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1 Introduction

Banks are crucial intermediaries in modern economies, serving as the main conduit between savers
and borrowers. One of their primary functions is to choose in which borrowers to invest, and as
it has long been recognized by the literature (e.g., Broecker, 1990; Riordan, 1993; Hauswald and
Marquez, 2003), competition among informed financial intermediaries in the credit market is central
to the stability and efficiency of financial systems.

Of significant importance, banks hold a diverse array of lending-related information, including
financial data on customers, collateral evaluations, and market and economic trends, not to mention
state-of-the-art data analytics. Moreover, banks can choose to acquire specific types of information,
enabling them to attain economies of scale and expertise in certain domains. The accumulation of
these economies of scale and specialized knowledge is often achieved by concentrating on lending to
particular industries, through the acquisition and analysis of diverse information on the business
practices of individual firms and industries, beyond mere macroeconomic factors.

Despite the remarkable technological advancement that could significantly impact the indus-
trial landscape of the banking sector, the prevailing literature (Marquez, 2002; Hauswald and
Marquez, 2003; He, Huang, and Zhou, 2023) on information-based credit market competition pre-
dominantly focuses on binary signal realizations, overlooking the nuances of the aforementioned
intricate economics. To this goal, this paper studies credit market competition with specialized
lending, where one (specialized) lender with general and specialized signals competes against an-
other (non-specialized) lender with a general signal only. Importantly, the specialized lender’s extra
continuous signal is crucial in setting its equilibrium fine-tuned loan pricing. This novel multi-
dimensional information setting, incorporated into an otherwise classic credit market competition
model (a la Broecker, 1990), allows us to study private-information-based pricing in specialized
lending.

As motivation, we perform a simple empirical exercise based on regulatory loan data. Using
supervisory information on the commercial loans of stress-tested banks, we can compare interest
rates charged by those banks that are the most specialized in an industry with the rates charged by
all other banks.1 For a discussion of specialization in banking, please refer to Blickle, Parlatore, and
Saunders (2023). We calculate the rate differential — i.e. the difference in interest rates charged
by the specialized banks vs. non-specialized banks — over the past decade in 1. As shown in Panel
(a), the loan rates by specialized lenders are lower than those of non-specialized lenders; this is
true even when accounting for loan-specific characteristics (dashed line). In our sample, specialized
lenders consistently charged around 10 basis points or less for ostensibly similar loans, and we
emphasize that this difference is on “winning bids”— our loan-level data is on rates but not offers.
Equally importantly, when comparing the likelihood at which loans become non-performing, panel

1Data is taken from the Y14-Q Schedule H database maintained by the Federal Reserve System for stress testing
purposes. It covers a total of 40 banks the largest in the U.S. over the period of 2012-2023.
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(a) Interest rates: specialized vs.
non-specialized

(b) Loan performance: specialized vs.
non-specialized

Figure 1: Loan rates and performance in specialized vs non-specialized lenders. We compare loans
from specialized vs non-specialized lenders made to similar firms within a two-digit NAICS industry. We
measure lender specialization as deviations from a diversified portfolio, where deviations from a diversified
portfolio are measured by: LoanAmountb,i,t∑

s
LoanAmountb,i,t

− LoanAmounti,t∑
i

LoanAmounti,t
for bank b in industry i at time t. We

then define specialized lenders as those with more than 10% over-investment in an industry. Panel (a) plots
the difference between the loan rates by specialized lenders and those by non-specialized lenders in the same
industry. The solid line plots the raw difference with equal weights, while the dashed line groups loans by
industry and lender specialization and also by loan purpose, observable risk, maturity (in deciles), collateral,
and loan size (in deciles) also with equal weights. Panel (b) plots the difference in loan performance measured
by the share of loans defaulting, falling in arrears, or requiring renegotiation, with raw differences in the solid
line and differences accounting for loan characteristics in the dashed line; a negative number implies a higher
quality of specialized lending. The empirical patterns are robust to various specifications say classification
of specialized lenders and volume-based weights. See Blickle, Parlatore, and Saunders (2023) for a more
in-depth discussion of measures of bank specialization.

(b) of Figure 1 shows that specialized lenders are less likely to encounter issues of non-performing
loans, regardless of whether we account for loan characteristics or not.2 If we account for loan
characteristics, loans by specialized lenders are up to 5 percentage points less likely to become non-
performing towards the end of our sample. The empirical regularity in specialized lending shown in
Figure 1 suggests that specialized lenders are better informed about the borrower’s quality private-
information-based loan pricing to identify better borrowers and “undercut” the non-specialized
opponent lenders in their specialized industries.

The existing information-based models—exemplified by (Broecker, 1990; Marquez, 2002) fail to
deliver the above empirical regularity. There, each lender with binary signals actively competes
only upon receiving the positive signal realization, offering interest rates that are outcomes of a
completely randomized mixed strategy—that is to say, the interest rate per se carries no infor-

2Non-performing loans are those that fall into arrears, are not paid down by the end of their maturity, default
or require renegotiation due to covenant violation issues. The average non-performance rate of loans throughout our
sample is around 5%.
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mation. In fact, as we will show in Section 4.1, a stark information rent effect dominates in that
canonical setting, under which the loans on the book of a stronger lender (modeled as a greater
precision) tend to have higher interest rates. This prediction is counterfactual in light of Figure 1.

In our model, outlined in Section 2, a specialized bank competes with a non-specialized bank.
Each lender has a “general” information signal on the loan quality—i.e., the success probability of
the borrower—from data processing. Moreover, the specialized lender has access to an additional
signal coming from “specialized” information about the borrower, based on which the lender decides
on the offered interest rate. We further assume that, while the general signal is binary and is decisive
in that each lender makes an offer only if it receives a positive general signal, the specialized signal—
which differentiates our paper from existing models—is continuous and guides the fine-tuned interest
rate offering—we call this private-information-based loan pricing.3

As we highlight in Section 2.2, our analysis focuses on a multiplicative structure. More precisely,
the success of the project requires the success of multiple fundamental states. For instance, the
project success may require two distinct fundamental states—say “general” and “specialized”—to be
favorable, and the above-mentioned two types of signals, i.e., general and specialized signals, inform
the lenders regarding these two states, respectively. However, our equilibrium characterization
also applies to the case where the general and specialized fundamental states overlap and hence
correlated. To the extreme, the general and specialized fundamental states coincide entirely, and
our model becomes the standard setting where one single fundamental state dictates the overall
quality of the project.

In Section 3, we fully characterize in closed form the competitive credit market equilibrium with
specialized lending, with the specialized bank’s interest rate schedule decreasing in its specialized
signal. Since the successful project’s payoff is capped, our specialized bank—even conditional
on a positive general signal—withdraws itself from the competition after receiving a sufficiently
unfavorable specialized signal. In contrast, the non-specialized bank behaves just like in Broecker
(1990) with interest rate offering fully randomized. Therefore by incorporating both general and
specialized signals, our model delivers the key result of private-information-based pricing.4

Our model features a unique credit market equilibrium, which can fall into two distinct cat-
egories depending on whether the non-specialized bank makes zero profits or not as a result of

3Besides analytical convenience, this loan-making rule of the specialized bank matches well with the lending
practices observed in the real world. Essentially, in our model, the specialized bank acquires two signals, one being
“principal” while the other being “supplementary;” the former determines whether to lend while the latter affects the
detailed pricing terms. Alternatively, the principal signal represents the result of a credit screening test, while the
supplementary signal serves the role of internal ratings (of borrowers who are qualified for credit).

4Conceptually, this is similar to Milgrom and Weber (1982), in which the informed buyer who privately observes a
continuum of signal realizations in a common value auction bids monotonically based on its own private information;
see literature review for more details. In addition, one could extend the range of quoted interest rates by borrowers
to include infinity and interpret r = ∞ as “rejection/withdrawal;” this way the lenders in the classic credit market
competition model in Broecker (1990) and Hauswald and Marquez (2003) also have private-information-based pricing.
However, Figure 1 is constructed based on interest rates of granted loans, and therefore loan rejection with r = ∞
cannot help explain the empirical regularity of lower interest rates of loans granted by specialized lenders.
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competition. In the first category of equilibria, the winner’s curse dominates and pushes the non-
specialized “weak” bank to earn zero profits—therefore we call it a zero-weak equilibrium. In this
case, the non-specialized bank randomly withdraws when receiving a positive general signal, which
increases the specialized lender’s monopoly power and information rent. In the second category
of equilibria, the winner’s curse is less severe and the non-specialized bank makes a positive profit
in equilibrium (therefore always participates upon a positive general signal)—we call it a positive-
weak equilibrium. The private-information-based pricing effect tends to dominate in this case, as
the specialized bank with less monopoly power makes more aggressive offers to get good borrowers.5

We discuss the model’s implications in Section 4. We focus on the empirical regularity that
loans of specialized lenders have lower rates, which we simply call the “negative interest rate wedge.”
First, we highlight the difference between bids (i.e., offered interest rates) and winning bids (offered
rates that are accepted by the borrower); this distinction is crucial when loan rejections are an
important part of equilibrium strategies, as is typical in credit competition models. Although the
standard winner’s curse effect pushes a weaker lender to quote higher prices, as shown in He, Huang,
and Zhou (2023) in credit market competition models the weak lender also responds by rejecting
loan applications, favoring the strong lender to have a higher expected winning bids. This intuition
is consistent with the fact that the aforementioned information rent effect dominates in canonical
credit competition models a la Broecker (1990), giving rise to the counterfactual implications that
the specialized bank’s loans have higher rates.

In contrast, by explicitly incorporating specialized lenders’ “undercutting” to win creditworthy
borrowers against their competitors, the private-information-based pricing highlighted in our model
helps deliver a lower interest on loans granted by specialized banks. We show that a negative
interest rate wedge is more likely to occur in the positive-weak equilibrium where the private-
information-based pricing effect takes precedence. This economic mechanism is different from
Mahoney and Weyl (2017) and Crawford, Pavanini, and Schivardi (2018) who do not differentiate
bids and winning bids. As we explain in the literature review, in that literature market power (of
lenders) and adverse selection (of borrowers) are treated as two distinct market frictions, while our
model features a winner’s curse faced by asymmetrically informed lenders as the only underlying
force.

We then study several model extensions in Section 4. First, we show that our equilibrium
characterization is robust to a generalized information structure where the general and specialized
states have some overlaps which induce correlated general and specialized signals. The key to our
analytical tractability is the multiplicative structure and its resulting “conditional independence,”
i.e., general and specialized signals are independent conditional on project success. Second, we

5Consistent with information-based pricing, Butler (2008) finds local investment banks charge lower fees and issue
municipal bonds at lower yields than non-local underwriters. On the other hand, Degryse and Ongena (2005) finds
that local banks charge higher interest rates to small firms, consistent with local banks’ strong monopolistic power
over hard-to-evaluate captive borrowers.
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endogenize the information structure in the baseline model by considering two ex-ante symmetric
banks that compete on two firms/industries. Lenders can invest in the general information tech-
nology (which has a lump-sum fixed cost and produces a binary signal of borrower quality in either
firm); in addition, they can acquire firm-specific specialized information (which is a continuous sig-
nal and costly for each firm) and hence becoming specialized. We provide conditions that support
the “symmetric” specialization equilibrium where, as in our baseline model, each industry supports
one specialized lender and another non-specialized lender.

The remainder of the paper is organized as follows. After a brief literature review, Section 2
presents the baseline model. Section 3 characterizes the credit market equilibrium and Section 4
explores the economic implications of our model, with several extensions. Section 5 concludes.

Literature Review

Lending market competition and common-value auctions. Our paper is built on Broecker (1990)
who studies lending market competition with screening tests with symmetric lenders (i.e., with
the same screening abilities). Hauswald and Marquez (2003) studies the competition between
an inside bank that can conduct credit screenings and an outside bank without such access. He,
Huang, and Zhou (2023) considers competition between asymmetric lenders with different screening
abilities under open banking when borrowers control access to data. Asymmetric credit market
competition can also naturally arise from the bank-customer relationship, as a bank knows its
existing customers better than a new competitor does.6 In these models, for analytical tractability
it is often assumed that private screening yields a binary signal and lenders participate in bidding
only following the positive signal realization. In contrast to these papers, we consider competition
between asymmetrically informed lenders with multiple information sources.

Theory-wise, credit market competition models are an application of common-value auctions,
and notably, the auction literature typically allows for general signal distributions (other than
the binary signal in the aforementioned papers).7 For instance, Riordan (1993) extends the N -
symmetric-lender model in Broecker (1990) to a setting with continuous private signals. In terms
of modeling, our framework can be viewed as a combination of Broecker (1990) (general information)
and Milgrom and Weber (1982) (specialized information); to analyze competition among specialized
lenders, having asymmetric information technologies is crucial. It is worth highlighting that lenders
are each privately informed with general information; this hence breaks the Blackwell ordering
of the information of two lenders in Milgrom and Weber (1982), resulting in a problem that is

6This idea was explored by a two-period model in Sharpe (1990) where asymmetric competition arises in the
second period (with the corrected analysis of a mixed-strategy equilibrium offered by Von Thadden (2004)). A
similar analysis is present in Rajan (1992).

7The early papers on this topic include Milgrom and Weber (1982) and Engelbrecht-Wiggans, Milgrom, and Weber
(1983), and later papers such as Hausch (1987); Kagel and Levin (1999) explore information structures where each
bidder has some private information, which is the information structure adopted in Broecker (1990).
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considerably more challenging.8 What is more, the economics revealed by a setting with multi-
dimensional information can be fundamentally different, as highlighted by the distinction between
information precision and information span emphasized by He, Huang, and Parlartore (2024).

Specialization in lending. There is a growing literature documenting specialization in bank lending;
the early work includes Acharya, Hasan, and Saunders (2006). Paravisini, Rappoport, and Schnabl
(2023) shows that Peruvian banks specialize their lending across export markets benefiting bor-
rowers who obtain credit from their specialized banks. Based on data for US stress-tested banks,
Blickle, Parlatore, and Saunders (2023) documents that specialization is linked with lower interest
rates and better performance in the industry of specialization, pointing to a strong link between
specialization in lending and informational advantages.9 Our paper contributes to this literature by
providing a framework that can rationalize these patterns, allowing us to understand the economic
mechanisms behind them and their implications more deeply.10

The connection to imperfect competition and adverse selection in the IO literature. The empirical
pattern and our theoretical analyses on the negative interest rate wedge between asymmetrically
informed lenders are connected to the industrial organization (IO) literature on imperfect compe-
tition and adverse selection (Mahoney and Weyl, 2017; Crawford, Pavanini, and Schivardi, 2018;
Yannelis and Zhang, 2023). As we explain in detail toward the end of Section 4.1, different from
the IO literature which takes market power (of lenders) and adverse selection (of borrowers) as two
independent market frictions, our theory is based on “information asymmetry” which is a more
primitive assumption, with winner’s curse faced by asymmetrically informed lenders as the only
underlying economic force. Although one could link market power and adverse selection to unob-
servable borrower types, strictly speaking there is no “market power” enjoyed by the specialized
lender as money from any funding source is perfectly fungible; and, there is no “adverse selection”
from borrowers either, because both types of borrowers will take loans at any interest rate.11

8More precisely, one bidder knows strictly more than the other bidder. In this setting, one can show that the
under-informed bidder always makes zero profit; see also Engelbrecht-Wiggans, Milgrom, and Weber (1983).

9Similarly, Gopal (2021) shows that some banks specialize in terms of the collateral they employ.
10Our paper also connects to the growing literature on fintech disruption; see Berg, Fuster, and Puri (2021); Vives

(2019), for instance, for a review of fintech companies competing with traditional banks in originating loans. Along
the line of our model with different dimensions of information, Huang (2023) developed a theoretical framework
wherein the importance of information concerning underlying qualities varies between collateral-backed bank lending
and revenue-based fintech lending such as Square.

11Our paper is also related to the literature on the nature of information in bank lending. Berger and Udell (2006)
provide a comprehensive framework of the two fundamental types of bank lending technology, i.e., relationship lending
and transactions lending, in the SME lending market; these two types of lending are related to the role played by
information as highlighted by Stein (2002); Paravisini and Schoar (2016). Recently, based on Harte Hanks data, He,
Jiang, Xu, and Yin (2023) show a significant rise in IT investment within the U.S. banking sector over the past decade,
particularly among large banks, and their causal link between communication IT spending and the enhancement of
banks’ capacity in generating and transmitting soft information motivates our modeling of the specialized signal as
the outcome of interactions with borrowers.
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2 Model Setup

We lay out the model setup in this section and define the equilibrium accordingly.

2.1 General Setting

We consider a credit market competition model with two dates, one good, and risk-neutral agents
(two lenders and one borrower). There are two ex-ante symmetric lenders (banks) indexed by
j ∈ {A, B}. In the baseline model, we consider only one borrower (firm) where, say, Bank A

(B) is the specialized (non-specialized) lender; in an extension of lenders specializing in different
industries, we introduce a second firm where banks switch their respective roles.

Project. At t = 0, the firm needs to borrow one dollar to invest in a (fixed-scale) risky project
that pays a random cash flow y at t = 1. The cash flow realization y depends on the project’s
quality denoted by θ ∈ {0, 1}. For simplicity, we assume that

y =

1 + r, when θ = 1,

0, when θ = 0,
(1)

where r > 0 is exogenously given, i.e., only the good project has a positive NPV. We will later refer
to r as the interest rate cap or the return of a good project. The project’s quality θ is the firm’s
private information at t = 0, and the prior probability of a good project is q ≡ P (θ = 1).

