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1 Introduction

Electricity is a critically important component of the economy and modern life. However,

it also creates substantial negative externalities. In particular, electricity generation con-

tributed 31% of U.S. CO2 emissions in 2019 (Energy Information Administration, 2020)

and emits substantial local pollutants that harm human health and cause damages for the

U.S. estimated at $57.3 billion in 2017 (Holland et al., 2020).

Amid growing concerns about the damages from electricity emissions, two major energy

transitions are underway. The first transition, occurring since the start of the 21st century,

is marked by the significant reduction in the cost of generating electricity with natural gas,

thanks to combined-cycle technology and hydraulic fracturing (fracking). Figure 1 illustrates

the marginal electricity fuel costs in 2006 and 2017 for combined-cycle natural gas (CCNG)

and coal plants in our sample. The figure sorts plants by dispatch order—i.e., in order of

increasing fuel cost—with capacities displayed cumulatively. In 2006, CCNG plants (in solid

green triangles) had uniformly higher fuel costs than coal (in solid orange circles). Yet, by

2017, there were substantially more CCNG plants, and their fuel costs were similar to or

below coal. The resulting shift in generation toward natural gas has led to a 28% reduction

in CO2 emissions between 2005 and 2018 and lower local air pollution (Energy Information

Administration, 2018). The second transition stems from a significant decrease in the costs

of renewable energy, with both solar panel and battery costs having dropped over 80%

since 2010 (International Renewable Energy Agency, 2020; Goldie-Scot, 2019). Given these

cost declines and the substantially lower pollution externalities from renewables, a second

transition—to renewable energy—has started.

Since electricity generation has high fixed costs and low marginal costs, electric utilities

were historically considered natural monopolies and faced rate-of-return (RoR) regulation,

where the regulator grants a utility a monopoly but, in exchange, limits its prices (or rates).

The 1990s saw extensive restructuring in the U.S. and Europe, where electricity generation—

and sometimes retailing—was opened to competition. In the U.S., this deregulatory push

ended with the California electricity crisis of the early 2000s, leaving a patchwork system

where states have substantially different levels of regulatory control. The impact of falling
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Figure 1: Marginal Fuel Costs Over Time
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Note: Plant-level data on marginal fuel costs and capacities from analysis sample.

natural gas generation costs varied across regulated and restructured markets. For instance,

between 2006 and 2018, 26.0% of coal capacity exited in restructured states, whereas only

17.2% exited in regulated states.1 This suggests that it is important to study whether

electricity regulation increases social costs by slowing transitions to new energy sources.

This paper develops and estimates a model of electricity regulation. In the model, the

utility optimizes against the regulatory structure by choosing investment and retirement

capacity levels in the long run and generation quantities by fuel-technology and electricity

imports in each hour. We estimate our model using publicly available data on utilities’

electricity generation, load (demand), revenues, and capacity. We use our model to evaluate

how both the current and alternative regulatory structures would affect energy transitions.

RoR electricity regulation aims to ensure reliability—to literally keep the lights on—

while maintaining affordability (Energy, Climate, and Grid Security Subcommittee, 2023)

in the presence of incomplete information about the current and future costs of alternative

utility investment and operation decisions. To achieve these goals, the regulator creates a

1Authors’ calculations based on analysis data, discussed in Section 2.2.
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structure under which utilities are incentivized to have sufficient resources to meet demand

while encouraging low costs and limiting underused capital (Joskow, 1974). This structure

sets electricity rates to reimburse utilities for their variable costs and provide a “fair” RoR

on their capital, referred to as their “rate base” (Viscusi et al., 2018). The literature has

shown that RoR regulation has at least two limitations. First, RoR regulation may not

provide adequate incentives for cost minimization, since the regulator reimburses variable

costs (Joskow, 2007). Second, RoR regulation can lead to capital over-investment (called

the AJ effect, after Averch and Johnson, 1962): since the utility earns profits proportional

to capital, it endogenously responds by increasing capital.

In response to these limitations, regulators have implemented incentive regulation and

prudence standards. Incentive regulation provides utilities a RoR that is decreasing in costs

relative to a benchmark (Joskow, 2007), which encourages cost reductions. Prudence stan-

dards require that only “prudent” capital investments be included in the rate base, which

helps limit capital over-investment. For older, existing technologies needing maintenance,

repair, or upgrade, one common approach to determining prudence is a generation standard

where only capital that is “used and useful” is fully included in the rate base (Gilbert and

Newbery, 1994; Fisher et al., 2019). Energy transitions further complicate the regulator’s

task of determining prudence as they may cause technologies, fuel prices, and environmental

concerns to change over time. When combined with a used-and-useful standard, these tran-

sitions may create perverse incentives for utilities, such as causing them to overuse legacy

capital to ensure that it fully contributes to the rate base.

Our model captures these key features of RoR regulation. The regulator in our model

accomplishes its objectives via two instruments. First, it offers a maximum rate of return

that is declining in consumer electricity rates to incentivize cost reductions. This instrument

encourages the utility to invest in low-cost plants and use low variable cost sources. Second,

the regulator considers capacity usage in assessing the extent to which capital is included in

the rate base.

The utility optimizes against this regulatory structure in its investment and operations

decisions. Each three-year period, the utility chooses coal capacity retirement and CCNG

capacity investment, facing quadratic adjustment costs. Investments increase its rate base
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and therefore its variable profits, conditional on the rate of return and usage. When choosing

which fuel-technologies to operate, the utility has two potentially conflicting incentives. On

the one hand, to increase its allowable rate of return, the utility seeks to lower costs. On

the other hand, particularly after the decline in natural gas generation costs, it may use

expensive coal plants to ensure that they are deemed used and useful.

Our model relies on both regulatory and cost parameters. The regulatory parameters

include the determinants of the allowable rate of return and each fuel-technology’s contri-

bution to the rate base, which for coal capacity depends on its usage. We observe fuel

costs and estimate operations and maintenance, ramping, and investment/retirement cost

parameters. We estimate the regulatory and operations parameters with a nested fixed-point

indirect inference approach that seeks to match important data correlations. Specifically,

we run regressions on our actual data that capture key features such as utilities’ revenues,

ramping behavior, and usage, and find the structural parameters that yield the most simi-

lar regression coefficients in simulated data generated by the model. We also estimate the

investment and retirement costs with a GMM nested fixed-point approach, following the

Gowrisankaran and Schmidt-Dengler (2025) algorithm that facilitates the computation of

models with continuous choices, in our case investment and retirement decisions.

We use our structural parameter estimates to analyze the impact of counterfactual policies

on short-run operations decisions for our historical analysis sample and long-run outcomes

during an energy transition. We consider four sets of counterfactuals: (1) cost minimization,

(2) a social planner which minimizes costs including a $190/ton carbon cost (Environmen-

tal Protection Agency, 2023b), (3) imposing carbon taxes on regulated utilities, and (4)

adjusting existing regulatory parameters.

We first consider counterfactual operations decisions across utilities and years in our

sample. Here, we find that carbon taxes and eliminating coal usage incentives both lower

carbon emissions. However, they also yield variable profits that are much lower than the

baseline, implying that implementing them without transfers could reduce resource adequacy

and thereby affect reliability. In the short run, carbon taxes imposed on regulated utilities

only reduce coal generation 48% as much as when imposed on a cost minimizer.

We next evaluate outcomes for regulated utilities faced with an energy transition by
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simulating decisions with their observed 2006 capital stocks suddenly shocked with low 2018-

20 natural gas fuel prices. In the 30 years following this shock, regulated utilities, on average,

would retire 53% of coal capacity and gradually reduce coal usage while increasing CCNG

capacity by 296%. A cost minimizer would transition away from coal much more quickly,

immediately reducing coal generation by 50% and, over 30 years, eliminating most coal

capacity while only increasing CCNG capacity by 58%. A cost minimizer that considers

carbon costs—the social planner—would eliminate almost all coal capacity over the same

time frame and also immediately reduce coal generation by 99%. In contrast to the limited

long-run impact of carbon taxes for the cost minimizer, the regulated utility would retire

85% of its coal capacity over the 30-year horizon when faced with a carbon tax. Changing

regulatory parameters by increasing the coal usage incentive or changing the penalty for high

electricity rates does not come close to replicating the speed of the energy transition under

a cost minimizer.

Literature: This paper relates to three broad literatures. First, we build on a long-

standing literature on the theory of regulation. A number of papers have examined the

optimal design of RoR regulation (e.g., Averch and Johnson, 1962; Baumol and Klevorick,

1970; Klevorick, 1971, 1973; Joskow, 1974; Gilbert and Newbery, 1994; Joskow, 2007). Other

papers have focused on setting incentives with asymmetric information about costs and effort

(Baron and Myerson, 1982; Laffont and Tirole, 1986). We extend the models in this literature

by investigating the role of regulation in the face of an energy transition.

Second, we extend the empirical literature on the impact of electricity regulation, which

includes Fowlie (2010); Davis and Wolfram (2012); Cicala (2015); Abito (2020); Lim and

Yurukoglu (2018); MacKay and Mercadal (2019); Cicala (2022b); Dunkle Werner and Jarvis

(2025); Aspuru (2023); and Jha (2023). The closest paper in this literature to ours is

Abito (2020), which structurally estimates a Laffont and Tirole style model of regulation

under asymmetric information where an electric utility makes operations decisions trading off

effort against costs. We contribute by integrating the theoretical and empirical literatures on

regulation with a structural model of both utilities’ operations and investment and retirement

decisions when facing RoR regulation. Understanding RoR regulation is important because,

despite parts of the U.S. restructuring electricity generation, RoR (or similar) regulations

6



are the dominant approach in countries including India, Italy, and the United Kingdom (Jha

et al., 2022; Joskow, 2024; Anthony et al., 2020), and settings such as natural gas, water, and

electricity transmission and distribution (Ernst and Hlinka, 2024b,c; Doerr, 2024; Joskow,

2024).

Finally, we contribute to the growing empirical literature on the dynamics of investment

and exit in electricity markets, which includes Myatt (2017); Eisenberg (2020); Linn and Mc-

Cormack (2019); Abito et al. (2022); Elliott (2022); Butters et al. (2025); and Gowrisankaran

et al. (2025). Gowrisankaran et al. (2025)—written by an overlapping set of co-authors—

considers coal retirement decisions for independent power producers (IPPs), focusing on

the role of policy uncertainty. This paper extends this literature in modeling decisions of

regulated utilities.

2 Industry Background and Data

2.1 Industry Background

Regulated electric utilities own most of the generation capacity within their territory (Shwis-

berg et al., 2020), but also trade electricity with outside firms, either bilaterally or through

regional electricity markets. U.S. state regulatory agencies, generally called Public Utility

Commissions (PUCs), regulate these utilities with the goals of reliability and affordability.

PUCs collect information from utilities, advocacy groups, and other interested parties largely

via Integrated Resource Plans (IRPs) and rate hearings. IRPs lay out utilities’ long-run cap-

ital investment and retirement needs. Rate hearings are opportunities for the regulator to

adjust consumer rates (Joskow, 2014; Abito, 2020). Before these hearings, utilities submit

documentation of their recent performance—including usage of existing plants, costs, and

revenues—as well as expected future performance.

PUCs make three different types of decisions.2 First, they approve capital investments

and retirements. These decisions then affect what is included in the rate base, i.e. the capital

stock on which PUCs give utilities their RoR. Second, they determine which of utilities’

2Our discussion of the regulatory process draws heavily from a guide to electricity regulation written by
an independent think tank (Lazar, 2016) and a classic textbook on regulation (Viscusi et al., 2018).
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reported variable costs are reimbursable. Third, they choose the allowable RoR which,

together with the first two decisions, determine the profits that utilities can earn. PUCs

then set consumer rates so that utilities can expect to cover their reimbursable variable costs

and earn a fair return, which is determined by the product of the RoR and the rate base.

