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1 Introduction

Climate change over the coming decades will affect the ability of land to support

the lives and livelihoods of much of the world’s population. This is most obvious

in the case of agricultural productivity, which will be strongly affected by changes

in rainfall and temperature. In addition, climate change may lower the quality of

life in given regions or require the expenditure of additional resources to maintain a

specific quality of life. Beyond reductions in the standard of living, these changes are

expected to impact the frequency of conflict as well as flows of population, including

migrants and refugees.

Many, though not all, of the economic and social effects of climate change can be

understood through the lens of population pressure on fixed local factors of produc-

tion. The distribution of population in space reflects heterogeneity in these factors:

some places are more productive and easier to live in than others, and the places

where production and life are easier tend to be where people concentrate. Climate

change will alter some of these characteristics, making some locations more attractive

and others less so. A decline in the services provided by local fixed factors, what we

call the “quality” of a location, means that the standard of living will decline or that

some of the people in a location will be induced to move elsewhere.

Our paper makes two contributions. The first is a new methodology for projecting

the economic impact of forecast changes in climate at the grid cell, country, and world

levels. Our methodology takes advantage of spatial variation in characteristics that

will be altered by climate change in order to estimate weights on different climate

components. Notably, we use a large set of climate indicators from global climate

models, going beyond the simple annual averages of temperature and precipitation

used in most existing research to include intra-annual variation in both tempera-

ture and precipitation, frequency of temperature extremes, and suitability for many

specific crops, among other measures. We econometrically assign weights to these

multiple dimensions based on their effects on the within-country spatial distribution

of population observed today. We pair the results of this econometric exercise with

a macroeconomic growth model, which allows us to examine, among other things,

the effects of within-country labor mobility. The general tenor of the projections

that we produce is in line with a good deal of previous work, specifically in finding

that negative economic effects of climate change will be most severe in poorer and
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hotter countries, while several colder regions may benefit. But there are significant

quantitative differences between our findings and some previous research.

The second contribution is to bring together the analysis of climate change and

population growth into a single framework, through the lens of population pressure

on local resources. Population pressure rises when location quality decreases or when

population size increases. Our framework allows us both to study the combined

impact of these two forces and to compare their relative magnitudes. Many countries,

especially lower income ones that are expected to suffer degradation in location quality

due to climate change, are also expected to see large increases in the population that

will be reliant on that land. Further, the impacts of population growth on reducing

2100 GDP per capita are typically greater than those due to climate change. Finally,

looking across the range of projections, uncertainty regarding the effect of population

on economic outcomes appears to be larger than uncertainty regarding the effect of

climate change.

The rest of this paper is structured as follows. Section 2 briefly discusses the ways

economists have thought about the effects of both climate change and population

growth on economic outcomes. Section 3 discusses our methodology for estimating

location quality and how it will be affected by projected climate change. In Section 4,

we present our estimates of climate effects on location quality at the world, continent,

and country levels. Section 5 lays out the economic model that is used to map

from changes in climate and population into changes in GDP per capita, and also

discusses the role of within-country labor mobility as means of adapting to climate

change. Then Section 6 presents projected country-level impacts from climate change

alone as well as from climate and population combined. This section also discusses

variability across climate and population projections. Section 7 aggregates projected

damages from climate change to the world level to facilitate comparison with other

estimates, and also examines the effect of projected climate change on cross-country

income inequality. Section 8 concludes.
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2 Approaches to Analyzing the Impacts of Cli-

mate Change and Population Growth

2.1 Climate Damages

Economists frequently summarize the economic effects of climate change in the form

of a damage function that relates the loss in GDP relative to what it would have

been in the absence of climate change to the extent of climate change, as measured

by the increase in atmospheric carbon dioxide or the global rise in mean surface

temperature. A large and active literature attempts to estimate these damages (for

reviews see Hsiang, 2016; Kalkuhl and Wenz, 2020; Newell et al., 2021; Nath et al.,

2024) .

Broadly, there are two approaches to estimating the damage function (Hsiang,

2016; Massetti and Mendelsohn, 2018). The more common approach looks at the

relationship between changes in dimensions of weather such as temperature and pre-

cipitation, on the one hand, and output or other economic or social outcomes, on the

other. The analysis is generally conducted at the level of countries or sub-national

administrative units for which it is possible to get data on output over time. Varia-

tion can be measured annually or over longer periods. The advantage of this panel

approach is that it differences out any fixed unobserved characteristics that may be

correlated with climate.

Dell et al. (2012) is a well-known early example of this approach. Recent analyses

include Kahn et al. (2021), Tol (2021), and Newell et al. (2021). Cruz and Rossi-

Hansberg (2024) use a similar empirical strategy in estimating a damage function

that serves as an input to their dynamic climate assessment model.1

The primary critique of this method is that it fails to account sufficiently for adap-

tation. In the face of a long-run change in the climate, we would expect economic

agents to adapt along a large number of dimensions, including what crops are grown

and when they are planted, construction of appropriate infrastructure, and the in-

stallation of air conditioning. Adaptation can also take the form of people changing

locations. One would thus not expect the effect of a unexpected shock to weather

1As an alternative to estimating economy-wide damage functions, a number of papers look at
specific sectors or outcomes. These include Costinot et al. (2016), who examine the impact of climate
change on agriculture, and Carleton et al. (2022), who examine mortality outcomes. Implicitly, a
measure of overall damage from climate change could be derived by summing these channels.
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in a single year to be the same as the a secular change in climate that took place

over the course of many decades. Hsiang (2016) and Lemoine (2021) discuss the

assumptions required to estimate the effects in climate change through variation in

weather. Because very little of the projected change in climate has happened so far,

it is difficult to use differences in observed temperature to estimate what the impact

of expected future changes will be. Bilal and Känzig (2024) state that the stability of

their results (looking at the effect of annual variation in global mean temperature on

global GDP) over time “suggests a lack of adaptation to temperature shocks, at least

historically.” While this may be true of historical adaptation, it does not imply a

lack of future adaptation. The historical period that they study features very little of

the sort of secular climate change that is projected to occur over the coming century.

This critique also applies to long-differences in panel data. For example, Kalkuhl and

Wenz (2020) note that even though in their specification annual temperature shocks

affect GDP, average decadal changes do not—they are simply very small relative to

annual or cross-sectional variation. Such observed past decadal changes in average

temperature are also very small in comparison to projected changes over the next

century.

The panel literature has also varied in modeling climate as affecting income levels

versus growth rates. We follow the majority of the literature in modeling level effects.

By contrast, some recent papers, mostly notably Burke et al. (2015a) use a panel of

income growth rates and weather. See Casey et al. (2023) for a critique and Nath et al.

(2024) for a specification in which weather shocks have persistent but not permanent

effects.

The alternative to the panel approach looks cross-sectionally to compare economic

outcomes in locations with different climates in the present, and then applies the

estimated effects of climate differences to projected changes in climate in the future.

This approach has the advantage of assessing climate effects after accounting for any

adaptations discussed above, which are embodied in the current cross section. In our

projections of the impact of climate change in the year 2100, we assume that location-

specific adaptation (infrastructure, choice of crops, and so on) is as complete as it

was in 2010, while we entertain a variety of different assumptions regarding whether

redistribution of population in response to climate change has also taken place.

In work related to ours, Nordhaus (2006) applies this approach, regressing total

GDP in grid cells covering the whole world on annual mean temperature and pre-
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cipitation, geographical controls, and country fixed effects. Our work differs from

Nordhaus in a number of dimensions. Most importantly, we assess the effects of cli-

mate change in parallel with (and in comparison to) the effects of population growth,

and this assessment is carried out using a macroeconomic growth model, rather than

being purely statistical. The use of a model also allows us to consider different sce-

narios regarding population migration in response to climate change. In terms of

data, we use a broader set of climate attributes than simply average temperature and

precipitation. We further modify the Nordhaus approach to use population rather

than output as our dependent variable. We think that population is measured much

more accurately than income in small geographic units. Further, population data are

more widely available. For example, Kalkuhl and Wenz (2020) use panel data on

Gross Regional Product from 1,552 administrative districts in 77 countries. However,

only a handful of countries in Africa, the region most vulnerable to climate change,

are represented in their data, and only two of these have data spanning more than

20 years. Finally, in contrast to Nordhaus’s log-linear specification, we estimate a

Poisson model, which we show to be a significant methodological improvement.

As with the panel approach, there is a well-known problem that hangs over the

cross-sectional approach, which is the possibility of omitted variables. Specifically,

even relying on within-country geographic variation, there may be heterogeneity in

institutions or other economic factors that is correlated with geography. For example,

Deschênes and Greenstone (2007), in the case of US agriculture, find that the cross-

sectional approach, with land price as the dependent variable, is highly sensitive

to various specification choices, including control variables, sample, and weighting.2

For these reasons, Deschênes and Greenstone favor using the panel approach. They

acknowledge that the panel estimates are unable to account for adaptation, which

biases their estimates of damages resulting from future climate change upward. Given

that they find find small or negative damages from projected climate change, they

do not view this as a problem. However, in moving beyond US agriculture, to cases

where estimated climate damages from the panel approach are large, this bias is a

much more serious issue.

2Schlenker et al. (2005) similarly find that a hedonic model that ignores the correlation of climatic
characteristics with the presence of irrigation is misspecified in the case of U.S. agricultural land.
When they estimate their cross-sectional model solely for non-irrigated land (which is the only
category for which they have sufficient data), the coefficients imply significant damage from projected
climate change.
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To address the issue of omitted variables, we repeat our estimates using two

sets of sub-national fixed effects: first level administrative units (for a total of 2,818

fixed effects worldwide), and the interaction of country fixed effects with five degree

longitude-latitude grid squares (for a total of 1,371 fixed effects worldwide). These

results are extensively presented in Appendix C as well as selectively in the main text.

These specifications narrow the scope for omitted variable bias considerably. The fact

that they tell a story very similar story to our baseline specification regarding the

role of climate change in long run growth is reassuring.

2.1.1 Damage Function Magnitudes

A number of papers have compiled damage function estimates from several different

sources and estimated an average worldwide damage function from them. For exam-

ple, the DICE-2023 model (Barrage and Nordhaus, 2024) embeds a damage function

relating lost GDP to the square of the deviation of global average surface temperature

from its historical mean. The damage coefficient is derived from fitting a quadratic

model to 56 existing estimates of damages under different climate change scenarios

and then adding adjustments for potential climate tipping points as well as a judg-

mental adjustment term to reflect omitted non-monetized impacts (such as loss of

biodiversity) and uncertainty. The estimates imply that a rise in mean temperature

of 3 degrees C would reduce world GDP by roughly 3.1%, and a 4.5 degree rise would

reduce global income by 7%.3 According to Stocker et al. (2013), the rise in mean

surface temperature by the period 2081–2100 is likely to fall into the range of 2.6–4.8

degrees under the RCP 8.5 emissions pathway where there is continuing high use of

fossil fuels worldwide.

Recent work discussing climate change in a spatial framework also tends to depend

on these damage functions to incorporate warming into models. Desmet and Rossi-

Hansberg (2015) use damage functions that are quadratic in local temperature, with

separate sets of parameters for agriculture and manufacturing. Krusell and Smith

(2022) likewise calibrate their regional damage functions to match the global damage

function estimate from DICE.

In addition to the expected effects on GDP, research has also looked at impacts

of climate change in many other dimensions, with two of the most notable being

conflict and migration. Burke et al. (2015b) and Harari and Ferrara (2018) examine

3Other compilations of damage estimates include Tol (2012) and Piontek et al. (2021).
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the effect of climate on civil conflict. McGuirk and Nunn (2025) show that climate

change has already driven increasing conflict between transhumant pastoralists and

sedentary agriculturalists in Africa. Rigaud et al. (2018) project that as of 2050,

2.8% of the population in the group of developing countries that they study, or 143

million people, will have had to migrate internally. A 2021 U.S. government report

predicted that over time an increasing fraction of this migration will be across national

borders (White House, 2021). Burzyński et al. (2022) project that 62 million working

age adults will move because of climate, most of them across international borders,

during the 21st century.4

2.2 Population Pressure

Work studying the economic and social effects of climate change described above

is mostly a product of the last several decades. By contrast, work on the effects

of natural resource congestion due to population growth is far older, going back at

least to Malthus (1798). Authors such as Hardin (1968), and Ehrlich (1968) focused

on the inability of existing natural resources to support ever-growing populations.

More recent literature arguing that the resource congestion channel has an important

impact on economic outcomes, particularly in poor countries, includes Young (2005),

Acemoglu and Johnson (2007), and Kohler (2012). Das Gupta et al. (2011) point

out that discussion of “sustainable development” at the country level is to a large

extent simply a reformulation of the Malthusian concern with the ratio of population

to resources. Paralleling the more recent literature on climate change and conflict,

Acemoglu et al. (2020) show that higher growth in population resulted in increases

in civil wars and other measures of social conflict. Similarly, pressure on natural

resources due to population growth is a hypothesized driver of both internal and

international migration.

Although research on this topic does not use the terminology of a damage function,

there is no barrier to applying the same concept. For example, the IV estimates in

Acemoglu and Johnson (2007) imply that a change in life expectancy that raised

population by 1% would lower GDP per capita by 0.79%.5 Similarly Ashraf et al.

(2013), using a simulation model parameterized to match Nigeria, find that an increase

in fertility that raised population by 11.9% would reduce income per capita by 10.6%.6

4See also Lustgarten (2020a,b,c).
5Tables 8 and 9, column 1.
6Values for the year 2060, comparing the UN low and medium fertility projections.
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Existing literature does not address the relative magnitude of economic stress due

to climate change, on the one hand, and population growth, on the other. To the

extent that the two issues are discussed together, it is often in the context of how

population affects carbon emissions, and through this channel climate (Casey and

Galor, 2017).7 We aim to bridge this gap.

3 Projecting Climate Impacts on Location Quality

Our approach follows broadly in the mode of the cross section approach discussed

above, most notably Nordhaus (2006). The key insight is that one can infer the char-

acteristics that affect location quality, and the appropriate weights to apply to them,

by looking at current settlement patterns. In order to assess the effects of changes

in location quality due to climate change and the effects of population pressure on

both resource congestion and growth, we gather information for two periods: roughly

current day, encompassing data from 1980 to 2010, and the future, for which we use

projections for 2071 to 2100. For convenience, we refer to the former as 2010 and the

latter as 2100.

3.1 Empirical Model

We outline a simple model of population allocation within a country that leads directly

to our econometric specification. Production in grid cell i of country c is given by

Yi,c = (Qi,cZi,c)
ϕKα

i,c(ecLi,c)
1−α−ϕ (1)

where Qi,c is a measure of location quality, Zi,c is land area, ec is a country-level

measure of productivity due to non-land factors (institutions, technology, etc.), Ki,c

is physical capital, and Li,c is labor. Differences in human capital per worker could

also be incorporated into ec. Similarly, allowing for agglomeration economies would

not affect the key results of the model for our purposes.8 Although the regions that we

7Vörösmarty et al. (2000) discuss the interaction of climate change and population growth in the
particular case of demand placed on local freshwater resources.

