 − F B (r) + αB

2αA

(
F B (r)

)2
,

and thus the probability of Bank B winning is the residual∫ r

r

[
1 − F A (r)

]
dF B (r) = F B (r) − αB

2αA

(
F B (r)

)2
.

Similarly, ∫ r

r
F B (r) rdF A (r) =

∫ r−

r
F B (r) rdF A (r) + F B (r) r

[
1 − F A (r−)]

=︸︷︷︸
F A= αB

αA F B ,F B(r−)=F B(r)

∫ r

r
F A (r) rdF B (r) + F B (r) r

(
1 − αB

αA
F B (r)

)

Plug these terms into Eq. (43) and (44), and we have

E
[

rA
∣∣ rA < rB ≤ ∞

]
=

P
(
gA = H

) ∫ r

r
rdF A (r) − pHH

∫ r

r
F B (r) rdF A (r)

pHH

[
1 − F B (r) + αB

2αA (F B (r))2]+ pHL

= r −
P
(
gA = H

)
αB

αA

∫ r

r
F B (r) dr + pHH

∫ r

r
F A (r) rdF B (r) − pHHr αB

2αA

(
F B (r)

)2

pHH

[
1 − F B (r) + αB

2αA (F B (r))2]+ pHL

;

for Bank B,

E
[

rB
∣∣ rB < rA ≤ ∞

]
=

P
(
gB = H

) ∫ r

r
rdF B (r) − pHH

∫ r

r
F A (r) rdF B (r)

pHH

[
F B (r) − αB

2αA (F B (r))2]+ pLHF B (r)

= r −
P
(
gB = H

) ∫ r

r
F B (r) dr + pHH

∫ r

r
F A (r) rdF B (r) − pHH

αB

2αA

(
F B (r)

)2
r

pHH

[
F B (r) − αB

2αA (F B (r))2]+ pLHF B (r)
.

Therefore, E
[
rA
∣∣∣ rA < rB ≤ ∞

]
≥ E

[
rB
∣∣∣ rB < rA ≤ ∞

]
is equivalent to the stated inequality.

Lemma 7. In the case of q > 1
1+r , when αB ↑ αA, there exists a threshold α̂

(
αA
)

< αA so that

when αB > α̂
(
αA
)

we have F B (r) = 1.
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Proof. Let αB = αA − ϵ. Bank B’s profit could be pinned down by setting r = r−,

πB =pHH

[
1 − F A (r−)] [µHH (r + 1) − 1] + pLH [µLH (r + 1) − 1]

≥︸︷︷︸
F A(r−)≤1

pLH (µLH (r + 1) − 1)

=︸︷︷︸
αB=αA−ϵ

q
(
1 − αA

) (
αA − ϵ

)
r − (1 − q) αA

(
1 −

(
αA − ϵ

))
=
(
1 − αA

)
αA [qr − (1 − q)] − ϵ

[
q
(
1 − αA

)
r + (1 − q) αA

]
.

Hence, when ϵ <
(1−αA)αA[qr−(1−q)]
q(1−αA)r+(1−q)αA , or equivalently, when

αB > α̂
(
αA
)

= αA −

(
1 − αA

)
αA [qr − (1 − q)]

q (1 − αA) r + (1 − q) αA
,

we have πB > 0 and F B (r) = 1.

Proof of Proposition 2 Part 2

Proof. There are two cases depending on whether q < 1
1+r , i.e., whether the project has a negative

NPV at prior.
The first case of q < 1

1+r is easier. When αB ↑ αA and αA − αB = o
(
q − 1

1+r

)
, Bank B’s signal

distributions and strategies approach that of Bank A except at r = r (Lemma 5):

F B (r) ↑ F A (r) for any r ∈ [r, r) , and F B (r) < 1 = F A (r) .

Then from Lemma 6,

r − E
[
rA
∣∣∣ rA < rB ≤ ∞

]
r − E [rB| rB < rA ≤ ∞]

=
pHH

[
F B (r) − 1

2

(
F B (r)

)2
]

+ pLHF B (r)

pHH

[
1 − F B (r) + 1

2 (F B (r))2
]

+ pHL

≤︸︷︷︸
RHS set F B(r)=1

1
2pHH + pLH

1
2pHH + pHL

= 1, (45)

where the last inequality holds because the ratio is increasing in F B (r). (F B (r) − 1
2

(
F B(r)

)2

in both the numerator and denominator is monotone increasing when F B(r) ∈ (0, 1].) Hence,
E
[
rA
∣∣∣ rA < rB ≤ ∞

]
≥ E

[
rB
∣∣∣ rB < rA ≤ ∞

]
always holds in this case.