RoRs are intended to provide utilities with fair profit margins by covering their oppor-

tunity cost of capital (Dunkle Werner and Jarvis, 2025). However, if regulators simply

reimbursed utilities on a “cost-plus” basis, then utilities would not have an incentive to

minimize costs. Therefore, regulators often use incentive regulation, where profits decline as

costs rise (Lyon, 1994; Joskow, 2007), implementing it by adjusting either the RoR or the

rate base in response to high costs.3 In particular, regulators may adjust the rate base for

construction in progress, investments in terminated projects, and fuel stocks (Indiana Utility

Regulatory Commission, 2023). Indeed, the intricacies in the process imply that the concept

of the rate base is hard to quantify.4 Beyond incentive regulation, PUCs may explicitly look

at metrics such as usage when deciding on the rate base. As Lazar (2016) explains on page

52: “Generally, to be allowed in rate base, an investment must be both used and useful in

providing service and prudently incurred. The utility has the burden of proving that invest-

ments meet these well-established tests, but often enjoys presumption of use and usefulness,

and prudence in the absence of evidence to refute it.”

Despite this focus on incentives, advocacy groups and research organizations have argued

that this regulatory structure leads to inefficient operating decisions. Multiple groups have

found that utilities that trade in wholesale electricity markets may choose to “self-commit”

(or mandate that their own plants must run) even when these plants’ costs exceed the

market price (Fisher et al., 2019; Daniel et al., 2020; Potomac Economics, 2020). Further,

regulated utilities may have a preference to build their own capacity rather than signing

power purchase agreements with third parties who can produce electricity at lower cost

(Cross-Call et al., 2018; Wilson et al., 2020). This inclination has extended to recent decisions

concerning renewable energy, where certain groups have expressed concern that regulated

utilities have an undue focus on fossil fuel generation that leads them to under-invest in

3This declining RoR is observed in other regulated sectors such as natural gas (Hausman, 2019).
4Regulatory Research Associates explains that “efforts to estimate [the rate base’s] value are at best an

arduous task and at worst fraught with inaccuracies” (Ernst and Hlinka, 2024a).
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renewables (Bottorff et al., 2022; Biewald et al., 2020; Daniel, 2021).

Ultimately, the regulatory process involves an extensive back-and-forth between the reg-

ulator, utility, and other stakeholders. Our structural model aims to capture the key forces

of this process in a simplified setting.

2.2 Data

We use data on the electricity industry in the U.S. from a variety of publicly available

sources. Our data include both annual measures—such as plant capacity, fuel prices, and

utility revenues—and hourly measures—such as load, generation, and wholesale electricity

prices. Our main estimation sample extends from 2006 to 2017.

Our primary annual data derive from the Energy Information Administration (EIA). We

merge together information from three EIA forms. First, EIA Form 861 provides annual

total revenue for electric utilities that are obligated to report this information. Form 860

records information about each power plant’s capacity, fuel-technology type, and U.S. state.

We retain information on plants with three fuel-technologies: coal (COAL), combined-cycle

natural gas (CCNG), and other (non combined-cycle) natural gas turbines (NGT), many of

which are used to meet peak load. Finally, Form 923 has annual plant-level data on fuel

energy input in MMBtus and electricity generation in MWhs. We combine these data to

recover heat rates, which indicate fuel energy input per unit of generation. We calculate

heat rates that vary by utility and fuel-technology, using the capacity-weighted average heat

rates across plants.

We merge these data with hourly plant-level data on the quantity of electricity gener-

ated from the Environmental Protection Agency’s (EPA’s) Continuous Emissions Monitoring

System (CEMS). We then collapse the combined EIA/EPA data across plants of the same

fuel-technology type within a utility-hour. Our main analysis data uses utilities in U.S. states

defined as regulated in Cicala (2022b) in the Eastern Interconnection.5

We limit our data geographically because regulated utilities in the Eastern Interconnec-

tion all have relatively nearby Independent System Operators (ISOs), which allows us to

5Our reduced-form evidence in Section 4.2 also uses data form restructured U.S. states, comparing them
to regulated U.S. states.
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construct import price measures. For every U.S. state with an ISO, we construct a mean

wholesale electricity price for every sample hour by using the locational marginal prices

(LMPs) within the U.S. state.6 For each utility in our main analysis sample, we then use

the wholesale price from the nearest U.S. state as the import price.7 We also merge coal and

natural gas fuel prices at the U.S. state-year level derived from regulated utilities’ reported

prices in EIA Form 423.

Finally, we obtain hourly load by utility from multiple sources. Cicala (2021, 2022a)

provide data and code to construct hourly load through 2012 by power control area (which

often coincide with regulated utilities). We lightly edited his code to extend the hourly load

to 2017 for utilities in MISO and SPP. The utilities in MISO and SPP are regulated, but also

subject to market dispatch, in that they bid their generation capacity into wholesale markets.

For additional utility-years, we obtain load from Federal Energy Regulatory Commission

(FERC) Form 714. We then use the combined data to define hourly imports into the utility,

or exports from the utility if negative, as load net of our three primary generation fuel-

technology types. Thus, imports will include utility generation from both renewables (which

are relatively moderate during this time-frame) and nuclear.

On-Line Appendix A2 discusses details of our data construction and includes summary

statistics of our analysis data at the utility-year and utility-hour levels, respectively. Our

final analysis data consist of over 4 million utility-hour observations across 459 utility-years

for 39 unique utilities.

3 A Simplified Model of Electricity Regulation

This section presents a simple model of RoR regulation that highlights the key tradeoffs

in the interactions between the regulator and utility. We first start with a model of RoR

regulation over two stable periods. We then consider the impact of an energy transition

in the second period. Section 5 extends this theoretical model to allow us to estimate key

6We retrieved these data from the ISO New England (ISONE), Midcontinent Independent System Op-
erator (MISO), New York Independent System Operator (NYISO), and PJM Interconnection websites. We
do not use Southwest Power Pool (SPP) prices since they are not reported before June 2013.

7In some cases, the prices are somewhat distant, e.g., we use data from VA for the price in FL.
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parameters and conduct counterfactual simulations.

3.1 Regulatory Structure

Following Viscusi et al. (2018), we model the regulator as having two objectives: first, it

wants enough generation and imports to meet load in every hour (“reliability”), and given

that, it wants to keep consumer rates low (“affordability”). It might also potentially be

concerned about mitigating environmental harm. The regulator observes the utility’s costs

and usage decisions, but does not observe the costs of alternative decisions (Joskow, 2007).

This asymmetric information means that, instead of dictating choices, the regulator imposes

an incentive structure that encourages the utility to take actions that meet these goals. To

avoid ex-post renegotiation, the regulator commits to a fixed structure. The utility faced

with this regulatory structure aims to maximize its expected profits over the two periods.

The regulator sets electricity rates, r, on electricity demand, or load, ℓ, which we ap-

proximate as being perfectly inelastic (Borenstein et al., 2023). The regulator requires the

utility to meet load and chooses r such that revenues equal the sum of variable costs, TV C,

and an allowable return, s, on the rate base, B. Utility revenues are then:

r × ℓ = TV C + s×B. (1)

This subsection considers an environment where the utility maximizes profits when facing

a fixed load and one generation technology, coal, that lasts two periods. We represent

the per-unit cost of investment with δCOAL, the amount of capacity with KCOAL, and the

marginal cost with MCCOAL. The regulator provides the utility profits, π ≡ s × αCOAL ×

KCOAL − δCOAL × KCOAL, where αCOAL converts generation capacity from MWs into the

rate base in dollars. It sets αCOAL sufficient to cover the utility’s capacity investment and its

transmission, distribution, and administrative costs, and also earn a “fair” rate of return.8

Since all capacity has identical marginal costs, load is fixed, and the utility is required to

meet load, the utility does not choose generation. Thus, capacity investment is its only

8Though not the focus of our study, transmission and distribution infrastructure is critical for maintaining
reliability (Lim and Yurukoglu, 2018).
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meaningful choice.

Because demand is perfectly inelastic, if the regulator provided the utility a fixed RoR

over costs as in a cost-plus setting, increases in capital would proportionally increase rev-

enues. In this case, capacity investments would always increase utility profits, exacerbating

the Averch and Johnson [AJ] effect. This over-investment in capacity would lead to overly

high electricity rates, undermining the regulator’s goal of affordability and potentially caus-

ing consumer backlash. Recognizing these issues, the regulator uses incentive regulation,

where it offers the utility a lower RoR as consumer electricity rates rise, conditional on the

utility keeping the lights on. This penalty captures a political economy constraint that the

regulator limits the utility’s profits when faced with consumer pressure from high rates (as

seen in regulatory evidence, e.g. Indiana Utility Regulatory Commission, 2020).

We model incentive regulation by allowing the regulator to offer a RoR that is a declin-

ing function of reported costs, in the spirit of Baron and Myerson (1982). Specifically, the

regulator offers a RoR each period that is decreasing in the electricity rate, s ≡ (r/r0)
−γ,

where γ > 0 is the regulatory parameter that determines the extent to which rates affect

the RoR, and r0 is a benchmark, “reasonable” rate against which rates are compared. Sub-

stituting this formulation and TV C into (1) defines r as an implicit function of costs, in

this case KCOAL: r × ℓ = ℓ×MCCOAL + (r/r0)
−γ αCOALKCOAL. This regulatory structure

partially overcomes the lack of consumer demand elasticity, providing efficiency incentives

but departing from the first-best.

To illustrate the implications of this regulatory structure on equilibrium outcomes, we

simulate the model, calculating the utility’s optimal coal investment levels for different values

of γ and calibrating the other parameters. For every value of γ and a grid of KCOAL, we

iterate on the implicit function that defines r until a fixed point. Given these solutions, we

then find the KCOAL that maximizes two-period profits for each γ.

The solid blue line of Figure 2 panel (a) shows the utility’s optimal KCOAL.9 Coal

investment decreases in γ until it hits the planner solution of KCOAL = ℓ = 1, as shown by

the thin grey line. While panel (a) only presents values of γ greater than 0.3, investment

9We calibrate αCOAL = 1.1, δCOAL = 1, MCCOAL = 1, and r0 = 1, and ℓ = 1 in each period. While we
present results varying γ, the regulatory structure involves choosing both γ and αCOAL.
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increases roughly exponentially as γ decreases and is infinite at γ = 0. If there were no

participation constraint for the utility, the regulator would just choose γ high enough to

ensure that KCOAL = ℓ, i.e., γ > 0.905 in our simulation. However, since optimized profits—

indicated with the dashed red line—are also declining in γ, a γ that is sufficiently high to

ensure that KCOAL = ℓ may leave the utility with insufficient revenues to achieve resource

adequacy. The regulator would then be forced to choose a low γ where KCOAL > ℓ even

though this will not perfectly address the AJ over-investment incentive.

In the real world, an additional complication is that load is not fixed and instead varies

by hour, with some level of unpredictability, e.g., there are extremely hot days with high air

conditioning needs. The utility likely has better information than the regulator regarding

the underlying distribution of current and future ℓ. This may provide another reason why

the regulator cannot incentivize KCOAL = ℓ: the utility has an incentive to justify additional

capacity investment as necessary for resource adequacy due to high load stochasticity (or

future load growth). To manage informational asymmetries while avoiding ex-post renego-

tiation, the regulator allows capacity that is “used and useful” to contribute more to the

rate base. This combines the principle that only “prudent” capital investments should be

included in the rate base (Viscusi et al., 2018) with the fact that capacity’s usage is one

objective way to measure its prudence (Gilbert and Newbery, 1994).