8If we think that agglomeration economies come from density as in the classic Ciccone and Hall
(1996) paper or more modern papers such as Combes et al. (2017) and Henderson et al. (2021),
then the right hand side of (1) should be multiplied by (Li,c/Zi,c)

η. In this case, equation (4) is the
same, except instead of estimating β, we estimate βϕ/(ϕ − η). Using a typical value of η = 0.04
from the literature (see Rosenthal and Strange, 2004; Combes and Gobillon, 2015) and 0.25 for ϕ as
discussed below, ϕ/(ϕ− η) = 1.19. While this affects the interpretation of the estimated coefficients
in (4), it does not affect the fitted values from this equation, our focus below.
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use are all quarter-degree squares of latitude and longitude, they differ in their land

areas both because lines of longitude converge away from the equator and because

parts of some grid squares are covered with water.

Labor and capital are assumed to be perfectly mobile within countries to equalize

their marginal products across grid cells. This implies that in equilibrium, within a

country, grid cell density, Li,c/Zi,c, will be proportional to the location quality of the

grid cell. Quality in turn is postulated to be a function of the vector of geographic

characteristics, xi,c, of the grid cell, Qi,c = exp(xi,cβ). Thus

Li,c/Zi,c = exp(xi,cβ)Cc, (2)

where Cc is a country fixed effect that ensures that we are identifying quality exclu-

sively from variation in population density that is within-country and therefore not

driven by differences across countries in institutions, technology, culture, or historical

development.

Estimated location quality for each grid cell is the fitted value from (2), excluding

country fixed effects. That is, we define

Q̂i,c = exp(xi,cβ̂)
[ ∑

Zi,c∑
exp(xj,cβ̂)Zj,c

]
. (3)

where β̂ is the vector of estimated coefficients from equation (2). The term in brackets

is a normalization to ensure that the worldwide sum of quality-adjusted area Q̂i,cZi,c

is equal to the actual land area of the world.

While the discussion has focused on location productivity, it is straightforward

to extend the model so that the vector of land characteristics affects not only pro-

ductivity but also the amenity value of a location. The extension simply affects the

interpretation of the coefficients and not the estimates of location quality.9

3.2 Data and Specification

For the dependent variable in (2), we use the European Union’s Global Human Set-

tlements population layer (GHS-POP). In Appendix B we discuss the comparison

of results using this population dataset with those obtained using two others: the

Gridded Population of the World version 4 and LandScan.

9Let the amenity value of a grid square be Ai,c = exp(xi,cγ) and assume mobility within a country

equalizes the product of the average product of labor and amenities. In this case, E(β̂) = β + γ.
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Geographic characteristics, xi,c, include elevation, latitude, ruggedness, distance

to the coast, and a set of four dummies indicating the presence of a coast, a navi-

gable river, a major lake, and a natural harbor within 25 km of a cell centroid, all

from Henderson et al. (2018). From the U.N. Food and Agricultural Organization’s

Global Agro-Ecological Zones v4 dataset (FAO’s GAEZ) we add a selection of 33

characteristics that provide information on the thermal regime, moisture regime, and

growing period of each grid square as well as suitability indices of 11 major crops,

all for the time period 1981–2010. Also included is the maximum potential caloric

yield across these 11 crops, calculated using the methodology established by Galor

and Özak (2016). To assess the effect of climate variability, we include a measure

of year-to-year volatility of daily temperature. These data are collected for 237,019

quarter-degree grid squares in 164 countries. Appendix A discusses the data and

methodology in greater detail.

Previous work (Nordhaus, 2006; Henderson et al., 2018) estimated the parameters

in equation (2) by taking logs and including an additive error term. There are three

key problems with this log-linear specification, however. First, 40% of grid squares

in our data have zero reported population. While a strict application of the model

suggests there should be no zeros, we believe the volume of zeros largely reflects

measurement error (discussed in Appendix B) as well as restrictions on where people

are permitted to live.10 A common approach to this problem is to replace these

zeros with a small non-zero value or to apply a “log-like” transformation such as

inverse hyperbolic sine.11 Unfortunately, in the case of the log specification, parameter

estimates can be sensitive to the value used for imputation, and are also sensitive to

simply dropping zeros. Chen and Roth (2024) show that estimates from a “log-like”

transformation should not be interpreted as representing semi-elasticities.

Second, as seen in Figures B1.A and B1.B, many grid cells in the world have

extremely low population densities. For example, in the GHS data 75% have density

less than 12 people per square kilometer, while 98.5% of the world’s population lives

in grid squares with density above this level. As discussed in Appendix B, data

10According to the United Nations Environment Programme (2016), 14.7% of the world’s land
area is in “protected areas” such as national parks.

11For example, Henderson et al. (2018), which examined lights data, assigned to every reported
zero observation the minimum non-zero value in the dataset. In Nordhaus (2006), where output
per square kilometer is the dependent variable, 3,170 of 17,409 grid squares in the regression sample
have zero values for the dependent variable. Nordhaus imputes values for 618 of these cells based
on neighbors, and then assigns the remainder a value of one before taking logs.
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construction issues are likely to introduce a good deal of measurement error in sparsely

populated regions, and even to the extent that density in these regions is correctly

measured, its determinants are conceptually of less interest than the determinants

of density in regions where most people live. The log-linear specification, however,

places a lot of weight on regions with extremely low population densities.

Third, Santos Silva and Tenreyro (2006) show that OLS estimates of a log-linear

version of (2) are inconsistent (and NLS inefficient) in the presence of heteroskedas-

ticity, which is likely in our context. These issues are discussed more extensively in

Appendix B.

For these reasons we estimate a Poisson model. The specific functional form is

E(Li,c/Zi,c | Cc, xi,c) = exp(Cc + xi,cβ) (4)

The Poisson specification is well-suited for outcome measures with many zeros and

tiny values. As shown in Appendix Figure B2, predicted values of density from a

Poisson specification are remarkably robust to using the two alternative population

datasets noted above, while log-linear predicted values are not.

The stochastic component of our model is crucial for addressing the contingent

nature of human settlement. There is a vast literature on multiple equilibria and ac-

cidents of history with agglomeration (e.g. Krugman, 1991; Arthur, 1989; Davis and

Weinstein, 2002). More recent work has focused on dynamic development subject

to stochastic processes that yield particular, unique equilibria as a way of encap-

sulating these accidents (Michaels et al., 2012; Desmet and Rappaport, 2017). For

example, in a model similar to ours but with a more complex production process,

Desmet and Rappaport envision regions as being subject to initial large productiv-

ity/resource shocks and then to a series of smaller accumulating independent draws

over time. These accidents are important to understanding why, for example, the

center of Kolkata is not 50 kilometers further up or down the Hugli River or on a

completely different river in historical Bengal. In that particular case, an initial ar-

bitrary choice of a British East India Company employee, Job Charnock, and then

a history of other choices and accumulations over 300 years, anchored that location

and induced high density. Our reduced form specification summarizes the cumulative

impact of such a succession of shocks. Since we are assuming a Poisson specification

overall, we effectively assume that these shocks are a series of Poisson draws.
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The country fixed effects in (4) control for factors like technology and national

population relative to national land area. Identification of the determinants of lo-

cation quality comes solely from within-country variation. In other words, β is not

estimated by comparing the land characteristics of more and less densely populated

countries, but rather by comparing variation in land characteristics and population

density within countries.

Coefficient estimates for our Poisson specification with country fixed effects are

presented in Table A1.12 The table also presents coefficients for specifications that

include fixed effects for either first level administrative regions or the interaction of

country fixed effects with five degree longitude-latitude grid squares. Because the

different climate and geography measures that we use are so collinear, it is very hard

to interpret single coefficients, and it is similarly difficult to interpret differences in

coefficients across specifications. Instead, in both the text below and in Appendix C,

we focus on differences in projected climate impacts among the different specifications.

3.3 Projecting Climate Impacts

Climate change will alter many of the characteristics that determine our measure of

location quality. A key innovation in the present paper is to substitute projections

of future characteristics into equation (3), allowing us to calculate expected future

location quality at the grid cell level:

Q̂i,c,2100 = exp(xi,c,2100β̂)
[ ∑

Zi,c∑
exp(xj,c,2010β̂)Zj,c

]
. (5)

In essence, to calculate grid-cell location quality for 2100, we apply the β̂ coefficients

from (4) estimated on 2010 data to future projections of the geographic characteristics.

The term in brackets maintains the 2010 normalization from equation (3), so that

global average Q in year 2100 is measured relative to 2010.

Projections of future climatic conditions are generated by global climate models.

These are numerical representations of the earth’s climate, in which future states

of the world are derived from initial conditions using physical laws. As such, the

outputs of these models are highly dependent on the assumed trajectory of carbon

12Reported standard errors relax the “equidispersion” assumption of classical Poisson estimation
that the variance of the dependent variable is equal to its mean, which is rejected in our data. The
quasipoisson model we implement assumes instead that variance is proportional to the mean and
estimates the constant of proportionality.
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concentrations from current day to the date of the projection. To ensure that these

outputs are comparable, the Intergovernmental Panel on Climate Change (IPCC) has

established four scenarios of future greenhouse gas concentrations, called Represen-

tative Concentration Pathways (RCPs), as standard inputs for the various models.

Each scenario is characterized by an increase in radiative forcing (in watts per square

meter), relative to preindustrial conditions, in 2100. RCP 2.6 traces the best-case

trajectory while RCP 8.5 depicts conditions from sustained aggressive fossil fuel use.

GAEZ provides projections for all four scenarios from five different climate models

used in the IPCC’s fifth assessment report. For our main results, we generate a land

quality value for each cell for each model and then average across modes to form an

ensemble mean. In Appendix D, we compare our predictions for changes in location

quality between 2010 and 2100 across the five climate models and the ensemble mean.

They are highly correlated with each other and, then, obviously with the mean. The

larger deviations occur in countries where location quality is expected to improve dra-

matically, rather than in countries where location quality will deteriorate. We focus

on the latter group, which includes nearly all poor and middle-income countries.

Our measure of quality is based on a worldwide grid square regression. A potential

concern is that the value of specific land characteristics in determining economic

outcomes may be a function of the level of a country’s development. For example, a

reduction in rainfall could be devastating in a region reliant on rain-fed agriculture,

but in a richer region that imports its food from elsewhere it would have only a

marginal effect. We address this concern in Appendix E, where we estimate equation

(4) using a sample of grid squares solely from countries with below-median income and

then solely from countries with above median income. In Figure E1, we then compare

the predicted changes in GDP per capita by country (using the methodology presented

below) between each of these and our baseline. The results are highly correlated in

both cases.

In Appendix G, we explore the robustness of our results to alternative sets of

regressors. We consider three variants: a quadratic specification in temperature and

precipitation alone, our baseline specification without the time-invariant variables,

and a specification interacting the five time-invariant variables that are relevant for

trade with each of the climate variables. The first two variants lead us to find overall

more positive effects of climate change and in our view to under-represent the poten-

tial losses to lower income countries under all the scenarios. For the interactive case,
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where we are trying to better capture the potential trade impacts of climate change,

in Table G3, the effects are more nuanced, differing by scenario and also by country.

In RCP 8.5, the overall global effect is slightly more beneficial.

4 Projected Effects of Climate Change on Loca-

tion Quality

This section begins by reporting the estimated effects of climate change on location

quality at the grid square level and then aggregates up to look at world, region, and

country impacts on average location quality. Impacts are heterogeneous across the

world: Some countries will experience improvements, while many others, especially

poorer ones, will see significant deterioration.

4.1 Grid Cell, Global, and Regional Results

We start at the grid square level. The first panel of Figure 1 shows our estimated

values of log 2010 location quality. The second panel then shows projected changes

in location quality between 2010 and 2100 under RCP 8.5. In general, the areas with

improvements in location quality are mountainous and/or distant from the equator.

Location quality declines in almost all of Africa and Australia as well as large parts

of South America and central, south, and southeast Asia. The northernmost parts

of Europe are projected to benefit, along with most of Canada and Russia. There

is a good deal of internal variation within larger countries. For example, within the

United States, the Gulf coast suffers declines in location quality while in much of the

mountain west it improves.

To examine heterogeneity in the distribution of projected changes in location

quality, we plot in Figure 2 histograms for grid cells in countries whose 2010 GDPs

were either above or below the median. In the top row, the vertical axis represents

the percentage of the country group’s total land area that falls into each bin; in the

bottom, it represents the percentage of the country group’s total 2010 population.

Among countries with below-median GDP per capita, 67% of the land area, hosting

77% of the current population, is expected to see a decrease in location quality. By

contrast, among countries with above-median GDP per capita, only 47% of land area,

hosting 52% of the population is expected to see such a decrease.

To characterize global and regional impacts of climate change more formally, we

define Average Location Quality (ALQ) of region r. We consider both area-weighted
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Figure 1: Log Location Quality

(a) Historical Log Location Quality

(b) Differences between Historical and 2071–2100 Log Location Quality under RCP 8.5

Notes: Data are censored at -6 and 4 and at -2 and 2 in the top and bottom panels, respectively, for visualization.
Plate Carrée projection.

and population-weighted versions of this measure:

Area weighted:

ALQr,t =
∑
i∈r

Q̂i,r,t
Zi,r

Zr

(6)

Population weighted:

ALQr,t =
∑
i∈r

Q̂i,r,t
Li,r,2010

Lr,2010

(7)

A region can be a province, a country, a continent or the world. The change in

area-weighted ALQ measures the overall impact of climate change on a region, while

the change in population-weighted ALQ focuses on how quality will change in the

places where people currently live. In Section 5 we discuss the assumptions regarding

labor mobility and unobserved location attributes that justify using one or the other
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Figure 2: Histograms of Changes to Log Location Quality

Notes: This figure depicts the distribution of cells in countries with above-median (left column) and below-median
(right column) GDP in 2010. The histograms in the top row weight cells by their share of total land area in their
respective country group; the horizontal axis is censored at -2 and 5. The histograms in the bottom row weight cells
by their share of total GHS population in their respective country group; the horizontal axis is censored at -2 and 5.

of these measures as a starting point in assessing the impact of climate change.

Appendix Table F1 reports world- and continent-level ALQs in 2010, using both

weighting schemes. As would be expected, population-weighted ALQ, globally or in

any region, is far higher than area-weighted ALQ, given that people disproportion-

ately live in higher-quality areas. The table also reports projected ALQs in 2100 for

the four RCP emissions scenarios. Under RCP 8.5, world average location quality

increases by 15% using area weights, but falls by 7% using population weights. Un-

der either weighting scheme, the continent with the biggest gain is Europe (which

includes all of Russia) and the one with the biggest loss is Africa.

4.2 Country-Level Results

Figure 3 shows that there is a strong relationship between countries’ current levels of

GDP per capita and projected changes in (area-weighted) location quality. Among

countries with below-median GDP per capita, the average expected change in area-

weighted location quality under RCP 8.5 is -22%; for those in the top half, the
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average is 43%. There is a good deal of variation among the richer countries, with

some, such as Israel, Portugal, Greece, and the Gulf states doing poorly, while the

Nordic countries, Japan, and New Zealand as well as Russia and Canada all do well.

By contrast, among poor countries the projection is almost universally bad, with a

few exceptions such as Mongolia, Tajikistan, and Moldova.

Figure 3: 2010 GDP and Future ALQ Changes

Note: Figure plots the percentage change in baseline population-weighted ALQ from 2010 to 2100 in RCP 8.5 in log
scale against log 2010 GDP for the 156 countries with both values.

