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1 Introduction

Market integration lowers aggregate production costs and brings gains from trade. This

is especially true for electricity markets, where supply costs can be quite convex and where

spatial integration can substitute for a lack of widespread storage. Moreover, grid integration

– high-voltage transmission lines – is widely believed to be a key part of decarbonization

strategy (Joskow, 2021; National Academies of Sciences, Engineering, and Medicine, 2021).

Indeed, some scenarios have called for tripling the capacity of the grid by 2050 (Davis,

Hausman and Rose, 2023).

The reason transmission may be particularly important in a transition towards decar-

bonization is that the grid of today is not spatially matched to the needs of a near-term

decarbonized economy. Renewable resources like wind and solar are located in parts of the

country that historically were not large sources of generation, and they are distant from most

urban centers. New transmission lines have not kept up these new sources of generation, and

as a result renewable energy gets “curtailed” (dumped) even at times when more expensive

fossil plants are running in other regions. Concurrently, wholesale electricity prices have

been low in renewable-rich regions, even though prices remain high in other regions (Seel

et al., 2021), weakening incentives for new renewable investment.

In this paper, I study two major electricity markets in the heart of the U.S.: the Southwest

Power Pool (SPP) and the Midcontinent Independent System Operator (MISO). Combined,

these markets cover a renewable-rich swath of the windy Midwest, as well as demand centers

stretching from Minneapolis and Detroit to New Orleans. I construct supply curves under

counterfactuals with and without transmission constraints, calculating the allocative ineffi-

ciencies caused by inadequate transmission infrastructure. I also construct counterfactuals

where the alleviation of transmission constraints means that wind is no longer curtailed.

I find that in the recent past, transmission constraints were not particularly expensive,

with static allocative inefficiencies averaging $300 to $400 million per year over the 2016-

2020 period.1 However the costs of transmission constraints have been rising, totaling more

than $2 billion in 2022. The increase over time has come from both rising natural gas prices

(which rotate the supply curve for wholesale electricity), and rising curtailments. Moreover,

as I discuss below, there are additional costs on top of the $2 billion: dynamic allocative

inefficiencies, as well as reliability value.2

1Dollar values throughout are reported in $2022; I deflate using the CPI - all items less energy.
2There are three dimensions to dynamic allocative inefficiencies. Gonzales, Ito and Reguant (Forthcom-

ing) shows that wind entry decisions are impacted by transmission constraints. Johnston, Yifei and Yang
(2023) investigate how a separate kind of transmission planning problem – the delays new generators face
in obtaining interconnections – impacts renewable development. And finally, transmission constraints may
impact retirement decisions of existing generators.
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To further examine the causes of the estimated allocative inefficiencies, I next examine

the observed behavior of individual power plants in these markets. I document that power

plants tend to be dispatched in response to shocks within their own market (i.e., MISO

plants in response to MISO demand). More striking, I find that plants tend to be dispatched

in response to demand shocks in their own subregion of their market. I find an especially

striking divide between the Southern part of MISO (the Gulf Coast) and the Northern and

Central parts (the Great Lakes).

It is of course possible that the $2 billion in allocative inefficiencies I document for 2022

are socially optimal, if the cost of building new transmission lines is very high.3 However,

many grid observers have argued that the transmission planning process in the U.S. does not

lead to socially optimal investments, in particular for long-distance lines crossing regions.

Davis, Hausman and Rose (2023) point to myriad problems in the planning process, ranging

from NIMBY-ism concerns to bureaucratic procedures for cost allocation.

To examine one potential source of transmission planning failures, I turn to empirical

estimation of the potential firm-level gains and losses from market integration. While gains

from trade in the aggregate are to be expected, it is also to be expected that some agents will

lose – in particular, incumbent generators in high-cost regions.4 There is of course nothing

problematic with this for overall social welfare, but understanding which power plants, which

regions, and which firms stand to lose can point towards political economy barriers.

I next show that the rise in wind energy in recent years has decreased profits for fossil

incumbents – but crucially, by less than it would have had the market been fully integrated.

That is, fossil incumbents have been partially protected from new competitors by a lack

of transmission. Second, I show that the overall effect on incumbents masks important

heterogeneity. There is a pronounced regional pattern to which incumbents would lose the

most from integration, with firms in South MISO – an area known for inadequate connections

to nearby regions – standing to lose the most.

Finally, I show that the potential losses of operating profits are very large for some firms.

The four firms with the most to lose would have earned a combined $1.6 billion less in

operating profits in 2022. Not surprisingly, the two firms (in fact, two subsidiaries of the

same firm) with the most to lose are in the Southern MISO region. Moreover, these two firms

3I do not perform a cost/benefit analysis of new transmission in this paper, as I do not observe the
full social costs of new transmission lines, nor the scale of new investment that would be needed to remove
all congestion. Engineering papers evaluating the optimal level of transmission under various assumptions
include Brown and Botterud (2021); Princeton (2021); Williams et al. (2021); Bloom et al. (2022).

4As I discuss below, other losers include consumers in some regions, who would see rising prices. Winners
include generators currently experiencing low prices, who would be able to export their power to locations
that are currently load pockets. Consumers in load pockets would also win. And finally, new renewables
entrants could win as prices rise in windy parts of, e.g., the Great Plains.
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have been accused for decades of blocking new transmission lines. The tactics they have been

accused of range from preventing competitors from accessing the firm’s transmission network,

to slow-walking the market-wide transmission planning process, to hiring a consultant to pose

as a concerned customer in public hearings.

A notable gap in the empirical literature on transmission networks is documentation of

the magnitude of gains and losses to individual incumbent firms. Numerous papers cite

this problem qualitatively (Hirst and Kirby, 2001; Hogan, 2018; Wolak, 2020; Cicala, 2021;

Joskow, 2021; Davis, Hausman and Rose, 2023), but empirical estimates are rarely reported.5

This is of particular importance given claims in the literature that “losers” may be holding up

the transmission planning process. If the allocative inefficiencies that are becoming widely

documented are a result of the planning process we have in the US, then understanding

incentives for firms to block market integration is of policy relevance.

The paper most directly related to my analysis is Gonzales, Ito and Reguant (Forthcom-

ing), which conducts a thorough examination of the role of transmission expansion in both

the short-run dispatch and long-run investment decisions of the Chilean electricity market.

Of most relevance for what I do, that paper shows how allocative inefficiencies arise as a

result of transmission bottlenecks, and how these are exacerbated by renewables curtail-

ments (in this case, solar). Another paper considering the dynamic relationship between

renewables and the transmission grid is Johnston, Yifei and Yang (2023), which looks at

interconnections – the transmission lines specifically needed for new renewables hook-ups

– in the PJM market. My paper complements their work by focusing on the across-region

transmission constraints impacting existing generators.

Other related papers on the interaction of renewable generation and transmission network

expansion include Jorgenson, Mai and Brinkman (2017); Qiu (2020); Brown and Botterud

(2021); Fell, Kaffine and Novan (2021); Bloom et al. (2022); Doshi (2022); LaRiviere and

Lyu (2022); Yang (2022); Kemp et al. (2023), and Lamp and Samano (2023). These papers

study a variety of markets (Texas, Germany, and more) and a variety of modeling techniques.

Taken as a whole, these papers show how transmission and renewable generation can be

complements. This relates to evidence on the spatial misallocation of renewables investments

in the US to date (Callaway, Fowlie and McCormick, 2018; Sexton et al., 2021).

There is also a broader literature on allocative inefficiencies arising from transmission

constraints in electricity markets even aside from their interaction with renewable generation.

Some of these papers emphasize how opportunities to exercise market power are increased

5There are papers that estimate the impacts of transmission constraints (or their alleviation) on the
revenues of wind and solar sources – particularly new wind and solar – (Gonzales, Ito and Reguant, Forth-
coming; Johnston, Yifei and Yang, 2023; Kemp et al., 2023), but they generally do not investigate the impacts
on incumbent fossil generators.
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in the presence of transmission constraints (Wolak, 2015; Davis and Hausman, 2016; Ryan,

2021). The transmission network also has an important role in enhancing grid reliability

(Borensten, Bushnell and Mansur, 2023). And finally, there is a broader literature on the

regional integration of electricity markets, relating to market design rather than to physical

transmission constraints (Mansur and White, 2012; Cicala, 2022).

The paper proceeds as follows. In Section 2, I provide brief contextual background.

Section 3 summarizes the data sources I use. Section 4 summarizes the methods and results

on allocative inefficiencies. Section 5 explores profit impacts for incumbents firms. Section

6 shows various robustness checks, and Section 7 concludes.

2 Background

In this Section, I provide brief contextual background. I study two U.S. electricity mar-

kets, the Southwest Power Pool (SPP) and the Midcontinent Independent System Operator

(MISO). Each is a non-profit entity responsible for operating the electricity within their

footprints: matching supply and demand offers, as well as ensuring grid reliability.

SPP’s members are in fifteen states, roughly covering the Great Plains region from Mon-

tana to Texas.6 MISO also serves fifteen states (roughly, from North Dakota to Michigan

and south to Louisiana) and one Canadian province.7 Some states are served by both SPP

and MISO, but one can broadly think of SPP as covering the Great Plains and MISO as

being more to the east (the Great Lakes and the Gulf Coast).

Both SPP and MISO are part of the Eastern Interconnection. The U.S. electricity grid

is physically divided into three such interconnections: one in the western half of the country,

one in the eastern half, and one roughly covering Texas. There is almost no transmission

between the three grids, a legacy of the way the grid originally developed in the U.S.

The generation mix of both MISO and SPP includes a mix of fossil power plants (coal

and natural gas), nuclear, and a growing supply of wind (particularly in SPP). Both regions

have small quantities of hydro, solar, and other units (e.g. thermal plants fueled by solid

waste). Summary statistics are provided below.

Both SPP and MISO have independent market monitors, who evaluate the functioning

of each market, including both reliability metrics and whether generators appear to be exer-

cising market power. Annual reports from both market monitors covering my sample period

6SPP’s members are in Arkansas, Colorado, Iowa, Kansas, Louisiana, Minnesota, Missouri, Montana,
Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas and Wyoming.

7The states served are Arkansas, Illinois, Indiana, Iowa, Kentucky, Louisiana, Michigan, Minnesota, Mis-
sissippi, Missouri, Montana, North Dakota, South Dakota, Texas, and Wisconsin – some (such as Montana
and Texas) are only partly covered by MISO.
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indicate very competitive generation markets.

3 Data

3.1 Data Sources

I build a detailed panel dataset on these two major U.S. electricity markets (SPP and MISO),

incorporating data from several government agencies as well as both market operators. Here

I provide a brief overview; descriptive statistics are in the Appendix.