We thus extend our simple model to add a used-and-useful standard. We model capital’s

contribution to the rate base with a simple logit functional form:

UU

(
QCOAL

KCOAL

)
=

exp
(
µ1 + µ2

QCOAL

KCOAL

)
1 + exp

(
µ1 + µ2

QCOAL

KCOAL

) , (2)

where QCOAL is the quantity of coal generation, and µ1 and µ2 are model parameters.

Combining terms, the rate base becomes B = αCOAL ×KCOAL × UU(QCOAL/KCOAL).

Figure 2, panel (b) investigates the role of the used-and-useful standard in our simu-

lation.10 The solid green line compared to the solid blue line in panel (a) shows that the

used-and-useful standard substantially reduces the utility’s optimal capacity investment, be-

10We calibrate a used-and-useful standard that is similar to the parameters we ultimately estimate, setting
µ1 = −1 and µ2 = 6.
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Figure 2: Simulation of Regulated Outcomes Across Simplified Settings
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(b) Stable Environment With a Used-and-Useful Standard
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(c) Period 2 Energy Transition With a Used-and-Useful Standard
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Note: Panel (a) presents simulated coal capacity investment and profits in a stable environment
with RoR regulation and a penalty for high electricity rates. Panel (b) presents simulated coal
capacity investment in a stable environment with and without a used-and-useful standard, where
the latter adjusts αCOAL to match capacity investment at γ = 0.5. Panel (c) presents simulated
CCNG and coal capacity and coal usage in period 2, following an energy transition.
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cause an increase in investment lowers usage which lowers B. Yet, without adjusting capital’s

contribution to the rate base, the used-and-useful standard will also decrease utility profits.

To understand how a used-and-useful standard affects marginal investment incentives, we

compare capacity investments with used-and-useful incentives to those without the incen-

tives where the utility invests the same amount of capacity when γ = 0.5.11 We find that

KCOAL again changes steeply with γ, although the rate of change is less steep than in panel

(a), because the utility’s return from additional capacity investment is reduced.

Overall, our simulations show that traditional RoR regulation can lead to substantial

over-investment in capacity in the electricity setting. The regulator therefore uses two tools—

a RoR that decreases in electricity rates and a used-and-useful standard—to limit this over-

investment. The combination of these tools limits the utility’s incentive to over-invest, yet

the regulator still may not achieve the socially optimal level of investment.

3.2 Regulation During Energy Transitions

While the electricity industry has experienced long periods of relative stability, a substantial

energy transition has occurred and another is ongoing. To understand how RoR regulation

performs when the environment is not stable, we consider a period 2 energy transition.

Specifically, in period 1, we let expectations be that the world will be similar enough in

period 2 that the incentives in Section 3.1 hold. In period 2, a shock occurs, where a new

technology, CCNG, is suddenly inexpensive to install and use for electricity generation.

We therefore assume that the investment and marginal costs of CCNG—δCCNG and

MCCCNG respectively—are sufficiently low that the social planner would want to build

enough CCNG capacity to exclusively meet load with CCNG, i.e., KCCNG = QCCNG = ℓ.

Because coal capacity is hard to repurpose, it is not possible to retire coal and recover the

initial investment cost.12 For simplicity, we assume a small but positive scrap value for coal

so that the social planner would want to retire all coal capacity, but the utility does not

retire any coal, since its contribution to the rate base exceeds its scrap value.13

11This exercise sets µ2 = 0 but increases αCOAL to equate optimizing capacity levels.
12In fact, Raimi (2017) and Gowrisankaran et al. (2025) both find that coal capacity is costly to retire on

average, likely due to site remediation costs.
13The utility will also not want to invest in new coal capacity in period 2 given that its marginal incentives
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The regulator maintains the incentive structure from Section 3.1 in period 2 because

it committed to this fixed structure in period 1. This commitment is a bedrock of RoR

regulation: if the regulator did not commit, the utility may not have had sufficient incentives

to invest in period 1, because it would worry that the regulator would not reimburse this

expense in period 2 (Lim and Yurukoglu, 2018).

Because CCNG’s investment costs are different from coal, the regulator specifies its con-

tribution to the rate base with a new parameter, αCCNG.14 The utility enters period 2 with

an installed base of coal capacity, which yields different incentives from a de novo utility.

Given its state, KCOAL, the period 2 utility chooses KCCNG and QCOAL to maximize:

π(KCCNG, QCOAL|KCOAL) =

(
r

r0

)−γ

︸ ︷︷ ︸
Rate of Return, s

(
αCOALKCOALUU

(
QCOAL

KCOAL

)
+ αCCNGKCCNG

)
︸ ︷︷ ︸

Rate Base, B

− δCCNGKCCNG︸ ︷︷ ︸
Investment Costs

s.t. QCOAL +KCCNG ≥ ℓ, QCOAL ≤ KCOAL, and (3)

r × ℓ = QCOALMCCOAL +
(
ℓ−QCOAL

)
MCCCNG︸ ︷︷ ︸

TV C

+

(
r

r0

)−γ

B.

In (3), the first constraint requires the utility to have sufficient CCNG capacity to meet

load. The second constraint limits coal generation to be less than coal capacity. The final

constraint implicitly defines electricity rates.

The same AJ investment distortion from Section 3.1 remains in (3): the utility has an

incentive to over-invest in CCNG capacity just as it over-invested in coal capacity in period

1. However, it also faces two new and opposing incentives. It wants to invest in and use

low-cost CCNG to keep electricity rates low and thereby raise its RoR, but it also wants

to use expensive legacy capacity out-of-dispatch order to prove that it is used-and-useful.

Overall, this regulatory structure will result in the utility keeping more coal capacity and

using weakly more coal to meet load than the social planner, which retires all coal. Moreover,

although the utility will invest in less CCNG capacity than a period 2 de novo utility without

to do so are strictly worse than in period 1.
14For simplicity, we do not model a CCNG used-and-useful incentive. In such an environment, the regulator

may choose a lower αCCNG to create similar incentives.
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any existing coal capacity, it may either over- or under-invest in CCNG capacity relative to

the social planner.

To understand the interaction between these opposing incentives, we again simulate our

model, incorporating this period 2 energy transition. In period 2, for each γ and the accom-

panying period 1 KCOAL choice, we simulate the utility’s optimal KCCNG and QCCNG.

Figure 2 panel (c) presents the results of this simulation.15 Because the utility does not

retire any coal capacity, the solid green line is the same as in panel (b). As represented by the

black dashed-dotted line, the regulated utility’s choice of QCCNG is weakly increasing in γ,

but always below the planner’s choice of 1 as shown by the thin grey line. For relatively low

levels of γ, we see both CCNG generation below 1 and unused CCNG capacity, even though

MCCCNG < MCCOAL. Thus, while the used-and-useful standard reduced excessive coal

investment for low levels of γ in the stable environment, it creates a generation inefficiency

in the presence of an energy transition.

The orange dashed line shows that CCNG investment could either be too high or too low

relative to the social planner’s choice of KCCNG = 1.16 As with coal investment in the stable

setting, CCNG investment approaches infinity as γ approaches 0. Notably, as γ increases,

we find that KCCNG does not decline monotonically, because of two conflicting incentives.

On the one hand, the higher regulatory penalty for high rates leads the utility to invest in

less CCNG. On the other hand, this penalty also leads the utility to substitute CCNG for

coal generation. Thus, as γ rises, the utility both invests less in CCNG and uses it more.

Eventually, the utility invests more in CCNG capacity and fully uses its CCNG in meeting

load. At high levels of γ, as γ further increases, coal capacity is fixed at 1, and the utility

still partially uses this capacity to maintain coal’s used-and-usefulness. At this point, there

is no additional benefit from higher CCNG capacity, so KCCNG also stabilizes.

Our simulations show that an energy transition in regulated markets could lead to ei-

ther over- or under-investment in the new technology, depending on the particulars of the

regulatory parameters and the technology. However, RoR regulation will encourage the util-

15We calibrate the fixed and marginal costs of CCNG as δCCNG = 0.6 and MCCCNG = 0.1, respectively.
We calibrate αCCNG to twice the ratio of CCNG to coal fixed costs, αCCNG = 2δCCNG/δCOAL, since the
utility recovers coal costs over two periods.

16A used-and-useful standard for CCNG will change the level ofKCCNG, but not the result that investment
could be either too high or too low relative to the social planner.
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ity to keep and use the legacy technology. The implications of RoR regulation for energy

transitions therefore require understanding utilities’ real-world regulatory incentives.

4 Reduced Form Evidence

Section 3 extended the standard model of RoR regulation with two regulatory instruments

that fit the electricity sector. First, we specified the utility’s RoR to vary based on consumer

rates. Second, we specified that the regulator uses generation to evaluate prudence, and thus

utilities may generate with coal even when uneconomical to increase its contribution to the

rate base. Before turning to the estimation of our structural model, we analyze the extent

to which our data support these assumptions.

4.1 Relation Between Costs and Rate of Return

Our regulatory model specifies that the utility’s RoR, s = (r/r0)
−γ, is declining in electricity

rates with γ > 0, consistent with incentive regulation. This results in electricity rates—and

RoR—being implicit functions of costs and capital: r× ℓ = TV C +(r/r0)
−γB. Thus, in our

model, an exogenous increase in costs will increase r but will also decrease the RoR.

To understand the determinants of the allowable RoR, this section investigates whether

increases in costs are associated with lower RoR. Specifically, we create proxies for total

costs using fuel and import costs, omitting ramping, O&M, and fixed costs, which are less

directly observable. We proxy for RoR with a measure of variable profits—revenues net of

fuel and import costs—divided by the sum of coal, CCNG, and NGT capacity in MW. Our

hypothesis is that exogenous increases in costs will lower the RoR, as in our model.

Our specifications address two potential concerns. First, total costs include capacity

investment, transmission, and distribution costs, which vary substantially across utilities,

for example because of geography. This implies that what the regulator considers a high

cost for one utility may be a low cost for another, which then affects the allowable RoR.17

We therefore estimate specifications with utility fixed effects and scale variable costs by the

17Our structural model accounts for these differences by dividing electricity rates by the utility’s benchmark
electricity rate, r0.
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utility’s size, measured in different ways.

Second, our principal regressor, fuel and import costs, is a potentially noisy measure

of the utility’s true costs, reflecting optimizing decisions given idiosyncratic unobservables.

This is an issue because our dependent variable—utility profits—subtracts our measure of

costs from revenues, which may mechanically create a negative relationship between profits

and measured costs. We therefore also estimate instrumental variable specifications. During

our time period, fracking reduced natural gas fuel prices, which affected utility costs inde-

pendently from their contemporaneous decisions. We exploit this variation with a shift-share

instrument: we instrument for fuel and import costs with the current state-level natural gas

fuel price interacted with the share of the utility’s generation from CCNG in the first year

the utility appears in our data (generally 2006).

Table 1 presents the results of these regressions. Starting with panel (a), all the spec-

ifications report negative coefficients on cost, and these coefficients are always statistically

significant with utility fixed effects. We believe that the regressions with fixed effects more

plausibly recover causal relationships, since they do not compare costs across utilities, which

we view as inappropriate. In terms of magnitudes, from the first fixed effects regression (with

TV C as the principal regressor), a 10% increase in TV C is associated with a 2.5% decrease

in variable profits per MW of capacity at the mean.

Turning to panel (b), the IV results all show that our instruments have sufficient power.

The results without utility fixed effects have a counterintuitive sign, but, as above, we view

the utility fixed effects results as more appropriate. The IV results with fixed effects report

negative and statistically significant coefficients, with similar magnitudes to those in panel

(a).

