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ABSTRACT

We develop an endogenous growth model with heterogeneous firms facing financial frictions, 
where capital misallocation emerges as a key endogenous state variable. Misallocation is 
endogenously driven by transitory aggregate liquidity shocks, as firms with different productivity 
levels respond differently to the same shock by optimally adjusting capacity utilization. Financial 
frictions and persistent idiosyncratic productivity make capital reallocation gradual, leading to 
slow-moving misallocation that drives time-series variation in low-frequency economic growth and 
serves as a source of systematic risk in asset markets. This mechanism operates through a feedback 
loop induced by the valuation channel: persistent misallocation elevates risk premia, which 
depresses the marginal q of intangible capital and reduces R&D incentives. The resulting decline in 
expected long-run growth and rise in macroeconomic volatility further amplifies risk premia under 
recursive preferences. We provide empirical evidence that capital misallocation captures low-
frequency growth fluctuations and present supporting tests that confirm the model’s key 
predictions.
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1 Introduction

Misallocation significantly impacts economic growth, both in long-run steady states (e.g.,
Jovanovic, 2014; Acemoglu et al., 2018) and during economic transitions (e.g., Buera and
Shin, 2013). Various empirical measures of cross-sectional dispersion indicate that the
allocation efficiency of capital displays strong pro-cyclical patterns.1

This paper examines the critical interplay between the time-series variations in capital
misallocation and growth prospects, highlighting its importance in driving low-frequency
fluctuations in aggregate growth. It shows that time-varying capital misallocation gives
rise to a systematic risk that is priced in asset markets by shaping low-frequency growth
dynamics.2 This source of systematic risk, rooted in capital misallocation, quantitatively
accounts for key asset pricing phenomena by endogenizing the mechanisms proposed in
Bansal and Yaron (2004) and Hansen, Heaton and Li (2008), and justifies the significant
welfare costs of economic fluctuations over the business cycle. At its core, our analysis
introduces a misallocation-driven asset pricing mechanism, emphasizing the valuation
channel as a crucial amplifier of misallocation’s impact on economic growth.

To formally develop this mechanism, we construct an analytically tractable general
equilibrium model that illustrates how time-varying capital misallocation gives rise to
a fundamental asset pricing factor through the valuation channel. The model features
heterogeneous firms and endogenous stochastic growth. In equilibrium, the misallocation
of production capital evolves endogenously as a slow-moving state variable that charac-
terizes the macroeconomic environment and gives rise to low-frequency fluctuations in
economic growth.

Our model builds on the framework of endogenous technological progress (e.g.,
Romer, 1990; Rivera-Batiz and Romer, 1991). The economy consists of three sectors: (i) the
R&D sector, which produces new blueprints using final goods and existing knowledge;
(ii) the intermediate goods sector, where each producer uses a blueprint and final goods
to produce a differentiated intermediate input under monopoly power secured by the
blueprint; and (iii) the final goods sector, which combines production capital, labor,
and intermediate inputs to produce final output. Within this standard framework, we
introduce a novel combination of two features that jointly give rise to a new fundamental
source of systematic risk in asset pricing, namely, time-varying capital misallocation.

First, we incorporate heterogeneous firms in the final goods sector that differ in

1For empirical evidence, see Eisfeldt and Rampini (2006), Bloom (2009), Kehrig (2015), and Bloom et al.
(2018), among others.

2These low-frequency growth fluctuations are intrinsically linked to the medium-term business cycle
identified by Comin and Gertler (2006) and the growth cycle studied by Kung and Schmid (2015).
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productivity and their stock of production capital, while firms in the intermediate goods
and R&D sectors remain homogeneous. These firms are owned by shareholders with
homogeneous recursive preferences but managed by corporate managers whose objectives
diverge from those of the shareholders, generating agency conflicts that lead to financial
frictions, including both collateral constraints on borrowing and equity market constraints
on payouts and issuances. These frictions, together with persistent firm-level idiosyncratic
productivity, make the misallocation of production capital a central force in shaping how
output aggregates across firms. Without persistent idiosyncratic productivity, cross-firm
misallocation would not emerge in equilibrium, as emphasized by Buera and Shin (2013)
and Di Tella, Maglieri and Tonetti (2024).

Second, we introduce transitory aggregate capital quality shocks, commonly inter-
preted as “liquidity shocks” in settings where firms use capital as collateral for borrowing,
following the literature (e.g., Gertler and Kiyotaki, 2010; Gourio, 2012; Brunnermeier
and Sannikov, 2017). Firms endogenously choose their capacity utilization intensity,
where higher intensity allows for greater output but increases exposure to aggregate
liquidity shocks. In equilibrium, more productive firms utilize capital more intensively,
making them more vulnerable to these shocks. As a result, aggregate liquidity shocks
induce fluctuations in capital misallocation, which in turn generate fluctuations in the
economy’s growth rate in an endogenous manner. Because the evolution of misallocation
is endogenously slow-moving, growth fluctuations driven by misallocation are both
sizable and persistent, even though the underlying aggregate liquidity shocks are i.i.d. in
the model. Crucially, in the absence of endogenously slow-moving capital misallocation,
such transitory aggregate shocks in the final goods sector would have no impact on
low-frequency fluctuations in aggregate growth in equilibrium.

This novel combination of model features allows us to illustrate an economic mech-
anism featuring a new “valuation channel.” Through this channel, the slow-moving
evolution of capital misallocation transforms i.i.d. aggregate liquidity shocks in the final
goods sector into low-frequency growth fluctuations, giving rise to a systematic risk factor
that is priced in asset markets, as illustrated in Figure 1. This mechanism distinguishes
our framework from existing asset pricing models based on endogenous technological
progress with exogenously specified persistent aggregate productivity shocks in the final
goods sector (e.g., Kung and Schmid, 2015).

In more detail, when the misallocation of production capital in the final goods sector
rises persistently in response to transitory aggregate shocks, the sector’s demand for
intermediate goods declines persistently. Each producer in the intermediate goods sector
holds monopoly power over a distinct variety, obtained by acquiring blueprints from the
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Figure 1: Our model elucidates a mechanism that quantitatively links capital misallocation
to economic growth via a valuation channel.

R&D sector. The persistent drop in demand leads to a gradual and long-lasting decline
in monopoly rents, which in turn lowers the value of newly developed blueprints. This
results in a persistent decline in the marginal q of intangible capital, defined as the present
value of marginal profits derived from innovation-related assets (e.g., Crouzet and Eberly,
2023). As a consequence, innovation incentives in the R&D sector weaken persistently,
creating a long-term drag on economic growth.

Importantly, a novel valuation channel creates feedback loop that amplifies the mecha-
nism described above. Because capital misallocation evolves endogenously and adjusts
slowly over time, even transitory aggregate shocks can induce persistent changes in
misallocation, giving rise to low-frequency fluctuations in economic growth. Under
recursive preferences, these low-frequency growth fluctuations emerge as a fundamental
source of systematic risk, playing a critical role in driving the stochastic discount factor
(SDF) and, in particular, determining the discount rate, particularly the risk premium.
Moreover, the interaction between aggregate fluctuations and financial frictions causes
economic growth to become both lower and more volatile during downturns marked
by elevated misallocation. Intuitively, this heightened volatility of growth rates during
downturns arises from the amplification effect of financial frictions and leverage, which
magnifies the impact of shocks when the economy is already in a downturn. When the
growth rate is already low, the same aggregate shocks lead to larger changes in growth
rates, primarily because financial frictions, including collateral constraints on borrowing
and equity market constraints on payouts and issuances, limit the economy’s ability to
absorb shocks. This amplification effect, in turn, increases the volatility of the SDF. At
the same time, corporate leverage further amplifies the volatility of demand growth for
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intermediate goods used as inputs, and consequently, the volatility of the growth rate of
innovation rents. The resulting increase in volatility, both in the SDF and in innovation
rent growth, raises the risk premium required to discount future innovation rents during
downturns. This, in turn, further depresses the marginal q of intangible capital. As a
result, the valuation channel amplifies the impact of capital misallocation on aggregate
growth, and this effect reinforces the strength of the valuation channel itself. The resulting
feedback loop magnifies the role of capital misallocation as a fundamental pricing factor
in asset markets.

To illustrate the core theoretical mechanism step by step, we begin by analyzing
the deterministic balanced growth path in the absence of aggregate shocks. We show
that a one-time aggregate liquidity shock can endogenously increase misallocation, as
firms with different productivity levels optimally respond in different ways to the shock.
Due to financial frictions, the reallocation of capital across firms occurs gradually. As a
result, the initial rise in misallocation not only takes place upon impact but also persists
over time, leading to a prolonged negative effect on economic growth. Through its
effect on the marginal q of intangible capital, and thus on R&D incentives, even an i.i.d.
liquidity shock in the final goods sector can generate a persistent rise in misallocation
and a prolonged slowdown in economic growth. This underscores the profound and
lasting macroeconomic consequences of capital misallocation. Moreover, we show that
the persistence of idiosyncratic productivity is a key determinant of the duration of
misallocation-driven growth fluctuations. When firm-level productivity is more persistent,
misallocation adjusts more slowly, thereby extending its adverse effects on aggregate
economic growth.

Building on this step, we show that in the full model with aggregate liquidity shocks,
misallocation evolves slowly, leading to low-frequency fluctuations in economic growth.
Quantitatively, the annual autocorrelation of misallocation is 0.76, while that of con-
sumption growth is 0.46, closely aligning with empirical estimates. Our model thus
demonstrates a novel misallocation-based mechanism that explains the low-frequency
covariation in the time series of consumption and output growth (e.g., Bansal, Dittmar
and Lundblad, 2005; Hansen, Heaton and Li, 2008; Müller and Watson, 2008, 2018). At
the heart of this mechanism is the valuation channel, which creates a feedback loop
that amplifies the effects of production capital misallocation in the final goods sector on
aggregate growth, particularly its low-frequency component. During downturns marked
by heightened misallocation and reduced growth, firms in the final goods sector face
tighter financial constraints. In such periods, economic growth is not only low but also
highly volatile. Consequently, low expected consumption growth typically coincides
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with high macroeconomic volatility, leading to an elevated risk premium. As a result,
the marginal q of intangible capital takes a dual hit from heightened misallocation: it is
depressed both by reduced profits and by a higher discount rate on future profits due to
the elevated risk premium.

Furthermore, we show that our model not only rationalizes several important asset
pricing moments but also highlights substantial welfare costs associated with fluctuations
in capital misallocation. This contribution complements the existing literature, which has
primarily focused on quantifying the welfare losses from the level of misallocation, rather
than its time-series variation over the business cycle. Specifically, the model implies a high
Sharpe ratio of 0.39 for the aggregate consumption claim, accompanied by a low and stable
risk-free rate, aligning with empirical observations. Eliminating misallocation fluctuations
would provide the representative agent with a welfare gain of approximately 10%. The
large quantitative effects of misallocation fluctuations hinge on two key properties of the
model: the slow-moving nature of misallocation that generates low-frequency growth
fluctuations, and the recursive preferences of the representative agent. In the absence of
either feature, both the Sharpe ratio and the welfare gains would be negligible. Intuitively,
recursive preferences imply that the representative agent’s marginal utility depends not
only on current consumption growth but, more importantly, on expectations of future
consumption growth. As a result, fluctuations in anticipated consumption growth driven
by time-series variation in capital misallocation have a significant impact on both asset
valuations and welfare.

The standard approach to solving general equilibrium models with heterogeneous
firms and aggregate fluctuations relies on numerical approximations using key moments
of the cross-sectional firm distribution. We depart from the standard approach by
proposing a parametric approximation of the distribution of log productivity and log
capital using a bivariate normal distribution. This method offers two key advantages.
First, it enables us to derive a covariance-type measure for the misallocation of production
capital in the final goods sector, which emerges as a crucial endogenous state variable
summarizing the cross-sectional distribution of firms and characterizing the equilibrium
in closed form. Specifically, in our model, misallocation is captured by the covariance
between the log marginal revenue product of capital (MRPK) and log capital, normalized
by the variance of log MRPK. This covariance-based measure of misallocation is intuitive
and aligns with metrics commonly used in empirical studies to assess capital allocation
efficiency (e.g., Olley and Pakes, 1996; Bartelsman, Haltiwanger and Scarpetta, 2009, 2013).
Second, this parametric approximation makes the model highly tractable and transparent,
allowing the economy’s evolution to be analytically characterized by two endogenous
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state variables: misallocation and the knowledge stock-capital ratio. This approach allows
for a clear analysis of the interplay between misallocation dynamics, aggregate growth
fluctuations, and the systematic risk shaping asset prices.