From the U.S. Environmental Protection Agency’s CEMS dataset, I observe hourly gen-

eration8 and hourly fuel use at individual thermal generating units; a typical power plant

has between one and eight generating units.9

Also from CEMS, I observe each unit’s fuel type (coal, natural gas, and oil), technology

(boiler, combined cycle, or combustion turbine), and location (latitude and longitude). The

majority (74 percent) of units in my sample use natural gas, 21 percent use coal, and only five

percent use oil. From the Energy Information Administration’s EIA-860 survey, I observe

additional characteristics of each plant: its location in MISO versus SPP, the name of its

owner, and whether its owner is an investor-owned utility or a merchant generator. Two

thirds of the units I observe are in MISO, which has a larger footprint than SPP. The majority

of units in my sample are operated by investor-owned utilities.

From the CEMS hourly generation and fuel use, I calculate each unit’s heat rate, a

measure of how efficiently it converts fuel into electricity (and a primary component of

marginal cost). I calculate each unit’s capacity as the 99th percentile of observed generation.

Generating units are taken offline frequently for maintenance, so I use monthly outage rates

from a market monitoring report (Potomac Economics, 2022).

The two market operators also release detailed data. From each, I observe ISO-wide

hourly generation by fuel type – this is important for understanding the behavior of nuclear

and renewable generation, as those fuel types are not represented in the CEMS data.10 I

8The reported generation in the CEMS dataset is “gross” rather than “net” – the difference is generation
used for in-house operations, and therefore not sold on the wholesale market. To convert from gross to net
generation, I follow the literature (Cicala, 2022) in matching gross generation from CEMS to net generation
from the Department of Energy’s Energy Information Administration’s EIA-923 dataset (available at the
annual level), then constructing a plant-specific conversion factor.

9The hourly EPA data are limited to generating units with a capacity of at least 25 MW; smaller units are
observable only at the annual level, from a separate data source (the Energy Information Administration’s
EIA-923 survey, or the EPA’s eGrid dataset). However, the average capacity of a coal or natural gas fired
unit in the U.S. in 2021 was 120 MW, so these unobserved units are quite small – they make up only around
1 percent of total coal and natural generation, according to the EPA’s eGrid 2021 dataset.

10MISO but not SPP also releases hourly generation by fuel type at a broad regional level (north, central,
south) – which I leverage later when examining counterfactual revenues.
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also assemble wind curtailment data from the ISOs.11 Each ISO also reports total quantity

demanded at the hourly level (called “load” in electricity markets) for various regions.12

From EIA’s 930 dataset, I observe load in the Eastern Interconnection as a whole.

Fuel prices are published by the EIA; I use both daily upstream prices (the Henry Hub

natural gas price and the West Texas Intermediate (WTI) oil price) and monthly downstream

prices (the average fuel price paid by power plants for coal, natural gas, and oil). Finally,

daily temperatures are published by the National Oceanic and Atmospheric Administration

(NOAA).

4 Allocative Inefficiencies

4.1 Constructing Marginal Cost Curves

To construct market-wide marginal cost curves, I first construct the marginal cost of each

thermal generating unit as follows:

mci,t = fpt · hri + omi + eci,t (1)

where fp is the fuel price in each hour (in dollars per mmBtu), hr is the heat rate of each

unit (in mmBtu per MWh), om is the unit’s variable operating and maintenance costs (in

dollars per MWh), and ec is the environmental compliance cost (in dollars per MWh).

Recall that the EIA publishes both monthly data on average prices paid for fuel by power

plants and daily upstream fuel prices (Henry Hub for natural gas and WTI for oil). It is

important to capture both this daily variation for natural gas and oil as well as the markup,

so I construct fuel prices as the upstream price (varying daily) plus a time-invariant average

markup (the sample-wide difference between the upstream and downstream prices reported

by EIA). Coal prices have vary little variation across days within a month, so I simply use

EIA’s monthly data on average price paid by power plants. I assume technology-specific om

values from Energy Information Administration (2019) where possible and otherwise from

Energy Information Administration (2022).

An additional, albeit quite minor, marginal cost for most units in my sample is the

11From SPP, I observe hourly wind quantity curtailed. MISO does not make hourly curtailment data
available, but I assemble daily curtailment data, separated into peak and off-peak periods, for December
2019 through December 2022 from the slide decks published for MISO’s monthly Informational Forum web
presentations.

12MISO reports load across three broad regions (North, Central, and South). SPP reports more disaggre-
gated regions – around a dozen – which I aggregate to three broad regions to parallel the regional definitions
I have for MISO.
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cost paid to purchase permit prices to cover pollution emissions. Units in these states are

covered by EPA cap and trade programs for sulfur dioxide and nitrogen oxides emissions. I

observe hourly emissions from the EPA CEMS dataset and annual permit prices from the

EPA’s Power Sector Programs Progress Reports, from which I calculate total environmental

compliance costs.13 These costs have at some points in US history been very high, but for

my sample this increases marginal cost by less than one percent on average.

Summing across the three components of marginal cost, I obtain marginal costs, in dollars

per MWh, that are generally in line with the literature. A small number of values are

implausible (e.g. because I estimate a very high heat rate at some units), so I winsorize

marginal costs at the 1st and 99th percentiles.

My primary sample focuses on the coal, natural gas, and oil power plants for which

marginal costs are well-known. My primary sample drops a small number of thermal units

with fuel types such as wood and municipal solid waste; these make up less than one percent

of CEMS generation. As my primary analysis constructs counterfactuals regarding changing

the dispatch of thermal units, this is akin to assuming that the behavior of wood and waste

units does not change in my counterfactuals. Similarly, I drop commercial and industrial

and cogeneration units (e.g., generating units located at chemical plants, hospitals, and

universities) – again, marginal costs at these units are not clear, and dropping them is

simply assuming that they would not respond to changes in market incentives.

Marginal costs for renewables and nuclear generation do not depend on heat rates and

permit prices. Following the literature, I assume that renewables (wind, solar, and hydro)

have zero marginal cost.14 Capacity for these types varies across hours, depending on weather

(e.g. how windy it was that hour). I construct capacity as observed generation for each fuel

type, plus the quantity curtailed. For nuclear units, I assume a marginal cost based on the

average operating expenses for nuclear units reported in Energy Information Administration

(2023).15 I also assume that nuclear units will not respond to short-term fluctuations in

wholesale prices because of their operational constraints (Davis and Hausman, 2016), and

13Specifically, I calculate a time-invariant emissions rate for each unit, in tons of pollutant per MWh of
generation; I multiply this by the permit cost, which is in dollars per ton of pollutant.

14Most papers on electricity markets in the West must make more complex assumptions about hydroelec-
tric behavior, as dams allow operators to store some of their capacity for when prices are high. Modeling
this correctly is important in the West, where hydro is a substantial source of electricity – this is much less
true in MISO and SPP, where hydro is relatively small. Hydro provided only two percent of generation
across MISO and SPP in 2021, but it provided more than 30 percent of generation across the West Coast
(California, Oregon, and Washington).

15Table 8.4 of Energy Information Administration (2023) reports average fuel costs of around $6.80/MWh
for my sample period. Operations and maintenance (O&M) costs average $16.80/MWh; I assume that half of
these are fixed O&M and half are variable O&M, i.e. half are marginal to generation. This gives a marginal
cost estimate of $15.15/MWh, comparable to the California-specific estimate used in Davis and Hausman
(2016).
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thus I fix their generation at what I empirically observe in each hour.

The other variable needed at each thermal generating unit is its maximum capacity.

As described in the data section, I use empirically observed capacities. However, I must

also apply outages, as units go offline for both planned and unplanned maintenance. In

my primary specification, I stochastically apply outages across all unit/hour combinations,

similar to what is done in Borenstein, Bushnell and Wolak (2002).16

With hourly marginal costs and annual capacities constructed as described above, I can

construct market-wide marginal cost curves.17 For my first counterfactual, I use a least-

cost dispatch framework: I rank the units by their marginal cost, then dispatch units until

demand is met, where demand is defined as the total quantity generated in the real world in

hour t across all generators. That is, I minimize the total cost of production in each hour t,

subject to a market-wide demand constraint and a capacity constraint at each unit:

min
gi,t

 ∑
i∈(1,2,...I)

mci,tgi,t

 s.t.
∑

gi,t = demandt;

xi,t ≤ Ci,t ∀i; (2)

This approach is widely used in the literature in both economics and engineering (Borenstein,

Bushnell and Wolak, 2002; Deetjen and Azevedo, 2019; Mills et al., 2021; Cicala, 2022).18 A

limitation of this approach is that it ignores transmission constraints and various technical

constraints of generating units themselves (ramping costs and other dynamic considerations,

and minimum dispatch constraints). Below, I augment with additional counterfactuals to

incorporate additional constraints.

An example marginal cost curve is shown with a grey line in Figure 1. I choose a

sample hour that is “typical” in terms of total quantity demanded, fuel prices, and wind

quantity curtailed for 2022; additional sample hours representing different market conditions

are shown in the Appendix. For this hour, 34,000 MWh of generation are provided by zero-

cost renewables, an additional 13,000 MWh by nuclear, and then the remaining 42,000 MWh

16Unlike Borenstein, Bushnell and Wolak (2002), I do not Monte Carlo over these stochastic outages;
given the large number of unit/hour combinations (more than 53 million) in my sample – each of which
receives an independent draw – it is unlikely that the particular random draw I use will affect my results.

17Some empirical approaches would leverage equilibrium price data, rather than construct supply curves.
I do not do so for two reasons. First, to calculate allocative inefficiencies, I need to integrate under the entire
supply curve in each hour, whereas hourly prices give me a single point on the supply curve. Second, and
relatedly, electricity cost curves are highly nonlinear at any point in time, and they vary substantially across
time with fuel prices and wind availability; as such, one cannot simply assume an elasticity to back out the
cost curve from a given observed equilibrium price and quantity.

18Note the terminology used varies; for instance, Mills et al. (2021) refers to this approach as a “funda-
mental supply curve model.”
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are provided by a mix of thermal generating units, primarily coal boilers. Across all hours

in my sample, thermal generation is provided by a mix of fuel and technology types, where

marginal cost varies across units because of varying heat rates and fuel prices.