These results use revenue data to show that utilities earn higher rates of return when

they decrease variable costs. This is consistent with our model assumption that the regulator

uses incentive regulation to keep consumer rates low and with Table 3 of Dunkle Werner and

Jarvis (2025).18

18On-Line Appendix A3 investigates this hypothesis using Regulatory Research Associates’ rate hearing
data. These data support our main finding that profits rise when variable costs decrease, though through
the rate base and not the stated RoR.
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Table 1: Regressions of Rate of Return on Total Variable Cost Measures

Dependent Variable:
Variable Profits per Unit Capacity (Mil. $/MW)

Panel (a): Ordinary Least Squares
Principal Regressor:

Variable Costs (Bil. $) −0.016 −0.044
(0.004) (0.006)

Variable Costs per −0.246 −0.421
Capacity (Mil. $/MW) (0.063) (0.039)

Variable Costs per High −0.115 −0.581
Load (Mil. $/MWh) (0.090) (0.046)

Panel (b): Instrumental Variables
Principal Regressor:

Variable Costs (Bil. $) 0.057 −0.030
(0.019) (0.011)

Variable Costs per 0.983 −0.233
Capacity (Mil. $/MW) (0.340) (0.081)

Variable Costs per High 0.686 −0.257
Load (Mil. $/MWh) (0.193) (0.088)

First stage F statistic: 39.1 155.2 30.9 139.6 159.5 182.8

Utility FE N Y N Y N Y

Note: Each column in each panel presents regression results from a separate regression on our
analysis data, with standard errors in parentheses. Variable costs include fuel and import costs.
Variable profits are revenues net of these variable costs. High load is the 95th percentile of hourly
load by utility-year. IV regressions instrument for the independent variable with time-varying
natural gas fuel prices interacted with the share of the utility’s generation from CCNG in the
first year the utility appears in the data. Standard errors cluster at the utility level.

4.2 Evidence on Uneconomical Coal Usage

We next explore our assumption that regulated utilities face incentives to operate coal capac-

ity out of dispatch order to increase its contribution to the rate base and thus their profits.

We examine this hypothesis by exploring the extent to which utilities choose to generate

with coal when its costs exceed the electricity import price.

However, it is difficult to understand the relative costs of using coal in any hour, in

part because ramping and O&M costs are not observed. We address this issue with a
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specification that is similar to a triple-difference approach. First, we investigate coal usage

levels when its fuel costs are above or below import prices. Second, we examine how this usage

differs between regulated and restructured utilities.19 Finally, we compare these differential

responses for CCNG and coal.

Specifically, we examine hourly regressions of CCNG or coal generation on whether the

fuel-technology is out-of-dispatch order interacted with regulatory status. Our hypothesis

is that, because regulated utilities face an incentive to run legacy technology even when it

is not cost-effective, they may use coal when it is otherwise uneconomical. This incentive

will not hold for restructured utilities or CCNG plants. Although utilities owning coal in

restructured U.S. states may face similar ramping and O&M costs, they are not subject to

used-and-useful considerations. Similarly, we believe that CCNG usage—even for regulated

utilities—is not constrained by a used-and-useful standard during this time period. These

factors make restructured U.S. states and CCNG plants useful comparison groups.

Table 2: Out-of-Dispatch-Order Generation by Regulatory Status

1{Fuel-Technology On} 1{Plant On}
CCNG Coal CCNG Coal

1{Fuel Cost > Price} −0.211 −0.042 −0.116 −0.042
(0.028) (0.031) (0.018) (0.009)

1{Fuel Cost > Price}× Not Regulated 0.014 −0.119 −0.010 −0.048
(0.027) (0.050) (0.020) (0.020)

Unit of Observation Utility-Fuel-Hour Plant-Hour
R2 0.131 0.090 0.423 0.290

Note: Regressions are linear probability models on Eastern Interconnection data and include
both regulated and restructured electric utilities. The first two columns use data aggregated to
the utility-fuel-technology-hour level where the fuel cost is for the lowest cost plant in that cell.
These regressions include U.S. state and year fixed effects and are clustered at the U.S. state
and year level. The final two columns use data at the plant-hour level, include plant and year
fixed effects, and cluster at the plant and year level. “Not Regulated” utilities are those in
restructured U.S. states while “Not Regulated” plants are IPPs.

Table 2 presents the results of these regressions. For both CCNG and coal, we estimate

two specifications, one where the unit of observation is the utility-fuel-technology-hour and

19We use our merged EIA/EPA dataset (before we merge in the FERC data) for these results. For both
regulated and restructured markets, we define utilities using the EIA’s definition.
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the other where it is the plant-hour.20 Focusing first on the utility-level regressions, which

are in columns 1 and 2, utilities in both regulated and restructured U.S. states respond

similarly and strongly to low import prices by decreasing their CCNG generation, with a

21.1 percentage point decrease in regulated U.S. states and a 19.7 percentage point decrease

in restructured U.S. states. However, the results are different for coal generation. Utilities

in restructured U.S. states reduce their coal generation by 16.1 percentage points, but regu-

lated utilities only decrease generation by a statistically insignificant 4.2 percentage points.

Columns 3 and 4—which are at the plant-hour level—reinforce these results. CCNG gen-

eration responds to low import prices in both regulated and restructured U.S. states. Coal

generation responds significantly more for restructured plants than regulated ones, although,

unlike in column 2, both coal coefficients are statistically significant. Table 2 supports the

hypothesis that regulated utilities gain value from generating with coal even when it is

out-of-dispatch order.

Figure 3: Generation When Fuel Cost > Price in Regulated Versus Restructured Markets

(a) Out-of-Dispatch-Order Generation
for Coal and CCNG
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(b) Coal Out-of-Dispatch-Order Generation
vs. Utility Ownership Share
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Note: Panel (a) presents coefficients on coal and CCNG out-of-dispatch-order generation by
U.S. state. Panel (b) plots the fraction of generation owned by electric utilities against the same
coal coefficients. In both panels, green U.S. states are regulated and red U.S. states are restruc-
tured.

Figure 3 presents estimates from similar regressions to columns 3 and 4 of Table 2 on

20For our utility-level regressions, we use the minimum fuel cost across all plants of that fuel-technology
type as our measure of fuel cost. For the plant-level regressions, we exclude IPP plants in regulated U.S. states
and non-IPP plants in restructured U.S. states from the data.
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out-of-dispatch-order generation, but allowing the coefficients to vary by U.S. state. Panel

(a) shows the out-of-dispatch-order coefficients for coal (vertical axis) and CCNG (hori-

zontal axis). We plot regulated U.S. states in green and restructured U.S. states in red.

Out-of-dispatch-order coal generation is clearly related to regulatory status while there is

little pattern for CCNG. The six U.S. states with largest response of coal usage to low mar-

ket prices—which are at the bottom of the graph—are all restructured U.S. states. This

reinforces the idea that regulatory status significantly impacts coal usage decisions.

Panel (b) of Figure 3 plots the share of generation owned by electric utilities in the

U.S. state (as reported by Shwisberg et al., 2020) against the same coal coefficients as in

panel (a). Regulated U.S. states generally have utility ownership shares over 60%, whereas

all restructured U.S. states but one have utility ownership shares under 30%. The best fit

line shows that coal’s responsiveness to low wholesale prices correlates strongly with utility

ownership share.

5 Empirical Model and Estimation Approach

This section discusses how we extend Section 3 to take the model to data, our accompanying

estimation approach, and identification of our model, with further details in On-Line Ap-

pendix A4. Our empirical approach separates the simple model into two parts. We estimate

a model of capital investment and retirement to recover the costs of these actions. This

model is dependent on the state-contingent variable profits for each utility. We therefore

also estimate a model of utilities’ operations decisions in which we recover regulatory incen-

tives, operations costs, and ultimately variable profits across long-run investment/retirement

states. We estimate both models with full-solution approaches and thus compute counter-

factual outcomes with the same techniques.

Broadly, identification of our parameters follows from the intuition that the observed

sharp decline in natural gas fuel prices had different implications across utilities, depending

upon the utilities’ capital mixes. For instance, consider a utility with substantial coal and

CCNG capacity. Early in our sample, when natural gas prices were high, this utility would

have generated with coal first, and only used natural gas in hours with high load. After
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natural gas prices fell, the utility faced conflicting incentives: it wanted to run natural gas

capacity to keep fuel costs low and be allowed a higher RoR, but it also wanted to use—

and not retire—coal plants to increase its rate base. This contrasts with a utility with

predominantly coal capacity that needed to meet load with coal even after natural gas prices

fell. By comparing the investment/retirement and operations decisions across utilities and

over time, we are able to identify the structural parameters.

We now discuss the investment/retirement and operations models in turn.

5.1 Investment and Retirement Model

Extending our model in Section 3 to fit the empirical context, we allow for an infinite

horizon and discounting, fixing an annual discount factor of β = 0.95. We let each period,

t ≥ 1, represent three years, consistent with the long time horizons necessary to build or

decommission fossil fuel plants. We assume that the utility only makes decisions for 10

periods (30 years) and that the long-run state remains fixed after that point since we view

predictions after this time horizon as overly uncertain.21

We extend our model to three fuel-technology types, adding NGT to coal and CCNG.

We allow for each fuel-technology to contribute to the rate base at different levels, αCOAL,

αCCNG, and αNGT , respectively. Unlike in our simple model, we assume that investments or

retirements take one period to be realized.

We treat each of the three fuel-technologies differently, reflecting their characteristics

during our sample period. As in Section 3.2, we assume that the utility chooses only in-

vestment for CCNG capacity and only retirement for coal capacity. Letting x denote the

investment amount, we specify xCCNG
t ≥ 0 and xCOAL

t ≤ 0. We make these choices since

the vast majority of entry decisions are for CCNG capacity, and the vast majority of exit

decisions are for coal capacity.22 Finally, to limit the complexity of our model, we do not

endogenize the choice of NGT capacity, which is fairly stable over our sample period.

Given the extensions to our model, the utility makes optimizing investment/retirement

21We found that our estimation results are essentially unchanged with a 15-period decision horizon.
22While we observe a few instances of coal entry in the data, the decision to undertake these investments

largely occurred before our sample period.

24



decisions based on a high-dimensional state, Ω, and earns state-contingent variable profits,

π∗(Ω). In principle, Ω can include any factor that affects expected current or future profits.

For tractability, we restrict the time-varying component of Ω to t itself and three additional

variables. These include coal and CCNG capacities, both of which vary deterministically

with the utility’s decisions, Kf
t+1 = Kf

t + xft , and natural gas fuel price, pNG
t , which we

assume follows an exogenous AR(1) process, estimated in an initial step with average period

natural gas fuel prices from 2003-17. Beyond the time-varying state, Ω includes a number

of fixed state variables (that vary across utilities): heat rates for all fuel-technologies, NGT

capacity, coal fuel price,23 the comparison electricity rate, r0, and hourly import supply

curves and load (discussed in the next subsection).

Building on Ryan (2012) and Fowlie et al. (2016), we extend the Section 3 model, which

had linear costs, to allow each fuel-technology’s investment costs to include time-invariant

fixed and quadratic terms and a stochastic cost shock:

InvCostsf (xft |ε
f
t ) = δf01{x

f
t ̸= 0}+ xft (δ

f
1 + xft δ

f
2 + σfεft ), (4)

where (δf0 , δ
f
1 , δ

f
2 , σ

f ) for f ∈ {COAL,CCNG} are parameters to estimate. Unlike in Ryan

(2012) and Fowlie et al. (2016), where the stochastic shock is on the fixed cost of investment,

we use a more recent specification where each period’s shocks, εft , increase marginal invest-

ment costs and are distributed i.i.d. with a standard normal density (Kalouptsidi, 2018;

Caoui, 2023). This approach generates a distribution of capacity changes in any state, which

allows us to match the data variation.