We validate the parametric approximation in two ways. First, on the deterministic
balanced growth path without aggregate shocks, we analytically justify the approximation
using the Berry-Esseen bound (Tikhomirov, 1980; Bentkus, Gotze and Tikhomoirov, 1997).
Second, in the presence of aggregate shocks, we compare the solution derived from the
parametric approximation with the solution from standard global numerical methods,
which use a finite set of moments to capture the infinite-dimensional cross-sectional
distribution of firms, as in Krusell and Smith (1998). Our results show that, under
baseline calibration, the model-implied cross-sectional distribution of firms and key
statistics for various variables are similar both on the deterministic balanced growth path
and in the stochastic steady state with aggregate shocks.

Although our primary contribution is theoretical, we provide empirical evidence
that supports the main predictions of the model. Guided by the theory, we construct
a misallocation measure using U.S. Compustat data. We find that this misallocation
measure is highly persistent, with a yearly autocorrelation of 0.84. Moreover, the measure
is strongly countercyclical, and increases in misallocation lead to reductions in R&D
intensity, as well as to declines in the growth rates of aggregate consumption and
output over longer horizons. Importantly, time-series variation in capital misallocation is
significantly positively correlated with contemporaneous changes in the equity premium
in our sample, providing strong empirical support for the valuation channel proposed by
the model.

Finally, in Online Appendix 2,3 we present cross-sectional asset pricing evidence
supporting the main theoretical and quantitative result that capital misallocation is a
powerful macroeconomic risk factor. Specifically, it serves as a fundamental driver of
long-run expected consumption growth, which is empirically approximated by measures
such as accumulated future consumption growth proposed by Parker and Julliard (2005).
We show that a two-factor model including market returns and the misallocation factor
outperforms the Fama-French three-factor model, particularly for the ten momentum-
sorted portfolios. Furthermore, we find that both long-run expected consumption growth
and misallocation are similarly priced in the cross section of Treasury bond and stock
portfolio returns. However, once the misallocation factor is included in the linear factor
model, long-run expected consumption growth becomes insignificant, suggesting that the

3The Online Appendix contains proofs of the theoretical results, additional empirical evidence, and
assessment of the parametric approximation method. Moreover, a note on additional materials can be
found in Dou et al. (2025), which is available on the authors’ personal websites.
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misallocation factor subsumes its explanatory power for returns.

Related Literature. Our paper contributes to the asset pricing literature by offering a
novel perspective on low-frequency growth fluctuations as a source of systematic risk in
capital markets. Influential theoretical studies have provided microfoundations for these
fluctuations (e.g., Ai, 2010; Kaltenbrunner and Lochstoer, 2010; Nicolae, Panageas and Yu,
2012; Croce, 2014; Kung, 2015; Kung and Schmid, 2015; Collin-Dufresne, Johannes and
Lochstoer, 2016; Bianchi, Kung and Morales, 2019; Ai, Li and Yang, 2020; Gârleanu and
Panageas, 2020; Croce, Nguyen and Raymond, 2021). In closely related work, Kung and
Schmid (2015) show that R&D activity generates long-run uncertainty in economic growth,
serving as a source of long-run risk in asset pricing. In contrast, our model illustrates how
the slow-moving evolution of capital misallocation transforms i.i.d. aggregate liquidity
shocks in the final goods sector into low-frequency growth fluctuations, giving rise to a
systematic risk factor that is priced in asset markets. This mechanism sets our framework
apart from that of Kung and Schmid (2015). The misallocation-driven asset pricing
mechanism in our model emphasizes capital misallocation as a powerful macroeconomic
risk factor and highlights a novel valuation channel that generates a feedback loop,
amplifying the impact of misallocation on economic growth.

Our paper is closely related to the literature on financial frictions and misallocation.
Most studies in this area focus on long-run total factor productivity (TFP) and welfare
losses caused by misallocation in the deterministic steady state (e.g., Amaral and Quintin,
2010; Greenwood, Sanchez and Wang, 2010, 2013; Caselli and Gennaioli, 2013; Midrigan
and Xu, 2014; Buera, Kaboski and Shin, 2015), while others examine transitional dynamics
(e.g., Jeong and Townsend, 2007; Buera and Shin, 2011, 2013; Moll, 2014; Gopinath et al.,
2017). Although misallocation in our model is rooted in financial frictions, our primary
focus is on its role in driving low-frequency growth fluctuations and its implications for
asset pricing. We show that under recursive preferences, time-series variation in capital
misallocation over the business cycle can generate substantial risk premia and welfare
losses through the valuation channel. Moreover, the persistence of firm-level idiosyncratic
productivity plays a central role in producing slow-moving misallocation, which in turn
gives rise to persistent fluctuations in aggregate growth. By linking the persistence of
idiosyncratic productivity to that of aggregate consumption growth, our model suggests
that low-frequency growth risk can be identified using granular firm-level cross-sectional
data. This provides a new perspective on addressing the “dark matter” problem in
macro asset pricing models (Chen, Dou and Kogan, 2024; Cheng, Dou and Liao, 2022),
enhancing their empirical content and robustness.
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Our paper also relates to the broader literature on the role of misallocation in shaping
economic development and growth. In the context of development, it connects to studies
such as Foster, Haltiwanger and Syverson (2008), Restuccia and Rogerson (2008), Hsieh
and Klenow (2009), Jones (2011), Bartelsman, Haltiwanger and Scarpetta (2013), Asker,
Collard-Wexler and Loecker (2014), David, Hopenhayn and Venkateswaran (2016), and
David and Venkateswaran (2019). In the context of economic growth, it connects to
research by Banerjee and Duflo (2005), Jones (2013), Jovanovic (2014), Acemoglu et al.
(2018), Peters (2020), and Glode and Ordonez (2023), among others. For example,
Acemoglu et al. (2018) analyze the misallocation of R&D inputs, which directly shapes
equilibrium growth, while Peters (2020) shows that misallocation of production labor
dampens firms’ innovation rates. In contrast, our paper has a distinct focus: What are
the primitive sources of systematic risk in asset pricing? We address this by identifying
time-series variation in capital misallocation as a priced risk factor and by explaining why
it earns a premium. We also propose a new mechanism that links capital misallocation to
low-frequency growth fluctuations, driven by the endogenously slow-moving nature of
misallocation and a feedback loop generated by the valuation channel. Crucially, we show
that even in the absence of R&D misallocation, persistent misallocation of production
capital in the final goods sector can generate significant low-frequency growth effects
through the valuation channel.

Despite the extensive literature on misallocation in development and growth, relatively
few studies in finance have examined its role. This presents a valuable opportunity to
explore how misallocation interacts with financial market dynamics. Recent contributions
include Eisfeldt and Rampini (2006, 2008), Rampini and Viswanathan (2010), Fuchs, Green
and Papanikolaou (2016), van Binsbergen and Opp (2019), Ai et al. (2020), and Ai, Li and
Yang (2020). Our paper is particularly related to studies that examine the relationship
between misallocation and financial risk. For example, Di Tella, Maglieri and Tonetti
(2024) explore how endogenous risk premia and incomplete markets generate markup-
driven misallocation and examine optimal policy design. David, Schmid and Zeke (2022)
study the effects of macroeconomic risk on misallocation using an exogenous SDF. In
contrast, we emphasize the reverse relationship by examining how misallocation itself
contributes to macroeconomic risk. Specifically, we highlight a feedback loop generated
by the valuation channel: misallocation raises the risk premium, which in turn amplifies
the effects of time-series variation in misallocation on low-frequency fluctuations in
economic growth. This amplification feeds back into asset valuations by lowering the
marginal q of intangible capital, thereby weakening R&D incentives and further slowing
long-run economic growth. Our model shows that capital misallocation can function as a
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macroeconomic risk factor in asset pricing by influencing the investor’s SDF through its
impact on long-term consumption growth.

2 Model

The economy consists of three sectors: a final goods sector with heterogeneous firms, an
intermediate goods sector, and an R&D sector. A representative agent owns firms in all
three sectors.

2.1 Final Goods Sector

In the final goods sector, there is a continuum of firms of measure one, indexed by
i ∈ I ≡ [0, 1] and operated by managers. Firms are different from each other in their
idiosyncratic productivity zi,t and capital ai,t. The distribution of firms at t is characterized
by the joint probability density function (PDF), φt(a, z).

The firm produces output at intensity yi,t over [t, t + dt) using a technology with
constant returns to scale (CRS):

yi,t =
[
(zi,tui,tki,t)

αℓ1−α
i,t

]1−ε
xε

i,t, with α, ε ∈ (0, 1), (1)

where labor ℓi,t is hired in a competitive labor market at the equilibrium wage wt. The
variable ki,t = ai,t + âi,t is the total amount of capital installed in production, which
includes the firm’s own capital ai,t and the leased capital âi,t borrowed from a competitive
rental market at the equilibrium risk-free rate r f ,t. The final goods are the numeraire.

As specified in (1), the firm’s output yi,t increases with its idiosyncratic productivity
zi,t and endogenous choice of capacity utilization intensity ui,t ∈ [0, 1]. Utilizing capital at
intensity ui,t leads to depreciation of ui,tki,td∆t over [t, t + dt), where d∆t = δdt + σdWt

represents the stochastic depreciation rate, with δ, σ > 0. In our framework, the standard
Brownian motion, denoted by Wt, is employed to represent the aggregate capital quality
shock, consistent with the established literature. These shocks are interpreted as liquidity
shocks, particularly in the settings where firms use capital as collateral for borrowing
(e.g., Gertler and Kiyotaki, 2010; Gourio, 2012; Brunnermeier and Sannikov, 2017).

Modeling firm-level variable capital utilization is central to our theory. Prior research
has shown that capacity utilization plays a key role in generating endogenous business
cycles that align with key time-series features of U.S. data (e.g., Jaimovich and Rebelo,
2009). In our model, allowing firms to endogenously choose their capacity utilization
intensity enables aggregate liquidity shocks to generate time-series variation in the
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misallocation of production capital. This arises because firms with different productivity
levels optimally respond in different ways to the same aggregate shock (see Section 3.2).

The composite xi,t in (1) consists of differentiated intermediate goods, given by the

constant elasticity of substitution (CES) aggregation, xi,t =
(∫ Nt

0 xν
i,j,tdj

)1/ν
, where xi,j,t

is the quantity of intermediate goods j ∈ [0, Nt]. The elasticity of substitution among
intermediate goods is 1/(1 − ν) > 0. At any time t, the economy’s stock of knowledge,
encapsulated in the variety of intermediate goods, is quantified as Nt. It is through the
expansion of Nt that technological advances occur and drive economic growth.

The firm’s idiosyncratic productivity zi,t evolves according to

d ln zi,t = −θ ln zi,tdt + σz
√

θdWi,t, (2)

where the standard Brownian motion Wi,t captures idiosyncratic productivity shocks, and
θ and σz are parameters governing the persistence and volatility of zi,t.4

2.2 Intermediate Goods Sector

There is a continuum of homogeneous intermediate goods producers indexed by j ∈
[0, Nt]. Each producer j holds monopoly power in pricing a specific type of intermediate
goods, a power that is guaranteed by the blueprint obtained from the R&D sector. These
producers purchase final goods and convert them into intermediate goods following the
blueprints. In this process, one unit of final goods is utilized to produce one unit of
intermediate goods. Let pj,t denote the price of intermediate good j. The producer solves
the following problem to maximize monopoly profit:

πj,t = max
pj,t

pj,tej,t − ej,t, (3)

subject to the downward-sloping demand curve:

ej,t =

(
pj,t

pt

) 1
ν−1

Xt, with pt =

(∫ Nt

0
p

ν
ν−1
j,t dj

) ν−1
ν

, (4)

4Jaimovich, Terry and Vincent (2025) document that the distribution of revenue growth in the data
is fat-tailed, indicating that log revenue does not follow a Gaussian AR(1) stochastic process. In our
model, although ln zi,t follows an Ornstein-Uhlenbeck process, which is the continuous-time analogue
of a discrete-time Gaussian AR(1) process, firms’ log revenue does not, for two key reasons. First, only
firms with zi,t ≥ zt produce (see (17)). Second, for those producing firms, revenue is proportional to zi,tai,t
(see the term (1 + λ)κtzi,tai,t1zi,t≥zt dt in (21)), where the exogenous zi,t and endogenous ai,t are positively
correlated in equilibrium.
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where Xt ≡
∫

i∈I xi,tdi is the aggregate demand for the composite of intermediate goods.
Let qj,t be the value of owning the exclusive rights to produce intermediate good j.