4.2 Modeling Transmission Constraints

For the second counterfactual, I assume that the system is constrained in two ways. First, I

incorporate regional transmission constraints. I model transmission constraints in a reduced

form way as follows. I assign each generating unit to a North American Electric Reliability

Corporation (NERC) subregion as reported in the EPA eGRID dataset (see Appendix for

map).19 NERC is a non-profit organization that oversees electric grid reliability in the US,

Canada, and part of Mexico, and it monitors reliability across approximately two dozen

subregions. I infer transmission constraints across subregions at the hourly level by calculat-

ing the total quantity supplied by thermal generating units in each hour in each subregion

using the CEMS generation data. As I dispatch units using the least-cost dispatch algo-

rithm described above, I constrain total generation in each subregion in each hour to what

I empirically observe. That is, I force each subregion to generate no more than what was

actually generated in the real world.20

The optimization problem is thus:

min
gi,t

 ∑
i∈(1,2,...I)

mci,tgi,t

 s.t.
∑

i∈(1,2,...Ir)

gi,t = obs genr,t ∀r ∈ R;

xi,t ≤ Ci,t ∀i; (3)

where the total generation constraint must be met within each region r, and where the total

generation constraint is defined as the region-wide observed generation in the real world in

hour t: obs gen =
∑

i∈(1,2,...Ir) g
observed
i,t . Thus the flows of generation across regions cannot be

greater in my model than whatever they were in the real market in hour t, where the latter

was a function of the (unobserved) physical grid, individual transmission line capacities, time-

varying weather shocks that impact transmission line performance, etc. In two robustness

19I use the mapping from power plants to NERC subregions available from the Environmental Protection
Agency’s eGRID database. This yields a very small number of units in ERCT, SRSO, and SRTV, three
NERC subregions that primarily do not lie in MISO or SPP (one plant in ERCT, two in SRSO, and four in
SRTV). I assign these plants to SPSO, SRMV, and RFCW, respectively, so as to not overstate how binding
transmission constraints might be to the ERCT, SRSO, and SRTV regions.

20In a small number of hours, my model predicts that too little capacity is available in some regions. This
is because of the outage patterns I impose. In these hours, I force all units to operate slightly above their
capacity. This changes generation by more than 10 MWh for fewer than 0.1 percent of observations.
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Figure 1: Example Marginal Cost Curves, With and Without
Transmission Constraints and Wind Curtailments

Note: This figure shows two constructed marginal cost curves for a repre-
sentative hour in 2022. The grey line shows the marginal cost curve for
least-cost dispatch, with no restrictions on electricity flows across space,
and with the dispatch of wind that was, in practice, curtailed that hour.
In contrast, the black line constrains quantities generated within a NERC
subregion to the quantity observed in the actual data (to approximate trans-
mission constraints), and curtails wind generation at the level observed in
the actual data. Zero marginal cost resources are largely wind, but also
include hydro and solar generation. Nuclear generation is assumed to have
a marginal cost of $15/MWh. The remaining units are powered by coal
and natural gas, with differences in marginal cost reflecting differences in
heat rates and fuel type. The date and hour displayed are chosen because
they have fuel costs, quantity demanded, and quantity curtailed close to the
sample average for 2022. Additional date-hour combinations (with alterna-
tive fuel costs, quantity demanded, and quantity curtailed) are shown in the
Appendix.
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checks, I maintain this methodology but vary the geographical boundaries of the regions.

This counterfactual also assumes that wind generation is curtailed because of transmission

constraints, following what I see in the real world. Whereas the first counterfactual constructs

wind capacity as equal to observed generation in each hour plus observed quantity curtailed

in each hour, this second counterfactual constructs wind capacity as equal to only observed

generation in each hour.

Ideally, one would model the actual topology of transmission constraints, but that is

not feasible here for several reasons. Accurate modeling of the transmission network would

require knowing the physical topology of the grid, including not only line locations but also

line ratings (the capacity of each line); detailed information on this topology is not publicly

available. Furthermore, modeling the flow of electrons across this network is complicated.

One should not picture something like a pipeline network for natural gas or water, in which

one would simply need to observe quantities flowing in and out of the pipelines. Instead,

electron flow across a network is governed by complex laws of physics (Joskow, 2012; Boren-

sten, Bushnell and Mansur, 2023). Moreover, congestion is constantly changing – both in

where it impacts the grid and in how binding it is – as demand, generation, and weather

change; and the inputs to this complex process are not all observable.

Many existing papers on transmission study simple two-node problems; California and

Chile each predominantly have a North-South transmission constraint, and pre-CREZ Texas

had a West-East constraint. In contrast, my setting features a complex set of interregional

constraints. As such, my reduced form model can provide a reasonable approximation that

uses publicly available data, that can be calculated for multiple regions in every hour using

observable data, and that is computationally not too burdensome.

The market-wide marginal cost curve for this second counterfactual is shown with the

black line in Figure 1. Zero-cost generation shifts inward, by the quantity curtailed. Nu-

clear units are unaffected, by construction.21 Also, some higher-cost thermal units must be

dispatched because of the regional transmission constraints.

4.3 Calculating Allocative Inefficiencies

The wedge between the black and gray lines in Figure 1 represents the additional costs

required to generate electricity that are induced by regional transmission constraints and

the need to curtail wind. By calculating the area between the two curves in each hour, I can

construct a time series of the allocative inefficiencies induced by transmission constraints

21As described above, it is technologically difficult and expensive to ramp nuclear units up and down;
as a result, nuclear units are very rarely curtailed. They are occasionally forced to limit their generation
because of safety concerns, which I do not model as part of this counterfactual.
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Figure 2: Additional Generation Costs From Transmission Con-
straints and Wind Curtailments

Note: This figure shows the monthly generation costs in MISO and SPP that
arise from transmission constraints and renewables curtailments. Transmis-
sion constraints are modeled at the NERC subregion level and so do not in-
clude within-subregion transmission constraints. Costs are rising over time
from a combination of increasing natural gas prices and increase curtail-
ments. Robustness checks are shown in the Appendix. Additional time
series, holding various factors constant, are also shown in the Appendix.

and wind curtailments. That is, for each hour t I calculate
∑

i mci,tg
†
i,t −

∑
imci,tg

∗
i,t, where

g†i,t are equilibrium quantities from equation (3), and g∗i,t are equilibrium quantities from

equation (2).

Figure 2 shows this time series, aggregated to the monthly level. I focus on 2020 through

2022, the period for which wind curtailments data are available from MISO; a time series

with inferred wind curtailments for 2016-2020 is shown in the Appendix.

Figure 2 shows that transmission and curtailment-related allocative inefficiencies have

been rising over time for the MISO and SPP markets. This is a combination of increasing

curtailments and increasing natural gas prices, as detailed below. By the 2022, the average

monthly allocative inefficiencies total $180 million, translating to more than $2 billion for

2022. Table 1 shows an annual summary of the allocative inefficiency.

For the sample as a whole, annual allocative inefficiencies total $0.7 to $0.8 billion dollars

(the range comes from what one assumes about MISO wind curtailments for the 2016-2019

period). However, this average masks a large difference between the 2016-2020 period – with

an annual average of $0.3 to $0.4 billion dollars – and the 2021-2022 period – with annual
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Table 1: Annual Allocative Inefficiencies

Annual cost,
billion dollars 2016-2020 2021 2022

Total 0.32 to 0.43 0.98 2.16

Across-ISO constraints 0.03 0.10 0.21
Within-ISO constraints 0.25 0.57 1.31
Curtailments 0.03 to 0.14 0.31 0.64

Within-SPP constraints 0.08 0.12 0.19
Within-MISO constraints 0.18 0.45 1.12

Note: This table shows the average annual generation costs in MISO and SPP stem-
ming from transmission constraints and renewables curtailments. Matching Figure 2,
the table shows the increase after 2021 in these costs. The next three rows decompose
the 2022 cost into three factors: renewables curtailments, transmission constraints be-
tween MISO and SPP, and transmission constraints across NERC sub-regions within
MISO and SPP. The bottom two rows separate within-ISO constraints into those within
MISO and those within SPP.

inefficiencies of $0.98 billion in 2021 and $2.16 billion in 2022.

This stark difference in 2022 costs is primarily the result of increasing curtailments and

increasing natural gas costs, as I show in two different ways. First, I regress the hourly

inefficiency, i.e. additional cost c, on total demand d across the two ISOs, potential wind

generation w, and fuel prices (natural gas n and oil o), with a log/log specification:

ln ct = β1 ln dt + β2 lnwt + β3 lnnt + β4 ln ot +XtΘ+ εt (4)

Following the literature, I include controls X for weather (heating and cooling degree days),

and various time effects (month of sample, day of week, hour of day). Note that coal prices

are measured at the monthly level and are thus subsumed by the month of sample effects.

Table 2 shows the results; alternative specifications are shown in the Appendix.

Not surprisingly, the wedge is larger when demand is higher; the wedge is also larger when

natural gas prices are higher.22 Perhaps most of interest, the wedge increases with potential

wind generation – as wind capacity has entered the market, it has led to an increase in

allocative inefficiencies induced by transmission constraints. Interpretation of this coefficient

is important: wind generation of course lowers the marginal cost of producing electricity

(see Figure 1), but it lowers it by less than it would if the grid were fully integrated, so

the allocative inefficiencies are increased. The implication is not that wind is not good for

lowering costs, but rather than transmission is a complement to wind in this market.

22Oil generation is very small, so oil prices do not materially impact the wedge. Coal prices are subsumed
by month of sample effects. In any case, coal prices are very stable over this time period and not likely to
contribute to changes in the wedge over the sample.
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Table 2: Allocative Inefficiencies Increase as Wind Curtailments Increase

(1) (2)

Demand 2.13*** 2.13***
(0.11) (0.10)

Natural gas price 1.26*** 1.28***
(0.10) (0.09)

Oil price 0.02 0.09
(0.16) (0.10)

Wind generation + curtailments 0.17***
(0.02)

Wind generation -0.16***
(0.01)

Wind curtailments 0.27***
(0.01)

Observations 61,242 61,008
R2 0.73 0.80

Note: The unit of observation is an hour. The dependent
variable is the log of the hourly allocative inefficiency in-
duced by transmission congestion. The independent vari-
ables of interest are total demand, total wind potential
(generation plus curtailments), and fuel prices. Additional
controls are heating and cooling degree days and time ef-
fects (month of sample, day of week, hour of day). Stan-
dard errors are clustered by sample month and by sample
week.

To expand on this point, Column 2 of Table 2 breaks total wind out into two variables:

generation that actually “made it to market,” and wind that was curtailed. This regression

should be interpreted with some caution, as curtailments are endogenous to other system

conditions. Nonetheless, to the extent they are induced by physical constraints on the system,

then they be thought of as quasi-exogenous. The positive coefficient on wind comes entirely

from curtailments – if these could be eliminated, wind would not contribute to allocative

inefficiencies. Indeed, we see a negative coefficient on wind generation that did make it to

market.

As another way to decompose the source of the increase in allocative inefficiencies over

time, the Appendix shows the time series of the inefficiency holding various natural gas prices

and/or curtailments constant. It shows that the increase in inefficiencies in 2022 is a result

of both rising natural gas prices and rising curtailments, with more of the effect coming from

natural gas price changes.

The increase over time points to important policy implications. First, it is clear why

some policymakers and grid observers have been increasingly calling for new transmission

infrastructure in recent years. The transmission network until recently basically did what it

needed to – connecting thermal power plants to load in population centers. But in a world
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with increasing quantities of renewable generation, the existing network doesn’t match the

spatial distribution of generation.

