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1 Introduction
In the information age, the production of goods and services increasingly relies on the
processing of data (Agrawal et al., 2018; Goldfarb and Tucker, 2019). Since some of the
most valuable data concerns personal information on human subjects, its growing use has
led to new policy attention and regulation. One of the most influential privacy policies
is the European General Data Protection Regulation (GDPR), which was enacted in 2016
and affects more than 20 million firms across dozens of countries (GDPR.eu, 2019). Many
countries have since followed this example: as of early 2022, 157 countries had enacted
legislation to secure data and privacy (Greenleaf, 2022).

While these privacy laws help harmonize and improve data collection practices, they
can also be costly for firms (Johnson et al., 2022; Aridor et al., 2022; Goldberg et al.,
2023; Peukert et al., 2022). For example, privacy laws may generate a wedge between the
marginal product of data and its (perceived) marginal cost, leading firms to substitute data
with other inputs. Variations in these wedges across firms can result in misallocation of
inputs in the economy (Hsieh and Klenow, 2009). Given the increasing role of data in firm
production, understanding how privacy regulations affect firms’ input decisions is of the
utmost importance.

However, large-scale empirical evidence of how privacy laws affect firm data decisions,
the key margin targeted by privacy laws, is scant. Studying this question is complicated
for a number of reasons (Johnson, 2022). First, firms’ data and computation usage are
inherently difficult to observe, as standard firm datasets do not provide information on
these measures. Second, there is no unified framework for analyzing the role of data in firm
production (Veldkamp and Chung, 2023). Any such framework needs to be parsimonious
while having enough flexibility to allow the impact of privacy laws to depend on the
importance of data and computation for firms.

In this paper, we make progress on these fronts by studying how the GDPR affected
firms’ computation and data choices using confidential data from one of the largest global
cloud-computing providers. The cloud is an ideal setting for our study because it enables us
to observe high-frequency firm decisions about data and computation usage over a seven-
year period from 2015 to 2021. Our data contains detailed information on the monthly
cloud usage of over a hundred thousand firms and comprises hundreds of zettabytes (i.e.,
hundreds of millions of terabytes) of data and billions of core-hours.1 This data spans most
major industries, from manufacturing to finance, allowing us to analyze the impacts of
privacy regulations beyond the digital economy.

1We omit precise numbers to avoid disclosing potentially business-sensitive information.
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We first apply this data toward studying the direct impact of the GDPR on firm data
and computation choices. In our first set of analyses, we compare domestic firms in
the European Union (EU) subject to the GDPR to similar, non-treated firms from the same
industry in the US using a difference-in-differences approach. In our second set of analyses,
we develop and estimate a production function framework with data and computation.
We use this framework both to study how firms combine data and computation, and to
infer the wedges generated by the GDPR.

We begin by summarizing the key features of the GDPR that affect firm input decisions.
The GDPR is a landmark privacy policy that was enacted in 2016 and implemented in 2018.
Notably, its regulations apply to all firms in the EU, as well as non-EU firms offering goods
or services to “data subjects” within the EU. This law increased the cost of collecting and
storing data for firms by requiring firms to enhance data protection, increasing penalties
in case of data breaches, and giving consumers more information about firms’ tracking
behavior. Survey evidence suggests that GDPR compliance is costly, ranging from $1.7
million for small to medium-sized businesses to $70 million for large ones (Accenture,
2018; Hughes and Saverice-Rohan, 2018).

Next, we discuss the specific context in which we observe firm data decisions: the
cloud. Cloud computing is a widely adopted information technology (IT) that enables
firms to store and process data remotely over the internet (Byrne et al., 2018; Greenstein
and Fang, 2020; DeStefano et al., 2023). Using data from our cloud computing provider, we
observe firm-level monthly usage of “storage”—the amount of data stored in gigabytes—
and “compute”—the number of core-hours of computation. We also observe other infor-
mation, such as prices and the location of the data centers where firms source services.
We match our cloud usage data to other data sources that provide information on firm
characteristics.

Our first set of results comes from an event study design comparing data and com-
putation use among comparable firms in the EU to the US after the GDPR. We find that
EU firms store on average 26% less data than US firms two years after the GDPR. The
direction of this relative decline in storage is perhaps unsurprising, given that the GDPR
primarily regulates data usage, but the magnitude is noteworthy. Interestingly, we also
find that EU firms decreased their computation relative to US firms by 15%—implying
that firms became less data-intensive after the GDPR.2 Furthermore, we observe substan-
tial heterogeneity in the effects of the GDPR across industries. Finally, we look at how

2It is ex-ante unclear how the GDPR would affect computation; this effect theoretically depends on the
substitutability between data and computation (Acemoglu, 2002). For example, if data and computation
were strong substitutes, firms could replace data with computation to minimize the effects of the GDPR.
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the effects vary with the regulatory stringency across EU countries, as enforcement of
the GDPR is delegated to individual countries. Although the differences are not statisti-
cally significant at the 5% level, our estimates suggest that firms in countries with stricter
enforcement decrease storage and computation more than those in countries with more
lenient enforcement.

While our event study findings provide direct evidence of the impact of GDPR on
firms, they only offer a partial understanding of the associated economic costs. Motivated
by this, we propose and estimate a production function model where firms use data and
computation to produce “information” through a constant elasticity of substitution (CES)
function. This production function includes two key parameters: (i) the firm-level compute
(augmenting) productivity, which determines relative factor intensities of computation and
data (Doraszelski and Jaumandreu, 2018; Raval, 2019; Demirer, 2020) and (ii) the elasticity
of substitution between computation and data, which determines how firms respond to
changes in factor prices (Hicks, 1932). Our model can accommodate many of the uses
of data proposed in the literature, such as being an intermediate input in the production
function and augmenting firm productivity (e.g., Jones and Tonetti, 2020; Farboodi and
Veldkamp, 2022), and emphasizes the role of computation in firm production.

Our information-production model provides an input demand function that links firms’
optimal data and computation choices to input prices and model parameters. We estimate
this input demand function industry-by-industry to recover changes in the elasticity of
substitution and input demand wedges due to the GDPR.3 We estimate that data and
computation are strong complements in production, with our estimates of tbe elasticity
of substitution ranging from 0.44 (non-software services) to 0.34 (manufacturing). This
strong complementarity suggests that firms cannot easily substitute toward computation
when faced with increased data costs. To our knowledge, this is the first estimate of the
elasticity of substitution between different IT inputs.

To recover the distortion generated by the GDPR, we model it as an unobserved wedge
(to the econometrician) between the marginal cost of storing data in the cloud and the
total marginal cost that includes GDPR compliance costs. This wedge arises from various
sources, including penalties in case of breaches, higher data security requirements, and
the need for detailed data records. We estimate firm-specific wedges by attributing them
to the changes in post-GDPR input choices unexplained by changes in input prices in the
EU (relative to the US), or by changes in the elasticity of substitution.

Our production function analysis suggests that the GDPR made data storage 20%

3We also account for potential sources of endogeneity in prices by using a shift-share instrument, which we
describe in further detail in Section 5.3.1.
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more costly for firms on average. Firms in data-intensive industries face higher costs: the
effect is the largest in the software sector (24%), followed by manufacturing (18%), and
services (18%). What determines the increase in costs? To provide suggestive evidence
for this question, we correlate firm-level characteristics with our estimated firm-specific
wedges. We consider two firm characteristics: (i) firm size, measured by the number
of employees, and (ii) pre-GDPR compute productivity, estimated from the production
function specification. We find that larger and more compute-intensive firms experienced
smaller wedges from the GDPR.

In the last part of the paper, we use the model to estimate the change in the cost of
“information production” due to the increase in the cost of data storage. For this, we
calculate the cost of information with and without the GDPR wedge holding the price of
data and computation fixed. We find that the GDPR resulted in a 4% increase in the cost of
producing information, a significantly smaller impact than the increase in the cost of data.
This is primarily because data is significantly cheaper than computation and therefore
accounts for only a small share of the information cost. In other words, the GDPR targets
the less costly IT input, which limits its impact on the cost of information. Finally, we
conduct a simple back-of-the-envelope calculation assuming a CES production technology
in information and non-information inputs (e.g., capital, labor), which we calibrate using
estimates from Lashkari et al. (2023), to estimate the impact of GDPR on the production
cost. We find that production costs increase on the order of 0.5% for software firms, with
smaller effects in the less data-intensive industries.

We conduct additional analyses to show that our results are robust to many concerns.
First, we show that our results are similar when we exclude multi-cloud firms, suggesting
that results are not driven by EU firms substituting toward other cloud providers. Second,
we find similar results when estimating our empirical strategy using only start-ups, which
tend to use cloud computing as their only IT—suggesting that substitution to traditional
IT is not a large concern. Third, we show that our results are not driven by differential
trends in cloud prices in the EU and the US. Finally, we estimate our specification while
excluding firms using web services or with listed websites, showing that the results do not
only come from websites, which experienced cookie consent changes under the GDPR.

Nevertheless, we acknowledge some relevant limitations of our study. Unlike many
previous GDPR studies, our paper is based on a large sample of firms. While this allows
us to draw more generalizable conclusions about firms’ data uses, the trade-off is that
we observe less detailed information than an in-depth single-firm study. For example,
although we observe detailed measures of the quantity of information stored in our data,
we cannot be as precise about the role of data for the firm as more focused studies can be.
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We conclude the introduction by highlighting that our results do not provide a defini-
tive answer on the overall welfare impact of privacy laws. Privacy laws benefit consumers
by protecting their data and privacy (Arrieta-Ibarra et al., 2018). Despite their benefits,
compliance with them is costly for firms, and providing large-scale estimates of the asso-
ciated compliance costs is of first order importance. However, further evidence is needed
to fully understand the benefits of these laws and how they compare with any potential
harm to firms.4

Contribution to the Literature The first body of literature we contribute to is the re-
search on the impact of the GDPR on firms. These papers find that the GDPR decreased
the investment in technology ventures (Jia et al., 2021) while encouraging app exit and
discouraging app development (Kircher and Foerderer, 2020; Janßen et al., 2021). Several
papers studying the GDPR document adverse impacts on digital tracking and advertising:
the GDPR decreased the usage of tracking technology tools, such as cookies, in the im-
mediate months after implementation (Aridor et al., 2022; Lefrere et al., 2022; Lukic et al.,
2023), decreased page views and e-commerce revenue (Goldberg et al., 2023), decreased
the number of website visits (Schmitt et al., 2022), increased market concentration in the
advertising sector (Peukert et al., 2022; Johnson et al., 2022) and increased search frictions
(Zhao et al., 2021). On the benefits side, some papers argue that GDPR requirements
may have differentially filtered out low-value customers for firms, increasing the average
value of remaining consumers to advertisers (Aridor et al., 2022) and increasing effective
targeted advertising (Godinho de Matos and Adjerid, 2022).

A subset of the GDPR papers study outcomes outside the digital economy. These
papers find that the GDPR may have decreased profits, sales, and profit margins (Koski
and Valmari, 2020; Chen et al., 2022). Some papers were concerned about the effect of
privacy regulation on the competitive structure of data-intensive industries, with smaller
firms being the most affected (Campbell et al., 2015; Koski and Valmari, 2020). We note that
although most evidence suggests that the GDPR has significantly impacted data-driven
economic activity, Zhuo et al. (2021) find a null effect for short-term extensive margin
changes in the formation and termination of internet infrastructures between GDPR and
non-GDPR countries.5,

6

While our paper builds on an identification strategy similar to some of these GDPR
papers, it is different in two main aspects. First, because of the richness of our data, we
directly study firms’ data and computation decisions, margins which are directly targeted

4As shown in the literature, estimating the benefits of privacy is challenging (Acquisti et al., 2016; Lin and
Strulov-Shlain, 2023).