Credit market competition. At date t = 0, each bank j can choose to make a take-it-or-leave-
it interest rate offer rj of a fixed loan amount of one to the borrower firm or to make no offer (i.e.,
exit the lending market), which we normalize as rj = ∞. The borrower firm accepts the offer with
the lowest rate if it receives multiple offers.

Information technology. Although the project qualities are not observed by the banks, banks
have access to information about the borrower’s project quality before choosing to make an offer.
We assume that both lenders have access to “general” data (say financial and operating data), which
they can process to produce a general-information-based private signal gj for the firm. We call these
information “general” signals. For simplicity, we assume that these general signals are binary, i.e.,
gj ∈ {H, L}, with a realization H (L) being a positive (negative) signal; and that, conditional on
the (relevant) state, general signals are independent across lenders. Besides following the traditional
structure presented in Broecker (1990), this modeling of general signals also captures the coarseness
with which some general information is used in practice.12

12For example, as a leading example of “general information,” credit scores are binned in five ranges even though
scores are computed at a much granular level and go from 300 to 850.
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Additionally, we endow Bank A with a signal s, which captures the bank being “specialized”
in the firm. As the major departure from the existing literature, this additional signal is as a
specialized-information-based private signal, which is collected, for example, after due diligence
or face-to-face interactions with the borrower after on-site visits. We assume that the specialized
signal s is continuous, and its distribution is characterized by the Cumulative Distribution Function
(CDF) Φ(s) and probability density function (pdf) ϕ(s). Besides mathematical convenience, the
continuous distribution captures “specialized” information resulting from research tailored to the
particular borrower and, therefore, allows for a more granular assessment of the borrower’s quality.

The information structure is incomplete unless we specify the correlations between the funda-
mental states and the two types of signals, to which we turn in the next subsection.

Remark 1. Endogenous information structure. In our main analysis, we take the lenders’ in-
formation technologies—specifically, Bank A being the specialized lender—as given. Section 4.3
endogenizes this “asymmetric” information technology in a “symmetric” setting with two firms, a

and b, where Bank A (B) endogenously becomes specialized by acquiring both “general” and “spe-
cialized” signals of the firm a (b), while non-specialized Bank B (A) only acquires the “general”
signal of the firm a (b). There, the key difference between general and specialized information is
that a lender j only needs to invest once—say installing IT equipment and software—to get two
general signals, one for each firm, while specialized information needs to be collected individually
for each firm.

2.2 The Setting with a Multiplicative Structure

General and specialized fundamental states. Our main analysis focuses on the specific set-
ting with a multiplicative structure for the state θ, so that

θ ≡ θgθs ≡

1, when θg = θs = 1,

0, when either θg = 0 or θs = 0.
(2)

Here, θg captures the “generalized” state and θs captures the “specialized” state, where θg ∈ {0, 1}
and θs ∈ {0, 1} follow Bernoulli distributions and jointly determine the project’s success θ, in that
the project fails when either state fails.

We further assume that general and specialized states are independent, so that the prior prob-
ability of the state being “1” is simply q = qgqs with qg ≡ P (θg = 1) and qs ≡ P (θs = 1). This
independence, together with the independence of the noise across signals, implies complete inde-
pendence between the generalized and specialized signals (for Bank A). Although the independence
assumption across states simplifies the exposition quite a bit, this is for convenience and Section 4.2
shows that it is not necessary to ensure tractability. In fact, in a companion paper that highlights
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the idea of “big data hardening the soft information,” He, Huang, and Parlartore (2024) study a
setting where the two states are potentially correlated; see more details in Remark 3.

The distribution of the signals conditional on the state reflects the information technology. We
assume that, conditional on the state, the signal realizations are independent across borrowers. For
general information signals, which are assumed to be binary, we adopt the following notation,

P
(
gj = H |θg = 1

)
= αu, P

(
gj = L |θg = 0

)
= αd, for j ∈ {A, B} . (3)

Here, the information technology is not indexed by lender j as we assume that lenders have the
same technology to process general information that comes from “general” sources like financial
statements, an assumption that we relax later in Section 4.2; and 1 − αu and 1 − αd capture the
probabilities of Type I and Type II errors, respectively. Implicitly we impose that lenders have
the same technology to process general information, an assumption that we relax later in Section
4.2. The bad-news signal structure in He, Huang, and Zhou (2023) corresponds to αu = 1 and a
symmetric signal structure has αu = αd = α ∈ (0.5, 1] as in Hauswald and Marquez (2003) and
He, Jiang, and Xu (2024). Our main numerical illustration focuses on the latter case, although the
equilibrium characterization does not rely on any specific structure.

For the continuous specialized signal, without loss of generality, we directly work with the
posterior probability of the specialized state being good θs = 1 given its signal realization, i.e.,

s = Pr[θs = 1|s] ∈ [0, 1]. (4)

Recall that the pdf of s is ϕ(s), so we have
∫ 1

0 sϕ (s) ds ≡ qs to satisfy prior consistency. Although
our theoretical characterization works for any smooth density function ϕ(·), most of our numerical
illustrations use the specification that Bank A’s specialized signal is a noisy version of the underlying
state θs, with the signal-to-noise ratio being captured by the precision parameter τ (for more details,
see Section 3.3).

The specialized Bank A has both general and specialized signals {gA, s} while Bank B only
has a general signal gB. Throughout we assume that the general signal is “decisive” for lending:
Bank j bids only if it receives gj = H. This implies that for the specialized Bank A, the general
signal serves as “pre-screening,” in the sense that the bank rejects the borrower upon receiving an
L signal, while upon an H signal, it makes a pricing decision based on its specialized signal s.

Remark 2. Principal and supplementary signals and relation to the literature. The equilibrium
loan-making rule of the specialized bank is practically relevant. Essentially, the specialized bank
has two signals, one being “principal” which determines whether to lend, and the other being
“supplementary” which helps its loan pricing.13 This is in sharp contrast to the existing literature

13Alternatively, the principal signal represents the result of a credit screening test, while the supplementary signal
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mentioned in the introduction where lenders make loan offers randomly only conditional on the
most favorable realization of their (binary) signals. As shown in Section 4.1, our setting—by
decoupling the lender’s ex-post loan assessment from its ex-ante technology strength—helps deliver
the empirical regularity of lower observed loan rates granted by specialized banks.

Remark 3. Multi-dimensional information structure and its general applications. We take the
interpretation of “general” and “specialized” states when we specify θ = θgθs, but this setting
with multiple states admits many other interpretations. In fact, one can easily generalize it to the
following multi-dimensional multiplicative setting,

θ =

θg︷ ︸︸ ︷
N̂∏

n=1
θn ·

θs︷ ︸︸ ︷
N∏

n=N̂+1

θn, (5)

with independent binomial states (or characteristics) θn ∈ {0, 1} where n ∈ {1, 2, ..., N}. Our
setting with independent general (specialized) fundamental states is equivalent to setting θg ≡∏N̂

n=1 θn and θs ≡
∏N

n=N̂+1 θn. In fact, one can always “relabel” the signals to suit the context of a
specific application. In a companion paper, He, Huang, and Parlartore (2024) interpret

∏N̂
n=1 θn and∏N

n=N̂+1 θn as the “hard” and “soft” fundamental states, respectively, which are denoted by θh and
θs. Similarly to this paper, lenders can acquire “hard” and “soft” signals, that are informative about
the respective fundamental states. The expansion of the scope of hard information, presumably
driven by the recent advance in big data technology, is modeled by a greater cut-off state N̂ , so θh

covers more fundamental states (that are critical for project success) and hence may overlap with
the soft state θs. This is the key idea of “hardening soft information” in He, Huang, and Parlartore
(2024). There, we solve the model in closed form despite the potential correlation between θh and
θs. We revisit this issue towards the end of Section 4.1.

Parametric assumptions. To ensure that the pre-screening general signal is “decisive,” through-
out the paper we impose the following parameter restrictions.

Assumption 1. (Decisive general signals)
i) Bank A rejects the borrower upon an L general signal, regardless of any specialized signal s:

qg (1 − αu) r < (1 − qg) αd. (6)

serves the role of internal ratings (of borrowers who are qualified for credit). This ranking portrays the key role
played by hard information for large banks when dealing with new borrowers. Indeed, as documented in page
1677 of Crawford, Pavanini, and Schivardi (2018), Italian large banks list the factors they consider in assessing any
new loan applicant’s creditworthiness, with the following order of importance: i) hard information from the central
bank (financial statement data); ii) hard information from Credit Register; iii) statistical-quantitative methods; iv)
qualitative information (i.e., bank-specific soft information codifiable as data); v) availability of guarantees; and vi)
first-hand information (i.e., branch-specific soft information).
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ii) Bank B is willing to participate if and only if its general signal gB = H:

qgαuqsr > qgαu (1 − qs) + (1 − qg) (1 − αd) ; (7)

Assumption 1 says that the general signal is sufficiently informative and serves as pre-screening
of loan applications for both lenders; in other words, general signals are decisive for both lenders.
Under Condition (6), the loan is negative NPV to Bank A upon a general signal L, even when the
specialized signal is most favorable s = 1. This condition implies that Bank B, which only has the
general signal and is uncertain about the realization of the specialized fundamental, also rejects the
loan upon receiving gB = L. Condition (7) states that upon gB = H, Bank B is willing to lend
at r if it is the monopolist lender. This condition also implies that Bank A, with an additional
specialized signal, is willing to lend at the (exogenous) interest cap if it is the monopolist lender
upon gA = H if it also observes high enough realizations of its specialized signal.

2.3 Credit Market Equilibrium Definition

We now formally define the credit market equilibrium with specialized lending. Before doing so,
we define the banks’ strategies and their associated profits.

Bank strategies. In equilibrium, each lender makes a potential offer only upon receiving a
positive general signal H—recall Assumption 1 guarantees that the general signals are “desicive”
for both lenders in making the loan offer or not. Conditional on making offers, we define the space
of interest rate offers to be R ≡ [0, r] ∪ {∞}. Here, r is the exogenous maximum interest rate
imposed in Section 2.1 and ∞ captures the strategy of not making an offer. We will soon show
that the endogenous support of the equilibrium interest rates offered when making an offer is a
sub-interval of [0, r]. Therefore, with a slight abuse of terminology, we refer to that sub-interval as
the “support” of the interest rate distribution even though loan rejection (r = ∞) could also occur
along the equilibrium path.

We denote Bank A’s pure strategy by rA (s) : S → R, which induces a distribution of its
interest offerings denoted by F A (r) ≡ Pr

(
rA ≤ r

)
according to the underlying distribution of the

specialized signal. For now, we take as given that Bank A uses pure strategy only, though we
formally prove this result in Proposition 1.

Bank B randomizes its interest rate offerings conditional on a positive general signal in equilib-
rium. In this case, we use F B (r) ≡ Pr

(
rB ≤ r

)
to denote the cumulative distribution of its interest

rate offerings. Note that since the domain of offers includes r = ∞ which captures rejection, it is
possible that F j (r) = P

(
rj < ∞|gj = H

)
≤ 1 for j ∈ {A, B}.

The borrower picks the lowest interest rate possible if multiple loan offers are ever available. For
instance, conditional on both banks receiving positive general signals (HH), if Bank B quotes rB,
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then its winning probability 1−F A
(
rB
)

equals the probability that Bank A with specialized signal
s offers a rate that is higher than rB, which includes the event that Bank A rejects the borrower
(rA(s) = ∞), presumably because of an unfavorable specialized signal. Upon ties, which occurs
when rA = rB < ∞, borrowers randomly choose the lender with probability one half, although the
details of the tie-breaking rule do not matter as ties occur as zero-measure events in equilibrium.
When rA = rB = ∞, no bank wins the competition as they both reject the borrower.

Definition 1. (Credit market equilibrium) A competitive equilibrium in the credit market (with
decisive general signals) consists of the following lending strategies and borrower choice:

1. A lender j rejects the borrower or rj = ∞ upon gj = L for j ∈ {A, B}; upon gj = H,

i) Bank A offers rA (s) : [0, 1] → R ≡ [0, r] ∪ {∞} to maximize its expected lending profits
given gA = H and s, which induces a distribution function F A (r) : R → [0, 1];

ii) Bank B offers rB ∈ R to maximize its expected lending profits given gB = H, which
induces a distribution function F B(r) : R → [0, 1];

2. Borrower chooses the lower offer min{rA, rB}.

The following lemma shows that the resulting equilibrium strategies in our setting are still
well-behaved as established in the literature (Engelbrecht-Wiggans, Milgrom, and Weber (1983);
Broecker (1990)). The key steps of the proof are standard, though we make certain adjustments
due to the presence of both discrete and continuous signals.

Lemma 1. (Equilibrium Structure) In any credit market equilibrium, there exists an endogenous
lower bound of interest rate r > 0, so that the two distributions F j (·), j ∈ {A, B} share a common
support [r, r] (besides ∞ as rejection). Over [r, r) both distributions are smooth, i.e. no gap and
atomless, so that they admit well-defined density functions. At most only one lender can have a
mass point at r.

Bank profits and optimal strategies. We use gAgB ∈ {HH, HL, LH, LL} to denote the event
of the corresponding general signal realizations, where HL represents Bank A’s general signal being
H and Bank B’s general signal being L. Moreover, we denote by pgAgB the joint probability
of any collection of realizations of general signals. For instance, pHH ≡ P

(
gA = H, gB = H

)
=

qgα2
u +(1 − qg) (1 − αd)2 . Similarly, denote by µgAgB ≡ P

(
θg = 1

∣∣∣gA, gB
)

the posterior probability
of the general state being one conditional on gAgB. For example,

µHH = qgα2
u

qgα2
u + (1 − qg) (1 − αd)2 .
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Under the multiplicative structure with independent states {θg, θs}, the posterior probability of
project success given {HH, s} is

P
(

θ = 1| gA = H, gB = H, s
)

= µHH · s (8)

For Bank A who receives a positive hard signal and a soft signal s, its profit πA (r |s), when
competing with its opponent lender B by quoting r ∈ [r, r], equals

πA (r |s) ≡ pHH︸ ︷︷ ︸
gA=H,gB=H

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

[µHHs (1 + r) − 1]+ pHL︸︷︷︸
gA=H,gB=L

[µHLs (1 + r) − 1] , for r ∈ [r, r].

(9)
Bank A can also choose to exit by quoting r = ∞, in which case πA (∞ |s) = 0. We then denote
Bank A’s optimal interest rate offering by rA (s) ≡ arg maxr∈R πA (r |s).

Recall that Bank A cannot observe the realization of Bank B’s general signal when making an
offer. With probability pHH , both banks get favorable general signals H and Bank A wins with
probability 1 − F B(r) if it offers r, whereas with probability pHL, Bank A faces no competition for
the borrower since Bank B who receives a low general signal withdraws itself from the credit market.
Moreover, whether Bank B participates in the loan market affects Bank A’s expected quality of
the borrower, which is captured by µHHs and µHLs. Importantly, since Bank B randomizes its
strategy upon gB = H, from the perspective of Bank A winning the price competition against Bank
B is not informative about borrower quality.

This last observation is in sharp contrast with the problem of the non-specialized Bank B. A
standard winner’s curse ensues because the outcome of competition against the specialized Bank
A is informative about θs. More specifically, besides the possibility of the competitor’s unfavorable
general information as mentioned above, the non-specialized lender B who wins the price compe-
tition also infers rA (s) > rB, which reflects Bank A’s specialized information being unfavorable.
Taking these inferences into account, Bank B’s lending profit when quoting r are

πB (r) ≡ pHH︸ ︷︷ ︸
gA=H,gB=H

[
1 − F A (r)

]
︸ ︷︷ ︸

B wins

E
[
µHHθs (1 + r) − 1| r ≤ rA (s)

]
+ pLH︸︷︷︸

gA=L,gB=H

[µLHqs (1 + r) − 1] .

(10)
Bank B’s optimal strategy F B(·) maximizes its expected payoff

max
F B(·)

∫
R

πB (r) dF B (r) . (11)

As it is standard in equilibria in mixed strategies, the profit-maximizing Bank B is indifferent
between any action on its support.
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3 Credit Market Equilibrium Characterization

To characterize the credit market equilibrium, we first take the equilibrium non-specialized Bank
B’s profit πB as given and solve for the other equilibrium objects. Lemma 2 then solves for πB,
which completes the construction.

3.1 Solving for Pricing Strategies of Lenders

Solving for rA (s). Following Milgrom and Weber (1982), we start by solving for Bank A’s
equilibrium strategy rA (s). Suppose that rA (s) is decreasing, which will be verified later. Because
Bank B plays mixed strategies, we know that it makes a constant profit πB from any interest rate
quotes, and when Bank B chooses to reject the borrower upon H with some probability, i.e., when
F B(r) < 1 , we must have πB = 0. Moreover, when Bank B quotes r = rA (s), conditional on
gA = H Bank B understands that it only wins the customer when A’s specialized signal is below s.
Bank B, therefore, updates the belief about the borrower’s quality accordingly—its posterior for
the specialized state is

∫ s
0 tϕ (t) dt.