Second, low natural gas prices in recent decades had flattened the market-wide marginal

cost curve for electricity. But with natural gas prices surging up, the marginal cost curve has

rotated, and dispatching the “wrong” unit – because of something like a regional transmission

constraint – has gotten much more expensive.

Returning to Table 1, I show various decompositions of the inefficiencies within a given

time period. Rows 2 and 3 show that the largest source of the 2022 inefficiencies was within-

ISO constraints ($1.31 billion), whereas across-ISO constraints totaled only $0.21 billion.

The second largest source of inefficiencies was curtailments ($0.64 billion, row 4). With

wind facing a marginal cost of essentially zero, curtailing it and having to dispatch a fossil

unit can significantly raise the costs of dispatch.

Moreover, the within-ISO constraints are largely coming from MISO rather than SPP

(rows 5 and 6). This is in part simply due to the fact that MISO is larger, with more than

double the hourly generation of SPP. However, it is also notable how much more within-

MISO constraints have risen over time, relative to SPP; this is in part due to MISO’s larger

quantity of natural gas generation (nearly triple that of SPP’s), combined with rising natural

gas prices nationwide. I next turn to descriptive evidence of the sources of these transmission

constraints.

4.4 Sources of Transmission Constraints

Section 4.3 shows that total generation costs can increase substantially if generation is re-

gionally constrained. Specifically, in 2022, across-ISO and within-ISO regional constraints

together added $1.52 billion in generation costs for fossil units. Of this, the single largest

source is within-MISO constraints ($1.12 billion). To better understand these constraints, I

next turn to evidence on observed generator dispatch.

Specifically, I use the CEMS data on hourly generation for each fossil generating unit in

MISO and SPP, and I run “horse race” regressions on the observed load in different regions.

These regressions are designed to answer the question: to which load (demand) is gener-

ator dispatch most likely to respond? If the electrical grid were physically unconstrained,

generators would be expected to respond equally to a demand shock in any location. If we

observe that generators are more often dispatched in response to a demand shock in their

own region, that suggests that the electrical grid is constrained in some way.23

23One could imagine instead regressing generation at each power plant on prices across regions; but this
is not identified because of reverse causality. When plants are able to generate, prices will be lower, but what
one wants to estimate is whether, when prices are higher, generators respond by increasing production. One
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I primarily rely on one identifying assumption: I must assume that demand shocks are

exogenous. This assumption is made in most papers on electricity economics that use hourly

generation – the majority of consumers do not face real-time prices, and so are not incen-

tivized to respond to hourly shocks to supply.

I run a separate regression for each power plant, as follows:

gi,t = β1dSPP,t + β2dMISO,t + β3dEI,t +XtΘ+ εi,t (5)

where generation g at power plant i in hour t is a function of demand d in hour t in SPP,

MISO, and the Eastern Interconnection. The U.S. electricity grid is divided into three

interconnections, with very limited (nearly zero) flows across interconnections. MISO and

SPP are both located in the Eastern Interconnection, so I control for demand in the rest of

that interconnection (after subtracting MISO and SPP demand).

Under the assumption that demand is exogenous, additional control variables may not be

needed for estimating equation (5). Nonetheless, I follow the literature in including controls

X for fuel prices (natural gas, coal, and oil), weather (ambient temperature), a time trend,

month-of-year effects, day-of-week effects, and hour-of-day effects. These controls may be

useful for accounting for things like maintenance outages, planned for specific months of the

year, which are correlated with demand. Additionally, the controls may help with precision.

In the Appendix, I show results without controls.

I estimate equation 5 separately for each of the roughly 400 fossil plants in my CEMS

sample,24 with each regression using hourly data covering the 2016-2022 period.25 I then

collect the estimated β̂ coefficients, and I examine whether β̂SPP or β̂MISO is larger for each

power plant. That is, is each power plant dispatched more in response to demand in its own

ISO or in the neighboring ISO.

Figure 3 maps the location of each power plant, with separate markers to show whether

the plant is dispatched at higher levels of generation more in response to SPP load (grey

circles) or to MISO load (orange squares). The response matches the footprint of each ISO,

with Western generators being dispatched in response to SPP load and Eastern generators in

response to MISO load. It is worth noting that the MISO service territory extends northwest

could estimate this with some shifter of prices – for instance, hourly demand in each region. Essentially, I
am estimating the reduced form version of such a 2SLS specification.

24For statistical power, I collapse to the plant level, rather than the unit level. Also, I drop a small
number of plants that generate very infrequently; specifically, I keep only units with at least 336 non-zero
generation hours, equivalent to two weeks over my seven-year sample.

25The primary sample for equation 5 drops a two week period in February 2021, when Winter Storm Uri
disrupted energy markets in Oklahoma and Texas. During that period, natural gas prices spiked from around
$4/mmBtu to more than $25/mmBtu (leading to outliers in my control variables), and some generators were
forced to shut down because of weather. In the Appendix, I show results that include this period.
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Figure 3: Power Plants Are Dispatched For Own-ISO Load

Note: This figure shows whether power plants are dispatched at higher levels of generation in response to
SPP load (black circles) or in response to MISO load (orange squares). The response generally matches
the footprint of ISOs, with generators in states such as Nebraska responding to variation in SPP load, and
generators in states like Illinois responding to variation in MISO load. Horse-race regressions are used to
determine to which ISO’s load the generator is dispatched, following equation (5) in the main text.

into North Dakota and Montana; the SPP and MISO footprints are intermingled in those

states.

Appendix Table A3 shows that 91 percent of SPP plants have β̂SPP > β̂MISO and 84

percent of MISO plants have β̂SPP < β̂MISO – the large majority of power plants are dis-

patched more in response to load within their own region. The remaining 9-16 percent of

power plants that respond to other ISO load tend to have results estimated with less pre-

cision. The Appendix shows a map comparable to Figure 3 but where markers are sized

according to the t-stat on the difference in the two coefficients. That map shows that power

plants responding to the “wrong” ISO tend to have smaller t-stats, reflecting either a smaller

difference in the two point estimates or more noise in the estimation. The Appendix also

shows that the 84 to 91 percent numbers are similar for alternative horse race specifications

and various weighting schemes.

I next extend the horse race regressions to examine the possibility of within-ISO con-

straints. Specifically, I break out demand into three regional variables – North, Central, and

South – for each ISO. For power reasons, I do not include all six regional load variables in

the horse race regression; rather, I include the three regional demand variables for a power

plant’s own ISO, plus total demand in the other ISO, and total demand in the rest of the
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Figure 4: Some Power Plants Are Dispatched More For Own-Region Load

Note: This figure shows whether power plants are dispatched at higher levels of generation in response to
Northern (black X), Central (orange square), or Southern (grey circle) regional load within their own ISO.
Within SPP (left panel), no clear pattern is detectable. In contrast, MISO generators (right panel) appear
to respond more to nearby load than to far-away load.

Eastern Interconnection. For a SPP-located unit, for instance, the regression is:

gi,t = β1dNorthSPP,t + β2dCentralSPP,t + β3dSouthSPP,t + β4dMISO,t + β5dEI,t +XtΘ+ εi,t (6)

Figure 3 displays whether each fossil power plant responds more to Northern (black X),

Central (orange square), or Southern (grey circle) regional load within their own ISO. For

SPP, the pattern is only weakly detectable. This is consistent with the results in Table

1, which showed that within-SPP constraints contribute very little to the annual allocative

inefficiencies. In contrast, a clear pattern emerges within MISO, where power plants in the

north (e.g. North Dakota) tend to be dispatched in response to shocks to northern load;

plants in places like Illinois tend to be dispatched in response to central load, and plants

in Louisiana in response to southern load. This is consistent with transmission constraints

tending to bind within MISO, and can explain why the within-MISO allocative inefficiencies

are a large contributor in Table 1.

Overall, these horse race regressions are useful for several reasons. First, they are a new

way of demonstrating the role of grid constraints across space. In doing so, they provide

additional empirical support for the argument that eliminating transmission constraints could

improve grid outcomes by allowing power plants to respond to demand shocks in far-away

regions. Second, they confirm what Table 1 shows: within-ISO constraints are important,

not only across-ISO constraints, and this is particularly true within MISO. Finally, it is
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especially reassuring that the stories that emerge from Figures 3 and 4 closely match the

overall story of Table 1, because the methodologies I use are very different. The maps rely on

hourly horse race regressions that are agnostic about the regional location of individual power

plants and instead leverage hour-to-hour variation in demand across space. The allocative

inefficiencies results in contrast rely on a constructed market equilibrium based on marginal

costs and on NERC-defined geographic regions. Yet the two methods tell the same story

about the importance and rough location of geographic constraints across and within ISOs.

5 Political Economy Implications: Some Producers Gain

and Some Lose

I have thus far shown that power plant dispatch in the Midwestern U.S. is more costly than

it would be in a world without curtailments and without transmission constraints. This is in

line with evidence from other regions, including Texas and Chile (LaRiviere and Lyu, 2022;

Gonzales, Ito and Reguant, Forthcoming). I have also shown that the magnitude of the

resulting inefficiency has grown over time, becoming more policy-relevant with increasing

curtailments and increasing fuel prices. I next turn to analysis of how eliminating curtail-

ments and transmission constraints might affect individual power plants and their owners.

In particular, I calculate operating profits for each power plant under a least-cost dispatch

scenario versus a transmission-constrained and wind-curtailed scenario.

The literature to date on transmission constraints and renewables integration has focused

on total allocative inefficiencies – the importance for society of reducing generation costs is

clear. However, the literature has largely ignored the role of producer surplus at individ-

ual plants or individual firms. Yet understanding the impacts of better grid integration

on individual firms is also crucial for policy analysis. Transmission planning is largely a

consensus-based process, with opportunities for actors to hold up new transmission develop-

ment throughout the transmission planning process (Davis, Hausman and Rose, 2023). For

political economy reasons, then, it is important to understand the incentives of firms to push

for or to block new transmission lines.

The counterfactuals described in Sections 4.1 and 4.2 yield predicted quantities generated

at each power plant. I can also use those counterfactuals to calculate the equilibrium price,

equal to the marginal cost of the marginal generating unit. I then calculate operating profits

as the revenues minus variable costs; this static analysis ignores fixed costs (equivalently, I

assume that fixed costs are equal across my two counterfactuals). For each generating unit,

I calculate operating profits in each of my sample hours. I then aggregate across generating
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units to the power plant level.

5.1 Incentives to Block Transmission Increase as Renewables En-

ter

As shown in Section 4.3, the allocative inefficiencies from inadequate transmission have been

rising over time, in part as a function of increasing curtailments of renewables. Relatedly,

the incentives for incumbents to block new transmission lines are also increasing as new

renewables enter. Integrating the market implies that those low-cost renewables can be

exported to other regions, which can both displace fossil generation and also lower market

prices for the remaining fossil generation.