Focusing on the timing of the investment decisions, each period the utility first observes

the natural gas fuel price shock. It then observes its shock to the coal marginal cost of

retirement, εCOAL
t , and makes its coal retirement decision. Next, it observes its shock to the

CCNG marginal cost of investment, εCCNG
t , and makes its CCNG investment decision. It

then earns variable profits over the three-year period (which are a function of its state at the

time of the coal investment decision). At the end of the period, capacity adjusts to reflect

investment and retirement decisions.

23The state fixes coal fuel prices since their mean within-U.S. state standard deviation is much smaller
than for natural gas and modeling their variation would dramatically increase computational time.
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We estimate the time-invariant terms, δf0 , δ
f
1 , δ

f
2 , and standard deviations of unobserv-

able components of investment and retirement costs, σf , with a GMM nested fixed-point

estimator. Our coal moments include the difference between the data and the model in

the retirement amount and its square conditional on a non-zero amount and indicators for

non-zero retirement and whether retirement exceeds certain thresholds. We also interact

each of these terms with the utility’s starting capital. Finally, we include the variance of the

retirement amount. For CCNG, we include the analogous moments, but for investment.

We estimate the structural parameters with a search over candidate parameters to min-

imize the moment condition. For each candidate parameter vector, we solve the invest-

ment/retirement dynamic programming problem and find the moment values. Our moment

function uses an asymptotically efficient weighting matrix, which we construct by bootstrap-

ping the data to solve for the variance of the moments and then taking the inverse of the

variance.

For each potential parameter vector, we solve the value function and calculate the distri-

butions of investment and retirement decisions by discretizing the continuous investment/re-

tirement choices into a finite grid of 20 levels.24 We use the Gowrisankaran and Schmidt-

Dengler (2025) (GSD) algorithm, which provides a computationally quick way of evaluating

the probability that the utility would choose each grid point and accompanying value func-

tion, allowing for a large number of choices and for some of the choices never to be chosen,

which occurs in our context. This approach allows us to estimate investment/retirement

over time discretized investment levels as in an ordered choice model based on a single cost

shock, using the probability of the chosen investment/retirement action at the observed state

in the moment condition.25 GSD reduces the implementation costs of a nested fixed-point

estimation relative to simulation by making the moment condition continuous in the struc-

tural parameter vector. On-Line Appendix A4.1 provides more details, including Bellman

equations.

24We experimented with increasing the number of investment/retirement levels in our GMM estimator
but found that our results were not sensitive to this change.

25A common alternative approach specifies an i.i.d. shock to each candidate choice in a multinomial logit
model (e.g., Chatterjee et al., 2023). With i.i.d. shocks, agents will substitute to the most commonly chosen
alternative rather than similar choice levels (Gowrisankaran and Schmidt-Dengler, 2025). This is unrealistic
in our setting.
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Identification of the investment and retirement cost parameters comes from the extent to

which utilities choose to retire coal or invest in CCNG given differences in expected profits

across these states. For instance, utilities’ delay in CCNG investment—even when profits

are potentially higher with additional capacity—identifies the average investment costs for

CCNG. The amount of heterogeneity in utilities’ investment and retirement decisions given

similar differences in expected profits conditional on an action identifies the standard de-

viation of the investment and retirement cost shocks. Declines in natural gas fuel prices,

together with heterogeneity across utilities in their capital mixes, provide variation in profit

differences across states that identify the investment/retirement parameters.

5.2 Operations Model

Investment and retirement decisions in each period depend critically on period variable profits

π∗ that the utility would earn at any long-run capacity and fuel price state. Although a

period in our investment/retirement model represents three years, we estimate π∗ separately

by utility-year to use annual revenue, capacity, and fuel price data.26 While our simplified

model in Section 3 specified that load was fixed within a period, we now assume that each

period is comprised of hours, h ∈ {1, . . . , H}, and that load, ℓh, while remaining inelastic,

varies across hours. The utility must meet this load at each hour with generation from each

fuel-technology type, qfh , and—also in a generalization relative to Section 3—imports from

outside of its service area, qmh , which we combine into q⃗. Note that Qf =
∑H

h=1 q
f , for each

fuel-technology type f .

As in our simple model, we do not model a used-and-useful standard for CCNG capacity

because it would be difficult to credibly identify. Specifically, early in our sample, CCNG

was only intended to generate in hours with high load and, therefore, would not have been

held to a similar used-and-useful standard to coal. Later, once natural gas fuel prices had

fallen, CCNG was typically the cheapest option, and hence there would be little potential for

the out-of-dispatch-order generation discussed in Section 3.2. Thus, αCCNG will incorporate

the average effect of any used-and-useful standard for CCNG. We similarly do not model a

26For ease of notation, in this subsection we suppress the t subscript and refer to a year as a period, though
our investment/retirement estimation aggregates three years into a period.
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NGT used-and-useful standard, since NGT serves a different purpose.27 Compared to our

simple model, we therefore add an additional term to the rate base from (3), αNGT ×KNGT .

The utility faces hourly inverse import supply curves, Sm
h (qmh ), when making operations

decisions. We assume that the utility imports electricity from various sources with separate

contracts, and hence it pays different sources different amounts. Following the literature

(Bushnell et al., 2008; Gowrisankaran et al., 2016; Reguant, 2019), we let the utility’s im-

port costs be the integral under the inverse supply curve rather than the maximum import

price times quantity imported. We estimate each utility’s hourly import supply curve using

generation, load, weather, and price data. On-Line Appendix A4.3 provides details of the

import supply curve estimation.

The utility chooses q⃗ to maximize period variable profits, which, as in (1), are its RoR on

its rate base, s×B. However, TV C now includes fuel, operation and maintenance (O&M),

and ramping costs for each fuel-technology and import costs:

TV C(q⃗) =
∑
h

[∑
f

[
qfh × (heatf × pf + omf ) + ρf ×Ramp(qfh−1, q

f
h)
]
+

∫ qmh

0

Sm
h (q)dq

]
.

Each marginal fuel cost is the product of a constant heat rate, heatf , and a fuel price per

MMBtu, pf , which can vary across years. We model O&M costs, omf , as constant per

MWh of generation, and ramping costs, ρf , as constant per MW of generation increase, i.e.,

Ramp(qfh−1, q
f
h) = qfh − q

f
h−1 in the case where qfh > qfh−1 and zero otherwise. We assume that

NGT plants do not have ramping costs, so ρNGT = 0.

From the operations decisions, we estimate the cost parameters ρCOAL, ρCCNG, omCOAL,

omCCNG, omNGT , the regulatory penalty for high electricity rates, γ, each fuel-technologies’

rate base contributions, αCOAL, αCCNG, and αNGT ,28 and the used-and-useful terms, µ1 and

µ2,

The utility’s optimization problem is now similar to (3), but with the addition of multiple

sources of costs, multiple hours in the year, imports, and NGT capacity. The existence

of ramping costs creates a dynamic linkage between hours, which means that we need to

27NGT plants often serve as “peakers,” which would not need to prove usefulness via high usage rates.
28We do not explicitly measure depreciation due to data limitations. Hence, the α parameters capture the

average contribution of one MW of capital of each fuel-technology type to the rate base B in dollars.
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consider profit maximization jointly across hours of the year. To simplify the operations

decision problem, we assume that the utility observes all hourly loads and import supply

curves at the beginning of the year.

We estimate the structural parameters via a nested fixed-point indirect inference ap-

proach (Gouriéroux et al., 1993; Smith, 1993). This involves a non-linear search to find the

parameters that most closely match coefficients from regressions run on model-simulated

data to those run on actual data. The solution of our model depends on r0, which cap-

tures differences in fixed characteristics across utilities, such as size, that will influence the

regulator’s perception of reasonable electricity rates. We define r0 as the electricity rates—

measured as revenues divided by load—in the first year the utility appears in the data, which

allows for a consistent scale of γ across utilities.29

To compute the model solution for a given structural parameter vector, we conceptualize

this problem as a discretized finite-horizon Bellman equation. Without loss of generality, our

model allows us to specify that the utility receives its only payoff, the regulatory profit, in the

terminal hour. This payoff is an implicit function of costs and coal usage, QCOAL. Ramping

costs further imply that TV C depends on the hourly sequence of coal and CCNG generation.

Thus, in any hour, h, the state for the Bellman equation includes the cumulative TV C and

coal usage prior to this hour (which will eventually determine profits), last hour’s coal and

CCNG generation (which affect ramping costs), and the hour of year h. These five variables

are sufficient for the utility to evaluate the impact of its actions on its state-contingent value

starting at hour h+ 1.

Having solved for the state-contingent value functions backwards to the first hour of the

year, we then forward simulate—using the calculated state-contingent optimal policies—to

recover the optimal action path. Specifically, we start in the first hour and record the optimal

generation choices. We then use these choices to update the state for the next hour, which

in turn allows us to record the state-contingent optimal actions for that hour. Iterating

through hours of the year, we obtain the utility’s optimal operations decisions.

Solving for optimal operations decisions results in simulated hourly and annual data on

29In most cases, this will be 2006, before natural gas prices declined, and hence during a period when
utilities’ optimal generation choice was simpler.
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which we run our indirect inference regressions. Indirect inference is a form of generalized

method of moments (GMM), which specifies equilibrium levels and correlations in the data

we would most like the model to match. For this reason, indirect inference regressions do

not require a causal interpretation. We choose indirect inference regressions that we believe

best reflect the important equilibrium features of the data.30

We run indirect inference regressions at both the utility-hour and utility-year level. We

summarize each of these sets of regressions here and include a more complete discussion in

On-Line Appendix A4.2. While identification of the structural parameters derives from all

of the indirect inference regressions together, we motivate particular regressions as aiding

identification of particular parameters. Fundamentally, much of the variation that identifies

these parameters will stem from the sharp decline in natural gas fuel prices, as discussed in

the beginning of Section 5.

At the hourly level, we regress generation by fuel-technology on a constant to match the

scale of generation of each fuel. Because utilities have an incentive to reduce costs, these

scales are particularly useful for identifying O&M costs. We also regress current generation

on lagged generation, controlling for current and future predictors of demand, separately

for coal and CCNG. These regressions help identify ramping costs, because the higher the

ramping costs the less the utility will change generation from hour to hour.

We also regress the log of the share of hourly generation from coal and CCNG that is

met by coal on quintiles of annual coal usage,31 the coal fuel price minus the natural gas

fuel price, their interactions, and utility fixed effects. We run an analogous regression for

CCNG. These regressions help us to understand the utility’s incentive to run coal out of

dispatch order, which identify coal usage’s contribution to the rate base. We would expect

that, to the extent that used-and-useful incentives bind, coefficients on coal quintiles—unlike

for CCNG—should exhibit an inverse U-shape, with the marginal incentive to use coal in

an hour being highest when the return to coal usage via the used-and-useful incentive is the

highest. However, this relationship may be confounded by the fact that the use of a fuel in

30An alternative estimator could match outcomes such as the rate base or the RoR between the simulated
model and the data. However, because these elements are conceptually hard to measure (Ernst and Hlinka,
2024a), we instead match observable outcomes that relate to them, notably revenues, generation, and fuel
and import costs.

31We define the quintiles of usage across all utility-years where the utility has positive coal capacity.
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a given hour also reflects the fuel’s overall value. To isolate hours where the incentive to

increase coal’s contribution to the rate base is most likely to affect generation, we limit our

regressions to hours where total load is between 75% and 125% of total capacity of the other

fuel-technology.