5More recent literature has studied California Consumer Privacy Act (Canayaz et al., 2022; Doerr et al., 2023).
6Johnson (2022) provides a comprehensive survey of this literature.
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by the regulation. In particular, our data is well-suited for studying firm adjustments on the
intensive margin, and the heterogeneity across industries. Second, we take a production
function approach. Crucially, this approach allows us to structurally estimate the role of
data and computation in production and to calculate the cost of the GDPR for firms.

Second, we contribute to the literature that incorporates data in firm production. This
literature has proposed different ways of how firms use data. Jones and Tonetti (2020)
model data as a non-rival input that is generated as a byproduct of production from
all firms in the economy. Farboodi and Veldkamp (2022) model data as a productivity-
enhancing input that helps firms accurately predict future outcomes. We complement this
literature by developing and estimating a firm production framework with data, providing
empirical estimates on how firms combine data and computation.

Third, our paper is related to the literature on misallocation, which documents large
differences in the efficiency of factor allocations resulting from various frictions (Restuccia
and Rogerson, 2008; Hsieh and Klenow, 2009). We employ a similar identification strategy
by modeling distortion as a wedge between the marginal revenue product of an input and
its price. Most of this literature abstracts from the origin of frictions, treating them as
model primitives. In contrast, we study an important regulatory change as the source of
firms’ input distortion.

Our paper also relates to the growing body of literature on the use of personal data by
firms (e.g., Bergemann and Bonatti, 2015; Arrieta-Ibarra et al., 2018; Bergemann et al., 2018;
Acemoglu et al., 2022; Bergemann and Bonatti, 2022; Bimpikis et al., 2023) by providing
empirical evidence on the value of data in firm production. We also directly contribute to
the economics of privacy literature (Goldfarb and Tucker, 2011, 2012; Acquisti et al., 2016;
Athey et al., 2017; Choi et al., 2019; Montes et al., 2019; Ichihashi, 2020; Loertscher and
Marx, 2020; Chen et al., 2021; Krähmer and Strausz, 2023) by evaluating the effects of the
largest privacy regulation on important firm outcomes.

2 Institutional Setting
This section first discusses the relevant details of the GDPR. We then describe cloud
computing technology, the setting for our primary data source in this paper.

2.1 The European General Data Protection Regulation

There is perhaps no policy more important in the modern privacy landscape than the
GDPR. As Johnson (2022) notes, "In many ways, the GDPR set the privacy regulation
agenda globally.” As such, understanding the consequences of the GDPR is vital not only
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because of its direct impacts on firms but because of its crucial role in shaping privacy
laws. In this section, we describe the key features of this policy and how they affect firms.

The GDPR is a set of rules that govern the collection, use, and storage of personal
data belonging to individuals within the EU. It was enacted in April 2016 and came into
force in May 2018. By consolidating and enhancing existing privacy provisions, the GDPR
introduced a harmonized approach to privacy regulations across the EU.7 We provide a
detailed description of the changes required for firms after GDPR in Appendix B.1 and
summarize its most important characteristics below.

Two aspects of the GDPR are particularly important for our paper. First, the GDPR
takes a data protection approach rather than a consumer protection approach as in the
US (Jones and Kaminski, 2020).8 A data protection approach imposes a set of costly
responsibilities on firms to protect data, in addition to a substantive system of individual
rights. Second, the GDPR takes a risk-based approach to data protection without clarity
on the specific measures firms must take to protect data, making implementation firm-
dependent (Hustinx, 2013; Gellert, 2018). For example, Article 25 (Data Protection by
Design and by Default) uses phrases such as "taking into account the state of the art, the
cost of implementation [. . . ] as well as the risks” and requires that controllers “implement
appropriate technical and organizational measures [. . . ] in an effective manner.” This
risk-based approach makes costs heterogeneous across firms based on the sensitivity of
data and firms’ risk preferences.

The GDPR applies whenever the firm that controls the data (“data controller”) is
established in the EU or whenever the individuals (“data subjects”) whose data is collected
are located in the EU, regardless of their citizenship or residence (Article 3). Under the
GDPR, personal data is defined broadly to include any information that can be used to
identify an individual either directly or indirectly (Article 4). This includes information
such as name, address, email address, internet protocol (IP) address, and other identifying
characteristics. It applies to all personal data, regardless of whether it is in a client or
employee context. Therefore, even business-to-business firms are subject to GDPR.

From the firm perspective, the GDPR primarily increased the cost of collecting and stor-
ing data by imposing costly responsibilities on firms. These include keeping a record of
processing activities (Article 30), designating a data protection officer (Article 37), prepar-
ing data protection impact assessments (Article 35), implementing appropriate technical
and organizational measures for data security (Article 32), providing timely notifications

7Unlike the GDPR, which is directly binding and applicable across the European Union, the preceding
Directive 95/46/EC had to be incorporated into each member state’s national laws to take effect, leading to
variation in its implementation across different jurisdictions.

8For more information on the US approach to privacy and how it compares to the GDPR, see Boyne (2018).
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in case of data breaches (Article 33), executing consumers’ requests for data transfer, era-
sure, or rectification (Article 14-21), and paying hefty penalties in case of data breaches
(Article 83). Firms also must have a legal basis for processing personal data.9

The cost of complying with the GDPR can vary significantly depending on the size and
complexity of an organization. There are no official statistics, but most survey evidence
suggests that complying with the GDPR is costly. The estimates range from an average of
$3 million (Hughes and Saverice-Rohan, 2018) and $5.5 million (Ponemon Institute, 2017) to
$13.2 million (Ponemon Institute, 2019) depending on the composition of surveyed firms.
The survey evidence indicates that a large percentage of the costs (between one-fifth and
one-half) are labor costs, followed by technology, outside consulting, and internal training
(Ponemon Institute, 2019; Hughes and Saverice-Rohan, 2019).

The changes mandated by the GDPR entail both fixed and marginal costs. For example,
the cost of having a data protection officer may not scale with data size, so the latter could
be considered mostly a fixed cost. On the other hand, the costs of handling customers’
access or deletion requests, the liability in case of a data breach, and keeping data in a
more secure environment would increase with data and firm size. As such, it may be more
sensible to interpret these kinds of costs as changes to the marginal costs. We provide
a detailed classification of GDPR costs into these fixed and variable cost categories and
present corresponding survey evidence in Appendix B.2.

In addition to these direct costs, organizations may also incur indirect costs such as
cybersecurity insurance or penalties if they are found to be non-compliant or in the case of
data leaks.10 Non-compliant firms may face fines of up to 4% of an organization’s annual
global revenue or €20 million (whichever is greater). We scraped publicly available GDPR
fine data (which we describe in detail in Appendix B.3) from a database maintained by
CMS, an international law firm.11 In Figure 1, we provide the size distribution of these
GDPR fines.12 We note two key features of these fines. First, the distribution of fine sizes
implies that enforcement is not limited to large violations: 25% of the fines have been under
€2,000. Many of these have been levied on small businesses. Second, the GDPR applies to

9Contrary to popular belief, consent is not the only appropriate legal basis that firms may use to process
personal data—consent, contractual necessity, legal obligation, vital interests, public task, and legitimate
business interest may all serve as a basis for processing data (Article 6). However, firms are required to
identify which legal basis they are using to process personal data.

10There are likely additional costs beyond the direct financial costs of compliance, including opportunity
costs associated with diverting existing employees towards GDPR compliance and expenses related to the
disruption caused by operational changes.

11See https://www.enforcementtracker.com.
12The total cumulative fines imposed under the GDPR in this dataset have amounted to over €3 billion, and

over 1,700 firms have been fined. This figure is likely to be an underestimate because not all GDPR fines are
made publicly available.
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Figure 1: Publicly Reported GDPR Fines

746M €
Amazon Google

90M €75 €
Restaurant  Jewelry Manufacturer

 2,600 €
Meta
1.2B €
May '23

0%

5%

10%

15%

20%

25%

101 102 103 104 105 106 107 108 109

Fine Amount (€)

Fraction of Publicly Reported GDPR Fines

Notes: The figure presents the distribution of 1,730 publicly available GDPR fines, noting that not all GDPR
fines are made public. The data collection process is described in Section 3 and we provide greater detail for
the data in Appendix B.3. Fines are presented in undeflated nominal terms (€), and five examples from the
data have been highlighted: a restaurant, a jewelry manufacturer, Google, Amazon, and Meta.

a much broader set of businesses and industries than just software and technology firms.
Figure 1 highlights some of these non-software cases, and restaurants and manufacturers
appear not infrequently in the GDPR fine data.

2.2 Our Setting: Cloud Technology

One of the primary challenges of studying firms’ responses to privacy policies has been
the fundamental difficulty of observing how firms use data. Measuring data usage for
firms with traditional IT requires both access to their servers and an accounting of usage
statistics that firms may not even keep themselves. The advent of cloud computing,
however, presents a unique opportunity to study the impact of policy changes on firm
data usage due to well-tracked measures of storage and processing.

Cloud computing provides scalable IT resources on demand over the internet. Ac-
cording to the National Institute of Standards and Technology (Mell et al., 2011), cloud
computing is defined as “a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.”13 Cloud computing has ex-

13Cloud computing resources can be categorized into three forms: Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS).
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perienced extremely rapid growth since its introduction.14 According to a 2020 survey by
Magoulas and Swoyer (2020), 88% of respondents used cloud computing in some form.

We focus on the two primary cloud services: storage and computation. Storage services
allow users to store data and applications in a data center, which can be accessed over the
internet. Computation services allow users to run applications and perform computations
in a virtual machine (VM). Cloud providers offer a variety of VM types with different
specifications in terms of CPU, memory, and upload and download speed. Users choose
the VM type that best meets the needs of their workload (Kilcioglu et al., 2017).

Firms use storage and computing services in multiple parts of their production process.
For example, a manufacturing company that produces goods in multiple locations may use
VMs to ensure that all of its information is available everywhere. Firms may also decide to
use storage without using computing services, e.g., a newspaper may decide to host all of
the photographs that will be displayed on its website online and provision them directly
without the need for computing. However, it is rare to observe firms using computation
without also using storage, although non-data simulations might serve as instances in
which this might occur. Firms may also add other cloud services (e.g., analytics, security)
in conjunction with their computing and storage needs.15

From the researchers’ point of view, the existence and ubiquity of the cloud provides
important advantages over traditional IT. It is possible to aggregate data from tens of thou-
sands of firms because cloud computing is typically provided by large third-party firms.
Moreover, cloud providers keep detailed records of their users’ activity for billing pur-
poses, allowing for usage to be tracked consistently over time. Despite these advantages,
there are important limitations to using data from cloud computing. First, many firms
use a mix of cloud computing and traditional IT, especially during the transition to the
cloud. In such cases, we can only observe firm data in the cloud and not from their on-site
hardware, which may limit our analysis if the GDPR changes the composition of cloud and
on-site data. Second, it is common for firms to use cloud services from multiple providers,
known as multi-cloud (Accenture, 2022) . For these firms, a reduction in cloud technology
usage from one provider could indicate substitution to another provider. We take these
concerns seriously and provide several robustness checks in our empirical strategy.

14See Jin and McElheran (2017); Jin (2022); DeStefano et al. (2023) for recent studies on firm’s cloud adoption
and the impacts of cloud technology on firms.