To understand the magnitudes of this, I focus on MISO South, a region with no wind

generation. I regress operating profits at the hourly level (for all of MISO South genera-

tors aggregated) on the quantity of wind available across the MISO and SPP footprints.

“Available wind generation” is the sum of wind generation that actually occurred and wind

generation that was curtailed. I estimate three regressions, each with a different dependent

variable: (1) operating profits in the transmission-constrained counterfactual; (2) operating

profits in the integrated market counterfactual; and (3) the change in operating profits a

firm experiences when the market moves from constrained to integrated.

This regression has a causal interpretation provided that total wind availability is a

function of exogenous weather, and that weather does not impact dispatch and profits except

via its impact on wind. There are two things to note about this. First, the regression takes

wind generation as given, and as such it ignores the dynamic effects of transmission on wind

capacity. I comment more on this below.

Second, because the regression is causal only if wind generation is uncorrelated with the

error term, I must control for other impacts of weather on the grid, most notably total

quantity demanded. I also control for other determinants of generator dispatch and prices:

fuel prices and various time effects (month of year, day of week, hour of day). Table 3 shows

the results.

Column 1 shows that as wind enters the market, profits at conventional generators in

MISO South drop - for every 1 GWh of additional wind, profits at all fossil and nuclear

plants combined drop by $1,200. To put this magnitude in perspective, as hourly wind

(both generation and curtailments) increased from 10.9 GWh in 2016 to 25.9 GWh in 2022,

the coefficient would imply that hourly profits in this region dropped by a bit less than one

percent. However, had the market been integrated, that same increase in wind would have

implied a drop in hourly profits of $4,800 (Column 2). As wind has entered SPP and MISO
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Table 3: Incentives for Conventional Generators in MISO South to Block Transmission
Increase as Renewables Enter

(1) (2) (3)
Profits,

transmission-constrained
Profits,

integrated market
Change in profits
from integration

Wind generation available, GWh -1,214*** -4,825*** -3,612***
(233) (303) (304)

Observations 61,292 61,284 61,280
R2 0.62 0.78 0.23

Note: The unit of observation is an hour. The independent variable is the total amount of wind available
across MISO and SPP, summing across actual wind generation and curtailed wind generation, in GWh.
The dependent variable is operating profits, measured in dollars in an hour, aggregated across all conven-
tional and nuclear plants in MISO South, a region without wind generation. Standard errors are clustered
by sample week.

North/Central, the losses from integration for MISO South generators have substantially

increased.

It is important to recall that Column 3 of Table 3 understates the incentives for con-

ventional generators to block transmission, because it does not capture the effect of new

transmission on wind investment. That is, Table 3 takes wind availability as exogenous –

but new transmission can incentivize new renewables development, as shown by Gonzales,

Ito and Reguant (Forthcoming).

Of course, operating profits increase at wind generators as they are able to enter the

marketplace and as they are able to export to non-windy regions (see Appendix). The

political economy and regulatory questions, then, regard whether new entrants have an

equal voice in the negotiation process for new transmission lines, an issue I return to below.

5.2 Winners and Losers Are Located in Different Places

Figure 5 displays the location of each fossil, nuclear, and wind power plant in SPP and

MISO, along with how profits compare under my two counterfactuals. Specifically, I calculate

whether operating profits would rise or fall with transmission constraints and curtailments

were eliminated. The plants that would lose the most (at least $10 million in 2022) from

eliminating transmission constraints and curtailments are shown in large red circles (a drop

in operating profits of at least $20 million) or orange circles (a drop between $10 and $20

million); the plants that would gain the most are shown with large green squares. Plants

that are less affected are shown with smaller markers.

Consistent with Table 1 and Figures 3 and 4, there is a pronounced regional pattern.
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Figure 5: Power Plants That Gain Versus Lose Are Lo-
cated in Different Places

Note: This figure shows whether individual power plants would
win or lose if transmission across regions were increased and wind
fully dispatched, rather than curtailed. Plants losing more than
10 million dollars per year, based on 2022 counterfactuals, are
displayed in large red circles (a drop in operating profits of at
least $20 million) or orange circles (a drop between $10 and $20
million). Plants with a drop in operating profits of less than 10
million dollars are in small gold circles. Plants with operating
profit gains of at least 10 million dollars are in large dark green
squares (gains greater than $20 million) or light green squares
(gains between $10 and $20 million), and plants with smaller
profit gains in small blue squares.
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Plants in northern and central MISO and southwestern SPP stand to gain the most, and

plants in southern MISO to lose the most. This regional pattern has political economy

implications. Generation firms operating in southern MISO have no incentive to develop

new transmission lines that better integrate their power plants with the rest of the SPP and

MISO footprints. In fact, these firms have strong financial incentives to block new lines –

an incentive that has grown as wind has entered SPP and the rest of MISO.

The magnitude of the political economy problem is striking. The four firms that stand

to lose the most collectively would have experienced a combined drop in operating profits of

$1.6 billion in 2022 alone, had the market been fully integrated and wind not curtailed. This

is equal to three quarters of the total allocative inefficiencies for 2022. In other years, the

profit drop for the four most affected firms would have been smaller in level terms, but it

would still have been comparable in magnitude to the allocative inefficiencies in each year.26

Thus while the literature to date has focused on allocative inefficiencies, I argue that the

magnitude of potentials gains and losses at individual firms is just as important.

I can also calculate which firms stand to win from better integration, I find that they are

primarily located in states like Iowa, Illinois, and Missouri.27 Here, the four firms that stand

to gain the most collectively would have seen operating profits of around $1.0 billion more

in 2022.

Wind generators as a group would have earned around $0.8 billion more in 2022 under

market integration. In Figure 5, they mostly appear as light blue squares: they individually

gain, but the dollar values at any one site are relatively small simply because each plant has

small capacity. Collectively, it is clear that their incentives run counter to those of incumbent

fossil producers in the midwestern U.S. Unfortunately, I do not observe full ownership data

for the wind producers, so I cannot say precisely how large the losses would be at individual

firms. The $0.8 billion that I estimate they would gain is spread out across hundreds of wind

sites. Taking the ownership data at face value, there are more than 300 utilities with wind

generation in my sample – and thus the magnitude of gains to any single firm is small.

26While I have primarily focused on fossil power plants, these calculations also include operating profit
changes at these firms’ nuclear plants. Nuclear plants are assumed to be baseload in my simulations, so
relieving transmission constraints and removing curtailments does not change their quantity generated (and
therefore the behavior of nuclear plants is not a source of allocative inefficiencies). It does, however, change
the revenue received at these plants. Some of these four have sizeable nuclear capacity, although it is smaller
than their fossil capacity.

27Again, I include non-fossil generation, and some of these firms have nuclear and/or wind capacity.
Unfortunately, I do not observe wind generation disaggregated to individual locations; nor do I observe wind
curtailments disaggregated across space. I allocate hourly regional (that is, SPP plus three broad regions
within MISO) wind generation to individual firms based off annual totals reported in EIA-923, and I allocate
curtailments based off ISO-level totals, the finest level of disaggregation I have. As discussed below, there
are limitations in the wind ownership data: I do not observe parent firms; the calculations here ignore the
possibility of subsidiaries and take at face value the ownership reported in EIA data.
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Importantly, though, my ownership data does not track parent firms of subsidiaries, a

problem that is particularly acute for wind producers. To see this, note that 69 percent

of the wind owners in my data have a name that includes the suffix “LLC,” whereas the

comparable statistic for fossil owners is 17 percent. As another point of comparison, consider

the case of NextEra, one of the largest wind owners in the country. Comparing the generation

and capacity totals that NextEra reports on their website to national wind totals, we see

that NextEra owns around 15 percent of all US wind – and according to their map, a

large fraction of their footprint is in MISO and SPP.28 However in my data, their name

only appears for around one percent of wind plants; the rest of their wind holdings are in

LLCs, such as “Brady Wind, LLC.” I am not aware of any comprehensive listing tying the

many wind LLCs in MISO and SPP to their ultimate parent firm. Below, I discuss the

political economy implications of wind’s potential gains from new transmission in light of

these ownership patterns.

The other agents in the economy that matter here are of course electricity consumers.

These consumers range from individual households to commercial and large industrial estab-

lishments. I have not presented consumer surplus estimates, as I do not know the physical

location of different consumers (which would be needed to calculate the equilibrium price

they face in different scenarios). However, at the broad regional level, it is clear that con-

sumers in, for instance, northern MISO would lose from integration as their prices would

rise, and consumers in southern MISO would gain as their prices fell.

One caveat to bear in mind when analyzing Figure 5 (and the statistics in this section)

is that the counterfactual operating profits at individual power plants will depend on the

specifics of the dispatch model used, as well as the grid conditions (e.g. demand levels and

fuel prices). Below, I conduct a variety of robustness checks. The specific dollar amounts

vary across alternative counterfactual construction and across years. But below I show that

the main takeaways for political economy purposes – the order of magnitude of operating

profits changes in comparison to total allocative inefficiencies, as well as the geographic

location of the firms – is quite stable.

An additional caveat is that I have not modeled the full scope of vertically integrated

utilities – such as their retailing, distribution, and transmission arms. Nor have I modeled the

return on capital at investor-owned utilities; doing so would require modeling the complex

regulatory interactions between utilities and the state-level commissions that regulate them,

as in, for instance, Lim and Yurukoglu (2018). The standard incentives to capture operating

28NextEra generation and capacity for 2020 are taken from https://www.nexteraenergy.com/

sustainability/overview/about-this-report/by-the-numbers.html, accessed December 12 2023. Na-
tional generation is taken from https://www.eia.gov/electricity/data/browser and capacity from
https://windexchange.energy.gov/maps-data/321, each accessed December 12 2023.
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profits at these utilities may be dampened because of regulatory constraints, although in

that case the incentives to have power plants dispatched a large portion of the year to still

appear “used and useful” are likely to still be large.29

5.3 Case Study: MISO South

The fact that the two generating firms standing to lose the most from grid integration in

2022 are in MISO South is not surprising – this area has long been known as a pocket with

inadequate transmission ties to the rest of MISO. (Bear in mind that conversely, MISO South

consumers would gain from integration, as they would see lower prices.)

These two MISO South firms are Entergy Arkansas and Entergy Louisiana, both sub-

sidiaries of Entergy, with my model showing integration leading to a combined $930 million

drop in operating profits in 2022. The history of the interactions between Entergy and MISO

regarding transmission planning are particularly illuminating here. Entergy has a market

value of over $20 billion and has generation, transmission, distribution and retailing divi-

sions across much of MISO South (including Arkansas, Louisiana, Mississippi, and Texas).30

Most relevant, for more than a decade it has faced allegations of using both its own trans-

mission system and the transmission planning process in MISO to prevent competition for

its generation business.