The projected changes in land quality in Figure 3 are derived by interacting pro-

jected climate changes with coefficient estimates from a Poisson regression of grid-cell

population density on geographic and climatic characteristics with country fixed ef-

fects. As discussed above, a potential problem with this approach is that there might

be unobserved characteristics that are correlated with climatic variables. To address

this concern, we re-estimated equation (4) with two different sets of fixed effects: first

level administrative regions (2,818 worldwide) and the interaction of country fixed

effects with five degree longitude-latitude grid squares (1,371 worldwide).
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Figure 4: Country-Level vs. Subnational Fixed Effects

(a) ADM1 FE (b) 5 Degree x Country FE

Note: In both panels, the horizontal axis measures the projected change in log ALQ under RCP 8.5 when equation 4
is estimated with country fixed effects. In panel (A) the vertical axis measures the same then when 4 is estimated
using first level administrative region fixed effects. In panel (B) the vertical axis shows the same thing when 4 is
estimated with country by five degree grid cell fixed effects. All projections are population weighted.

Figure 4 shows how projected country level changes in Average Land Quality

(population weighted) using these alternative specifications compare to our baseline

case of country fixed effects. For either alternative specification, the correlation with

our baseline projections is extremely high. This gives us some confidence that our

results are not biased as a result of omitted variables. That being said, it is notable

that, in the case where we control for first-level administrative regions, projected

changes in location quality are systematically shifted upward in comparison to our

baseline of country fixed effects. That is, with the finer level of fixed effects, we

project less damage (or more benefit) from climate change. We return to the issue of

how these alternative specifications compare to our baseline of country fixed effects

when we consider the effect of climate change on the worldwide Gini coefficient and

the world damage function in Section 7.

4.2.1 Population Growth

The economic effects of climate change that we consider are expected to operate via

a decline in the ability of the physical environment to provide support for the people

who live in it. A moment’s thought suggests that another contributor to this problem

is changes in the number of people. To a first approximation, we would expect a

decline in location quality by 50%, holding constant the number of people living on
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it, to have the same economic effect as a doubling of the number of people, holding

location quality constant.

Assessing this requires projections of future population. Unlike changes in ALQ,

these are available only at the level of countries, not grid cells. We use population

projections from the United Nations Population Division (United Nations, 2019). The

UN provides a central forecast (the medium variant) as well as a range of probabilistic

forecasts for each country. In this section, we use the medium variant projection for

the year 2100, while in Section 6.4 we explore the full probabilistic range.

Figure 5: 2010 GDP and Future Population Growth

Note: Figure plots the percentage change in population from 2010 to 2100 in the U.N. medium variant projection
using log scale against log 2010 GDP for the 156 countries with both values.

Figure 5 shows the relationship between current GDP per capita and expected

population growth between 2010 and 2100 in the UN medium projection. The neg-

ative relationship is even more pronounced than the positive relationship between

current GDP and expected changes in location quality shown in Figure 3. Many

wealthy and middle income countries have negative projected population growth,
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and among the wealthy countries, those that do have positive projected growth gen-

erally have projected values of less than half a percent per year. The exceptions are

mostly oil producers. By contrast, there are a significant number of poor countries

where expected growth over this 90-year period is more than one percent per year,

and many with expected growth near 1.5%.

We now turn to formally comparing the effects of expected population growth and

climate change on economic growth.

5 Mapping Location Quality Changes and Popu-

lation Growth into Income: Methodology

Changes in location quality and in the size of the population both act to change the

degree of population pressure on natural resources. Following the existing literature

on damage functions, our goal is to construct a quantitative measure of how income

per capita in countries would differ in 2100 as a result of these changes, from what it

would have been in their absence. Although the damage function approach is much

more commonly applied in the case of climate change than in the case of population,

we show that the two effects can be treated in parallel.

To measure the impacts of climate change and population growth we consider the

comparison of specified baseline and alternative scenarios. Let Xi,base and Xi,alt be

the 2100 values of quality-adjusted land in grid cell i under these two scenarios, with

Li,base and Li,alt defined analogously. The choice of which baseline and alternative

values to use will depend on the scenario being addressed.

We analyze these scenarios in a simple Solow-type growth model where country-

specific rates of investment, technological change, and depreciation do not vary across

scenarios.13 The grid cell production function is (1) from above, substituting in the

definition of quality adjusted land, Xi = ZiQi:

Yi = Xϕ
i K

α
i (eLi)

1−α−ϕ, (8)

We suppress the country subscript when there is no ambiguity. e is productivity that

is the same throughout a country. We do not explicitly include human capital, but

13The model is required to keep track of how the capital/output ratio evolves in different scenarios,
although in practice this turns out to be a minor element in determining how a country’s relative
production per person varies. Details are in Appendix H.
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one can think of this as being incorporated into the productivity term.

We need to aggregate from this grid cell production term into a national output

equation. To do so, we assume that capital is perfectly mobile, so that its marginal

product is equalized across grid cells. It is simple to show that this leads to the

capital-output ratio of each grid cell equaling the nationwide capital-output ratio.

That is,

Ki

Yi

=
K

Y
, (9)

where K and Y are national magnitudes. We use equation (9) to write (8) as

Yi = Li

(Xi

Li

)ϕ/(1−α)(K
Y

)α/(1−α)

e(1−α−ϕ)/(1−α). (10)

5.1 Labor Mobility

As shown above, climate change will have heterogeneous effects within countries. The

extent to which this heterogeneity of climate impacts matters for aggregate output

in a country depends on two factors. The first is the degree to which the spatial

distribution of population can change in response to climate, which we refer to as

labor mobility. The second is the empirical relationship between where population

is located in the period prior to climate change, on the one hand, and the spatial

distribution of climate impacts, on the other. This second factor is captured in the

measure of population-weighted change in ALQ that we presented above.

We consider three cases. In the first (“perfect mobility”), population is assumed

to be distributed in a manner that equalizes the average product of labor across

grid cells in both the present and the future. In this case the distribution of land

qualities within a country turns out to be irrelevant; all that matters is a country’s

total quality-adjusted area. The change in this area is captured by the area-weighted

change in ALQ that we constructed above.

An issue with the approach in the perfect mobility case is that the observed dis-

tribution of population in the initial period does not match the distribution predicted

by our location quality measure. In the second case we address this issue by assum-

ing that there are location-specific attributes that produce this residual variation in

density, and further that these attributes will persist into the future. We thus call

this case “perfect mobility with unmeasured quality.”
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Comparing the first and second cases gives insight into the importance of the

heterogeneity of climate impacts. Some countries will turn out to be lucky in the

sense that they have an unexpected concentration of population (beyond what would

be predicted by pure geography) in regions that are expected to do unusually well as

a result of climate change, while other countries have bad luck in this respect.

The third case allows us to consider the importance of population mobility in

response to heterogeneity of climate change impacts within a country. The start-

ing point is the same as in the second case. Specifically, we assume that there are

unmeasured location-specific characteristics that, along with observed geographic at-

tributes, perfectly explain the distribution of population in the initial period. Unlike

the second case, however, we then assume that the relative populations of grid cells

remain fixed over time. We call this case “no mobility going forward.” Comparing

the second and third cases, we can characterize the benefit of internal migration as a

form of adaptation.

5.2 Perfect Mobility

Equating the marginal product of labor across grid cells within a country implies that

the ratio of labor to quality-adjusted land is equalized across grid cells, and is equal

to this same ratio measured at the national level:

Li

Xi

=
L

X
. (11)

Substituting equation (11) into (10), grid square output per worker is

Yi

Li

=
Y

L
=
(X
L

)ϕ/(1−α)(K
Y

)α/(1−α)

e(1−α−ϕ)/(1−α). (12)

Through labor and capital mobility, grid-cell level output per capita is a function

of national magnitudes and thus is constant across grid cells. We can aggregate

labor, quality-adjusted land, and capital to the country level in each period by simply

summing. This corresponds to what we called the area-weighted case in calculating

changes in location quality above.

Using (12) we can compare output per capita in the baseline and alternative

scenarios:
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(
Y
L

)
alt(

Y
L

)
base

=

( ∑
i exp(xi,altβ̂)Zi∑
i exp(xi,baseβ̂)Zi

) ϕ
1−α (

Lalt

Lbase

) −ϕ
1−α
(

(K/Y )alt
(K/Y )base

) α
1−α

. (13)

In the language of the climate change literature, (13) is one minus climate dam-

ages. Of the three terms on the right hand side of the equation, the first two have

obvious interpretations in terms of population pressure on natural resources: output

in the alternative case is lower than in the base case to the extent that location quality

in the alternative is lower or that population is higher than in the base. As noted

earlier, the third term on the right hand side of (13) is analyzed in Appendix H.

Specifically, we derive this term and discuss its magnitude for all three of the labor

mobility cases that we consider, in the Solow-style model we employ. We show that

location quality degradation (i.e. X̂alt < X̂base) and lower population growth (i.e.

L̂alt < L̂base) both raise the capital/output ratio in the alternative case relative to the

base case. We also show that in practice this term is always quite close to one, and

thus of little quantitative importance.

5.3 Perfect Mobility with Unmeasured Quality

In this case, we continue to assume that labor is perfectly mobile in the present

and the future. However, rather than assuming, as in the previous case, that year

2010 population is distributed according to our fitted measure of location quality,

we instead assume that there is an unobserved dimension of location quality that

explains the current population distribution.

Specifically, we define the multiplicative residual ϵi that makes our equation for

location quality fit the distribution of population in every country exactly:

Li

Zi

= exp(Ĉc + xiβ̂)ϵi. (14)

We assume that this residual ϵi represents unmeasured location quality, and that it is

time-invariant. This assumption is meant to capture unmeasured aspects of locations

that are either time-invariant or highly persistent which give rise to grid squares

with unusually high and sustained agglomeration. These could be special geographic

features such as a particularly deep natural harbor. They could also represent the

accumulation of highly durable public infrastructure and social capital that historical

urban agglomerations enjoy. Because of these stocks, large urban agglomerations
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persist in their relative size rankings over many decades and even over the last 150

years.14 This formulation tries to capture that aspect of location quality.

Our new measure of location quality for every grid square is then the fitted value

from this equation, suppressing the country fixed effect:

Q̂i,c = exp(xiβ̂)ϵi. (15)

The change in aggregate location quality is now

Xalt

Xbase

=

∑
i exp(xi,altβ̂)ϵiZi∑
i exp(xi,baseβ̂)ϵiZi

(16)

This can be rewritten alternatively, using (14), (15) and the definition of X, as

Xalt

Xbase

=
∑
i

(
Li,base

Lbase

)
exp(xi,altβ̂)

exp(xi,baseβ̂)
(17)

This is a weighted average of grid-cell specific changes in location quality, where the

weights are the population of each grid cell in the baseline.

Equation (13) can now be rewritten as

(
Y
L

)
alt(

Y
L

)
base

=

(∑
i

(
Li,base

Lbase

)
exp(xi,altβ̂)

exp(xi,baseβ̂)

) ϕ
1−α(

Lalt

Lbase

) −ϕ
1−α
(

(K/Y )alt
(K/Y )base

) α
1−α

. (18)

The second term of (18) is the same as in equation (13). The third term is similar

to that in (13) and is given in Appendix H. The first term differs, in that for the

case of perfect mobility (equation (13)), location quality is aggregated by using area

weights, while for the case of perfect mobility with unobserved quality (equation (18)),

changes in location quality are aggregated using population weights.

5.4 No Mobility Going Forward

We present one more case, which is useful for demonstrating the role of mobility in

mitigating the effects of climate change. Our starting point is the same as in the

previous case, which is specifically that the observed population distribution in 2010

14See Eaton and Eckstein (1997), Black and Henderson (2003), and Duranton (2007).
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is such that the average product of labor is equalized across grid cells, with unobserved

quality ϵi explaining the deviation of the observed distribution from what would be

explained by observed location characteristics and our estimated coefficient vector

β̂. Unlike the previous case, however, we now assume that there is no population

mobility in the face of heterogeneous impacts from climate change. More specifically,

we assume that population in each grid cell in a country grows (or shrinks) at the

same rate:

Li,alt

Li,base

=
Lalt

Lbase

(19)

Unlike the previous two cases, output per worker will not be equalized across grid

squares in the alternative case.

Aggregate output per worker is given by summing equation (10):

(
Y
L

)
alt(

Y
L

)
base

=

(
Lbase

Lalt

)(
(K/Y )alt
(K/Y )base

) α
1−α

∑
i L

1−α−ϕ
1−α

i,alt [exp(xi,altβ̂)Ziϵi]
ϕ

1−α∑
i L

1−α−ϕ
1−α

i,base [exp(xi,baseβ̂)Ziϵi]
ϕ

1−α

. (20)

This can be rewritten (skipping several steps) as

(
Y
L

)
alt(

Y
L

)
base

=

∑
i

Li,base

Lbase

(
exp(xi,altβ̂)

exp(xi,baseβ̂)

) ϕ
1−α

( Lalt

Lbase

) −ϕ
1−α
(

(K/Y )alt
(K/Y )base

) α
1−α

. (21)

The second term of (21) is the same as in equations (13) and (18). The third term is

similar to that in (13) and is given in Appendix H. The first term, representing the

effect of the change in location quality, looks almost the same as (18), except that the

change in quality for each grid cell is raised to a power before being summed rather

than after.

6 Mapping Location Quality Changes and Popu-

lation Growth into Income: Results

Equations (13), (18), and (21) provide parallel structures for estimating the effects of

projected climate change and population growth under different assumptions about
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future labor mobility.

We start by examining the pure effect of climate change. After this, we examine

the combined effects of climate change and population growth. For brevity we don’t

look at effects of different population growth scenarios, absent climate change.

To apply this framework, we need values for the production function parameters.

A commonly used estimate for the natural resource share in production, ϕ, is 0.25. We

view this as reasonable for poorer countries, which are more reliant on local natural

resources. It is likely an overestimate for richer countries.15 This means that the

effects we find for rich countries, positive, or negative, are likely to be overstated. For

this reason, we emphasize results for poor countries below. If we assume a one-third

share for capital among inputs other than natural resources, we get α = 0.25. We

further assume that the annual growth rate of productivity in the Solow model, ê, is

1% and depreciation, δ, is 5%. However, these last two parameters are only relevant

for the calculation of the term describing the change in the K/Y ratio in equations

(13), (18), and (21). Appendix Table H1 shows that this term contributes little to

variation across countries in projected climate impacts, and is insensitive to the choice

of ê.

6.1 Climate Change Effects

To assess the pure effect of climate change, we project outcomes for 2100 under

different climate scenarios, allowing for the same expected population growth. For all

three equations, we set Xi,Base equal to its 2010 value and Xi,Alt equal to its 2100 value

for each specified climate scenario. We set LBase and LAlt equal to the UN’s 2100

median population forecast.16 Thus we are comparing balanced growth outcomes

in 2100 under different climate scenarios holding population growth constant across

scenarios.

Figure 6 shows our results graphically for RCP 8.5 under the perfect mobility

assumption, i.e. equation (13). As expected, Nordic countries, Canada, and Russia

gain while countries in or near the tropics typically lose. The largest income losses

15Hansen and Prescott (2002) assume a value of the fixed factor share of 30% for preindustrial
economies. Cruz and Rossi-Hansberg (2024) use 0.20 as the natural resource share in production,
although they also allow for a congestion cost in amenities. Using data from Caselli and Feyrer
(2007), Ashraf et al. (2009) calculate resources shares in national income that are as high as 25% in
many poor countries, and exceed 30% in a few.

