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1 Introduction

Misallocation significantly impacts economic growth, both during economic transitions
(e.g., Buera and Shin, 2013; Moll, 2014) and in long-run steady states (e.g., Jovanovic, 2014;
Acemoglu et al., 2018). Various empirical measures of cross-sectional dispersion indicate
that the allocation efficiency of capital displays strong pro-cyclical patterns.1

This paper examines the critical interplay between the time-series variations in capital
misallocation and growth prospects, highlighting its central importance in explaining the
forces behind low-frequency growth fluctuations.2 These fluctuations constitute a systematic
risk that quantitatively explains many asset pricing phenomena in capital markets (e.g.,
Bansal and Yaron, 2004; Hansen, Heaton and Li, 2008) and justifies the significant welfare
costs of economic fluctuations. At its core, our analysis introduces a misallocation-driven
asset pricing mechanism, emphasizing the valuation channel as a crucial amplifier of
misallocation’s impact on economic growth.

Specifically, we quantitatively examine the interplay between misallocation, growth
prospects, and the systematic risk that influences asset prices in capital markets. To this
end, we construct an analytically tractable general equilibrium model featuring heteroge-
neous firms and endogenous stochastic growth, in which the misallocation of production
capital is endogenously slow-moving and leads to low-frequency fluctuations in economic
growth. Our model builds upon Moll (2014), where misallocation arises endogenously
due to financial frictions. It incorporates persistent firm-level idiosyncratic productivity,
ensuring that the misallocation of production resources serves as a critical determinant
in the aggregation of output across firms in the economy; without such persistence, the
potential for misallocation across different firms would not exist (similar to, e.g., Moll,
2014; Di Tella, Maglieri and Tonetti, 2024). We extend this framework in three key ways
while preserving its analytical tractability within a continuous-time model setting. First,
we incorporate heterogeneous, publicly traded firms producing final goods. These firms
are owned by shareholders with homogeneous recursive preferences but are managed by
corporate managers whose objectives differ from those of the shareholders, generating
agency conflicts that serve as the microfoundation for financial frictions. Second, we
incorporate intermediate goods and R&D sectors alongside the final goods sector. The
R&D sector expands the variety of intermediate goods, driving technological progress and
endogenous growth, as described by Romer (1986, 1990). Third, we introduce transitory

1For empirical evidence, see Eisfeldt and Rampini (2006), Bloom (2009), Kehrig (2015), and Bloom et al.
(2018), among others.

2These low-frequency growth fluctuations are intrinsically tied to the medium-term business cycle identi-
fied by Comin and Gertler (2006).

2



Figure 1: Our model elucidates a mechanism that quantitatively links capital misallocation
to economic growth via a valuation channel.

aggregate shocks that endogenously generate the slow-moving dynamics of misallocation.
The combination of these three components enables us to illustrate an economic mecha-

nism featuring a novel “valuation channel”, as illustrated in Figure 1. When misallocation
of production capital in the final goods sector rises persistently, typically as an endogenous
response to transitory shocks, aggregate demand for intermediate goods experiences a
persistent decline. Each producer in the intermediate good sector holds monopoly power
over a specific type of intermediate good by acquiring blueprints from the R&D sector. The
persistent drop in demand leads to a gradual, long-lasting decline in monopoly rents, which
results in a persistent reduction in the value of blueprints produced by the R&D sector.
This, in turn, causes a significant and persistent decline in the marginal q of intangible
capital, which is the present value of marginal profits derived from intangible capital (e.g.,
Crouzet and Eberly, 2023). As a result, incentives for innovation within the R&D sector
diminish persistently, leading to a long-term drag on economic growth.

Importantly, a novel valuation channel operates on top of the mechanism described
above. The endogenously persistent and slow-moving misallocation of production capital
implies that transitory aggregate shocks affecting misallocation can generate low-frequency
fluctuations in economic growth. When agents have recursive preferences, these low-
frequency growth fluctuations emerge as a fundamental source of systematic risk, playing
a critical role in shaping the discount rate, particularly the risk premium. Moreover, As a
result of the interaction between aggregate fluctuations and financial frictions, economic
growth becomes both depressed and more volatile during downturns characterized by
heightened misallocation. Intuitively, this heightened volatility of aggregate output growth
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during downturns arises from the amplification effect of financial frictions. The same
aggregate shocks cause larger percentage changes in output when its level is low, primarily
due to these frictions. This increased volatility elevates the risk premium required to
discount the future rents of innovation during downturns, further depressing the marginal
q of intangible capital across firms. Consequently, the valuation channel amplifies the impact
of production capital misallocation on growth prospects, with significant implications for
asset prices.

Below, we elaborate on the key elements of our model, which comprises three sec-
tors. First, the R&D sector drives knowledge creation by using final goods and existing
knowledge to generate new blueprints. Second, the intermediate goods sector utilizes
these blueprints, along with final goods, to produce differentiated intermediate goods.
Each producer in this sector holds a monopoly over a specific type of intermediate good,
secured through the blueprint acquired from the R&D sector. Third, the final goods sector
combines production capital, labor, and intermediate inputs to produce final goods. A
representative agent owns all firms across all sectors, with firms in the final goods sector
being heterogeneous, while firms in the intermediate goods and R&D sectors remain
homogeneous.

Firms in the final goods sector differ in productivity and their stock of production
capital. However, due to agency conflicts, they face both collateral constraints on borrowing
and equity market constraints on payouts and issuances. These financial frictions contribute
to the misallocation of production capital among firms. Following the established literature
(e.g., Gertler and Kiyotaki, 2010; Gourio, 2012; Brunnermeier and Sannikov, 2017), we
introduce aggregate capital quality shocks, interpreted as “liquidity shocks” when firms
use capital as collateral for borrowing. Firms endogenously choose their capacity utilization
intensity, with higher intensity enabling greater output but increasing exposure to aggregate
liquidity shocks. In equilibrium, more productive firms utilize their capital more intensively,
making them more exposed to these shocks. As a result, aggregate liquidity shocks drive
fluctuations in capital misallocation, which in turn cause fluctuations in the economy’s
growth rate. Because the evolution of misallocation is endogenously slow-moving, fluc-
tuations in aggregate growth driven by misallocation are both significant and persistent,
even with i.i.d. aggregate liquidity shocks in the model. These low-frequency growth
fluctuations are intrinsically linked to the medium-term business cycle (Comin and Gertler,
2006) and the growth cycle (Kung and Schmid, 2015).

The standard approach to solving general equilibrium models with heterogeneous firms
and aggregate fluctuations relies on numerical approximations using key moments of the
cross-sectional firm distribution. We depart from the standard approach by proposing a
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parametric approximation of the distribution of log productivity and log capital using a
bivariate normal distribution. This method offers two key advantages. First, it enables
us to derive a covariance-type measure for the misallocation of production capital in the
final goods sector, which emerges as a crucial endogenous state variable summarizing
the cross-sectional distribution of firms and characterizing the equilibrium in closed form.
Specifically, in our model, misallocation is captured by the covariance between the log
marginal revenue product of capital (MRPK) and log capital, normalized by the variance
of log MRPK. This covariance-based measure of misallocation is intuitive and aligns with
metrics commonly used in empirical studies to assess capital allocation efficiency (e.g.,
Olley and Pakes, 1996; Bartelsman, Haltiwanger and Scarpetta, 2009, 2013). Second, this
parametric approximation makes the model highly tractable and transparent, allowing the
economy’s evolution to be analytically characterized by two endogenous state variables:
misallocation and the knowledge stock-capital ratio. This approach allows for a clear
analysis of the interplay between misallocation dynamics, aggregate growth fluctuations,
and the systematic risk shaping asset prices.

We validate the parametric approximation in two ways. First, on the deterministic
balanced growth path without aggregate shocks, we analytically justify the approximation
using the Berry-Esseen bound (Tikhomirov, 1980; Bentkus, Gotze and Tikhomoirov, 1997).
Second, in the presence of aggregate shocks, we compare the solution derived from the
parametric approximation with the solution from standard global numerical methods, which
use a finite set of moments to capture the infinite-dimensional cross-sectional distribution of
firms, as in Krusell and Smith (1998). Our results show that, under baseline calibration, the
model-implied cross-sectional distribution of firms and key statistics for various variables
are similar both on the deterministic balanced growth path and in the stochastic steady
state with aggregate shocks.

To illustrate the key theoretical mechanism, we begin our analysis by focusing on the
deterministic balanced growth path in the absence of aggregate shocks. We show that
a one-time shock that increases misallocation can exert a persistently adverse effect on
economic growth. Specifically, due to financial frictions, the reallocation of capital across
firms takes time. As a result, the shock not only escalates misallocation at the moment of
impact but also prolongs this heightened level into the long-term future. Therefore, through
its influence on the marginal q of intangible capital, and consequently on R&D incentives,
what begins as a temporary shock to misallocation can result in a prolonged downturn
in economic growth. This underscores the profound and lasting effects that misallocation
has on the economy. Furthermore, we show that the persistence of both misallocation and
economic growth is closely related to the persistence of firms’ idiosyncratic productivity.
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This augments the key insight from Moll (2014), which states that an increase in the
persistence of firms’ idiosyncratic productivity leads to a longer time for the economy to
reach its steady state. In our model, the persistence of idiosyncratic productivity emerges as
a crucial determinant of the persistence of misallocation-driven aggregate economic growth.
This is primarily because misallocation naturally adjusts more slowly when idiosyncratic
productivity becomes more persistent.

Building on this mechanism, we show that in the full model with aggregate shocks,
misallocation evolves slowly, leading to low-frequency fluctuations in economic growth.
Quantitatively, the annual autocorrelation of misallocation is 0.75, while that of consumption
growth is 0.46, closely aligning with empirical estimates. Our model thus demonstrates
a novel misallocation-based mechanism that explains the low-frequency covariation in
the time series of consumption and output growth (e.g., Bansal, Dittmar and Lundblad,
2005; Hansen, Heaton and Li, 2008; Müller and Watson, 2008, 2018). At the heart of this
mechanism is the valuation channel, which amplifies the effects of production capital
misallocation in the final goods sector on economic growth, particularly its low-frequency
component. During downturns marked by heightened misallocation and reduced growth,
firms in the final goods sector face tighter financial constraints. In such periods, economic
growth is not only low but also highly volatile. Consequently, low expected consumption
growth typically coincides with high macroeconomic volatility, leading to an elevated risk
premium. As a result, the marginal q of intangible capital takes a dual hit from heightened
misallocation: it is depressed both by reduced profits and by a higher discount rate on
future profits due to the elevated risk premium.

Furthermore, we show that our model not only rationalizes several important asset
pricing moments but also suggests significant welfare costs associated with misallocation
fluctuation. This complements the existing literature, which primarily focuses on quanti-
fying the welfare costs of the level of misallocation rather than its time-series variations.
Specifically, the model implies a high Sharpe ratio of 0.39 for the aggregate consumption
claim, accompanied by a low and stable risk-free rate, aligning with empirical observations.
Eliminating misallocation fluctuations would provide the representative agent with a wel-
fare gain of approximately 10%. The large quantitative effects of misallocation fluctuations
hinge on two key properties of the model: the low-frequency growth fluctuations driven
by slow-moving misallocation and the recursive preferences of the representative agent.
Without either, the Sharpe ratio and welfare gain would be negligible. Intuitively, recursive
preferences ensure that the representative agent’s marginal utility depends not only on
current consumption growth but, more importantly, on expectations of future consumption
growth. As a result, fluctuations in anticipated consumption growth significantly influence
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valuations through the stochastic discount factor (SDF). Additionally, the persistent nature
of consumption growth implies that even transitory shocks can have lasting effects on future
growth. This persistence amplifies the role of future consumption growth in determining
current marginal utility, thereby magnifying the impact of capital misallocation on economic
growth.