At the annual level, we regress an observable measure of variable profits—revenues net of

fuel and a measure of import costs—on a constant. We further regress this same measure on

capacity by fuel-technology and coal capacity interacted with coal usage. These regressions

help recover the conversion between MW of each fuel’s capacity and their relative contribu-

tions to the rate base, αCOAL, αCCNG, and αNGT . These regressions also combine with the

hourly regressions to help identify the coal usage incentives, µ1 and µ2. Finally, we regress

a measure of the RoR on fuel and import costs and utility fixed effects to help identify γ,

which indicates how the RoR responds to changes in electricity rates.

There are two sets of parameters that are jointly identified. Both the α parameters and

γ determine how generation capital translates into dollars of allowable return. Similarly,

αCOAL, µ1, and µ2 combine to translate coal capital and usage into the rate base. For both

of these sets, we identify them jointly with multiple indirect inference regressions.

6 Results and Counterfactuals

This section begins by presenting our estimation results. Section 6.2 presents short-run coun-

terfactuals that evaluate the impact of alternate regulatory policies on operations decisions,

holding capacity constant. Section 6.3 then explores long-run counterfactuals that simulate

an energy transition over a 30-year horizon following a sudden fall in natural gas prices.

6.1 Estimation Results

Table 3 presents estimates and standard errors for the structural parameters estimated using

operations decisions.32 Focusing first on how much a change in a utility’s capacity would

32Table A1 in On-Line Appendix A1 displays how simulations of our operations model compare to observed
data and Table A2 in the same appendix displays how the indirect inference coefficients estimated on the
data match those estimated on the simulated data. Overall, we find that the model replicates patterns
in the data reasonably well, including usage across CCNG and coal usage quantiles. However, the model
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Table 3: Coefficient Estimates for Operations Model

Parameter Notation Estimate Std. Error

Penalty for High Electricity Rates γ 0.620 (0.04)
CCNG Capacity Weight in Rate Base (Mill. $/MW) αCCNG 0.229 (0.07)

Coal Relative Weight in Rate Base αCOAL

αCCNG 1.144 (0.18)
Coal Usage Logit Base µ1 -0.612 (0.13)
Coal Usage Logit Slope µ2 6.229 (0.13)

NGT Relative Weight in Rate Base αNGT

αCCNG 1.791 (1.24)

Ramping Cost for Coal (100$/MW) ρCOAL 0.477 (0.08)
Ramping Cost for CCNG (100$/MW) ρCCNG 0.386 (0.19)
O&M Cost for Coal ($/MW) omCOAL 12.894 (0.76)
O&M Cost for CCNG ($/MW) omCCNG 8.820 (5.46)
O&M Cost for NGT ($/MW) omNGT 44.627 (45.51)

Note: Structural parameter estimates from indirect inference nested fixed point estimation.
All values are in 2006 dollars.

affect variable profits—which is primarily determined by both the γ and α parameters33—we

find that, across sample observations, a 10% increase in TV C would decrease variable profits

by 1.96%, while a 10% decrease in TV C would increase variable profits by 2.05%, which is

comparable to the 2.5% change predicted by the reduced-form fixed effects specification in

Table 1. We find that a 500 MW change in the rate base, which is roughly the mean CCNG

plant capacity, would change variable profits by 5.5% on average across our sample.34

We next turn to the α and µ parameters, which determine how each fuel-technology

contributes to the rate base. The αCCNG estimate shows that each MW of CCNG capacity

increases the rate base by $229,000. When fully used, each MW of coal capacity contributes

αCOAL

αCCNG = 1.144 times as much as CCNG.35 However, when coal is not fully used, the µ1

and µ2 parameters of the used-and-useful function determine the extent to which each coal

MW contributes to the rate base. Both parameters are statistically significant, and unused

over-predicts overall revenues and coal usage.
33Recall that we do not have data on the rate base and hence the α parameters are not separately identified

from γ.
34Table A3 in On-Line Appendix A1 presents estimates where γ can vary based on whether the utility

is subject to market dispatch—i.e., if the utility is in MISO or SPP—because market dispatch may allow
regulators to better observe the costs of alternative actions and thus potentially lead to more price discipline.
We find coefficients that are very similar to Table 3, though many lose statistical significance.

35We estimate the contribution of coal and NGT capacity to the rate base relative to CCNG.
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coal capacity contributes 40% as much to the rate base as CCNG.36 Finally, NGT capacity

contributes to the rate base 79% more than a unit of CCNG capacity, though the coefficient

αNGT

αCCNG is not significant.

Turning to other operations costs, a 100 MW coal ramp in one hour—which corresponds

to increasing output by 15% for a coal plant with mean capacity—would cost the utility

$4,770, while the figure is lower for a CCNG ramp at $3,860. The coal estimates are between

the Reguant (2014) estimates for ramping a unit that is already generating and a startup.

They are lower than Borrero et al. (2023), but pertain to ramping across plants in a utility

rather than for a specific generator as in that paper. We estimate statistically significant

O&M costs of $12.89/MWh for coal capacity. This figure is similar to Linn and McCormack

(2019) and Borrero et al. (2023). Our O&M costs for CCNG and NGT are $8.82/MWh and

$44.63/MWh respectively, though neither is statistically significant. For CCNG, this number

is somewhat higher than the reported variable O&M costs for single-shaft and multi-shaft

CCNG turbines of $2.67 and $1.96, respectively (Energy Information Administration, 2022).

Table 4: Coefficient Estimates for Investment and Retirement Decisions

Quadratic Model Linear Model

Fixed Cost of Coal Retirement (1e8 $) −1.294 (0.898) −1.071 (2.488)
Linear Coal Cost (1e6 $/MW) 1.465 (1.011) 1.643 (0.749)
Quadratic Coal Cost (1e3 $/MW2) 0.073 (0.111) —
Coal Shock Standard Deviation (1e6 $/MW) 0.860 (0.638) 0.564 (0.614)

Fixed Cost of CCNG Investment (1e8 $) −0.124 (0.426) −0.034 (5.941)
Linear CCNG Cost (1e6 $/MW) 2.797 (0.488) 2.820 (1.457)
Quadratic CCNG Cost (1e3 $/MW2) 0.089 (0.073) —
NGCC Shock Standard Deviation (1e6 $/MW) 0.442 (0.509) 0.020 (0.592)

Note: Structural parameter estimates from GMM nested fixed point estimation.

Column 1 of Table 4 presents our primary investment/retirement parameter estimates,

which have quadratic costs.37 The fixed costs of adjusting coal or gas capacity are small

36Figure A1 in On-Line Appendix A1 displays the impact of coal capacity on the rate base by usage level
relative to the impact of CCNG capacity.

37Figure A2 in On-Line Appendix A1 compares the CDFs of coal capacity retirement and CCNG capacity
investment for the simulated model and the data, showing that the model fits the data reasonably well.
The correlation between the data and the model is 0.966 for coal retirement level probabilities and 0.997 for
CCNG investment level probabilities.
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and not statistically significant,38 while the marginal adjustment costs are convex, with

positive quadratic terms. A 250 MW CCNG investment costs $692 million, while a 250

MW coal retirement yields $491 million in scrap value, both with the mean cost shock. The

investment/retirement cost shock standard deviations are $442,000 per MW for CCNG and

$860,000 per MW for coal. Column 2 of Table 4 presents parameter estimates with linear

investment/retirement costs. The results are largely similar to the quadratic model, although

coal retirement yields significantly positive scrap values.

Our estimates of the mean capital cost of CCNG investment are slightly larger than

the high end of the capital costs reported in Energy Information Administration (2022). We

would expect our estimates to be higher since they are based on revealed preferences and thus

include substantially more than just capital costs. For instance, they also include permitting

costs, the costs of the PUC approval processes, and any additional regulatory costs (or

avoided regulatory costs in the case of coal capacity retirement). Moreover, investments in

our model generally occur when the utility receives a favorable draw of the CCNG cost shock,

resulting in lower realized costs than the mean. Similarly, for coal retirement, we estimate

large scrap values, but these estimates include avoided investments in coal plants that would

have been necessary to keep these plants running (e.g., mercury abatement technologies as

in Gowrisankaran et al., 2025).

6.2 Operations Counterfactuals

Table 5 presents counterfactuals that evaluate the impact of regulation on operations de-

cisions, using historical capacity levels and natural gas fuel prices. For each utility-year

in our analysis sample, we report how baseline model outcomes would vary from those of

the social planner, cost minimizer, and regulated utilities faced with a carbon tax, different

used-and-useful incentives, and alternative electricity rate penalties,

Both the social planner and cost minimizer minimize variable costs, but the social plan-

ner perceives these costs as including a $190/ton carbon tax.39 For these counterfactuals,

we focus on generation and carbon costs rather than revenues or profits, which are not

38CCNG investment costs are positive when investment exceeds 4.4 MW, a negligible size.
39We assume that electricity imported from restructured markets has the U.S. average carbon intensity.
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well-defined without additional assumptions, since the social planner and cost minimizer

solutions do not result from a regulatory process. A utility faced with no used-and-useful

standard will have the same short-run incentives as the cost minimizer, but earn regulated

utility profits. Finally, our carbon tax counterfactual assumes that the government rebates

exogenous, predetermined amounts as lump sums to the utility and/or individuals. We take

this approach because, although the regulator could adjust the rate penalty function in re-

sponse to carbon taxes or rebate collected tax revenue, either of these modifications could

change utility incentives in more complex ways.40

Table 5: Operations Counterfactuals

Total Var.
Coal CCNG Production Carbon Electricity Variable
Usage Usage Costs Costs Rates Profits
(%) (%) (Mil. $) (Mil. $) ($/MWh) (Mil. $)

Baseline 71.73 8.85 1,037 4,960 77.58 1,213

Social Planner 3.05 44.41 1,234 2,696 – –

Cost Minimizer 37.62 26.83 910 4,008 – –

Carbon Tax w/ RoR 55.03 26.76 1,251 4,421 224.18 663

No Usage Incentive, µ2 = 0 37.62 26.83 910 4,008 60.25 890

2× Usage Incentive, µ2 55.71 15.00 984 4,481 76.17 1,233

Half Rate Penalty, γ 78.72 8.33 1,067 5,170 83.41 1,337

1.5× Rate Penalty, γ 67.63 9.68 1,022 4,837 73.26 1,117

Note: Table presents counterfactual simulations of operations decisions at estimated parameter
values. The social planner minimizes costs including a $190/ton carbon cost. The cost minimizer
has the same incentives but does not value carbon externalities. The next four counterfactuals
change regulatory incentives as indicated. The final counterfactual preserves the ROR regulatory
structure, adding the $190/ton cost to TV C. Counterfactuals use every utility-year in sample and
hold capacities and natural gas fuel prices fixed at their observed, historical levels.

The first row of Table 5 presents outcomes from the baseline model as a point of compar-

ison. The second row shows that the social planner reduces coal usage from 72% to 3% of

capacity—a 96% reduction—by substituting to other sources. Specifically, CCNG capacity

usage increases by a factor of five. This results in an increase in variable production costs

of approximately $200 million, but also $2.3 billion lower carbon costs. The cost minimizer,

40On-Line Appendix A5 provides further counterfactual implementation details.
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presented in the third row, also uses 48% less coal than in the baseline, resulting in $1.0

billion lower carbon costs.

The fourth row shows that when carbon taxes are added to current regulated utilities,

carbon costs only fall by about $500 million relative to the baseline. This is 41% as much

as the $1.3 billion carbon cost savings from imposing carbon taxes on the cost minimizer

(the difference in carbon costs between the third and second rows). The regulated utility

also passes through most of the carbon costs to consumers,41 resulting in electricity rates

nearly tripling, from $77.58/MWh in the baseline to $224.18/MWh. Despite this, carbon

taxes cause regulated utility variable profits to drop by over $500 million, which may need to

be offset by lump-sum transfers to cover other costs such as transmission and distribution.