Now consider the second case q ≥ 1
1+r . When αB → αA, since E

[
rA
∣∣∣ rA < rB ≤ ∞

]
decreases

while E
[
rB
∣∣∣ rB < rA ≤ ∞

]
increases in F B (r), it is sufficient to show that the equivalent inequality

45



in Lemma 6 holds under F B (r) = 1, i.e.,

P
(
gA = H

)
αB

αA

∫ r
r F B (r) dr + pHH

∫ r
r F A (r) rdF B (r) − pHHr αB

2αA

pHH
αB

2αA + pHL

≤
P
(
gB = H

) ∫ r
r F B (r) dr + pHH

∫ r
r F A (r) rdF B (r) − pHH

αB

2αA r

pHH

(
1 − αB

2αA

)
+ pLH

, (46)

where both the LHS and RHS are positive. When q > 1
1+r , recall that Lemma 7 shows F B (r) = 1

as αB → αA under q > 1
1+r and so the inequality is also necessary.

Denote by N ≜
∫ r

r F B (r) dr > 0, and M ≜ r αB

2αA −
∫ r

r F A (r) rdF B (r). M > 0 because∫ r

r

F A (r) rdF B (r) < r

∫ r

r

F A (r) dF B (r) = r

∫ r

r

αB

αA
F B (r) dF B (r) = r

αB

αA

∫ r

r

d

(
F B (r)2

2

)
= r

αB

2αA
.

Collect terms in the key inequality (46), we have{[
pHH

(
1 − αB

2αA

)
+ pLH

]
(pHH + pHL) αB

αA
−
(

pHH
αB

2αA
+ pHL

)
(pHH + pLH)

}
N

≤pHH

[
pHH

(
1 − αB

2αA

)
+ pLH −

(
pHH

αB

2αA
+ pHL

)]
M (47)

Let αB = αA −ϵ and calculate the coefficients. Note that as αB = αA −ϵ, we have pHL −pLH =
(2q − 1) ϵ.26 The coefficient on the LHS of (47):[

pHH

(
1 − αB

2αA

)
+ pLH

]
(pHH + pHL) αB

αA
−
(

pHH
αB

2αA
+ pHL

)
(pHH + pLH)

=
(

pHH

2
+ ϵ

2αA
pHH + pLH

)
(pHH + pHL)

(
1 − ϵ

αA

)
−
(

pHH

2
− ϵ

2αA
pHH + pHL

)
(pHH + pLH)

= − pHH

2
(2q − 1) ϵ + ϵ

2αA
p2

HH − ϵ

2αA
pLHpHH − ϵ

αA
pLHpHL

The coefficient on the RHS of (47):

pHH

[
pHH

(
1 − αB

2αA

)
+ pLH −

(
pHH

αB

2αA
+ pHL

)]
= ϵ

αA
p2

HH − pHH (pHL − pLH)

= ϵ

αA
p2

HH − pHH (2q − 1) ϵ.

Plug the coefficients back into the inequality (47), so we need to show that

0 ≤
{

ϵ

αA
p2

HH − pHH (2q − 1) ϵ
}

M −
{

−pHH

2 (2q − 1) ϵ + ϵ

2αA
p2

HH − ϵ

2αA
pLHpHH − ϵ

αA
pLHpHL

}
N

=
[
(2q − 1) − pHH

α

]
pHH (N − 2M)

2 ϵ +
(1

2pLHpHH + pLHpHL

)
N

α
ϵ.

26We have pHL = qαA
(
1 − αB

)
+ (1 − q) αB

(
1 − αA

)
and pLH = q

(
1 − αA

)
αB + (1 − q) αA

(
1 − αB

)
and then

therefore pHL − pLH = q
(
αA − αB

)
+ (1 − q)

(
αB − αA

)
= (2q − 1) ϵ.
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Note that

N − 2M =
∫ r

r
F B (r) dr − 2

(
r

αB

2αA
−
∫ r

r
F A (r) rdF B (r)

)

=
∫ r

r
F B (r) dr − 2

(
r

αB

2αA
− αB

αA

∫ r

r
F B (r) rdF B (r)

)

=
∫ r

r
F B (r) dr − 2

r
αB

2αA
− αB

2αA
r + αB

αA

∫ r

r

(
F B (r)

)2

2
dr


=
∫ r

r
F B (r) dr − αB

αA

∫ r

r

(
F B (r)

)2
dr > 0.

Therefore, one sufficient condition is

2q − 1 ≥ pHH

α
= qα2 + (1 − q) (1 − α)2

α
.