Although our main contribution is theoretical, we empirically test the main predictions
of our model. Motivated by our theory, we construct a misallocation measure based
on the covariance between log MRPK and log capital using U.S. Compustat data. We
show that the misallocation measure is persistent, with a yearly autocorrelation of 0.84.
Moreover, our empirical measure of misallocation is strongly countercyclical, and increases
in misallocation causally lead to reductions in R&D intensity as well as declines in the
growth rate of aggregate consumption and output over long horizons. In Online Appendix
2, we show that, as a macroeconomic factor, the empirical misallocation measure has
significant cross-sectional asset pricing implications.

Related Literature. Our paper contributes to the asset pricing literature by offering a
novel perspective on low-frequency growth fluctuations as a source of systematic risk in
capital markets. Influential theoretical studies have provided microfoundations for these
fluctuations (e.g., Ai, 2010; Kaltenbrunner and Lochstoer, 2010; Nicolae, Panageas and Yu,
2012; Croce, 2014; Kung and Schmid, 2015; Collin-Dufresne, Johannes and Lochstoer, 2016;
Ai, Li and Yang, 2020; Gârleanu and Panageas, 2020; Croce, Nguyen and Raymond, 2021).
In closely related work, Kung and Schmid (2015) show that R&D endogenously generates
long-run uncertainty in economic growth, serving as a source of long-run risk in asset
pricing. Our model differs primarily by incorporating the misallocation of production
capital across firms, which affects both aggregate total factor productivity (TFP) and total
demand for intermediate inputs. Importantly, due to the interaction with financial frictions,
the economic growth rate is not only reduced but also subject to greater volatility in times
of economic downturns, which elevates the risk premium, thereby amplifying the effect
of production capital misallocation on economic growth prospects through the valuation
channel. This difference allows our theory to rationalize low-frequency growth fluctuations
through the equilibrium interactions between endogenous slow-moving misallocation,
marginal q of intangible capital, and R&D activities — a mechanism supported by the data.

Our paper is also closely related to the literature on financial frictions and misallocation.
Most studies in this area focus on long-run TFP and welfare losses due to misallocation in
the deterministic steady state (e.g., Amaral and Quintin, 2010; Greenwood, Sanchez and
Wang, 2010, 2013; Caselli and Gennaioli, 2013; Midrigan and Xu, 2014; Buera, Kaboski and
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Shin, 2015), while some also examine transitional dynamics (e.g., Jeong and Townsend, 2007;
Buera and Shin, 2011, 2013; Moll, 2014; Buera and Moll, 2015; Gopinath et al., 2017; Itskhoki
and Moll, 2019). Building on the model of Moll (2014), our paper develops a stochastic
growth model in which misallocation evolves endogenously, is slow-moving, and drives
low-frequency growth cycles, giving rise to systematic risk that shapes asset prices. The
mechanism linking misallocation and growth is distinct from that of Acemoglu et al. (2018),
who emphasize the misallocation of R&D inputs in determining equilibrium economic
growth. In our model, it is the misallocation of production capital within the final goods
sector, rather than within the R&D sector, that drives aggregate growth. Thus, our model
shares similarities with Peters (2020), where firms’ innovation rates are negatively impacted
by the misallocation of labor for production. However, it differs from Peters (2020) in three
key ways: (i) the source of misallocation in our model arises from financial frictions due
to agency conflicts, rather than product market imperfections; (ii) our model focuses on
the dynamics of stochastic growth, rather than deterministic steady-state growth; and (iii)
our model highlights the valuation channel, a critical aspect absent in his framework. We
demonstrate that with recursive preferences, misallocation caused by financial frictions can
generate substantial risk premia and welfare losses through endogenous low-frequency
growth fluctuations. Furthermore, the persistence of firm-level idiosyncratic productivity
plays a crucial role in driving slow-moving misallocation, which, in turn, generates low-
frequency growth fluctuations. By linking the persistence of idiosyncratic productivity to
the persistence of aggregate consumption growth, our model suggests that low-frequency
growth fluctuations can be identified using granular firm-level cross-sectional data. This
approach addresses concerns about the “dark matter” in macro asset pricing models (Chen,
Dou and Kogan, 2024; Cheng, Dou and Liao, 2022), enhancing their robustness. Our
findings complement the key insight of Moll (2014), who shows that greater persistence in
idiosyncratic productivity slows the transition from a distorted initial state to the steady
state, leading to potentially large welfare losses during transitions.

Our paper is also related to the broad literature on the role of misallocation in shaping
economic growth and development. In the context of economic growth, it connects to
research by Banerjee and Duflo (2005), Jones (2013), Jovanovic (2014), Acemoglu et al. (2018),
Peters (2020), and Glode and Ordonez (2023), among others. For economic development, it
relates to studies such as Foster, Haltiwanger and Syverson (2008), Restuccia and Rogerson
(2008), Hsieh and Klenow (2009), Jones (2011), Bartelsman, Haltiwanger and Scarpetta
(2013), Asker, Collard-Wexler and Loecker (2014), David, Hopenhayn and Venkateswaran
(2016), and David and Venkateswaran (2019). In contrast to the extensive growth and
development literature on misallocation, relatively few studies in finance have focused
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on the role of misallocation. This gap presents a valuable opportunity to examine how
misallocation interacts with financial market dynamics. Recent advances include Eisfeldt
and Rampini (2006, 2008), Rampini and Viswanathan (2010), Fuchs, Green and Papanikolaou
(2016), van Binsbergen and Opp (2019), Ai et al. (2020), and Ai, Li and Yang (2020), among
others. Our paper is closely related to studies exploring the relationship between financial
risk and misallocation. Di Tella, Maglieri and Tonetti (2024) analyze misallocation driven
by heterogeneous markups resulting from endogenous risk premia in an economy with
idiosyncratic risk and incomplete markets, focusing on optimal policy design. David,
Schmid and Zeke (2022) study the effects of macroeconomic risk on misallocation using an
exogenous SDF. In contrast to both studies, we examine the reverse relationship, analyzing
the impact of misallocation on macroeconomic risk. Our model shows that misallocation
can serve as a macroeconomic risk factor in asset pricing by influencing the investors’ SDF
through its effect on low-frequency consumption growth.

The rest of the paper is organized as follows. Section 2 presents the model. Section
3 illustrates model solutions and key mechanisms. Section 4 calibrates the model and
undertakes quantitative analyses. Section 5 concludes. The internet appendix contains
proofs of the theoretical results, additional empirical evidence, and assessment of the
parametric approximation method. Moreover, a note on additional materials can be found
in Dou et al. (2024), which is available on the authors’ personal websites.

2 Model

There are three sectors: a final goods sector with heterogeneous firms, an intermediate
goods sector, and an R&D sector. A representative agent owns firms across all these sectors.

2.1 Final Goods Sector

In the final goods sector, there is a continuum of firms of measure one, indexed by
i ∈ I ≡ [0, 1] and operated by managers. Firms are different from each other in their
idiosyncratic productivity zi,t and capital ai,t. The distribution of firms at t is characterized
by the joint probability density function (PDF), φt(a, z).

The firm produces output at intensity yi,t over [t, t+dt) using a technology with constant
returns to scale (CRS):

yi,t =
[
(zi,tui,tki,t)

αℓ1−α
i,t

]1−ε
xε

i,t, with α, ε ∈ (0, 1), (1)
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where labor ℓi,t is hired in a competitive labor market at the equilibrium wage wt. The
variable ki,t = ai,t + âi,t is the total amount of capital installed in production, which includes
the firm’s own capital ai,t and the leased capital âi,t borrowed from a competitive rental
market at the equilibrium risk-free rate r f ,t. The final goods are the numeraire.

As specified in (1), the firm’s output yi,t increases with its idiosyncratic productivity
zi,t and endogenous choice of capacity utilization intensity ui,t ∈ [0, 1]. Utilizing capi-
tal at intensity ui,t leads to depreciation of ui,tki,td∆t over [t, t + dt). In this expression,
d∆t = δdt + σdWt represents the stochastic depreciation rate, where δ and σ are positive
constants. In our framework, the standard Brownian motion, denoted by Wt, is employed
to represent the aggregate capital quality shock, consistent with the established literature
(e.g., Gertler and Kiyotaki, 2010; Gourio, 2012; Brunnermeier and Sannikov, 2017). These
shocks are interpreted as liquidity shocks, particularly when firms use capital as collateral
for borrowing.

The firm’s own capital stock evolves according to

dai,t = dIi,t − δai,tdt + σai,tdWt, (2)

where dIi,t denotes the firm’s investment over [t, t + dt), with its modeling detailed in (16).
The composite xi,t in (1) consists of differentiated intermediate goods, given by the

constant elasticity of substitution (CES) aggregation, xi,t =
(∫ Nt

0 xν
i,j,tdj

)1/ν
, where xi,j,t

is the quantity of intermediate goods j ∈ [0, Nt]. The elasticity of substitution among
intermediate goods is 1/(1 − ν) > 0. At any time t, the economy’s stock of knowledge,
encapsulated in the variety of intermediate goods, is quantified as Nt. It is through the
expansion of Nt that technological advances occur and drive economic growth.

The firm’s idiosyncratic productivity zi,t evolves according to

d ln zi,t = −θ ln zi,tdt + σz
√

θdWi,t, (3)

where the standard Brownian motion Wi,t captures idiosyncratic productivity shocks, and θ

and σz are parameters governing the persistence and volatility of zi,t.

2.2 Intermediate Goods Sector

There is a continuum of homogeneous intermediate goods producers indexed by j ∈ [0, Nt].
Each producer j holds monopoly power in pricing a specific type of intermediate goods, a
power that is guaranteed by the blueprint obtained from the R&D sector. These producers
purchase final goods and convert them into intermediate goods following the blueprints. In
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this process, one unit of final goods is utilized to produce one unit of intermediate goods.
Let pj,t denote the price of intermediate good j. The producer solves the following problem
to maximize monopoly profit:

πj,t = max
pj,t

pj,tej,t − ej,t, (4)

subject to the downward-sloping demand curve:

ej,t =

(
pj,t

pt

) 1
ν−1

Xt, with pt =

(∫ Nt

0
p

ν
ν−1
j,t dj

) ν−1
ν

, (5)

where Xt ≡
∫

i∈I xi,tdi is the aggregate demand for the composite of intermediate goods.
Let qj,t be the value of owning the exclusive rights to produce intermediate good j.

Because intermediate goods producers are homogeneous, in a symmetric equilibrium, it
must hold that qj,t ≡ qt and πj,t ≡ πt, for all producers j ∈ [0, Nt]. Intermediate goods
producers, while engaging in monopolistic competition in the intermediate goods market
dealing with final goods producers, operate under perfect competition in the blueprint
market with innovators. As a result, the price of a blueprint, qt, equates to the present
value of future monopoly rents that a blueprint can generate, discounted by the SDF of the
representative agent. Thus, the value of qt satisfies the Hamilton-Jacobi-Bellman equation:

0 = Λt (πt − δbqt)dt + Et [d(Λtqt)] , (6)

where Λt is the representative agent’s SDF, as specified in (12); δb is the patent obsolescence
rate; and qt can be interpreted as the marginal q of intangible capital in the economy.