15See several case studies of how firms in different industries use cloud computing at https://aws.amazon.
com/solutions/case-studies/, https://azure.microsoft.com/en-us/resources/customer-stories/,
and https://cloud.google.com/customers.
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3 Data
This section describes the main datasets used in the paper and presents basic summary
statistics. We leave the exact data construction details to Appendix C.

3.1 Cloud Computing Data (2015-2021)

We obtain information through one of the largest cloud technology providers. Using this
data, we observe monthly-level usage information of the universe of their customers for all
cloud services between 2015 and 2021. These services include hardware services, such as
storage, computation, and networking, as well as some software services. For each service,
we observe the number of units purchased, the location of the data center, the date, and
the price paid. Therefore, we have both the physical unit of usage and expenditures.16

We focus on storage and computation, as they are the main IT services firms use in
cloud computing, which we describe in greater detail in Appendix C.1. We measure
storage in gigabytes and computing in core-hours (number of cores ⇥ number of hours).
Core-hours are a commonly used metric to quantify the amount of computational work
done in cloud computing environments.17 We use this data to construct monthly-level
usage at the firm-location (data center) level for storage and computation from July 2015
to December 2021. As a result, we can observe data stored in the US and EU separately by
the same firm.18 Through this data, we also observe SIC industry codes, firm headquarters
location, and whether a firm is a start-up or not.19

One limitation of our dataset is that it does not allow us to see which specific data firms
are collecting nor the exact ways in which they use the data. This limits our ability to
speak to some important questions about how firms specifically use data.

3.2 Cloud Computing Usage from Other Providers (2016-2021)

To address the concern of observing data from single provider, we use an establishment-
level IT data panel produced by a marketing and information company called Aberdeen
(previously known as “Harte Hanks”). Using web crawling, surveys and publicly available
data, Aberdeen provides the adoption of cloud technology on the extensive margin from
each of the service providers (e.g., AWS, Microsoft Azure, Google Cloud) between 2016 and

16This is in contrast with most input information in production datasets, which generally include input
expenditures rather than measures of direct usage.

17To illustrate the concept, consider the example of a software engineer in a startup who runs a virtual machine
with 8 cores for 5 hours. In this case, the usage is recorded as 40 units of compute.

18It is important to note that our sample is comprised of firms rather than establishments.
19The “start-up" classification is defined internally by the cloud technology provider.
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2021 at the yearly level. The Aberdeen dataset comprises around 3.1 million establishments
from 1.9 million companies worldwide. Previous versions of this data have been widely
used by researchers to construct measures of IT adoption, both in Europe and in the United
States.20 We use this data to identify single cloud firms and examine differential changes
in market shares in the EU and US around the GDPR for cloud providers.

3.3 Other Datasets: Firm Characteristics

Aberdeen also provides information on other firm characteristics, such as employment
and revenue from Duns & Bradstreet. We match our cloud computing data to Aberdeen
firms using a matching procedure described in Appendix C.3 based on name, location,
domain, and other information. We are able to match close to 60% of our cloud firms to
the Aberdeen dataset. We use the employment information in 2018 to define firm size. We
further augment our data by merging our primary dataset with employment data from the
Orbis firm database from Bureau van Dĳk through firm name and domain name matching.
We augment these merges with manual linking for the small share of remaining firms.
With this procedure, we link cross-sectional employment data to approximately 80% of
the European firms.

3.4 Sample Construction and Summary Statistics

We begin by presenting a framework that will allow us to classify firms by their exposure to
the GDPR. Following Section 2, Table 1 presents information on whether the GDPR applies
to firms depending on the location of the firm and data subjects (using the language from
Peukert et al., 2022). Now, while we cannot directly observe the location of each firm’s
employees and consumers, we use the fact that we can observe firm server locations to
approximate the locations of their consumers and employees. We view this as a reasonable
approximation because firms tend to choose data centers close to them to reduce latency
(Greenstein and Fang, 2020). We argue that firms based solely in one geographic region
are unlikely to use servers across the Atlantic unless they have consumers or employees
located in the other location.21

By combining information on the locations of firm server choices before the GDPR
with the locations of firm headquarters, we attempt to categorize firms into the four cases

20See e.g., Bloom et al. (2012). Note that Aberdeen’s data has undergone changes in recent years, relying more
on web scraping and extrapolation than on surveys. We conduct cross-checks with our internal data to
assess the quality of Aberdeen’s accuracy for cloud adoption. See Appendix C.3 for more details.

21One piece of evidence that supports server location choice being predictive of firm location is that when we
construct EU vs US firms classifications using only server locations, the regions assigned to 98% of the firms
coincide with the headquarter locations in our data.
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Table 1: Matrix of Firms from Peukert et al. (2022)

Firm Location
EU US

Location of
Consumer /
Employee
Data Used

Case 1 Case 3
EU GDPR applies GDPR applies

Art. 3(1) GDPR Art. 3(2) GDPR
Case 2 Case 4

US GDPR applies GDPR does not apply
Art. 3(1) GDPR –

Notes: Table is taken from Table 1 of Peukert et al. (2022). The matrix shows whether the GDPR is applicable
to firms located within and outside the EU.

described in Table 1. We consider a firm multi-national (Cases 2 and 3) if they use data
centers both in Europe and in the US. We consider a firm to be a domestic EU or US firm
(Cases 1 and 4) if they use data centers only in Europe or in the US.22 As we explain later
in the paper, our empirical strategy focuses on comparing domestic EU and US firms, and
therefore, these domestic firms constitute our main sample throughout the paper.23

As we discuss in Appendix C.2, we restrict our attention to firms that continuously
used our cloud provider’s services for the full year beginning exactly two years prior to the
introduction of the GDPR. This restriction affects only a small share of pre-GDPR storage or
computation in our sample: excluded firms are only responsible for about 10% of storage
and computation. We use this sample restriction to intentionally focus our analysis on
the effects of the GDPR on relatively stable users of cloud computing. Our sample is
therefore comprised of firms that are both responsible for the vast majority of storage and
computation in the pre-GDPR period and that have been continuously attached to our
cloud computing provider.

Table 2 presents summary statistics for our baseline sample of nearly forty thousand
firms. We categorize the industry of each firm by simply taking the industry division that
corresponds to the firm’s SIC code, and we intentionally split software firms from other
firms in the services division due to their large share in our sample.24 The majority of firms
belong to the services (43%) and software (25%) industries, but firms from manufacturing
and various other industries are also represented in our sample. While there is variation in

22We also include UK firms in our EU sample. The UK was part of the EU when the GDPR came into effect on
May 25, 2018. After the UK’s withdrawal from the EU, the GDPR was incorporated into UK law as the UK
GDPR, which largely mirrors the provisions of the GDPR, with some minor changes.

23While multinational firms are important, their exposure and responses to GDPR are more complex than
those of domestic firms, which required us to focus on domestic firms.

24We define software firms as those with SIC codes between 7370 and 7377.
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Table 2: Summary Statistics

Industry Number Share Share Mean Mean Mean Share
of Firms Compute Storage Storage Compute Data Intensity EU

Services 15,886 36.3% 31.9% 844 628 1.84 40.9%
Software 9,480 17.6% 20.8% 690 670 1.69 59.8%
Manufacturing 3,095 10.5% 11.6% 1,293 986 1.81 54.4%
Retail Trade 2,152 5.2% 5.4% 1,101 917 2.02 46.9%
Finance & Insurance 2,057 11.4% 10.8% 1,652 1,571 1.89 44.9%
Wholesale Trade 1,945 3.7% 4.5% 925 885 2.10 52.3%
Other 2,689 15.3% 15.0% 1,714 1,616 2.23 46.1%
All 37,304 100.0% 100.0% 1,000 803 1.86 48.1%

Notes: Table presents summary statistics from our matched sample of firms. A description of the sample’s
construction can be found in Section 3.1 and a more detailed description of the sample construction can be
found in Appendix C. Industries are defined as the ten divisions classified by SIC codes, with the exception
of software firms, which are carved out of the services division and represent SIC codes 7370 - 7377. For
confidentiality purposes, mean storage and compute have both been normalized such that mean storage is
denoted by 1,000 units. We calculate mean data intensity at the firm level while restricting to firms that use
both storage and computing services.

usage across industries—likely driven in part by the difference in the average size of firms
using cloud computing—we observe significant storage and computation in all industries.
We also note some slight variation in the share of firms in the US versus the EU by industry,
although each region always accounts for at least 40% of the share of firms observed.

Lastly, Column 7 of Table 2 presents the mean data intensity for each industry, which
is defined as the ratio of storage to computation. We find that the average data intensity
does not vary significantly across industries, ranging from 1.69 to 2.23. However, these
averages mask significant within-industry firm-level heterogeneity, as shown in Figure 2,
which plots the distribution of data intensity for the three largest industries in our sample.
Even within an industry, there is significant firm-level variation in data intensity across all
industries, suggesting that the role of data and computation likely vary across firms.25 This
result is consistent with the large evidence of within-industry heterogeneity in other firm
outcomes, such as productivity (Syverson, 2011), labor shares (Kehrig and Vincent, 2021),
markups (Autor et al., 2020; De Loecker et al., 2020), and management practices (Bloom
and Van Reenen, 2007). As we will see in Sections 5, taking into account this heterogeneity
will be important when modeling a production framework with data and computation.

25This result remains even if we focus on more narrowly defined 4-digit SIC industries.
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Figure 2: Histogram of Data Intensity by Industry
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Notes: Figure presents a histogram of data intensity at the firm level, defined as the ratio of data stored to
computation (the ratio of gigabytes to core hours) for each industry. Industries are defined through SIC
codes (with the exception of software firms, which are carved out of the services division). We limit to the
sample of firms who have ever used both storage and computation (# = 11, 858).

4 Event Study Evidence
In this section, we apply an event study design to study the effect of the GDPR on firms’
data storage and computing decisions. We begin by defining our empirical strategy and
providing intuition for our identifying assumptions. Next, we turn toward our baseline
estimates of the GDPR’s impact on data and computation. We also discuss the robustness
of our strategy across various alternative samples and specifications.

4.1 Empirical Strategy

Our empirical strategy aims to identify the causal effect of the GDPR on firms’ computation
and data choices. In order to identify a relevant treatment and control group for our
strategy, we turn to our classifications of firm locations from Section 3. Following Table 1,
we define “Case 1” as our treatment group and “Case 4” as our control group.

Notably, these two definitions exclude multi-national firms (i.e., those with branches
and/or consumers across countries). We choose to do so for two reasons. First, we may
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think of multi-national firms as being partially treated: only some of their data may be
subject to the GDPR. Thus, we might want to separate the estimation of the treatment
effects of these groups of firms from the firms which we consider fully treated (Case
1). Second, multi-national firms may systematically differ from the control firms that we
define (Case 4). Thus, they may potentially respond to the GDPR along different margins
than our control group, choosing to shift data storage, computation, and even business
operations into or out of the European Union.

We focus on three separate outcomes: data storage, computation, and “data intensity”
(the ratio of storage to computation). These outcomes reflect the multiple dimensions of
firm data usage that might be affected by the GDPR. Our empirical specification uses a
difference-in-differences design and estimates the following regression:

log(.8C) =
’
@<�1

�@ · {EU8} + �8 + �:@B + ⌘8C , (1)

where .8C is the outcome of interest for firm 8, in month C. We use @ to denote quarter,
: to denote industry, and B to pre-GDPR cloud usage decile. In this specification, �8
is a firm-level fixed effect that captures time-invariant firm unobservables while �:@B are
industry-by-quarter-by-size-decile fixed effects which allow for time trends to differ flexibly
in each quarter for an industry-size decile combination.26 We define industries using the
ten mutually exclusive and exhaustive divisions defined by one-digit SIC codes.