Because intermediate goods producers are homogeneous, in a symmetric equilibrium, it
must hold that qj,t ≡ qt and πj,t ≡ πt, for all producers j ∈ [0, Nt]. Intermediate goods
producers, while engaging in monopolistic competition in the intermediate goods market
dealing with final goods producers, operate under perfect competition in the blueprint
market with innovators. As a result, the price of a blueprint, qt, equates to the present
value of future monopoly rents that a blueprint can generate, discounted by the SDF
of the representative agent. Thus, the value of qt satisfies the Hamilton-Jacobi-Bellman
equation:

0 = Λt (πt − δbqt)dt + Et [d(Λtqt)] , (5)

where Λt is the representative agent’s SDF, as specified in (11); δb is the patent obsolescence
rate; and qt can be interpreted as the marginal q of intangible capital in the economy.

Intuitively, equation (5) indicates that the value of qt is determined by both time-
varying profits πt and SDF Λt, both of which are, in turn, determined by the capital
allocation efficiency within the final goods sector in general equilibrium. In Section 3.5,
we show that variations in Λt result in large variations in the marginal q of intangible
capital through the valuation channel, significantly amplifying the impact of capital
misallocation on economic growth prospects.

2.3 R&D Sector

Innovators in the model are atomistic. Each one is capable of inventing a single blueprint
through an R&D experiment over [t, t + dt) with a success rate ϑt > 0. Each R&D
experiment requires the use of final goods as R&D expenditure with unity intensity
over [t, t + dt). Each innovator in the model can optimally decide to engage in an R&D
experiment without incurring any entry costs. Let St represent the total number of
innovators who choose to participate over [t, t + dt). As a result, the total number of
newly created blueprints over [t, t + dt) is given by ϑtStdt, which contributes to the
evolution of the aggregate knowledge stock, Nt, as follows:

dNt = ϑtStdt − δbNtdt. (6)

Importantly, the success rate of R&D experiments, ϑt, is influenced by both the
aggregate stock of knowledge Nt and the total R&D expenditure St. In line with Comin
and Gertler (2006), we model the success rate as ϑt = χ (Nt/St)

h, where h ∈ (0, 1). This
formulation captures the positive spillover effect of the aggregate knowledge stock, Nt, as
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emphasized by Romer (1990), and the congestion or competition effect of the total R&D
activities, St, on the success rate.5

In equilibrium, the free-entry condition dictates that the expected return from R&D
for the marginal innovator choosing to engage in an R&D experiment must be equal to
the expenditure incurred for the R&D experiment. This implies that

qtϑt = 1. (7)

The free-entry condition implies an investment-q relation for intangible capital at the
aggregate level (e.g., Peters and Taylor, 2017; Crouzet and Eberly, 2023) as follows:

qt = χ−1 (St/Nt)
h . (8)

Intuitively, equation (8) indicates that a higher qt increases the total R&D expenditure St

relative to aggregate knowledge stock Nt, thereby boosting the economy’s growth rate.

2.4 Agents

There is a continuum of agents, including workers and managers. Each manager operates
a firm in the final goods sector that is subject to agency problems.6 Workers in the model
lend funds to firms and additionally hold equity claims on all of them. We assume the
existence of a complete set of Arrow-Debreu securities, allowing agents to fully insure
against idiosyncratic consumption risks, ensuring the existence of a representative agent.
The aggregate labor supply is inelastic and normalized to be Lt ≡ 1.

Preferences. The representative agent has stochastic differential utility as in Duffie and
Epstein (1992):

U0 = E0

[∫ ∞

0
f (Ct, Ut)dt

]
, (9)

where

f (Ct, Ut) =

(
1 − γ

1 − ψ−1

)
Ut

[(
Ct

[(1 − γ)Ut]1/(1−γ)

)1−ψ−1

− ρ

]
. (10)

This preference is a continuous-time version of the recursive preferences proposed by
Kreps and Porteus (1978), Epstein and Zin (1989), and Weil (1990). The felicity function f

5The production of non-rival knowledge stock through R&D is the core engine of long-run growth
(Romer, 1986, 1990). Recently, Crouzet et al. (2022) develop a model to show that the degree of nonrivalry
in intangible capital has non-monotonic effects on growth.

6Managers, including executives, directors, entrepreneurs, and, more broadly, controlling shareholders,
exercise control over firms’ investment and payout policies (e.g., Albuquerue and Wang, 2008).
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is an aggregator over the current consumption rate Ct of final goods and future utility
level Ut. The coefficient ρ is the subjective discount rate, the parameter ψ is the elasticity
of intertemporal substitution (EIS), and the parameter γ captures risk aversion.

The representative agent’s SDF is

Λt = exp
[∫ t

0
fU(Cs, Us)ds

]
fC(Ct, Ut). (11)

Limited Enforcement. Constraints in the equity market for payouts/issuances and
in the credit market for borrowing emerge endogenously due to limited enforcement
problems associated with equity and debt contracts.

Manager i extracts pecuniary rents τai,tdt over [t, t + dt) while running firm i.7

Shareholders have the option to intervene and take control of the firm by replacing the
manager. However, this intervention is costly due to the need for collective action, as
noted by Myers (2000), and it can also damage the firm’s talent-dependent customer
capital, as detailed in Dou et al. (2021). In particular, we assume that upon shareholder
intervention, a fraction τ/ϖ of the capital ai,t is lost, with τ < ϖ, and the shareholders
then become the firm’s new manager. In equilibrium, to prevent such an intervention, the
manager optimally pays out dividends at the minimum amount necessary to dissuade
shareholders from intervening. This leads to a payout intensity policy of di,t = ϖai,t over
[t, t + dt).

Moreover, the manager can divert a fraction 1/λ of leased capital âi,t with λ ≥ 1. As a
punishment, the firm would lose its own capital ai,t. In equilibrium, the manager is able
to borrow up to the point where he has no incentive to divert leased capital, implying a
collateral constraint of âi,t ≤ λai,t, as in Buera and Shin (2013) and Moll (2014).

The financial frictions described above are formally encapsulated in the following
proposition, with its proof provided in Online Appendix 5.1.

Proposition 1. Because of the agency problem with limited enforcement, the firm’s payout/issuance
policy is subject to the following equity market constraint:

di,t = ϖai,t. (12)

7Managers can extract rents due to imperfections in corporate governance. Preventing them from
diverting cash flows for private benefit remains challenging for shareholders, even when cash flows
are observable and property rights to firm assets are protected. Consistent with the corporate finance
literature (e.g., Myers, 2000; Lambrecht and Myers, 2008, 2012), we conceptualize rents primarily as cash
compensation. However, managerial rents can also take various forms, including above-market salaries,
generous pensions, perks, and enhanced job security.
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Moreover, the firm’s leased capital is subject to the following collateral constraint:

−ai,t ≤ âi,t ≤ λai,t. (13)

Several points are worth further discussion. First, there are other agency problems
that can lead to the equity market and collateral constraints (e.g., Gertler and Kiyotaki,
2010; Gertler and Karadi, 2011). Second, the equity market constraint, widely studied
in the corporate finance literature (e.g., Myers, 2000; Lambrecht and Myers, 2008, 2012),
essentially means that firms cannot freely move funds in and out of themselves. Third,
our model’s formulation of capital market imperfections, which is analytically tractable,
captures the fact that firms face restrictions and costs in accessing external funds. Fourth,
one specific interpretation of interfirm borrowing and lending is through a competitive
rental market, where firms can rent capital from each other (e.g., Jorgenson, 1963; Hall
and Jorgenson, 1969).

Managers’ Problem. The manager of firm i makes decisions for all s ≥ t to maximize
the present value Ji,t of future managerial rents, as in Lambrecht and Myers (2008, 2012),

Ji,t = max
âi,s,ui,s,ℓi,s,{xi,j,s}

Nt
j=0,di,s

Et

[∫ ∞

t

Λs

Λt
τai,sds

]
, (14)

subject to the equity market constraint (12), the collateral constraint (13), and the intertem-
poral budget constraint that characterizes the evolution of the firm’s capital stock:

dai,t = dIi,t + σai,tdWt, (15)

where dWt is the aggregate liquidity shock and dIi,t denotes the firm’s investment over
[t, t + dt), given by

dIi,t = yi,tdt −
∫ Nt

0
pj,txi,j,tdjdt − wtℓi,tdt − ui,tki,td∆t − r f ,t âi,tdt − di,tdt, (16)

where profits are reinvested, similar to Pástor and Veronesi (2012).
By exploiting the homogeneity of Ji,t in capital ai,t, we derive the manager’s optimal

decisions, as summarized in Lemma 1, with the proof provided in Online Appendix 5.2.
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Lemma 1. There is a cutoff zt for being active, and factor demands are linear in kt(a, z):

ut(z) =

{
1, z ≥ zt

0 z < zt
, kt(a, z) =

{
(1 + λ)a, z ≥ zt

0 z < zt
, (17)

ℓt(a, z) = (ε/pt)
ε

α(1−ε) κ
1
α
t zut(z)kt(a, z), and (18)

xj,t(a, z) =
(

pj,t/pt
) 1

ν−1 (ε/pt)
1−(1−α)(1−ε)

α(1−ε) κ
1−α

α
t zut(z)kt(a, z), for j ∈ [0, Nt], (19)

where κt = (1 − α)(1 − ε)/wt. The productivity cutoff zt is determined by:

ztκt = r f ,t + δ + σ[σξ,t(zt)− ηt], with κt = α(1 − ε) (ε/pt)
ε

α(1−ε) κ
1−α

α
t . (20)

At time t, only firms with zi,t ≥ zt produce, and these firms rent the maximal amount
âi,t = λai,t allowed by the collateral constraint. In equation (20), the cutoff zt is determined
such that the marginal return ztκt is equal to the marginal cost of leased capital, which
includes the locally deterministic user cost of capital r f ,t + δ and a stochastic term
σ
[
σξ,t(zt)− ηt

]
, reflecting the firm’s exposure to aggregate risk (see Online Appendix

5.2).
Using Lemma 1, equation (16) can be simplified as

dIi,t = (1 + λ)
(
κtzi,tdt − d∆t − r f ,tdt

)
ai,t1zi,t≥zt + (r f ,t − ϖ)ai,tdt. (21)

2.5 Equilibrium and Aggregation

Definition 2.1 (Competitive Equilibrium). At any given time t, the competitive equilibrium of
the economy is defined by a set of prices wt, r f ,t, and

{
pj,t

}Nt
j=0, along with their corresponding

quantities, such that

(i) each firm i in the final goods sector maximizes (14) by choosing âi,t, ui,t, ℓi,t, and {xi,j,t}Nt
j=0,

subject to (12), (13), and (16), given the equilibrium prices;

(ii) each intermediate goods producer j maximizes (3) by choosing pj,t for j ∈ [0, Nt];

(iii) the equilibrium R&D expenditure St is determined by (7);

(iv) the SDF Λt is given by (11) and the risk-free rate r f ,t is determined by

r f ,t = − 1
dt

Et

[
dΛt

Λt

]
; (22)
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(v) the labor market-clearing condition determines wt:

Lt =
∫ ∞

zt

∫ ∞

0
ℓt(a, z)φt(a, z)dadz; (23)

(vi) the leased capital market-clearing condition determines the representative agent’s bond
holdings Bt, which is the amount of capital lent to the final goods sector:

Bt =
∫ ∞

0

∫ ∞

0
ât(a, z)φt(a, z)dadz. (24)

The aggregate capital Kt is given by

Kt =
∫ ∞

0

∫ ∞

0
kt(a, z)φt(a, z)dadz = At + Bt, (25)

where At is the aggregate capital held by firms in the final goods sector, given by

At =
∫ ∞

0

∫ ∞

0
aφt(a, z)dadz. (26)

(vii) the resource constraint is satisfied because of Walras’s law.