Intuitively, equation (6) indicates that the value of qt is determined by both time-varying
profits πt and SDF Λt, both of which are, in turn, determined by the capital allocation
efficiency within the final goods sector in general equilibrium. In Section 3.5, we show that
variations in Λt result in large variations in the marginal q of intangible capital through the
valuation channel, significantly amplifying the impact of capital misallocation on economic
growth prospects.

2.3 R&D Sector

Innovators in the model are atomistic. Each one is capable of inventing a single blueprint
through an R&D experiment over [t, t + dt) with a success rate ϑt > 0. Each R&D experi-
ment requires the use of final goods as R&D expenditure with unity intensity over [t, t+dt).
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Each innovator in the model can optimally decide to engage in an R&D experiment without
incurring any entry costs. Let St represent the total number of innovators who choose to
participate over [t, t + dt). As a result, the total number of newly created blueprints over
[t, t + dt) is given by ϑtStdt, which contributes to the evolution of the aggregate knowledge
stock, Nt, as follows:

dNt = ϑtStdt − δbNtdt. (7)

Importantly, the success rate of R&D experiments, ϑt, is influenced by both the aggregate
stock of knowledge Nt and the total R&D expenditure St. In line with Comin and Gertler
(2006), we model the success rate as ϑt = χ (Nt/St)

h, where h ∈ (0, 1). This formulation
captures the positive spillover effect of the aggregate knowledge stock, Nt, as emphasized
by Romer (1990), and the congestion or competition effect of the total R&D activities, St, on
the success rate.3

In equilibrium, the free-entry condition dictates that the expected return from R&D for
the marginal innovator choosing to engage in an R&D experiment must be equal to the
expenditure incurred for the R&D experiment. This implies that

qtϑt = 1. (8)

The free-entry condition implies an investment-q relation for intangible capital at the
aggregate level (e.g., Peters and Taylor, 2017; Crouzet and Eberly, 2023) as follows:

qt = χ−1 (St/Nt)
h . (9)

Intuitively, equation (9) indicates that a higher qt increases the total R&D expenditure St

relative to aggregate knowledge stock Nt, thereby boosting the economy’s growth rate.

2.4 Agents

There is a continuum of agents, including workers and managers. Each manager operates a
firm in the final goods sector that is subject to agency problems.4 Workers in the model
lend funds to firms and additionally hold equity claims on all of them. We assume the
existence of a complete set of Arrow-Debreu securities, allowing agents to fully insure
against idiosyncratic consumption risks, ensuring the existence of a representative agent.

3The production of non-rival knowledge stock through R&D is the core engine of long-run growth (Romer,
1986, 1990). Recently, Crouzet et al. (2022) develop a model to show that the degree of nonrivalry in intangible
capital has non-monotonic effects on growth.

4Managers, including executives, directors, entrepreneurs, and, more broadly, controlling shareholders,
exercise control over firms’ investment and payout policies (e.g., Albuquerue and Wang, 2008).
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The aggregate labor supply is inelastic and normalized to be Lt ≡ 1.

Preferences. The representative agent has stochastic differential utility as in Duffie and
Epstein (1992):

U0 = E0

[∫ ∞

0
f (Ct, Ut)dt

]
, (10)

where

f (Ct, Ut) =

(
1 − γ

1 − ψ−1

)
Ut

[(
Ct

[(1 − γ)Ut]1/(1−γ)

)1−ψ−1

− ρ

]
. (11)

This preference is a continuous-time version of the recursive preferences proposed by Kreps
and Porteus (1978), Epstein and Zin (1989), and Weil (1990). The felicity function f is an
aggregator over the current consumption rate Ct of final goods and future utility level
Ut. The coefficient ρ is the subjective discount rate, the parameter ψ is the elasticity of
intertemporal substitution (EIS), and the parameter γ captures risk aversion.

The representative agent’s SDF is

Λt = exp
[∫ t

0
fU(Cs, Us)ds

]
fC(Ct, Ut). (12)

Limited Enforcement. Constraints in the equity market for payouts/issuances and in the
credit market for borrowing emerge endogenously due to limited enforcement problems
associated with equity and debt contracts.

Manager i extracts pecuniary rents τai,tdt over [t, t + dt) while running firm i.5 Share-
holders have the option to intervene and take control of the firm by replacing the manager.
However, this intervention is costly due to the need for collective action, as noted by Myers
(2000), and it can also damage the firm’s talent-dependent customer capital, as detailed in
Dou et al. (2021). In particular, we assume that upon shareholder intervention, a fraction
τ/ϖ of the capital ai,t is lost, with τ < ϖ, and the shareholders then become the firm’s new
manager. In equilibrium, to prevent such an intervention, the manager optimally pays out
dividends at the minimum amount necessary to dissuade shareholders from intervening.
This leads to a payout intensity policy of di,t = ϖai,t over [t, t + dt).6

5Managers can extract rents due to imperfections in corporate governance. Preventing them from diverting
cash flows for private benefit remains challenging for shareholders, even when cash flows are observable
and property rights to firm assets are protected. Consistent with the corporate finance literature (e.g., Myers,
2000; Lambrecht and Myers, 2008, 2012), we conceptualize rents primarily as cash compensation. However,
managerial rents can also take various forms, including above-market salaries, generous pensions, perks, and
enhanced job security.

6Technically, since the dividend intensity is a constant fraction of the firm’s capital, the model has linear
solutions and tractable aggregation. A similar feature is observed in the model of Moll (2014), which results
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Moreover, the manager can divert a fraction 1/λ of leased capital âi,t with λ ≥ 1. As a
punishment, the firm would lose its own capital ai,t. In equilibrium, the manager is able
to borrow up to the point where he has no incentive to divert leased capital, implying a
collateral constraint of âi,t ≤ λai,t, as in Buera and Shin (2013) and Moll (2014).

The financial frictions described above are formally encapsulated in the following
proposition, with its proof provided in Online Appendix 4.1.

Proposition 1. Because of the agency problem with limited enforcement, the firm’s payout/issuance
policy is subject to the following equity market constraint:

di,t = ϖai,t. (13)

Moreover, the firm’s leased capital is subject to the following collateral constraint:

−ai,t ≤ âi,t ≤ λai,t. (14)

Several points are worth further discussion. First, there are other agency problems that
can lead to the equity market and collateral constraints (e.g., Gertler and Kiyotaki, 2010;
Gertler and Karadi, 2011). Second, the equity market constraint, widely studied in the
corporate finance literature (e.g., Myers, 2000; Lambrecht and Myers, 2008, 2012), essentially
means that firms cannot freely move funds in and out of themselves. Third, our model’s
formulation of capital market imperfections, which is analytically tractable, captures the
fact that firms face restrictions and costs in accessing external funds. Fourth, one specific
interpretation of interfirm borrowing and lending is through a competitive rental market,
where firms can rent capital from each other (e.g., Jorgenson, 1963; Hall and Jorgenson,
1969; Buera and Shin, 2013; Moll, 2014).

Managers’ Problem. The manager of firm i makes decisions for all s ≥ t to maximize the
present value Ji,t of future managerial rents, as in Lambrecht and Myers (2008, 2012),

Ji,t = max
âi,s,ui,s,ℓi,s,{xi,j,s}

Nt
j=0

Et

[∫ ∞

t

Λs

Λt
τai,sds

]
, (15)

subject to the equity market constraint (13), the collateral constraint (14), and the intertem-
poral budget constraint (2) with dIi,t given by

dIi,t = yi,tdt −
∫ Nt

0
pj,txi,j,tdjdt − wtℓi,tdt − ui,tki,td∆t − r f ,t âi,tdt − di,tdt, (16)

from the logarithmic preferences of entrepreneurs and the presence of CRS technology.
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where profits are reinvested, similar to Pástor and Veronesi (2012).
By exploiting the homogeneity of Ji,t in capital ai,t, we derive the manager’s optimal

decisions, as summarized in Lemma 1, with the proof provided in Online Appendix 4.2.

Lemma 1. There is a cutoff zt for being active, and factor demands are linear in kt(a, z):

ut(z) =

{
1, z ≥ zt

0 z < zt
, kt(a, z) =

{
(1 + λ)a, z ≥ zt

0 z < zt
, (17)

ℓt(a, z) = (ε/pt)
ε

α(1−ε) κ
1
α
t zut(z)kt(a, z), and (18)

xj,t(a, z) =
(

pj,t/pt
) 1

ν−1 (ε/pt)
1−(1−α)(1−ε)

α(1−ε) κ
1−α

α
t zut(z)kt(a, z), for j ∈ [0, Nt], (19)

where κt = (1 − α)(1 − ε)/wt. The productivity cutoff zt is determined by:

ztκt = r f ,t + δ + σ[σξ,t(zt)− ηt], with κt = α(1 − ε) (ε/pt)
ε

α(1−ε) κ
1−α

α
t . (20)

At time t, only firms with zi,t ≥ zt produce, and these firms rent the maximal amount
âi,t = λai,t allowed by the collateral constraint. In equation (20), the cutoff zt is deter-
mined such that the marginal return ztκt is equal to the marginal cost of leased capital,
which includes the locally deterministic user cost of capital r f ,t + δ and a stochastic term
σ
[
σξ,t(zt)− ηt

]
, reflecting the firm’s exposure to aggregate risk (see Online Appendix 4.2).

Using Lemma 1, equation (16) can be simplified as7

dIi,t = (1 + λ)
(
κtzi,tdt − d∆t − r f ,tdt

)
ai,t1zi,t≥zt + (r f ,t − ϖ)ai,tdt. (21)

2.5 Equilibrium and Aggregation

Definition 2.1 (Competitive Equilibrium). At any given time t, the competitive equilibrium of
the economy is defined by a set of prices wt, r f ,t, and

{
pj,t

}Nt
j=0, along with their corresponding

quantities, such that

(i) each firm i in the final goods sector maximizes (15) by choosing âi,t, ui,t, ℓi,t, and {xi,j,t}Nt
j=0,

subject to (13), (14), and (16), given the equilibrium prices;

(ii) each intermediate goods producer j maximizes (4) by choosing pj,t for j ∈ [0, Nt];

(iii) the equilibrium R&D expenditure St is determined by (8);

7Similar to the equation in Moll (2014), the drift term in the capital accumulation equation is proportional
to the firm’s capital ai,t. This relationship directly results from the constant payout ratio as specified in
equation (13) and the CRS production technology, outlined in equation (1), given a specific Nt.

15



(iv) the SDF Λt is given by (12) and the risk-free rate r f ,t is determined by

r f ,t = − 1
dt

Et

[
dΛt

Λt

]
; (22)

(v) the labor market-clearing condition determines wt:

Lt =
∫ ∞

zt

∫ ∞

0
ℓt(a, z)φt(a, z)dadz; (23)

(vi) the leased capital market-clearing condition determines the representative agent’s bond holdings
Bt, which is the amount of capital lent to the final goods sector:

Bt =
∫ ∞

0

∫ ∞

0
ât(a, z)φt(a, z)dadz. (24)

The aggregate capital Kt is given by

Kt =
∫ ∞

0

∫ ∞

0
kt(a, z)φt(a, z)dadz = At + Bt, (25)

where At is the aggregate capital held by firms in the final goods sector, given by

At =
∫ ∞

0

∫ ∞

0
aφt(a, z)dadz. (26)

(vii) the resource constraint is satisfied because of Walras’s law.

Because firms’ problem is linear in capital ai,t, we introduce the capital share ωt(z) to
fully characterize the distribution of firms in the final goods sector:

ωt(z) ≡
1
At

∫ ∞

0
aφt(a, z)da and Ωt(z) ≡

∫ z

0
ωt(z′)dz′. (27)

Intuitively, the capital share ωt(z) plays the role of a density and captures the share of
firms’ capital held by each productivity type z. The corresponding cumulative distribution
function (CDF) is Ωt(z).