On the other hand, conditional on gA = L, Bank B wins the borrower for sure. Plugging
rB = rA (s) in Bank B’s lending profits in Eq. (10), we have the following indifference condition:

πB =
[
pHHµHH

∫ s

0
tϕ (t) dt + pLHµLHqs

]
︸ ︷︷ ︸

B’s expected loan quality (lending benefit)

(
1 + rA (s)

)
− (pHHΦ (s) + pLH)︸ ︷︷ ︸

B’s expected loan size (lending cost)

, (12)

which holds for any rB = rA (s) ∈ [r, r). It immediately follows that

rA (s) = πB + pHHΦ (s) + pLH

pHHµHH
∫ s

0 tϕ (t) dt + pLHµLHqs
− 1, when s ∈ [ŝ, 1] , (13)

where ŝ is the highest realization of the specialized signal such that Bank A quotes r, that is, 14

ŝ ≡ sup
{

s| rA (s) = r
}

. (14)

We further define x ≤ ŝ as the threshold such that πA (r| x) = 0. It is worth highlighting that
x = ŝ could occur along the equilibrium path. Then it is straightforward to show that rA (s) = r

for s ∈ [x, ŝ), and rA (s) = ∞ for s ∈ [0, x).
As shown in Proposition 1 below, the conjectured strategy rA(s), which is strictly decreasing,

14Recall the convention that sup {∅} = inf S = 0.
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gives the unique equilibrium given πB. Define its inverse function (correspondence) of rA (s) to be

sA(r) ≡


rA(−1)(r), when r ∈ [r, r),

[x, ŝ), when r = r,

[0, x), when r = ∞.

(15)

Noting that ŝ may coincide with x, and we take the convention that rA(x) = r. And, the two
relevant cutoffs for Bank A’s strategy can be written as ŝ = sup sA(r), i.e., the highest signal that
Bank A quotes r, and x = sup sA(∞), i.e, the highest signal that Bank A rejects the borrower.

Solving for F B(·). We now turn to Bank B’s strategy. In equilibrium, B’s strategy needs to
support rA (·) in (13) to be Bank A’s optimal strategy. The first-order-condition (FOC) that
maximizes Bank A’s objective in (9), which balances the lower probability of winning against the
higher payoff from served borrowers, is

pHH

(
−dF B (r)

dr

)
[µHHs (1 + r) − 1] +

{
pHH

[
1 − F B (r)

]
µHHs + pHLµHLs

}
= 0. (16)

We then use Bank A’s equilibrium strategy rA (s) that satisfies (16) for all s ∈ [ŝ, 1] to pin down
F B(·).

From Bank B’s perspective, by quoting r = rA (s), the corresponding marginal borrower type
(with a specialized signal) is sA (r). Writing everything in terms of r; when Bank B marginally cuts
its quote by dr, it gets ϕ

(
sA(r)

)
(−sA′ (r))dr additional borrower type with quality µHHsA (r) if

there is competition, which occurs with probability pHH . This gain is exactly offset by the marginal
lower payoff from the borrower types who are already served. Therefore, Bank B’ FOC is

pHH

[
ϕ
(
sA(r)

)
· (−sA′ (r))

]
︸ ︷︷ ︸

additional borrower type

[
µHHsA (r) (1 + r) − 1

]
= pHHµHH

∫ sA(r)

0
tϕ (t) dt + pLHµLHqs︸ ︷︷ ︸

existing borrower types

.

(17)
Using the expression for µHHsA (r) (1 + r) − 1 in Bank B’s FOC (17) in Eq. (16) which captures
Bank A’s FOC, we have

dF B (r)
dr

pHHµHH
∫ sA(r)

0 tϕ (t) dt + pLHµLHqs

ϕ (sA(r)) sA′ (r)

+pHH

[
1 − F B (r)

]
µHHsA(r)+pHLµHLsA(r) = 0.
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One can show that the above equation yields the following ODE, which pins down F B(·):

d

dr

 pHHµHH

[
1 − F B (r)

]
+ pHLµHL

pHHµHH
∫ sA(r)

0 tϕ (t) dt + pLHµLHqs

 = 0. (18)

Here is the intuition behind the differential equation (18). At any interest rate r, both lenders
are competing for the same marginal borrower type with (expected) quality µHH ·sA(r), which yields
an expected profit of µHH · sA(r) · (1 + r) − 1. This term shows up in both lenders’ optimization
conditions, i.e., (16) for Bank A and (17) for Bank B. We denote by Qj(r) the total quality of
borrowers of Bank j ∈ {A, B} when it offers interest rate r. Then,

QA(r) = pHHµHHsA(r)
[
1 − F B (r)

]
+ pHLµHLsA(r),

QB(r) = pHHµHH

∫ sA(r)

0
tϕ (t) dt + pLHµLHqs.

QA and QB differ in that Bank A observes s while Bank B only knows that it gets borrower types
with expected specialized fundamental state s < sA(r) (if gA = H) or qs (if gA = L). For Bank A,
the marginal effect of price cutting on borrower quality is 1

µHH

[
QA(r)
sA(r)

]′
, where the division inside

the bracket adjusts for the quality of the specialized fundamental of the marginal borrower type.
Then, Bank A’s optimal pricing strategy will equate the above marginal benefit to the associated
marginal cost of price cutting, which is dr multiplying by the expected borrower quality QA(r)dr.
Therefore we must have[

QA(r)
µHHsA(r)

]′

dr ·
[
µHHsA(r) (1 + r) − 1

]
︸ ︷︷ ︸

MB on marginal borrower type

= QA(r)dr︸ ︷︷ ︸
MC on existing borrower types

(19)

⇔ µHHsA(r)
µHHsA(r) (1 + r) − 1

=

[
QA(r)
sA(r)

]′
QA(r)
sA(r)

, (20)

which is equivalent to Eq. (16). On the other hand, for Bank B, which does not observe s, the
marginal effect on customer size is 1

µHH

QB′(r)
sA(r) , implying an optimality condition of

QB′(r)
µHHsA(r)

dr ·
[
µHHsA(r) (1 + r) − 1

]
︸ ︷︷ ︸

MB on marginal borrower type

= QB(r)dr︸ ︷︷ ︸
MC on existing borrower types

⇔ µHHsA(r)
µHHsA(r) (1 + r) − 1

= Q′B(r)
QB(r)

,

(21)
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which is exactly Eq. (17).15 Combining (20) and (21), we have:

[
QA(r)
sA(r)

]′
QA(r)
sA(r)

= Q′B(r)
QB(r)

⇔ d

dr

[
QA(r)/sA(r)

QB(r)

]
= 0, (22)

which is exactly our key ODE in Eq. (18).
The boundary condition F B (r) = 0 defines the lower-end support of the offered interest rate.

Combining this bound with the ODE in Eq. (18) one can readily derive

1 − F B (r) =
∫ sA(r)

0 tϕ (t) dt

qs
, for r ∈ (r, r) (23)

as we have focused on the interior of the strategy space.16 It is clear that F B(r) < 1 for r ∈ [r, r),
because F B (r−) = 1

qs

∫ 1
sA(r−)=ŝ tϕ(t)dt < 1; and Bank B’s strategy on the boundary r depends on

whether it is profitable in equilibrium: it either places a mass of 1 − F B(r−) = 1
qs

∫ ŝ
0 tϕ (t) dt > 0

on r if πB > 0, or quotes r = ∞ (i.e., withdraws) if πB = 0. Finally, we observe that parameters
on the general signals do not enter F B(·) in (23) directly, but as shown below they do affect F B(·)
indirectly via the endogenous lower bound of the support r.

Illustration of lenders’ pricing strategies. Figure 2 illustrates the equilibrium strategies for
both lenders for two cases, πB > 0 and πB = 0 indicated by the subscripts “+” and “0,” respectively.
The exogenous parameter that drives the different profits for Bank B is the interest rate cap r,
which we denote by r+ > r0 depending on the equilibrium type. As one would expect, the greater
the borrower surplus (implied by a higher interest rate cap) the higher the lender’s profits. Panel
A (left) depicts Bank A’s pricing strategy rA(s), which is decreasing, while the right panel plots
F B(r) which is Bank B’s CDF for its interest rate offerings. We also plot the corresponding cutoff
signals ŝ, at which Bank A’s strategy hits r, and x, at which Bank A exits.

While we discuss the equilibrium strategies in more detail after providing a full characterization
of the equilibrium, Figure 2 highlights a key difference between the two types of equilibrium that
can arise, one with πB = 0—the zero-weak equilibrium as the weak bank earns no profits—and
the other with πB > 0—the positive-weak equilibrium as the weak bank earns positive profits. As
shown in Figure 2, in the case in which πB = 0, Bank A has a point mass at r0 (corresponding to

15Readers might notice the important difference between the two lenders’ marginal effects of cutting their prices
on the quantity. For Bank A which observes the specialized signal realization directly, its pricing decision should not
affect its quality; this is why we scale QA first by s and then take derivative, i.e.,

[
QA(r)
sA(r)

]′
. In contrast, without

observing s directly, Bank B’s price cutting affects its inferred quality of the borrower type (that it wins over Bank
A). Therefore we take the derivative of QB(r), which includes the quality of its borrowers, and then scale by the
quality of marginal borrower type to avoid double counting.

16In deriving (23) we have used the fact that the two lenders share the same general information technology. This
implies that the identity of the lender who receives high/low general signal is irrelevant and hence pLHµLH = pHLµHL.
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Figure 2: Equilibrium strategies rA (s) for Bank A (left) and F B (r) for Bank B (right). In
both panels, strategies under r̄+ (i.e., positive-weak equilibrium) are depicted in red with “+” markers while
strategies with r̄0 (i.e., zero-weak equilibrium) are depicted in blue. In the zero-weak equilibrium, Bank A
(but not Bank B) has a point mass at r0 while in the positive-weak equilibrium, Bank B (but not Bank A)
has a point mass at r+. Parameters: qg = 0.8, qs = 0.9, αu = αd = α = 0.8, and τ = 1.

s ∈ (x0, ŝ0)) but Bank B does not, while in the case of πB = 0 the opposite holds. This reflects
the competition at the interest rate cap and it is the exact manifestation of point c) in Lemma 1
(otherwise, lenders will undercut each other at this point).

3.2 Solving for the Equilibrium Profit of Bank B

In the last step, we solve for the equilibrium profit for Bank B, πB, which then pins down the
entire equilibrium. Define sbe

A as the specialized signal realization under which Bank A quotes r

and breaks even (therefore the superscript “be”). Formally, using πA(·) given in (9) and using the
strategic response of Bank B in Eq. (23),17 sbe

A is the unique solution to the following equation

πA
(
r
∣∣∣sbe

A

)
= pHH

∫ sbe
A

0 tϕ (t) dt

qs
·
[
µHHsbe

A (1 + r) − 1
]

+ pHL

[
µHLsbe

A (1 + r) − 1
]

= 0, (24)

which admits a unique solution inside the interval (0, 1).18 We define sbe
B following a similar logic

as follows. Consider the case in which Bank B quotes the maximum rate r. Then, the potential
winner’s curse implies that Bank B only wins the borrower when either Bank A’s general signal is

17Technically speaking Bank A quotes r− so that 1 − F B
(
r−) = 1

qs

∫ sbe
A

0 tϕ (t) dt, as (23) requires r ∈ [r, r).
18Note πA

(
r
∣∣sbe

A

)
as a function of sbe

A is strictly increasing. Moreover, we have πA
(
r
∣∣sbe

A = 0
)

< 0 and
πA
(
r
∣∣sbe

A = 1
)

= pHH [µHH (1 + r) − 1] + pHL [µHL (1 + r) − 1] > 0; the latter is implied by that Bank A is willing
to make an offer given gA = H.
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gA = L or its specialized signal is sufficiently unfavorable, i.e., s < sbe
B . The break-even condition

for Bank B uniquely defines sbe
B , as follows.

0 = πB (r) = pHH

[
µHH

(∫ sbe
B

0
tϕ(t)dt

)
(1 + r) − Φ

(
sbe

B

)]
+ pLH [µLHqs (1 + r) − 1] . (25)

Lemma 2 below shows that the relative ranking between sbe
B and sbe

A fully determines πB and ŝ

in equilibrium, with both being fully characterized explicitly. Intuitively, the equilibrium crucially
depends on which lender quoting r hits zero profits first when the specialized signal goes down from
the top. If sbe

A < sbe
B then Bank B hits zero profit first, and this supports the equilibrium of πB = 0

with ŝ = sbe
B ; otherwise we have πB > 0 with ŝ = sbe

A .

Lemma 2. Given sbe
A defined in (24), the equilibrium Bank B profit is

πB = max
{[

pHHµHH

∫ sbe
A

0
tϕ (t) dt + pLHµLHqs

]
(1 + r) −

(
pHHΦ

(
sbe

A

)
+ pLH

)
, 0
}

.

When sbe
B < sbe

A we are in the positive-weak equilibrium in which the weak Bank B makes a positive
profit, and x = ŝ = sbe

A . Otherwise, when sbe
B ≥ sbe

A we are in the zero-weak equilibrium where Bank
B earns zero profits, with x < ŝ = sbe

B .

To understand the result, note that sbe
B is the highest specialized signal under which Bank A’s

offer hits r, given πB = 0.19 Moreover, recall that sbe
A is the level of specialized signal under which

Bank A just breaks even when quoting r. Then if sbe
B < sbe

A , Bank A hits zero profit first, implying
that it will lose money upon receiving a specialized signal s = sbe

B < sbe
A . Combining these two

pieces, we know that quoting r at sbe
B , under the assumption of πB = 0, must be off-equilibrium for

Bank A. Therefore in equilibrium πB > 0 and Bank A withdraws itself upon s < x = ŝ = sbe
A . If

on the other hand sbe
B ≥ sbe

A , we are in the alternative scenario where ŝ = sbe
B and πB = 0; Bank

A who is making a positive profit at sbe
B will keep quoting r for s < sbe

B , until s < x upon which it
exits.

3.3 Credit Market Equilibrium

We now present the main result of our paper. The credit market equilibrium, which is fully
characterized analytically, not only helps us understand the observed pattern of interest rates
when some lenders are specialized but also allows us to study the implications of the evolution of
information technologies.

19Note that (25) can be rewritten as sbe
B = args∈S sup

{
rA
(
s; πB = 0

)
= pHH Φ(s)+pLH

pHH µHH

(∫ s

0
tϕ(t)dt

)
+pLH µLH qs

− 1 ≥ r

}
.

(Recall we take the convention that arg sup ∅ = inf S = 0.)
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Credit market equilibrium characterization. The next proposition summarizes the credit
market equilibrium with specialized lending.

Proposition 1. (Credit Market Equilibrium) In the unique equilibrium, Bank A follows a pure
strategy as in Definition 1. In this equilibrium, lenders reject borrowers upon a low general signal
realization hj = L for j ∈ {A, B}. Otherwise (i.e., when hj = H), their strategies are characterized
as follows, with the equilibrium πB given in Lemma 2.

1. Bank A with specialized signal s offers

rA (s) =


min

{
πB+pHHΦ(s)+pLH

pHHµHH

∫ s

0 tϕ(t)dt+pLHµLHqs
− 1, r

}
for s ∈ [x, 1],

∞, for s ∈ [0, x).
(26)

The equation pins down r = rA (1) . If s ∈ (ŝ, 1] where ŝ = sup sA(r), rA(·) is strictly
decreasing with its inverse function sA(·) = rA(−1)(·).

2. Bank B makes an offer with cumulative probability given by (1{X} = 1 if X holds)

F B (r) =


1 −

∫ sA(r)
0 tϕ(t)dt

qs
, for r ∈ [r, r) ,

1 − 1{πB=0} ·
∫ ŝ

0 tϕ(t)dt

qs
, for r = r.

(27)

When πB = 0, F B (r) = F B (r−) is the probability that Bank B makes the offer (and with
probability 1

qs

∫ ŝ
0 tϕ (t) dt it withdraws by quoting rB = ∞); when πB > 0, F B (r) = 1 and

there is a point mass of 1
qs

∫ ŝ
0 tϕ (t) dt at r.

The proof for Proposition 1 mainly covers three issues. First, we show that the specialized lender
always adopts pure strategy in any equilibrium; in other words, Bank A’s pure strategy, which is
implicitly taken as given in Definition 1, is a result rather than an assumption. Second, we prove
that the FOC conditions used in the equilibrium construction detailed in Section 3 are sufficient
to ensure global optimality. Third, somewhat surprisingly, thanks to the endogenous adjustment
of πB and r, we never need to “iron” a la Myerson (1981) at the interior part of the range for
equilibrium interest rates. In fact, in our model, Bank A never bunches its quotes—except at r

when the zero-weak equilibrium ensues. (This is consistent with point 3 in Lemma 1 that states
that Bank B will undercut if Bank A bunches at some interior interest rate.)

Properties of credit market equilibrium. Figure 3 illustrates the main properties of the
credit market equilibrium with specialized lenders. For the purpose of exposition, we assume that
Bank A’s specialized signal s is obtained from observing a noisy version of θs, i.e., θs + ϵ, so that

s = E [θs|θs + ϵ] . (28)
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Figure 3: Equilibrium strategies and profit. In the top two panels, we plot equilibrium strategies for
both lenders. Panel A depicts rA(s) as a function of s and Panel B plots dF B(r)/dr for as a function r;
strategies with r̄+ are depicted in red with markers while strategies with r̄0 are depicted in blue. Panel C
depicts Bank A’s thresholds ŝ = sup sA(r) and x = sup sA(∞), and Panel D depicts the expected profits for
two lenders. Parameters: qg = 0.8, qs = 0.9, αu = αd = α = 0.8, and τ = 1.