Because firms’ problem is linear in capital ai,t, we introduce the capital share ωt(z) to
fully characterize the distribution of firms in the final goods sector:

ωt(z) ≡
1
At

∫ ∞

0
aφt(a, z)da and Ωt(z) ≡

∫ z

0
ωt(z′)dz′. (27)

Intuitively, the capital share ωt(z) plays the role of a density and captures the share of
firms’ capital held by each productivity type z. The corresponding cumulative distribution
function (CDF) is Ωt(z).

Proposition 2. At time t ≥ 0, given ωt(z), the equilibrium aggregate output is

Yt = ZtKα
t L1−α

t , (28)

where Zt is the economy’s TFP, given by

Zt = (εν)
ε

1−ε HtN1−α
t with Ht =

[
1

1 − Ωt(zt)

∫ ∞

zt

zωt(z)dz
]α

, (29)
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where Ht captures the endogenous productivity of the final goods sector. Factor prices are

pj,t = 1/ν for j ∈ [0, Nt], pt = N
ν−1

ν
t /ν, and wt = (1 − α)(1 − ε)Yt/Lt. (30)

The aggregate profits of the intermediate goods sector and R&D expenditure are,

Ntπt = (1 − ν)εYt and St = (χqt)
1
h Nt, respectively. (31)

Equation (29) shows that TFP depends on both the knowledge stock Nt and the final
goods sector’s productivity Ht, which is the average firm-level productivity z weighted
by ωt(z).8 The value of Ht is higher when more productive firms are associated with
more capital, which reflects a more efficient allocation of capital across firms.

3 Model Solution and Mechanism

In this section, we present a parametric approximation of the firm distribution and
characterize the mechanism that links misallocation and growth.

3.1 Parametric Approximation: Misallocation as a State Variable

The model is not analytically tractable due to the simultaneous presence of aggregate
shocks and forward-looking heterogeneous firms. The key challenge lies in tracking the
cross-sectional distribution of capital share, ωt(z), an infinite-dimensional object that
evolves endogenously. A standard approach to solving such a model involves using
numerical approximation methods that specify a few moments to approximate ωt(z) (e.g.,
Krusell and Smith, 1998). Instead of adopting these methods, we propose a parametric
approximation of ωt(z). Our method shares a similar philosophy with standard numerical
approximation methods in that it uses a small number of moments to encapsulate the
infinite-dimensional cross-sectional distribution of firms. The key distinction, however,
lies in our approach’s direct application of a parametric functional form to delineate the
distribution at any given time. This approach enables us to derive closed-form equations
for the evolution of these moments.

8Equation (29) is related to the industry-level TFP formula derived by Hsieh and Klenow (2009). The key
difference is that in our model, firms in the final goods sector produce homogeneous goods, whereas firms
in the model of Hsieh and Klenow (2009) produce differentiated goods. In Online Appendix 6, we show
that by driving the elasticity of substitution among goods to infinity and wedges to 0, the industry-level
TFP formula of Hsieh and Klenow (2009) coincides with our productivity Ht in equation (29).
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Our proposed parametric approximation serves three purposes. First, it yields a
simple endogenous state variable that intuitively captures the misallocation of capital
in the final goods sector. Second, it enables us to clearly illustrate the relationship
between misallocation dynamics and aggregate growth dynamics, thereby making it
easier to demonstrate the pivotal mechanism linking production capital misallocation
with the low-frequency component of economic growth.9 Third, it facilitates an analytical
characterization of the model economy’s evolution, rendering the computation of model
dynamics highly tractable.

Specifically, at any time t ≥ 0, we approximate the distribution of log capital
ãi,t = ln ai,t and log productivity z̃i,t = ln zi,t across firms in the final goods sector
using a bivariate normal distribution. Thus, this is essentially a 2nd-order parametric
approximation. This approximation is similar in spirit to the bivariate log-normal distribu-
tion of the skills of matched young and old agents in the model of Jovanovic (2014). Under
this parametric assumption, Jovanovic (2014) derives analytical transitional dynamics to
characterize the relationship between labor market misallocation and economic growth.

The approximation is intuitive because according to equation (2), we have z̃i,t ∼
N(0, σ2

z /2) in the cross section of firms. Moreover, using the Berry-Esseen bound, we
can prove that ãi,t across firms approximately follows a normal distribution on the
deterministic balanced growth path without aggregate shocks (see Online Appendix
7). In Section 4.6, we further assess the accuracy of our parametric approximation
by comparing our solutions to those obtained using standard global solution methods
based on higher-order numerical approximations and show that the two sets of solutions
are quite similar to each other under the baseline calibration. The joint log-normal
approximation enables us to derive a closed-form formula for ωt(z).

Proposition 3. For any t ≥ 0, the capital share ωt(z) can be approximated by the PDF of a
log-normal distribution,

ωt(z) =
1

zσz
√

π
exp

[
− (ln z + σ2

z Mt/2)2

σ2
z

]
, (32)

where Mt ≡ −Covt(z̃i,t, ãi,t)/vart(z̃i,t) = −2Covt(z̃i,t, ãi,t)/σ2
z .

Intuitively, Proposition 3 implies that under our approximation, the endogenous
state variable Mt ≡ −Covt(z̃i,t, ãi,t)/vart(z̃i,t) is a sufficient statistic that characterizes

9The use of tractable parametric approximations to capture key model mechanisms shares similarities in
spirit with several influential works in the finance literature. For example, Campbell and Shiller (1988b) and
Campbell and Vuolteenaho (2004) use log-linear present value approximations to disentangle the effects of
discount-rate news and cash-flow news on stock valuations. Likewise, Gabaix (2012) develops the class of
“linearity-generating” processes to improve analytical tractability in addressing macro-finance puzzles.
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the evolution of ωt(z). Below, we provide further discussions on the role of Mt and its
relation to existing empirical measures of misallocation.

We characterize the economy’s TFP Zt in closed form, as follows.

Proposition 4. Under our approximation, the aggregate TFP Zt is

Zt = (εν)
ε

1−ε N1−α
t

[
(1 + λ)

At

Kt
exp

(
−σ2

z
2

Mt +
σ2

z
4

)
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σz√
2

)]α

, (33)

where Φ(·) represents the CDF of a standard normal variable.

Equation (33) shows that the economy’s TFP, Zt, strictly decreases with the endogenous
state variable Mt, holding aggregate variables At, Kt, and Nt fixed. Thus, Mt reflects
the degree of misallocation in our model economy. In fact, Mt also directly reflects the
distribution of the marginal revenue product of capital (MRPK). To elaborate, substituting
out labor and intermediate inputs in firms’ technology using Lemma 1, we obtain

yi,t = vi,tki,t, with vi,t = (ε/pt)
ε

α(1−ε) κ
1−α

α
t zi,t. (34)

Because final goods are the numeraire, vi,t measures firm i’s MRPK at t. Define ṽi,t = ln vi,t.
We obtain a theoretically motivated measure for misallocation:

Mt ≡ −Covt(z̃i,t, ãi,t)

vart(z̃i,t)
= −Covt(ṽi,t, ãi,t)

vart(ṽi,t)
, ∀ t ≥ 0. (35)

Intuitively, in our model, the covariance Covt(z̃i,t, ãi,t) is fundamentally akin to the
covariance between MRPK and capital, Covt(ṽi,t, ãi,t), given that firms produce homo-
geneous goods using a CRS technology. A higher Mt reflects that firms with higher
productivity (zi,t) or MRPK (vi,t) are linked to a lower level of production capital (ai,t),
which, according to Proposition 4, results in a diminished TFP.

Because firms have CRS technology, the dispersion in MRPK (i.e., σ2
t (ṽi,t)) remains

constant at σ2
z /2, rendering it an invalid metric for misallocation in the model economy

here. In models where firms’ revenue exhibits decreasing returns to scale, a positive
relationship between σ2

t (ṽi,t) and Mt can arise under general conditions, although it is
not unconditionally guaranteed theoretically. For example, consider the models of Buera
and Shin (2011, 2013), where misallocation arises from financial frictions similar to our
framework. In their baseline calibration, the steady state satisfies Mt < 0, reflecting
a positive covariance between MRPK and production capital across firms. With the
distribution of capital unchanged, tighter funding liquidity constraints increase both
σ2

t (ṽi,t) and Mt. Similarly, in the model of David, Hopenhayn and Venkateswaran (2016),

19



higher information frictions exacerbate misallocation, as reflected in increases in both
σ2

t (ṽi,t) and Mt.
We emphasize that misallocation in our model, represented by the endogenous state

variable Mt, arises from firms’ funding liquidity constraints due to financial frictions, as in
the model of Buera and Shin (2011, 2013). Under our parametric approximation, Mt fully
summarizes the firm distribution, ωt(z). Consequently, the endogenous time variation in
ωt(z) in response to aggregate shocks is entirely captured by the time variation in Mt,
which serves as a sufficient statistic, as characterized by equation (38) below.

Relation to Existing Empirical Measures of Misallocation. Our model-implied misallo-
cation metric, Mt, is conceptually similar to the capital allocation efficiency measure based
on the cross-sectional covariance between size and productivity, used in several seminal
empirical studies (e.g., Olley and Pakes, 1996; Bartelsman, Haltiwanger and Scarpetta,
2009, 2013).10 The covariance-based misallocation measure is highly intuitive and does not
rely on specific functional form assumptions. Compared to dispersion-based measures,
such as the dispersion of revenue TFP or MRPK (e.g., Foster, Haltiwanger and Syverson,
2008; Hsieh and Klenow, 2009), it offers several advantages for analyzing variations in
misallocation over economic cycles. In particular, Bartelsman, Haltiwanger and Scarpetta
(2013) provide evidence that the relationship between size and productivity across firms is
more resilient to multiplicative measurement errors than dispersion-based misallocation
measures. They argue that classical measurement errors in MRPK or productivity tend
to inflate dispersion-based misallocation measures but leave covariance-based measures
unaffected. Furthermore, the magnitude of these measurement errors varies over eco-
nomic cycles, undermining the precision of dispersion-based measures in capturing time
variations in misallocation. Similarly, Eisfeldt and Shi (2018) argue that the inherent noisi-
ness of productivity dispersion measures limits their effectiveness in capturing business
cycle variations in misallocation. This insight is particularly relevant to our research, as
we focus on examining the implications of misallocation fluctuations rather than its level
for growth fluctuations and asset pricing. Accordingly, in our empirical and quantitative
analysis in Section 4.1, we construct a model-consistent covariance-based measure, Mt.

10Olley and Pakes (1996) decompose total productivity into the unweighted average of plant-level
productivities and the cross-sectional covariance between productivity and output share, positing that
this covariance captures capital allocation efficiency. A higher covariance implies that more productive
firms account for a larger share of output. Bartelsman, Haltiwanger and Scarpetta (2009, 2013) extend this
approach by analyzing the cross-sectional covariance between firm-level log productivity and size, where
productivity is measured by physical TFP, revenue TFP, or labor productivity, and size is measured by
output, revenue, or input. They demonstrate that the relationship between size and productivity holds
consistently across these measures in a broad class of models.
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We emphasize that the contribution of this paper is not to propose a new measure
of capital misallocation. Instead, it lies in showing that the endogenous state variable
Mt, defined in equation (35), provides strong theoretical support for using the size and
productivity covariance as a measure of capital allocation efficiency, a metric already
widely used in the literature. Specifically, our model analytically demonstrates that a
higher Mt (i.e., a lower covariance) reduces aggregate TFP (see equation (33)). Further-
more, under the parametric approximation of our model, Mt serves as a sufficient statistic
summarizing the cross-sectional distribution of firms ωt(z), underscoring the central
role of production capital misallocation as an endogenous state variable mediating the
interaction between macroeconomic and capital market dynamics.