Collecting terms, the condition above requires q ≥ 1 − α + α2. Since 1 − α + α2 increases in α for
α ∈

(
1
2 , 1
)

, this imposes a simple condition that prior needs to be sufficiently good and information
technology α cannot be too high.

Calibration

Bad-news information structure. For the bad news information structure we need to calibrate
the parameters

{
q, αA, αB

}
. To do so we use the NPL rates for specialized and non-specialized

(stress-tested) banks in Y14Q.H1 data, which are 3% and 4% as reported in Table 3, and the
empirical loan approval rate of non-specialized banks as 70%, which lies in the middle of the range
estimated in Yates (2020). The theoretical counterparts for these three empirical moments are:

3% = P
(
θ = 0

∣∣∣rA < rB < ∞
)

=

(
1 − αA

) (
1 − αB

){
1
2 + [1−F B(r)]2

2

}
+
(
1 − αA

)
αB

[
q

1−q
+ (1 − αA) (1 − αB)

]{
1
2 + [1−F B(r)]2

2

}
+ (1 − αA) αB

,

4% = P
(
θ = 0

∣∣∣rB < rA < ∞
)

=

(
1 − αA

) (
1 − αB

){
1
2 − [1−F B(r)]2

2

}
+
(
1 − αB

)
αAF B (r)[

q
1−q + (1 − αA) (1 − αB)

]{
1
2 − [1−F B(r)]2

2

}
+ (1 − αB) αAF B (r)

,

0.7 = P
(
gB = H

)
= q + (1 − q)

(
1 − αB

)
,

where F B (r) =
r
r

−1
r
r

−1+αA
and r = (1−q)(1−αB)

q . Here, since we only observe the average loan approval

rate in the banking sector, we calculate the approval rate for non-specialized bank, as empirically
most of banks are non-specialized (the number of specialized banks reported in Table 4 is small
relative to the total number of banks which is about 40 in our data).

We have seen from Part 1 of Proposition 2 that a negative interest rate wedge is more likely to
arise for a higher r. At the usury maximum interest rate cap 36%, the parameters

{
q, αA, αB

}
that

match the above three moments are q = 0.6846, αA = 0.9655 and αB = 0.9513. But even under
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this usury rate r = 36%, the interest rate wedge is positive (about 0.3%). In fact, we can calculate
the implied threshold of r̂ (given q = 0.6846, αA = 0.9655 and αB = 0.9513) for a negative interest
rate wedge, which takes a value of 395%—this is more than ten times of the usury rate 36%!

Symmetric information structure. For canonical models with a symmetric information struc-
ture, we gauge q and α from the limiting case where Bank B’s information technology αB approaches
that of Bank A, i.e., αB → αA = α. We rely on two empirical moments for U.S. banks. First, we
set the non-performing loan (NPL) rate to 4% to match the average NPL rate for stress-tests banks
taken from Y14Q.H1 data (see Section B and in Table 3 for more details). Second, for robustness,
we set the range for loan approval rates for business C&I loans from 55% (small lenders) to 80%
(large lenders), following Yates (2020).

Depending on the primitives, Bank B may either make zero or positive profit in the unique
equilibrium, which we call zero-weak or positive-weak analogous to our main equilibrium char-
acterization with multi-dimensional information. Recall that at the beginning of the proof of
Proposition 2, i.e., the discussion around condition (45), we have shown that negative interest rate
wedge ∆r < 0 fails in the zero-weak case where Bank B makes zero profit). Therefore we only need
to consider the positive-weak case. In this case, we have q ≥ 1

1+r and lenders are symmetric: upon
receiving a signal H each lender offers an interest rate drawn from the same distribution and wins
with equal probabilities. Therefore, we can write the NPL ratio and approval rate of a bank, in
this case Bank A, as

4% =
P
(

θ = 0| rA < rB < ∞
)

P (rA < rB < ∞)
=

(1 − q)
[

(1−α)2

2 + α (1 − α)
]

(1 − q)
[

(1−α)2

2 + α (1 − α)
]

+ q
[

α2

2 + α (1 − α)
] ,

y = P
(
gA = H

)
= qα + (1 − q) (1 − α) , for y ∈ [0.55, 0.80] .

This system allows us to solve for the pair (q, α) for any value of y. For instance, when y = 0.7
one can solve for q = 0.9217 and α = 0.7371, which satisfies the proposed sufficient condition
q ≥ 1 − α + α2. The same conclusion holds for y = 0.55, so that q = 0.9539 and α = 0.5551; or
y = 0.8 so that q = 0.8776 and α = 0.8921. (With these parameters, q ≥ 1

1+r always holds for
r = 36%.)