Proposition 2. At time t ≥ 0, given ωt(z), the equilibrium aggregate output is

Yt = ZtKα
t L1−α

t , (28)
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where Zt is the economy’s TFP, given by

Zt = (εν)
ε

1−ε HtN1−α
t with Ht =

[
1

1 − Ωt(zt)

∫ ∞

zt

zωt(z)dz
]α

, (29)

where Ht captures the endogenous productivity of the final goods sector. Factor prices are

pj,t = 1/ν for j ∈ [0, Nt], pt = N
ν−1

ν
t /ν, and wt = (1 − α)(1 − ε)Yt/Lt. (30)

The aggregate profits of the intermediate goods sector and R&D expenditure are,

Ntπt = (1 − ν)εYt and St = (χqt)
1
h Nt, respectively. (31)

Equation (29) shows that TFP depends on both the knowledge stock Nt and the final
goods sector’s productivity Ht, which is the average firm-level productivity z weighted by
ωt(z).8 The value of Ht is higher when more productive firms are associated with more
capital, which reflects a more efficient allocation of capital across firms.

3 Model Solution and Mechanism

In this section, we present a parametric approximation of the firm distribution and charac-
terize the mechanism that links misallocation and growth.

3.1 Parametric Approximation: Misallocation as a State Variable

The model is not analytically tractable due to the simultaneous presence of aggregate shocks
and forward-looking heterogeneous firms. The key challenge lies in tracking the cross-
sectional distribution of capital share, ωt(z), an infinite-dimensional object that evolves
endogenously. A standard approach to solving such a model involves using numerical
approximation methods that specify a few moments to approximate ωt(z) (e.g., Krusell and
Smith, 1998). Instead of adopting these methods, we propose a parametric approximation
of ωt(z). Our method shares a similar philosophy with standard numerical approximation
methods in that it uses a small number of moments to encapsulate the infinite-dimensional
cross-sectional distribution of firms. The key distinction, however, lies in our approach’s

8Equation (29) is related to the industry-level TFP formula derived by Hsieh and Klenow (2009). The key
difference is that in our model, firms in the final goods sector produce homogeneous goods, whereas firms in
the model of Hsieh and Klenow (2009) produce differentiated goods. In Online Appendix 5, we show that by
driving the elasticity of substitution among goods to infinity and wedges to 0, the industry-level TFP formula
of Hsieh and Klenow (2009) coincides with our productivity Ht in equation (29).
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direct application of a parametric functional form to delineate the distribution at any given
time. This approach enables us to derive closed-form equations for the evolution of these
moments.

Our proposed analytical approximation serves three purposes. First, it yields a simple
endogenous state variable that intuitively captures the misallocation of capital in the
final goods sector. Second, it enables us to clearly illustrate the relationship between
misallocation dynamics and aggregate growth dynamics, thereby making it easier to
demonstrate the pivotal mechanism linking production capital misallocation with the low-
frequency component of economic growth.9 Third, it facilitates an analytical characterization
of the model economy’s evolution, rendering the computation of model dynamics highly
tractable.

Specifically, at any time t ≥ 0, we approximate the distribution of log capital ãi,t = ln ai,t

and log productivity z̃i,t = ln zi,t across firms in the final goods sector using a bivariate
normal distribution. This assumption is similar in spirit to the bivariate log-normal
distribution of the skills of matched young and old agents in the model of Jovanovic (2014).
With this parametric assumption, Jovanovic (2014) derives analytical transitional dynamics
to cleanly characterize the link between misallocation in the labor market and growth.

The approximation is intuitive because according to equation (3), we have z̃i,t ∼
N(0, σ2

z /2) in the cross section of firms. Moreover, using the Berry-Esseen bound, we
can prove that ãi,t across firms approximately follows a normal distribution on the de-
terministic balanced growth path without aggregate shocks (see Online Appendix 6). In
Section 4.6, we further assess the accuracy of our parametric approximation by comparing
our solutions to those obtained using standard global solution methods based on numerical
approximations and show that the two sets of solutions are quite similar to each other
under the baseline calibration. The joint log-normal approximation enables us to derive a
closed-form formula for ωt(z).

Proposition 3. For any t ≥ 0, the capital share ωt(z) can be approximated by the PDF of a
log-normal distribution,

ωt(z) =
1

zσz
√

π
exp

[
− (ln z + σ2

z Mt/2)2

σ2
z

]
, (32)

where Mt ≡ −Covt(z̃i,t, ãi,t)/vart(z̃i,t) = −2Covt(z̃i,t, ãi,t)/σ2
z .

9The use of tractable parametric approximations to capture key model mechanisms shares similarities in
spirit with several influential works in the finance literature. For example, Campbell and Shiller (1988) and
Campbell and Vuolteenaho (2004) use log-linear present value approximations to disentangle the effects of
discount-rate news and cash-flow news on stock valuations. Likewise, Gabaix (2012) develops the class of
“linearity-generating” processes to improve analytical tractability in addressing macro-finance puzzles.
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Intuitively, Proposition 3 implies that under our approximation, the endogenous state
variable Mt ≡ −Covt(z̃i,t, ãi,t)/vart(z̃i,t) is a sufficient statistic that characterizes the evolu-
tion of ωt(z). The parametric functional form (32) for ωt(z) coincides with the initial wealth
shares specified in equation (29) of Moll (2014) for conducting transition experiments. As
noted by Moll (2014), Mt essentially captures the allocation efficiency of production capital.
Below, we provide further discussions on the role of Mt and its relation to existing empirical
measures of misallocation.

We characterize the economy’s TFP Zt in closed form, as follows.

Proposition 4. Under our approximation, the aggregate TFP Zt is

Zt = (εν)
ε

1−ε N1−α
t

[
(1 + λ)

At

Kt
exp

(
−σ2

z
2

Mt +
σ2

z
4

)
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σz√
2

)]α

, (33)

where Φ(·) represents the CDF of a standard normal variable.

Equation (33) shows that the economy’s TFP, Zt, strictly decreases with the endogenous
state variable Mt, holding aggregate variables At, Kt, and Nt fixed. Thus, Mt reflects
the degree of misallocation in our model economy. In fact, Mt also directly reflects the
distribution of MRPK. To elaborate, substituting out labor and intermediate inputs in firms’
technology using Lemma 1, we obtain

yi,t = vi,tki,t, with vi,t = (ε/pt)
ε

α(1−ε) κ
1−α

α
t zi,t. (34)

Because final goods are the numeraire, vi,t measures firm i’s MRPK at t. Define ṽi,t = ln vi,t.
We obtain a theoretically motivated measure for misallocation:

Mt ≡ −Covt(z̃i,t, ãi,t)

vart(z̃i,t)
= −Covt(ṽi,t, ãi,t)

vart(ṽi,t)
, ∀ t ≥ 0. (35)

Intuitively, in our model, the covariance Covt(z̃i,t, ãi,t) is fundamentally akin to the co-
variance between MRPK and capital, Covt(ṽi,t, ãi,t), given that firms produce homogeneous
goods using a CRS technology. A higher Mt reflects that firms with higher productivity
(zi,t) or MRPK (vi,t) are linked to a lower level of production capital (ai,t), which, according
to Proposition 4, results in a diminished TFP.

Because firms have CRS technology, the dispersion in MRPK (i.e., σ2
t (ṽi,t)) remains

constant at σ2
z /2, rendering it an invalid metric for misallocation in the model economy

here. In models where firms’ revenue exhibits decreasing returns to scale, a positive
relationship between σ2

t (ṽi,t) and Mt can arise under general conditions, although it is
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not unconditionally guaranteed theoretically. For example, consider the models of Buera
and Shin (2011, 2013), where misallocation arises from financial frictions similar to our
framework. In their baseline calibration, the steady state satisfies Mt < 0, reflecting a posi-
tive covariance between MRPK and production capital across firms. With the distribution
of capital unchanged, tighter funding liquidity constraints increase both σ2

t (ṽi,t) and Mt.
Similarly, in the model of David, Hopenhayn and Venkateswaran (2016), higher information
frictions exacerbate misallocation, as reflected in increases in both σ2

t (ṽi,t) and Mt.
We emphasize that misallocation in our model, represented by the endogenous state

variable Mt, arises from firms’ funding liquidity constraints due to financial frictions, as in
the model of Moll (2014). Under our parametric approximation, Mt fully summarizes the
firm distribution, ωt(z). Consequently, the endogenous time variation in ωt(z) in response
to aggregate shocks is entirely captured by the time variation in Mt, which serves as a
sufficient statistic, as characterized by equation (38) below.

Relation to Existing Empirical Measures of Misallocation. Our model-implied misallo-
cation metric, Mt, is conceptually similar to the capital allocation efficiency measure based
on the cross-sectional covariance between size and productivity, used in several seminal
empirical studies (e.g., Olley and Pakes, 1996; Bartelsman, Haltiwanger and Scarpetta,
2009, 2013).10 The covariance-based misallocation measure is highly intuitive and does not
rely on specific functional form assumptions. Compared to dispersion-based measures,
such as the dispersion of revenue TFP or MRPK (e.g., Foster, Haltiwanger and Syverson,
2008; Hsieh and Klenow, 2009), it offers several advantages for analyzing variations in
misallocation over economic cycles. In particular, Bartelsman, Haltiwanger and Scarpetta
(2013) provide evidence that the relationship between size and productivity across firms is
more resilient to multiplicative measurement errors than dispersion-based misallocation
measures. They argue that classical measurement errors in MRPK or productivity tend
to inflate dispersion-based misallocation measures but leave covariance-based measures
unaffected. Furthermore, the magnitude of these measurement errors varies over economic
cycles, undermining the precision of dispersion-based measures in capturing time varia-
tions in misallocation. Similarly, Eisfeldt and Shi (2018) argue that the inherent noisiness

10Olley and Pakes (1996) decompose total productivity into the unweighted average of plant-level produc-
tivities and the cross-sectional covariance between productivity and output share, positing that this covariance
captures capital allocation efficiency. A higher covariance implies that more productive firms account for a
larger share of output. Bartelsman, Haltiwanger and Scarpetta (2009, 2013) extend this approach by analyzing
the cross-sectional covariance between firm-level log productivity and size, where productivity is measured
by physical TFP, revenue TFP, or labor productivity, and size is measured by output, revenue, or input. They
demonstrate that the relationship between size and productivity holds consistently across these measures in a
broad class of models.
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of productivity dispersion measures limits their effectiveness in capturing business cycle
variations in misallocation. This insight is particularly relevant to our research, as we focus
on examining the implications of misallocation fluctuations rather than its level for growth
fluctuations and asset pricing. Accordingly, in our empirical and quantitative analysis in
Section 4.1, we construct a model-consistent covariance-based measure, Mt.

We emphasize that the contribution of this paper is not to propose a new measure
of capital misallocation. Instead, it lies in showing that the endogenous state variable
Mt, defined in equation (35), provides strong theoretical support for using the size and
productivity covariance as a measure of capital allocation efficiency, a metric already widely
used in the literature. Specifically, our model analytically demonstrates that a higher Mt

(i.e., a lower covariance) reduces aggregate TFP (see equation (33)). Furthermore, under
the parametric approximation of our model, Mt serves as a sufficient statistic summarizing
the cross-sectional distribution of firms ωt(z), underscoring the central role of production
capital misallocation as an endogenous state variable mediating the interaction between
macroeconomic and capital market dynamics.