3.2 Evolution of the Economy

Under the parametric approximation, the economy’s transitional dynamics are charac-
terized by the evolution of aggregate capital At in the final goods sector, the knowledge
stock Nt, and misallocation Mt, as summarized in the proposition below.

Proposition 5. Under our parametric approximation, for all t ≥ 0, the economy is fully charac-
terized by the evolution of At, Nt, and Mt, as follows

dAt =
[
α(1 − ε)Yt − δKt − r f ,tBt − ϖAt

]
dt − σBtdWt, (36)

dNt =χ (χqt)
1−h

h Ntdt − δbNtdt, (37)

dMt =− θMtdt − Covt(z̃i,t, dãi,t)/vart(z̃i,t), (38)

where Kt = (1 + λ) [1 − Ωt(zt)] At and Bt = Kt − At.

Define Et = Nt/At as the knowledge stock-capital ratio. Because the economy is
homogeneous of degree one in At, the state variables (At, Nt, Mt) can be reduced to
(Et, Mt). Equation (38) shows that the evolution of Mt depends on two terms. The first
term −θMtdt is linked to the evolution of zi,t through the persistence parameter θ (see
equation (2)). Intuitively, a higher θ implies less persistent zi,t, causing misallocation
Mt = −Covt(z̃i,t, ãi,t)/vart(z̃i,t) to revert to its long-run mean more quickly, thereby
reducing the persistence of Mt. The second term, −Covt(z̃i,t, dãi,t)/vart(z̃i,t), captures
the effect of heterogeneous changes in ãi,t, represented by dãi,t (as defined in equation
(15)), across firms of different zi,t on misallocation Mt. A higher Covt(z̃i,t, dãi,t) implies
that more productive firms accumulate their capital at a higher rate, which reduces
misallocation Mt. Under our parametric approximation, Covt(z̃i,t, dãi,t) has a closed-form
expression (see equation (IA.67) in Online Appendix 5.6), which reveals its negative
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dependence on the aggregate shock dWt. A positive shock (dWt > 0) increases the
depreciation rate of capital ki,t, reducing the capital accumulation of more productive
firms (i.e., zi,t ≥ zt) but not that of less productive firms (i.e., zi,t < zt), which do
not produce (see equation (17)). As a result, a positive shock lowers Covt(z̃i,t, dãi,t),
increases misallocation Mt, and reduces aggregate output and consumption. This dynamic
highlights the countercyclical nature of Mt.

We emphasize that the evolution of misallocation Mt is fully endogenously deter-
mined in our model, due to firm-level variable capital utilization specified in equation (1).
Allowing firms to choose their capacity utilization intensity endogenously enables aggre-
gate liquidity shocks to generate time-series variation in the misallocation of production
capital. This occurs because firms with different productivity levels optimally respond in
different ways to the same aggregate shock dWt. This process is succinctly characterized
in equation (38), as a result of the parametric approximation developed in Section 3.1,
where Mt serves as a sufficient statistic for the evolution of the firm distribution, ωt(z).
Although the aggregate shock dWt directly appears in the term Covt(z̃i,t, dãi,t)/vart(z̃i,t)

in (38), this does not imply that misallocation Mt is treated as an exogenous state variable
mechanically driven by dWt. Instead, the expression in equation (38) illustrates how the
parametric approximation delivers a transparent and tractable characterization of the
model’s endogenous dynamics.

3.3 Deterministic Balanced Growth Path

To clearly illustrate the equilibrium relationship between misallocation and long-run
growth, we characterize the economy’s deterministic balanced growth path in the absence
of aggregate shocks (i.e., dWt ≡ 0).

Proposition 6. There is a deterministic balanced growth path on which Et ≡ E, Mt ≡ M, and
Ht ≡ H are constant. The aggregate capital At, knowledge stock Nt, output Yt, TFP Zt, and
consumption Ct grow at the same constant rate g, and their ratios are constant.

The values of these variables and the growth rate g are determined by the system of
equations presented in Online Appendix 5.7. We highlight that g is directly related to the
marginal q of intangible capital as follows:

g = χ(χq)
1−h

h − δb. (39)

The next proposition clearly shows that on the deterministic balanced growth path, there
is a negative relationship between misallocation M and the marginal q of intangible
capital.
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Proposition 7. Under our parametric approximation, the marginal q of intangible capital is
negatively related to misallocation M on the deterministic balanced growth path:

ln q =− ασ2
z

2
M +

ασ2
z

4
+ ln

[
(1 − ν)ε(εν)

ε
1−ε

r f + δb

]
+ α ln(1 + λ)− α ln E

+ α ln
[

Φ
(

Φ−1
(

K/A
1 + λ

)
+

σz√
2

)]
, (40)

where K/A is the constant ratio of Kt to At on the deterministic balanced growth path.

3.4 Key Mechanism: Persistence of Misallocation and Growth

In this section, we focus on the deterministic balanced growth path to illustrate the
model’s core mechanism. We show that a one-time shock, increasing the misallocation
level at t = 0, induces an endogenous and persistent effect on misallocation Mt from
t = 0 onwards. This effect, in turn, triggers a long-lasting influence on aggregate growth
by affecting the marginal q of intangible capital (see Proposition 7), and consequently,
the R&D-capital ratio – a critical driver of economic growth. Moreover, we show that
the persistence of aggregate growth depends on the persistence of misallocation, which
depends largely on the persistence of idiosyncratic productivity.

Impulse Response Function. We consider an unexpected redistribution of production
capital across firms in the model economy. This effectively means that we are considering a
scenario involving a one-time, unexpected shock that exogenously increases misallocation
Mt at t = 0, because Mt serves as a sufficient statistic fully characterizing the firm
distribution, ωt(z), under our parametric approximation (see Proposition 3). From t = 0
onward, the value of Mt will gradually converge back to the deterministic balanced
growth path. The blue solid lines in Figure 2 illustrate the transitional dynamics of
several key variables from t = 0 onward, based on our baseline calibration (see Table II).
To render the quantitative effects informative, the magnitude of the shock is set to 0.09,
aligning with the standard deviation of Mt in our calibration. As depicted in Panel A,
misallocation Mt will experience an extended endogenous transitional period, lasting
about 20 years, before it reaches the level on the deterministic balanced growth path.

In the absence of aggregate shocks, aggregate consumption would follow C0egt,
growing at a constant annual rate of g = 1.75% for all t ≥ 0. To focus on the change in
growth rates relative to the deterministic trend in Ct, we consider detrended consumption,
defined as Ct/(C0egt)− 1. The blue solid line in Panel B indicates that Ct/(C0egt)− 1
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Note: Panels A, B, and C consider different calibrated values of θ. For each choice of θ, we recalibrate the
parameter χ so that the consumption growth rate on the deterministic balanced growth path is the same as
our baseline calibration. All other parameters are set according to our calibration in Table II. Panels D, E,
and F focus on the baseline calibration with e−θ = 0.85.

Figure 2: Transitional dynamics after a one-time shock to misallocation Mt.

is 0 before the shock, jumps to approximately −1.6% at the moment the shock hits at
t = 0, and gradually decreases until reaching the level on the deterministic balanced
growth path. Although the shock to misallocation is transitory, the economy shifts to a
steady state with permanently lower consumption, driven by the reduced accumulation
speed of knowledge stock Nt. Panel C demonstrates a similar concept by displaying
the contemporaneous consumption growth rate over the interval [t, t + dt), calculated
as dCt/(Ctdt). The blue solid line illustrates that the consumption growth rate sharply
decreases to about 1.55% at t = 0 and then slowly adjusts to the level on the deterministic
balanced growth path as misallocation persists.

The mechanism connecting misallocation to growth is depicted by the arrows in Figure
1. An increase in misallocation, Mt, directly reduces the productivity, Ht, of the final
goods sector (see Panel D of Figure 2). A lower Ht reduces aggregate output, Yt, which in
turn reduces the marginal q of intangible capital (see Panel E of Figure 2 and equations
(5) and (31)), leading less R&D activities (see Panel F of Figure 2). This chain of effects
culminates in a lower growth rate via the reduced accumulation speed of knowledge
stock, Nt.
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Role of the Persistence of Idiosyncratic Productivity. As discussed above, it is the
persistence of misallocation Mt, particularly through its impact on R&D, that drives the
persistent excess consumption growth relative to the deterministic balanced growth path.
As shown in equation (38), the persistence of misallocation depends on θ, which governs
the persistence of zi,t. To further illustrate the relationship between the persistence
of misallocation and the persistence of aggregate consumption growth, we study the
transitional dynamics under different values of θ. Specifically, according to equation (2),
the yearly autocorrelation in ln zi,t is e−θ. In Panels A, B and C of Figure 2, we compare
our baseline calibration of e−θ = 0.85 with two alternative calibrations in which the yearly
autocorrelation in ln zi,t is 0.9 (dashed line) and 0.95 (dash-dotted line), respectively.

Panel A demonstrates that calibrations with a higher persistence of zi,t result in lower
misallocation Mt on the deterministic balanced growth path, aligning with the insights
provided by Buera and Shin (2011) and Moll (2014). Crucially, the convergence speed of
Mt to its deterministic balanced growth path slows as the persistence of zi,t increases. As
a measure to capture this phenomenon, we compute the half-life of transitions, which is
the time it takes for Mt to revert to half of its long-term value post-shock. The half-life
of Mt is 3.0, 4.1, and 6.7 years for e−θ = 0.85, 0.9, and 0.95, respectively, indicating that
misallocation becomes more persistent when idiosyncratic productivity is more persistent.
Comparing the three curves in Panels B and C, it is clear that the economy with a higher
persistence of zi,t has more persistent consumption growth after the shock to Mt.

Thus, our model suggests that the persistence of zi,t plays an important role in
determining the persistence of the growth rate of aggregate consumption, dCt/(Ctdt).
The persistence levels of these two variables are connected via the persistent endogenous
misallocation Mt. In the full model with aggregate shocks, a persistent process of
zi,t drives persistent misallocation fluctuations, which in turn generates low-frequency
component of growth fluctuations. In Sections 4.4 and 4.5, we show that this mechanism
has first-order implications for asset prices and welfare.

3.5 Fluctuations in Growth Rates and Discount Rates

As illustrated by the arrows in Figure 1 and the impulse responses in Figure 2, on
the deterministic balanced growth path without aggregate shocks, misallocation affects
growth through its impact on the marginal q of intangible capital, which determines
aggregate R&D expenditure. In the full model with aggregate shocks, the link between
the marginal q of intangible capital and growth is amplified by countercylical discount
rates (risk premia) through the valuation channel, as illustrated by Figure 1.

In our model, economic downturns are characterized by high misallocation Mt, during
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which high-productivity firms in the final goods sector face severe financial constraints
due to insufficient capital, making their funding liquidity constraints more binding. Thus,
aggregate output growth is not only low but also highly volatile during downturns,
as financial constraints amplify the effects of aggregate liquidity shocks on percentage
changes in output. Consequently, downturns are characterized by low expected long-term
consumption growth and heightened macroeconomic uncertainty, leading to increased
conditional volatility of the SDF and, therefore, a higher risk premium. Indeed, equations
in (41) show that the conditional volatility of the SDF Λt is strongly positively correlated
with misallocation Mt and negatively correlated with one-year expected consumption
growth rate:

corr
[
σt(∆Λ̃t+1), Mt

]
= 0.93 and corr

[
σt(∆Λ̃t+1), Et(∆C̃t+1)

]
= −0.89, (41)

where ∆X̃t ≡ ln Xt − ln Xt−1 represents the difference in ln Xt between year t and year
t − 1, and the yearly value of Xt is computed by integrating Xtdt in continuous time.