A.4 Proof of Proposition 3

Proof. Based on the credit competition equilibrium in Proposition 1, the expected rates of a lender’s
issued loan are:

E
[
rA
∣∣∣ rA < rB ≤ ∞

]
=

pHH︸ ︷︷ ︸
gA=gB=H

∫ 1
x

[
1 − F B

(
rA (t)−

)]
︸ ︷︷ ︸

A wins

rA (t) ϕ (t) dt + pHL︸︷︷︸
gA=L,gB=L

∫ 1
x rA (t) ϕ (t) dt

pHH
∫ 1

x

[
1 − F B

(
rA (t)−

)]
ϕ (t) dt + pHL

∫ 1
x ϕ (t) dt

,

E
[
rB
∣∣∣ rB < rA ≤ ∞

]
=

pHH︸ ︷︷ ︸
gA=gB=H

∫ 1
ŝ Φ (t)︸ ︷︷ ︸

B wins

r (t) d
[
−F B (r (t))

]
+ pLH︸︷︷︸

gA=L,gB=H

∫ 1
x r (t) dF B (r (t))

pHH
∫ 1

ŝ Φ (t) d [−F B (r (t))] + pLHF B (r)
.

In positive weak equilibrium, F B (r (s)) has a point mass of size 1 − F B (r−) at r or rA(ŝ).
In this proposition, we impose the following conditions a) general signals are degenerate with

qg = 1 and b) r → ∞. (The logic for αu = αd = 0.5 so that lenders ignore the general signals are
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the same.) Then

E
[
rA + 1

∣∣∣ rA < rB ≤ ∞
]

=
∫ 1

0

[
1 − F B

(
rA (t)−

)]
rA (t) ϕ (t) dt∫ 1

0

[
1 − F B

(
rA (t)−

)]
ϕ (t) dt

=
∫ 1

0 Φ (t) ϕ (t) dt∫ 1
0

[∫ t
0 νϕ (ν) dt

]
ϕ (t) dt

,

E
[
rB + 1

∣∣∣ rB < rA ≤ ∞
]

=
∫ 1

0 Φ (t) r (t) d
[
−F B (r (t))

]
∫ 1

0 Φ (t) d [−F B (r (t))]
=

∫ 1
0 Φ (t)

[
tΦ(t)∫ t

0 νϕ(ν)dν

]
ϕ (t) dt∫ 1

0 Φ (t) tϕ (t) dt
,

where the first equality of both variables uses condition a) degenerate signals and x = ŝ = 0 which
follows from condition b), and the second equality uses equilibrium strategy rA(t) = Φ(s)∫ s

0 tϕ(t)dt
and

1 − F B
(
rA (t)−

)
=
∫ t

0 νϕ(ν)dt

qs
.

Additionally, c) the specialized signal distribution is ϕ (s) = 1 + ϵ [2 · 1s≤0.5 − 1]. Then

E
[

rA + 1
∣∣ rA < rB ≤ ∞

]
= 2 ·

1
8 (1 + ϵ)2 + ϵ(1−ϵ)

2 + 3
8 (1 − ϵ)2

1
24 (1 + ϵ)2 + ϵ(1−ϵ)

4 + 7
24 (1 − ϵ)2 ,

E
[

rB + 1
∣∣ rB < rA ≤ ∞

]
= 2 ·

1
8 (1 + ϵ)2 + ϵ(1−ϵ)

2 + 3
8 (1 − ϵ)2 + ϵ2 (1 − ϵ)

∫ 1
0.5

(t− 1
2 )

ϵ
2 +(1−ϵ)t2 dt + ϵ (1 − ϵ)2 ∫ 1

0.5
t(t− 1

2 )
ϵ
2 +(1−ϵ)t2 dt

1
24 (1 + ϵ)2 + 3ϵ(1−ϵ)

8 + 7
24 (1 − ϵ)2 .

Note that when ϵ = 0, ∆r = 0. When ϵ → 0, we have (ignoring higher order terms of ϵ)

∂∆r

∂ϵ
= lim

ϵ→0

∆r (ϵ)
ϵ

= 1
ϵ

(
1

1
3 − 1

4ϵ
− 1 + ϵ − ϵ ln 2

1
3 − 1

8ϵ

)
= 3 ln 2 − 15

8
> 0.

Hence, when ϵ > 0 (ϵ < 0), i.e., ϕ(s) tilts toward less (more) favorable realizations, we have
∆r > 0 (∆r < 0).