We restrict our analysis to the sample period from July 2015 to March 2020.27 The coef-
ficients of interest, �@ , represents the difference in outcomes relative to the quarter before
the GDPR came into force. Now, because our sample conditions only on usage a full year
before the enactment of the GDPR, we allow for potential anticipation effects. The identify-
ing assumption of our empirical strategy is a conditional parallel trends assumption. We
take advantage of our large sample and allow time trends in our outcomes to vary flexibly
by industry and initial cloud usage levels in our baseline specification, with 110 distinct
bins for each quarter (11 defined industries ⇥ 10 pre-GDPR cloud usage deciles).

To discuss the short- and long-run estimates of the effect of the GDPR, we also present

26We measure cloud usage deciles for storage and computation outcomes by using a firm’s computation or
storage, respectively, as measured one year before the GDPR. For data intensity, we use terciles of firm
storage interacted with terciles of firm compute to increase power.

27Even though we have data for later periods, we end the sample in March 2020 to rule out the effects of the
COVID-19 pandemic. This sample restriction also limits the potential effects of another privacy law, the
California Consumer Privacy Act (CCCA), on the US firms in our sample. The CCCA came into effect on
January 1, 2020, and applies to businesses that collect the personal data of California residents.
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results in a table format using an alternative regression specification given by:

log(.8C) = ⇣1 · {EU8} · {C2Jun/18-May/19} + ⇣2 · {EU8} · {C2Jun/19-May/20} + �8 + �:@B + ⌘8C , (2)

where the notation of �8 and �:@B is the same as in Equation (1). Our estimates are relative
to the excluded group, which is the pre-GDPR period. Thus, the short-run coefficient (⇣1)
and long-run coefficient (⇣2) estimates the average difference in .8C between treated and
untreated firms in the first and second year after the GDPR came into force (relative to the
pre-period difference).

4.2 Results

Our main event study results are shown in Figure 3, which plots the estimated coefficients
�@ from Equation (1) for our three key outcomes. We discuss each of these outcomes
separately, and we present the corresponding short- and long-run estimates from Equation
(2) in Table 3.

Results on Data Storage Panel (a) of Figure 3 shows the results for data storage. First,
we find no evidence of significant differential pre-GDPR trends in the US and EU, as all
pre-GDPR coefficients are close to zero. We also find limited evidence for anticipation
effects, which is consistent with the survey evidence that only 10% of firms expected
to be compliant with the GDPR before May 2018 (Ponemon Institute, 2018). After the
implementation of the GDPR, however, firms in the EU, relative to US firms, started to
decrease their relative amount of data stored gradually, with cumulative effects growing
steadily over the two years after the GDPR. The fact that the decrease is gradual rather
than sudden may be due to the fact that it took time for firms to implement necessary
changes, as noted by Aridor et al. (2022) in the case of a large website.

The decline in data storage is perhaps not surprising, as the GDPR increased the cost
of storing data. What is perhaps more surprising, however, is the magnitude of the effect.
Table 3 shows that the short-run effect is around a 13% decrease in storage while the long-
run effect doubles to around 26%.28 This table also shows that our results are robust to the
inclusion or exclusion of the flexible time trends by industry and size-decile fixed effects.

Results on Computation Turning towards computation, we first note that there is no clear
theoretical prediction for how the GDPR should affect firm computation decisions. GDPR’s
primary goal is to protect individual data, with limited direct impact on computing.

28Importantly, firms are not necessarily deleting data, as our identification strategy relies on comparing EU
and US firms. Data storage for EU and US firms could be increasing but at different rates.
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Figure 3: Event Study Estimates of the Effect of GDPR on Cloud Inputs
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(b) Effect on Compute
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(c) Effect on Data Intensity
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Notes: Figure presents estimates of equation (1) of �@ , the coefficient on the quarter of the move interacted
with our treatment indicator. The coefficient in the quarter before the GDPR’s implementation is normalized
to zero. Dotted bars represent the 95% confidence intervals, and standard errors are clustered at the firm
level. Sample sizes are presented in Table 3.
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Table 3: Short- and Long-Run Effects of GDPR
(Storage, Computing, and Data Intensity)

(1) (2) (3) (4)

Panel A. Dependent variable: Log of Storage

Short-Run Effect -0.129 -0.132 -0.125 -0.134
(0.018) (0.017) (0.017) (0.017)

Long-Run Effect -0.257 -0.260 -0.228 -0.242
(0.024) (0.024) (0.024) (0.024)

Observations 1,143,149 1,143,149 1,143,149 1,143,149
US Firms 16,409 16,409 16,409 16,409
EU Firms 16,281 16,281 16,281 16,281

Panel B. Dependent variable: Log of Computation

Short-Run Effect -0.078 -0.082 -0.132 -0.148
(0.016) (0.016) (0.016) (0.016)

Long-Run Effect -0.154 -0.164 -0.224 -0.256
(0.024) (0.024) (0.024) (0.024)

Observations 672,942 672,942 672,942 672,942
US Firms 10,294 10,294 10,294 10,294
EU Firms 8,927 8,927 8,927 8,927

Panel C. Dependent variable: Log of Data Intensity

Short-Run Effect -0.072 -0.071 -0.025 -0.021
(0.020) (0.020) (0.020) (0.019)

Long-Run Effect -0.131 -0.126 -0.049 -0.035
(0.029) (0.029) (0.029) (0.029)

Observations 418,803 418,803 418,803 418,803
US Firms 5,487 5,487 5,487 5,487
EU Firms 5,872 5,872 5,872 5,872

Time Trends Vary By: Industry ⇥ Pre- Pre-GDPR Industry -GDPR Size Deciles Size Deciles

Notes: Table presents estimates of Equation (2) of the short-run (⇣1) and long-run (⇣2) coefficients, which
estimate the impact of the GDPR in the first and second year after the GDPR came into force. Column (1)
presents our baseline specification, where we allow for time trends to vary flexibly across industry and pre-
industry size decile interactions. Column (2) restricts these time trends so that they only vary by pre-GDPR
size decile, while Column (3) only allows for variation at the industry level. Column (4) shows estimates
when we include no time-trend interactions. Industries are defined as the ten divisions classified by SIC
codes. Pre-GDPR size deciles are measured thirteen months before the GDPR. For data intensity, we define
“size decile” as the interaction between storage and compute terciles when measured in the period. Standard
errors are clustered at the firm level.
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Therefore, the effect of the GDPR on computation likely depends on the elasticity of
substitution between compute and data and the intensity of these inputs in the production
function. If storage and computation are strong substitutes, firms can respond to increases
in data costs by substituting away from data toward computation. This would increase
total computation. On the other hand, if data and compute are strong complements, then
an increase in data cost would lead to a decrease in computation. Thus, the direction and
magnitude of firm computation responses is ultimately an empirical question.

Panel (b) of Figure 3 shows that EU firms gradually decrease their computation relative
to US firms after the introduction of GDPR. However, the effect on computation is smaller
than what we observe for data storage, with only a 15% decline two years after GDPR.
Similar to the results on data, we find no evidence of significant differential pre-GDPR
trends in the US and EU.

The results on computation are also important because they indicate that firms do not
simply eliminate (or stop accumulating) data they do not use. One potential explanation
for our data results could be that, before GDPR, firms stored data that they never utilized
and deleted it to comply with GDPR. Our findings suggest that this hypothesis is unlikely
to hold because of the substantial reduction in computation, which we conjecture would
not have happened if data that was not being used was simply eliminated.29

Results on Data Intensity Comparisons of the magnitudes between our data storage
and computation results suggest that firms became less data-intensive after the GDPR.
However, in order to account for potential compositional effects, we investigate the effects
of the GDPR on data intensity by using the natural logarithm of the ratio of computing
to storage as an outcome. We estimate our specification on firms that used both types of
inputs for the full year beginning exactly two years before the GDPR came into force.

Panel (c) of Figure 3 shows that firm data intensity decreases immediately after the
GDPR. Panel (c) of Table 3 estimates a decrease of around 7% in the short run and 13% in
the long run. The fact that firms in the EU become less data-intensive post-GDPR (relative
to comparable US firms) suggests that storage and computing are likely complements in
production, which we revisit using a production framework in Section 5.

Robustness of Results There are several potential threats to our identification strategy.
In Appendix D, we go through the most critical threats to identification and show evidence
suggesting that these threats are not driving our results. We summarize the main exercises
below, and we leave the additional exercises (such as alternative sample definitions and

29This hypothesis appears unlikely also because cloud computing incurs a marginal cost for storing data, even
if it remains unused. Additionally, in Section 5, we find that firms are responsive to changes in cloud prices.
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alternative empirical specifications) and details in Appendix D.
The most salient identification threat is that we observe only one cloud service provider

(Appendix D.1). What we observe as declines in cloud usage could simply be firms
substituting usage towards other providers. We first show that our results are similar
when we restrict our sample to firms that only use our cloud provider (Table OA-2 and
Figure OA-7). Therefore, it is unlikely that the declines we observe are simply driven by
substitution in usage to other providers. Second, we show that results are unlikely to be
driven by firms shifting to traditional (i.e., in-house) IT services. To do so, we show that
our empirical exercise yields similar results for the start-up firms in our sample, which are
unlikely to have or use traditional IT (Table OA-4 and Figure OA-9).

Another natural explanation for our results is the possibility of differential price trends
in the EU and the US (Appendix D.2). If cloud computing providers increased their
prices in the EU relative to the US around the time of the GDPR (perhaps to cover GDPR
compliance costs, for example), we could see a decline in storage and computation even
without the GDPR having any effects on firms. To check this hypothesis, we use the paid
prices for cloud storage as a dependent variable. Appendix Figure OA-10 shows that
prices did not change differentially in the EU and the US. Cloud prices have been generally
trending downwards, but not in a differential manner between the EU and the US.

We also consider whether our results are particularly being driven by websites’ cookie
consent notices and the clauses governing the collection and storage of data from websites
(Appendix D.3). We might expect firms with active website use—which we proxy for
through the usage of cloud-based web services in our cloud provider—to be more affected
by the policy than those without. Table OA-5 shows larger treatment effects among firms
that used web services in storage and computation. However, we find that the storage and
computing adjustments of web users and non-web users are proportional and that their
reductions in data intensity are similar.

4.3 Heterogeneity

By Industry The relationship between storage and computation may vary by industry,
depending on how each industry incorporates data inputs into its production processes.
For this reason, we investigate whether the effects of GDPR on data and computation
vary across four mutually exclusive and exhaustive industry groups: software firms, non-
software service firms, manufacturing firms, and all other industries. Table 4 shows our
estimates of the short- and long-run impacts of the GDPR when we estimate Equation (2)
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across different industry groups.30 One striking result is that the direction of our primary
findings—declines in storage, computation, and data intensity—are the same across all
industry groups. Furthermore, there are detectable effects in storage and computation
across all industries. This immediately suggests that our results are not being driven by a
single industry and that the effects of the GDPR are not simply limited to software firms,
but instead affect firms across all industries.

Furthermore, we find substantial heterogeneity between industries in the magnitudes
of the effects. Panel A shows that the most significant decreases in storage in response to
the GDPR come from manufacturing firms (40% in the long run), followed by software
firms (25%), and non-software service firms (18%). Similarly, Panel B shows that for
computation, the fall is largest in magnitude for manufacturing (32% in the long run),
followed by service firms (15% for software and 10% for non-software services in the long
run).