Since the conditional volatility of the SDF Λt at t directly determines the market price
of risk for the aggregate liquidity shock dWt at t, the model generates countercylical risk
premium. The countercyclical risk premium amplifies the variation in the marginal q
of intangible capital, qt. To see this, note that qt is determined by equation (5). During
downturns with high misallocation Mt, qt is depressed not only because of reduced profits
πt but also because future profits are discounted at a higher discount rate, reflecting the
market price of risk for the aggregate liquidity shock dWt. Conversely, during periods
with low misallocation Mt, qt increases both because of higher profits πt and a lower
discount rate. Together, these forces create significant fluctuations in qt over economic
cycles, which, in turn, lead to substantial variation in the low-frequency component of
aggregate consumption growth rates through the effect of qt on R&D expenditure (see
equations (8) and (39)). This mechanism constitutes the valuation channel illustrated in
Figure 1.

Quantitatively, more than half of the volatility of qt is attributed to the countercyclical
risk premium while the remaining is due to procycical profits πt. Following the the-
oretical mechanism elaborated in Section 3.4, this valuation channel is quantitatively
significant because the fluctuations in misallcocation driven by the aggregate shocks dWt

are persistent, when the parameter θ is calibrated to match the persistence of idiosyncratic
productivity shocks in the data (see Table II). The slow-moving misallocation in turn
generates low-frequency fluctuations in economic growth and macroeconomic uncertainty,
thereby implying a high Sharpe ratio in the capital market (see Section 4.4) and significant
welfare losses (see Section 4.5).
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4 Quantitative Analysis

In this section, we analyze the quantitative effects of misallocation fluctuations, rather
than its level, on low-frequency variations in economic growth, asset prices, and welfare.
Importantly, none of the quantitative implications depend on whether the model is
solved using our parametric approximation or a standard global numerical approximation
method. We solve the model using both approaches and obtain similar quantitative results.
In Section 4.6, we systematically evaluate the accuracy of our parametric approximation
for the model.

4.1 Data and Empirical Measures

We obtain annual consumption and GDP data from the U.S. Bureau of Economic Analysis
(BEA) and stock return data from the Center for Research in Security Prices (CRSP).
Output and consumption growth are measured by the log growth rate of per-capita
real GDP and per-capita real personal consumption expenditures on nondurable goods
and services. The nominal variables are converted to real terms using the consumer
price index (CPI). We obtain data on private business R&D investment from the National
Science Foundation (NSF) and on R&D stock from the Bureau of Labor Statistics (BLS).
These two time series are considered empirical counterparts for St and Nt, respectively.
The ratio of the two (i.e., St/Nt) is our empirical measure of R&D intensity. The risk-free
rate is constructed using the yield of 3-month Treasury Bills, obtained from CRSP. Firms’
dividend yield is computed as the ratio of total dividends over market capitalization,
obtained from Compustat.

Model-Consistent Empirical Measure of Misallocation. We construct a model-consistent

empirical measure of misallocation according to equation (35), Mt = −Covt(ṽi,t,ãi,t)
vart(ṽi,t)

. Specif-
ically, we construct empirical measures of log capital ãi,t and log MRPK ṽi,t (see Online
Appendix 1) and run the following regression using the cross section of firms in each
year t in U.S. Compustat data from 1965 to 2016:11

ãi,t = αt + βtṽi,t + εi,t, (42)

where the estimated coefficient β̂t directly captures Covt(ṽi,t, ãi,t)/vart(ṽi,t).

11Because our theory mainly applies to manufacturing firms, we exclude firms from financial, utility,
public administration, and non-tradable industries, where non-tradable industries are defined according to
Mian and Sufi (2014). The empirical results are robust if non-tradable industries are included in the sample.
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Figure 3: Time series of yearly changes in the empirical measure of misallocation, ∆Mt.

The empirical measure of Mt is constructed using the filtered time series of −β̂t from
1965 to 2016. Following Comin and Gertler (2006), we apply a band-pass filter to extract
frequencies up to 50 years, capturing the cyclical component of capital misallocation
fluctuations corresponding to medium-term business cycles as defined by Comin and
Gertler (2006).

Figure 3 plots the time series of year-on-year changes in the empirical measure
of misallocation, denoted as ∆Mt. The shaded areas represent periods of economic
downturns, including economic recessions and three financial crises.12 Aligned with our
theoretical framework and empirical evidence from the literature, capital misallocation
typically escalates during economic downturns. Our empirical measure of misallocation
significantly increases in seven out of the nine economic downturns we examined. This
stylized pattern is consistent with the model’s prediction that misallocation typically
increases during a period involving macroeconomic recessions or financial turmoil.

Further, as illustrated in Section 3.5, our model predicts that increased misallocation
leads to higher risk premia in capital markets. We test this prediction by calculating
the correlations between changes in misallocation, ∆Mt, and year-on-year changes in
two widely used empirical proxies for the equity premium. The first proxy is the daily
SVIX index at the one-month horizon. Martin (2017) shows that the square of the SVIX
index, scaled by the gross risk-free rate, serves as a direct measure of the equity premium.
We focus on the year-on-year changes in this measure, denoted ∆SVIXt. The second
proxy is the cyclically adjusted price-to-earnings ratio (CAPE), proposed by Campbell and
Shiller (1988a, 1998), which is defined as the reciprocal of the smoothed earnings-price
ratio. Positive innovations in CAPE reflect a decline in the equity premium. We analyze

12The three crises are the savings and loan crisis from 1986 to 1989, the Mexican peso crisis from 1994 to
1995, and the European sovereign debt crisis from 2008 to 2012.
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Table I: Correlations between ∆Mt and two empirical proxies for the equity premium.

(∆Mt, ∆SVIXt) (∆Mt, ∆CAPEt) (∆CAPEt, ∆SVIXt)

Correlation 0.388 −0.288 −0.497

p-value (0.072) (0.040) (0.043)

Note: We construct the yearly time series by averaging daily SVIX-squared values from July 1 of the
previous year to June 30 of the current year. The daily data start on January 4, 1996. We focus on the
1997-2009 period, when the nominal risk-free rate was positive, making the measure a more reliable proxy
for the equity premium. This condition does not hold over 2009-2015 due to the binding zero lower bound
in the U.S. economy. Similarly, we compute the annual CAPE series by averaging monthly CAPE values
from July of the previous year to June of the current year. The CAPE sample begins in 1965. All reported
p-values are calculated using a bootstrap procedure with 1,000 repetitions.

year-on-year changes in CAPE, denoted ∆CAPEt. Table I shows that ∆Mt is positively
correlated with ∆SVIXt, with a p-value of 0.072. In addition, ∆Mt is negatively correlated
with ∆CAPEt, with a p-value of 0.04. These results are consistent with the model’s
prediction that greater misallocation is associated with a higher equity premium.

4.2 Calibration and Validation of the Model

Panel A of Table II presents the externally calibrated parameters. Following standard
practice, we set the capital share in production technology at α = 0.33. We set the capital
depreciation rate at δ = 6%. We set the share of intermediate inputs at ε = 0.5 according
to the choice of Comin and Gertler (2006) and Kung and Schmid (2015). The inverse
markup is set at ν = ϵ/[ϵ + (1 − α)(1 − ϵ)] = 0.6 to guarantee the existence of a balanced
growth path.13 Following standard practice in the asset pricing literature, we set risk
aversion at γ = 8. Consistent with Kung and Schmid (2015), we set the EIS at ψ = 1.85,
the patent obsolescence rate at δb = 15%, and h = 0.17 so that the elasticity of new
blueprints with respect to R&D is 0.83. We set the volatility of idiosyncratic productivity
zi,t at σz = 1.39 according to the calibration of Moll (2014). The persistence of zi,t is set at
θ = 0.1625, which implies that ln zi,t has a yearly autocorrelation of e−θ = 0.85, consistent
with the estimate of Asker, Collard-Wexler and Loecker (2014) based on U.S. census
data. We set the collateral constraint parameter at λ = 1.1, which is within the range of
calibration values in the macroeconomics literature (e.g., Jermann and Quadrini, 2012;
Buera and Shin, 2013; Dabla-Norris et al., 2021). The rent extraction rate τ is a scaling
parameter and normalized to 1%; its value does not affect firm decisions.

13This parametric restriction ensures that the deterministic balanced growth path, analyzed in Section 3.3,
is well defined, consistent with the majority of the endogenous growth literature. Without this restriction,
the economy could exhibit decreasing or increasing returns to scale, resulting in either zero growth or
explosive growth rates in the long run. A similar parametric restriction is imposed in the model of Kung
and Schmid (2015), for example.
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Table II: Parameter calibration and targeted moments.

Panel A: Externally determined parameters

Parameter Symbol Value Parameter Symbol Value

Capital share α 0.33 Capital depreciation rate δ 0.06

Share of intermediate inputs ε 0.5 1− R&D elasticity h 0.17

EIS ψ 1.85 Risk aversion γ 8

Patent obsolescence rate δb 0.15 Volatility of idio. productivity σz 1.39

Inverse markup ν 0.6 Rent extraction rate τ 0.01

Collateral constraint λ 1.1 Persistence of idio. productivity θ 0.1625

Panel B: Internally calibrated parameters and targeted moments

Parameter Symbol Value Moments Data Model

Subjective discount rate ρ 0.01 Real risk-free rate (%) 1.11 1.57

R&D productivity χ 1.35 Consumption growth rate (%) 1.76 1.75

Volatility of aggregate shocks σ 0.19 Consumption growth vol. (%) 1.50 1.66

Dividend payout rate ϖ 0.037 Dividend yield (%) 2.35 2.15

The remaining parameters are calibrated by matching the relevant moments summa-
rized in Panel B of Table II. When constructing the model moments, we simulate a sample
for 1, 000 years with a 100-year burn-in period, which is long enough to guarantee the
stability of these moments. The discount rate is set at ρ = 0.01 to generate a real risk-free
rate of 1.57%. R&D productivity is set at χ = 1.35 to generate an average consumption
growth rate of 1.75%. We calibrate σ = 0.19 so that the model-implied volatility of
consumption growth is 1.66%, as in Storesletten, Telmer and Yaron (2007). We set the
payout rate at ϖ = 3.7% so that the dividend yield is 2.15%.

Table III presents the untargeted moments. Panel A shows that the moments reflecting
the persistence of consumption growth implied by the model are roughly consistent with
those in the data, even though these moments are not directly targeted in our calibration.
Panel B shows that the yearly autocorrelation of R&D expenditure growth ∆S̃t and
misallocation Mt have comparable values in the model and data. The model implies a
smooth risk-free rate and a high Sharpe ratio of the consumption claim, consistent with
the Sharpe ratio of the market portfolio in our data sample.

4.3 Misallocation, R&D, and Growth

In this section, we show that misallocation Mt robustly captures low-frequency growth
fluctuations in both the data and the model. Predictive regressions over long horizons
confirm Mt’s predictive power in tracking long-term growth trends. Additionally, in
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Table III: Untargeted moments in the data and model.

Moments Data Model Moments Data Model

Panel A: Consumption moments

AC1(∆C̃t) (%) 0.44 0.46 AC2(∆C̃t) (%) 0.08 0.27

AC5(∆C̃t) (%) −0.01 0.00 AC10(∆C̃t) (%) 0.06 −0.06

VR2(∆C̃t) (%) 1.52 1.48 VR5(∆C̃t) (%) 2.02 2.20

Panel B: Other moments

AC1(∆S̃t) (%) 0.30 0.41 AC1(Mt) (%) 0.84 0.76

SR[Rm,t] 0.36 0.39 σ[r f ,t] (%) 2.06 0.50

Note: With slight abuse of notations, ∆X̃t = ln Xt − ln Xt−1 represents the difference in ln Xt between year
t and t − 1, where the yearly value of Xt is computed by integrating Xtdt in continuous time. ACk(∆C̃t)

refers to the autocorrelation of log consumption growth with a k-year lag. VRk(∆C̃t) refers to the variance
ratio of log consumption growth with a k-year horizon. AC1(∆S̃t) is the yearly autocorrelation of log
private business R&D investment growth. AC1(Mt) is the yearly autocorrelation of misallocation Mt.
SR[Rm,t] = E[Rm,t − r f ,t]/σ[Rm,t − r f ,t] is the Sharpe ratio of the consumption claim.

Online Appendix 3, we exploit industries’ differential exposure to the policy shock
from the American Jobs Creation Act (AJCA) using a difference-in-differences (DID)
framework. This analysis provides direct causal evidence for the model’s core mechanism,
demonstrating that misallocation drives long-run growth through its impact on R&D
investment.