A.5 General Information Structure

In this extension, we focus on the well-behaved structure (i.e., smooth distribution of interest rates
over [r, r) and decreasing rA (z)) and show that the lender strategies in Proposition 4 correspond
to an equilibrium.

We impose the following primitive conditions under which the general signal is decisive.

Assumption 2. i) Bank A rejects the borrower upon an L general signal, regardless of any spe-
cialized signal z:

µL· (z) (r + 1) − 1 < 0. (48)

ii) Bank B is willing to participate if and only if its general signal gB = H:∫ z

z
p·H (t) [µ·H (t) (r + 1) − 1] dt > 0. (49)

Proof of Proposition 4

Proof. Similar as the derivation in the baseline model, we first take πB as given to characterize
lender strategy, and then solve for πB.
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Bank A’s strategy
In the region of z ∈ (ẑ, 1] that corresponds to rA (z) ∈ [r, r), rA(·) is strictly decreasing so

the inverse function zA(·) ≡ rA(−1)(·) is properly defined. Bank B’s lending profit when quoting
r ∈ [r, r) is

πB (r) = pHH︸ ︷︷ ︸
gA=H

·
∫ zA(r)

z︸ ︷︷ ︸
B wins

µHH (t)︸ ︷︷ ︸
repay

(1 + r) − 1

ϕz ( t| HH) dt + pLH︸︷︷︸
gA=L

µLH︸︷︷︸
repay

(1 + r) − 1



= (1 + r)
[∫ zA(r)

z
pHH (t) µHH (t) dt + pLHµLH

]
−
∫ zA(r)

z
pHH (t) dt − pLH (50)

Bank A’s equilibrium strategy rA (z) for z ∈ [ẑ, 1] is such that Bank B is indifferent across r ∈ [r, r).
Hence,

rA (z) =

B’s lending amount︷ ︸︸ ︷
πB +

∫ z

z
pHH (t) dt + pLH∫ z

z
pHH (t) · µHH (t) dt + pLHµLH︸ ︷︷ ︸

B’s customers who repay

− 1, where ẑ ≤ s ≤ z. (51)

Note that this pins down r = (rA)−1(z) which is a function of πB.
In addition, rA (z) = r for z ∈ [zx, ẑ) and Bank A rejects the borrower when z ∈ [z, zx), where

zx satisfies
πA
(

rA (zx) = r
∣∣∣ zx

)
= 0.

This completes the proof of Bank A’s strategy in Proposition 4.

Bank B’s strategy
Bank A’s offered interest rate rA (z) upon z ∈ [ẑ, z] maximizes

πA
(

rA (z)
∣∣∣ z) = pHH (z)︸ ︷︷ ︸

gB=H

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

µHH (z)︸ ︷︷ ︸
repay

(1 + r) − 1

+ pHL (z)︸ ︷︷ ︸
gB=L

µHL (z)︸ ︷︷ ︸
repay

(1 + r) − 1


The FOC with respect to r is[

−
d
[
F B (r)

]
dr

]
︸ ︷︷ ︸

∆winning prob

pHH (z) [µHH (z) (1 + r) − 1]︸ ︷︷ ︸
profit upon winning

+ pHH (z)
[
1 − F B (r)

]
µHH (z) + pHL (z) µHL (z)︸ ︷︷ ︸

existing customer

= 0.

Bank A’s optimal strategy rA (z) satisfies this first-order condition,

0 = −
d
[
F B

(
rA (z)

)]
dr

pHH (z)
[
µHH (z)

(
1 + rA (z)

)
− 1

]
(52)

+ pHH (z)
[
1 − F B

(
rA (z)

)]
µHH (z) + pHL (z) µHL (z) .
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From Eq. (51) about rA (z), we derive the following key equation by taking derivatives w.r.t. z,

drA (z)
dz

[∫ z

z
pHH (t) µHH (t) dt + pLHµLH

]
︸ ︷︷ ︸

B: ↑marginal customer return

+ pHH (z)
[(

rA (z) + 1
)

µHH (z) − 1
]

︸ ︷︷ ︸
B: ↑existing customer revenue

= 0.

Plug this equation into the FOC (52), and we have

−
d
[
F B
(
rA (z)

)]
dz

[∫ z

z

pHH (t) µHH (t) dt + pLHµLH

]
= pHH (z)

[
1 − F B (r)

]
µHH (z) + pHL (z) µHL (z) ,

which is equivalent to

d

dz

 1 − F B
(
rA (z)

)
∫ z

z µHH (t) pHH (t) dt + pLHµLH

 = pHL (z) µHL (z)[∫ z
z pHH (t) µHH (t) dt + pLHµLH

]2 . (53)

Since signals are independent conditional on the state being θ = 1, the right-hand-side equals

qP (HL| θ = 1) ϕz (z| θ = 1)[∫ z
z qP (HH| θ = 1) ϕz ( t| θ = 1) dt + pLHµLH

]2
= −

P
(

gB = L
∣∣∣ θ = 1

)
P (gB = H| θ = 1)

d

dz

[
1∫ z

z qP (HH| θ = 1) ϕz ( t| θ = 1) dt + pLHµLH

]
.