Here, ϵ ∼ N (0, 1/τ) indicates a white noise, with the precision parameter τ capturing the signal-
to-noise ratio of Bank A’s specialized information technology.

The top two panels in Figure 3 plot both lenders’ pricing strategies conditional on making an
offer; Panel A is the same as that in Figure 2 for convenience while Panel B plots the density
dF B/dr for Bank B. We observe that rA(s) decreases in s—when the specialized Bank A receives
a more favorable specialized signal about credit quality, it bids more aggressively with a lower rate
to win the borrower over the competitor Bank B. This strategic response to exploit the competitor
bank is weakened when the private assessment of credit quality is low, leading Bank A to scale
back. In fact, Bank A rejects the borrower when s < x. In contrast, as shown in Panel B, the
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competitor Bank B randomizes as it only observes the general signal.
Panel C plots the two specialized signal cut-offs for Bank A, i.e., ŝ at which it starts quoting

r and x at which it starts rejecting the borrower. Panel D plots the expected profits—E(πA) and
πB—for two lenders. Both panels are plotted against the exogenous interest rate cap r.

Recall that r, which is the return of the good project, captures the surplus in competition. Thus,
a higher total surplus gives rise to less fierce competition, and as a result, both lenders—including
the weak lender B—are making profits upon a favorable general signal H. This immediately
explains Panel D, which shows that πB turns strictly positive for sufficiently high r. Put differently,
the model features a positive-(zero-) weak equilibrium when r is relatively high (low).

For a better illustration, consider the competition at interest rate r. In the positive-weak
equilibrium (high r’s), the non-specialized Bank B places a point mass on this interest rate, enjoying
some “local monopoly power” in competition as it is the only lender when Bank A rejects the
borrower upon s < ŝ = x. This is possible because when the project’s surplus (captured by r) is
sufficiently large, the nonspecialized Bank B is still profitable by quoting r despite the winner’s
curse.20 In contrast, in the positive-weak equilibrium (low r’s), the specialized Bank A is the
monopolistic lender who places a point mass on this interest rate (when s ∈ (x, ŝ), as shown in
Panel C) while the nonspecialized Bank B withdraws.

4 Model Implications and Discussion

In this section, we discuss the economic implications of our model. First, we study the interest
rate wedge, which is the rate difference between the loans made by specialized and non-specialized
lenders, respectively. We highlight the difference between bids vs winning bids on granted loans, and
explain how the private-information-based pricing featured in our model helps generate the negative
interest rate wedge observed in the data. Second, we endogenize the asymmetric information
structure, i.e., Bank A specializes with an additional specialized signal compared to Bank B, by
introducing information acquisition in an ex-ante symmetric framework. Finally, we extend our
baseline multiplicative setting with two states to one with many states and study ‘the role of
‘correlated” general signals, an application that is practically relevant given the recent “open data”
initiative.

4.1 Specialized Lending: Interest Rate Wedge

Consistent with Figure 1 in the Introduction, Blickle, Parlatore, and Saunders (2023) document two
robust empirical patterns: the loans on the balance sheet of specialized lenders tend to have higher
quality and lower interest rates. In our setting specialized lenders are extending higher quality loans

20Bank B who quotes r gets the borrower too if Bank A receives an unfavorable general signal gA = L. Despite
this winner’s curse, the surplus is sufficiently high so that the nonspecialized Bank B is still profitable by quoting r.
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thanks to their informational advantage; this is a robust prediction of any information-based model,
including those canonical ones a la Broecker (1990) and Marquez (2002). This section therefore
focuses on the interest rate wedge between the specialized and nonspecialized lender.

Interest rate wedge: bids vs. winning bids

An econometrician observes the granted bank loans that are accepted by borrowers. Put differently,
the loans that we use to calculate loan quality and interest rates are already on the book of the
lender who won the bidding competition.

In our credit market competition setting, when Bank A makes a loan offer (rA < ∞), it is
accepted by the borrower if rA < rB ≤ ∞, i.e., either if there is no offer from Bank B (when
hB = L so rB = ∞), or Bank A’s rate is lower than that offered by Bank B. Therefore, the theo-
retical counterpart of a negative rate differential in Blickle, Parlatore, and Saunders (2023) is that
specialized lenders charge lower interest rates on their granted loans relative to the nonspecialized
lender:

∆r ≡ E
[
rA
∣∣∣ rA < rB ≤ ∞

]
︸ ︷︷ ︸

interest rate of A’s granted loan

− E
[
rB
∣∣∣ rB < rA ≤ ∞

]
︸ ︷︷ ︸

interest rate of B’s granted loan

< 0. (29)

Here, we use ri < rj ≤ ∞ to denote the event that Bank i wins the competition, which necessarily
requires a non-infinity offer.

There is a crucial difference in the (expected) interest rate wedge calculated from “bids,” i.e.,
banks’ offered interest rates, and the one calculated from “winning bids,” i.e., banks’ rates on their
granted loans. First of all, the winning bid is a first-order statistic (i.e., the smaller one given two
quotes). Second, and conceptually more important in the context of credit market competition,
banks often protect themselves from the winner’s curse by simply rejecting loan applications, which
we model as a quoting ∞ for mathematical convenience. This explains rj < ∞ for Bank j in the
conditioning of Eq. (29).

An example from He, Huang, and Zhou (2023) illustrates this point in a stark way. There,
banks are endowed with general signals only, it assumes a bad news structure (i.e., αj

u = 1 and
αj

d < 1 so that only false positives can occur), and banks differ in the precision of their signals.
Suppose that αA

d > αB
d which captures the idea that Bank A is relatively more informed, just like

in our model. As shown in He, Huang, and Zhou (2023), following a favorable general signal the
equilibrium CDF of offered interest rates for both banks, denoted by F̂ (·), coincide in the interior
of the common support. More precisely, when r ∈ [r, r) we have:21

F̂ (r) ≡ P (r̃A < r) = P (r̃B < r) =
r − 1−q

q

(
1 − αB

d

)
r − 1−q

q

(
1 − αB

d

) (
1 − αA

d

) .
21At the common endogenous lower bound r = (1−q)(1−αB

d )
q

, we have F̂ (r) = 0.
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Figure 4: Example of Lender Bidding Rates in Canonical Models. We plot the density functions
(left scale) and probability mass points (right scale) of lenders’ interest rate offering upon favorable signals
in He, Huang, and Zhou (2023). Our framework nests He, Huang, and Zhou (2023) by setting qs = 1
(degenerate specialized information), αu

A = αu
B = 1 (bad-news information structure) and αd

A > αd
B (Bank

A has better information technology).

Therefore both densities in the interior of [r, r) also coincide, as shown in Figure 4 which plots the
bidding strategies of both lenders in He, Huang, and Zhou (2023). The only difference between the
bank’s strategies is at the upper boundary r: Bank A quotes the monopolistic rate r = r with a
positive mass 1 − F̂ (r−) > 0 while Bank B rejects the borrower by quoting r = ∞ with the same
probability.

One can immediately see that, consistent with the intuition of the winner’s curse, the bidding
rates from the less informed Bank B are higher (i.e., first-order stochastic dominance) than those
from the more informed Bank A. However, one can formally show that the implied interest rate
wedge of winning bids (granted loans), conditional on both making offers (upon H signals), goes
the opposite way because Bank A earns a monopolistic profit of r exactly when Bank B rejects
(quoting rB = ∞). As we will elaborate shortly, we label this force the “information rent” effect.
The smaller the interest rate cap r, the stronger the winner’s curse faced by the less informed
Bank B, and therefore the stronger the information rent effect. The next section formalizes this
statement.22

22Recall that this discussion only concerns the interest rate wedge conditional on participation from both lenders,
in this case one can formally prove that ∆r > 0. However, from an unconditional perspective one also needs to
take into account the possibility of an unfavorable general signal under which each lender rejects by quoting r = ∞.
Given a bad news structure which can only generates false positive, the stronger Bank A is more likely to receive an
unfavorable general signal (which is truth revealing) and therefore reject. This force complicates the analysis and we
show in Proposition 2 that ∆r > 0 when r is sufficiently small (i.e., when loan rejection occurs often in equilibrium).
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Economic mechanisms of interest rate wedge

We now discuss the underlying economics of a negative interest rate wedge, i.e., lower winning bids
from specialized lenders, through the lens of information-based credit market competition models,
both canonical ones and ours with additional specialized signals.

Canonical models: the effect of information rent. In canonical credit competition models,
the information technology is parameterized by the signal precision, which captures the lenders’
ability to screen out uncreditworthy borrowers. The most natural way to capture “specialized
lending” in this canonical setting is by imposing asymmetric screening abilities (on general signals
and assume away specialized signal) along the line of Marquez (2002); He, Huang, and Zhou (2023),
as illustrated in Figure 4.

Recall the notation of the general signal information structure given by Eq. (3) in Section 2.2;
the literature has primarily focused on the following two parameterizations. The first is the bad
news structure adopted in He, Huang, and Zhou (2023) discussed above assuming that αA

d > αB
d to

capture Bank A being specialized. Alternatively, Marquez (2002) adopts a symmetric information
structure, so that αA

u = αA
d > αB

u = αB
d .23 For ease of exposition, in both cases we use αA > αB to

denote Bank A having a more informative (binary) signal.
As emphasized before, in these canonical models only quantity decisions (i.e., whether to lend

or not) are based on the signal realizations while pricing decisions (offered interest rates) are
randomized. We have the following proposition.

Proposition 2. (Counterfactual Prediction in Canonical Models.)

1. Under a bad news structure, there exists a threshold r̂ such that ∆r > 0 for r < r̂;

2. Under a symmetric information structure, when α = αA and αB ↑ α, ∆r > 0 for r ≤ 1
q − 1

or 1
q < 1

1−α+α2 .

Note that the canonical models can generate ∆r < 0 for sufficiently high r. However, as
shown in Appendix A.3, the empirically relevant parameters violate these conditions. We therefore
conclude that canonical models generate ∆r > 0 as a model prediction, which is counterfactual to
the empirical finding in Blickle, Parlatore, and Saunders (2023).

In general, as Bank A’s private signal is more precise, the weak lender B is more concerned
about the winner’s curse, i.e., picking up a “lemon” whom the competitor lender assessed as L and
rejected. As a result, the weak Bank B randomly withdraws even after receiving a favorable signal
gB = H,24 yielding Bank A to become a monopolist. This economic force, which we refer to as

23That is to say, in the bad news structure, Bank A makes less false positive mistakes than Bank B, while in the
symmetric information structure, Bank A makes fewer false positive and false negative mistakes than Bank B.

24In the context of Proposition 2, probabilistic withdrawal of the weak bank given gB = H holds always under the
bad news structure, while holds when αA − αB > 0 is sufficiently large under a symmetric information structure.
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information rent, drives the specialized Bank A to have higher expected winning bids (i.e., rates
on granted loans) than Bank B, opposite to the empirical regularity.

In the bad news structure, the information rent effect intensifies if the weak lender rejects
borrowers more often in the equilibrium. When the exogenous interest rate cap r gets smaller, the
weak lender who faces a more severe winner’s curse rejects its loan applications more often, which
explains the first part of Proposition 2.

The analysis for the symmetric information case is more involved. The second part of Proposi-
tion 2 considers the limiting case of αB ↑ αA, and shows that under empirically relevant primitives
calibrated in Appendix A.3,25 we would have the counterfactual prediction ∆r > 0 even when
αB ↑ αA. Presumably, the information rent effect is stronger when the gap in information technol-
ogy, i.e., αA − αB > 0 is larger.26 The formal theoretical result in Proposition 2 therefore allows
us to argue that canonical models generate counterfactual empirical implications on rates.

Our model: private-information-based pricing. By introducing Bank A’s informed rate
offers, our model naturally generates the empirical regularity that “loans made by specialized
banks have lower rates” documented by Blickle, Parlatore, and Saunders (2023). As illustrated
by Panel A in Figure 2, the specialized Bank A who receives a more favorable specialized signal
about credit quality bids more aggressively (i.e., offers a lower rate) to win the borrower over the
competitor Bank B. In fact, Bank A rejects the borrower when its specialized signal falls below a
certain threshold (i.e., s < x).

The early discussion regarding “bids versus winning bids” right after inequality (29) suggests
that whether Bank B rejects (by quoting rB = ∞) plays a role. As we discuss above, the counter-
factual prediction ∆r > 0 is more likely to occur if Bank B rejects more often (so Bank A enjoys
more information rent). The same economic mechanism is present in our model. Indeed, the force
of private-information-based pricing is more likely to prevail in a positive-weak equilibrium where
Bank B never rejects along the equilibrium path; it even enjoys some “local monopoly power” by
having a point mass at r, so that Bank B is the only lender when Bank A rejects the customer
upon s < x. When Bank B never withdraws from the competition upon receiving a high signal,
the better informed Bank A undercuts to win higher quality borrowers while leaving those lemons
to Bank B (who then make loans with higher wining bids).27

25We calibrate q and α based on two empirical moments in the U.S. banking industry. First, according to this
Federal Reserve report the non-performing loan (NPL) ratio is about 2%; second, Yates (2020) reports that that the
approval rate for business C&I loans ranges from 55% (small firms) to 80% (large firms). Matching to these two
moments in Appendix A.3 we show that the implied parameters violate q < 1−α+α2 in Proposition 2. For instance,
taking an approval rate of 70%, we obtain q = 0.9629 and α = 0.716, which violate q < 1 − α + α2. Note that our
conclusion is independent of the parameter value of r, which is harder to gauge. (One could set r = 36% according
to the usury law in many states that caps interest rates, but it only applies to consumer loans.)

26Although we have not been able to prove this claim formally, it is confirmed in all of our numerical exercises.
27Otherwise, Bank B who actively withdraws from the competition is less likely to make loans to lemons to start

with, which is the force favoring the information rent in canonical models. Note, in canonical models, even if the

26

https://www.federalreserve.gov/publications/2018-11-supervision-and-regulation-report-banking-system-conditions.htm#:~:text=Non%2Dperforming%20loan%20ratio&text=Note%3A%20Non%2Dperforming%20loan%20ratio,nonaccrual%20loans%20to%20total%20loans.


Is πB > 0 a necessary condition? A special case. The above discussion seems to suggest
that a positive profit for Bank B (πB > 0) is a necessary condition for a negative interest rate
wedge. When r = ∞, Bank B could make zero profit or be profitable, but it never withdraws
in equilibrium; and as illustrated in the discussion of bids vs winning bids, it is the endogenous
withdrawal from the weaker bank makes the interest rate wedge conceptually interesting. The
following analytical result on a special case with r = ∞, together with a uniformly distributed
specialized signal and a degenerate general fundamental, clarifies this point.

Proposition 3. (A Special Case of Uniform Distribution) Suppose that r = ∞ so that
rejection is off equilibrium, general signals are degenerate (qg = 1), and the specialized signal’s
distribution follows ϕ(s) = 1 + ϵ [2 · 1s≤0.5 − 1]. Then we have πB = 0, ∆r = 0 when ϵ = 0 (i.e.,
s ∼ U[0, 1]), and ∆r > 0 (∆r < 0) when ϵ > 0 (ϵ < 0) for infinitesimal ϵ.

There are several important implications of this proposition. First, when the specialized signal
follows a uniform distribution (together with a degenerate general signal and r = ∞), the two afore-
mentioned effects—information rent and private-information-based pricing—equalize, and lenders
have the same realized interest rates on their granted loans. Second, starting from this benchmark,
any tilting toward private-information-based pricing—e.g., tilting more probability mass toward fa-
vorable specialized signals and therefore lower rates—would generate a negative interest rate wedge
observed in the data. Third, πB > 0 is not necessary for ∆r < 0. In Proposition 3 we have πB = 0
always for the uninformed Bank B given the degenerate general information. The last point is also
intuitive: in the special case above we have r = ∞ so Bank B never withdraws from the compe-
tition, while the previous discussion suggests that it is Bank B’s rejection along the equilibrium
path—not profitability per se—that favors the information rent effect.

Model comparative statics on interest rate wedge

Figure 5 plots the comparative statics of interest rate wedge ∆r with respect to several key model
parameters. For ease of discussion, we also indicate the regions of zero-weak and positive equilibria.
The top two panels (A and B) concern information technology parameters α (precision of general
signals) and τ (precision of the specialized signal). In the bottom panels, Panel C focuses on
the interest rate cap r which also captures the total surplus in this economy. Panel D plots the
comparative statics with respect to 1/qg, which relates to the relative importance of general and
specialized information in this model (to be explained shortly).