16In Section 7, when aggregating to the world, we consider two alternative sets of population
projections.
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Figure 6: Country-Level Impacts from Climate Change with Perfect Mobility

Notes: Countries are binned by the difference between GDP per capita under RCP 8.5 and no climate change under
the assumption of perfectly mobile labor.

are in Paraguay (33%), followed by Botswana (29%), Zimbabwe (29%), and Morocco

(29%). On the other end, GDP per capita is 82% and 61% above baseline in Finland

and Russia, though as noted above, these large winners are rich countries, for which

our choice of ϕ may be overstated. In Appendix Figure E1, we look at these climate

impacts on GDP per capita in the case of below-median income countries, if we

estimate equation (4) using a sample of grid squares solely from countries with below-

median income and then solely from countries with above-median income. The figure

shows the results are highly correlated with the base case.

Of the three sets of results, impacts generated under the assumption of per-

fect mobility with unmeasured quality are the most comparable to projections us-

ing population-weighted changes in climate such as Burke et al. (2015a), which is

probably the best known application of the panel-weather approach to estimating

the impact of climate.17 Comparing the RCP 8.5 projections (expressed in percent

changes) from Burke et al. (2015a) with ours, we find that the correlation is 0.74.

However, the magnitudes are very different. In the Burke et al. (2015a) projection,

20 counties suffer damage to GDP per capita of more than 90%, and 72 countries more

than 80%. By contrast, our maximum loss is 30%. Similarly, in Burke et al. (2015a)

climate change increases GDP per capita in four countries by more than 300%, while

17Country-level impacts calculated using all three assumptions about labor mobility for all four
RCPs are available in the online supplement. Country-level projected per capita GDP with and
without climate change from Burke et al. (2015a) is provided here.

27

https://bjang.shinyapps.io/appendix_countries/
https://web.stanford.edu/~mburke/climate/data.html


in our estimates the biggest increase is 73%.

Given the relatively small magnitude of the estimated climate damages that we

present, it is especially important to discuss channels of climate damage that are omit-

ted from our analysis. The two most important of these are sea level rise and extreme

weather events. In both cases, the existing literature is relatively thin. Newman

and Noy (2021) examine the economic impact of extreme weather events (primarily

storms, heatwaves, and floods). For the period 2000-2019, they estimate that the

extreme events induced by climate change produced damages averaging $143 billion

per year, or roughly 0.25% of world GDP. Prospectively, in the DICE-2023 model

(Barrage and Nordhaus, 2024), the authors survey existing literature to create an

ad-hoc adjustment for the expected flow of climate damages due to extreme weather

events, loss of biodiversity, and other channels omitted from their (and our) analy-

sis. In the case of warming of 3 degrees C, these adjustments total 1.5% of world

GDP. MacManus et al. (2021) estimate that in 2015, between 3.8% and 9.5% of the

world’s population lived in Low Elevation Coastal Zones less than 5 meters above

sea level. IPCC projections (Assessment Report 6) indicate that under a very high

emission scenario, roughly comparable to RCP 8.5, average sea level rise by the year

2100 would be approximately one meter, although with significant spatial variation.

Desmet et al. (2021) estimate that under RCP 8.5, 0.79% of the world population

will be displaced by 2100 due to inundation from sea level rise. GDP losses from this

inundation peak in the year 2151 at 0.71% of world GDP.

6.1.1 Alternative Labor Mobility Assumptions

In Figure 7 we compare country-level outcomes across the three mobility assumptions.

In panel (a), we first compare the effects under perfect mobility assumptions to those

under assumptions of perfect mobility with unmeasured quality. It is immediately

apparent that, while the two sets of predictions are highly correlated, points are

scattered on both sides of the 45 degree line. These deviations from the 45 degree

line result from the unevenness of climate change impacts within a country and the

extent to which particularly strong impacts take place in regions that are more or

less populated than would be expected based on current location quality. Countries

whose location quality increases the most in currently sparsely populated areas see

far smaller gains to output when unmeasured quality is taken into account; this

is the case for Canada, Norway, and Iceland. The reverse holds true for countries
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like Peru and Bolivia, where for historical reasons many people live in mountainous

areas and climate changes favor the places where economic activity is clustered. The

estimated overall effect on GDP per capita for Bolivia is -14% under the perfect

mobility assumption and 30% under the perfect mobility with unmeasured quality

assumption.

Panel (b) likewise compares results from the two cases that assume unmeasured

quality and past perfect mobility: one with perfect mobility and the other with no

mobility going forward. This captures the mitigating influence of mobility on climate

change effects. All countries are below the 45 degree line, because impacts under

no mobility will always be more negative than with perfect mobility. However, this

downward deviation is small in most countries.18

While the deviations from the 45 degree line in Figure 7 are interesting objects

for study, we think that the most notable message from this analysis is that for most

countries, and certainly for most countries that are expected to suffer negative conse-

quences from climate change, assumptions about labor mobility make little difference

for the projected effect of climate change on GDP per capita. For that reason, in

the rest of this section we present results for the perfect mobility case, although the

full set of results for alternate cases are given in the online supplement. Below, in

Section 7, we calculate the world damage function by aggregating these country-level

damages of climate change using projections of country-level GDP in 2100.

6.2 Combined Impacts from Climate Change and Population

Growth

In this section we look at the combined effects of climate change and population

growth. In the next one, we then compare their relative magnitudes. Concretely, we

will set Xi,Base and Li,Base to their 2010 values and then use different combinations

of projections to 2100 for Xi,Alt and Li,Alt.

Figure 8 shows the relationship between GDP per capita and the combined impacts

from climate change under RCP 8.5 and population growth under the UN medium

projection. Because countries that are projected to suffer land degradation from

climate change tend to also be the ones where population is growing fastest, the size

18We can also project the size of climate-induced migration within countries by comparing the
implied population distributions over grid cells in the year 2100 in these two cases. Worldwide,
13.9% of the population would be living in a different grid square under the full mobility assumption
compared to the assumption of no mobility going forward.
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Figure 7: Comparisons of Country-Level Impacts from Climate Change

(a) Perfect Mobility vs. Perfect Mobility with Unmeasured Quality

Note: Figure compares the percentage impact of climate change in 2100 under perfect mobility assumptions against
that under perfect mobility with unmeasured quality. RCP 8.5 and the U.N. medium variant population projection
are used for each case; 164 countries are depicted.

(b) Unmeasured Quality: Perfect Mobility vs. No Mobility Going Forward

Note: Figure compares the percentage impact of climate change in 2100 under assumptions of perfect mobility with
unmeasured quality against that of no mobility going forward. RCP 8.5 and the U.N. medium variant population
projection are used for each case; 164 countries are depicted.
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of impacts in Figure 8 tend to be much larger than those in Figure 6 where population

growth does not differ between the base and alternative cases. Many countries, mostly

poorer ones, experience losses over 35%, and a few over 50%, of GDP per capita

from combined population growth and climate deterioration. For example, Angola

is projected to experience an impact of -19.6% from climate change alone, but an

impact of -63.0% from climate change combined with population growth. The cross-

country correlation between current log GDP of per capita and the projected impact

of climate alone is 0.42, while the correlation between current log GDP and the the

projected combined effects of climate and population is 0.56.

Figure 8: Impacts from Climate Change and Population Growth

Note: The vertical axis plots the percentage impact of climate change in 2100 using RCP 8.5 and the U.N. medium
variant population projection under perfect mobility assumptions in log scale. The horizontal axis plots log 2010
GDP. 156 countries are shown.
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6.3 Relative Importance of Climate Change and Population

Growth

The analysis above naturally raises the question of the relative magnitude of effects

from climate change and population growth. In equation (13), we want to compare

the first term,
( ∑

i exp(xi,altβ̂)Zi∑
i exp(xi,baseβ̂)Zi

) ϕ
1−α

, to the second,
(

Lalt

Lbase

) −ϕ
1−α

. However, a complete

answer to this question is complicated by the fact that both of these effects enter the

third term in equation (13). Fortunately, in practice, as noted above and in Appendix

Table H1, this third term is of relatively minor importance.

Figure 9 looks at how these two terms vary across countries. Each country is

represented by a dot, with red dots indicating countries with GDP per capita below

the median. The horizontal axis measures the first term (i.e. the impact of location

quality change on GDP per capita) and the vertical axis measures the second (impact

of population change on GDP per capita).

Countries on the 45 degree line are those for which the impacts of changes in

location quality and population growth are equal. Countries below the 45 degree line

have either more positive or less negative impacts of climate change than population

growth, and vice versa for those above. Those negatively affected by climate change

are to the left of the vertical line at 0 and are mostly low income countries, while

those to the right of that line are disproportionately high income. Similarly looking

at the horizontal line at 0, those countries negatively affected by population growth

are disproportionately low income countries. That is, low income countries tend to

suffer losses from both population growth and climate change. Quantitatively, climate

losses are all under 35%, while many countries have losses from population growth

that are in the 40–50% range. These countries are mostly poor and agricultural—that

is to say, more prone to suffer from congestion and declining location quality, and in

a worse position to deal with the consequences of these changes. Finally we note that

the gains from climate change tend to exceed gains from population decline.

Figure 9 makes clear that for most countries projected to experience high levels

of damage from climate and population growth taken together, the biggest source of

that damage is population growth. There are a few countries such as Paraguay and

Morocco where effects from projected population increases are much smaller than

those from projected declines in location quality. But for the majority of countries,

the main culprit is population growth. To give a typical example, in Tanzania, the
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Figure 9: Climate Change and Population Impacts

Note: Figure compares the effect of the the second term in equation (13), which represents the impact of population
growth, against the first term, which represents the impact of climate change in 2100. Impacts are calculated in
percentages under perfect mobility assumption using RCP 8.5 and the U.N. medium variant population projection
and plotted in log scale; 164 countries are shown.

impact of declining location quality is projected to be -18%, while the impact due to

rising population is projected to be -46%.

It is worth recalling that all of this analysis is done using RCP 8.5, the most

extreme climate scenario. As we explore further below, using projections from a less

dire climate projection further elevates the relative importance of population growth

as a driver of damages.

6.4 Variation Across Projections

In the analysis above, we focused on RCP 8.5, the most extreme of the four climate

scenarios, along with the UN medium population projections. The fact that orga-

33



nizations like the IPCC and the UN produce ranges of scenarios is indicative of the

uncertainty regarding these projections. A natural implication of this is that one

can learn something about the range of possible outcomes by looking at the range of

scenarios.

In the case of the UN, they explicitly state that:

In projecting future levels of fertility and mortality, probabilistic methods

were used to reflect the uncertainty of the projections based on the histor-

ical variability of changes in each variable. The method takes into account

the past experience of each country, while also reflecting uncertainty about

future changes based on the past experience of other countries under simi-

lar conditions. The medium-variant projection corresponds to the median

of several thousand distinct trajectories of each demographic component

derived using the probabilistic model of the variability in changes over

time. Prediction intervals reflect the spread in the distribution of out-

comes across the projected trajectories and thus provide an assessment of

the uncertainty inherent in the medium-variant projection.19

Unlike the population projections, there are no official probabilities assigned to the

different RCPs used to assess the effects of changing climate, nor is there any claim

that the actual path of climate change will fall within the span of the four commonly

used RCPs. Rennert et al. (2022) report a state-of-the-art attempt to address this

gap by pairing a set of probabilistic projections of carbon emissions with a simplified

climate model.20 In their model, RCP 2.6, 4.5, 6.0, and 8.5 are in the 2.4th, 20th,

90th, and 99th percentiles, respectively, suggesting that a 95% prediction interval is

narrower than the gap between RCPs 2.6 and 8.5 that we report.

In conducting this analysis, we restrict ourselves to looking at individual countries,

rather than trying to aggregate to the level of the world as a whole. We start with an

example for a single country, India. Table 1 shows the percentage change in GDP per

19https://population.un.org/wpp2019/DefinitionOfProjectionVariants
20Rennert et al. (2022) pair Resources for the Future Socioeconomic Projections (RFF-SP) with

the Finite Amplitude Impulse Response model (FaIR; Millar et al., 2017). Unlike global climate mod-
els such as GFDL, which comprehensively model climate systems with a computationally expensive
set of equations, the FaIR model is a simplified impulse-response model that tries to capture the in-
crease in atmospheric concentrations of carbon and the resulting change in global mean temperature
from an influx of carbon emissions. FaIR translates the probabilistic carbon emission projections
generated by RFF-SP into carbon concentration paths, from which we can calculate the percentile
of the RCP carbon concentrations in 2100.
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capita in 2100, relative to a scenario where population and climate are unchanged.

We consider four climate scenarios and five population scenarios, all under perfect

population mobility.

Using the median UN forecast, India’s GDP will be around 17% lower in RCP

8.5 than if both population and climate had remained the same. The main result in

the table is that moving across climate scenarios has a much smaller effect on the

expected change in GDP per capita than does moving across population scenarios.

For any given population scenario, the difference between the total impact of climate

and population on GDP, comparing the most extreme climate scenarios, is below 10

percentage points. By contrast, for a fixed climate scenario, the range of impacts on

GDP comparing the highest to the lowest population growth scenarios is roughly 30

percentage points. Even comparing the 10th to the 90th percentile population growth

number gives a range of impacts on GDP per capita of roughly 20 percentage points.

Table 1: Impact of Climate Change and Population on GDP per Capita in India

RCP 2.6 4.5 6.0 8.5
%∆QAA -12 -12 -26 -33

%ile %∆Pop.
2.5 -28 9 9 3 0
10 -14 2 2 -3 -6
50 17 -9 -9 -14 -17
90 52 -18 -18 -22 -24
97.5 77 -22 -22 -27 -29

Note: The numbers in bold in the second column provide the percent change in population from 2010 to 2100 for
each of the five population projections provided by the UN. The bold numbers in the second row provide the percent
change in ALQ from 2010 to 2100 corresponding to each RCP. The 5×4 matrix provides the percent change to GDP
per capita for each population projection-climate scenario pair according to equation (13). UN projections provide
80% and 95% prediction intervals. We treat the lower bound of the 80% prediction interval as the 10th percentile of
distribution of projections, and proceed similarly for other bounds.

In the perfect mobility case, we can use equation (13) to separate out variation

in climate change and population growth in the total impact. As before, we ignore

the term representing the change in the K/Y ratio, which is very small.21 Figure

10 expands this analysis graphically to look at 9 particularly interesting countries.

21Values for country-level damages inclusive of this term under all RCPs and population scenarios
can be found in the online supplement.
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Each country is represented by a colored rectangle. The horizontal dimension of the

rectangle shows the range in projected impacts from location quality change (the

first term in equation (13)), looking across all four RCPs. The vertical dimension

of the rectangle is the range of the impact of population growth on GDP per capita

(the second term of equation (13)), going from the 2.5th to the 97.5th probability

percentile projections of the population in 2100.

As an illustrative example, for Malawi, the rectangle showing the range of GDP per

capita losses is taller than it is wide, indicating that there is less uncertainty regarding

the effect of climate change than there is regarding the effect of population change.

The rectangle for Malawi is also entirely in the lower-left quadrant (rising population,

falling location quality), indicating that, within the range of these estimates, all

scenarios will lead to an increase in population pressure on quality-adjusted land. By

contrast, the rectangle for Russia is wider than it is tall, i.e. there is more uncertainty

about the effect of climate than about population. Russia also sits largely in the upper

right quadrant, indicating that both forces will be pushing toward reduced population

pressure on land.