While it may seem surprising that IT-intensive industries like software and non-
software service firms seem to have more muted responses to the GDPR, this may reflect
differences in the ability of firms in a given industry to shift away from data in their pro-
duction functions or compliance cost. For example, manufacturing firms might simply be
able to substitute from data to capital and labor more efficiently than other industries or
they might have higher compliance costs. Similarly, service firms may be less responsive to
the GDPR simply because storage and computation are essential parts of their production
processes.

Finally, Panel C of Table 4 shows results for data intensity. We find that data intensity
decreases in all industries, however the standard errors are wide for some estimates. The
point estimates suggest that long-run data intensity decreases the most in the industries
with the smallest declines in storage and computation.

By Enforcement Stringency Although the GDPR harmonized the regulation surround-
ing data protection, enforcement was delegated to each country’s data protection authority.
Thus, enforcement stringency can vary across countries in practice, in part because of the
resource availability to each data protection authority (Johnson, 2022). Because of these
differences, we might expect firms in countries with more lenient regulators to respond
less to the GDPR. To test this hypothesis, we use a measure of strictness created by Johnson
et al. (2022) using data from European Commission (2008) that varies at the country level.31

30We show the quarterly dynamics in Figures OA-1 and OA-2, and the (lack of) pretrends at the industry level.
31This measure assigns a z-score to each country based on the perception of firms within that country about

the regulators’ strictness. For more information, see Johnson et al. (2022).
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Table 4: Short- and Long-Run Effects of GDPR
(Heterogeneous Effects by Industry Classification)

Baseline Software Non-Software Manufacturing Other
Services Services Industries

(1) (2) (3) (4) (5)

Panel A. Dependent variable: Log of Storage

Short-Run Effect -0.129 -0.113 -0.080 -0.259 -0.190
(0.018) (0.035) (0.026) (0.063) (0.037)

Long-Run Effect -0.257 -0.253 -0.180 -0.404 -0.354
(0.024) (0.048) (0.036) (0.086) (0.051)

Observations 1,143,149 291,781 486,457 94,612 270,299
US Firms 16,409 3,196 8,141 1,141 3,931
EU Firms 16,281 5,150 5,912 1,508 3,711

Panel B. Dependent variable: Log of Compute

Short-Run Effect -0.078 -0.078 -0.048 -0.171 -0.077
(0.016) (0.032) (0.024) (0.051) (0.033)

Long-Run Effect -0.154 -0.150 -0.100 -0.322 -0.163
(0.024) (0.050) (0.037) (0.073) (0.049)

Observations 672,942 165,752 270,846 65,532 170,812
US Firms 10,294 2,050 4,623 900 2,721
EU Firms 8,927 2,747 3,204 914 2,062

Panel C. Dependent variable: Log of Data Intensity

Short-Run Effect -0.072 -0.084 -0.084 -0.078 -0.043
(0.020) (0.042) (0.031) (0.066) (0.039)

Long-Run Effect -0.131 -0.196 -0.161 -0.043 -0.069
(0.029) (0.064) (0.045) (0.097) (0.055)

Observations 418,804 103,606 168,020 41,449 105,729
US Firms 5,487 1,054 2,473 496 1,464
EU Firms 5,872 1,755 2,123 610 1,384

Notes: Table presents estimates of equation (2) of ⇣1 and ⇣2, re-estimated across for various industry divisions.
For comparison, Column (1) presents our baseline estimates across all industry divisions. Column (2) restricts
our sample to software firms, which are defined through SIC codes 7370 - 7377. Column (3) restricts the
sample to non-software service firms, Column (4) restricts the sample to firms in the manufacturing division,
and column (5) presents estimates on the remaining firms in the sample (non-software, non-services, and
non-manufacturing industry divisions). Standard errors are clustered at the firm level.
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Table 5: Effect of Strictness
on Short- and Long-Run Effects of GDPR

Storage Compute Intensity
(1) (2) (3)

Short-Run Effect -0.028 -0.061 -0.042
(0.044) (0.032) (0.042)

Long-Run Effect -0.040 -0.047 -0.015
(0.055) (0.049) (0.059)

Observations 1,143,149 672,942 418,803
EU Firms 16,281 8,927 5,872

Notes: Table presents estimates of equation 2 with an additional term to measure the effect of above-median
GDPR strictness. The short-run term captures the triple interaction of the short-run post-GDPR coefficient,
the EU categorical variable, and a categorical variable indicating firms in above-median enforcement coun-
tries. The long-run term repeats the same procedure but uses the long-run post-GDPR period instead.
Strictness is measured according to Johnson et al. (2022) using data from European Commission (2008).
We continue to define industries as the ten divisions classified by SIC codes. Pre-GDPR size deciles are
measured thirteen months before the GDPR. For data intensity, we define “size decile” as the interaction
between storage and compute terciles when measured in the period. Standard errors are clustered at the
firm level.
˙

We collapse this measure above and below the normalized median strictness in the survey
and assign each firm their country’s regulator’s strictness.

We modify Equation (2) by adding two additional coefficients to capture potential het-
erogeneity by enforcement stringency. We create a categorical variable indicating firms in
above-median enforcement countries, and we interact this variable with the EU categori-
cal variable and our long-run and short-run post-GDPR indicators. Our main coefficients
of interest (the triple interactions) measure the short- and long-run differences in .8C for
EU firms with above-median strictness relative to those with below-median strictness
post-GDPR.

Table 5 summarizes these results. The interaction coefficients—although many are not
statistically significant—suggest that firms in above-median strictness countries face larger
declines in storage, computation, and data intensity. In the short run, storage goes down
by 2.8 pp. more in above-median strictness countries than in below-median ones, while
computation goes down by 6.1 pp. In the long run, storage and computation go down by
4 pp. and 4.7 pp. more in above-median strictness countries, respectively. Similarly, data
intensity decreases are larger for firms in the above-median strictness countries. Overall,
these findings suggest a non-negligible role for enforcement stringency beyond the simple
presence of privacy regulation itself.
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4.4 Discussion

Our results so far suggest that EU firms responded to the GDPR by storing less, computing
less, and becoming less data-intensive relative to US firms. These results are important for
several reasons. First, we provide direct and large-scale evidence that firms comply with
the GDPR by significantly reducing their data and computation. Second, we show that the
GDPR affects firms’ input choices by changing the composition of data and computation
used in firm production. Third, the results are not driven by a single industry, by a
single country, or exclusively by website firms that are affected by cookie consent policy,
indicating the far-reaching implications of the GDPR across many industries.

Although these findings provide insights into the impact of privacy laws on firm
behavior, they do not offer a comprehensive understanding of firm-specific economic
costs. Such an analysis requires understanding how firms use data in production and the
different adjustment margins of firms. For this reason, we take a more structural approach
in the next section.

5 A Model of Production with Data
This section introduces a production function framework with data and estimates its
structural parameters. We use our framework to consider both how firms use data and
computation in production and how privacy regulations might affect these decisions. Since
data serves as an input in production, any regulatory-induced increase in input costs will
inevitably impact firms’ input choices. Therefore, we model the GDPR as a gap between
the actual cost of data and the perceived cost of data that include regulatory costs. We
focus on estimating the size of this wedge and its implications for firms.

Our framework is designed to be flexible in terms of how data and computation are
integrated into firm production. There currently is no standardized framework for how
data enters the production function, and there is likely considerable heterogeneity in
how firms use data. For this reason, we model only the relationship between data and
computation in firm production rather than modeling a full production function with
standard inputs such as labor and capital. We introduce the model below.

5.1 Production Function with Data

Firms produce information by processing data, which requires two inputs: data and
computation. We assume the following constant elasticity of substitution (CES) form for
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the information production function:

�8C =
�
$2

8C
(⇠8C)⌧ + �⇡⌧

8C

�1/⌧
,

where ⇠8C represents the amount of computation performed by firm 8 in month C, ⇡8C is
the amount of data stored by firm 8 in month C, and $2

8C
is compute productivity. The

parameter � = (1/(1 � ⌧)) is the elasticity of substitution between data and computing.
The parameters of the production function are industry-specific as we estimate the model
separately by each industry.

Our model includes a firm-specific compute productivity term, $2

8C
, to capture hetero-

geneity in computing productivity.32 This choice is motivated by the substantial variation
in the firms’ data intensity, as reported in Figure 2 of Section 3. This heterogeneity can arise
for two reasons. First, there could be inherent production technology differences between
firms on how they could use data, making the information production more data-intensive
for some firms than others. Second, even if the production technology is the same, some
firms may have higher-quality computation resources (e.g., higher-quality software tools
and more skilled engineers) to generate the same amount of information with less data.
Our paper is agnostic about the source of $2

8C
. However, we believe it is essential to account

for such heterogeneity.
We also intentionally refrain from specifying how information is integrated into the

production function, as firms can use information in different ways.33 As a result, our
model remains general enough to capture several of the common ways that data has been
modeled as using information, including augmenting overall firm productivity (Jones
and Tonetti, 2020), serving as an input in production (Bessen et al., 2022), enhancing labor
productivity (Agrawal et al., 2019), and enabling firms to target customers better or forecast
demand (Eeckhout and Veldkamp, 2022). These include all of the following cases (omitting
subscripts for ease of notation):

. = 5 ( , !)$(�) (productivity increasing)

. = 5 ( , !, �)$ (input in production)

. = 5 ( , $!(�) · !)$ (labor-augmenting)
' = ?(�) · � 5 ( , !)$� (price discrimination)

32The literature typically calls this term “factor-augmenting productivity.” We use the term “compute pro-
ductivity” instead of “compute-augmenting productivity” for the sake of brevity.

33Even though this limits some counterfactual analysis we could conduct, we consider it a reasonable trade-off
given the large-scale nature of our study, which covers many firms and industries.
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In these examples,  , !, ., and ' are capital, labor, output, and revenue: $ is Hicks-
neutral productivity, $! is labor-augmenting productivity, and ? is the output price. In
each specification, information affects a different part of the production function.

Our approach relies on estimating input demand functions under the assumption that
firms choose inputs to minimize information production costs. In particular, we assume
that ⇠8C and ⇡8C are variable inputs that firms optimize every period. We view this
assumption as reasonable for cloud computing, where providers typically follow a pay-
as-you-go model and firms can easily adjust their usage of storage and computation on-
demand. We also assume that firms are price-takers in the input markets for computation
and storage. We again view this assumption as reasonable for cloud computing because
cloud providers typically post list prices and firms pay by the hour.34

We use ?2
8C

and ?
3

8C
to denote the input prices for computation and storage, which may

vary across firms. We observe both the list prices and the actual prices paid by firms. In
theory, all firms should face uniform cloud computing prices since they can access all data
centers. However, latency effects and switching costs between data centers may restrict
firms’ ability to use all data centers, leading to different consideration sets for different
firms (and thus differential prices). In addition, potential negotiated discounts may also
result in heterogeneous prices. Based on the assumptions of cost minimization, we derive
the following first-order condition for firms’ data and computing choices from the CES
production function:

log
⇣
⇠8C

⇡8C

⌘
= ✏ + � log

⇣
?
3

8C

?
2

8C

⌘
+ � log($2

8C
), (3)

where ✏ = �� log(�). We provide the complete derivations in Appendix E.1. We also
show that we get the same first-order condition if we were to include labor (e.g., software
engineers) in the information production function in Appendix E.2.