Let us focus on the information technology parameters first. The general pattern is that when
information technology improves—either the general signal precision α (Panel A) or the specialized
signal precision τ (Panel B)—the credit market competition is more likely to be in the zero-weak

weak bank may earn profits given a high borrower surplus (say large q and r), it never enjoys the “local” monopoly
power—the strong bank never withdraws upon H while the weak bank never has a point mass at r.
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Figure 5: Interest rate wedge. Panel A to Panel D depict ∆r = E
[
rA
∣∣ rA < rB ≤ ∞

]
−

E
[
rB
∣∣ rB < rA ≤ ∞

]
as a function of α, τ , 1/qh and r̄. The positive-weak equilibrium arises when α

or τ lies below a certain value and 1/qh and r̄ exceed a certain value. Initial Parameters: r̄ = 0.45, qh = 0.8,
qs = 0.9, τ = 1 and αu = αd = α = 0.8.

equilibrium where the nonspecialized Bank B is sufficiently “weak” and hence makes zero profits.
This is intuitive because i) a higher general signal precision α levels the playing field on general
information and hence effectively enlarges the specialized information advantage of the specialized
bank, and ii) a higher specialized signal precision τ directly boosts the specialized bank’s specialized
information advantage. Since the effect of private-information-based pricing tends to dominate in a
positive-weak equilibrium, a sufficiently low information technology helps deliver a negative interest
rate wedge; this is depicted in the two top panels in Figure 5. Note that the interest rate wedge is
discontinuous when the economy enters the region of a zero-weak equilibrium. In that case, Bank
B reallocates the probability mass of 1 − F B(r−) > 0 from r to ∞ (see Panel B in Figure 3).

Moving on to the interest rate cap r, it is intuitive that the credit market equilibrium moves to
the positive-weak region when the total surplus increases. In Panel C, the interest rate wedge jumps
down to be negative first, but then increases and turns positive when r is sufficiently high. This is
consistent with the spirit of Proposition 3 that the sign of ∆r does not depend on whether πB > 0,
highlighting the robustness of the economic mechanism of private-information-based pricing.

Panel D conducts another comparative static which points to the relative importance of general
versus specialized information. More specifically, consider varying 1/qg but fixing the project suc-
cess probability q, which implies that qs = q/qg. In He, Huang, and Parlartore (2024) we explain
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that this comparative static exercise corresponds to the scenario in which general signals increase
their scope so that they cover more fundamental states that are critical to the success of the funded
project.28 Interestingly, this exercise yields the opposite comparative statics to the standard infor-
mation technology parameters (α and τ in top two panels) modeled as signal precision. Intuitively,
now Bank B, equipped with general information that covers more fundamental states, becomes rel-
atively stronger (rather than weaker when α and/or τ increase), so the credit market equilibrium
is more likely to be in the region of positive-weak (and delivers a negative interest rate wedge).
Motivated by the recent advancements in big data technology, He, Huang, and Parlartore (2024)
employ this framework to study the concept of "hardening soft information.”

Connection to the IO literature on imperfect competition and adverse selection

The empirical pattern and our theoretical analyses on the negative interest rate wedge between
asymmetrically informed lenders are connected to the industrial organization (IO) literature on
imperfect competition and adverse selection (Mahoney and Weyl, 2017; Crawford, Pavanini, and
Schivardi, 2018). Within that body of literature, market power (of lenders) and adverse selection
(of borrowers) are considered distinct market frictions conceptually. Market power pertains to the
situation where the demand for the firm’s (differentiated) products remains relatively inelastic with
respect to its price, whereas adverse selection is characterized by the observation that the effective
revenue of marginal consumers decreases as the firm raises its price.29 Piecing these two forces
together, the key takeaway is an interaction effect: while firms with greater market power should
charge higher prices, this standard force should be attenuated by adverse selection, which hurts
marginal revenue when firms raise their prices.

We would like to highlight two points. First, different from the IO literature, which takes
market power and adverse selection as two independent market frictions, our theory starts from
a more basic primitive of “information asymmetry,” with winner’s curse faced by asymmetrically
informed lenders as the only underlying economic force. Although one could broadly link the above-
mentioned market power and adverse selection to unobservable borrower types, strictly speaking,

28As explained in Remark 3 where we introduce multi-dimensional fundamental states, He, Huang, and Parlartore
(2024) study hard and soft information in credit market competition. We interpret θg ≡

∏N̂

n=1 θn (θs ≡
∏N

n=N̂+1 θn)
as the borrower’s “hard” (“soft”) fundamental state, and model the expansion of the scope of “hard” information by
an increase in N̂ (so θg covers more fundamental states that are critical to the project’s success). In the short-run,
this expansion of N̂ does not alter the information scope of the soft signal so that θg and θs overlap, but in the
long-run the coverage of θs also shrinks so that θg and θs do not overlap. Our exercise in Panel D corresponds to the
long-run scenario. For the short-run scenario, in spite that the expansion of N̂ induces a correlation between θs and
θg, we are still able to analytically characterize the credit market equilibrium. See more details in He, Huang, and
Parlartore (2024).

29In the insurance market example used in Mahoney and Weyl (2017), a higher insurance premium is associated
with lower-quality insurance buyers and hence a higher service cost. In Crawford, Pavanini, and Schivardi (2018)
which studies the enterprise loan market, a higher interest rate may attract worse borrowers or induce riskier projects,
leading to lower interest revenues.
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there is no “market power” enjoyed by the specialized lender. In our model, money from any funding
source is perfectly fungible just like in Huang (2023). Moreover, there is no “adverse selection”
from borrowers either, because both types of borrowers will take loans at any interest rate.30

Second, note that prices in the above-mentioned IO literature are “bids” as opposed to “winning
bids.” As we have emphasized earlier, conditional on bidding the standard winner’s curse effect
in any information-based credit market competition models would induce a more informed lender
(loosely interpreted as lender with a stronger market power) to bid a lower price, but “winning bids”
could reverse once we take into account of loan rejection by the less informed lender. The same
issue applies to Crawford, Pavanini, and Schivardi (2018) who only consider bidding prices. Future
research should study whether this difference and endogenous rejection reverse the conclusions from
the IO literature.

4.2 Generalized Information Structure

We have assumed a multiplicative setting with two independent fundamental states—the general
and specialized states—as explained in Section 2.2. We first explain the two important features of
this assumption which are the key to the tractability of our model. We then consider the generalized
information structure that maintains these two desirable features, and further characterize the
resulting credit market equilibrium.

Two key properties for model tractability

Decisive general signal. First, in many credit markets, the computer-based general information
signal is usually used as pre-screening and decisive for loan granting, while the specialized informa-
tion collected by the specialized bank tailors interest rate terms (see Remark 2). To capture the
above commonly observed lending practice, the multiplicative structure makes the “general” state
decisive in project success, leading such lending strategies more likely to arise in equilibrium.

Conditional independence. Second, as we will show shortly, what brings the tractability of our
common value auction setting with asymmetrically informed bidders is conditional independence
of all signals, i.e.,

g̃A ⊥⊥ g̃B ⊥⊥ s̃ | θ = 1 . (30)

That is to say, conditional on project success (which is the event that the project pays off anyway),
all signals (including the specialized one by lender A and two general ones by both lenders) are
independent with each other. Our setting in Section 2.2 with independent general and specialized
states, clearly satisfies (30).

30As typical in corporate finance literature say Tirole (2010), we are implicitly assuming that both types of borrower
receive nonpledgeable private benefits from the project, so they strictly prefer to take the loan even if r = r.
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However, tractability does not rely on unconditional independence. Consider a generalized
multi-dimensional information setting under (5), but θg and θs overlap with each other. For in-
stance, θ = θ1θ2θ3, with θg = θ1θ2 and θs = θ2θ3. Under this setting, we note that conditional
independence (30) always holds, but unconditionally all three signals {g̃A, g̃B, s} are correlated
because the general state θg and specialized state θs are correlated.31

Equilibrium characterization under generalized information structure

We now solve for the credit market equilibrium under a general information structure, with two
major assumptions as outlined above. First, lenders only participate when the general signal
realization is H, with parameter restrictions in the same spirit as Assumption 1 but tailored for
the general information structure. Second, conditional on the project’s state θ = 1, signals are
independent across general and specialized and across lenders; this is implied by the multiplicative
structure (5). Since the major derivation is also available in He, Huang, and Parlartore (2024), we
keep the presentation minimal here (but detailed analysis is available in the Appendix A.7).

Consider a specialized signal z ∼ ϕz (z) for z ∈ [z, z] where both z and z can be unbounded.
Denote by µgAgB (z) ≡ P

(
θ = 1

∣∣∣gA, gB, z
)

the posterior probability density for θ = 1, i.e., the
state of the project being successful. Without loss of generality, we assume that µHH (z) strictly
increases in z (as we can always use µHH (z) as a signal; recall the posterior s serves as the
signal in the baseline model given in Section 2). This implies that just as in the baseline, there
exists ẑ at which Bank A starts to quote r, and zx below which it starts rejecting borrowers. Let
µgAgB ≡ P

(
θ = 1| gA, gB

)
denote the posterior probability of θ = 1 based on general signals.

Denote further by pgAgB (z) ≡ P
(
gA, gB, z

)
and pgAgB ≡ P

(
gA, gB

)
, and let αj

u ≡ P
(
gj = H

∣∣ θ = 1
)

for j ∈ {A, B} (so two lenders can differ in their signal precisions in the general information), and
ϕz (z| θ = 1) be the density of z conditional on θ = 1. The following proposition summarizes the
credit market competition equilibrium with specialized lenders under this generalized information
structure.

Proposition 4. (Credit Market Equilibrium under General Information Structure) Lender
j ∈ {A, B} rejects the borrower (by quoting r = ∞) upon gj = L; when gj = H, lender j may make
offers from a common support [r, r] (or reject) with the following properties.

1. Bank A who observes a specialized signal z offers

rA (z) =


min

{
πB+

∫ z

z
pHH(t)dt+pLH∫ z

z
pHH(t)·µHH(t)dt+pLHµLH

− 1, r

}
, for z ∈ [zx, z]

∞, for z ∈ [z, zx) .

(31)

31The multiplicative structure in (5) is the key: θ = 1 implies that all fundamental states {θn, n ∈ 1, ..., N} take
the value of one.
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This equation pins down r = rA(z), ẑ = sup
{

z : rA(z) = r
}

, and zx = sup
{

z : rA(z) = ∞
}

.

2. Bank B makes an offer by randomizing its rate according to:

F B (r) =


αA

u

αB
u

[
1 −

∫ zA(r)
z ϕz ( t| θ = 1) dt

]
, for r ∈ [r, r) ,

1 − 1{πB=0} ·
{

1 − αA
u

αB
u

[
1 −

∫ ẑ
z ϕz ( t| θ = 1) dt

]}
, for r = r.

(32)

3. The endogenous non-specialized Bank B’s profit πB is determined similarly as Lemma 2, with
detailed expression provided in Appendix A.7.

Proposition 4 shows that the simple equilibrium structure survives under the more generalized
information structure. Following the same logic as in the baseline model, lenders’ customer quan-
tities change proportionately with interest rates in equilibrium. To see this, when cutting interest
rates at r ∈ [r, r), both lenders are competing for the same marginal borrowers, whose revenue
should equal a unit loss from each lender’s existing customer base so that lenders are indifferent
and use a mixed strategy. For the existing customers, only the good type of customers who repay
the loan matter. As a result, as long as specialized and general signals are independent conditional
on the project being successful, their effects on equilibrium strategies are separable, and a simple
characterization as in Proposition 4 ensues.

4.3 Information Acquisition and Endogenous Specialization

Although the information structure is likely to be fixed in the short run, in the long run, banks
choose what type of information they want to have about borrowers. For example, banks can
invest in equipment that allows them to analyze their existing transaction data more efficiently
(general information), or spend resources gathering information about specific borrowers (special-
ized information). In this section, we look at the lender’s information acquisition problem and
derive conditions under which the information structure we study in the previous sections is an
equilibrium outcome.

Setting and information acquisition technologies. We introduce another borrower firm—
which we call b—in addition to the borrower firm a in our baseline model. We may equally interpret
a and b as different industries.

There are two types of technologies that respectively relate to “general” information and “spe-
cialized” information. For the “general” information technology, a lender j invests once in equip-
ment at a cost of κg, which allows the lender to process data (say financial and operating data) and
produce a general information based private signal gj

i ∈ {H, L} for each firm i = a, b, independently
(across two lenders and two firms). This captures the idea that general information is collected via
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standardized and transferable data such as credit reports and income statements, so once the IT
equipment, software, and APIs are installed, credit analysis is easy to implement on multiple firms
and the information generated is also standardized and coarse.

For the “specialized” information technology, a lender needs to collect specialized information
on firms one by one. Lender i specializes in firm j if it spends κs to acquire a specialized information
based private signal sj

i , whose smooth distribution is characterized by the CDF Φ(s) and pdf ϕ(s)
for s ∈ S ≡ [0, 1]. If a bank wants to acquire specialized information about both firms, it needs to
pay 2κs.

We are interested in the following equilibrium: Bank A (B) endogenously specializes in firm a

(b)—i.e., acquires both general and specialized signals on firm a (b)—and competes with the other
non-specialized Bank B (A) who only acquires general signal on firm a (b). Given this equilibrium
structure, we omit the indexation for firm i from now on when referring to the specialized signals.
The baseline model analyzed in Section 2.3 is the subgame for either firm following the equilibrium
information acquisition strategies.

Incentive compatibility conditions. Banks make their information acquisition decisions si-
multaneously. Moreover, we assume that information acquisition is observable when banks enter
the credit market competition game. This implies that a lender’s deviation from the proposed equi-
librium information acquisition will lead to a different information structure in the credit market
competition. Hence, to examine the incentives of banks to acquire each type of information, we
need to define the bank’s lending profits in all possible subgames following a deviation.

Denote by Πi
j (Ig

A, Is
A, Is

B, Is
B) the expected lending profits of bank j in industry i when the

information structure in industry i is given by (Ig
A, Is

A, Ig
B, Is

B, ), where Ig
j and Is

j take value of
one if bank j acquired general information and specialized information in industry i, respectively,
and zero otherwise. The symmetry on industries implies that a bank’s expected lending profits in
industry i only depend on the information structure in that industry and not on the industry itself,
i.e.,

Πa
j (Ig

A, Is
A, Is

B, Ig
B) = Πb

j (Ig
A, Is

A, Ig
B, Is

B) . (33)

Therefore, we drop index i from the expected lending profits. What is more, we focus on Bank A’s
incentives in what follows since the no deviation conditions for banks A and B are symmetric.

Bank A can deviate along three dimensions: it can choose not to acquire general information,
it can choose not to acquire specialized information about industry a, and it can choose to acquire
specialized information in industry b. Bank A’s incentives to deviate along these dimensions will
depend on the costs of acquiring information. As one would expect, the lower the cost of acquiring
general information, the more likely Bank A has incentives to acquire general information and
not deviate along this dimension. For deviations along the specialized information dimension, the
cost of acquiring specialized information has to be low enough such that it is worth acquiring
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specialized information in industry a and having an informational advantage over Bank B in this
industry but high enough such that it is not worth acquiring specialized information in industry
b to stop being the less informed lender. This intuition can be formally stated in the following
incentive compatibility constraints. Bank A does not want to deviate by

1. not acquiring general information
ΠA (Ig

A = 1, Is
A = 1, Ig

B = 1, Is
B = 0) − ΠA (Ig

A = 0, Is
A = 1, Ig

B = 1, Is
B = 0)+

ΠA (Ig
A = 1, Is

A = 0, Ig
B = 1, Is

B = 1) − ΠA (Ig
A = 0, Is

A = 0, Ig
B = 1, Is

B = 1) ≥ κg; (G)

2. not acquiring general information nor specialized information in industry a

ΠA (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 0) − ΠA (Ig
A = 0, Is

A = 0, Ig
B = 1, Is

B = 0)+

ΠA (Ig
A = 1, Is

A = 0, Ig
B = 1, Is

B = 1) − ΠA (Ig
A = 0, Is

A = 0, Ig
B = 1, Is

B = 1) ≥ κg + κs; (NI)

3. not acquiring specialized information in industry a

ΠA (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 0) − ΠA (Ig
A = 1, Is

A = 0, Ig
B = 1, Is

B = 0) ≥ κs; (Sa)

4. and, acquiring specialized information in industry b

ΠA (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 1) − ΠA (Ig
A = 1, Is

A = 0, Ig
B = 1, Is

B = 1) ≤ κs. (NSb)

Consistent with the intuition above, Constraints (G) and (NI) impose an upper bound on κg so
that Bank A has incentives to acquire general information. Analogously, Constraints (NI) and (Sa)
impose an upper bound on κs so that Bank A wants to acquire specialized information in industry
a, while Constraint (NSb) imposes a lower bound on κs to assure Bank A does not want to acquire
specialized information in industry b.

Deviation payoffs. Our goal is to show that there exist costs κg and κs such that the conditions
above hold for some parameterization. To do so, we need to characterize the deviation payoffs. We
provide the expressions for ΠA (Ig

A, Is
A, Ig

B, Is
B) in Appendix A.6.

Note that an uninformed bank will make zero profits (Milgrom and Weber, 1982; Engelbrecht-
Wiggans, Milgrom, and Weber, 1983), i.e,

ΠA (Ig
A = 0, Is

A = 0, Ig
B = 1, Is

B = 0) = ΠA (Ig
A = 0, Is

A = 0, Ig
B = 1, Is

B = 1) = 0.

Then it follows that Constraint (NI) is equivalent to the participation constraint of Bank A. More-
over, this condition implies that for any cost of acquiring specialized information κs such that (Sa)
is satisfied, we can always find a cost of general information κg small enough to satisfy (G) and
(NI). Therefore, there will be an equilibrium with specialized lenders as long as κs satisfies the
bounds imposed by (Sa) and (NSb). For this to be the case, it is enough to find parameters such
that the benefits from acquiring specialized information to become the more informed lender are
greater than the benefits from acquiring specialized information to stop being the less informed

34



lender. This is confirmed in Figure 6 in Appendix A.6, which depicts the range of information
acquisition costs κg and κs so that the conjectured information structure with a specialized lender
and the ensuring lending competition indeed form an equilibrium.