In Panel A of Table IV, we study the relationship between misallocation Mt and R&D
intensity. In both the data and model (i.e., the simulated data), we regress R&D intensity
in the current year (t) and the next year (t + 1) on misallocation Mt, as follows:

St+h
Nt+h

= α + βMt + εt+h, with h = 0, 1. (43)

The results indicate that higher misallocation is associated with a decline in contempora-
neous R&D intensity and predicts a lower R&D intensity in the next year.

Next, we examine whether misallocation Mt covaries with the slow-moving com-
ponent of expected growth by testing whether misallocation negatively predicts future
consumption growth in the data and model. We run the following regression:

∆C̃t,t+1 + · · ·+ ∆C̃t+h−1,t+h = α + βMt + εt,t+h, (44)

where h = 1, · · · , 5 and ∆C̃t+h−1,t+h = ln Ct+h − ln Ct+h−1 is the one-year log consumption
growth from year t + h − 1 to t + h. Panel B of Table IV presents the results of projecting
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Table IV: Misallocation, R&D, and growth in the data and model.

Panel A: R&D intensity (St/Nt)

t t + 1

Data Model Data Model

β −0.090 −0.039 −0.088 −0.043

(0.014) (0.004) (0.011) (0.004)

Panel B: Consumption growth (∆C̃t)

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

Data Model Data Model Data Model Data Model Data Model

β −0.048 −0.139 −0.085 −0.202 −0.116 −0.243 −0.141 −0.274 −0.157 −0.272

(0.014) (0.017) (0.021) (0.034) (0.029) (0.046) (0.032) (0.065) (0.036) (0.081)

Panel C: Output growth (∆Ỹt)

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

Data Model Data Model Data Model Data Model Data Model

β −0.049 −0.108 −0.080 −0.241 −0.100 −0.219 −0.120 −0.224 −0.135 −0.231

(0.024) (0.033) (0.038) (0.038) (0.049) (0.053) (0.053) (0.063) (0.059) (0.074)

Note: The data sample is yearly and spans the period from 1965 to 2016. In the model, we simulate a
sample of 52 years as in the data. Robust standard errors are reported in brackets.

future consumption growth over horizons of 1 to 5 years on misallocation Mt. In
both the data and model, the slope coefficients are negative and statistically significant.
The coefficients are more negative for longer horizons because consumption growth is
persistent. Our estimates indicate that misallocation Mt comoves with the slow-moving
component of expected consumption growth. We further run regressions similar to
(44) using future log output growth as the dependent variable. Panel C of Table IV
presents the results of projecting future output growth over horizons of 1 to 5 years on
misallocation Mt. The patterns are similar to those of consumption growth in Panel B.

Taken together, we find empirical evidence that the aggregate growth rates of con-
sumption and output can be predicted by our empirical measure of misallocation Mt,
especially over long horizons. Our findings lend empirical support to the notion of
misallocation-driven low-frequency growth fluctuations. In the simulated data, similar
patterns are observed due to the mechanism elaborated in Section 3.4. Thus, our model
helps rationalize and identify misallocation as an economic source of low-frequency
growth fluctuations in the data.
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Table V: Asset pricing implications under different model specifications.

(1) (2) (3) (4) (5) (6) (7)

Baseline dNt ≡ 0 e−θ CRRA (γ = 1/ψ) Mt ≡ E[Mt]

= 0.2 = 0.45 = 1.5 = 3

E[Re
m,t] (%) 0.55 0.02 0.01 0.08 0.02 0.02 0.02

σ[Re
m,t] (%) 1.40 0.71 1.18 1.10 1.00 0.56 0.30

SR[Rm,t] 0.39 0.02 0.01 0.08 0.02 0.04 0.06

E[r f ,t] (%) 1.57 0.97 1.92 1.87 3.58 6.15 1.77

σ[r f ,t] (%) 0.46 0.34 0.33 0.40 0.46 0.56 0.02
σ[Λt+1/Λt ]
E[Λt+1/Λt ]

0.61 0.03 0.06 0.10 0.03 0.05 0.08

Note: In the table, Re
m,t = Rm,t − r f ,t is the consumption claim’s return Rm,t in excess of the risk-free rate

r f ,t; SR[Rm,t] = E[Re
m,t]/σ[Re

m,t] is the Sharpe ratio of the consumption claim; and σ[Λt+1/Λt]/E[Λt+1/Λt]
is the ratio of the volatility of 1-year SDF to its mean. Column (1) presents the results under the baseline
calibration. In column (2), we adopt the same baseline calibration but eliminate the growth of knowledge
stock Nt by imposing dNt ≡ 0 exogenously. In columns (3) and (4), we use alternative values of parameter
θ. In columns (5) and (6), we impose γ = 1/ψ and set different values of parameter γ. In column (7), we
adopt the same baseline calibration but eliminate fluctuations in misallocation by imposing Mt ≡ E[Mt]
exogenously. For columns (3) to (6), we calibrate χ and σ to generate the same model-implied average
consumption growth rate and volatility as those reported in Panel B of Table II. Other parameters are set at
the same values as the baseline calibration.

4.4 Asset Pricing Implications of Misallocation

We now evaluate the asset pricing implications of misallocation. In Table V, column (1)
presents the implications in the baseline model. The aggregate consumption claim has a
high Sharpe ratio of 0.39, similar to that of the market portfolio in the data. Because the
model is calibrated to target an annualized volatility of consumption growth of 1.50% in
the data, the excess return of the consumption claim has an annualized volatility of only
1.40%. Thus, the average excess return is low due to low volatility. The risk-free rate has
an average value of 1.57% and low volatility, as in the data. We also compute the ratio of
the volatility of 1-year SDF to its mean, σ[Λt+1/Λt]

E[Λt+1/Λt]
, which determines the maximal Sharpe

ratio in the model. The baseline calibration implies a high value of 0.61.
Next, we study different model specifications. To study the role of economic growth,

we consider a specification with no economic growth in column (2), setting dNt ≡ 0.14

Compared with the baseline model in column (1), the volatility of the consumption
claim’s excess returns drops by about half, from 1.40% to 0.71%. The average excess
return declines even more significantly, resulting in a Sharpe ratio of only 0.02.

In columns (3) and (4), we further show that fluctuations in economic growth are not

14Under this specification, the economy’s aggregate output and consumption still fluctuate due to
aggregate shocks. However, there is no long-run growth as the average growth rates of Yt and Ct are 0.
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sufficient to rationalize a high Sharpe ratio; it is important for misallocation fluctuations to
generate low-frequency growth fluctuations. Specifically, following the insight illustrated
in Figure 2, the persistence of idiosyncratic productivity determines the persistence of
growth. We set e−θ at 0.2 and 0.45 in columns (4) and (5), respectively, which results in a
lower yearly autocorrelation of consumption growth than that in the baseline calibration,
where e−θ = 0.85. Compared with column (1), the Sharpe ratio of the consumption
claim drops significantly when idiosyncratic shocks are not persistent. These results
highlight the importance of low-frequency growth fluctuations in amplifying the impacts
of misallocation fluctuations on risk premia.

In columns (5) and (6), we adopt a specification where the representative agent is
characterized by preferences with constant relative risk aversion (CRRA), setting γ = 1/ψ.
In this setup, the Sharpe ratio predicted by the model turns out to be notably low, whereas
the risk-free rate is exceptionally high, a consequence of the low EIS. When considering
a (non-recursive) CRRA preference structure, the valuation effects of low-frequency
fluctuations in consumption growth are negligible. This occurs because the representative
agent effectively prices the risk of the shock driving expected future consumption growth
at zero.

Finally, in column (7), we exogenously fix misallocation Mt at its long-run mean E[Mt].
The volatility of the consumption claim’s excess returns falls to 0.30 and the Sharpe ratio
drops to 0.06. This occurs because, within our model, the aggregate shock dWt drives
economic fluctuations mainly through its effect on the 2nd-order moment Mt, i.e., the
covariance between log capital and log productivity across firms, rather than the 1st-order
moment Et, i.e., the aggregate knowledge stock-capital ratio, which has small conditional
volatility under our calibration. This property differentiates our mechanism from those
of Kaltenbrunner and Lochstoer (2010) and Kung and Schmid (2015), whose models
generate low-frequency growth fluctuations through time-varying aggregate capital stock
or R&D expenditure, rather than time-varying covariance, captured by fluctuations in Mt.

4.5 Welfare Costs of Misallocation-Driven Growth Fluctuations

In our model, consumption fluctuations are almost entirely driven by fluctuations in
misallocation. Therefore, by evaluating the welfare costs associated with consumption
fluctuations, we are able to offer a quantitative analysis of the welfare implications
of misallocation-driven growth fluctuations within our theoretical framework. It is
acknowledged that, in real-world scenarios, consumption fluctuations may result from
a variety of aggregate variables. Bearing this in mind, our objective is not to precisely
isolate the welfare costs directly attributable to misallocation fluctuations. Rather, we aim
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Table VI: Welfare gains from removing consumption fluctuations.

(1) (2) (3) (4) (5) (6)

Baseline dNt ≡ 0 e−θ CRRA (γ = 1/ψ)

= 0.2 = 0.45 = 1.5 = 3

Welfare gains (%) 10.31 0.32 0.24 0.97 0.57 0.64

Note: The specification in each column is described in Table V. We focus on consumption-equivalent
welfare. Specifically, we solve a similarly parameterized model without aggregate shocks (i.e., σ = 0). We
compute the percentage change in lifetime consumption required to give the representative agent facing
aggregate fluctuations the same expected lifetime utility as the representative agent on the deterministic
balanced growth path without aggregate shocks. That is, we compute the percentage welfare gain, ζ,
according to U0((1+ ζ)C0) = U0(C0), where U0(C0) and U0(C0) represent the representative agent’s utility
at t = 0 in a model with and without aggregate shocks, respectively.

to demonstrate that fluctuations in misallocation have the potential to inflict significant
welfare costs by causing consumption fluctuations, within a model that is calibrated to
align with observed aggregate consumption moments (see Panel A of Table III).

Table VI reports the results. Column (1) shows that the welfare gain from removing all
consumption fluctuations is 10.31% under the baseline calibration. Moreover, in columns
(2) through (6), we compute the welfare gains from removing consumption fluctuations
under different specifications, similar to those in Table V. Columns (2) through (4) show
that the welfare gains will be small if misallocation cannot affect economic growth (i.e.,
setting dNt ≡ 0) or if misallocation is not persistent enough to generate low-frequency
growth fluctuations (i.e., e−θ = 0.2 or e−θ = 0.45). Columns (5) and (6) show that if the
agent’s preference is non-recursive (i.e., setting γ = 1/ψ), the welfare gains are also small.

Taken together, our findings suggest that the model posits significant welfare costs
arising from misallocation-driven consumption fluctuations, attributable to a combination
of two distinct properties. First, as elaborated in Section 3.4, the model is able to generate
low-frequency growth fluctuations through slow-moving misallocation. Second, given
the representative agent’s recursive preferences, news about future consumption growth
impacts his current marginal utility. As illustrated in Table V, these two properties also
allow the model to account for the observed high Sharpe ratio in the capital market.
Within our model framework, there is a direct link between the welfare costs associated
with consumption fluctuations and the Sharpe ratio observed in the capital markets. Intu-
itively, both metrics are elevated when variations in the representative agent’s marginal
utility in response to aggregate shocks are more pronounced. This connection is exploited
by Alvarez and Jermann (2004) to estimate the welfare gains from eliminating all con-
sumption fluctuations by directly applying the no-arbitrage principles on financial market
data without specifying consumer preferences. We implement the method proposed by
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Alvarez and Jermann (2004) in our 1965-2016 sample and estimate that the welfare gain
from eliminating all consumption fluctuations ranges from 6.03% to 23.97%, which nests
the value implied by our structural model.15

To complement the welfare analysis, we quantify the output cost of misallocation
fluctuations over the business cycle using the approach of Eisfeldt and Shi (2018), which
leverages flow data on capital reallocation. We apply this method to both the actual
data from our 1965-2016 sample and to simulated data from our model. The estimated
potential output gains from capital reallocation during recessions are 3.58% and 3.09%,
respectively, highlighting the substantial impact of misallocation fluctuations on output.
The close correspondence between the two estimates provides additional validation for
the model. Further details are provided in Online Appendix 4.