According to this first-order condition, the relationship between input ratios and input
prices is governed by the elasticity of substitution between these two inputs. When the
price of data (relative to compute) is higher, firms substitute towards computation, with
an intensity of �. A notable feature of this equation is that the elasticity of substitution

34All cloud providers offer discounts if firms commit to using cloud resources over a specific period of time.
These discounts are called “reserved instance” or “committed use” discounts, depending on the provider.
These discounts are typically applied to the list price. A survey of 750 large companies conducted in 2023
suggests that only one-third of companies use these discounts (Flexera, 2023). This number is most likely
lower during our sample period and among small firms. Moreover, firms that receive quantity discounts
can resell or refund their commitments for a small fee for most major cloud providers. Therefore, we believe
that linear prices are good approximations even for these firms.
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between computation and data can be estimated from firms’ input demand alone, without
observing other inputs or outputs. This property arises from the homotheticity property of
the CES production function, commonly used in the literature for estimating the elasticity
of substitution (Doraszelski and Jaumandreu, 2018; Raval, 2019; Demirer, 2020).

Although our framework expands upon the production function literature by consider-
ing computation and data, it does have some limitations. While we account for variations
in data quality across firms using $2

8C
, we assume that data is homogenous within a single

firm. This assumption might be strong since, in reality, firms may have different types
of data with varying quality. This limitation would become particularly relevant if, for
example, the GDPR affected the data composition of firms. To relax this assumption, we
would need to include different data types in production, which we do not observe. It
is worth noting, however, that the assumption of homogenous inputs within a firm is a
common practice in production function research, primarily due to data limitations.

One important way our approach differs from previous literature is that we recognize
that data must be processed to generate useful information, and we therefore include
computation as an additional input along with data. As the modeling of data in firm
production is an active area of research, we view our framework as complementary to the
existing literature (e.g., Jones and Tonetti, 2020; Farboodi and Veldkamp, 2022).35

5.2 The GDPR as a Cost Shock to Data

This section incorporates the effects of the GDPR into our production framework. We
model the GDPR as a firm-level cost shock to data inputs—as we have extensively argued
they are the main focus of GDPR regulations. While some aspects of the GDPR do
pertain to computation, the impacts of the regulation on data are significantly larger, and
computation is less salient to regulators than data.36

As mentioned before in Section 2 and in Appendix B.2, the GDPR increased the fixed
and variable costs of data storage. For example, variable costs of storing data increase
because of the customer “delete requests,” whose number and difficulty may increase
with the amount of data a firm stores. Similarly, the probability of a data breach and
of penalties in case of non-compliance likely increase with the amount of data that firms
collect.37 By contrast, fixed costs increase because of one-time expenses that do not vary
with the amount of data a firm has—e.g., hiring data protection officers, developing a data
protection management system, or implementing organization measures. Since fixed costs

35See Veldkamp and Chung (2023) for an excellent review of this literature.
36If the GDPR’s impact on computation costs is non-negligible, our wedge estimate will identify the ratio of

data to compute wedges. In this case, our estimate of the wedge will be conservative.
37This observation aligns with the fact that larger firms tend to receive more substantial fines.
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should not affect input demand, we focus on modeling the variable cost.
We make the following assumptions about data costs before and after the GDPR:

Pre-GDPR: ?̃
3

8C
= ?

3

8C
, Post-GDPR: ?̃

3

8C
= (1 + ⌫8)?3

8C
.

Here, ?3
8C

represents the marginal cost of data without the GDPR (i.e., the cost of storing
data paid to the cloud provider), and ?̃

3

8C
is the marginal cost of data after accounting for

the costs introduced by the GDPR. Therefore, ⌫8 denotes the wedge between the actual
cost of data and the total cost that includes complying with GDPR. We follow the literature
and model ⌫8 as a multiplicative wedge (e.g., Chari et al., 2007; Hsieh and Klenow, 2009).
This wedge is firm-specific because compliance costs will likely be heterogeneous across
firms, depending on their size and the types of data they collect. Alternatively, we can also
interpret ⌫8 as each firm’s perceived cost of the GDPR, as they may hold different beliefs
about enforcement or have varying levels of risk aversion that affect the expected cost of
liability in the event of a data breach.

5.3 Identification of Parameters

Our end goal is to estimate two parameters: the firm-level wedges introduced by the GDPR
(⌫8) and the elasticity of substitution between computation and data (�). To illustrate
the potential identification problems when estimating ⌫8 and �, consider the first-order
condition in Equation (3) after the GDPR for EU firms:

log
⇣
⇠8C

⇡8C

⌘
= ✏ + � log

⇣
?
3

8C

?
2

8C

⌘
+ � log(1 + ⌫8) + � log($2

8C
). (4)

This first-order condition reveals a fundamental challenge for identification: the cost of the
GDPR, log(1+⌫8), cannot be separately identified from the mean of firm-specific compute
productivity post-GDPR ($2

8C
). Intuitively, firms may decrease their data intensity either

because their compute productivity has increased or because the GDPR has imposed
additional data costs. Without additional information, we cannot distinguish these two
cases. Therefore, to identify the GDPR wedge, we need to control for changes in firm-
specific computing technology. To this end, we impose the assumption that compute
productivity can be decomposed as follows:

log($2

8C
) = log($2

8
) + log()2

C
) + log(◆8C). (5)
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Equation (5) specifies that the compute productivity term can be decomposed into a
firm-specific component ($2

8
), an industry-specific time trend ()2

C
), and an idiosyncratic

component (◆8C). This decomposition suggests that we need to control for (i) log($2

8
)

to identify firm-specific wedges and (ii) log()2
C
) to identify the industry-specific level of

wedges by the GDPR.
Our identification strategy therefore involves two steps. In the first step, we recover

$2

8
and )2

C
using data from EU firms in the pre-GDPR period and data from US firms.

In particular, we assume that firm-specific compute technology does not change after the
GDPR and that each EU industry follow the same compute-technology time-trend as the
same industry in the US. These assumptions allow us to control for firm-specific computing
technology in the second step, where we estimate the cost of the GDPR as a percentage
of the observed data input cost. We explain each of these steps below and provide more
detail in Appendix F.4.

5.3.1 First Step: Identification of Compute Productivity and Elasticity of Substitution

To estimate the elasticity of substitution and firm-level compute productivity, we use
pre-GDPR data and estimate the following equation:

log
⇣
⇠8C

⇡8C

⌘
= ✏ + �1 log

⇣
?
3

8C

?
2

8C

⌘
+ �1 log($2

8
) + �1 log()2

C
) + �1 log(◆8C), (6)

where �1 is the pre-GDPR elasticity of substitution. There are two important considerations
when estimating this equation. First, the estimation requires variation in the data-to-
compute price ratio across firms over time. Second, these prices might be correlated
with unobservable and time-varying compute productivity shocks (◆8C). To address this
endogeneity, it is important to understand the factors contributing to the heterogeneity
and price changes in cloud computing.

Cloud computing providers display their prices for various cloud computing products
on their websites, which typically vary depending on the region where the data center
is located. These posted prices can be considered orthogonal to the firm-levelosyncratic
compute productivity shocks (◆8C) because it is unlikely that any firm is large enough to
affect them. In addition, cost improvements and increased competition were the main
drivers of price changes in the last decade (Byrne et al., 2018). However, the prices that
firms pay may differ from these list prices for two reasons. First, firms may have differential
preferences over data center locations.38 Second, firms may receive a percentage discount

38For example, firms typically choose data centers closer to their operations to reduce latency.
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from the listed price based on long-term commitments or bargaining power, as discussed
earlier.

These two sources of price heterogeneity can create endogeneity. For instance, firms
that experience a high compute productivity shock may be more willing to switch be-
tween data centers to take advantage of lower prices, resulting in a correlation between
the firm’s compute productivity and the prices it faces. In addition, firms with high com-
pute productivity may negotiate higher discounts. We address these potential sources of
endogeneity by developing a shift-share design (Bartik, 1991; Goldsmith-Pinkham et al.,
2020; Borusyak et al., 2022).

We first introduce the broad intuition behind our instrument. Our shift-share design
addresses these two potential sources of endogeneity in prices by leveraging two features
of our data. First, because we observe both list prices and negotiated prices, we can use
changes in list prices to instrument for the changes in negotiated prices. These changes,
however, are still predictive of the prices that firms face because discounts are applied to
list prices.39

Second, we construct a measure of exposure to specific data centers for each firm and
period. We use historical exposure shares rather than contemporary ones because previous
data center choices are sunk. However, previous data center choices remain predictive
of current data centers firms use because of the switching costs associated with moving
data between data center locations. Transferring data from one location to another can
be time-consuming and expensive, especially for large or complex datasets. As a result,
firms’ location choices are highly persistent over time.

More formally, the shift-share design combines list prices with variation in firms’ pre-
existing data center location choices. We construct instruments I3

8C
and I

2

8C
for the data

storage and computation prices each firm 8 faces at time C. The exposure shares for each
service in a given period are calculated as the share of firm 8’s usage in a given data
center relative to the firm’s total demand. This differential exposure gives us the following
equation for the instrument:

I
{2 ,3}
8C

=
’
;2↵

B
{2 ,3}
8;(C�12)?

{2 ,3}
;C

(7)

where B
{2 ,3}
8;(C�12) denotes firm 8’s usage share for data center location ; as measured 12

months before C, ?{2 ,3}
;C

is the price index for each service in location ; at time C, and ↵

denotes the set of data center locations.40 Our exposure shares are lagged by 12 months
because contemporaneous exposure shares are susceptible to reverse causality. While shift-

39We provide more information about cloud computing pricing in Appendix F.1.
40We provide more detail on our price index construction in Appendix F.2.
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share instruments can be driven by assumptions about either the exogeneity of “shares"
or the independence and exogeneity of “shocks" (Borusyak et al., 2022), the identifying
assumption underlying our exposure shares is most similar to the “shares" assumption
discussed in Goldsmith-Pinkham et al. (2020). In particular, the exclusion restriction
behind our shift-share design is that contemporary shocks to the compute productivity of
each firm are exogenous to the changes in the ratio of list prices of cloud computing in the
firm’s historical data center choices, controlling for industry-specific trends.41

We use I2
8C
/I3

8C
as an instrument for price ratio ?3

8C
/?2

8C
and estimate Equation (6) for three

EU industries (software, non-software services, and manufacturing) separately using pre-
GDPR data, as the pre-GDPR data does not include a regulatory wedge. This allows us to
estimate firm-specific compute productivity ($2

8
) and elasticity of substitution parameter

before the GDPR. We also estimate Equation (6) for US industries over the entire sample
period, as US firms do not experience regulatory distortion either before or after the
GDPR. This allows us to recover the industry-specific compute productivity trends, )2

C
for

US industries.

5.3.2 Second Step: Identification of the Cost of the GDPR

In the second step, we use the EU post-GDPR data to estimate the wedge generated by the
GDPR (⌫8) and the EU post-GDPR elasticity of substitution between compute and storage.
Incorporating this into the firm’s input demand, we obtain the following equation:

log
⇣
⇠8C

⇡8C

⌘
= ✏ + �2 log

⇣
?
3

8C

?
2

8C

⌘
+ �2 log(1 + ⌫8) + �2 log($2

8
) + �2 log()C) + �2 log(◆8C), (8)

where �2 is the post-GDPR elasticity of substitution. Here, unlike the pre-GDPR input
demand equation, the additional term ⌫8 affects the ratio of computing to storage. The
higher the cost of the GDPR, ⌫8 , the more likely firms are to substitute away from data
toward computation. In order to use this equation for identifying⌫8 , we make the following
assumptions:

Assumption 1. Firm-specific compute productivity remains the same after the GDPR.