5 Concluding Remarks

One of banks’ main roles in the economy is producing information to allocate credit. In this paper,
we show that the nature of information produced by banks affects the credit market equilibrium
and the degree of competition among banks. More specifically, we explore how multi-dimensional
information determines credit market outcomes in the presence of specialized lenders.

By considering soft and hard information, we can explain empirical patterns in bank lending
specialization unexplained by canonical models where information technology is solely characterized
by signal precision (one-dimensional). Moreover, our model with multiple sources of uncertainty
and information allows us to differentiate between the quality and breadth of information. This dis-
tinction is crucial in understanding the changing landscape in the credit market due to technological
advances related to data gathering and processing that lead to the hardening of soft information.

From a modeling perspective, including a continuously distributed signal within a credit market
equilibrium enables us to examine private-information-based pricing, a practically pertinent aspect
with crucial importance for the banking sector. Furthermore, by incorporating both soft and hard
information—which reflects potentially many more underlying states—among asymmetric lenders,
our paper markedly advances the field of auction literature involving such lenders in which each
lender possesses private information (in contrast to Milgrom and Weber (1982) where one bidder
knows strictly more than the other). We fully characterize the equilibrium in closed form and
anticipate broader applications based on our framework and the solution methodology.
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A Technical Appendices

A.1 Credit Competition Equilibrium

Proof of Lemma 1

Proof. In this proof, we show that the two lenders’ interest rate distributions have the following
properties:

a) they share the same lower bound r > 0 and the same upper bound r in their supports;

b) they have no gaps in their supports;

c) they have no mass points except that one of them can have one at r.

Note that Property b) implies Property a), because if a bank’s interest rate offering has a larger
lower bound or a smaller upper bound interest rate than its competitor’s, this is one example of
gaps in the first bank’s support.

To show Property b), suppose that, say, the support of F B has a gap (r1, r2) ⊂ [r, r].32 Then
F A should have no weight in this interval either, as any rA (s) ∈ (r1, r2) will lead to the same
demand for Bank A and so a higher r will be more profitable. At least one lender does not have a
mass point at r1 (it is impossible that both distributions have a mass point at r1), under which its
competitor has a profitable deviation by revising r1 to r ∈ (r1, r2) instead. Contradiction.

To show Property c), suppose that one distribution, say F B has a mass point at r̃ ∈ [r, r).
Then Bank A would not quote any rA (s) ∈ [r̃, r̃ + ϵ] and it would strictly prefer quoting rA = r̃ − ϵ

instead. In other words, the support of F A must have a gap in the interval [r̃, r̃ + ϵ]. This contradicts
Property b) which we have shown. Finally, it is impossible that both distributions have a mass
point at r.

A.2 Proof of Proposition 1

Proof. This part proves that Bank A’s equilibrium interest rate quoting strategy as a function of
specialized signal rA (s) is always decreasing; this implies that the FOC that helps us derive Bank
A’s strategy also ensures the global optimality.

Write Bank A’s value ΠA (r, s) as a function of its interest rate quote and specialized signal, in
the event of gA = H and s. (We use π to denote the equilibrium profit but Π for any strategy.)

32The same argument follows if the support of F A has a gap in the conjectured equilibrium, and then for Bank
B, any quotes within the gap lead to the same demand of the same posterior quality of customers, where Bank B
updates its belief from Bank A’s strategy.
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Recall that Bank A solves the following problem:

max
r

ΠA (r, s) = pHH︸ ︷︷ ︸
gA=H,gB=H

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

[µHHs (1 + r) − 1] + pHL︸︷︷︸
gA=H,gB=L

[µHLs (1 + r) − 1] (34)

with the following FOC:

0 = ΠA
r (r (s) , s) = pHH

[
−dF B (r)

dr

]
︸ ︷︷ ︸

lost customer

[µHHs (1 + r) − 1]︸ ︷︷ ︸
customer return

+ pHH

[
1 − F B (r)

]
︸ ︷︷ ︸

customer

µHHs︸ ︷︷ ︸
MB of customer

+pHLµHLs.

(35)

One useful observation is that on the support, it must hold that µHHs (1 + r) − 1 > 0; otherwise,
µHLs (1 + r) − 1 < µHHs (1 + r) − 1 ≤ 0, implying that Bank A’s profit is negative (so it will exit).

Lemma 3. Consider s1, s2 in the interior domain with corresponding interest rate quote r1 and
r2. The marginal value of quoting r2 for type s = s1 is

ΠA
r (r2, s1) = s2 − s1

µHHs2 (1 + r2) − 1

{
pHH

[
1 − F B (r2)

]
µHH + pHLµHL

}
and its sign depends on the sign of s2 − s1.

Proof. Evaluating the FOC of type s1 but quoting r2:

ΠA
r (r2, s1) = pHH

[
−dF B (r2)

dr

]
[µHHs1 (1 + r2) − 1] + pHH

[
1 − F B (r2)

]
µHHs1 + pHLµHLs1.

(36)
FOC at type s2 yields

ΠA
r (r2, s2) = pHH

[
−dF B (r2)

dr

]
[µHHs2 (1 + r2) − 1] + pHH

[
1 − F B (r2)

]
µHHs2 + pHLµHLs2 = 0,

or
dF B (r2)

dr
=

pHH

[
1 − F B (r2)

]
µHHs2 + pHLµHLs2

pHH [µHHs2 (1 + r2) − 1]
. (37)
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Plugging in this term to (36), ΠA
r (r2, s1) becomes

− µHHs1 (1 + r2) − 1
µHHs2 (1 + r2) − 1

{
pHH

[
1 − F B (r2)

]
µHHs2 + pHLµHLs2

}
+ pHH

[
1 − F B (r2)

]
µHHs1 + pHLµHLs1

=
[
s1 − µHHs1 (1 + r2) − 1

µHHs2 (1 + r2) − 1
· s2

] {
pHH

[
1 − F B (r2)

]
µHH + pHLµHL

}

= (s2 − s1) ·
pHH

[
1 − F B (r2)

]
µHH + pHLµHL

µHHs2 (1 + r2) − 1
,

which is the claimed marginal benefit of quoting r2 for type s1. Its sign depends on s2 − s1 because
the denominator is positive as we noted right after Eq. (35).

Lemma 3 has three implications. First, as long as rA (·) is (strictly) increasing in some segment,
then Bank A would like to deviate in this segment. To see this, suppose that r1 > r2 when s1 > s2

for s1, s2 arbitrarily close. Because Lemma 1 has shown that Bank A’s strategy is smooth, r2 is
arbitrarily close to r1. Then ΠA

r (r2, s1) < 0, implying that the value is convex and the Bank A at
s1 (who in equilibrium is supposed to quote r1) would like to deviate further.

Second, the monotonicity implied by Lemma 3 helps us show that Bank A uses a pure strategy,
thereby completing the proof of Part 2 in Lemma 1. To see this, for any s1 > s2 that induce
interior quotes r1, r2 ∈ [r, r), however close, in equilibrium we must have sup rA(s1) < inf rA(s2)
by monotonicity. Combining this with Part 3 of Lemma 1, i.e., the induced distribution F A(·) is
atomless except for at r and has no gaps, we know that Bank A must adopt a pure strategy in
the interior of [r, r), or for s ≤ ŝ. Finally, the following argument shows pure strategy for s < ŝ:
i) randomize over s = 0 is a zero-measure set; and ii) on s > ŝ Bank A can either quote r or ∞,
which, generically, gives different values (and hence rules out randomization).

Third, if rA (·) is decreasing globally over S, then the FOC is sufficient to ensure global opti-
mality. Consider a type s1 who would like to deviate to ř > r1; then

ΠA (ř, s1) − ΠA (r1, s1) =
∫ ř

r1
V A

r (r, s1) dr.

Given the monotonicity of r (s), we can find the corresponding type s (r) for r ∈ [r1, ř]. From
Lemma 3 we know that

ΠA
r (r, s1) = (s (r) − s1)

pHH

[
1 − F B (r)

]
µHH + pHLµHL

µHHs (r) (1 + r) − 1

which is negative given s (r) < s1. Therefore the deviation gain is negative. Similarly, we can show
a negative deviation gain for any ř < r1.

Next we show that rA (·) is single-peaked over the space of S = [0, 1].
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Lemma 4. Given any exogenous πB ≥ 0, rA (·) single-peaked over S = [0, 1] with a maximum
point.

Proof. When r ∈ [r, r), the derivative of rA (s) with respect to s is

drA (s)
ds

=

pHHϕ (s)


M1(s)<0,andM ′

1(s)<0︷ ︸︸ ︷
pHHµHH

[∫ s

0
tϕ (t) dt − sΦ (s)

]
+

M2(s)?0, butM ′
2(s)<0︷ ︸︸ ︷

pLHµLHqs −
(
πB + pLH

)
µHHs


(pHHµHH

∫ s
0 tϕ (t) dt + pLHµLHqs)2 .

As
∫ s

0 tϕ (t) dt < sΦ (s), the first term in the bracket M1 (s) < 0, and

M ′
1 (s) = −pHHµHHΦ (s) < 0.

For M2 (s) = pLHµLHqs −
(
πB + pLH

)
µHHs, it has an ambiguous sign, but is decreasing in s. This

implies that M1 (s) + M2 (s) decreases with s. It is easy to verify that M1(0) + M2(0) > 0 and
M1(1)+M2(1) < 0. Therefore rA(s) first increases and then decreases, therefore single-peaked.

Suppose that the peak point is s̃; then Bank A should simply charge r (s) = r̃ for s < s̃ for
better profit. This is the standard “ironing” technique and we therefore define the following ironed
strategy formally (here, we also take care of the capping r ≤ r):

rA
ironed (s) ≡ sup

t∈[s,1]
min

(
rA (t) , r

)
.

By definition rA
ironed (s) is monotonely decreasing.

We now argue that in equilibrium, πB and r adjust so that rA (·) is always monotonely decreasing
over [x, 1]. (Since we define rA (s) = ∞ for s < x, monotonicity over the entire signal space [0, 1]
immediately follows.) There are two subcases to consider.

1. Suppose that r̃ = r. In this case, rA (s) in Eq. (13) used in Lemma 3 and 4 does not apply
to s < s̃ because the equation is defined only over the left-closed-right-open interval [r, r) .

Instead, rA (s) in this region is determined by Bank A’s optimality condition: as rA does
not affect the competition from Bank B (which equals F B (r−)), Bank A simply sets the
maximum possible rate rA (r) = r unless it becomes unprofitable (for s < x). (This is our
zero-weak equilibrium with πB = 0, and there is no “ironing” in this case.)

2. Suppose that r̃ < r; then bank A quotes r̃ for all s < ŝ. But this is not an equilibrium—Bank
A now leaves a gap in the interval [r̃, r], contradicting with point 3) in Lemma 1 (there, we
rule out gaps in equilibrium). Intuitively, Bank B always would like to raise its quotes inside
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[r̃, r] to r; there is no “ironing” in this case. (This is our positive-weak equilibrium with
πB > 0.)

Proof of Lemma 2

Proof. First, we argue that equilibrium ŝ ≡ arg sups

{
s : rA (s) ≥ r

}
either equals sbe

A or sbe
B . To

see this, if πB = 0, we have ŝ = sbe
B by construction. If πB > 0, then Bank B always makes an offer

upon H, i.e., F B (r) = 1. We also know that F B (r−) = 1 −
∫ sA(r)=ŝ+

0 tϕ(t)dt

qs
< 1, because Bank A

must reject the borrower when s realizes as close to 0 and ŝ > 0. Hence, F B (r) has a point mass at
r. It follows that F A (r) is open at r: ŝ = x and πA

(
rA (ŝ) |ŝ

)
= 0, which is exactly the definition

of sbe
A and so ŝ = sbe

A .
Now we prove the claim in this lemma. In the first case of sbe

B < sbe
A , we have ŝ ≤ sbe

A and

thus Bank A’s probability of winning when quoting rA = r is at most
∫ sbe

A
0 tϕ(t)dt

qs
≥
∫ ŝ

0 tϕ(t)dt

qs
=

1−F B (r−). The definition of sbe
A says that Bank A upon ŝbe

A breaks even when quoting rA
(
sbe

A

)
= r

and facing this most favorable winning probability
∫ ŝbe

A
0 tϕ(t)dt

qs
. Then upon a worse specialized signal

sbe
B < sbe

A , Bank A must reject the borrower because offering r leads to losses, which rules out ŝ = sbe
B .

According to our earlier observation of ŝ = sbe
B or sbe

A , we have ŝ = sbe
A and πB > 0 in this case,

where πB could be characterized from Eq. (12) at r = r.
In the second case of sbe

B ≥ sbe
A , we have ŝ ≤ sbe

B and thus Bank B’s probability of winning when
quoting rB = r is at most Φ

(
sbe

B

)
≥ Φ (s) = 1 − F A (r−). The definition of sbe

B says that Bank

B breaks even when quoting rB = r and facing this most favorable winning probability Φ
(
sbe

B

)
.

Then if the competition from A were more aggressive, say 1 − F A (r−) = Φ
(
sbe

A

)
, Bank B would

make a loss when quoting r, so ŝ = sbe
A cannot support an equilibrium. Hence, in this case, ŝ = sbe

B

and πB = 0. From the definition of ŝbe
A , Bank A’s equilibrium break-even condition 0 = πA (r|x),

and the fact that sbe
B ≥ sbe

A in this case, we have

0 =pHH
∫ ŝbe

A
0 tϕ (t) dt

qs

[
µHH ŝbe

A (1 + r) − 1
]

+ pHL

[
µHLŝbe

A (1 + r) − 1
]

=pHH
∫ ŝbe

B
0 tϕ (t) dt

qs
[µHHx (1 + r) − 1] + pHL [µHLx (1 + r) − 1]

≥pHH
∫ ŝbe

A
0 tϕ (t) dt

qs
[µHHx (1 + r) − 1] + pHL [µHLx (1 + r) − 1] .

Hence, x ≤ ŝbe
A ≤ ŝbe

B = ŝ.
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A.3 Proof of Proposition 2 and Calibration

Lemma 5. For any r ∈ [r, r), we have

F B (r)
F A (r)

= αA
u

αB
u

,
dF B (r) /dr

dF A (r) /dr
= αA

u

αB
u

i.e., Bank A offers higher interest rates than Bank B in the sense of F.O.S.D..

Proof. For any r ∈ [r, r), lenders’ profit functions are

πA = pHH︸ ︷︷ ︸
B gets H

(
1 − F B (r)

)
︸ ︷︷ ︸

wins

[µHH (r + 1) − 1] + pHL︸︷︷︸
B gets L

[µHL (r + 1) − 1] , (38)

πB = pHH︸ ︷︷ ︸
A gets H

(
1 − F A (r)

)
︸ ︷︷ ︸

wins

[µHH (r + 1) − 1] + pLH︸︷︷︸
A gets L

[µLH (r + 1) − 1] . (39)

These two equations imply that

F B (r)
F A (r)

= pHH [µHH (r + 1) − 1] + pHL [µHL (r + 1) − 1] − πA

pHH [µHH (r + 1) − 1] + pLH [µLH (r + 1) − 1] − πB
. (40)

And, evaluating Eq. (38), (39) at r = r and using F A (r) = F B (r) = 1 gives lenders’ profits:

πA (r) = pHH [µHH (r + 1) − 1] + pHL [µHL (r + 1) − 1] ,

πB (r) = pHH [µHH (r + 1) − 1] + pLH [µLH (r + 1) − 1] .

Using these in Eq. (40), we have

F B (r)
F A (r)

= (pHHµHH + pHLµHL) (r − r)
(pHHµHH + pLHµLH) (r − r)

=
P
(
gA = H, θ = g

)
P (gB = H, θ = g)

= αA
u

αB
u

.

Here, F B (r) = αA
u

αB
u

F A (r) immediately implies that dF B(r)/dr
dF A(r)/dr

= αA
u

αB
u

.

Proof of Proposition 2
Part 1: Bad-news information structure. This structure corresponds to

αA
u = αB

u = 1, 1 > αA
d > αB

d > 0;

i.e., lenders only make Type II mistakes. In this part, we use αj ≡ αj
d as a lender’s signal precision,

which captures the probability that bad-type borrowers are correctly identified as L, and αA > αB.
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Proof. From Lemma 5, lender bidding strategies F A (·) , F B (·) over [0, r] ∪ {∞} satisfy

F B (r) =

F A (r) , r ∈ [0, r) ,

F A (r−) , r = r.