Indeed, Entergy joined MISO in 2012 following a Department of Justice investigation

into “allegations that Entergy has engaged in exclusionary conduct in its four-state utility

service area... Specifically, the division has been exploring whether Entergy has harmed

consumers by exercising its control over its transmission system and dominant fleet of gas-

fired power plants to exclude rival operators of low-cost combined-cycle gas turbine (CCGT)

power plants from competing to sell long-term power. In particular, the division has been

evaluating whether Entergy’s practices have effectively foreclosed these more efficient rivals

from obtaining long-term firm transmission service, a necessary input for selling long-term

power products to wholesale customers in the Entergy service area. As part of the conduct

investigation, the division has also been reviewing the competitive impact of, and circum-

stances surrounding, Entergy’s serial acquisition of rivals’ CCGT power plants” (Department

of Justice, 2012). Entergy joined MISO and sold off transmission assets, but has since been

accused of stalling the MISO transmission process, again to protect its fossil plants.

The recent accusations against Entergy are instructive. First, watchdog groups and

29When assets like power plants are not “used and useful,” regulatory commissions may disallow returns
for investors.

30Market value is as of March 2023; source is https://cdn.entergy.com/userfiles/content/about_
entergy/pdfs/Entergy-fact-sheet.pdf, accessed December 18 2023.
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green advocates have said that Entergy tries to throw wrenches in the transmission planning

process (Tomich, 2021); this is exactly what one might predict in a planning process where

incumbent generators have a seat at the table (Davis, Hausman and Rose, 2023). Relatedly,

one group has claimed that “Entergy secretly placed a consultant to advance its interests

in MISO stakeholder meetings under the guise of a ‘MISO South customer’;” the watchdog

group argues this may have been part of an attempt to prevent integration of wind generation

by competitors (RTO Insider, 2020). Finally, twice Entergy has built new fossil plants in

an apparent move to forestall new transmission lines (Kovvali and Macey, 2023; Howland,

2023).

One caveat is that some of the most vocal opponents of Entergy have been renewable

energy stakeholders, who may stand the most to gain from grid integration. Industry reports

cite the Southern Renewable Energy Association as stating “Entergy appears to be using

an anti-competitive strategy of capturing, delaying, and/or canceling transmission projects

with local generation assets at significant cost to local ratepayers, while at the same time,

not resolving underlying load pocket problems” (Howland, 2023). One might decide to take

the accusations against Entergy with a grain of salt given the incentives of renewable energy

stakeholders. On the other hand, it may be that in this case the incentives of renewable

developers better match what would be optimal for society.

A related question is how the potential winners from grid integration behave in the trans-

mission planning process, and whether they are incentivized to and capable of pushing for

the build-out of new interregional lines. Recall that the primary winners are existing wind

generators that would be curtailed less and would see higher wholesale prices, new wind en-

trants, and the consumers in load pockets who would see lower prices. The anecdotes above

suggest that renewables are collectively pushing for new transmission projects. However,

renewables firms and consumer advocates face two potential barriers: first, legal analysts

have argued that the transmission planning process favors incumbent producers and disad-

vantages ratepayers, and it is possible that potential losers are more effective at lobbying

than potential winners.31 Klass et al. (2022) in particular argue that regional transmission

organizations (RTOs) favor incumbent interests in a variety of ways: a result of the fact that

RTOs are voluntary, so incumbents can threaten exit, and the fact that large utilities tend

to have the most voting authority (rather than state governments, consumer advocates, or

31For instance, Meng and Rode (2019) find “that firms that are expected to lose [from cap and trade] are
more effective at lobbying to lower the policy’s chances than firms that are expected to gain are at lobbying
to raise the policy’s chances. Separately, Colgan, Green and Hale (2021) argue that “policymakers are loath
to harm important economic assets even if asset holders do not proactively defend them.” It is plausible
that this would be asymmetric in the sense that it would not show up as an equal desire to protect e.g. new
entrants.
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other interested parties).

Overall, I argue that understanding the political economy of new transmission lines is just

as important as understanding the potential gains in allocative efficiency. There are many

tactics an incumbent firm might use to protect its generation assets, as the MISO South

case studies show, and the financial incentives to do so can be tremendous. Ultimately these

incentives depend on the mix of generation, transmission, distribution, and retailing that a

firm owns and operates – a utility that is a net purchaser of generation and primarily engages

in distribution and retailing may have an incentive to seek out low-cost generation. It also

depends on whether the utility is price-regulated, and if so, what relationship it has with a

utilities commission. And I am aware of no reports like those regarding Entergy that have

emerged for other utilities in my sample whose generation assets would be worth less under

a more integrated grid. Nonetheless, the results in this section suggest that the current

planning process is problematic given the fact that market integration is expected to bring

very large losses to some incumbents.

6 Robustness Checks

In this section I evaluate whether the results above are similar under alternative assump-

tions about market equilibria. In particular, I allow for changes in: the definition of regional

transmission constraints; the sample composition; the capacity of the generating units; the

marginal cost of the generating units; the inclusion of engineering constraints; and the defi-

nition of the equilibrium price. I also look at what might happen in a future with more wind

capacity. For each robustness check, I re-construct the market equilibria in every hour. In

this section, I show that the reported annual allocative inefficiencies are comparable across

all the robustness checks. I also show that across these robustness checks, gains and losses

at individual firms are large.

6.1 Alternative Assumptions Used for Robustness Checks

I begin by describing why each robustness check is useful. First, and most importantly,

I construct two alternative definitions of regional transmission constraints. My primary

specification uses NERC subregions (map in Appendix). In the first robustness check, I

use a much more conservative definition: I construct simply three regions: SPP, MISO

North/Central, and MISO South. I use these three because they are readily apparent in

the horse race regressions, above, as sources of congestion. This robustness check thus

serves as useful lower bound: it does not include constraints within SPP, or between North
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and Central MISO, for instance – it uses a more conservative assumption on the scope of

subregional constraints.

I also allow for smaller regions to define the transmission constraints: rather than using

NERC subregions, I use zones from the National Renewable Energy Laboratory’s ReEDS

model (Cole et al., 2021). There are typically 1 to 6 zones per state in the ReEDS model

(map in Appendix). The advantage of using these zones is that it allows me to pick up more

localized transmission constraints than when I use NERC subregions. The disadvantage

is that I may falsely attribute to transmission constraints other deviations from least-cost

dispatch observed in the real world (e.g., an unexpected plant outage) that impact the overall

generation in a ReEDS zone. (In contrast, when regional definitions are very broad, these

deviations across space are more likely to be averaged out across plants, thus not impacting

the overall generation in the region.)

Second, I change the sample composition by allowing units like combined heat and power

units and industrial generators to participate in the market. In the main results, I follow the

literature in assuming that the behavior of these units is driven by other considerations (for

instance, the need to have steam for industrial processing), not by marginal revenue from

the wholesale electricity market. I thus drop them from the sample of interest. However, in

this robustness check, I include these units, constructing marginal cost curves as a function

of heat rates, fuel prices, and O&M costs (just as I do for the main sample) and including

these units in my least-cost dispatch algorithm.

Third, I change the capacity and marginal cost of each generating unit by assuming that

the unit’s capacity is equal to the sample-wide maximum observed generation, rather than

the yearly maximum observed generation. I similarly calculate the heat rate of each unit to

be equal to the sample-side heat rate, rather than the annual heat rate. This robustness check

has the disadvantage of assuming that a unit with a capacity expansion partway through

the sample was able to generate at that higher level throughout my sample. However, it has

the advantage of capturing a higher capacity for units that operate very infrequently and

may not have reached maximum capacity in any given year. My fourth robustness check

also modifies maximum capacity: I partially derate capacity uniformly at all units, rather

than stochastically applying outages.

Fifth, I modify marginal costs in several ways. In my main sample, I use sample-wide

average markups to construct generator fuel costs. For natural gas, this markup does not

vary much over time. However, the oil markup was higher in 2022, and so in this robustness

check I use the 2022 markup. Next, I assume alternative variable operations and maintenance

costs for combustion turbine generators; engineering sources are in disagreement about the

magnitude of these costs. In my primary specification, I assume variable O&M of around

28



$5 for combustion turbines, following Energy Information Administration (2022). In two

robustness checks, I instead use either $0 or $10, which essentially says that either none of

O&M for combustion turbines is fixed (i.e., it is all variable), or all O&M is variable, where

the bounds come from Table 8.4 of Energy Information Administration (2023).

Next, I construct robustness checks that incorporate additional engineering constraints

not included in the primary least-cost dispatch model. In the first, I assume that there are

unobservable constraints related to system-wide reliability, and that combustion turbines are

dispatched to satisfy these constraints. Accordingly, I force the region-wide generation for

combustion turbines as a whole to be equal to what I observe in the real world; similarly I

force the region-wide generation for non-CTs (boilers and combined cycle units) to be equal

to what I observe in the real world. That is, I allow least-cost dispatch within these tech-

nology groups. I include this constraint in both the integrated and transmission-constrained

counterfactuals.

Alternatively, I assume that units operating below their minimum constraint in the real

world were following some set of unobservable incentives or constraints, and I force their

generation in both of my counterfactuals to be equal to what these units generated in the

real world.

Finally, I construct equilibria prices in two alternative ways. In my main specification, I

assume that the equilibrium price is equal to the marginal cost of the marginal generating

unit.32 However some high-cost units may be dispatched because of reliability concerns or

engineering constraints; as such they might not be compensated at their marginal cost, but

rather receive payments in the ancillary services markets, or various forms of out-of-market

payments. Thus in these two robustness checks, I instead set the equilibrium price at the

marginal cost of the 95th or 99th percentile of dispatched fossil units.

6.2 Results for Robustness Checks

The annual allocative inefficiencies are remarkably similar under these alternative assump-

tions about market equilibria. In my main results, the allocative inefficiencies in 2022 add

up to $2.2 billion. In the robustness checks, the smallest value I calculate for allocative

inefficiencies is for the scenario with only three broad regions defining the transmission con-

straints: $1.5 billion. Recalling that this is a lower bound, it is remarkable that simply those

three regional constraints contribute 70% of the inefficiencies. The largest value I calculate

for allocative inefficiencies is for the scenario with transmission constraints defined at the

ReEDS-zone level: $3.9 billion. Recall that this scenario uses smaller regions, so it attributes

32Mills et al. (2021) provide empirical validation for this modeling of equilibrium prices across multiple
years and multiple markets in the U.S., including MISO and SPP.
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more of the real-world deviations from least-cost dispatch to transmission constraints, which

increases the estimated value of allocative inefficiencies.