3.2 Evolution of the Economy

Under the parametric approximation, the economy’s transitional dynamics are characterized
by the evolution of aggregate capital At in the final goods sector, the knowledge stock Nt,
and misallocation Mt, as summarized in the proposition below.

Proposition 5. Under our parametric approximation, for all t ≥ 0, the economy is fully characterized
by the evolution of At, Nt, and Mt, as follows

dAt =
[
α(1 − ε)Yt − δKt − r f ,tBt − (ϖ + δ)At

]
dt − σBtdWt, (36)

dNt =χ (χqt)
1−h

h Ntdt − δbNtdt, (37)

dMt =− θMtdt − Covt(z̃i,t, dãi,t)/vart(z̃i,t), (38)

where Kt = (1 + λ) [1 − Ωt(zt)] At and Bt = Kt − At.

Define Et = Nt/At as the knowledge stock-capital ratio. Because the economy is
homogeneous of degree one in At, the state variables (At, Nt, Mt) can be reduced to
(Et, Mt). Equation (38) shows that the evolution of Mt depends on two terms. The first
term −θMtdt is linked to the evolution of zi,t through the persistence parameter θ (see
equation (3)). Intuitively, a higher θ implies less persistent zi,t, causing misallocation Mt =

−Covt(z̃i,t, ãi,t)/vart(z̃i,t) to revert to its long-run mean more quickly, thereby reducing
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the persistence of Mt. The second term, −Covt(z̃i,t, dãi,t)/vart(z̃i,t), captures the effect of
heterogeneous changes in ãi,t, represented by dãi,t (as defined in equation (2)), across firms
of different zi,t on misallocation Mt. A higher Covt(z̃i,t, dãi,t) implies that more productive
firms accumulate their capital at a higher rate, which reduces misallocation Mt. Under
our parametric approximation, Covt(z̃i,t, dãi,t) has a closed-form expression (see equation
(IA.66) in Online Appendix 4.6), which reveals its negative dependence on the aggregate
shock dWt. A positive shock (dWt > 0) increases the depreciation rate of capital ki,t,
reducing the capital accumulation of more productive firms (i.e., zi,t ≥ zt) but not that of
less productive firms (i.e., zi,t < zt), which do not produce (see equation (17)). As a result,
a positive shock lowers Covt(z̃i,t, dãi,t), increases misallocation Mt, and reduces aggregate
output and consumption. This dynamic highlights the countercyclical nature of Mt.

3.3 Deterministic Balanced Growth Path

To clearly illustrate the equilibrium relationship between misallocation and long-run growth,
we characterize the economy’s deterministic balanced growth path in the absence of
aggregate shocks (i.e., dWt ≡ 0).

Proposition 6. There is a deterministic balanced growth path on which Et ≡ E, Mt ≡ M, and
Ht ≡ H are constant. The aggregate capital At, knowledge stock Nt, output Yt, TFP Zt, and
consumption Ct grow at the same constant rate g, and their ratios are constant.

The values of these variables and the growth rate g are determined by the system of
equations presented in Online Appendix 4.7. We highlight that g is directly related to the
marginal q of intangible capital as follows:

g = χ(χq)
1−h

h − δb. (39)

The next proposition clearly shows that on the deterministic balanced growth path, there is
a negative relationship between misallocation M and the marginal q of intangible capital.

Proposition 7. Under our parametric approximation, the marginal q of intangible capital is
negatively related to misallocation M on the deterministic balanced growth path:

ln q =− ασ2
z

2
M +

ασ2
z

4
+ ln

[
(1 − ν)ε(εν)

ε
1−ε

r f + δb

]
+ α ln(1 + λ)− α ln E

+ α ln
[

Φ
(

Φ−1
(

K/A
1 + λ

)
+

σz√
2

)]
, (40)

where K/A is the constant ratio of Kt to At on the deterministic balanced growth path.
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3.4 Key Mechanism: Persistence of Misallocation and Growth

In this section, we focus on the deterministic balanced growth path to illustrate the model’s
core mechanism. We show that a one-time shock, increasing the misallocation level at t = 0,
induces an endogenous and persistent effect on misallocation Mt from t = 0 onwards.
This effect, in turn, triggers a long-lasting influence on aggregate growth by affecting the
marginal q of intangible capital (see Proposition 7), and consequently, the R&D-capital
ratio – a critical driver of economic growth. Moreover, we show that the persistence of
aggregate growth depends on the persistence of misallocation, which depends largely on
the persistence of idiosyncratic productivity.

Impulse Response Function. Consider a scenario involving a one-time, unexpected shock
that exogenously increases misallocation Mt at t = 0.11 From t = 0 onward, it will gradually
converge back to the deterministic balanced growth path. The blue solid lines in Figure
2 illustrate the transitional dynamics of several key variables from t = 0 onward, based
on our baseline calibration (see Table I). To render the quantitative effects informative,
the magnitude of the shock is set to 0.09, aligning with the standard deviation of Mt in
our calibration. As depicted in Panel A, misallocation Mt will experience an extended
endogenous transitional period, lasting about 20 years, before it reaches the level on the
deterministic balanced growth path.

In the absence of aggregate shocks, aggregate consumption would follow C0egt, growing
at a constant annual rate of g = 1.75% for all t ≥ 0. To focus on the change in growth
rates relative to the deterministic trend in Ct, we consider detrended consumption, defined
as Ct/(C0egt)− 1. The blue solid line in Panel B indicates that Ct/(C0egt)− 1 is 0 before
the shock, jumps to approximately −1.6% at the moment the shock hits at t = 0, and
gradually decreases until reaching the level on the deterministic balanced growth path.
Although the shock to misallocation is transitory, the economy shifts to a steady state with
permanently lower consumption, driven by the reduced accumulation speed of knowledge
stock Nt. Panel C demonstrates a similar concept by displaying the contemporaneous
consumption growth rate over the interval [t, t + dt), calculated as dCt/(Ctdt). The blue
solid line illustrates that the consumption growth rate sharply decreases to about 1.55%
at t = 0 and then slowly adjusts to the level on the deterministic balanced growth path as
misallocation persists.

The mechanism connecting misallocation to growth is depicted by the arrows in Figure

11This unexpected shock to Mt in our experiment effectively represents a shock to the distribution of firms,
ωt(z), as Mt serves as a sufficient statistic fully characterizing ωt(z) under our parametric approximation
(see Proposition 3).
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Note: Panels A, B, and C consider different calibrated values of θ. For each choice of θ, we recalibrate the
parameter χ so that the consumption growth rate on the deterministic balanced growth path is the same as
our baseline calibration. All other parameters are set according to our calibration in Table I. Panels D, E, and
F focus on the baseline calibration with e−θ = 0.85.

Figure 2: Transitional dynamics after a one-time shock to misallocation Mt.

1. An increase in misallocation, Mt, directly reduces the productivity, Ht, of the final goods
sector (see Panel D of Figure 2). A lower Ht reduces aggregate output, Yt, which in turn
reduces the marginal q of intangible capital (see Panel E of Figure 2 and equations (6) and
(31)), leading less R&D activities (see Panel F of Figure 2). This chain of effects culminates
in a lower growth rate via the reduced accumulation speed of knowledge stock, Nt.

Role of the Persistence of Idiosyncratic Productivity. As discussed above, it is the
persistence of misallocation Mt, particularly through its impact on R&D, that drives
the persistent excess consumption growth relative to the deterministic balanced growth
path. As shown in equation (38), the persistence of misallocation depends on θ, which
governs the persistence of zi,t. To further illustrate the relationship between the persistence
of misallocation and the persistence of aggregate consumption growth, we study the
transitional dynamics under different values of θ. Specifically, according to equation (3),
the yearly autocorrelation in ln zi,t is e−θ. In Panels A, B and C of Figure 2, we compare
our baseline calibration of e−θ = 0.85 with two alternative calibrations in which the yearly
autocorrelation in ln zi,t is 0.9 (dashed line) and 0.95 (dash-dotted line), respectively.

Panel A demonstrates that calibrations with a higher persistence of zi,t result in lower
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misallocation Mt on the deterministic balanced growth path, aligning with the insights
provided by Buera and Shin (2011) and Moll (2014). Crucially, the convergence speed of
Mt to its deterministic balanced growth path slows as the persistence of zi,t increases. As a
measure to capture this phenomenon, we compute the half-life of transitions, which is the
time it takes for Mt to revert to half of its long-term value post-shock. The half-life of Mt is
3.0, 4.1, and 6.7 years for e−θ = 0.85, 0.9, and 0.95, respectively, indicating that misallocation
becomes more persistent when idiosyncratic productivity is more persistent. Comparing
the three curves in Panels B and C, it is clear that the economy with a higher persistence of
zi,t has more persistent consumption growth after the shock to Mt.

Thus, our model suggests that the persistence of zi,t plays an important role in deter-
mining the persistence of the growth rate of aggregate consumption, dCt/(Ctdt). The
persistence levels of these two variables are connected via the persistent endogenous mis-
allocation Mt. This result generalizes the key insight of Moll (2014) to an economy with
stochastic growth. In a model without long-run growth or aggregate shocks, Moll (2014)
shows that the transition to steady states slows down as idiosyncratic productivity becomes
more persistent. Building on this insight, we additionally demonstrate that in a model
with endogenous stochastic growth, the persistence of idiosyncratic productivity shapes the
persistence of aggregate growth by affecting the persistence of endogenous misallocation.
In Sections 4.4 and 4.5, we further show that the endogenous low-frequency component of
growth fluctuations, driven by misallocation fluctuations, has first-order implications for
asset prices and welfare.

3.5 Growth Fluctuations and Discount Rates

As illustrated by the arrows in Figure 1 and the impulse responses in Figure 2, on the
deterministic balanced growth path without aggregate shocks, misallocation affects growth
through its impact on the marginal q of intangible capital, which determines aggregate
R&D expenditure. In the full model with aggregate shocks, the link between the marginal q
of intangible capital and growth is amplified by countercylical discount rates (risk premia)
through the valuation channel, as illustrated by Figure 1.

In our model, economic downturns are characterized by high misallocation Mt, during
which high-productivity firms in the final goods sector face severe financial constraints
due to insufficient capital, making their funding liquidity constraints more binding. Thus,
aggregate output growth is not only low but also highly volatile during downturns,
as financial constraints amplify the effects of aggregate liquidity shocks on percentage
changes in output. Consequently, downturns are characterized by low expected long-term
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consumption growth and heightened macroeconomic uncertainty, leading to increased
conditional volatility of the SDF and, therefore, a higher risk premium. Indeed, equations in
(41) show that the conditional volatility of the SDF Λt is strongly positively correlated with
misallocation Mt and negatively correlated with one-year expected consumption growth
rate:

corr
[
σt(∆Λ̃t+1), Mt

]
= 0.93 and corr

[
σt(∆Λ̃t+1), Et(∆C̃t+1)

]
= −0.89, (41)

where ∆X̃t ≡ ln Xt − ln Xt−1 represents the difference in ln Xt between year t and year t − 1,
and the yearly value of Xt is computed by integrating Xtdt in continuous time.

Since the conditional volatility of the SDF Λt at t directly determines the market price
of risk for the aggregate liquidity shock dWt at t, the model generates countercylical risk
premium. The countercyclical risk premium amplifies the variation in the marginal q
of intangible capital, qt. To see this, note that qt is determined by equation (6). During
downturns with high misallocation Mt, qt is depressed not only because of reduced profits
πt but also because future profits are discounted at a higher discount rate, reflecting the
market price of risk for the aggregate liquidity shock dWt. Conversely, during periods
with low misallocation Mt, qt increases both because of higher profits πt and a lower
discount rate. Together, these forces create significant fluctuations in qt over economic
cycles, which, in turn, lead to substantial variation in the low-frequency component of
aggregate consumption growth rates through the effect of qt on R&D expenditure (see
equations (9) and (39)). This mechanism constitutes the valuation channel illustrated in
Figure 1.