Although we display only a limited number of countries in Figure 10 for illustrative

purposes, looking over all poor countries there is a strong empirical regularity: not

only is expected damage from population growth larger than expected damage from

climate change, but variation in damage among population scenarios is also larger

than variation in damage across climate scenarios. Among countries with 2010 GDP

per capita below the median in our sample, 97% face larger uncertainty from popu-

lation than from climate. Among countries with above-median GDP, the proportion

is slightly lower at 81%.22

7 TheWorld Damage Function and Cross-Country

Inequality

In this section, we assess the damage from climate change at the world level. We

have two motivations. First, a good deal of literature has estimated a world damage

function from climate change, and we want to be able to compare our results to

this literature. Second, we want to explicitly examine the role of climate change in

impacting cross-country income inequality.

22Results for all countries have been made available in the online supplement.
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Figure 10: Range of Impacts from Climate Change and Population for Selected Coun-
tries

Note: This plot depicts the range of impacts on GDP, as percentage changes, across the four climate scenarios
(horizontal axis) and the 2.5th to 97.5th percentile population scenarios (vertical axis), as derived from the first and
second terms of equation (13).
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Conducting either of these exercises involves combining the country-level climate

damages calculated in Section 6 with an additional piece of information: the level of

total output in each country in 2100 in the absence of climate change. Our analysis

thus far has not required estimates of these levels, but rather calculated percent losses

or gains from whatever the level might be. We utilize two sources for projections of

country-level output in the absence of climate change.23

The first set of projections come from Shared Socioeconomic Pathways (SSPs),

which are commonly employed scenarios for how the world economy might evolve

in the absence of both climate change and climate mitigation or adaptation policies

(O’Neill et al., 2014; Riahi et al., 2017). These pathways in many cases seem both

inconsistent with known patterns in growth data and unrealistic from the point of

view of economists (Welch, 2024). Nevertheless, given their wide usage, we show

results for them here. The different pathways embed particular assumptions about

technological change, population and economic growth, and cross-country income

convergence, among other dimensions. For example, SSP 5 features the following:

rapid income growth at the world level combined with a steep in income gaps among

countries, and world population peaking around the year 2060 and then declining

to around 7 billion in 2100.24 Using integrated assessment models, emissions can be

generated for each SSP. We consider four specific pairs of SSPs and warming scenarios

that align with RCPs.25

The second source of country-level output in the absence of climate change is

Resources for the Future Socioeconomic Projections (RFF-SPs; Rennert et al., 2021,

2022), which for economists may seem more realistic. While SSPs provide compre-

23To see the importance of these scenarios, it is useful to think about a different counterfactual,
which is if countries each experienced expected damages from climate change, but their relative total
GDPs remained at their 2010 levels. In this case, climate change would have a significantly positive
effect on world income, because countries that will be most hurt have relatively low levels of income.
Projecting a decline in overall world income as a result of climate change results from the fact that
we (and others doing similar exercises) assume that in the absence of climate change, relative total
income will have shifted in a manner that weights currently poor, tropical countries more heavily.

24Projections of population, urbanization, and GDP that quantify the narratives of the Shared
Socioeconomic Pathways are available in a database hosted by the International Institute for Applied
Systems Analysis (IIASA) Energy Program at https://tntcat.iiasa.ac.at/SspDb. We use the
projections of the Organization for Economic Co-operation and Development (OECD; Dellink et al.,
2017), considered the “illustrative” case. Population projections for each SSP are from Samir and
Lutz (2017).

25IPCC Assessment Report 6 uses scenarios labeled SSPX-Y, where X is the SSP number and Y
is the radiative forcing level in 2100 for the matched warming scenario. As discussed in Chen et al.
(2023), these scenarios overlap with the trajectories described by RCPs but are not identical.
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hensive scenarios consistent with five established narratives, RFF-SPs combine expert

surveys and statistical methods to generate sets of Monte-Carlo trajectories that con-

tain world emission paths and corresponding country-level paths of population and

income in the absence of climate change. From a sample of 100,000 such trajectories,

we identify samples with emission paths close to each RCP, and use these to weight

country-level effects.26

Table 2 shows the damage function at the world level, which aggregates coun-

try losses weighted by their 2100 GDP in the absence of climate change from these

two sources. Panel 2a uses the full sample of 156 countries, while panel 2b limits

the sample to the 78 countries with below-median incomes in 2010. In each panel,

columns under the SSP header identify the SSP scenario paired to each RCP and

provide the relevant population, baseline world GDP, and climate impact. Climate

impact is calculated as the weighted average of country-specific percentage changes

in GDP under the particular SSP-RCP scenario assuming population mobility within

countries as in equation (13). Because each RCP is linked to a sample of RFF-SP

draws, columns under the RFF-SP header provide the means and standard deviations

of the population, baseline world GDP, and climate impact as well as the sample size.

Of the climate scenarios, in Panel 2a, overall world effects are relatively small.

RCP 8.5 unsurprisingly yields the negative impacts to world output in the year 2100.

Weighting by SSP 5 suggests that global GDP falls by 1.6%, while using RFF-SP

projects a decline of 0.11% with standard deviation of 1.8. These are small effects

compared to much of the literature. For example, for a similar warming scenario,

Burke et al. (2015b) project global income declining by 23%, Nath et al. (2024)

project a decline of 11.5%, and Bilal and Känzig (2024) project a decline of 46%.

We think that the smaller magnitudes we estimate reflect the ameliorating effects

of adaptation to long-term climate change that are ignored in the panel estimation

approach.

The impact that we estimate is substantially more negative when we focus on the

sample of countries with below-median 2010 incomes, as shown in Table 2b; losses

reach 8.2% using SSPs and 7.0% using RFF-SPs. This emphasizes the persistent

pattern that poor countries suffer disproportionately from climate change and popu-

lation growth, while rich countries see much smaller damages or in some cases positive

26We define proximate draws as those with 2100 global CO2 concentrations that fall within 2.5%
of the RCP value. Emissions from the draws are translated to concentrations with the FaIR model.
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Table 2: 2100 Climate Change Impacts as Percentage of Aggregate GDP

(a) Full Sample

SSP RFF-SP
2100 Base 2100 GDP 2100 Pop. % Impact

Scenario SSP GDP Pop. % Impact Mean SD Mean SD Mean SD N
RCP 2.6 SSP 1 565 6.87 0.55 899 920 10.83 0.82 1.71 0.68 4309
RCP 4.5 SSP 2 538 8.98 0.84 772 808 10.83 0.82 2.20 1.02 9590
RCP 6.0 SSP 4 353 9.25 0.92 833 871 10.83 0.82 1.18 1.24 6108
RCP 8.5 SSP 5 1016 7.35 -1.58 1492 1212 10.78 0.83 -0.11 1.81 253

Note: Results aggregate 156 countries. GDP is in trillions of dollars, while population is in billions.

(b) Below-Median Income Countries

SSP RFF-SP
2100 Base 2100 GDP 2100 Pop. % Impact

Scenario SSP GDP Pop. % Impact Mean SD Mean SD Mean SD N
RCP 2.6 SSP 1 350 4.60 -1.25 431 456 8.34 0.75 -0.88 0.52 4309
RCP 4.5 SSP 2 326 6.36 -1.81 369 395 8.34 0.75 -1.49 0.80 9590
RCP 6.0 SSP 4 165 7.06 -3.89 398 425 8.34 0.75 -3.88 0.95 6108
RCP 8.5 SSP 5 569 4.48 -8.25 714 559 8.30 0.77 -6.96 1.71 253

Note: Results aggregate 78 countries. GDP is in trillions of dollars, while population is in billions.

impacts.

In Appendix C we present versions of Table 2 that use the extended sets of fixed

effects described above, specifically first-level administrative units (ADM1s) and the

interaction of country fixed effects with a five-degree longitude-latitude grid. Looking

either at the projected effect of climate change on world output (Table C1) or output

in below-median income countries (Table C2), the results using the interaction of

country fixed effects with five-degree grid cells (Panels C) are close to those using

country fixed effects alone. Under RCP 8.5, World GDP increases by 0.49% instead

of deecreasing by 1.6% in the baseline. By contrast, results using first-level admin-

istrative fixed effects (Panels B) show impacts that are substantially more positive

than the baseline, raising world GDP by 6.2%.

We do not have an full explanation for this difference in results. It may be that

estimating 2,818 fixed effects in the case of first-level administrative units represents

over-controlling, especially given the endogeneity of the borders of these units as well

as the large variation in their size.

We emphasize two key facts. First, these impacts remain small in magnitude

relative to the literature, like the other two specifications. Second, projected damages
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from climate change are smaller than projected damages from population growth

across all three specifications.

Beyond aggregate world damages, the heterogeneity in impact is relevant to the

level of inequality between countries. To quantify this, Table 3 presents population-

weighted Gini coefficients assuming each person in each country earns the country-

level GDP per capita for 2010, using the four RCP scenarios. Under the SSP heading,

we use SSP country-level projections to show the Gini coefficient in the absence of

climate change in 2100 and the increase in the Gini under each climate scenario. This

climate difference is found by subtracting the baseline Gini from the Gini calculated

using GDP per capita adjusted by climate impacts. Columns under the RFF-SP

header provide means and standard deviations of the baseline Gini and the climate

difference for the sample of RFF-SP draws that were linked to each RCP scenario.

Table 3: Population-weighted Gini Coefficients

SSP RFF-SP
Climate Base Gini Climate Impact

Scenario SSP Base Gini Impact Mean SD Mean SD N
Hist. 2010 0.538
RCP 2.6 SSP 1 0.122 0.015 0.486 0.063 0.012 0.003 4309
RCP 4.5 SSP 2 0.193 0.026 0.485 0.063 0.017 0.005 9590
RCP 6.0 SSP 4 0.527 0.024 0.486 0.063 0.024 0.005 6108
RCP 8.5 SSP 5 0.105 0.060 0.478 0.059 0.037 0.008 253

Note: Results aggregate 156 countries.

2100 Gini coefficients in the absence of climate impacts are lower than the 2010

world Gini in all four RCP scenarios. SSP scenarios in particular have notable,

perhaps not credible projected declines in inequality for all scenarios except that

linked to RCP 6.0. The climate difference values suggest that climate change increases

inequality regardless of the socioeconomic or climate scenario. For example, in RCP

2.6, the Gini coefficient increases by 0.015 using SSPs and an average of 0.012 using

RFF-SPs, while under RCP 8.5 the increase is 0.06 using SSPs and an average of

0.037 using RFF-SPs. That climate change increases inequality across all RCPs

emphasizes that the impacts are outsized in the most vulnerable populations, even if

the average level of damage in the world is modest. In Appendix Table C3, we show

that adding either extended set of fixed effects does not change these inequality results

substantially. This reflects the high correlation between country-level predicted effects
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that was seen in Figure 4.

8 Conclusion

This paper quantifies the projected effects of established climate change scenarios

on characteristics that affect the carrying capacity of land, which we call location

quality. Location quality tends to increase for select countries in currently colder

climates and decreases in the tropics and sub-tropics. Using this measure in a model

of economic growth, we assess the effects of climate change against a counterfactual

in which location quality is unchanged. Under the most extreme scenario of RCP

8.5, we estimate country-level impacts ranging from -33% to 82%, with a positive

correlation between log GDP and climate change impact, so that richer countries on

average experience more positive impacts.

We then compare the effects of climate change against the effects of projected

population growth, finding that the impact of the latter is consistently the larger of

the two. Further, for most countries, uncertainty across climate scenarios implies

less uncertainty about economic outcomes than does uncertainty across population

scenarios.

Our analysis of climate damages is closely tied to the output of global climate

models, and thus shares any limitations that are present in these models. Notably,

this means that our analysis may underweight the importance of natural disasters

that are likely to become more frequent with global warming.

One of our crucial findings is that climate change will make the natural envi-

ronment less supportive of human habitation in exactly the places where population

growth is already working to raise the burden on that land. The intensification of

population pressure disproportionately affects more vulnerable regions, becoming an-

other driver for inequality in economic development.

A notable aspect of our analysis is that we allow for within-country labor mobility

in response to climate change, but not for similar mobility between countries. While

it is true that climate change will ceteris paribus raise the gap in income between rich

and poor countries, the income gap between these country groups is already quite

large, and migration flows between them are relatively small. Further, while climate

change will work to raise the income gap between rich and poor, other economic

processes (embodied in the SSP scenarios discussed above) will lower the gap.27

27Conte (2022) estimates that climate-induced international migration within sub-Saharan Africa

42



A simple reading of our results would say “Don’t worry about climate change—the

bigger issue is population growth.” This is not our interpretation, for several reasons.

First, even a finding that population growth is a larger driver of environmental stress

than climate change does not in any way lessen the damage being done by that climate

change. Second, unlike the effects of population growth, the effects of climate change

largely result from decisions and behaviors outside the country that is impacted. More

concretely, in poor countries that will suffer the most from climate change, the vast

majority of relevant emissions causing that climate change were and will be the result

of economic activity elsewhere in the world. Third, nothing in our analysis addresses

the relative costs and unintended consequences of reducing population growth versus

mitigating climate change. Finally, the welfare calculus regarding population growth

differs markedly from that regarding climate change: having more warming, holding

population constant, reduces the average welfare of a fixed set of people. By contrast,

reducing population growth, holding climate constant, may raise welfare per capita

but lower the number of people who experience that welfare.
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Online Appendices

A Methodology

This appendix discusses the data and methodology in greater detail. As introduced

in Section 3, the specification for our Poisson regression is:

E(Li,c/Zi,c | Cc, xi,c) = exp(Cc + xi,cβ) (A1)

where Cc is a country fixed effect and xi,c the vector of characteristics for grid cell

i in country c. Our dependent variable is grid-cell population density from 2010,

for which our preferred source is the European Union’s Global Human Settlements

population layer (GHS-POP).1 xi,c is a set of 54 characteristics for which both 2010

data and 2100 projections are available: 8 strictly geographic characteristics that do

not change, 33 agro-climatic variables and 11 crop suitability indices taken directly

from the U.N. Food and Agricultural Organization’s Global Agro-Ecological Zones

v4 dataset, and two variables described below: maximum potential caloric yield and

temperature variability.2

Elevation, latitude, ruggedness, distance to the coast, and a set of four dummies

indicating the presence of a coast, a navigable river, a major lake, and a natural

harbor within 25 km of a cell centroid from Henderson et al. (2018) comprise the

set of 8 time-invariant geographic variables. The 33 GAEZ variables used represent

the majority of continuous variables from its Theme 2: Agro-climatic resources. We

exclude variables that overlap in definition, are linearly dependent, assume irrigation,

indicate beginning dates, are missing data for a significant area of the world, or have

a value of 0 for more than 95 percent of observations. The variables that are dropped

under these conditions are: annual temperature amplitude, quarterly P/PET ratios,

net primary production with irrigation, beginning date of the longest component

length of growing period, beginning date of the earliest growing period, reference

evapotranspiration deficit, snow stock at calendar year end, soil moisture condition

1Population density is calculated by dividing GHS-POP by land area from the Gridded Popula-
tion of the World version 4 after aggregating both to quarter-degree cells. We find that four cells
with land area below 1 square kilometer have population density over 4000 people per square kilo-
meters; comparisons with alternate sources suggest these are artifacts, and we exclude them from
the analysis.

2This dataset can be accessed at https://gaez.fao.org/.

1
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at calendar year end, and number of days with a maximum temperature of 45 degrees

Celsius. We further exclude the number of consecutive days with average precipitation

over 45 mm and the average annual sum of precipitation on such days; variation in

these two measures is overwhelmingly concentrated in small regions of developing

countries.