Then the solution F B
(
rA (z)

)
to the ODE (53) satisfies

1 − F B
(
rA (z)

)∫ z

z
µHH (t) pHH (t) dt + pLHµLH

= −
P
(

gB = L
∣∣ θ = 1

)
P (gB = H| θ = 1)

[
1∫ z

z
µHH (t) pHH (t) dt + pLHµLH

]
+ Const.

Using the boundary condition F B
(
rA (z) = r

)
= 0, we solve for the constant

Const = 1
P (θ = 1)

1
P (gB = H| θ = 1)2 .

Therefore,

F B (r) = 1
P (gB = H| θ = 1) −

∫ zA(r)
z

µHH (t) pHH (t) dt + pLHµLH

P (θ = 1)P (gB = H| θ = 1)2

= 1
P (gB = H| θ = 1) −

P (θ = 1)P (HH| θ = 1)
∫ zA(r)

z
ϕz ( t| θ = 1) dt + P (θ = 1)P (LH| θ = 1)

P (θ = 1)P (gB = H| θ = 1)2

=
P
(

gA = H
∣∣ θ = 1

)
P (gB = H| θ = 1)

[
1 −

∫ zA(r)

z

ϕz ( t| θ = 1) dt

]
.

Bank B’s profit πB

Now we are left with one unknown variable πB in Eq. (51). Similar to the baseline model, the
equilibrium could be positive-weak or zero-weak, depending on who—Bank A receiving threshold
specialized signal zbe

A and quoting r or Bank B—breaks even first in competition. We define zbe
A
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and zbe
B as

0 = πA
(
r
∣∣zbe

A

)
=pHH

(
zbe

A

) P (gA = H
∣∣ θ = 1

)
P (gB = H| θ = 1)

[
1 −

∫ zbe
A

z

ϕz ( t| θ = 1) dt

]
·
[
µHH

(
zbe

A

)
(1 + r) − 1

]
+ pHL

(
zbe

A

) [
µHL

(
zbe

A

)
(1 + r) − 1

]
,

0 = πB
(
r; zbe

B

)
=
∫ zbe

B

z

pHH (t) µHH (t) (1 + r) dt −
∫ zbe

B

z

pHH (t) dt + pHL [µHL (1 + r) − 1] .

Equilibrium πB is then

πB = max
{∫ zbe

A

z
pHH (t) µHH (t) (1 + r) dt −

∫ zbe
A

z
pHH (t) dt + pHL [µHL (1 + r) − 1] , 0

}
.

When zbe
A > zbe

B , equilibrium is positive weak with πB > 0, and ẑ = zx = zbe
A ; when zbe

A ≤ zbe
B ,

equilibrium is zero weak with πB = 0, and zbe
B = ẑ > zx.

A.6 Information Acquisition

In this part, we first characterize lending profits and then provide a numerical illustration in which
the specialization equilibrium arises.

Lending Profits

We characterize lending profits as a function of information acquisition, ΠA (Ig
A, Is

A, Ig
B, Is

B) (we
focus on Bank A due to symmetry.) We omit the case where there is an uninformed lender.

Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 0 (Specialization). This is the equilibrium that we focus on—each
lender has a general information signal and only Bank A has a specialized signal s. Bank A’s
expected lending profit before signal realizations is thus

ΠA (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 0) =
∫ 1

x
πA
(

rA (s)
∣∣∣ s)ϕ (s) ds,

where πA
(

rA (s)
∣∣∣ s) is the profits for given signal realizations H and s and is given in Eq. (9).

Using the equilibrium strategies in Proposition 1, we have

πA
(

rA (s)
∣∣∣ s) = pHH ·

∫max{s,ŝ}
0 (s − t) ϕ (t) dt

qs
+
(
πB + pLH

)
· s

qs
− pHL, for s ≥ x.

The expression shows that Bank A earns the information rent from the specialized signal. Bank A
observes s, while Bank B may only negatively update the prior qs when winning the competition

that sA ≤ s (r); this is reflected in the terms s
qs

and
∫ min{s,ŝ}

0 (s−t)ϕ(t)dt

qs
.