Quantitatively, more than half of the volatility of qt is attributed to the countercyclical
risk premium while the remaining is due to procycical profits πt. Following the theoretical
mechanism elaborated in Section 3.4, this valuation channel is quantitatively significant
because the fluctuations in misallcocation driven by the aggregate shocks dWt are persistent,
when the parameter θ is calibrated to match the persistence of idiosyncratic productiv-
ity shocks in the data (see Table I). The slow-moving misallocation in turn generates
low-frequency fluctuations in economic growth and macroeconomic uncertainty, thereby
implying a high Sharpe ratio in the capital market (see Section 4.4) and significant welfare
losses (see Section 4.5).

4 Quantitative Analysis

In this section, we analyze the quantitative effects of misallocation fluctuations, rather
than its level, on low-frequency variations in economic growth, asset prices, and welfare.
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Importantly, none of the quantitative implications depend on whether the model is solved
using our parametric approximation or a standard global numerical approximation method.
We solve the model using both approaches and obtain similar quantitative results. In
Section 4.6, we systematically evaluate the accuracy of our parametric approximation for
the model.

4.1 Data and Empirical Measures

We obtain annual consumption and GDP data from the U.S. Bureau of Economic Analysis
(BEA) and stock return data from the Center for Research in Security Prices (CRSP). Output
and consumption growth are measured by the log growth rate of per-capita real GDP and
per-capita real personal consumption expenditures on nondurable goods and services. The
nominal variables are converted to real terms using the consumer price index (CPI). We
obtain data on private business R&D investment from the National Science Foundation
(NSF) and on R&D stock from the Bureau of Labor Statistics (BLS). These two time series
are considered empirical counterparts for St and Nt, respectively. The ratio of the two (i.e.,
St/Nt) is our empirical measure of R&D intensity. The risk-free rate is constructed using
the yield of 3-month Treasury Bills, obtained from CRSP. Firms’ dividend yield is computed
as the ratio of total dividends over market capitalization, obtained from Compustat.

Model-Consistent Empirical Measure of Misallocation. We construct a model-consistent

empirical measure of misallocation according to equation (35), Mt = −Covt(ṽi,t,ãi,t)
vart(ṽi,t)

. Specif-
ically, we construct empirical measures of log capital ãi,t and log MRPK ṽi,t (see Online
Appendix 1) and run the following regression using the cross section of firms in each year t
in U.S. Compustat data from 1965 to 2016:12

ãi,t = αt + βtṽi,t + εi,t, (42)

where the estimated coefficient β̂t directly captures Covt(ṽi,t, ãi,t)/vart(ṽi,t).
The empirical measure of Mt is constructed using the filtered time series of −β̂t from

1965 to 2016. Following Comin and Gertler (2006), we apply a band-pass filter to extract
frequencies up to 50 years, capturing the cyclical component of capital misallocation
fluctuations corresponding to medium-term business cycles as defined by Comin and
Gertler (2006).

12Because our theory mainly applies to manufacturing firms, we exclude firms from financial, utility, public
administration, and non-tradable industries, where non-tradable industries are defined according to Mian
and Sufi (2014). The empirical results are robust if non-tradable industries are included in the sample.
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Figure 3: Time series of yearly changes in the empirical measure of misallocation, ∆Mt.

Figure 3 plots the time series of year-on-year changes in the empirical measure of
misallocation, denoted as ∆Mt. The shaded areas represent periods of economic downturns,
including economic recessions and three financial crises.13 Aligned with our theoretical
framework and empirical evidence from the literature, capital misallocation typically
escalates during economic downturns. Our empirical measure of misallocation significantly
increases in seven out of the nine economic downturns we examined. This stylized pattern
is consistent with the model’s prediction that misallocation typically increases during a
period involving macroeconomic recessions or financial turmoil.

4.2 Calibration and Validation of the Model

Panel A of Table I presents the externally calibrated parameters. Following standard
practice, we set the capital share in production technology at α = 0.33. We set the capital
depreciation rate at δ = 3%. We set the share of intermediate inputs at ε = 0.5 according to
the choice of Comin and Gertler (2006) and Kung and Schmid (2015). The inverse markup
is set at ν = ϵ/[ϵ + (1 − α)(1 − ϵ)] = 0.6 to guarantee the existence of a balanced growth
path.14 Following standard practice in the asset pricing literature, we set risk aversion at
γ = 8. Consistent with Kung and Schmid (2015), we set the EIS at ψ = 1.85, the patent
obsolescence rate at δb = 15%, and h = 0.17 so that the elasticity of new blueprints with
respect to R&D is 0.83. We set the volatility of idiosyncratic productivity zi,t at σz = 1.39

13The three crises are the savings and loan crisis from 1986 to 1989, the Mexican peso crisis from 1994 to
1995, and the European sovereign debt crisis from 2008 to 2012.

14This parametric restriction ensures that the deterministic balanced growth path, analyzed in Section 3.3,
is well defined, consistent with the majority of the endogenous growth literature. Without this restriction, the
economy could exhibit decreasing or increasing returns to scale, resulting in either zero growth or explosive
growth rates in the long run. A similar parametric restriction is imposed in the model of Kung and Schmid
(2015), for example.
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Table I: Parameter calibration and targeted moments.

Panel A: Externally determined parameters

Parameter Symbol Value Parameter Symbol Value

Capital share α 0.33 Capital depreciation rate δ 0.03

Share of intermediate inputs ε 0.5 1− R&D elasticity h 0.17

EIS ψ 1.85 Risk aversion γ 8

Patent obsolescence rate δb 0.15 Volatility of idio. productivity σz 1.39

Inverse markup ν 0.6 Rent extraction rate τ 0.01

Collateral constraint λ 1.1 Persistence of idio. productivity θ 0.1625

Panel B: Internally calibrated parameters and targeted moments

Parameter Symbol Value Moments Data Model

Subjective discount rate ρ 0.01 Real risk-free rate (%) 1.11 1.58

R&D productivity χ 1.35 Consumption growth rate (%) 1.76 1.75

Volatility of aggregate shocks σ 0.19 Consumption growth vol. (%) 1.50 1.67

Dividend payout rate ϖ 0.037 Dividend yield (%) 2.35 2.14

according to the calibration of Moll (2014). The persistence of zi,t is set at θ = 0.1625,
which implies that ln zi,t has a yearly autocorrelation of e−θ = 0.85, consistent with the
estimate of Asker, Collard-Wexler and Loecker (2014) based on U.S. census data, as well
as with the calibration in the macroeconomics literature (e.g., Moll, 2014). We set the
collateral constraint parameter at λ = 1.1, which is within the range of calibration values
in the macroeconomics literature (e.g., Jermann and Quadrini, 2012; Buera and Shin, 2013;
Moll, 2014; Dabla-Norris et al., 2021). The rent extraction rate τ is a scaling parameter and
normalized to 1%; its value does not affect firm decisions.

The remaining parameters are calibrated by matching the relevant moments summarized
in Panel B of Table I. When constructing the model moments, we simulate a sample for
1, 000 years with a 100-year burn-in period, which is long enough to guarantee the stability
of these moments. The discount rate is set at ρ = 0.01 to generate a real risk-free rate of
1.58%. R&D productivity is set at χ = 1.35 to generate an average consumption growth rate
of 1.75%. We calibrate σ = 0.19 so that the model-implied volatility of consumption growth
is 1.67%, as in Storesletten, Telmer and Yaron (2007). We set the payout rate at ϖ = 3.7% so
that the dividend yield is 2.14%.

Table II presents the untargeted moments. Panel A shows that the moments reflecting the
persistence of consumption growth implied by the model are roughly consistent with those
in the data, even though these moments are not directly targeted in our calibration. Panel B
shows that the yearly autocorrelation of R&D expenditure growth ∆S̃t and misallocation
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Table II: Untargeted moments in the data and model.

Moments Data Model Moments Data Model

Panel A: Consumption moments

AC1(∆C̃t) (%) 0.44 0.46 AC2(∆C̃t) (%) 0.08 0.28

AC5(∆C̃t) (%) −0.01 0.00 AC10(∆C̃t) (%) 0.06 −0.06

VR2(∆C̃t) (%) 1.52 1.46 VR5(∆C̃t) (%) 2.02 2.21

Panel B: Other moments

AC1(∆S̃t) (%) 0.30 0.42 AC1(Mt) (%) 0.84 0.75

SR[Rm,t] 0.36 0.39 σ[r f ,t] (%) 2.06 0.47

Note: With slight abuse of notations, ∆X̃t = ln Xt − ln Xt−1 represents the difference in ln Xt between year
t and t − 1, where the yearly value of Xt is computed by integrating Xtdt in continuous time. ACk(∆C̃t)

refers to the autocorrelation of log consumption growth with a k-year lag. VRk(∆C̃t) refers to the variance
ratio of log consumption growth with a k-year horizon. AC1(∆S̃t) is the yearly autocorrelation of log
private business R&D investment growth. AC1(Mt) is the yearly autocorrelation of misallocation Mt.
SR[Rm,t] = E[Rm,t − r f ,t]/σ[Rm,t − r f ,t] is the Sharpe ratio of the consumption claim.

Mt have comparable values in the model and data. The model implies a smooth risk-free
rate and a high Sharpe ratio of the consumption claim, consistent with the Sharpe ratio of
the market portfolio in our data sample.

4.3 Misallocation, R&D, and Growth

In this section, we show that misallocation Mt robustly captures low-frequency growth
fluctuations in both the data and the model. Predictive regressions over long horizons
confirm Mt’s predictive power in tracking long-term growth trends. Additionally, in
Online Appendix 3, we exploit industries’ differential exposure to the policy shock from the
American Jobs Creation Act (AJCA) using a difference-in-differences (DID) framework. This
analysis provides direct causal evidence for the model’s core mechanism, demonstrating
that misallocation drives long-run growth through its impact on R&D investment.

In Panel A of Table III, we study the relationship between misallocation Mt and R&D
intensity. In both the data and model (i.e., the simulated data), we regress R&D intensity in
the current year (t) and the next year (t + 1) on misallocation Mt, as follows:

St+h
Nt+h

= α + βMt + εt+h, with h = 0, 1. (43)

The results indicate that higher misallocation is associated with a decline in contemporane-
ous R&D intensity and predicts a lower R&D intensity in the next year.
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Table III: Misallocation, R&D, and growth in the data and model.

Panel A: R&D intensity (St/Nt)

t t + 1

Data Model Data Model

β −0.090 −0.039 −0.088 −0.042

(0.014) (0.004) (0.011) (0.004)

Panel B: Consumption growth (∆C̃t)

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

Data Model Data Model Data Model Data Model Data Model

β −0.048 −0.140 −0.085 −0.201 −0.116 −0.246 −0.141 −0.275 −0.157 −0.276

(0.014) (0.017) (0.021) (0.033) (0.029) (0.047) (0.032) (0.064) (0.036) (0.080)

Panel C: Output growth (∆Ỹt)

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

Data Model Data Model Data Model Data Model Data Model

β −0.049 −0.109 −0.080 −0.243 −0.100 −0.218 −0.120 −0.225 −0.135 −0.233

(0.024) (0.032) (0.038) (0.037) (0.049) (0.054) (0.053) (0.064) (0.059) (0.075)

Note: The data sample is yearly and spans the period from 1965 to 2016. In the model, we simulate a sample
of 52 years as in the data. Robust standard errors are reported in brackets.