The remaining rows of Table 5 present modifications of existing regulatory incentives.

We find that eliminating the usage bonus for coal—setting µ2 = 0—would cause regulated

utilities to engage in cost minimization over the short run but would reduce utility variable

profits by over $300 million, implying that RoR regulation may not be able to achieve cost

minimization without jeopardizing reliability.

Doubling µ2 allows the utility to demonstrate that coal is used and useful with less usage,

which might either increase or decrease the marginal incentive to use coal. Empirically,

doubling this incentive decreases coal usage by 22%, implying that, on average across our

sample, it allows utilities to demonstrate adequate usefulness with less usage. We next

simulate changing the penalty for high electricity rates. Halving the penalty results in 10%

more coal usage, while increasing it by 50% decreases coal usage by 6% relative to the

baseline. None of these three counterfactuals result in operations outcomes that are close to

the social planner or cost minimizing levels, but all have similar utility profits to the baseline.

6.3 Long-Run Counterfactuals

Changing regulatory incentives would have long-run ramifications for utilities’ investment

and retirement decisions, especially during an energy transition. Rather than using the

observed decline in natural gas prices from fracking, this section presents counterfactuals

41Carbon costs with the carbon tax are $4.4 billion while average utility revenues (not shown in Table 5)
increase from $2.25 to $6.33 billion with a carbon tax, representing a 92% pass through.

36



that examine the long-run impact of utilities with 2006 capacities suddenly facing the average

2018–20 natural gas fuel price. Specifically, this means imposing a price of $2.01/MMBtu—

instead of the 2006 price of $7.24—and the same fuel price evolution process we used in

estimation. This approach allows us to simulate an immediate energy transition, rather

than the observed, more gradual decline in natural gas prices.42

Figure 4: Capacity and Generation for Social Planner and Cost Minimizer

0
1

2
3

4
M

ea
n 

C
ap

ac
ity

 (G
W

)

0 1 2 3 4 5 6 7 8 9
3 Year Periods

(a) Capacity

0
20

40
60

80
M

ea
n 

G
en

er
at

io
n 

(T
W

h)

0 1 2 3 4 5 6 7 8 9
3 Year Periods

(b) Generation

Coal Baseline CCNG Baseline
Coal with Social Planner CCNG with Social Planner
Coal with Cost Minimizer CCNG with Cost Minimizer

Note: Figures present counterfactual simulations over 10 3-year periods starting with 2006 capac-
ities but imposing 2018–20 natural gas fuel prices. The social planner minimizes costs including
a $190/ton carbon cost. The cost minimizer has the same incentives but does not value carbon
externalities.

Figure 4 presents the results of these counterfactuals for the social planner and cost min-

imizer. Panel (a) shows that while baseline utilities only retire 53% of their coal capacity

over 30 years, the social planner and cost minimizer eliminate most coal capacity over this

horizon. Panel (a) further shows that CCNG investment is substantially higher in the base-

line than under either the social planner or the cost minimizer, demonstrating that the AJ

over-investment effect dominates the other incentives. From panel (b), in the first period,

the social planner effectively stops using coal while the cost minimizer only reduces coal

generation by 50%, relative to the baseline. The cost minimizer approaches the planner coal

42On-Line Appendix A6 presents three further sets of results: (1) counterfactuals that fix import quantities,
(2) counterfactuals that vary the rate penalty, and (3) the carbon costs of some counterfactuals in this section.
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generation level by the end of the 30-year horizon. Thus, during the energy transition that

we study, the primary benefit of carbon taxes relative to cost minimization would have been

in reducing coal generation rather than encouraging coal retirement.

Figure 5: Capacity and Generation for Social Planner, and Carbon Tax with Regulation
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Note: Figures present counterfactual simulations over 10 3-year periods starting with 2006 capac-
ities but imposing 2018–20 natural gas fuel prices. The social planner minimizes costs including
a $190/ton carbon cost. The carbon tax counterfactual leaves the regulatory structure unchanged
but adds the carbon cost to TV C.

Figure 5 presents counterfactuals that impose carbon taxes on the regulated utility. Mir-

roring the results in Section 6.2, the immediate effects of a carbon tax for a regulated utility

faced with an energy transition relative to the baseline are moderate. Comparing panel (b)

of Figure 5 to Figure 4, imposing a carbon tax on the regulated utility leads to an immediate

drop in coal generation only 34% as large as when one is imposed on the cost minimizer.

However, by the end of our 30-year horizon, imposing a carbon tax on a regulated utility

reduces coal capacity and generation by 68% and 77% respectively, relative to the baseline,

with imports largely replacing coal generation. These effects are larger than the effects of

a carbon tax on a cost minimizer from Figure 4. Thus, while carbon taxes achieve more in

the short run when imposed on the cost minimizer, in the long run they are more impactful

when imposed on the regulated utility.

Finally, Figure 6 considers alternative coal usage incentives. Setting µ2 = 0 causes coal
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Figure 6: Capacity and Generation for Different Coal Usage Incentives
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Note: Figures present counterfactual simulations over 10 3-year periods starting with 2006 ca-
pacities but imposing 2018–20 natural gas fuel prices. The counterfactuals change the coal usage
incentive, µ2, as indicated.

capacity to decrease 82% and coal generation to decrease 92% by the end of the 30-year

horizon relative to the baseline. The generation drop is slightly larger than for the cost

minimizer, though at the cost of over twice as much CCNG capacity, due to the AJ effect.

Doubling the coal usage incentive leads to slightly slower retirement of coal capacity, but

also lower generation with that capacity.43

Overall, we view these counterfactuals as illustrating how RoR regulation impacts energy

transitions and how regulation interacts with Pigouvian taxes. They show that legacy tech-

nology plays an important role in slowing energy transitions under RoR regulation. However,

they do not account for the continuous and ongoing shocks to technologies and environmen-

tal preferences that have been occurring in reality. We find that the AJ effect leads to

substantial over-investment in CCNG, which may slow the next transition to renewables.

Understanding the impact of RoR regulation on this next transition would require adjusting

parameters to reflect these evolving technologies.

43On-Line Appendix A6 shows that changing γ also does not come close to replicating the cost-minimizing
outcome.
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7 Conclusion

This paper develops and estimates a model of rate-of-return regulation and analyzes how

regulation performs when confronted with an energy transition. The regulator creates an

incentive structure that seeks to make electricity reliable and affordable. The utility opti-

mizes against this structure, facing a tension between keeping costs low and proving that

coal capacity is prudent by keeping its usage high.

We show with a simple theoretical model that regulation leads to the overuse of legacy

technologies and slows their retirement, but whether regulation leads to over- or under-

investment in the new technology is an empirical question. We find that regulation leads

to over-investment in CCNG capacity but over-use of coal capacity, and thereby higher

emissions than under cost minimization. Imposing carbon taxes on regulated utilities has

a smaller short-run impact on carbon costs than adding them to a cost-minimizer, but this

relative effect is reversed in the long-run as regulated utilities respond to carbon taxes by

retiring much more coal capacity in the face of an energy transition. Adjustments to the

regulatory structure mostly do not achieve the carbon cost reductions of the cost minimizer,

and those that do would require transfers to maintain resource adequacy. This is consis-

tent with the 2022 Inflation Reduction Act including substantial transfers for clean energy

investment rather than carbon taxes.

Our study has many limitations, including the fact that while we estimate the energy

transition from coal to CCNG, it is beyond our scope to estimate the transition to renewables

and storage. This is because we do not have enough variation in the data to understand

the extent to which regulators would react to CCNG becoming the legacy technology by

imposing a used-and-useful standard or how renewables and storage would contribute to the

rate base. Nonetheless, our results further suggest that to the extent there has been over-

investment in CCNG capacity, this may reduce future electricity affordability by requiring

ratepayers to fund stranded assets, and that usage incentives for combined-cycle capacity

are likely to further hinder the transition to renewables.
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On-Line Appendix

A1 Additional Tables and Figures Referenced in Main

Paper

Table A1: Operations Model Fit

Data Model
Annual Electricity Production (TWh):

Coal 16.11 21.03
CCNG 4.93 1.10
Imports 11.97 10.69

Mean Usage Share (%):
Coal 55.35 71.73
CCNG 34.60 8.85

Annual Costs (Millions of Dollars):
Coal Fuel 355.67 467.40
CCNG Fuel 159.22 29.38
NGT Fuel 27.46 49.13

Coal O&M 207.71 271.16
CCNG O&M 43.49 9.73
NGT O&M 21.80 30.23

Coal Ramping 12.69 11.80
CCNG Ramping 5.20 2.62
Imports 460.28 165.45

Total Variable Production Costs 1,294 1,037
Electricity Revenues (Dollars/MWh): 61.58 77.58

Note: Table presents key outcomes from the data and the model simulated at the
estimated parameter values for the analysis sample. In the “data” column, we use
observed operations decisions but calculate O&M and ramping costs using estimated
parameters and import costs using estimated import supply curves.
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Figure A1: Coal Contribution to Rate Base Relative to CCNG
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Figure A2: Model Fit for Investment and Retirement

(a) Coal Retirement Model Fit
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(b) CCNG Investment Model Fit
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Note: Figure displays coal retirement and CCNG investment CDFs in data and predicted by model
at estimated parameters.
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Table A2: Indirect Inference Coefficient Matching

Dependent Variable Regressor Analysis Data Simulated Data

Coal Usage:
Constant 0.553 (3.0e-4) 0.650 (4.0e-4)

CCNG Usage:
Constant 0.346 (4.0e-4) 0.056 (3.0e-4)

NGT Usage:
Constant 0.064 (3.0e-4) 0.117 (4.0e-4)

Variable Profits:
Constant 847.769 (65.055) 1538.328 (65.638)

Rate of Return Proxy:
Total Variable Cost -4.3e-5 (6.0e-6) -4.0e-6 (1.0e-6)

Variable Profits:
Coal Capacity (MW) −0.314 (0.045) −0.120 (0.030)
Coal Capacity x Usage 0.540 (0.082) 0.455 (0.043)
CCNG Capacity (MW) 0.255 (0.017) 0.264 (0.007)
NGT Capacity (MW) 0.136 (0.056) 0.361 (0.023)

Log Coal Share:
1{Coal First Quintile} × (MCCOAL −MCCCNG) 0.790 (0.086) 1.011 (0.043)
1{Coal Second Quintile} × (MCCOAL −MCCCNG) 1.050 (0.086) 1.730 (0.038)
1{Coal Third Quintile} × (MCCOAL −MCCCNG) 0.922 (0.087) 1.047 (0.036)
1{Coal Fourth Quintile} × (MCCOAL −MCCCNG) 1.493 (0.089) 0.663 (0.035)

Log CCNG Share:
1{CCNG First Quintile} × (MCCOAL −MCCCNG) −2.697 (0.004) 0.0 (0.002)
1{CCNG Second Quintile} × (MCCOAL −MCCCNG) −1.233 (0.005) 0.0 (0.002)
1{CCNG Third Quintile} × (MCCOAL −MCCCNG) −0.578 (0.004) −1.086 (0.001)
1{CCNG Fourth Quintile} × (MCCOAL −MCCCNG) −0.263 (0.023) −0.891 (.)