In this case, Bank B’s profit ΠB (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 0) = πB is given in Lemma 2. By
symmetry, ΠA (Ig

A = 1, Is
A = 0, Ig

B = 1, Is
B = 1) = ΠB (Ig

A = 1, Is
A = 1, Ig

B = 1, Is
B = 0) = πB.

Ig
A = 0, Is

A = 1, Ig
B = 1, Is

B = 0 (Asymmetric technology). In this case, Bank A only collects
specialized information while Bank B only collects general information in industry a. This case
is nested in the previous case of specialization (Ig

A = 1, Is
A = 1, Ig

B = 1, Is
B = 0), by reformulating
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Bank A to have an uninformative general signal, e.g.,

P
(

gA = H
∣∣∣ θg = 1

)
= P

(
gA = H

∣∣∣ θg = 0
)

= 1.

Ig
A = 1, Is

A = 0, Ig
B = 1, Is

B = 0 (General information only). In this case, both lenders only

acquire general information, i.e., investing in IT and data processing that apply to both industries.
The credit competition corresponds to Broecker (1990) with two lenders. Lenders are symmetric
and the lending profit of, say Bank A, is

ΠA (Ig
A = 1, Is

A = 0, Ig
B = 1, Is

B = 0) = max {pHL (µHLqsr − 1) , 0} .

The “max” operator arises because either both lenders withdraw with positive probability (zero
profits), or both lenders make profits and neither has a point mass at r, i.e., F j (r−) = 1.

Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 1 (Acquire all information). In this symmetric case, each lender
invests in both information technologies and receives both the general and specialized signals. We
characterize the credit market equilibrium based on Riordan (1993) which considers the competition
between two lenders each with a continuous private signal. Here, each lender additionally has a
binary signal that represents the general information. Following the modeling of Riordan (1993),
we work with the direct specialized signal z. Specifically, let z and Z denote the realization and
the random variable of the specialized signal respectively, and let

F̃ (z) ≡ P (Z ≤ z| θs = 1) , G̃ (z) ≡ P (Z ≤ z| θs = 0)

denote the CDFs of Z conditional on the underlying state θs, with the corresponding PDFs denoted
by f̃ and g̃. Introduce µ (z) ≡ P (θs = g| S) as the posterior belief, which is s in our baseline model.

A lender only bids when the general signal is H and the specialized signal z ≥ x. Let R (z) ≡
r (z) + 1 denote the equilibrium gross rate quote. Given competitor’s strategy R (z), the lending
profits from any R is then

π (R |z ) =
[
pHHµHHµ (z) F̃ (t (R)) + pHLµHLµ (z)

]
R

− pHH

[
(1 − µ (z)) G̃ (t (R)) + µ (z) F̃ (t (R))

]
− pHL, (54)

where t (R) the signal such that the other bank offers R. The first order condition w.r.t. R is

∂π (R (t) |z )
∂R

=
[
pHHµHHµ (z) F̃ (t) + pHLµHLµ (z)

]
+
{

pHHµHHµ (z) f̃ (t) R (t) − pHH

[
(1 − µ (z)) g̃ (t) + µ (z) f̃ (t)

]} dt

dR
.

The equilibrium strategy satisfies
∂π (R (t) |z )

∂t

∣∣∣∣
t=z

= 0.

By symmetry, we have
dt

dR
= 1

R′ (t)
.
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Figure 6: Specialization Equilibrium. This figure depicts the incentive compatibility constraints
where Bank A does not want to deviate from the specialization equilibrium. Parameters: r̄ = 0.36,
ρh = 0, qh = 0.8, qs = 0.9, αu = αd = α = 0.7, and τ = 1. Note τ captures the signal-to-noise
ratio of Bank A’s specialized information technology as s = E [θs|θs + ϵ] and ϵ ∼ N (0, 1/τ).

These two conditions imply

pHHµHH f̃ (z) R (z) +
(
pHHµHH F̃ (z) + pHLµHL

)
R′ (z) = pHH (1 − µ (z)) g̃(z) + pHHµ (z) f̃ (z)

µ (z)
,

(55)
or equivalently,

d
{[

pHHµHH F̃ (z) + pHLµHL

]
R (z)

}
dz

= pHH (1 − µ (z)) g̃(z) + pHHµ (z) f̃ (z)
µ (z)

.