The results in Tables V and VI show that misallocation-driven growth fluctuations
can have significant implications for asset prices and welfare. As misallocation arises
from firms’ financial constraints in our model, our results are related to the literature on
the connection between financial frictions and misallocation. A direct comparison of our
model’s quantitative implications with these models in the literature is difficult due to the
differences in model setups. For example, our model involves stochastic growth driven
by misallocation fluctuations, whereas these models quantify losses from misallocation
in steady states or transitions, without aggregate shocks. In addition, although our
model incorporates both the final goods and intermediate goods sectors, we only consider
misallocation in the final goods sector.

Despite the differences in model setups, our findings in Table VI are broadly consistent
with the literature. For example, consistent with the calibration of Buera and Shin (2013),
our calibration of large idiosyncratic shocks implies that firm-level productivity is not
very persistent. As a result, purely through the variation in misallocation Mt, the model
is able to generate a TFP volatility of 2.48%, as in the data. This result is consistent with
the finding of Buera and Shin (2013) that misallocation resulting from financial frictions
can generate sizable TFP losses.16

While Buera and Shin (2013) focus on quantifying misallocation across the intensive
margin (that is, differences in MRPK among active firms due to financial frictions), other

15Alvarez and Jermann (2004) propose different estimation methods to demonstrate robustness. We use
their first method, which projects consumption growth onto the payoff space spanned by a set of tradable
assets.

16Several papers measure the importance of financing costs in generating misallocation. For example,
Gilchrist, Sim and Zakrajsek (2013) find that the costs of debt play a limited role in generating misallocation
based on a sample consisting of about 500 (mostly large) firms that issue corporate bonds. David, Schmid
and Zeke (2022) find that the costs of equity are important in generating misallocation. Whited and Zhao
(2021) find significant variations in the costs of debt and equity across U.S. firms.
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research (e.g., Buera, Kaboski and Shin, 2011; Midrigan and Xu, 2014) underscores the
significance of misallocation at the extensive margin (that is, productive firms may stay
inactive or refrain from entering the market due to financial frictions). Depending on the
calibration and model setup, Buera, Kaboski and Shin (2011) quantify that both extensive
and intensive margins are important, whereas Midrigan and Xu (2014) estimate large
TFP losses through the extensive margin rather than the intensive margin. In our model,
misallocation due to financial frictions reduces the final goods sector’s productivity Ht,
which captures the intensive margin effect. A lower Ht, in turn, reduces the profits of
innovators. Through the free-entry condition (7), this further leads to a lower growth
rate of the variety of intermediate goods, dNt/Nt (see equation (6)), which can be seen
as capturing the extensive margin effect.17 The results in column (2) of Tables V and VI
indicate that the extensive margin plays a crucial role in rationalizing the high Sharpe
ratio in the capital market and in generating a large welfare cost of misallocation-driven
growth fluctuations. These findings support the significant role of extensive-margin
misallocation quantified by Midrigan and Xu (2014).

4.6 Assessing the Performance of Parametric Approximation Methods

In this section, we evaluate the accuracy of our parametric approximation by comparing
the model solution with the solution of standard global numerical approximation methods.
In particular, we solve the calibrated model using standard numerical methods by directly
tracking the capital share ωt(z) using a selected number of moments. We show that,
under the baseline calibration, our solution closely matches those obtained through
standard numerical approximation methods both on the deterministic balanced growth
path and in the full model with aggregate shocks.

Deterministic Balanced Growth Path. We begin by evaluating the performance of our
parametric approximation method on the deterministic balanced growth path without
aggregate shocks. We analytically justify the validity of this approximation using the
Berry-Esseen bound (Tikhomirov, 1980; Bentkus, Gotze and Tikhomoirov, 1997) in Online
Appendix 7. Furthermore, we verify the validity of our parametric approximation method
by comparing its results with those obtained from a global solution method. On the
deterministic balanced growth path, the capital share distribution, ω(z), is time invariant.
We solve the model numerically by approximating ω(z) non-parametrically using a fine
histogram. To ensure accuracy, we use 251 equally spaced grids for idiosyncratic pro-

17There is no misallocation along the intensive margin in the intermediate goods sector because all firms
in this sector are homogeneous.
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Note: This figure compares the capital share ω(z) on the deterministic balanced growth path solved by
our parametric approximation method and that solved by the histogram-based numerical approximation
method. All the parameter values are taken from the baseline calibration in Table II except for θ (consider
three values, exp(−θ) = 0.5, 0.85, 0.95) and ψ (set its value to match a growth rate of 1.75% for corresponding
θ).

Figure 4: Capital share distributions on the deterministic balanced growth path.

ductivity z over the interval [zmin, zmax], with zmin = 0 and zmax = exp(Φ−1(0.99)σz/
√

2).
The choice of zmax corresponds to the 99th percentile of the steady-state distribution of
zi,t. We discretize the time horizon using a short time period, ∆t = 1/200, and verify that
the solution does not change when finer grid points are chosen.

Figure 4 compares the capital share ω(z) on the deterministic balanced growth path
solved by our parametric approximation method with that solved by the histogram-based
numerical approximation method. Panel A shows that under the baseline calibration,
the two methods produce similar solutions of ω(z). Compared with parametric approxi-
mation, numerical approximation generates a larger capital share at higher levels of z.
Intuitively, this is because with a yearly autocorrelation of exp(−θ) = 0.85, idiosyncratic
productivity z is persistent, allowing productive firms to accumulate significant amounts
of capital in steady states. This results in a capital share with a fat right tail, which cannot
be perfectly approximated by the log-normal density function under our parametric
specification. Compared with the numerical approximation method with a fine histogram,
this is the main approximation error produced by our parametric approximation method.
In panels B and C, we further compare ω(z) solved by the two methods under two alterna-
tive calibrations, with exp(−θ) = 0.5 and exp(−θ) = 0.95, respectively. It is clear that the
ω(z) solved by the two methods are closer to each other when idiosyncratic productivity
is less persistent (see panel B). By contrast, the ω(z) solved by the two methods diverge
more significantly when idiosyncratic productivity become more persistent (see panel C).

Overall, Figure 4 shows that under our baseline calibration with exp(−θ) = 0.85,
corresponding to the persistence of idiosyncratic productivity shock estimated by Asker,
Collard-Wexler and Loecker (2014) based on U.S. census data, the parametric approxima-
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Table VII: Key endogenous variables on the deterministic balanced growth path.

Variables Parametric Numerical Variables Parametric Numerical

Firm profitability, κ 0.027 0.028 Wage-capital ratio, w/A 0.213 0.230

Productivity cutoff, z 1.727 1.707 Dividend-capital ratio, D/A 0.038 0.039

Marginal q of intangible capital 0.471 0.472 R&D-capital ratio, S/A 0.128 0.138

Productivity, H 1.616 1.556 Growth rate, g (%) 1.749 1.708

Flow profit of innovators, π 0.081 0.081 Risk-free rate, r f (%) 1.944 1.923

Note: The columns labeled “Parametric” and “Numerical” present the values of corresponding variables
on the deterministic balanced growth path solved by our parametric approximation method and the
histogram-based numerical approximation method, respectively. All the parameter values are set according
to Table II.

tion method can capture the capital share ω(z) with sufficient accuracy. Table VII further
shows that various key endogenous aggregate variables implied by the two solution
methods have similar magnitudes under the baseline calibration.

Stochastic Steady State with Aggregate Shocks. On the deterministic balanced growth
path, we theoretically establish the effectiveness of the parametric approximation method
using the Berry-Esseen bound and verify its consistency with the solution obtained
through the numerical approximation method. When aggregate shocks are incorporated,
we expect the solutions from the parametric and numerical approximation methods to
remain aligned, provided the shocks are Brownian in nature and moderate in magnitude.
To validate this formally, we use standard global numerical approximation techniques
to solve the full model with aggregate shocks under our baseline calibration. Following
Krusell and Smith (1998), we address the challenge of the infinite dimensionality of the
cross-sectional distribution by approximating it with a finite set of moments. Specifically,
we use the first few moments to represent the firm distribution (see Online Appendix 8
for details) and solve the model using a globally accurate projection technique.

In Table VIII, we compare the key variables solved by our baseline parametric approx-
imation method and those solved by 2nd-, 3rd, and 4th-order numerical approximation
methods. The results of our parametric approximation method are very similar to the
results of the 2nd-order numerical approximation method, because our parametric ap-
proximation method essentially keeps track of the first and second moments of ωt(z).18

Table VIII also shows that the differences between our baseline parametric approximation

18The first moment is m1,t = −Mtσ
2
z /2 and the second moment is m2,t = σ2

z /2, which is a constant under
our parametric approximation method. However, the results of our parametric approximation method do
not exactly match the results of the 2nd-order numerical approximation method due to a subtle difference
in implementation procedures (see footnote 9 in Online Appendix 8 for details).
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Table VIII: Accuracy of our parametric approximation in stochastic steady states.

Variables Parametric Numerical

2nd-order 3rd-order 4th-order

Firm profitability, E[κt] 0.027 0.027 0.027 0.027

Productivity cutoff, E[ln(zt)] 1.523 1.513 1.391 1.307

Marginal q of intangible capital, E[qt] 0.482 0.482 0.482 0.482

Productivity, E[ln Ht] 0.662 0.679 0.659 0.644

Flow profit of innovators, E[πt] 0.081 0.081 0.081 0.081

Wage-capital ratio, E[ln(wt/At)] −1.898 −1.900 −1.860 −1.832

Dividend-capital ratio, E[ln(Dt/At)] −3.336 −3.333 −3.312 −3.302

R&D-capital ratio, E[ln(St/At)] −2.410 −2.411 −2.375 −2.349

Consumption-capital ratio, E[ln(Ct/At)] −1.695 −1.696 −1.658 −1.633

Knowledge stock-capital ratio, E[ln(Nt/At)] 0.105 0.104 0.141 0.164

Capital growth, E[∆Ãt] (%) 1.753 1.750 1.742 1.729

Consumption growth, E[∆C̃t] (%) 1.754 1.751 1.742 1.731

Volatility of consumption growth, var[∆C̃t] (%) 1.666 1.670 1.493 1.359

Risk-free rate, E[r f ,t] (%) 1.581 1.591 1.697 1.746

Consumption claim’s return, E[Rm,t] (%) 2.126 2.113 2.075 2.041

Note: The column labeled “Parametric” presents the values of the corresponding variables in the stochastic
steady state, obtained using our parametric approximation method. The columns labeled “2nd-order,”
“3rd-order,” and “4th-order” show the results for various orders of numerical approximations of the capital
share distribution ωt(z). All the parameter values are taken from our baseline calibration in Table II.

method and the 4th-order numerical approximation method are generally within 10%
for most variables. Thus, the model implications based on parametric approximation are
quantitatively similar to those based on numerical approximation methods.

5 Conclusion

This paper develops an analytically tractable general equilibrium model with heteroge-
neous firms and endogenous stochastic growth to quantitatively explore the relationship
between misallocation, growth prospects, and the systematic risk that shapes asset prices
in capital markets. In our model, increased misallocation reduces economic growth by
depressing the marginal q of intangible capital and thus R&D incentives. Misallocation
evolves slowly, leading to low-frequency fluctuations in economic growth. Central to this
mechanism is the valuation channel, which significantly magnifies the effects of misallo-
cation on economic growth. When agents have recursive preferences, the low-frequency
growth fluctuations driven by slow-moving misallocation not only rationalize several
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crucial asset pricing moments but also suggest significant welfare costs associated with
misallocation fluctuations.

In the data, we construct a misallocation measure motivated by our theory and
provide supporting evidence for the model predictions. We show that the value of
our empirical measure of misallocation is persistent and increases during economic
downturns. Moreover, an increase in misallocation predicts declines in R&D intensity
and reductions in the growth of aggregate consumption and output over long horizons.
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