We use this result to express ∆r as a function of F B (r). Specifically,

E
[
rA
∣∣∣ rA < rB ≤ ∞

]
=

pHH
∫ r

r

[
1 − F B (r)

]
rdF A (r) + pHL

∫ r
r rdF A (r)

pHH
∫ r

r [1 − F B (r)] dF A (r) + pHL

=
pHH

∫ r
r

[
1 − F B (r)

]
rdF B (r) + pHHr

[
1 − F B (r)

]2
+ pHL

[
r −

∫ r
r F B (r) dr

]
pHH

∫ r
r [1 − F B (r)] dF B (r) + pHH [1 − F B (r)]2 + pHL

= r −
pHH

∫ r
r

{
1
2 − [1−F B(r)]2

2

}
dr + pHL

∫ r
r F B (r) dr

pHH

{
− [1−F B(r)]2

2 + 1
2

}
+ pHH [1 − F B (r)]2 + pHL

,

and

E
[
rB
∣∣∣ rB < rA ≤ ∞

]
=

pHH
∫ r

r

[
1 − F A (r)

]
rdF B (r) + pLH

∫ r
r rdF B (r)

pHH
∫ r

r [1 − F B (r)] dF B (r) + pLHF B (r)

=
pHH

∫ r
r

[
1 − F B (r)

]
rdF B (r) + pLH

[
rF B (r) −

∫ r
r F B (r) dr

]
pHH

∫ r
r [1 − F B (r)] dF B (r) + pLHF B (r)

r −
pHH

∫ r
r

{
1
2 − [1−F B(r)]2

2

}
dr + pLH

∫ r
r F B (r) dr

pHH

{
1
2 − [1−F B(r)]2

2

}
+ pLHF B (r)

.

Hence,

∆r ≡ E
[
rA
∣∣∣ rA < rB ≤ ∞

]
− E

[
rB
∣∣∣ rB < rA ≤ ∞

]

=
pHH

∫ r
r

{
1
2 − [1−F B(r)]2

2

}
dr + pLH

∫ r
r F B (r) dr

pHH

{
1
2 − [1−F B(r)]2

2

}
+ pLHF B (r)

−
pHH

∫ r
r

{
1
2 − [1−F B(r)]2

2

}
dr + pHL

∫ r
r F B (r) dr

pHH

{
− [1−F B(r)]2

2 + 1
2

}
+ pHH [1 − F B (r)]2 + pHL

.

(41)

Now we plug in the expressions of F B (r) to show that the canonical model leads to counterfactual
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predictions when r is relatively small. From He, Huang, and Zhou (2023),

F B (r) =
r
r − 1

r
r − (1 − αA)

,

and the key terms are accordingly

∫ r

r
F B (r) dr = r − r − αAr ln

(
r

r
− 1 + αA

)
+ αAr ln αA,

∫ r

r

1
2

−

[
1 − F B (r)

]2
2

 dr = r

2
·

(
r
r − 1

)2

r
r − 1 + αA

.

Let M (r) ≡ r
r −

(
1 − αA

)
and then

∆r =pHH · rαA

2
·
(

M − αA

M

)2(
pHHαA

M
+ pLH

)
+ pHH

2

[∫ r

r
F B (r)

]
(pLH + pHL)

(
αA

M

)2

+ pLHpHL
αA

M

[∫ r

r
F B (r)

]
+ (pHL − pLH) pHH

2
· r ·

(
M − αA

)2

M
− (pHL − pLH) pHH

2

[∫ r

r
F B (r) dr

]
.

Note that only the last term − (pHL − pLH) pHH
2

[∫ r
r F B (r) dr

]
is negative. In addition, this term

approaches zero as r → r = (1−q)(1−αB)
q , and

∂
[∫ r

r F B (r) dr
]

∂r
= 1 − αA

M
> 0.

Therefore, there exists some threshold r̂ such that when r ≤ r̂, the canonical model has counter-
factual prediction ∆r > 0.

Part 2: Symmetric information structure. This structure corresponds to

αj ≡ αj
u = αj

d ∈
(1

2
, 1
]

, for j ∈ {A, B}.

In this context, the specialized lender Bank A’s signal is more precise, αA > αB.
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Lemma 6. E
[
rA
∣∣∣ rA < rB ≤ ∞

]
≥ E

[
rB
∣∣∣ rB < rA ≤ ∞

]
is equivalent to the following inequality

P
(
xA = H

)
αB

αA

∫ r
r F B (r) dr + pHH

∫ r
r F A (r) rdF B (r) − pHHr αB

2αA

(
F B (r)

)2

pHH

[
1 − F B (r) + αB

2αA (F B (r))2
]

+ pHL

≤
P
(
xB = H

) ∫ r
r F B (r) dr + pHH

∫ r
r F A (r) rdF B (r) − pHH

αB

2αA

(
F B (r)

)2
r

pHH

[
F B (r) − αB

2αA (F B (r))2
]

+ pLHF B (r)
.

Proof. The expected rate of a lender’s loan is

E
[
rA
∣∣∣ rA < rB ≤ ∞

]
≜

pHH︸ ︷︷ ︸
B gets H

∫ r
r

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

rdF A (r) + pHL︸︷︷︸
B gets L

∫ r
r rdF A (r)

pHH
∫ r

r [1 − F B (r)] dF A (r) + pHL

, (42)

E
[
rB
∣∣∣ rB < rA ≤ ∞

]
≜

pHH︸ ︷︷ ︸
A gets H

∫ r
r

[
1 − F A (r)

]
︸ ︷︷ ︸

B wins

rdF B (r) + pLH︸︷︷︸
A gets L

∫ r
r rdF B (r)

pHH
∫ r

r [1 − F A (r)] dF B (r) + pLHF B (r)
. (43)

In the first step, we rewrite the equations as functions of dF B (r) and dr which are continuous
at r. Using integration by parts and Lemma 5, we have

∫ r

r
rdF A (r) = rF A (r)

∣∣∣r
r

−
∫ r

r
F A (r) dr = r −

∫ r

r
F A (r) dr = r − αB

αA

∫ r

r
F B (r) dr.

In the last step, although Lemma 5 does not apply at r = r, it is of zero measure. Similarly, the
probability of Bank A winning in competition is

∫ r

r

[
1 − F B (r)

]
dF A (r) =

∫ r

r
dF A (r) −

∫ r

r
F B (r) dF A (r)

=︸︷︷︸
integration by parts

1 −
[
F B (r) −

∫ r

r
F A (r) dF B (r)

]

=︸︷︷︸
F A= αB

αA F B

1 − F B (r) +
∫ r

r

αB

αA
F B (r) dF B (r)

=1 − F B (r) + αB

2αA

(
F B (r)

)2
,

and thus the probability of Bank B winning is the residual

∫ r

r

[
1 − F A (r)

]
dF B (r) = F B (r) − αB

2αA

(
F B (r)

)2
.
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Similarly,

∫ r

r
F B (r) rdF A (r) =

∫ r−

r
F B (r) rdF A (r) + F B (r) r

[
1 − F A (r−)]

=︸︷︷︸
F A= αB

αA F B ,F B(r−)=F B(r)

∫ r

r
F A (r) rdF B (r) + F B (r) r

(
1 − αB

αA
F B (r)

)

Plug these terms into Eq. (42) and (43), and we have

E
[
rA
∣∣∣ rA < rB ≤ ∞

]
=

P
(
gA = H

) ∫ r
r rdF A (r) − pHH

∫ r
r F B (r) rdF A (r)

pHH

[
1 − F B (r) + αB

2αA (F B (r))2
]

+ pHL

= r −
P
(
gA = H

)
αB

αA

∫ r
r F B (r) dr + pHH

∫ r
r F A (r) rdF B (r) − pHHr αB

2αA

(
F B (r)

)2

pHH

[
1 − F B (r) + αB

2αA (F B (r))2
]

+ pHL

;

for Bank B,

E
[
rB
∣∣∣ rB < rA ≤ ∞

]
=

P
(
gB = H

) ∫ r
r rdF B (r) − pHH

∫ r
r F A (r) rdF B (r)

pHH

[
F B (r) − αB

2αA (F B (r))2
]

+ pLHF B (r)

= r −
P
(
gB = H

) ∫ r
r F B (r) dr + pHH

∫ r
r F A (r) rdF B (r) − pHH

αB

2αA

(
F B (r)

)2
r

pHH

[
F B (r) − αB

2αA (F B (r))2
]

+ pLHF B (r)
.

Therefore, E
[
rA
∣∣∣ rA < rB ≤ ∞

]
≥ E

[
rB
∣∣∣ rB < rA ≤ ∞

]
is equivalent to the stated inequality.

Lemma 7. In the case of q > 1
1+r , when αB ↑ αA, there exists a threshold α̂

(
αA
)

< αA so that

when αB > α̂
(
αA
)

we have F B (r) = 1.

Proof. Let αB = αA − ϵ. Bank B’s profit could be pinned down by setting r = r−,

πB =pHH

[
1 − F A (r−)] [µHH (r + 1) − 1] + pLH [µLH (r + 1) − 1]

≥︸︷︷︸
F A(r−)≤1

pLH (µLH (r + 1) − 1)

=︸︷︷︸
αB=αA−ϵ

q
(
1 − αA

) (
αA − ϵ

)
r − (1 − q) αA

(
1 −

(
αA − ϵ

))
=
(
1 − αA

)
αA [qr − (1 − q)] − ϵ

[
q
(
1 − αA

)
r + (1 − q) αA

]
.
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Hence, when ϵ <
(1−αA)αA[qr−(1−q)]
q(1−αA)r+(1−q)αA , or equivalently, when

αB > α̂
(
αA
)

= αA −

(
1 − αA

)
αA [qr − (1 − q)]

q (1 − αA) r + (1 − q) αA
,

we have πB > 0 and F B (r) = 1.

Proof of Proposition 2 Part 2

Proof. There are two cases depending on whether q < 1
1+r , i.e., whether the project has a negative

NPV prior.
The first case of q < 1

1+r is easier. When αB ↑ αA and αA − αB = o
(
q − 1

1+r

)
, Bank B’s signal

distributions and strategies approach that of Bank A except at r = r (Lemma 5):

F B (r) ↑ F A (r) for any r ∈ [r, r) , and F B (r) < 1 = F A (r) .

Then from Lemma 6,

r − E
[
rA
∣∣∣ rA < rB ≤ ∞

]
r − E [rB| rB < rA ≤ ∞]

=
pHH

[
F B (r) − 1

2

(
F B (r)

)2
]

+ pLHF B (r)

pHH

[
1 − F B (r) + 1

2 (F B (r))2
]

+ pHL

≤︸︷︷︸
RHS set F B(r)=1

1
2pHH + pLH

1
2pHH + pHL

= 1,

where the last inequality holds because the ratio is increasing in F B (r). Hence, E
[
rA
∣∣∣ rA < rB ≤ ∞

]
≥

E
[
rB
∣∣∣ rB < rA ≤ ∞

]
always holds in this case.

Now consider the second case q ≥ 1
1+r . When αB → αA, since E

[
rA
∣∣∣ rA < rB ≤ ∞

]
decreases

while E
[
rB
∣∣∣ rB < rA ≤ ∞

]
increase in F B (r), it is sufficient to show that the equivalent inequality

in Lemma 6 holds under F B (r) = 1, i.e.,

P
(
gA = H

)
αB

αA

∫ r
r F B (r) dr + pHH

∫ r
r F A (r) rdF B (r) − pHHr αB

2αA

pHH
αB

2αA + pHL

≤
P
(
gB = H

) ∫ r
r F B (r) dr + pHH

∫ r
r F A (r) rdF B (r) − pHH

αB

2αA r

pHH

(
1 − αB

2αA

)
+ pLH

, (44)

where both the LHS and RHS are positive. When q > 1
1+r , recall that Lemma 7 shows F B (r) = 1

as αB → αA under q > 1
1+r and so the inequality is also necessary.
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Denote by N ≜
∫ r

r F B (r) dr > 0, and M ≜ r αB

2αA −
∫ r

r F A (r) rdF B (r). M > 0 because

∫ r

r
F A (r) rdF B (r) < r

∫ r

r
F A (r) dF B (r) = r

∫ r

r

αB

αA
F B (r) dF B (r) = r

αB

αA

∫ r

r
d

(
F B (r)2

2

)
= r

αB

2αA
.

Collect terms in the key inequality (44), we have{[
pHH

(
1 − αB

2αA

)
+ pLH

]
(pHH + pHL) αB

αA
−
(

pHH
αB

2αA
+ pHL

)
(pHH + pLH)

}
N

≤pHH

[
pHH

(
1 − αB

2αA

)
+ pLH −

(
pHH

αB

2αA
+ pHL

)]
M (45)

Let αB = αA −ϵ and calculate the coefficients. Note that as αB = αA −ϵ, we have pHL −pLH =
(2q − 1) ϵ.33 The coefficient on the LHS of (45):[

pHH

(
1 − αB

2αA

)
+ pLH

]
(pHH + pHL) αB

αA
−
(

pHH
αB

2αA
+ pHL

)
(pHH + pLH)

=
(

pHH

2
+ ϵ

2αA
pHH + pLH

)
(pHH + pHL)

(
1 − ϵ

αA

)
−
(

pHH

2
− ϵ

2αA
pHH + pHL

)
(pHH + pLH)

= − pHH

2
(2q − 1) ϵ + ϵ

2αA
p2

HH − ϵ

2αA
pLHpHH − ϵ

αA
pLHpHL

The coefficient on the RHS of (45):

pHH

[
pHH

(
1 − αB

2αA

)
+ pLH −

(
pHH

αB

2αA
+ pHL

)]
= ϵ

αA
p2

HH − pHH (pHL − pLH)

= ϵ

αA
p2

HH − pHH (2q − 1) ϵ

Plug the coefficients back into the inequality (45), so we need to show that

0 ≤
{

ϵ

αA
p2

HH − pHH (2q − 1) ϵ

}
M −

{
−pHH

2
(2q − 1) ϵ + ϵ

2αA
p2

HH − ϵ

2αA
pLHpHH − ϵ

αA
pLHpHL

}
N

=
[
(2q − 1) − pHH

α

]
pHH (N − 2M)

2
ϵ +

(1
2

pLHpHH + pLHpHL

)
N

α
ϵ.

33We have pHL = qαA
(
1 − αB

)
+ (1 − q) αB

(
1 − αA

)
and pLH = q

(
1 − αA

)
αB + (1 − q) αA

(
1 − αB

)
and then

therefore pHL − pLH = q
(
αA − αB

)
+ (1 − q)

(
αB − αA

)
= (2q − 1) ϵ.
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Note that

N − 2M =
∫ r

r
F B (r) dr − 2

(
r

αB

2αA
−
∫ r

r
F A (r) rdF B (r)

)

=
∫ r

r
F B (r) dr − 2

(
r

αB

2αA
− αB

αA

∫ r

r
F B (r) rdF B (r)

)

=
∫ r

r
F B (r) dr − 2

r
αB

2αA
− αB

2αA
r + αB

αA

∫ r

r

(
F B (r)

)2

2
dr


=
∫ r

r
F B (r) dr − αB

αA

∫ r

r

(
F B (r)

)2
dr > 0.

Therefore, one sufficient condition is

2q − 1 ≥ pHH

α
= qα2 + (1 − q) (1 − α)2

α

collecting terms, it requires q ≥ 1 − α + α2. Since 1 − α + α2 increases in α for α ∈
(

1
2 , 1
)

, this
imposes a simple condition that prior needs to be sufficiently good and information technology α

cannot be too high.

Calibration For calibration, we rely on two empirical moments in the U.S. banking industry to
gauge the magnitudes of q and α. First, this website on Federal Reserve reports the NPL ratio
to be about 2%; second, Yates (2020) shows that the approval rate for business C&I loans is from
55% (small) to 80% (large).

We gauge q and α from the limiting case where Bank B’s information technology αB approaches
that of Bank A, i.e., αB → αA = α. Depending on the primitives, Bank B may either make zero
or positive profit in the unique equilibrium, which we call zero-weak or positive weak in analogous
to our main equilibrium characterization with multi-dimensional information.

Recall that at the beginning of the proof of Proposition 2 we have shown that condition (29)
fails in the zero-weak case (i.e., if and only if q < 1

1+r where Bank B makes zero profit). Therefore
we only need to consider the positive-weak case.

In this case, lenders are symmetric: upon H each lender makes interest rate with randomized
strategy, with a winning probability of 0.5. Therefore we can write down the NPL ratio and
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approval rate of, say Bank A,

2% =
P
(

θ = 0| rA < rB < ∞
)

P (rA < rB < ∞)
=

(1 − q)
[

(1−α)2

2 + α (1 − α)
]

(1 − q)
[

(1−α)2

2 + α (1 − α)
]

+ q
[

α2

2 + α (1 − α)
] ,

y = P
(
gA = H

)
= qα + (1 − q) (1 − α) , for y ∈ [0.55, 0.80] .

which allows us to solve for the pair (q, α). For instance, when y = 0.7 one can solve for q = 0.9629
and α = 0.716, which satisfies the proposed sufficient condition q > 1 − α + α2. The same result
holds for y = 0.55 (so that q = 0.9771 and α = 0.5524) or y = 0.8 (so that q = 0.9349 and
α = 0.8449).

A.4 Proof of Proposition 3

Proof. Based on the credit competition equilibrium in Proposition 1, the expected rates of a lender’s
issued loan are:

E
[
rA
∣∣∣ rA < rB ≤ ∞

]
=

pHH︸ ︷︷ ︸
gB=H

∫ 1
x

[
1 − F B

(
rA (t)−

)]
︸ ︷︷ ︸

A wins

rA (t) ϕ (t) dt + pHL︸︷︷︸
gB=L

∫ 1
x rA (t) ϕ (t) dt

pHH
∫ 1

x

[
1 − F B

(
rA (t)−

)]
ϕ (t) dt + pHL

∫ 1
x ϕ (t) dt

,

E
[
rB
∣∣∣ rB < rA ≤ ∞

]
=

pHH︸ ︷︷ ︸
gA=H

∫ 1
ŝ Φ (t)︸ ︷︷ ︸

B wins

r (t) d
[
−F B (r (t))

]
+ pLH︸︷︷︸

gA=L

∫ 1
x r (t) dF B (r (t))

pHH
∫ 1

ŝ Φ (t) d [−F B (r (t))] + pLHF B (r)
.