Integrating over z, we have

R (z) =
∫ z

z
pHH(1−µ(t))g̃(t)+pHHµ(t)f̃(t)

µ(t) dt + constant

pHHµHH F̃ (z) + pHLµHL

. (56)

The unknown constant is pinned down by the boundary condition π (r + 1 |x) = 0: Upon the
threshold signal x, a lender quotes the maximum interest rate r + 1 and makes zero profit,

0 =
[
pHHµHHµ (x) F̃ (x) + pHLµHLµ (x)

]
(r + 1) − pHH

[
(1 − µ (x)) G̃ (x) + µ (x) F̃ (x)

]
− pHL.

(57)
Then a lender’s lending profit is

ΠA (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 1) =
∫ z

x
π (R (z)| z)

[
qsf̃ (z) + (1 − qs) g̃ (z)

]
dz,

where R (z) is given by Eq. (56) and (57), profit π (R (z) , z) is given by Eq. (54).

54



Table 3: Summary Statistics of Key Variables

N Mean SD Specialized Non-Specialized Differential

Interest Rate 353,544 3.69 1.64 3.55 3.69 -0.13***
Non-Performing 353,544 0.04 0.19 0.03 0.04 -0.01***
Loan Amount 353,544 12.42 5.43 10.5 12.99 2.5***

Note: This table shows summary statistics for loans in our sample. We count each bank-loan combination only once,
on the date when it is first observed in our data (this may be a different date from the loan’s first origination date
for a small subset of loans only as we censor our data and start in 2012, one year after collection began in 2011).
Loan size is scaled by 1 million USD. The interest rate is the unadjusted cost of the loan, measured in percent.“Non
performing” is a dummy that takes the value of 1 if the loan ever falls in arrears, has negative maturity or is otherwise
in default after the first observation in our sample. The mean values of each variable data are split by whether a loan
is made by a specialized bank or not.

Specialization Equilibrium

Figure 6 shows the region of information acquisition costs κh and κs to support the specialization
equilibrium so that one of the banks endogenously becomes the specialized bank in one industry by
acquiring both specialized and general information while the other is non-specialized by acquiring
the general information only. In sum, we need κh to be sufficiently small while κs to lie in an
intermediate range.

B Empirical Analyses
Data We use Y14Q-H.1 data that is collected by the Federal Reserve System as part of its stress-
testing efforts, covering all C&I loans to which a stress-tested bank has committed more than 1
million USD (around 75% of all U.S. C&I lending). As such, the data covers 40 banks – in an
unbalanced panel – between 2012 and 2023 and includes millions of loan-quarter observations.

We focus on term loans and limit our sample to loans that are likely newly originated or new to
the lender. We cut our data before 2012 to avoid accidentally labeling a loan as “newly originated,”
simply because of the point at which the data collection begins. We define a loan as new when
it first appears in our data. We remove loans to financial or insurance entities. Our final sample
covers 350,000 new term loans. Besides loan amount, we can track key loan data such as the interest
rate paid by the borrower, the loan’s purpose, and the performance of the loan while it remains in
our sample, as we can see if it ever falls into arrears.

Summary statistics Key summary statistics for loans in our sample are outlined in Table 3.
The average loan commitment in our sample is just over 12 million USD in size and the average
loan interest rate is 3.7%. We define a loan as non-performing if it is ever 90+ days in arrears, ever
has negative maturity (i.e. has not been repaid at maturity), or has outright defaulted. We then
take a loan as “ever” non-performing if it becomes so at any point after origination. The percentage
of non-performing loans is around 4% in our data, which is slightly higher than the average default
rate given our wider definition.

Competitiveness of lending market. In Section 4.2 we also study the interaction between
specialization and lending market competition, in order to rule out the alternative hypothesis that
negative interest wedge is driven by competition among specialized lenders. There, we define an
industry as “competitive” if two or more banks specialize in it.
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Table 4: Number of Banks Specialized per Industry

Industry Number of Specialized Banks
A 0
B 1
C 3
D 0
E 2
F 2
G 4
H 3
I 7
J 0
K 2
L 0
M 3
N 9
O 2
P 1
Q 0
R 3
S 9
T 1
U 4
V 3
W 5

Note: We indicate the number of banks specialized in stylized industries. We define a bank as specialized if it is
over-invested by 4% or more in an industry, relative to what would be expected from diversification (i.e. a bank that
invests 14% of its C&I portfolio in an industry that accounts for 10% of all C&I lending would be specialized in that
industry.) An industry is competitive if 2 or more banks are specialized in it.

Table 4 lists the number of banks that are specialized in industries in our data. There, we have
obscured the exact industry definition in favor of stylized industry names in Table 4, though each
represents a two-digit industry (with the omission of finance and insurance). As shown in Table 4,
in our data the number of banks that are specialized in industries varies greatly. Some industries
are home to no specialized banks, while other industries see nine banks that are specialized.
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