We note that this assumption still allows for industry-specific trends in computation
due to log()C), as we can see from Equation (5). The assumption also does not restrict

41One example of a potential threat to identification would be if idiosyncratic compute productivity shocks
are strongly correlated over time after accounting for aggregate industry time trends, and this caused firms
to select data centers with specific trends in the ratio of prices. However, given that our model is estimated
with the ratio of prices rather than direct price levels and considering that forecasting data center-specific
trends in these price ratios is difficult, we view our identification assumption as reasonable for the setting.
We provide further details for the instrumental variable construction in Appendix F.3.
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firms’ abilities to respond to the GDPR by changing their compute-to-storage ratio. Rather,
it implies that the firm-specific component of the underlying information production
technology remains the same.

At this point, it is worth discussing our approach and comparing it to the approaches
taken in the literature that estimates wedges. The large literature on misallocation iden-
tifies distortions as the difference between the marginal product of an input and its price
(Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009). The typical approach in that
literature assumes that firms have the same production technology. This assumption is
needed because otherwise the firm-specific wedges cannot be distinguished from arbi-
trary firm-level heterogeneity in production technology. We face the same identification
problem but take a different approach. Instead of assuming homogeneous production
technology, we allow for heterogeneity through compute productivity but assume that
this heterogeneity is time-invariant within a window of a few years. We note that both ap-
proaches have strengths and weaknesses, but we believe that in our context, it is essential
to allow for heterogeneous production technology.

We also differ from the misallocation literature by using input demand functions for
two variable inputs—one distorted and one not—instead of estimating a full production
function. The underlying idea is that we can net out the sources of distortions that are
common to both inputs, such as market power and adjustment costs, and recover the
distortion specific to data input. This identification strategy is similar to the approach
used in the literature to identify input market power from the ratio between two variable
inputs (Morlacco, 2020; Kirov and Traina, 2023).

Assumption 2. EU and US industries follow the same time trends in aggregate compute technology
post-GDPR.

This is the second critical assumption necessary for identifying the cost of the GDPR.
The identification of wedges requires controlling for aggregate changes in compute pro-
ductivity. Otherwise, the changes in the computation-to-data ratio of EU firms due to
GDPR may be attributed to differential aggregate trends in compute productivity in the
EU. Therefore, we use the estimated post-GDPR industry trend from the US firms to control
for industry trends in the EU. In particular, the parallel trends we find within industries
before the GDPR in our reduced-form results are consistent with this assumption.

With these two assumptions, we can estimate the following equation:

log
⇣
⇠8C

⇡8C

⌘
= ✏2 + �2

⇣
log

⇣
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3
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8C

⌘
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8
)
⌘
+ log(◆8C), (9)
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Table 6: Elasticity of Substitution Results by Industry

Industry Software Services Manufacturing
OLS IV OLS IV OLS IV

Elasticity of Substitution (�) 0.45 0.41 0.45 0.44 0.38 0.34
(0.02) (0.03) (0.02) (0.04) (0.04) (0.05)

First-Stage (Instrument) - 0.15 - 0.16 - 0.18
- (0.01) - (0.01) - (0.01)

Firm FE X X X X X X
Month FE X X X X X X

F-Stat - 5,637 - 5,147 - 1,949
Observations 130,560 130,560 106,594 106,594 44,708 44,708

Notes: Table presents our estimation results of the elasticity of substitution between storage and computing
(�) across industries. Estimates are presented for pre-GDPR elasticities for EU firms (�⇢*1 ). Standard errors
are calculated using 100 bootstrap repetitions at the firm level.

where $̂2

8
denotes estimates of compute productivity using pre-GDPR data and )̂8 denotes

the estimates of compute productivity trend of the US firms. This equation allows us to
estimate our main object of interest (⌫8) along with the post-GDPR elasticity of substitution
between computing and data.42 Our specification is therefore flexible enough to allow for
and to measure changes in firm production technology post-GDPR.

We estimate this equation using post-GDPR data of EU firms to obtain firm-specific
wedges. For standard errors, we use a bootstrap procedure to account for generated
regressors. The bootstrap procedure treats firms as independent observations and re-
samples firms with replacement within an industry in 100 bootstrap repetitions. We
provide the details of the estimation procedure in Appendix F.

6 Production Function Estimation Results
This section provides results on the elasticity of substitution between data and computa-
tion, the wedges introduced by the GDPR, and how these wedges translate into production
costs.

42Appendix F.5 provides useful intuition behind the identification of ⌫8 . Roughly speaking, the estimated
wedges capture the variation in data intensity (the ratio between inputs) among comparable EU and US
firms that is not explained by changes in prices, changes (over time or across regions) in the elasticity of
substitution, or differences in compute productivity.
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Figure 4: Elasticity of Substitution Between Storage and Computing for EU firms
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Notes: Figure presents our estimation results of the elasticity of substitution between storage and computing
(�) across industries, and we present separate estimates for the pre- and post-GDPR (�1 and �2, respectively).
Solid lines denote the 95% confidence intervals, and standard errors are calculated using 100 bootstrap
repetitions at the firm level.

6.1 The Elasticity of Substitution Between Data and Computation

We begin by presenting estimates for the elasticity of substitution using pre-GDPR data.
Table 6 presents these elasticities for three industries separately—services, software, and
manufacturing—using both OLS and IV estimates. We also present the first-stage estimates
for each industry and their associated �-statistics. The first-stage coefficients are positive,
indicating a positive relationship between our shift-share instruments and the contem-
poraneous prices faced by firms. Our results also indicate �-statistics in the thousands,
suggesting that our instruments strongly correlate with the endogenous variables.

Our estimated elasticities suggest that data and computation are strong complements in
all industries, which is consistent with our event study results in Section 4. The estimated
elasticities range from 0.34 to 0.44, and the larger magnitudes in the software industry
suggest that software firms can more easily substitute between data and computation.
Furthermore, our IV estimates are smaller than the OLS ones. This bias is consistent
with our intuition that firms with higher computing productivity may be more likely to
search for lower relative computation prices and to negotiate higher relative discounts on
computation.

We also assess whether the GDPR led to a meaningful change in production technology
by allowing for the elasticity of substitution to differ before and after GDPR. Figure 4
separately reports the elasticity of substitution estimates before and after the GDPR for
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Figure 5: Wedge Estimates
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Notes: This figure presents our estimation results for the wedge induced by the GDPR (⌫8). Panel (a) presents
the average estimated wedge for firms within each industry. Panel (b) presents the full distribution of
estimated wedges. Solid lines denote the 95% confidence intervals, and standard errors are calculated using
100 bootstrap repetitions at the firm level.

EU firms. While the results suggest a slight decline in the elasticity of substitution in
all industries, the magnitudes are not large enough to be economically meaningful. We
therefore conclude that EU firms did not significantly alter their information production
process after the GDPR.43

Finally, although we are not aware of any previous estimates of the elasticity of substitu-
tion between data and computation, it is still informative to compare these estimates with
the estimated substitutability between other inputs. While the estimates vary, they range
from 0.3 to 0.7 for capital and labor (Caballero et al., 1995; Chirinko, 2008; Raval, 2019) and
from 1.5 to 3 for labor and intermediate inputs such as materials (Chan, 2023; Peter and
Ruane, 2023). This indicates that data and computation are more complementary than
traditional inputs. We view these elasticity of substitution estimates as a contribution to
the production function literature, as there is very little empirical evidence on how firms
use data despite its growing importance. The strong complementarity also highlights the
crucial role that computational resources play in processing data and the growing role of
computation in the modern firm production function.

43In Appendix Figure OA-3, we repeat this exercise for US firms for comparison. We find comparable elasticities
of substitution for firms in the US and similarly cannot reject the null that there are no changes in the elasticity
of substitution for US firms.
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Figure 6: Wedge Heterogeneity by Firm Size, Compute Productivity and IT Intensity
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Notes: Figure presents our estimation results for the wedge induced by the GDPR (⌫8), averaging across
firms within each of the given groups. Panel (a) shows these estimates across the five firm-size quintiles,
while Panel (b) shows these estimates across the five compute productivity ($2

8
) quintiles computed using

pre-GDPR estimates. Solid lines denote the 95% confidence intervals, and standard errors are calculated
using 100 bootstrap repetitions at the firm level.

6.2 The Regulatory Wedge Induced by the GDPR

Next, we examine our estimates of the wedges introduced by the GDPR (⌫8). Panel (a)
of Figure 5 displays the average wedge for EU firms across industries together with the
95% confidence intervals. The findings indicate that the average wedge in all industries is
statistically significantly different from zero, implying that the GDPR has raised the cost
of data for businesses. The wedge is the highest for software firms at 24%, and these larger
magnitudes may reflect higher average exposure to the costs of the GDPR among software
firms. These average estimates, however, hide substantial firm-level heterogeneity. As
shown in Panel (b) of Figure 5, there is considerable heterogeneity in the wedge generated
by the GDPR. For some firms, the wedge is close to zero, while for others, it can be as large
as one.44

To better understand this heterogeneity and to study the determinants of these regu-
latory wedges, we look at how firm-level variables are correlated with this wedge. We
consider two firm characteristics: (i) firm size, as measured by the number of employees,
and (ii) compute productivity, as measured by pre-GDPR $2

8C
estimates. The results are

reported in Figure 6. Panel (a) shows the average wedge estimates across the five firm-size
quintiles, where the quintiles are calculated within each industry. The results suggest
that the distortionary effects of the GDPR are highest for the smallest firms, with a wedge
equivalent to a 25% tax, and with monotonically decreasing effects as the firm size gets

44A small fraction of our wedge estimates are negative, which we attribute to noise in the estimation.
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bigger. This finding is consistent with other evidence on the effects of the GPPR in the
literature (Campbell et al., 2015; Koski and Valmari, 2020; Goldberg et al., 2023) and may
reflect the fact that larger firms have more resources to comply with the GDPR. In panel
(b), we report the wedge distribution across quantiles of the compute productivity distri-
bution. There is a strong inverse monotonic relationship between compute productivity
and the data cost of the GDPR. As firms become more compute-intensive, the magnitude
of the wedge decreases from 26% in the first quantile to 15% in the last quantile.

6.3 The Effect of the GDPR on the Cost of Information

How do the additional data costs resulting from the GDPR affect firms’ production costs
and input decisions? To answer this, we begin by deriving how our estimated wedges affect
the cost of producing a given level of information or the “cost of information.” Given data
and computation prices, the cost of information is given by:

⇠�
⇤(�8C , ?8C ,⌫8) = �8C

✓
($2

8C
)� �?2

8C

�1�� + ��
⇣
(1 + ⌫8)?3

8C

⌘1��◆1/(��1)
, (10)

with the full derivation provided in Appendix E.3.
We use Equation (10) to estimate the increase in the cost of information post-GDPR by

considering two scenarios: (i) a case in which there was no wedge (⌫8 = 0) and the cost
of data was simply the cloud cost ?3

8C
, and (ii) the realized case in which the cost for firms

included the costs of regulations: (1 + ⌫8)?3
8C

. To implement this calculation, we use our
estimates of key model parameters, such as each firm’s compute technology, input prices,
and the elasticity of substitution. These parameters allow us to estimate the counterfactual
information cost with and without the privacy regulation for each firm at a monthly level.