Next, we examine whether misallocation Mt covaries with the slow-moving component
of expected growth by testing whether misallocation negatively predicts future consumption
growth in the data and model. We run the following regression:

∆C̃t,t+1 + · · ·+ ∆C̃t+h−1,t+h = α + βMt + εt,t+h, (44)

where h = 1, · · · , 5 and ∆C̃t+h−1,t+h = ln Ct+h − ln Ct+h−1 is the one-year log consumption
growth from year t + h − 1 to t + h. Panel B of Table III presents the results of projecting
future consumption growth over horizons of 1 to 5 years on misallocation Mt. In both
the data and model, the slope coefficients are negative and statistically significant. The
coefficients are more negative for longer horizons because consumption growth is persistent.
Our estimates indicate that misallocation Mt comoves with the slow-moving component
of expected consumption growth. We further run regressions similar to (44) using future
log output growth as the dependent variable. Panel C of Table III presents the results of
projecting future output growth over horizons of 1 to 5 years on misallocation Mt. The
patterns are similar to those of consumption growth in Panel B.

Taken together, we find empirical evidence that the aggregate growth rates of consump-
tion and output can be predicted by our empirical measure of misallocation Mt, especially

31



Table IV: Asset pricing implications under different model specifications.

(1) (2) (3) (4) (5) (6) (7)

Baseline dNt ≡ 0 e−θ CRRA (γ = 1/ψ) Mt ≡ E[Mt]

= 0.2 = 0.45 = 1.5 = 3

E[Re
m,t] (%) 0.54 0.02 0.01 0.08 0.02 0.02 0.02

σ[Re
m,t] (%) 1.39 0.72 1.17 1.09 1.01 0.57 0.31

SR[Rm,t] 0.39 0.02 0.01 0.08 0.02 0.04 0.06

E[r f ,t] (%) 1.58 0.98 1.93 1.88 3.60 6.17 1.78

σ[r f ,t] (%) 0.47 0.34 0.33 0.41 0.47 0.57 0.02
σ[Λt+1/Λt ]
E[Λt+1/Λt ]

0.61 0.03 0.06 0.10 0.03 0.05 0.08

Note: In the table, Re
m,t = Rm,t − r f ,t is the consumption claim’s return Rm,t in excess of the risk-free rate r f ,t;

SR[Rm,t] = E[Re
m,t]/σ[Re

m,t] is the Sharpe ratio of the consumption claim; and σ[Λt+1/Λt]/E[Λt+1/Λt] is the
ratio of the volatility of 1-year SDF to its mean. Column (1) presents the results under the baseline calibration.
In column (2), we adopt the same baseline calibration but eliminate the growth of knowledge stock Nt by
imposing dNt ≡ 0 exogenously. In columns (3) and (4), we use alternative values of parameter θ. In columns
(5) and (6), we impose γ = 1/ψ and set different values of parameter γ. In column (7), we adopt the same
baseline calibration but eliminate fluctuations in misallocation by imposing Mt ≡ E[Mt] exogenously. For
columns (3) to (6), we calibrate χ and σ to generate the same model-implied average consumption growth
rate and volatility as those reported in Panel B of Table I. Other parameters are set at the same values as the
baseline calibration.

over long horizons. Our findings lend empirical support to the notion of misallocation-
driven low-frequency growth fluctuations. In the simulated data, similar patterns are
observed due to the mechanism elaborated in Section 3.4. Thus, our model helps rationalize
and identify misallocation as an economic source of low-frequency growth fluctuations in
the data.

4.4 Asset Pricing Implications of Misallocation

We now evaluate the asset pricing implications of misallocation. In Table IV, column (1)
presents the implications in the baseline model. The aggregate consumption claim has
a high Sharpe ratio of 0.39, which is similar to that of the market portfolio in the data.
Because the model is calibrated to match an annualized volatility of consumption growth
of 1.5%, the excess return of the consumption claim has an annualized volatility of only
1.39%. Thus, the average excess return is low due to low volatility. The risk-free rate has an
average value of 1.58% and low volatility, as in the data. We also compute the ratio of the
volatility of 1-year SDF to its mean, σ[Λt+1/Λt]

E[Λt+1/Λt]
, which determines the maximal Sharpe ratio

in the model. The baseline calibration implies a high value of 0.61.
Next, we study different model specifications. To study the role of economic growth,
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we consider a specification with no economic growth in column (2), setting dNt ≡ 0.15

Compared with the baseline model in column (1), the volatility of the consumption claim’s
excess returns drops by about half, from 1.39% to 0.72%. The average excess return declines
even more significantly, resulting in a Sharpe ratio of only 0.02.

In columns (3) and (4), we further show that fluctuations in economic growth are not
sufficient to rationalize a high Sharpe ratio; it is important for misallocation fluctuations to
generate low-frequency growth fluctuations. Specifically, following the insight illustrated
in Figure 2, the persistence of idiosyncratic productivity determines the persistence of
growth. We set e−θ at 0.2 and 0.45 in columns (4) and (5), respectively, which results in a
lower yearly autocorrelation of consumption growth than that in the baseline calibration,
where e−θ = 0.85. Compared with column (1), the Sharpe ratio of the consumption claim
drops significantly when idiosyncratic shocks are not persistent. These results highlight the
importance of low-frequency growth fluctuations in amplifying the impacts of misallocation
fluctuations on risk premia. Our findings complement the main insights of Buera and
Shin (2011) and Moll (2014), who analyze the impacts of the persistence of idiosyncratic
productivity on TFP, welfare, and the speed of transition through the self-financing channel.

In columns (5) and (6), we adopt a specification where the representative agent is
characterized by preferences with constant relative risk aversion (CRRA), setting γ = 1/ψ.
In this setup, the Sharpe ratio predicted by the model turns out to be notably low, whereas
the risk-free rate is exceptionally high, a consequence of the low EIS. When considering a
(non-recursive) CRRA preference structure, the valuation effects of low-frequency fluctua-
tions in consumption growth are negligible. This occurs because the representative agent
effectively prices the risk of the shock driving expected future consumption growth at zero.

Finally, in column (7), we exogenously fix misallocation Mt at its long-run mean E[Mt].
The volatility of the consumption claim’s excess returns falls to 0.31 and the Sharpe ratio
drops to 0.06. This occurs because, within our model, the aggregate shock dWt drives
economic fluctuations mainly through its effect on Mt, while the aggregate knowledge
stock-capital ratio Et has small conditional volatility.16

15Under this specification, the economy’s aggregate output and consumption still fluctuate due to aggregate
shocks. However, there is no long-run growth as the average growth rates of Yt and Ct are 0.

16This property differentiates our mechanism from those of Kaltenbrunner and Lochstoer (2010) and
Kung and Schmid (2015), whose models generate low-frequency growth fluctuations through time-varying
aggregate capital stock or R&D expenditure, rather than the covariance between capital and productivity
across firms (i.e., Mt).

33



Table V: Welfare gains from removing consumption fluctuations.

(1) (2) (3) (4) (5) (6)

Baseline dNt ≡ 0 e−θ CRRA (γ = 1/ψ)

= 0.2 = 0.45 = 1.5 = 3

Welfare gains (%) 10.34 0.33 0.24 0.98 0.58 0.65

Note: The specification in each column is described in Table IV. We focus on consumption-equivalent welfare.
Specifically, we solve a similarly parameterized model without aggregate shocks (i.e., σ = 0). We compute
the percentage change in lifetime consumption required to give the representative agent facing aggregate
fluctuations the same expected lifetime utility as the representative agent on the deterministic balanced
growth path without aggregate shocks. That is, we compute the percentage welfare gain, ζ, according to
U0((1 + ζ)C0) = U0(C0), where U0(C0) and U0(C0) represent the representative agent’s utility at t = 0 in a
model with and without aggregate shocks, respectively.

4.5 Welfare Costs of Misallocation-Driven Growth Fluctuations

In our model, consumption fluctuations are almost entirely driven by fluctuations in
misallocation. Therefore, by evaluating the welfare costs associated with consumption
fluctuations, we are able to offer a quantitative analysis of the welfare implications of
misallocation-driven growth fluctuations within our theoretical framework. It is acknowl-
edged that, in real-world scenarios, consumption fluctuations may result from a variety of
aggregate variables. Bearing this in mind, our objective is not to precisely isolate the welfare
costs directly attributable to misallocation fluctuations. Rather, we aim to demonstrate
that fluctuations in misallocation have the potential to inflict significant welfare costs by
causing consumption fluctuations, within a model that is calibrated to align with observed
aggregate consumption moments (see Panel A of Table II).

Table V reports the results. Column (1) shows that the welfare gain from removing all
consumption fluctuations is 10.34% under the baseline calibration. Moreover, in columns (2)
through (6), we compute the welfare gains from removing consumption fluctuations under
different specifications, similar to those in Table IV. Columns (2) through (4) show that
the welfare gains will be small if misallocation cannot affect economic growth (i.e., setting
dNt ≡ 0) or if misallocation is not persistent enough to generate low-frequency growth
fluctuations (i.e., e−θ = 0.2 or e−θ = 0.45).17 Columns (5) and (6) show that if the agent’s
preference is non-recursive (i.e., setting γ = 1/ψ), the welfare gains are also small.

17Columns (3) and (4) show that as idiosyncratic productivity becomes more persistent (i.e., higher e−θ),
the welfare gain from removing consumption fluctuations increases. This finding is related to the key insight
of Moll (2014), who shows that as the persistence of idiosyncratic productivity increases, the transition speed
from a distorted initial state to the steady state slows down, resulting in potentially larger welfare losses
during transitions. In our model with stochastic growth, the slow “transition” in response to aggregate
shocks generates endogenous low-frequency growth fluctuations, which result in large welfare costs under
the recursive preference of the representative agent.
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Taken together, our findings suggest that the model posits significant welfare costs
arising from misallocation-driven consumption fluctuations, attributable to a combination
of two distinct properties. First, as elaborated in Section 3.4, the model is able to generate
low-frequency growth fluctuations through slow-moving misallocation. Second, given
the representative agent’s recursive preferences, news about future consumption growth
impacts his current marginal utility. As illustrated in Table IV, these two properties also
allow the model to account for the observed high Sharpe ratio in the capital market. Within
our model framework, there is a direct link between the welfare costs associated with
consumption fluctuations and the Sharpe ratio observed in the capital markets. Intuitively,
both metrics are elevated when variations in the representative agent’s marginal utility
in response to aggregate shocks are more pronounced. This connection is exploited by
Alvarez and Jermann (2004) to estimate the welfare gains from eliminating all consumption
fluctuations by directly applying the no-arbitrage principles on financial market data
without specifying consumer preferences. We implement the method proposed by Alvarez
and Jermann (2004) in our 1965-2016 sample and estimate that the welfare gain from
eliminating all consumption fluctuations ranges from 6.03% to 23.97%, which nests the
value implied by our structural model.18

The results in Tables IV and V show that misallocation-driven growth fluctuations can
have significant implications for asset prices and welfare. As misallocation arises from firms’
financial constraints in our model, our results are related to the literature on the connection
between financial frictions and misallocation (e.g., Buera and Shin, 2013; Midrigan and Xu,
2014; Moll, 2014). A direct comparison of our model’s quantitative implications with these
models in the literature is difficult due to the differences in model setups. For example,
our model involves stochastic growth driven by misallocation fluctuations, whereas these
models quantify losses from misallocation in steady states or transitions, without aggregate
shocks. In addition, although our model incorporates both the final goods and intermediate
goods sectors, we only consider misallocation in the final goods sector.