To this we add crop suitability indices for banana, cassava, maize, sweet and white

potato, dryland and wetland rice, soybean, sorghum, wheat, and yam, which are the

largest crops in terms of worldwide calorie production. Because crop suitability index

projections are only generated assuming “high input,” or commercialized agriculture,

we use “high input” crop suitability indices for both the historical and future period

for consistency.

We further include in our baseline regression a composite variable indicating the

maximum potential caloric yield across these 11 crops. Following Galor and Özak

(2016), potential caloric yields in kilograms (dry weight) per hectare per year for

each crop are taken from GAEZ and converted into kilo-calories per hectare using

caloric content values provided by the United States Department of Agriculture Nu-

trient Database for Standard Reference. The maximum across the 11 crops is then

calculated for each grid cell.

Finally, we construct a variable to capture temperature variability in each period.

Using daily average surface temperature values, we calculate the standard deviation

of the linearly detrended daily average temperature over a 30-year period for each

day in the calendar year. We then take the average of these 365 standard deviation

values. This mimics measures of volatility used in environmental science papers such

as Chan et al. (2020) while avoiding concerns about the difference in seasons between

the northern and southern hemispheres. Other aspects of volatility are captured

by variables in GAEZ: the number of days above 30, 35 and 40 degrees and below

15, 10 and 0 degrees; Annual temperature amplitude; Longest period of consecutive

dry days in temperature growing period; Number of consecutive days with average

precipitation over 30 mm; and maximum sum of precipitation on consecutive days

when average daily precipitation is over 30 mm.

Complete daily average surface temperature data are not available for all grid cells

from 1981 to 2010. Instead, we use daily temperature values generated by climate

models to calculate year-to-year variability of daily temperature.3 Specifically, for

3The “2010” value was generated using 1981–2005 temperatures from each climate model’s his-
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each of the five climate models included in GAEZ we calculate grid-cell averages of

year-to-year volatility by day. We then take the mean of this value across the ensemble

of five models.

The first column of Table A1 reports the resulting estimates for equation (A1).

The other columns report results for specifications with fixed effects for first-level

administrative units (ADM1s) and the interactions of country fixed effects with five

degree grid cells, which are further discussed in Appendix C.

Table A1: Grid Square Regression Coefficients

Country FE ADM1 FE 5 deg. X Country FE

Abs(Latitude) 0.0357∗ 0.0814∗∗∗ 0.0651∗∗

(0.0212) (0.0270) (0.0296)

Elevation (m) -0.0002 −9× 10−5 -0.0003

(0.0002) (0.0002) (0.0002)

Distance to coast (000 km) −6.7× 10−7∗∗∗ −1.26× 10−6∗∗∗ −1.09× 10−6∗∗∗

(1.89× 10−7) (2.15× 10−7) (2.28× 10−7)

Coast dummy 0.2736∗∗ 0.2602∗∗∗ 0.2647∗∗∗

(0.1056) (0.0635) (0.0837)

Harbor dummy 0.9066∗∗∗ 0.8938∗∗∗ 0.8609∗∗∗

(0.1085) (0.0714) (0.0786)

Navigable river dummy 0.5297∗∗∗ 0.5013∗∗∗ 0.5375∗∗∗

(0.1687) (0.0833) (0.1080)

Ruggedness (000s) −1.76× 10−6∗∗∗ −2.46× 10−6∗∗∗ −2× 10−6∗∗∗

(3.48× 10−7) (3.23× 10−7) (3.61× 10−7)

Lake dummy 0.6963∗∗∗ 0.4144 0.4050

(0.2008) (0.3890) (0.3005)

Adjusted LGP for evaluating agro-climatic constraints 0.0067∗∗∗ 0.0051∗∗∗ 0.0036∗

(0.0021) (0.0017) (0.0019)

Length of longest component LGP 0.0018∗∗ 0.0019∗ 0.0006

(0.0009) (0.0011) (0.0013)

Longest consecutive dry days in LGPt=5 -0.0007 0.0012 0.0023

(0.0015) (0.0017) (0.0015)

Number of dry days during LGPt=5 -0.0065 -0.0056 -0.0111∗∗

(0.0050) (0.0044) (0.0047)

Total number of growing period days -0.0005 -0.0007 0.0022

(0.0034) (0.0033) (0.0035)

Total number of LGP days in component LGPs > 20 days -0.0018 -0.0006 -0.0004

(0.0030) (0.0022) (0.0026)

Net primary production (rain-fed) −4.54× 10−5∗∗∗ −3.15× 10−5∗∗∗ −3.08× 10−5∗∗∗

(9.27× 10−6) (7.75× 10−6) (7.56× 10−6)

Annual P/PET ratio (*100) 0.0074 0.0031 0.0029

(0.0081) (0.0063) (0.0070)

P/PET (*100) for days with mean temperature > 5 deg. C -0.0236∗∗∗ -0.0091∗∗ -0.0109∗∗

torical experiment; projected 2071–2100 temperatures were used for the 2100 value for each climate
scenario.
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(0.0053) (0.0039) (0.0050)

Seasonal P/PET ratio (*100) in summer -0.0020 -0.0061∗∗ -0.0012

(0.0034) (0.0026) (0.0025)

Seasonal P/PET ratio (*100) in winter -0.0011 -0.0015 -0.0011

(0.0012) (0.0011) (0.0011)

Number of consecutive days with average precipitation > 30 mm 0.5383 0.6258∗∗ 0.2830

(0.5317) (0.3136) (0.3874)

Total number of rain days (days with precipitation > 1 mm) -0.0067 -0.0044 -0.0103∗∗

(0.0041) (0.0044) (0.0044)

Modified Fournier Index (mm) 0.0003∗ 0.0003∗∗ 0.0002∗

(0.0002) (0.0001) (0.0001)

Annual precipitation (mm) 0.0002 5.77× 10−5 -0.0003

(0.0005) (0.0004) (0.0004)

Mean max. sum of precip. on consec. > 30 mm av. precip. days -0.0177 -0.0207∗∗ -0.0093

(0.0177) (0.0105) (0.0129)

Reference actual evapotranspiration (using AWC=100 mm/m) 0.0013∗ 0.0012∗ 0.0012∗∗

(0.0007) (0.0007) (0.0005)

Reference potential evapotranspiration (using AWC=100 mm/m) -0.0020∗∗∗ -0.0014∗∗∗ -0.0015∗∗∗

(0.0005) (0.0004) (0.0004)

Number of days with max temperature > 35 deg. C -0.0018 0.0007 -0.0016

(0.0021) (0.0015) (0.0018)

Number of days with max temperature > 40 deg. C 0.0041 0.0066∗∗ 0.0048

(0.0026) (0.0026) (0.0031)

Number of days with min temperature < 0 deg. C −4.63× 10−5 0.0002 0.0003

(0.0023) (0.0025) (0.0027)

Number of days with min temperature < 10 deg. C -0.0003 -0.0023 -0.0007

(0.0020) (0.0015) (0.0016)

Number of days with min temperature < 15 deg. C 0.0029∗∗ 0.0015∗ 0.0030∗∗∗

(0.0012) (0.0009) (0.0010)

Number of days with mean temperature > 10 deg. C (LGPt=10) -0.0074 0.0012 0.0014

(0.0062) (0.0065) (0.0070)

Number of days with mean temperature > 5 deg. C (LGPt=5) 0.0234∗∗∗ 0.0117 0.0186∗∗

(0.0083) (0.0077) (0.0089)

Annual temperature amplitude (deg. C) -0.0442 -0.0612 -0.0728

(0.0621) (0.0539) (0.0604)

Mean annual temperature (deg. C) 0.6422∗∗∗ 0.6582∗∗∗ 1.134∗∗∗

(0.1551) (0.1421) (0.1778)

Snow-adjusted cold temperature limit 0.0006 -0.0012∗∗ -0.0005

(0.0005) (0.0005) (0.0006)

Temperature of coolest month (deg. C*100) -0.0013 0.0003 -0.0010

(0.0010) (0.0010) (0.0013)

Annual temperature sum for days with mean temp. > 10 deg. C 0.0018∗∗ 0.0009 0.0008

(0.0009) (0.0009) (0.0009)

Annual temperature sum for days with mean temp. > 5 deg. C -0.0033∗∗∗ -0.0026∗∗∗ -0.0035∗∗∗

(0.0009) (0.0009) (0.0010)

Air frost number 1.368 14.61∗∗∗ 16.26∗∗∗

(3.792) (4.395) (5.575)

Snow-adjusted air frost number 1.889 -14.91∗∗∗ -10.53∗

(4.442) (4.665) (5.713)

Maize suitability index −1.04× 10−6 3.56× 10−5 4.65× 10−5

(3.1× 10−5) (2.43× 10−5) (3.02× 10−5)

Dryland rice suitability index 6.77× 10−6 5.78× 10−6 3.73× 10−6
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(2.79× 10−5) (1.84× 10−5) (2.05× 10−5)

Wetland rice suitability index −5.02× 10−9 1.77× 10−5 2.58× 10−5

(2.35× 10−5) (1.87× 10−5) (2.39× 10−5)

Wheat suitability index 3.2× 10−5 2.62× 10−5 3.36× 10−5

(2.37× 10−5) (2.67× 10−5) (2.8× 10−5)

Cassava suitability index −3.92× 10−5 1.3× 10−5 −1.93× 10−5

(3.8× 10−5) (2.79× 10−5) (2.98× 10−5)

Soybean suitability index 5.29× 10−5 1.36× 10−5 2.6× 10−5

(3.38× 10−5) (2.15× 10−5) (2.95× 10−5)

White potato suitability index 2.28× 10−5 −9.17× 10−6 −5.96× 10−6

(3.02× 10−5) (2.85× 10−5) (3.04× 10−5)

Sorghum suitability index 5.8× 10−5∗∗∗ 3.17× 10−5 2.9× 10−5

(2.04× 10−5) (2.3× 10−5) (2.76× 10−5)

Sweet potato suitability index 4.75× 10−5 3.16× 10−5 2.1× 10−5

(4.22× 10−5) (2.4× 10−5) (2.57× 10−5)

Yam suitability index −9.83× 10−5∗∗∗ −6.33× 10−5∗∗∗ −6.26× 10−5∗

(3.41× 10−5) (2.05× 10−5) (3.22× 10−5)

Banana suitability index 3.65× 10−5 2.75× 10−5 2.4× 10−5

(2.67× 10−5) (2.76× 10−5) (3.46× 10−5)

Year-to-year volatility of daily temperature -0.2737∗∗ -0.1194 -0.2602

(0.1056) (0.1881) (0.1755)

Max. potential caloric yield (kcal/ha) 8.24× 10−10 −3.95× 10−9 −1.34× 10−8∗∗

(6.75× 10−9) (6.35× 10−9) (6.6× 10−9)

Observations 237,019 237,019 229,239

Number of Groups 164 2,818 1,371

R2
dev , FE only 0.352 0.629 0.556

R2
dev , Total 0.578 0.713 0.648

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Estimating β̂ with 1980–2010 data allows us to generate location quality for any

period when xi,c is available. We first generate location quality for 2010 using xi,c,2010.

Future location quality can be predicted given projected values of xi,c,2100. GAEZ

provides projections to the year 2100 for four climate scenarios4 for each of the five

included global climate models; we predict 2100 location quality for each climate

model and climate scenario. Given the ensemble of results, we take the geometric

mean of land quality as our preferred land quality values.5

4RCPs 2.6, 4.5, 6.0, and 8.5. RCPs refer to Representative Concentration Pathways, which were
adopted in IPCC Assessment Report 5.

5Multi-model ensemble means tend to improve accuracy (Frankcombe et al., 2018) and are used
to generate headline predictions of climate change for IPCC assessment reports.

5



B Comparison of Population Datasets and Cell-

Level Specifications

In this appendix we first compare the distribution of population density in our main

population data source, GHS-POP, to two alternatives, GPWv4 and LandScan. We

then compare regression results using our baseline Poisson specification and a log-

linear alternative, using all three datasets—a total of six variants. Specifically, we

compare goodness of fit and fitted values in a regression of population on geographic

characteristics. All three global datasets report population counts for 30-arc-second

by 30 arc-second pixels in Plate Carrée (latitude/longitude) projection. The area of

a pixel is 0.86 square km at the equator, decreasing with the cosine of latitude.

The Gridded Population of the World version 4 (GPWv4; CIESIN 2017) is the

simplest of the three. The underlying data are population estimates for administrative

regions (polygons) from censuses circa 2010. When there is no census in exactly 2010,

values are extrapolated or interpolated from multiple censuses. Population is assumed

to be distributed evenly within an administrative region. GPWv4’s effective spatial

resolution thus depends on what information individual countries provide, with richer

countries typically providing data for finer regions, down to enumeration units, or

even block level data. There is substantial variation within countries as well, with

higher resolution in more densely populated regions. Of 12.9 million input polygons

worldwide, only 2.4 million are from outside the United States. A grid cell crossing

a polygon boundary is assigned a population density that is the areally-weighted

average of its constituent polygons.

The European Union’s Global Human Settlements population layer (GHS-POP;

Schiavina et al., 2019; Carneiro Freire et al., 2016) reallocates GPWv4 estimates

within administrative polygons based on a companion dataset, GHS-BUILT (Corbane

et al., 2018, 2019) that defines built-up pixels as seen in Landsat 30-meter resolution

satellite data circa 2015. In the rare cases where there is no built-up area visible in a

region, it reverts to the GPWv4 estimates. Its land area measures are taken directly

from GPWv4. More information about GHS can be found in Florczyk et al. (2019).

LandScan uses a proprietary algorithm to provide population estimates based on

a much wider set of inputs that include census population data and satellite imagery

at higher resolution than Landsat. While the algorithm is not publicly documented

and changes from year to year, in the recent past input data have also included
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information on elevation, slope, and land cover, as well as locations of road and rail

networks, hydrologic features and drainage systems, utility networks, airports, and

populated urban places. LandScan reports estimates of ambient population averaged

throughout the day, whereas the other two datasets report nighttime (residential)

population estimates. A recent explanation of LandScan for an academic audience

can be found in Rose and Bright (2014).

We rely on GHS-POP as our primary source, and consider GPWv4 and LandScan

for robustness here. GHS-POP’s use of building cover to redistribute people within

census units is very likely to provide more accuracy than GPWv4’s assumption of

uniform density within large administrative units.

LandScan aims to achieve the same goal of redistributing population based on

built cover. However, as noted, it uses other information in making assessments,

including higher resolution satellite imagery. LandScan may thus do a better job of

finding the built environment in rural locations and it may have greater accuracy in

dense but low income cities with coarse population data.

However LandScan has four main drawbacks. First, it has historically used coarse

census data as a benchmark outside of the United States.6 While better satellite im-

agery can better define the built environment, to convert that to population one still

needs fine-grained census population data. Second and more importantly, LandScan’s

algorithm uses physical features like elevation directly to predict population density.

This raises the possibility that our regressions will end up simply predicting Land-

Scan’s algorithm rather than true population density. Third, LandScan’s algorithm

changes from year to year and is not documented. Finally LandScan measures the

ambient population over the 24 hours of a day, making inferences about where people

work and for how many hours of the day, without, as we understand it, much if any

spatial economic census data which are unavailable for many developing countries

anyway. This seems likely to add error without benefit for our purposes.