The results for the percentage increases in information costs are reported in Figure 7.
Panel (a) shows the average change in the cost of information by industry, plotting the mean
along with standard errors. These results suggest that changes in the cost of information
were significantly lower than changes in the cost of data. The average increase in the cost
of information in the manufacturing industry is 2.5%, while it is 4.2% in software and 2.6%
in the services industry. Once again, however, these average estimates hide considerable
firm-level heterogeneity in information cost changes, which we document in Panel (b).

The increase in the cost of information is considerably smaller than that the increase in
the cost of data. To further understand why, we decompose in Appendix E.4 the increase
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Figure 7: Results on Information Cost
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Notes: Figure presents our estimation results for the change in the cost of information induced by the GDPR.
As discussed in the text, we calculate the increase in the cost of information by using Equation (10) to compare
the cost of information with our estimated wedge (⌫̂8) to the cost of information in the counterfactual with no
wedge (⌫8 = 0). Panel (a) presents the average estimated increase in the cost of information for firms within
each industry. Solid lines denote the 95% confidence intervals, and standard errors are calculated using 100
bootstrap repetitions at the firm level. Panel (b) presents the full distribution of the estimated increase in the
cost of information.

in the information cost as:
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where the first term—the direct effect—represents the increase in costs if firms do not re-
optimize their input mix, while the second term—the firm re-adjustment margin—is the
extent to which firms can mitigate the increase in costs by substituting data for computation
while holding production fixed. Conceptually, if firms do not re-optimize their inputs, the
increase in the cost of information would be determined by the expenditure share of data
(B3
8C

) multiplied by the wedge (hence the positive direct effect). However, firms’ input re-
optimization would reduce this effect depending on the elasticity of substitution, � (hence
the negative re-adjustment margin).

Both channels explain why the (average) cost of information increase is about a fifth of
the size of the (average) wedge. First, we find that the direct effect is small (3.9%, as shown
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by Figure OA-4(a)) because data is significantly cheaper than computation and accounts for
an average expenditure share of only 19% in information production costs. Second, given
the strong complementarity of data and computation, firms are limited in their ability to
mitigate the increase in the information cost by substituting data storage for computation.
Therefore, the average firm re-adjustment margin is only �0.2% (see Figure OA-4(b)).

To summarize, our production framework suggests that the GDPR lead to a 3.7%
average increase in the cost of information despite the 20% average increase in the cost of
data because data accounts for a small share of the information cost in firm production
relative to compute.

6.4 The Effect of the GDPR on Firm Production Costs

Finally, we estimate the impact of the wedges imposed by GDPR on firm production costs.
Up until now, we limited the scope of our analysis to the firm’s production of information.
This allowed our framework to accommodate multiple specifications for how information
might be integrated into the production function. In this subsection, however, we sacrifice
some generality to analyze how changes in the cost of information translate into changes
in production costs for firms under additional assumptions.

We follow Lashkari et al. (2023) by using a nested and homothetic CES production
technology, where information � is combined with a constant returns to scale aggregator
of non-information inputs such as capital and labor, "(!,  , ·). We denote the production
function by:

.8 = ⇡8


�8 �

⌧̄�1
⌧̄

8
+ (1 � �8)"

⌧̄�1
⌧̄

8
)
� ⌧̄

⌧̄�1

, (11)

where ⇡8 denotes firm-specific productivity, �8 denotes firm-specific information intensity
in production, and ⌧̄ is a key parameter that represents the elasticity of substitution between
information and non-information inputs.

Rather than expressing the unit cost function as in Equation (10), which required
data on prices and other firm-level parameters, we show in Appendix G.1 that under some
simplifying assumptions—that all inputs are flexible, inputs have common prices, and that
firms do not have market power—we can use aggregate industry-level data and cost shares
to derive how information cost changes translate into production costs. More explicitly,
we can provide a benchmark for the effect of the GDPR on production costs using only
the cost share of information (B�

8
) and elasticity of substitution between information and
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Table 7: Effects of GDPR on Production Costs

Software Services Manufacturing
(1) (2) (3)

Key Parameter Estimates
Increase in Information Costs (8)

Mean increase 0.04 0.03 0.02
5th - 95th percentile increase [0.03 - 0.05] [0.02 - 0.04] [0.01 - 0.03]

Elasticity of Substitution (⌧̄)
Lashkari et al. (2023) 0.83 0.18 0.17

Information Expenditure Share (B�
8
)

Median share 11.8% 5.0% 3.1%
Range of estimates 8.7% - 16.7% 2.9% - 5.0% 2.3% - 3.3%

Results
Increase in Production Costs (✓8)

Mean increase 0.47% 0.15% 0.06%
Range of estimates [0.26% - 0.82%] [0.06% - 0.20%] [0.02% - 0.10%]

Notes: Table presents estimates of Equation (12) calibrated with increases in the cost of information estimated
in Section 6.3 and information expenditure shares estimated from Aberdeen and other industry surveys for
each industry. The mean increase in production costs is calculated with the mean increase in information
costs and the median information expenditure share. The contribution to the GDP is calculated using OECD
National Accounts using the output approach. The range of estimates is calculated by combining the 5th - 95th

percentile increases in information costs with the lower and upper range of information expenditure share
estimates, respectively. The cost attributed to the GDPR is the multiplication of the increase in production
costs, the contribution to the GDP, and the 2018 EU GDP at 2018 current prices. Column (1) presents these
estimates for software firms, which are defined through SIC codes 7370 - 7377 in our data. Column (2)
presents estimates for non-software service firms. Column (3) presents estimates for manufacturing firms.
Appendix G provides more detail about the information expenditure share estimates, the point estimates of
⌧̄ taken from Lashkari et al. (2023), and our calculation of the contribution to the GDP by industry.

non-information inputs (⌧̄) as sufficient statistics:

✓8 =
⇣
(1 + 8)1�⌧̄ · B�

8
+ 1 � B�

8

⌘ 1
1�⌧̄ � 1, (12)

where ✓8 represents the increase in production costs that arise from 8 , the increase in
the information cost. Equation (12) reveals intuitive comparative statics: a given increase
in the cost of information translates into larger increases in production costs for larger
information shares (B�

8
) and lower elasticities (⌧̄).

Now, we turn towards estimating ✓8 . First, we note that we previously calculated 8
in Section 6.3. Next, we need the elasticity of substitution between information and non-
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information inputs. As estimating requires information on non-data inputs (e.g., capital
and labor), we rely on the estimates by Lashkari et al. (2023).45

Finally, we turn towards the last remaining estimates needed to calculate ✓8 : the infor-
mation expenditure shares B�

8
. We cannot calculate these directly from our data. In fact,

estimates are difficult to calculate directly at the firm level more generally, as most pro-
duction datasets do not provide information on “information-related inputs."46 Instead,
we proxy for information costs by using IT-related expenditures to estimate a range of
information cost shares at the industry level.

For this purpose, we turn to the Aberdeen data set and various industry-level surveys,
which we discuss in detail in Appendix G.2.47 While we might expect each source to
suffer from distinct drawbacks, we find that the sources generate remarkably consistent
estimates for the information share of expenditure across industries. Appendix Table
OA-10 provides the estimates from each source separately, and we both use the median
estimate and interquartile range of estimates for our calculations.

We present our parameter estimates and the estimated ranges for ✓8 from Equation
(12) in Table 7. We estimate that production costs increase 0.47% on average for software
firms. These average increases are significantly larger than the mean increases which we
calculate for services and manufacturing firms, which are 0.15% and 0.06%, respectively.
This difference is primarily driven by the larger information expenditure shares of software
firms: the median expenditure share estimate for software firms is 11.8% compared to 3.1%
for manufacturing firms. This difference is compounded by the fact that software firms
also face the largest average wedges and resulting increases in the cost of information.

To provide a sense of the quantitative magnitudes associated with our estimated in-
creases in production costs, we multiply our estimates (✓8)by the amount of GDP accounted
for by each industry in the Euro Area in 2018.48 This exercise implies an annual variable
production cost increase for the software industry on the order of €3 billion. Furthermore,
although service and manufacturing industries experienced smaller relative increases in
production costs, the importance of these industries implies associated annual GDPR costs

45Lashkari et al. (2023) study France from 1995 - 2007. Although their setting predates ours, their compre-
hensive data on firm-level information technology investment and industry-level estimates are useful in
considering how the wedges introduced by privacy laws might translate into production costs for firms.

46While some researchers have leveraged data from the U.S. Census to track spending on digital technologies
(e.g., Zolas et al., 2021; McElheran et al., 2023), they do not provide relevant industry-level estimates of this
statistic that we could use for our estimation.

47While these sources only partially capture the information expenditure share and capture different samples
of firms, we aim to provide a range of plausible values by combining estimates across surveys and years.

48Our estimates of the GDP accounted by each industry (and their share of the GDP) are €639 billion (5.53%),
€7.84 trillion (67.86%), and €1.95 trillion (16.88%) for software, services, and manufacturing, respectively.
We discuss how we attribute GDP to industries in greater detail in Appendix G.2.
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on the order of €11.8 and €1.2 billion, respectively.49
We view these results as providing evidence that the direct impacts of the GDPR

that we estimated translated into highly heterogeneous effects on production costs, with
substantial increases in production costs for data and information-intensive industries.

7 Conclusions
In this paper, we examine the impact of the GDPR on firm data input choices. Comparing
EU firms affected by the GDPR to similar firms in the US, we document that the GDPR
decreased the amount of data used by firms. Firms subject to the GDPR decrease the
amount of data stored by 26% and the amount of computation by 15% by the second
year after the GDPR, becoming less data-intensive. Our results contribute to the literature
documenting the costs of GDPR, complementing the existing literature by focusing on
data outcomes that have been rarely studied.

We also map the observed shift in input choices to the production cost of the GDPR
using a production function model that we develop and estimate. Our data allows us
to estimate “data usage” as a multi-dimensional object composed of both storage and
computation units. We propose a framework in which firms produce “information," an
intermediate good, using storage and computation as inputs. We show that data storage
and computation are complements in production. To our knowledge, these are the first
estimates of such a trade-off. Having estimated these results, we then use our model to
measure the cost of the GDPR, and we find that the measures that firms had to adopt
are equivalent to an increase in the cost of data storage of around 20%, with substantial
variation both within and across industries. Software industries, whose firms may be
more exposed to the GDPR than manufacturing firms, and small firms, which may find
compliance more costly, experience more significant distortions in their demand for storage
and computation.

Using our estimates of key model parameters, such as firm-level compute technology,
input prices, and the elasticity of substitution between data storage and computation, we
find that these increases in the costs of data for firms translate into significant increases
in “information" production costs, with average increases on the order of 3%. Finally,
by using information as an input in a flexible nested-CES framework, we show that un-
der standard assumptions, our estimated wedges translate into extremely heterogeneous
increases in production costs across industries. These effects range from smaller 0.06%

49These numbers are in the same ballpark as some of the available estimates from surveys. For example, Ernst
& Young consultants argued that in 2018, the largest 500 corporations in the world were on track to spend a
total of $7.8 billion to comply with GDPR (Bloomberg Businessweek, 2018).
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increases in production costs for manufacturing firms to substantially larger estimates of
0.47% increases in production costs for data and information-intensive industries such as
software.

Our results reinforce the importance of studying the impact of privacy regulation on
firm production, and they emphasize the importance of considering “data usage” as a
multi-dimensional object and studying how firms combine data and computation. We
reiterate, however, that this paper is only a partial analysis of the welfare effects of the
GDPR. This paper is completely agnostic to the benefits that consumers derive from the
information disclosures provided by the GDPR or the surplus derived from the increased
privacy protections that such a law entails. A full welfare analysis must incorporate these
benefits into a single estimation framework.
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