Despite the differences in model setups, our findings in Table V are broadly consistent
with the literature. For example, consistent with the calibration of Buera and Shin (2013) and
Moll (2014), our calibration of large idiosyncratic shocks implies that firm-level productivity
is not very persistent. As a result, purely through the variation in misallocation Mt, the
model is able to generate a TFP volatility of 2.48%, as in the data. This result is consistent
with the finding of Buera and Shin (2013) that misallocation resulting from financial frictions

18Alvarez and Jermann (2004) propose different estimation methods to demonstrate robustness. We use
their first method, which projects consumption growth onto the payoff space spanned by a set of tradable
assets.
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can generate sizable TFP losses.19

While Buera and Shin (2013) focus on quantifying misallocation across the intensive
margin (that is, differences in MRPK among active firms due to financial frictions), other
research (e.g., Banerjee and Moll, 2010; Buera, Kaboski and Shin, 2011; Midrigan and
Xu, 2014) underscores the significance of misallocation at the extensive margin (that is,
productive firms may stay inactive or refrain from entering the market due to financial
frictions). Depending on the calibration and model setup, Buera, Kaboski and Shin (2011)
quantify that both extensive and intensive margins are important, whereas Midrigan and
Xu (2014) estimate large TFP losses through the extensive margin rather than the intensive
margin. In our model, misallocation due to financial frictions reduces the final goods
sector’s productivity Ht, which captures the intensive margin effect. A lower Ht, in turn,
reduces the profits of innovators. Through the free-entry condition (8), this further leads to
a lower growth rate of the variety of intermediate goods, dNt/Nt (see equation (7)), which
can be seen as capturing the extensive margin effect.20 The results in column (2) of Tables
IV and V indicate that the extensive margin plays a crucial role in rationalizing the high
Sharpe ratio in the capital market and in generating a large welfare cost of misallocation-
driven growth fluctuations. These findings support the significant role of extensive-margin
misallocation quantified by Midrigan and Xu (2014).

4.6 Assessing the Performance of Parametric Approximation Methods

In this section, we evaluate the accuracy of our parametric approximation by comparing
the model solution with the solution of standard global numerical approximation methods.
In particular, we solve the calibrated model using standard numerical methods by directly
tracking the capital share ωt(z) using a selected number of moments. We show that, under
the baseline calibration, our solution closely matches those obtained through standard
numerical approximation methods both on the deterministic balanced growth path and in
the full model with aggregate shocks.

Deterministic Balanced Growth Path. We begin by evaluating the performance of our
parametric approximation method on the deterministic balanced growth path without

19Several papers measure the importance of financing costs in generating misallocation. For example,
Gilchrist, Sim and Zakrajsek (2013) find that the costs of debt play a limited role in generating misallocation
based on a sample consisting of about 500 (mostly large) firms that issue corporate bonds. David, Schmid
and Zeke (2022) find that the costs of equity are important in generating misallocation. Whited and Zhao
(2021) find significant variations in the costs of debt and equity across U.S. firms.

20There is no misallocation along the intensive margin in the intermediate goods sector because all firms in
this sector are homogeneous.
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Note: This figure compares the capital share ω(z) on the deterministic balanced growth path solved by our
parametric approximation method and that solved by the histogram-based numerical approximation method.
All the parameter values are taken from the baseline calibration in Table I except for θ (consider three values,
exp(−θ) = 0.5, 0.85, 0.95) and ψ (set its value to match a growth rate of 1.75% for corresponding θ).

Figure 4: Capital share distributions on the deterministic balanced growth path.

aggregate shocks. We analytically justify the validity of this approximation using the
Berry-Esseen bound (Tikhomirov, 1980; Bentkus, Gotze and Tikhomoirov, 1997) in Online
Appendix 6. Furthermore, we verify the validity of our parametric approximation method
by comparing its results with those obtained from a global solution method. On the
deterministic balanced growth path, the capital share distribution, ω(z), is time invariant.
We solve the model numerically by approximating ω(z) non-parametrically using a fine
histogram following the solution method of Moll (2014). To ensure accuracy, we use 251
equally spaced grids for idiosyncratic productivity z over the interval [zmin, zmax], with
zmin = 0 and zmax = exp(Φ−1(0.99)σz/

√
2). The choice of zmax corresponds to the 99th

percentile of the steady-state distribution of zi,t. We discretize the time horizon using a
short time period, ∆t = 1/200, and verify that the solution does not change when finer grid
points are chosen.

Figure 4 compares the capital share ω(z) on the deterministic balanced growth path
solved by our parametric approximation method with that solved by the histogram-based
numerical approximation method. Panel A shows that under the baseline calibration, the
two methods produce similar solutions of ω(z). Compared with parametric approximation,
numerical approximation generates a larger capital share at higher levels of z. Intuitively,
this is because with a yearly autocorrelation of exp(−θ) = 0.85, idiosyncratic productivity
z is persistent, allowing productive firms to accumulate significant amounts of capital in
steady states. This results in a capital share with a fat right tail, which cannot be perfectly
approximated by the log-normal density function under our parametric specification.
Compared with the numerical approximation method with a fine histogram, this is the
main approximation error produced by our parametric approximation method. In panels

37



Table VI: Key endogenous variables on the deterministic balanced growth path.

Variables Parametric Numerical Variables Parametric Numerical

Firm profitability, κ 0.027 0.028 Wage-capital ratio, w/A 0.214 0.231

Productivity cutoff, z 1.729 1.709 Dividend-capital ratio, D/A 0.038 0.039

Marginal q of intangible capital 0.473 0.473 R&D-capital ratio, S/A 0.127 0.137

Productivity, H 1.618 1.557 Growth rate, g (%) 1.750 1.709

Flow profit of innovators, π 0.080 0.080 Risk-free rate, r f (%) 1.946 1.924

Note: The columns labeled “Parametric” and “Numerical” present the values of corresponding variables on
the deterministic balanced growth path solved by our parametric approximation method and the histogram-
based numerical approximation method, respectively. All the parameter values are set according to Table I.

B and C, we further compare ω(z) solved by the two methods under two alternative
calibrations, with exp(−θ) = 0.5 and exp(−θ) = 0.95, respectively. It is clear that the ω(z)
solved by the two methods are closer to each other when idiosyncratic productivity is less
persistent (see panel B). By contrast, the ω(z) solved by the two methods diverge more
significantly when idiosyncratic productivity become more persistent (see panel C).

Overall, Figure 4 shows that under our baseline calibration with exp(−θ) = 0.85,
corresponding to the persistence of idiosyncratic productivity shock estimated by Asker,
Collard-Wexler and Loecker (2014) based on U.S. census data, the parametric approximation
method can capture the capital share ω(z) with sufficient accuracy. Table VI further shows
that various key endogenous aggregate variables implied by the two solution methods have
similar magnitudes under the baseline calibration.

Stochastic Steady State with Aggregate Shocks. On the deterministic balanced growth
path, we theoretically establish the effectiveness of the parametric approximation method
using the Berry-Esseen bound and verify its consistency with the solution obtained through
the numerical approximation method. When aggregate shocks are incorporated, we expect
the solutions from the parametric and numerical approximation methods to remain aligned,
provided the shocks are Brownian in nature and moderate in magnitude. To validate
this formally, we use standard global numerical approximation techniques to solve the
full model with aggregate shocks under our baseline calibration. Following Krusell and
Smith (1998), we address the challenge of the infinite dimensionality of the cross-sectional
distribution by approximating it with a finite set of moments. Specifically, we use the first
few moments to represent the firm distribution (see Online Appendix 7 for details) and
solve the model using a globally accurate projection technique.

In Table VII, we compare the key variables solved by our baseline parametric approx-
imation method and those solved by 2nd-, 3rd, and 4th-order numerical approximation
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Table VII: Accuracy of our parametric approximation in stochastic steady states.

Variables Parametric Numerical

2nd-order 3rd-order 4th-order

Firm profitability, E[κt] 0.027 0.027 0.027 0.027

Productivity cutoff, E[ln(zt)] 1.526 1.514 1.393 1.308

Marginal q of intangible capital, E[qt] 0.483 0.483 0.483 0.483

Productivity, E[ln Ht] 0.664 0.679 0.660 0.645

Flow profit of innovators, E[πt] 0.081 0.081 0.081 0.081

Wage-capital ratio, E[ln(wt/At)] −1.900 −1.901 −1.861 −1.834

Dividend-capital ratio, E[ln(Dt/At)] −3.337 −3.334 −3.314 −3.303

R&D-capital ratio, E[ln(St/At)] −2.412 −2.413 −2.376 −2.351

Consumption-capital ratio, E[ln(Ct/At)] −1.696 −1.697 −1.659 −1.634

Knowledge stock-capital ratio, E[ln(Nt/At)] 0.104 0.103 0.140 0.165

Capital growth, E[∆Ãt] (%) 1.754 1.750 1.743 1.730

Consumption growth, E[∆C̃t] (%) 1.753 1.750 1.743 1.730

Volatility of consumption growth, var[∆C̃t] (%) 1.668 1.671 1.492 1.358

Risk-free rate, E[r f ,t] (%) 1.580 1.590 1.697 1.745

Consumption claim’s return, E[Rm,t] (%) 2.124 2.112 2.074 2.040

Note: The column labeled “Parametric” presents the values of the corresponding variables in the stochastic
steady state, obtained using our parametric approximation method. The columns labeled “2nd-order,” “3rd-
order,” and “4th-order” show the results for various orders of numerical approximations of the capital share
distribution ωt(z). All the parameter values are taken from our baseline calibration in Table I.

methods. The results of our parametric approximation method are very similar to the results
of the 2nd-order numerical approximation method, because our parametric approximation
method essentially keeps track of the first and second moments of ωt(z).21 Table VII also
shows that the differences between our baseline parametric approximation method and the
4th-order numerical approximation method are generally within 10% for most variables.
These results suggest that the model implications based on parametric approximation are
quantitatively similar to those based on numerical approximation methods.

5 Conclusion

This paper develops an analytically tractable general equilibrium model with heterogeneous
firms and endogenous stochastic growth to quantitatively explore the relationship between

21The first moment is m1,t = −Mtσ
2
z /2 and the second moment is m2,t = σ2

z /2, which is a constant under
our parametric approximation method. However, the results of our parametric approximation method do not
exactly match the results of the 2nd-order numerical approximation method due to a subtle difference in
implementation procedures (see footnote 9 in Online Appendix 7 for details).
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misallocation, growth prospects, and the systematic risk that shapes asset prices in capital
markets. In our model, increased misallocation reduces economic growth by depressing
the marginal q of intangible capital and thus R&D incentives. Misallocation evolves slowly,
leading to low-frequency fluctuations in economic growth. Central to this mechanism
is the valuation channel, which significantly magnifies the effects of misallocation on
economic growth. When agents have recursive preferences, the low-frequency growth
fluctuations driven by slow-moving misallocation not only rationalize several crucial asset
pricing moments but also suggest significant welfare costs associated with misallocation
fluctuations.

In the data, we construct a misallocation measure motivated by our theory and provide
supporting evidence for the model predictions. We show that the value of our empirical
measure of misallocation is persistent and increases during economic downturns. Moreover,
an increase in misallocation predicts declines in R&D intensity and reductions in the growth
of aggregate consumption and output over long horizons.
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