I also calculate a high wedge for the scenario that includes combined heat and power

and industrial units ($2.4 billion); this is not surprising as this scenario includes more units

and more total generation. I calculate a lower wedge ($1.9 billion) when uniformly derating

capacity rather than applying random outages; this is because of the convexity of the supply

curve. Across the remaining robustness checks, I calculate allocative inefficiencies in 2022

ranging from $2.1 to $2.2 billion, very similar to main results. That is, the main results

are not sensitive to a variety of alternative assumptions about marginal costs, about the

behavior of combustion turbines, or about the behavior of units at or below their minimum

constraint.

Above, I report that there are multiple firms that stand to lose substantial operating

profits from integration, particularly in comparison to the allocative inefficiencies that the

literature tends to focus on. In my main model, the four firms with the most to lose from

integration would collectively have seen profits lowered by $1.6 billion in 2022. Across

robustness checks, this varies from $1.1 billion to $2.4 billion.33

Another way to evaluate the robustness of the claim that effects across firms are as

important to understand as allocative inefficiencies is to count the number of firms that

would experience a drop in operating profits equal to at least 10 percent of the society-wide

gains from removing transmission constraints. Examining all of my robustness checks across

all the years of my sample (98 different counterfactual comparisons in total), the median

number of such firms across all 98 year/robustness combinations is seven.

Results for Entergy Arkansas and Entergy Louisiana are also fairly similar for these

various robustness checks. In Section 5 above, I report that these two would have collectively

seen profits lowered by $930 million in 2022 under market integration. Across nearly every

robustness check, their combined profit changes are similar: ranging from $810 million to

$1.3 billion.

I also examine who would win and who would lose if wind generation were higher than

it is today. Without a dynamic entry model, I cannot predict where new wind would enter

(as I discuss more below). However, I can assume that wind expands capacity in the same

places as existing capacity, and examine how this changes the patterns and magnitudes of

wins and losses for incumbents. When I increase wind capacity (by either 10 percent or 100

percent, allocated to the same locations as existing capacity), the results for winners and

33The $1.1 billion change in profits is from the model using three broad regional definitions; the $2.4
billion is from the model using ReEDS definitions; other robustness checks yield an estimate between those
bounds.
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losers are quite similar – Entergy Arkansas and Entergy Louisiana remain the largest losers

from transmission expansion, and the magnitude of their drop in operating profits increases.

The one robustness check with somewhat qualitatively distinct results for Entergy in

2022 is the one in which combustion turbine generation is determined by reliability needs.

Here, I examine results where either (1) combustion turbines are still able to set the market-

clearing price, at their marginal cost; or (2) I assume combustion turbines are paid via other

payments, like ancillary services, and therefore do not set the market-clearing price. In the

former scenario, Entergy Arkansas and Louisiana still on net lose, but at a smaller magnitude:

combined drops in operating profits are only $120 million. This is because in this scenario,

prices are estimated to rise in MISO South. The two firms that lose the most in this scenario

are instead located in Nebraska and North Dakota, and each experiences drops in operating

profits of $300 to 400 million. In contrast, when I do not allow combustion turbines to

set the equilibrium price, the results for Entergy are very similar to the main results, with

combined drops in operating profits of $1.1 billion. These two robustness checks should be

viewed as thought exercise or bounds more than realistic scenarios – while some combustion

turbines are plausibly dispatched for reliability services, it is not the case that they all are

in all hours. And notably, while the magnitude of the Entergy losses is quite different in

one of these two checks, the primary point stands: that individual firms experience drops

in operating profits in the hundreds of millions of dollars annually, and that this is likely to

impact their incentives to block new lines.

Overall, my main results follow the literature in terms of assumptions about marginal

cost, capacity, equilibrium prices, etc. When I use alternative assumptions for various aspects

of the counterfactuals, I estimate similar results in terms of total allocative inefficiencies and

in terms of who gains and who loses. Thus it does not appear that any of these results are

an artefact of my assumptions about the MISO and SPP markets.

7 Conclusion

This paper leverages rich data across a broad part of the midwestern United States to under-

stand the potential gains from improved market integration as well as the potential barriers

to this integration. I study a time period (2016-2022) where wholesale electricity markets

are rapidly changing as new renewable generators enter the market, which provides a policy-

relevant context for understanding the current landscape for transmission infrastructure. I

document several key facts.

First, I show that there are allocative inefficiencies in midwestern United States elec-

tricity markets stemming from transmission congestion that limits the ability of low-cost
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generators to participate in the market. Second, I show that these allocative inefficiencies

were historically low but are rapidly rising, in part because of the rise of wind generation –

and the wind curtailments that have resulted from transmission lines not keeping pace with

new renewables builds. For 2022, I document more than $2 billion from regional transmission

congestion in the MISO and SPP markets. This is a lower bound as it does not include very

localized transmission congestion, reliability impacts, or long-term investment impacts.

Third, I show that while fossil profits have taken a hit as new wind has entered, fossil

incumbents have been partly protected by transmission congestion. Put differently, as low-

cost wind enters, the incentive for some fossil incumbents (those in load pockets) to block new

transmission lines rises. We might thus expect incumbent opposition to new transmission

to grow in parts of the country where it would open generators up to competition. Finally,

the magnitudes of these incentives are large, with hundreds of millions of dollars on the line

annually for individual firms.

Numerous analysts have pointed to flaws in the way transmission lines are planned,

permitted, sited, and built in the United States. Davis, Hausman and Rose (2023) provide

an overview; and Klass et al. (2022) and Macey, Welton and Wiseman (2023) detail the

specific law and governance structures that impact grid reliability and transmission planning.

Klass et al. (2022) write that “behind many of the current laws, tariffs, and practices that

impede a clean, reliable energy future lies an RTO-governance model where incumbents

hold outsized sway and, at times, have structural interests against the build-out of clean

energy” (pp 1062-3). Interestingly, they also argue that MISO and SPP have some of the

better planning processes for interregional transmission planning and renewables integration,

suggesting that the cases I study in this paper may understate the magnitude of the problem

relative to other areas of the country.

Future research could expand on my results in several ways. First, I have not focused

on emissions outcomes across my various counterfactuals. In most years, my main coun-

terfactual predicts somewhat higher CO2 emissions had the market been integrated – but

more important for emissions outcomes is the long-run effects on fossil plant retirements

and on new wind entry.34 A dynamic model, along the lines of either Linn and McCormack

(2019) or Gonzales, Ito and Reguant (Forthcoming) could be used to study these questions.

Relatedly, it should not be forgotten that another aspect of the transmission network is

the interconnection queue for new wind sites, which has faced a related but separate set of

problems (Johnston, Yifei and Yang, 2023; Mays, 2023).

34In my sample, this is a result of coal displacing natural gas, combined with coal’s high and unpriced
CO2 emissions. Eliminating curtailments reduces CO2 emissions, but the effect is smaller for my time period
than is the coal versus gas effect.
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Future research could also expand the scope of this analysis by incorporating reliability

impacts, which I have not modeled here. The existing network does to some extent reflect the

fact that grid operators have historically prioritized reliability when planning transmission

upgrades. Nonetheless, some have argued that winter storms Uri and Elliott – in 2021 and

2022, respectively – have demonstrated the need for greater interregional transmission lines

to storm-proof the grid, and it is possible that reliability benefits are as large, or even larger

than, the allocative efficiency benefits I have quantified.

Finally, additional research on cases in which incumbent utilities may have blocked new

lines would be useful both for understanding how widespread such cases may be and what

governance reforms might better align transmission planning with the interests of society at

large. Related work on climate policy has examined lobbying activity in the U.S. and Europe

(Meng and Rode, 2019; Rode, 2021). A challenge in the transmission case is that the activities

of stakeholders may be harder to observe. Indeed, Macey, Welton and Wiseman (2023)

argue that “major utilities play dominant roles within NERC, grid system operators, and

the regional entities that implement many NERC standards. These unusual arrangements–a

kind of nested and interwoven self-governance–allow large, entrenched actors to implement

their agendas across institutions in opaque and unaccountable ways” (p 7).

Ultimately, my results tie into crucial questions about who will win and who will lose

in an energy transition, and how this impacts the political economy of decarbonization. As

Colgan, Green and Hale (2021) write, “Climate change and climate policy are altering the

value of assets, from real estate and power plants to the labor of fossil fuel workers. This

process generates increasingly contentious political battles over which assets, professions, and

communities will retain value or even survive at all” (p 587). The policy question becomes

whether the current legal, regulatory, and policy-making procedures adequately represent

the interests of society as a whole – or whether there are opportunities for those who stand

to lose to bend the process to their will.
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A1 Appendix

This Appendix shows additional tables and figures, referenced in the main text.
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Table A1: Summary Statistics

N Mean SD Min Max

Generator characteristics:
Generation, MWh 53,339,178 71.1 149.3 0 890.9
Generation when dispatched, MWh 16,483,079 229.9 188.8 0.00096 890.9
Fuel type indicator: Coal-fired 53,339,178 0.21 0.41 0 1

Natural gas 53,339,178 0.74 0.44 0 1
Oil-fired 53,339,178 0.046 0.21 0 1
Coke-fired 53,339,178 0.0046 0.068 0 1

Technology indicator: Boiler 53,339,178 0.34 0.47 0 1
Combined cycle 53,339,178 0.15 0.36 0 1
Combustion turbine 53,339,178 0.51 0.50 0 1

Location indicator: MISO 53,339,178 0.66 0.47 0 1
Ownership indicator: IOU 53,339,178 0.92 0.28 0 1
Indicator: 1 if subject to ARP 53,339,178 0.86 0.35 0 1
Indicator: 1 if subject to CSAPR (SO2) 53,339,178 0.69 0.46 0 1
Indicator: 1 if subject to CSAPR (NOx) 53,339,178 0.95 0.21 0 1

Wind curtailed in MISO, MWh 27,030 535.5 722.1 0 4925
Wind curtailed in MISO, assumed where missing, MWh 61,326 441.1 514.5 0 4925
Wind curtailed in SPP, MWh 61,318 388.7 895.4 0 8953.9
Solar curtailed in SPP, MWh 8,752 0.71 6.23 0 126.1
Wind curtailment divided by wind generation, in MISO, MWh 61,325 0.072 0.100 0 4.13
Wind curtailment divided by wind generation, in SPP, MWh 61,257 0.028 0.054 0 0.71
National fuel prices:

Coal, $/MMBtu 61,326 2.34 0.16 2.04 2.65
Coke, $/MMBtu 61,326 2.77 0.91 1.30 5.02
Natural gas, $/MMBtu 61,326 4.37 2.12 2.29 18.5
Oil, $/MMBtu 61,326 15.6 4.59 7.51 29.2

Market-wide quantities:
Load (demand) in MISO, MWh 61,323 75735.3 12064.8 48827.3 121232.7

North MISO only 61,323 16843.2 2444.5 10772.1 26555.6
Central MISO only 61,323 39103.0 6709.5 23961.3 66434.4
South MISO only 61,323 19789.1 3754.4 11878.9 32612.0