Figure B1 Panel A reports the cumulative distribution function (CDF) of log

population density according to the three datasets, with zeros in each dataset replaced

with that dataset’s minimum nonzero value before logging. The figure shows that the

three data sets treat grid squares with tiny densities very differently. For example,

6LandScan has not released details about its current census data, but as of its 2009 version: ”Out-
side the USA LandScan used 79,590 administrative units for ambient modeling. By contrast, GPWv3
uses 338,863 units outside of the US.” Source: https://sedac.uservoice.com/knowledgebase/

articles/41665-what-are-the-differences-between-gpw-grump-and-la
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Figure B1: Population Distributions by Grid Square Worldwide

in GHS-POP about 40% of cells have no people, with nonzero densities starting at

0.0000000033/km2, while in LandScan only about 24% of grid squares are zeroes, with

non-zero densities starting at about 0.0013/km2. By population densities of about

50/km2 (exp(3.9)), the three lines converge, at which point about 85% of pixels have

been accounted for. Panel B of Figure B1 analogously reports cumulative population

by density. It shows that less than 10% of the world population lives at a density

under 50/km2. However, since our unit of analysis is the grid square, these tiny

densities potentially play an important role.

In implementing the log-linear specification, we converted zeroes in each dataset

to the smallest non-zero value in that dataset before logging. We also tried assigning

the minimum nonzero value in LandScan to zeroes in all three datasets datasets before

logging. As shown in Figure B1, LandScan has by far the largest minimum non-zero

density of the three datasets.

Figure B2 compares cell-level predicted values across the three datasets. Using

the Poisson specification (Equation (4)), the first column of plots shows that all three
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Figure B2: Predicted Values

data sets give very similar predicted values. This is because the Poisson specification

makes little distinction between cells that have moderately low density and those that

have extremely low density. By contrast, in the second column, there are large differ-

ences across datasets when using the log-linear specification, driven by the differing

treatments of low density regions.

Table B2 reports goodness of fit measures for the log linear and Poisson specifica-

tions. In the first 3 rows zeros are assigned their dataset-specific minimum non-zero

value. In rows 4 and 5 zeros in GHS-POP and GPWv4 are assigned the LandScan

minimum value.

Figure B3 compares country-level impacts of climate change as a percentage of

the baseline GDP using log-linear and Poisson specifications. Poisson values are
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Table B2: Goodness of Fit for Grid Cell Level Regressions

Log-linear Poisson

GHS 0.597 0.578
GPW 0.758 0.621

LandScan 0.738 0.594
GHS Censored 0.660 0.578
GPW Censored 0.801 0.621

Note: The table reports R2 values for
the log-linear regressions and R2

DEV for
the Poisson specification.

identical to those in Figure 6. Here, impacts for countries that see large losses, and

especially gains, in 2100 are exaggerated in the log-linear specification relative to the

Poisson. In an extreme case, Finland is projected to see 82% higher GDP from climate

change in the Poisson specification but 1093% higher in the log-linear specification.

These larger magnitudes of positive impacts in the log-linear specification imply that

climate change will lead to an overall increase in world GDP of 29.9% under SSP5,

in comparison to the projected decline of 1.6% using the Poisson model.

Figure B3: Country-Level Impacts
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C Alternative Sets of Fixed Effects

This appendix discusses results from two alternative sets of fixed effects: first-level

administrative units (ADM1s) and the interaction of country fixed effects with a

five-degree longitude-latitude grid.

Data on ADM1s comes from the Global Administrative Areas version 2 through

GPWv4. There are a total of 2,818 ADM1s in our dataset. In principle, ADM1s

could do a good job of controlling for omitted variables that are correlated with

geography, especially to the extent that institutions, culture, or other unobservables

varied across ADM1s. However, there is also good deal of arbitrariness regarding

how countries are divided into these units. For example, the largest ADM1 in India

has a population in excess of 200 million, while Uruguay with a 2010 population of

3.5 million is divided into 19 ADM1s. The 1% of largest ADM1 contain 34% of the

world’s quarter degree grid cells and 1.6% of the world’s population. In this sense,

the distribution of ADM1s is even more skewed than that of countries: the largest

country, Russia, has 20% of the world’s grid cells and 2.0% of world population (as

of 2010). While variation across ADM1s is frequently used in the climate literature

(Carlson et al., 2023; Waidelich et al., 2024), analyses using within-ADM1 variation

are quite rare (Zaveri et al., 2024).

Coefficient estimates for the geographic variables for the main specification under

different fixed effect formulations are presented in Table A1.

Tables C1-C3 repeat text Tables 2-3 on the impact of different climate changes

scenarios on world GDP, GDP in below-median countries, and the world Gini coef-

ficient. We repeat the results with the original set of country fixed effects and then

show results with ADM1 and five degree fixed effects.
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Table C1: 2100 Impacts to GDP, Full Sample

(a) Country FE

SSP RFF-SP
2100 Base 2100 GDP 2100 Pop. % Impact

Scenario SSP GDP Pop. % Impact Mean SD Mean SD Mean SD N
RCP 2.6 SSP 1 565 6.87 0.55 899 920 10.83 0.82 1.71 0.68 4309
RCP 4.5 SSP 2 538 8.98 0.84 772 808 10.83 0.82 2.20 1.02 9590
RCP 6.0 SSP 4 353 9.25 0.92 833 871 10.83 0.82 1.18 1.24 6108
RCP 8.5 SSP 5 1016 7.35 -1.58 1492 1212 10.78 0.83 -0.11 1.81 253

Note: This table is an aggregation of 156 countries. GDP is in trillions of dollars, while population is in billions.

(b) ADM1 FE

SSP RFF-SP
2100 Base 2100 GDP 2100 Pop. % Impact

Scenario SSP GDP Pop. % Impact Mean SD Mean SD Mean SD N
RCP 2.6 SSP 1 565 6.87 2.95 899 920 10.83 0.82 4.07 0.75 4309
RCP 4.5 SSP 2 538 8.98 4.12 772 808 10.83 0.82 5.40 1.15 9590
RCP 6.0 SSP 4 353 9.25 5.08 833 871 10.83 0.82 5.42 1.41 6108
RCP 8.5 SSP 5 1016 7.35 6.25 1492 1212 10.78 0.83 7.35 2.03 253

Note: This table is an aggregation of 156 countries. GDP is in trillions of dollars, while population is in billions.

(c) Deg. 5 x Country FE

SSP RFF-SP
2100 Base 2100 GDP 2100 Pop. % Impact

Scenario SSP GDP Pop. % Impact Mean SD Mean SD Mean SD N
RCP 2.6 SSP 1 565 6.87 1.24 899 920 10.83 0.82 2.51 0.75 4309
RCP 4.5 SSP 2 538 8.98 1.83 772 808 10.83 0.82 3.38 1.13 9590
RCP 6.0 SSP 4 353 9.25 2.22 833 871 10.83 0.82 2.67 1.34 6108
RCP 8.5 SSP 5 1016 7.35 0.49 1492 1212 10.78 0.83 2.25 1.97 253

Note: This table is an aggregation of 156 countries. GDP is in trillions of dollars, while population is in billions.
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Table C2: 2100 Impacts to GDP, Below-Median GDP Sample

(a) Country FE

SSP RFF-SP
2100 Base 2100 GDP 2100 Pop. % Impact

Scenario SSP GDP Pop. % Impact Mean SD Mean SD Mean SD N
RCP 2.6 SSP 1 350 4.60 -1.25 431 456 8.34 0.75 -0.88 0.52 4309
RCP 4.5 SSP 2 326 6.36 -1.81 369 395 8.34 0.75 -1.49 0.80 9590
RCP 6.0 SSP 4 165 7.06 -3.89 398 425 8.34 0.75 -3.88 0.95 6108
RCP 8.5 SSP 5 569 4.48 -8.25 714 559 8.30 0.77 -6.96 1.71 253

Note: This table is an aggregation of 78 countries. GDP is in trillions of dollars, while population is in billions.

(b) ADM1 FE

SSP RFF-SP
2100 Base 2100 GDP 2100 Pop. % Impact

Scenario SSP GDP Pop. % Impact Mean SD Mean SD Mean SD N
RCP 2.6 SSP 1 350 4.60 1.18 431 456 8.34 0.75 1.31 0.35 4309
RCP 4.5 SSP 2 326 6.36 1.57 369 395 8.34 0.75 1.46 0.61 9590
RCP 6.0 SSP 4 165 7.06 0.47 398 425 8.34 0.75 0.49 0.64 6108
RCP 8.5 SSP 5 569 4.48 0.35 714 559 8.30 0.77 0.85 1.12 253

Note: This table is an aggregation of 78 countries. GDP is in trillions of dollars, while population is in billions.

(c) Deg. 5 x Country FE

SSP RFF-SP
2100 Base 2100 GDP 2100 Pop. % Impact

Scenario SSP GDP Pop. % Impact Mean SD Mean SD Mean SD N
RCP 2.6 SSP 1 350 4.60 -0.40 431 456 8.34 0.75 -0.15 0.31 4309
RCP 4.5 SSP 2 326 6.36 -0.90 369 395 8.34 0.75 -0.70 0.54 9590
RCP 6.0 SSP 4 165 7.06 -2.34 398 425 8.34 0.75 -2.36 0.63 6108
RCP 8.5 SSP 5 569 4.48 -6.23 714 559 8.30 0.77 -5.12 1.31 253

Note: This table is an aggregation of 78 countries. GDP is in trillions of dollars, while population is in billions.
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Table C3: 2100 Impacts to Gini

(a) Country FE

SSP RFF-SP
Base Gini Climate Diff

Scenario SSP Base Gini Climate Diff Mean SD Mean SD N
Hist. 2010 0.538
RCP 2.6 SSP 1 0.122 0.015 0.486 0.063 0.012 0.003 4309
RCP 4.5 SSP 2 0.193 0.026 0.485 0.063 0.017 0.005 9590
RCP 6.0 SSP 4 0.527 0.024 0.486 0.063 0.024 0.005 6108
RCP 8.5 SSP 5 0.105 0.060 0.478 0.059 0.037 0.008 253

Note: This table is an aggregation of 156 countries.

(b) ADM1 FE

SSP RFF-SP
Base Gini Climate Diff

Scenario SSP Base Gini Climate Diff Mean SD Mean SD N
Hist. 2010 0.538
RCP 2.6 SSP 1 0.122 0.013 0.486 0.063 0.011 0.003 4309
RCP 4.5 SSP 2 0.193 0.022 0.485 0.063 0.016 0.005 9590
RCP 6.0 SSP 4 0.527 0.019 0.486 0.063 0.020 0.006 6108
RCP 8.5 SSP 5 0.105 0.051 0.478 0.059 0.031 0.009 253

Note: This table is an aggregation of 156 countries.

(c) Deg. 5 x Country FE

SSP RFF-SP
Base Gini Climate Diff

Scenario SSP Base Gini Climate Diff Mean SD Mean SD N
Hist. 2010 0.538
RCP 2.6 SSP 1 0.122 0.010 0.486 0.063 0.010 0.003 4309
RCP 4.5 SSP 2 0.193 0.023 0.485 0.063 0.017 0.005 9590
RCP 6.0 SSP 4 0.527 0.020 0.486 0.063 0.022 0.006 6108
RCP 8.5 SSP 5 0.105 0.056 0.478 0.059 0.036 0.008 253

Note: This table is an aggregation of 156 countries.

D Variation Across Climate Models

Our main results rely on the ensemble mean of five climate model forecasts. Here we

discuss the variation in projections across these forecasts. Appendix Figure D1 shows

the grid-level standard deviation of our projected location quality measure across the

five climate models.
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Figure D1: Grid-Cell Variations in Location Quality Across Climate Models

(a) RCP 2.6

(b) RCP 4.5

(c) RCP 6.0

(d) RCP 8.5

Note: Values are censored at 3 for visualization.
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Calculating the grid-level standard deviation of our projected location quality

measure across the five climate models shows that the largest variation among models

tends to be in the northern part of the Northern hemisphere as well as the Sahara

Desert, although there are other, more localized areas of disagreement in specific

climate scenarios. Specifically, we see high variation in the Western Ghats for RCP

6.0 and in Minas Gerais in Brazil for RCP 8.5. Both of these are driven by unusually

negative values from a single model (MIROC).

For each climate model we also calculate country-level projected changes in aver-

age location quality (ALQ) over the period 2010–2100 under the RCP 8.5 scenario.

These are presented in Appendix Figure D2. Panel (a) uses area-weighted ALQ,

while (b) uses population-weighted ALQ. The two panels are similar. In general,

these country-level projections are highly correlated across the different climate mod-

els and each is well correlated with the ensemble mean. However, there are notably

larger cross-models differences in projections for countries that are expected to have

improved average location quality (upper right of each graph). These tend to be rich

countries. Among countries where location quality is expected to decline, there is

more accord among the models.

While within-model uncertainty—either from parameters or initial conditions—

must also be acknowledged for each climate model, we are not equipped to address

this additional source of uncertainty.7

7The IPCC Assessment Report 4 discusses these issues and the degree of uncertainty they impart
in section 10.5.
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Figure D2: Comparison of Country-level changes to ALQ by Climate Model

(a) Area-weighted ALQ (b) 2010 Population-weighted ALQ

Note: Each cell depicts a scatterplot comparing the log difference in ALQ from 2010 to 2100 projected by two
different models. The range of each axis is -1.86–2.13 (a) and -1.86–2.63 (b). The diagonal line represents model
agreement.

E Robustness to Choice of Sample Countries

One concern regarding our grid-cell regression is that the land characteristics included

in our regression may impact economic outcomes differently depending on a country’s

stage of development. Correspondingly, the effect of a change in a particular charac-

teristic may have a different effect in poor vs. rich countries. For example, a reduction

in rainfall in an already dry climate could be devastating in a region reliant on small-

holder agriculture, but would have a marginal effect in a richer region that imports

its food from elsewhere. As a robustness check, we thus re-estimate our grid-cell level

Poisson regressions for measuring location quality by interacting variables included

in the baseline regression with an indicator of whether the grid cell’s country GDP

was above or below the median in 2010. In this way, we allow the set of rich and poor

countries to have different coefficients for each included variable. These two sets of

estimated coefficients are used to form projections of the change in location quality

due to climate change for the sample of all countries with below-median GDP per

capita. We focus on poor countries because the analysis in the main text shows that

it is generally in these countries that climate change is expected to have the most
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negative effects.

A priori it is not clear whether coefficients estimated on today’s rich or today’s

poor countries would be more appropriate for predicting the effect of climate change

in the year 2100 on today’s poor countries. Poor countries are more reliant on agricul-

ture than are rich ones, but as noted by Henderson et al. (2018), geographic variables

that measure suitability for agriculture are less predictive of the distribution of pop-

ulation for poor countries than they are for rich countries. Further, under some of

the Shared Socioeconomic Pathways described in Section 7, most of today’s poor

countries will have reached levels of development comparable to those of today’s

upper-middle income countries by 2100. At the same time, today’s poor countries

might have permanent unobserved characteristics that will persist to the year 2100.