Note that when the positive weak equilibrium arises, F B (r (s)) has a point mass of size 1−F B (r−)
at r or rA(ŝ).

We first impose the following conditions

a) Each lender receives a perfect general signal, gj = θh for j ∈ {A, B} ,

b) r → ∞,

and then

E
[
rA + 1

∣∣∣ rA < rB ≤ ∞
]

=
∫ 1

0 Φ (t) ϕ (t) dt∫ 1
0 tΦ (t)

[∫ t

0 νϕ(ν)dν

tΦ(t)

]
ϕ (t) dt

,

E
[
rB + 1

∣∣∣ rB < rA ≤ ∞
]

=

∫ 1
0 Φ (t)

[
tΦ(t)∫ t

0 νϕ(ν)dν

]
ϕ (t) dt∫ 1

0 Φ (t) tϕ (t) dt
.
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Additionally, c) the specialized signal distribution is ϕ (s) = 1 + ϵ [2 · 1s≤0.5 − 1]. Then

E
[
rA + 1

∣∣∣ rA < rB ≤ ∞
]

= 2 ·
1
8 (1 + ϵ)2 + ϵ(1−ϵ)

2 + 3
8 (1 − ϵ)2

1
24 (1 + ϵ)2 + ϵ(1−ϵ)

4 + 7
24 (1 − ϵ)2 ,

E
[
rB + 1

∣∣∣ rB < rA ≤ ∞
]

= 2 ·
1
8 (1 + ϵ)2 + ϵ(1−ϵ)

2 + 3
8 (1 − ϵ)2 + ϵ2 (1 − ϵ)

∫ 1
0.5

(t− 1
2 )

ϵ
2 +(1−ϵ)t2 dt + ϵ (1 − ϵ)2 ∫ 1

0.5
t(t− 1

2 )
ϵ
2 +(1−ϵ)t2 dt

1
24 (1 + ϵ)2 + 3ϵ(1−ϵ)

8 + 7
24 (1 − ϵ)2 .

Note that when ϵ = 0, ∆r = 0. When ϵ → 0, we have (ignoring higher order terms of ϵ)

∂∆r

∂ϵ
= lim

ϵ→0

∆r (ϵ)
ϵ

= 1
ϵ

(
1

1
3 − 1

4ϵ
− 1 + ϵ − ϵ ln 2

1
3 − 1

8ϵ

)

= 3 ln 2 − 15
8

> 0.

Hence, when ϵ > 0 (ϵ < 0), i.e., ϕ(s) tilts toward more (less) favorable realizations, we have ∆r > 0
(∆r < 0).

A.5 Derivation of Correlated General Signals

Another aspect of information technology advancement is that the lenders’ general information
signals become more correlated. Formally, with probability ρh, lenders receive the same signal
realization gc ∈ {H, L} and

P (gc = H |θh = 1) = P (gc = L |θh = 0) = α;

with probability 1 − ρh, each receives an independent general signal according to Eq. (3).
With more correlated general signals or a higher ρh, lenders are more likely to agree on the

customer quality and so more likely to compete (the event of HH). In terms of inference, the
posterior upon disagreement (that comes from the uncorrelated part of the assessment) is still the
prior qh.34 Taken together, competition becomes fiercer, because lenders are more likely to compete
but not more concerned about the winner’s curse.

A.6 Information Acquisition

In this part, we first characterize lending profits and then provide a numerical illustration in which
the specialization equilibrium arises.

34Upon competition (HH), lenders are less sure about a good quality borrower, i.e., µHH (ρh) decreases in ρh.
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A.6.1 Lending Profits

We characterize lending profits as a function of information acquisition, ΠA (Ig
A, Is

A, Ig
B, Is

B) (we
focus on Bank A due to symmetry.) We omit the case where there is an uninformed lender.

Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 0 (Specialization). This is the equilibrium that we focus on—each
lender has a general information signal and only Bank A has a specialized signal s. Bank A’s
expected lending profit before signal realizations is thus

ΠA (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 0) =
∫ 1

x
πA
(

rA (s)
∣∣∣ s)ϕ (s) ds,

where πA
(

rA (s)
∣∣∣ s) is the profits for given signal realizations H and s and is given in Eq. (9).

Using the equilibrium strategies in Proposition 1, we have

πA
(

rA (s)
∣∣∣ s) = pHH ·

∫min{s,ŝ}
0 (s − t) ϕ (t) dt

qs
+
(
πB + pLH

)
· s

qs
− pHL, for s ≥ x.

The expression shows that Bank A earns the information rent from the specialized signal. Bank A

observes s, while Bank B may only negatively update the prior qs when winning the competition

that sA ≤ s (r); this is reflected in the terms s
qs

and
∫ min{s,ŝ}

0 (s−t)ϕ(t)dt

qs
.

In this case, Bank B’s profit ΠB (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 0) = πB is given in Lemma 2. By
symmetry, ΠA (Ig

A = 1, Is
A = 0, Ig

B = 1, Is
B = 1) = ΠB (Ig

A = 1, Is
A = 1, Ig

B = 1, Is
B = 0) = πB.

Ig
A = 0, Is

A = 1, Ig
B = 1, Is

B = 0 (Asymmetric technology). In this case, Bank A only collects
specialized information while Bank B only collects general information in industry a. This case
is nested in the previous case of specialization (Ig

A = 1, Is
A = 1, Ig

B = 1, Is
B = 0), by reformulating

Bank A to have an uninformative general signal, e.g.,

P
(

gA = H
∣∣∣ θh = 1

)
= P

(
gA = H

∣∣∣ θh = 0
)

= 1.

Ig
A = 1, Is

A = 0, Ig
B = 1, Is

B = 0 (General information only). In this case, both lenders only

acquire general information, i.e., investing in IT and data processing that apply to both industries.
The credit competition corresponds to Broecker (1990) with two lenders. Lenders are symmetric
and the lending profit of, say Bank A, is

ΠA (Ig
A = 1, Is

A = 0, Ig
B = 1, Is

B = 0) = max {pLH (µHHqsr − 1) , 0} .

The “max” operator arises because either both lenders withdraw with positive probability (zero
profits), or both lenders make profits and neither has a point mass at r, i.e., F j (r−) = 1.

Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 1 (Acquire all information). In this symmetric case, each lender
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invests in both information technologies and receives both the general and specialized signals. We
characterize the credit market equilibrium based on Riordan (1993) which considers the competition
between two lenders each with a continuous private signal. Here, each lender additionally has a
binary signal that represents the general information. Following the modeling of Riordan (1993),
we work with the direct specialized signal z. Specifically, let z and Z denote the realization and
the random variable of the specialized signal respectively, and let

F̃ (z) ≡ P (Z ≤ z| θs = 1) , G̃ (z) ≡ P (Z ≤ z| θs = 0)

denote the CDFs of Z conditional on the underlying state θs, with the corresponding PDFs denoted
by f̃ and g̃. Introduce µ (z) ≡ P (θs = g| S) as the posterior belief, which is s in our baseline model.

A lender only bids when the general signal is H and the specialized signal z ≥ x. Let R (z) ≡
r (z) + 1 denote the equilibrium gross rate quote. Given competitor’s strategy R (z), the lending
profits from any R is then

π (R |z ) =
[
pHHµHHµ (z) F̃ (t (R)) + pHLµHLµ (z)

]
R

− pHH

[
(1 − µ (z)) G̃ (t (R)) + µ (z) F̃ (t (R))

]
− pHL, (46)

where t (R) the signal such that the other bank offers R. The first order condition w.r.t. R is

∂π (R (t) |z )
∂R

=
[
pHHµHHµ (z) F̃ (t) + pHLµHLµ (z)

]
+
{

pHHµHHµ (z) f̃ (t) R (t) − pHH

[
(1 − µ (z)) g̃ (t) + µ (z) f̃ (t)

]} dt

dR
.

The equilibrium strategy satisfies
∂π (R (t) |z )

∂t

∣∣∣∣
t=z

= 0

By symmetry, we have
dt

dR
= 1

R′ (t)
.

These two conditions imply

pHHµHH f̃ (z) R (z) +
(
pHHµHH F̃ (z) + pHLµHL

)
R′ (z) = pHH (1 − µ (z)) g̃(z) + pHHµ (z) f̃ (z)

µ (z)
,

(47)
or equivalently,

d
{[

pHHµHH F̃ (z) + pHLµHL

]
R (z)

}
dz

= pHH (1 − µ (z)) g̃(z) + pHHµ (z) f̃ (z)
µ (z)

.
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Integrating over z, we have

R (z) =
∫ z

z
pHH(1−µ(t))g̃(t)+pHHµ(t)f̃(t)

µ(t) dt + constant

pHHµHH F̃ (z) + pHLµHL

. (48)

The unknown constant is pinned down by the boundary condition π (r + 1 |x) = 0: Upon the
threshold signal x, a lender quotes the maximum interest rate r + 1 and makes zero profit,

0 =
[
pHHµHHµ (x) F̃ (x) + pHLµHLµ (x)

]
(r + 1) − pHH

[
(1 − µ (x)) G̃ (x) + µ (x) F̃ (x)

]
− pHL.

(49)
Then a lender’s lending profit is

ΠA (Ig
A = 1, Is

A = 1, Ig
B = 1, Is

B = 1) =
∫ z

x
π (R (z)| z)

[
qsf̃ (z) + (1 − qs) g̃ (z)

]
dz,

where R (z) is given by Eq. (48) and (49), profit π (R (z) , z) is given by Eq. .

Figure 6: Specialization Equilibrium This plot depicts the incentive compatibility constraints
where Bank A does not want to deviate from the specialization equilibrium. Parameters: r̄ = 0.36,
ρh = 0, qh = 0.8, qs = 0.9, αu = αd = α = 0.7, and τ = 1.

A.6.2 Specialization Equilibrium

Figure 6 shows the region of information acquisition costs κh and κs to support the specialization
equilibrium so that one of the banks endogenously becomes the specialized bank in one industry by
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acquiring both specialized and general information while the other is non-specialized by acquiring
the general information only. In sum, we need κh to be sufficiently small while κs to lie in an
intermediate range.

A.7 General Information Structure

In this extension, we focus on the well-behaved structure (i.e., smooth distribution of interest rates
over [r, r) and decreasing rA (z)) and show that the lender strategies in Proposition 4 correspond
to an equilibrium.

Proof of Proposition 4

Proof. Bank A’s strategy
In the region of z ∈ (ẑ, 1] that corresponds to rA (z) ∈ [r, r), rA(·) is strictly decreasing so

the inverse function zA(·) ≡ rA(−1)(·) is properly defined. Bank B’s lending profit when quoting
r ∈ [r, r) is

πB (r) = pHH︸ ︷︷ ︸
gA=H

·
∫ zA(r)

z︸ ︷︷ ︸
B wins

µHH (t)︸ ︷︷ ︸
repay

(1 + r) − 1

ϕz ( t| HH) dt + pLH︸︷︷︸
gA=L

µLH︸︷︷︸
repay

(1 + r) − 1



= (1 + r)
[∫ zA(r)

z
pHH (t) µHH (t) dt + pLHµLH

]
−
∫ zA(r)

z
pHH (t) dt − pLH (50)

Bank A’s equilibrium strategy rA (z) for z ∈ [ẑ, 1] is such that Bank B is indifferent across r ∈ [r, r).
Hence,

rA (z) =

B’s lending amount︷ ︸︸ ︷
πB +

∫ z

z
pHH (t) dt + pLH∫ z

z
pHH (t) · µHH (t) dt + pLHµLH︸ ︷︷ ︸

B’s customers who repay

− 1, where ẑ ≤ s ≤ z. (51)

In addition, rA (z) = r for z ∈ [zx, ẑ) and Bank A rejects the borrower when z ∈ [z, zx), where
zx satisfies

πA
(

rA (zx) = r
∣∣∣ zx

)
= 0.

This completes the proof of Bank A’s strategy in Proposition 4.

Bank B’s strategy
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Bank A’s offered interest rate rA (z) upon z ∈ [ẑ, z] maximizes

πA
(

rA (z)
∣∣∣ z) = pHH (z)︸ ︷︷ ︸

gB=H

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

µHH (z)︸ ︷︷ ︸
repay

(1 + r) − 1

+ pHL (z)︸ ︷︷ ︸
gB=L

µHL (z)︸ ︷︷ ︸
repay

(1 + r) − 1


The FOC w.r.t. r is−

d
[
F B (r)

]
dr


︸ ︷︷ ︸

∆winning prob

pHH (z) [µHH (z) (1 + r) − 1]︸ ︷︷ ︸
profit upon winning

+ pHH (z)
[
1 − F B (r)

]
µHH (z) + pHL (z) µHL (z)︸ ︷︷ ︸

existing customer

= 0.

Bank A’s optimal strategy rA (z) satisfies this first order condition,

0 = −
d
[
F B

(
rA (z)

)]
dr

pHH (z)
[
µHH (z)

(
1 + rA (z)

)
− 1

]
(52)

+ pHH (z)
[
1 − F B

(
rA (z)

)]
µHH (z) + pHL (z) µHL (z) .

From Eq. (51) about rA (z), we derive the following key equation by taking derivatives w.r.t. z,

drA (z)
dz

[∫ z

z
pHH (t) µHH (t) dt + pLHµLH

]
︸ ︷︷ ︸

B: ↑marginal customer return

+ pHH (z)
[(

rA (z) + 1
)

µHH (z) − 1
]

︸ ︷︷ ︸
B: ↑existing customer revenue

= 0.

Plug this equation into the FOC (52), and we have

−
d
[
F B

(
rA (z)

)]
dz

[∫ z

z
pHH (t) µHH (t) dt + pLHµLH

]
= pHH (z)

[
1 − F B (r)

]
µHH (z) + pHL (z) µHL (z) ,

which is equivalent to

d

dz

 1 − F B
(
rA (z)

)
∫ z

z µHH (t) pHH (t) dt + pLHµLH

 = pHL (z) µHL (z)[∫ z
z pHH (t) µHH (t) dt + pLHµLH

]2 . (53)

Since signals are independent conditional on the state being θ = 1, the right-hand-side equals

qP (HL| θ = 1) ϕz (z| θ = 1)[∫ z
z qP (HH| θ = 1) ϕz ( t| θ = 1) dt + pLHµLH

]2
= −

P
(

gB = L
∣∣∣ θ = 1

)
P (gB = H| θ = 1)

d

dz

[
1∫ z

z qP (HH| θ = 1) ϕz ( t| θ = 1) dt + pLHµLH

]
.
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Then the solution F B
(
rA (z)

)
to the ODE (53) satisfies

1 − F B
(
rA (z)

)
∫ z

z µHH (t) pHH (t) dt + pLHµLH

= −
P
(

gB = L
∣∣∣ θ = 1

)
P (gB = H| θ = 1)

[
1∫ z

z µHH (t) pHH (t) dt + pLHµLH

]
+Const.

Using the boundary condition F B
(
rA (z) = r

)
= 0, we solve for the constant

Const = 1
P (θ = 1)

1
P (gB = H| θ = 1)2 .

Therefore,

F B (r) = 1
P (gB = H| θ = 1)

−
∫ zA(r)

z µHH (t) pHH (t) dt + pLHµLH

P (θ = 1)P (gB = H| θ = 1)2

= 1
P (gB = H| θ = 1)

−
P (θ = 1)P (HH| θ = 1)

∫ zA(r)
z ϕz ( t| θ = 1) dt + P (θ = 1)P (LH| θ = 1)

P (θ = 1)P (gB = H| θ = 1)2

=
P
(

gA = H
∣∣∣ θ = 1

)
P (gB = H| θ = 1)

[
1 −

∫ zA(r)

z
ϕz ( t| θ = 1) dt

]
.

Bank B’s profit πB

Now we are left with one unknown variable πB in Eq. (51). Similar to the baseline model, the
equilibrium could be positive-weak or zero-weak, depending on whether Bank A upon specialized
signal realization zbe

A or Bank B breaks even when quoting r. We define zbe
A and zbe

B as

0 = πA
(
r
∣∣∣zbe

A

)
=pHH

(
zbe

A

) P
(

gA = H
∣∣∣ θ = 1

)
P (gB = H| θ = 1)

[
1 −

∫ zbe
A

z
ϕz ( t| θ = 1) dt

]
·
[
µHH

(
zbe

A

)
(1 + r) − 1

]
+ pHL

(
zbe

A

) [
µHL

(
zbe

A

)
(1 + r) − 1

]
,

0 = πB
(
r; zbe

B

)
=
∫ zbe

B

z
pHH (t) µHH (t) (1 + r) dt −

∫ zbe
B

z
pHH (t) dt + pHL [µHL (1 + r) − 1] .

Equilibrium πB is then

πB = max
{∫ zbe

A

z
pHH (t) µHH (t) (1 + r) dt −

∫ zbe
A

z
pHH (t) dt + pHL [µHL (1 + r) − 1] , 0

}
.

When zbe
A > zbe

B , equilibrium is positive weak with πB > 0, and ẑ = zx = zbe
A ; when zbe

A ≤ zbe
B ,

equilibrium is zero weak with πB = 0, and zbe
B = ẑ > zx.
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