Load (demand) in SPP, MWh 61,295 30478.4 5638.5 0 52954.7
North SPP only 61,287 7117.8 1174.3 4387.3 11744.9
Central SPP only 61,287 8595.0 1887.3 4425.9 15928.0
South SPP only 61,287 14769.6 2830.7 9714.0 26349.8

Load (demand) in the Eastern Interconnection, MWh 61,278 225436.8 40925.8 78857.8 393893.1
Generation by fuel type by ISO:

Coal, MISO 61,326 28608.1 8005.8 0 49653.1
Natural gas, MISO 61,326 20518.4 7115.9 0 53013.9
Hydro, MISO 61,326 1190.4 582.6 0 3714.5
Nuclear, MISO 61,326 11111.9 1281.5 0 13446.7
Other, MISO 61,326 951.1 281.8 0 2263.5
Solar, MISO 61,326 160.1 450.5 0 3361.8
Storage, MISO 61,326 11.9 67.0 0 589.9
Wind, MISO 61,326 7492.0 4649.4 0 24089.7
Coal, SPP 61,300 11899.3 4259.5 0 23343.8
Oil, SPP 61,300 24.7 45.9 0 960.3
Hydro, SPP 61,300 1273.7 556.4 0 2765.9
Natural gas, SPP 61,300 6997.8 3624.2 0 23127.4
Nuclear, SPP 61,300 1852.5 517.3 0 2610.3
Solar, SPP 61,300 58.1 75.6 0 227.7
Waste disposal, SPP 61,300 10.9 1.91 0 19.1
Wind, SPP 61,300 8558.5 4740.9 0 22696.9
Other, SPP 61,300 28.3 6.45 0 114.0

Cooling degree days, Missouri 61,326 3.78 5.58 0 22
Heating degree days, Missouri 61,326 13.2 14.6 0 67

Note: This table provides summary statistics for my main estimation sample, at the generator by hour level. The sample is an un-
balanced panel covering the period 2016-2022, with 993 generating units at 367 power plants. This represents all CEMS-reporting
power plants (generally, fossil-fuel fired units with a capacity of at least 25 MW) in the MISO and SPP footprints. The main
sample excludes commercial and industrial units and cogeneration units. There are fewer observations for the “quantity of wind
curtailed” variables because the MISO reports this beginning in only December 2019, and because SPP data are missing for a
small number of hours.
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Figure A1: Subregion Boundaries

Note: This map shows subregion boundaries as I implement in my main
transmission-constrained counterfactual. Map is from https://www.epa.

gov/system/files/images/2023-05/eGRID2021_subregion_map.png or
https://www.epa.gov/egrid/maps, accessed December 18, 2023.
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Figure A2: Additional Example Marginal Cost Curves

Note: This figure is constructed like Figure 1 in the main text, but showing alternative date-hour com-
binations. Note the scales of both axes vary across the four panels. The upper left panel shows an hour
typical of the whole sample (2016 to 2022). The upper right panel shows an hour with particularly high
curtailments (approximately two standard deviations above the sample mean for 2016-2022). The lower
right panel shows an hour with high demand (two standard deviations above the sample mean), implying
the dispatch of higher cost units. The bottom right panel shows an hour with low demand (two standard
deviations below the sample mean).
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Figure A3: Additional Generation Costs From Transmission
Constraints and Wind Curtailments: 2016-2022

Note: This figure matches Figure 2 in the main text, but going back farther
in time. For 2016 to 2019, curtailments are not observed. The two black
lines for this time period show rough bounds. Specifically, the lower line
assumes no wind was curtailed. In contrast, the upper line assumes the
same quantity was curtailed as in 2020 – and allocating those curtailments
across peak versus off-peak hours and across different months of the year to
match the 2020 time profile. I use this as an upper bound because of general
reports that curtailments have not fallen, and if anything have risen, over
time.
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Figure A4: Holding Gas Prices And/Or Curtailments Constant:
Additional Generation Costs From Transmission Constraints and
Wind Curtailments

Note: This figure matches Figure 2 in the main text, but with alternatives
that hold natural gas prices and/or curtailments constant. The thick black
line is the annual allocative inefficiency when calculated using observed nat-
ural gas prices and curtailments in both the constrained and integrated
equilibria (i.e., it matches Figure 2). The dashed black line uses observed
natural gas prices but assumes that wind curtailments do not change with
market integration – specifically, it uses observed fossil generation in both
counterfactuals. The thin grey line uses the 2016 average natural gas price
for the whole sample, and it does change fossil generation between the coun-
terfactuals by the amount of wind curtailed. The thick grey line uses the
2016 gas price, and assumes that wind curtailments do not change with
market integration.
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Figure A5: Robustness: Additional Generation Costs From
Transmission Constraints and Wind Curtailments

Note: This figure matches Figure 2 in the main text, but collapsed to the
annual level for simplicity and showing additional robustness checks. The
thin black line in the middle is for the primary specification. The upper
dashed line shows allocative inefficiencies when transmission constraints are
measured at the ReEDS-zone level; the lower dashed line assumes trans-
mission constraints only across three broad regions. Alternative robustness
checks, detailed in the text, are shown with grey lines and closely match the
main model.
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Table A2: Alternative Specifications: Allocative Inefficiencies Increase as Wind Curtailments
Increase

Panel A:
(1) (2) (3) (4) (5) (6)

Demand 2.13*** 1.06*** 1.78*** 1.77*** 2.15***
(0.11) (0.08) (0.10) (0.19) (0.11)

Load net of nuclear gen 1.87***
(0.10)

Natural gas price 1.26*** 1.73*** 1.19*** 1.61*** 1.38*** 1.27***
(0.10) (0.06) (0.09) (0.05) (0.10) (0.10)

Oil price 0.02 0.21*** 0.02 0.13** 0.02 0.03
(0.16) (0.08) (0.16) (0.06) (0.16) (0.16)

Wind generation + curtailments 0.17*** 0.33*** 0.17*** 0.20*** 0.17*** 0.17***
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Observations 61,242 61,242 61,242 61,242 60,570 61,242
R2 0.73 0.64 0.73 0.73 0.74 0.73

Panel B:
(1) (2) (3) (4) (5) (6)

Demand 2.13*** 1.40*** 1.82*** 1.68*** 2.13***
(0.10) (0.09) (0.10) (0.14) (0.10)

Load net of nuclear gen 1.88***
(0.09)

Natural gas price 1.28*** 1.68*** 1.25*** 1.50*** 1.37*** 1.29***
(0.09) (0.05) (0.09) (0.04) (0.08) (0.09)

Oil price 0.09 0.15* 0.09 0.04 0.09 0.09
(0.10) (0.08) (0.11) (0.05) (0.10) (0.10)

Wind generation -0.16*** 0.03 -0.17*** -0.14*** -0.17*** -0.16***
(0.01) (0.02) (0.01) (0.02) (0.01) (0.01)

Wind curtailments 0.27*** 0.26*** 0.27*** 0.27*** 0.27*** 0.27***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Observations 61,008 61,008 61,008 61,008 60,387 61,008
R2 0.80 0.72 0.80 0.79 0.80 0.80

Note: Panel A of this table matches Column 1 of Table 2 in the main text, but with additional robust-
ness checks; Panel B similarly matches Column 2. The first column recreates the results from Table 2.
The second column drops the time effects. The third column drops the weather controls. The fourth
column includes additional controls: specifically, all the two-way and three-way interactions of month-
of-year, day-of-week, and hour-of-day controls. Rather than month-of-sample, it includes a linear time
trend. The fifth column drops the period of Winter Storm Uri. The sixth column uses load net of nu-
clear generation, rather than load, on the right-hand side.
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Table A3: Power Plants Are Dispatched For Own-ISO Load

(1) (2) (3) (4) (5) (6)

MISO 0.84 0.84 0.78 0.84 0.81 0.93
SPP 0.91 0.90 0.80 0.79 0.88 0.97

Note: This table shows the portion of power plants in each ISO that had a bigger coef-
ficient on own-ISO load in the horserace regressions. The first row shows the portion of
MISO-located plants (n = 243), and the second row the portion of SPP-located plants
(n = 121). Column 1 shows the baseline specification. Column 2 includes the period
of Winter Storm Uri in the horserace regressions. Column 3 drops controls from the
horserace regressions (such as fuel prices, month effects, hour effects, and weather),
but does control for load in the rest of the Eastern Interconnection. Column 4 weights
observations in the table by the average hourly generation of the power plant over the
2016-2022 time period. Column 5 weights instead by the count of non-zero generation
hours. Column 6 weights instead by the t-stat from the horserace regression.
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Figure A6: Power Plants Are Dispatched For Own-ISO Load: Sized by t-stat

Note: This figure matches Figure 3 in the main text, but with markers sized by the t-stat on the difference
in the coefficients on own-ISO and other-ISO load. That is, larger markers represent plants for which there
is more certainty about the coefficient on one load being larger than the other. Power plants responding to
other -ISO load tend to have smaller t-stats, reflecting either a smaller difference in the two coefficients or
more noise in the estimation.

Table A4: Alternative Specifications: Incentives to Block Transmission Increase as Renew-
ables Enter

(1) (2) (3) (4) (5)

Wind generation available, GWh -3612*** -3609*** -3291*** -3576*** -3194***
(304) (266) (276) (308) (292)

Observations 61,280 61,280 61,280 60,608 61,280
R2 0.23 0.23 0.17 0.24 0.22

Note: This table matches Column 3 of Table 3 from the main text, but for various alternative
specifications. Column 1 recreates Column 3 of Table 3. Column 2 drops the weather controls.
Column 3 drops the time effects. Column 4 drops the period of Winter Storm Uri. Column 5
includes more saturated time effects.
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Table A5: Additional Results: Incentives to Block Transmission Increase as Renewables
Enter

(1) (2) (3)
Profits,

transmission-constrained
Profits,

integrated market
Change in profits
from integration

Panel A: Operating profits, conventional gen.

Wind generation available, GWh -1214*** -4825*** -3612***
(233) (303) (304)

Observations 61,292 61,284 61,280
R2 0.62 0.78 0.23

Panel B: Operating profits, wind gen.

Wind generation available, GWh 22285*** 27496*** 5211***
(443) (514) (348)

Observations 61,292 61,292 61,292
R2 0.73 0.88 0.16

Note: This table expands on Table 3 from the main text. The dependent variable is operating profits, measured in dollars in
an hour. The unit of observation is an hour. Panel A shows results for MISO South, an area without wind generators. Panel
B shows results for wind generators across the entire SPP/MISO footprint. The independent variable is the total amount of
wind available across MISO and SPP, summing across actual wind generation and curtailed wind generation, in GWh. Stan-
dard errors are clustered by sample week.

Figure A7: Robustess Check: Alternative Subregion Boundaries

Note: This map shows subregion boundaries from the ReEDS model, which
I use to define transmission constraints in a robustness check.
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