Figure E1 shows projected country-level impacts from climate change over the

period 2010–2100 under RCP 8.5, comparing baseline coefficients (horizontal axis)

and alternate coefficients (vertical axis) for the sample of below-median income coun-

tries. Overall, the figure shows that the predicted effects of climate change are fairly

similar. Looking first at panel E1a, 13 countries that are projected to have negative

impacts using the baseline estimates see positive impacts using the below-median

sample estimates, and 3 countries see the opposite switch. In panel E1b, 2 countries

with negative impacts using the baseline estimates see positive impacts using the

above-median sample coefficients and 1 countries see the opposite switch. The cor-

respondence between the two projections is fairly tight for the majority of countries

that will experience deterioration, but more scattered among those where location

quality will improve.

Finally, Table E1 (corresponding to the first panel of Table 2 in the main text)

aggregates these country-level impacts for the below-median sample under various

climate scenarios and socioeconomic projections. We see that the baseline estimate

yields greater damages than either the below-median or the above-median estimates,

and that the above-median estimates in turn yield greater damages than the below-

median estimates. While these results are a bit puzzling, they certainly give no reason

to think that in using the baseline estimates for the world as a whole, rather than

projecting poor-country damages using estimates from poor countries alone, we are

understating the impact of climate change.
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Figure E1: Comparisons of Country-Level Impacts from Climate Change

(a) Below-Median GDP Coefficients

(b) Above-Median GDP Coefficients

Note: Figure plots the percentage impact of climate change in 2100 using RCP 8.5 and the U.N. medium variant
population projection under perfect mobility assumptions for the 78 countries with below-median 2010 GDP on
both axes. Horizontal axis estimates use baseline coefficients, while vertical axis estimates use coefficient fitted for
below-median countries in panel (a) and coefficients fitted for above-median countries in panel (b).
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Table E1: 2100 Impacts as Percentage of Aggregate GDP

SSP RFF-SP % Impact
Scenario SSP % Impact Mean SD N
A. % Impact: Baseline Coefficients
RCP 2.6 SSP 1 -1.25 -0.88 0.52 4309
RCP 4.5 SSP 2 -1.81 -1.49 0.80 9590
RCP 6.0 SSP 4 -3.89 -3.88 0.95 6108
RCP 8.5 SSP 5 -8.25 -6.96 1.71 253
B. % Impact: Below-Median Coefficients
RCP 2.6 SSP 1 -1.44 -0.61 0.89 4309
RCP 4.5 SSP 2 -0.83 -0.03 1.20 9590
RCP 6.0 SSP 4 -1.90 -1.52 1.41 6108
RCP 8.5 SSP 5 -3.13 -1.66 1.96 253
C. % Impact: Above-Median Coefficients
RCP 2.6 SSP 1 0.28 -0.07 0.47 4309
RCP 4.5 SSP 2 0.33 -0.57 0.73 9590
RCP 6.0 SSP 4 -2.67 -3.46 0.71 6108
RCP 8.5 SSP 5 -6.71 -6.83 1.48 253

Note: Results aggregate 78 countries. GDP is in trillions of dollars, while population is in billions.

F Average Location Quality by Region

The first column of Table F1, Panel (a) reports ALQ for the world and by continent,

where Europe includes all of Russia. As in the main text, world average location

quality for 2010 is normalized to one by construction from equation (5). In the

remaining columns of Table F1, Panel (a), we repeat this exercise for 2100 under

the four different RCP emissions scenarios, keeping the weights in Equation (5) and

changing the characteristics x according to each RCP scenario. The second panel of

Table F1 repeats the exercise using population rather than area weights.

Table F1: World ALQ Change

(a) Area-weighted ALQ

Continent Historical RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5
World 1.000 1.080 1.133 1.130 1.154
Africa 0.692 0.631 0.572 0.525 0.403
Americas 1.137 1.124 1.167 1.130 1.156
Asia 0.726 0.747 0.743 0.712 0.694
Europe 1.427 1.988 2.299 2.454 2.778
Oceania 1.366 1.330 1.379 1.367 1.277
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(b) 2010 Population-weighted ALQ

Continent Historical RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5
World 3.032 3.034 3.033 2.969 2.809
Africa 1.615 1.418 1.272 1.154 0.882
Americas 3.875 3.626 3.712 3.542 3.241
Asia 2.500 2.387 2.322 2.219 2.073
Europe 6.668 8.114 8.557 8.942 9.191
Oceania 17.853 15.991 17.062 17.303 14.708

G Robustness of Location Quality to Variable Choice

This appendix conducts robustness checks for an assortment of variant specifications.

For each alternate specification, we provide appendix figures that map the log dif-

ference in location quality from 2010 to 2100 under RCP 8.5 and plot the change in

ALQ from 2010 to 2100 under RCP 8.5 using this alternate specification against that

using the baseline specification. A table of world-level climate impacts is also shown.

G.1 Quadratic of Temperature and Precipitation

In this specification, we limit our set of regressors to the quadratic of mean annual

temperature and precipitation, as well as the country fixed effects that are present in

all the specifications that we examine.

Figure G1: Quadratic of Temperature and Precipitation

(a) Log Difference of Location Quality

As the figure shows, using the richer set of covariates from our baseline specifica-

tion paints a significantly different picture than the restricted set. Particularly among
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(b) Country-Level Log Difference in ALQ

poor countries, there are many where the decline in land quality is more than 50 log

points greater in the baseline specification than in the restricted version. Comparing

the table here with the corresponding Table 2 in the main text, the impact to world

GDP is less negative under all of the climate scenarios using the restricted specifi-

cation than our baseline. Focusing on countries with year 2010 income below the

median, the negative impact of climate change in the most extreme scenario (RCP

8.5) in the restricted case is three-quarters that of our baseline specification.

G.2 GAEZ variables only

In this specification, we restrict our set of regressors to variables from GAEZ. This

excludes variables capturing geographical features such as distance to the coast or

ruggedness that do not change between 2010 and 2100.

In this case, as the figure shows, the projected impact of climate change is almost

uniformly less negative (or more positive) using the restricted specification than in

our baseline. Further, the projected impact of climate change on world GDP is

noticeably more positive in the restricted specification compared to our baseline, and

even focusing on countries with below median income, the projected negative impact

is almost twice as large in absolute value in the baseline specification than in the
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Table G1: 2100 Impacts as Percentage of Aggregate GDP

Sample Full Below Median Income
SSP RFF-SP Impact SSP RFF-SP Impact

Scenario Impact Mean SD Impact Mean SD
RCP 2.6 1.30 2.34 0.57 −0.59 −0.22 0.58
RCP 4.5 1.24 2.90 0.98 −1.90 −1.35 1.09
RCP 6.0 3.24 3.21 1.13 −1.00 −1.71 1.22
RCP 8.5 1.34 3.08 1.90 −6.18 −4.27 2.07

Note: Results aggregate 156 countries in the full sample and 78 countries in the below median

income countries sample. Impacts are in percentages.

restricted version.

Figure G2: GAEZ Variables Only

(a) Log Difference of Location Quality
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(b) Country-Level Log Difference in ALQ

Table G2: 2100 Impacts as Percentage of Aggregate GDP

Sample Full Below Median Income
SSP RFF-SP Impact SSP RFF-SP Impact

Scenario Impact Mean SD Impact Mean SD
RCP 2.6 3.15 4.59 0.94 0.70 0.84 0.33
RCP 4.5 5.43 7.08 1.36 1.78 1.74 0.48
RCP 6.0 5.87 6.29 1.62 −0.68 −0.62 0.75
RCP 8.5 4.47 6.43 2.39 −4.57 −3.37 1.65

Note: Results aggregate 156 countries in the full sample and 78 countries in the below median

income countries sample. Impacts are in percentages.

G.3 Trade interactions

The baseline specification comprises both time-invariant geographic features and char-

acteristics affected by climate change. The former includes variables that reflect suit-

ability for trade, which may interact with agroclimatic variables in determining land

quality. We explore this possibility by generating land quality with a Poisson regres-

sion in which each variable that changes with climate change is interacted with five

geographic variables relevant to trade from the baseline regression: distance to the
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coast, ruggedness, and the existence of coasts, navigable rivers, and natural harbors

within 25 km of the cell centroid.8 Appendix Figure G3a maps the change in location

quality from 2010 to 2100 under RCP 8.5, while G3b aggregates these changes at

the country level and plots them against the country-level changes in the baseline

specification.

Figure G3: GAEZ interacted with trade variables

(a) Log Difference in Location Quality

(b) Country-Level Log Difference in ALQ

8The indicator denoting proximity to lake was omitted, and nontrade geographic variables were
included only as controls.
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On the grid-cell level, the most notable change is that this interacted specifica-

tion projects large climate-induced improvements in land quality near rivers.9 The

interacted specification projects much better outcomes for several countries that con-

tain rivers (Paraguay, Egypt, Myanmar, Nigeria), and worse outcomes for several

landlocked ones (Uganda, Burundi, Rwanda). Overall, the interacted specification

predicts climate change impacts to world GDP that are not too dissimilar to the

baseline specification.

Table G3: 2100 Impacts as Percentage of Aggregate GDP

Sample Full Below Median Income
SSP RFF-SP Impact SSP RFF-SP Impact

Scenario Impact Mean SD Impact Mean SD
RCP 2.6 −0.47 1.26 0.94 −2.92 −1.84 0.95
RCP 4.5 0.14 2.16 1.42 −3.41 −2.49 1.42
RCP 6.0 1.98 2.09 1.62 −3.19 −3.47 1.60
RCP 8.5 −0.19 1.50 2.21 −7.98 −5.90 2.03

Note: Results aggregate 156 countries in the full sample and 78 countries in the below median

income countries sample. Impacts are in percentages.

H Derivations of the Change in the K/Y Ratio

H.1 Perfect Mobility

In the perfect mobility case, the last term of equation (13) is derived as follows. We

assume that capital is accumulated in the usual Solow model fashion

K̇ = sY − δK, (H2)

where δ is the rate of depreciation and the saving rate s is assumed to be fixed.

Romer (2012) shows that if the rates of saving, depreciation, population growth, and

technological progress are constant, then along the balanced growth path the capital-

output ratio, which is the second term in equation (12), converges to a constant.

9One issue with including all interactions of trade and agroclimatic variables is that the number of
regressors balloons to 283, raising concerns of overfitting. To address this, we fit Poisson models with
the Least Absolute Shrinkage and Selection Operator (Lasso) estimator on the full set of interactions
for a more parsimonious model but did not find notable improvement. Results are available upon
request.
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Taking logs of (12), differentiating with respect to time, and then rearranging, we

can solve for the growth rate of total output:

Ŷ =
ϕX̂ + (1 − α− ϕ)[ê + L̂]

1 − α
(H3)

We can similarly write the equation for the growth rate of capital as

K̂ = s
(Y
K

)
− δ. (H4)

Equating (H4) to (H3), the capital-output ratio along the balanced growth path is

K

Y
=

s

δ + ϕX̂+(1−α−ϕ)[ê+L̂]
1−α

. (H5)

Thus (
(K/Y )alt
(K/Y )base

)
=

δ(1 − α) + (1 − α− ϕ)[ê + L̂base] + ϕX̂base

δ(1 − α) + (1 − α− ϕ)[ê + L̂alt] + ϕX̂alt

(H6)

Further assuming that the growth of population and location quality are both

constant on the balanced growth path, L̂ and X̂ are the annualized growth rates

between 2010 and 2100 of population and aggregate location quality in either the

baseline or alternative scenario. That is,

L̂ =
ln(L2100) − ln(L2010)

90
(H7)

and

X̂alt =
ln(Xalt,2100) − ln(Xalt,2010)

90
(H8)

where, omitting the normalization constant, Xi = Ziexp(xiβ̂). In the baseline case,

location quality does not change between 2010 and 2100; it follows that X̂base = 0.

H.2 Perfect Mobility with Unmeasured Quality

As in the case of Perfect Mobility, we continue to assume that output per worker

is equalized across grid squares in a country in both the present and future. The

derivation of the last term in equation (18) is thus identical to equation (H6). How-

ever, we now include unmeasured quality in our location quality measure, and thus

Xi = Ziexp(xiβ̂)ϵi. We make use of equation (17) and the fact that Xalt,2010 =
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Xbase,2010 = Xbase,2100 to derive the new X̂alt:

X̂alt =
ln(

Xalt,2100

Xalt,2010
)

90
=

ln
(∑

i

(
Li,base

Lbase

)
exp(xi,altβ̂)

exp(xi,baseβ̂)

)
90

(H9)

L̂ and X̂base remains the same as the previous case.

H.3 No Mobility Going Forward

With no mobility going forward, output per worker is no longer equalized across grid

cells in the future. Instead of using (12) as in the cases of Perfect Mobility and Perfect

Mobility with Unmeasured Quality, we sum (10) across grid cells to solve for total

output:

Y =
∑
i

Yi =

(
K

Y

)α/(1−α)

e(1−α−ϕ)/(1−ϕ)
∑
i

(
L
(1−α−ϕ)/(1−α)
i X

ϕ/(1−α)
i

)
(H10)

Taking logs of (H10), differentiating with respect to time, and rearranging yields

the growth rate of total output:

Ŷ =
1 − α− ϕ

1 − α
ê +

∑
i

(
L
(1−α−ϕ)/(1−α)
i X

ϕ/(1−α)
i

(
1−α−ϕ
1−α

L̂i + ϕ
1−α

X̂i

))
∑

i

(
L
(1−α−ϕ)/(1−α)
i X

ϕ/(1−α)
i

) (H11)

As before, the growth rate of capital is (H4).

Equating (H4) to (H11), the capital-output ratio along the balanced growth path

is
K

Y
=

s

δ + 1−α−ϕ
1−α

ê +
∑

i

(
L
(1−α−ϕ)/(1−α)
i X

ϕ/(1−α)
i ( 1−α−ϕ

1−α
L̂i+

ϕ
1−α

X̂i)
)

∑
i

(
L
(1−α−ϕ)/(1−α)
i X

ϕ/(1−α)
i

) (H12)

Thus

(
(K/Y )alt
(K/Y )base

)
=

δ(1 − α) + (1 − α− ϕ) [ê + TLbase] + ϕTXbase

δ(1 − α) + (1 − α− ϕ) [ê + TLalt] + ϕTXalt

(H13)
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with

TLbase ≡
∑
i

L
1−α−ϕ
1−α

i,base X
ϕ

1−α

i,base∑
i L

1−α−ϕ
1−α

i,base X
ϕ

1−α

i,base

L̂i,base, TXbase ≡
∑
i

L
1−α−ϕ
1−α

i,base X
ϕ

1−α

i,base∑
i L

1−α−ϕ
1−α

i,base X
ϕ

1−α

i,base

X̂i,base

and TLalt and TXalt defined analogously.

(H13) is analogous to (H6) except L̂ and X̂ are replaced by TL and TX respec-

tively. TL and TX are the output weighted averages of the growth rate of grid cell

i’s population and of the growth rate of grid cell i’s location quality.

H.4 Quantitative Importance of the K/Y Term

Appendix Table H1, for the case of perfect mobility, shows that the term representing

the change in the K/Y ratio contributes extremely little to variation across countries

in projected climate impacts, and is very insensitive to the choice of ê.

Table H1: Variance Decomposition of Impact Estimates

Variance 2 × Covariance
ê Y

L
X L K

Y
X, L X, K

Y
L, K

Y

0 % 0.143 0.036 0.059 0.001 0.034 -0.000 0.014
1 % 0.141 0.036 0.059 0.001 0.034 -0.000 0.012
2 % 0.140 0.036 0.059 0.001 0.034 -0.000 0.011

Note: This table shows decompositions of the logarithmic version of equation (13), for different values of the
productivity growth parameter ê .
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