Coal Usage:
Lagged Coal Usage 0.975 (3.0e-4) 0.974 (3.0e-4)

CCNG Usage:
Lagged CCNG Usage 0.969 (4.0e-4) 0.959 (3.0e-4)

Note: Table presents matched regression coefficients estimated on the analysis data and data
simulated from the model. The quintiles are of utilization across all utility-years. MCCOAL and
MCCCNG are the marginal fuel costs (pf × heatf ) for coal and CCNG, respectively.
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Table A3: Operations Model Estimates With Heterogeneity Based on Market Dispatch

Parameter Notation Estimate Std. Error

Penalty for High Electricity Rates γ 0.622 (0.66)
Extra Rate Penalty with Market Dispatch Extra γ -0.008 (0.02)
CCNG Capacity Weight in Rate Base (Mil. $/MW) αCCNG 0.229 (0.05)

Coal Relative Weight in Rate Base αCOAL

αCCNG 1.136 (0.74)
Coal Usage Logit Base µ1 -0.612 (0.63)
Coal Usage Logit Slope µ2 6.217 (0.24)

NGT Relative Weight in Rate Base αNGT

αCCNG 1.815 (1.48)

Ramping Cost for Coal (100 $/MW) ρCOAL 0.476 (0.50)
Ramping Cost for CCNG (100 $/MW) ρCCNG 0.437 (1.01)
O&M Cost for Coal ($/MW) omCOAL 13.031 (3.09)
O&M Cost for CCNG ($/MW) omCCNG 8.688 (14.17)
O&M Cost for NGT ($/MW) omNGT 43.282 (101.85)

Note: Structural parameter estimates from indirect inference nested fixed point estimation.
All values are in 2006 dollars.
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A2 Data

A2.1 Construction of Analysis Data

Our analysis data include information principally from the EIA, the EPA, FERC, and two

ISOs (as obtained from Cicala, 2022a). To construct our analysis data, we need to merge

together information from these four sources at the utility-year and utility-hour levels and

in some cases also separately by fuel-technologies. The EIA data contain a plant ID and the

EPA CEMS data contain a facility ID. We merge these two datasets together using these

fields. The EIA Form 861 data contain a utility ID, which we use to collapse the data across

generators with the same fuel-technology within the same utility. The FERC Form 714 data

and the data we obtained from Cicala (2022a) include fields that are equivalent to EIA’s

utility ID field, which further allows us to merge these data to the combined EIA/EPA data.

The CEMS data also include information for the U.S. state within which each plant is

located. We used this information to convert each hour in these data to Eastern Standard

Time. In some cases, this required us to approximate the time zone by U.S. state; e.g., we

assumed that Kentucky is in the Eastern Time Zone and Tennessee is in the Central Time

Zone. The FERC data include the time zone at which each utility reports hourly load. We

used this reported information to convert each hour in these data to Eastern Standard Time.

In some cases, this required us to interpret utilities’ responses to the time zone question,

e.g., that “CEN” refers to the central time zone. We also converted hours in the FERC data

from daylight savings time to standard time.

We deflate all revenues and prices to January, 2006 dollars. We used the CPI net of food

and energy as our measure of inflation.

We retain in our sample only those utilities with at least five years of revenue and load

data. We also drop three utilities which reported excessive exports or very low capacity.

We collected nodal prices from ISOs and then constructed an average hourly wholesale

electricity price for each U.S. state and hour, downloaded from each ISO’s website.44 Given

that, by construction, most utilities do not have an ISO in their U.S. state, we assign utilities

44For IL, in which several ISOs are present, we take the LMPs from MISO, which is the most relevant
network for the regulated utilities south of IL (IA, KS, LA, MO, MT, and OK), many which are now part
of the MISO footprint.
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without an ISO in their U.S. state to their closest neighbor U.S. state. As we describe in

Section A4.3, to estimate import supply curves, we pair these wholesale electricity price data

with functions of average daily temperature at the U.S. state level, which we obtain from

PRISM.45

Finally, for our coal and gas fuel price measures, we aggregate the EIA Form 423 infor-

mation on annual contracted fuel prices by plant to the U.S. state-year level by taking the

mean, weighting by annual generation at each plant. Using these data at the U.S. state-year

level—rather than at the plant-year level—captures utilities’ opportunity cost of fuel.

A2.2 Summary Statistics on Data

Table A4 presents summary statistics of our analysis data at the utility-year level. The

first column presents overall averages and standard deviations while the second and third

columns present the values for the first year of our data (2006) and the last year (2017),

respectively. Mean coal capacity declines substantially over our analysis sample—from 3.57

GW to 2.70 GW per utility—while CCNG capacity increases from 0.79 GW to 1.99 GW per

utility. Average coal fuel prices are $2.18/MMBtu over our sample, and marginal costs of

coal generation are over $22/MWh over our sample. In contrast, natural gas fuel prices fall

from a high of $7.72/MMBtu in 2006 to only $2.93/MMBtu in 2017. This drop in fuel prices

caused CCNG marginal fuel costs to fall by 66% over our time period. Finally, our data

record information on 39 unique utilities. The average annual revenues of these utilities is

approximately $1.8 billion per year (in January, 2006 dollars), a figure that is fairly consistent

across years.

Table A5 presents similar summary statistics for our hourly-level analysis data. Utilities

in our data serve an average of 3.82 gigawatt hours of load per hour. In 2006, the majority

(65%) of this load was met by coal and only a small amount (12%) was met by CCNG.

By 2017, this situation had changed substantially, with 38% of load met by coal on average

and 33% met by CCNG. The remainder of load is generally met with imports,46 with NGT

45We downloaded these data from Prof. Wolfram Schlenker’s website, http://www.columbia.edu/

~ws2162/links.html.
46We allow exports to be represented as negative imports, so some utilities will have more generation from

Coal, CCNG, and NGT than total load in particular hours.
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Table A4: Summary Statistics from Data at Utility/Year Level

Overall 2006 2017

Capacity (GW):

Coal
3.34 3.57 2.70
(3.76) (4.19) (2.53)

CCNG
1.43 0.79 1.99
(3.16) (2.43) (3.93)

NGT
0.78 0.67 1.03
(1.02) (0.93) (1.21)

Fuel Price ($/MMBtu):

Coal
2.18 1.78 2.00
(0.76) (0.66) (0.59)

Natural Gas
5.05 7.72 2.93
(2.22) (0.96) (0.41)

Fuel Cost ($/MWh):

Coal
22.29 18.22 20.20
(7.63) (6.30) (6.35)

CCNG
37.60 63.48 21.80
(18.76) (11.74) (3.75)

NGT
68.50 101.95 60.64
(47.47) (21.92) (123.16)

Utility Revenues (Billions of Dollars):
1.81 1.76 1.75
(2.08) (2.25) (1.99)

Number of Unique Utilities:
39 38 38

Notes: The first column reports summary statistics over the entire 2006–
17 period. We report fuel costs conditional on a utility having positive
capacity for that fuel-technology. Standard deviations are in parentheses.
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Table A5: Summary Statistics from Data at Utility/Hour Level

Overall 2006 2017

Load Served (GWh):
3.82 3.89 3.80
(4.34) (4.44) (4.23)

Production (GWh):

Coal
2.03 2.53 1.44
(2.16) (2.80) (1.28)

CCNG
0.88 0.47 1.27
(1.57) (1.14) (2.01)

NGT
0.07 0.05 0.12
(0.20) (0.17) (0.28)

Import Quantity (GWh):
1.37 1.30 1.51
(2.35) (2.35) (2.29)

Import Price ($/MWh):
31.84 41.53 22.31
(19.47) (23.11) (8.03)

Number of Observations:
4,013,487 322,795 332,876

Notes: The first column reports summary statistics over the entire
2006–17 period. Standard deviations are in parentheses.
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consistently producing only a small percentage of load. This is consistent with many NGT

plants being used as “peakers” that only generate in times with high load. Finally, import

prices reflect the overall decrease in natural gas prices, displaying a 46% drop between 2006

and 2017.

A3 Reduced Form Evidence Using Rate Hearing Data

To better understand the impact of costs on the reported authorized rate base and RoR,

we obtained and integrated data from Regulatory Research Associates (RRA) with our base

analysis data. RRA provides cleaned rate hearing data, using information that it obtains

from public records. For our purposes, each RRA record focuses on one rate hearing case

and includes the utility name, hearing data, case type (vertically integrated or limited-issue

rider), and authorized rate base and return on rate base.47 We merged the RRA data with

our base data at the utility-year level, performing a hand match using the string variable

that records the utility names.

There are three central issues with using RRA data for our analysis. First, the coverage

of utilities in the RRA data is very incomplete. Many of the utilities in our base analysis

data are not investor-owned, which may explain why they are not in the RRA data.

Second, there are utilities in our base data that match to the RRA data but that do

not have hearing information in the RRA data for extended periods of time, some for over

20 years. This is important because, using these data, a rate hearing determines utility

profits until the next hearing. To minimize measurement error, we assumed that the hearing

decision applies to the utility until the next rate hearing, as long as the next hearing is within

seven years. Thus, we could not use utilities in years before the first RRA observation or

with extended gaps between rate hearings.

Third, the RRA data contained a number of other anomalies. It reported zero rates of

return for a number of utilities, which we dropped. For one utility, it only reported limited-

47RRA lists these fields as “Increase Authorized Rate Base” and “Increase Authorized Return on Rate
Base,” and does not provide documentation on their exact meaning. After studying the data and discussing
this with other authors who have used RRA data, we interpreted these fields as levels and not increases.
Furthermore, though its units are not specified, the return on rate base also appears to be reported as a
percent.
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issue riders. We were able to construct a rate base for this utility in each year by summing

the reported rate base from each rider that preceded the year.

Our merged sample contained 186 utility-year observations (out of 459 in our base analysis

sample) over 23 utilities (out of 39 in our base analysis sample). Despite these limitations,

we used the merged sample to investigate whether higher costs affect utilities’ authorized

rate bases, authorized rates of return on their rate base, or authorized profits (the product

of the above two variables).

Table A6 presents results using the merged sample that are analogous to Table 1. Start-

ing with panel (a), we investigate the association between variable profits, as calculated

from RRA data, and the three proxies for costs that we used in Table 1. We find that,

after controlling for utility fixed-effects and clustering at the rate hearing level, higher costs

are associated with lower profits, and this result is statistically significant across the three

specifications.

Panel (b) reports the association between the authorized RoR, as reported by RRA, and

the same proxies for costs. All three specifications show that higher costs are associated

with higher rates of return, that is statistically significant in two of the three specifications.

These results are in the opposite direction from the panel (a) results and the Table 1 results.

Finally, panel (c) reports the association between the rate base and the same proxies

for costs. It shows results that are consistent with panel (a). Specifically, after controlling

for utility fixed effects, higher costs are associated with a significantly lower rate base in all

three specifications.

Overall, we believe that these results broadly support our base results in Table 1: they

show that profits are decreasing in variable costs. However, they also highlight that this

is not necessarily occurring through official reductions in the authorized rates of return.

Instead, the reductions in profits may be occurring through changes in the authorized rate

base. We believe that this latter channel may occur through certain capital costs being

disallowed as part of the rase base when variable costs are high. For instance, in an Indiana

decision, the regulator disallowed a utility’s previously incurred capital costs for coal ash

disposal, deeming them to be inappropriately incurred and therefore requiring the utility to

lower consumer rates (Indiana Utility Regulatory Commission, 2023).
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Table A6: Regressions of RRA Data on Total Variable Cost Measures

Panel (a): Dependent Variable: Variable Profits (Billion $)
Principal Regressor:

Variable Costs (Bil. $) −0.119
(0.048)

Variable Costs per −0.621
Capacity (Mil. $/MW) (0.314)

Variable Costs per High −1.005
Load (Mil. $/MWh) (0.413)

Panel (b): Dependent Variable: Rate of Return
Principal Regressor:

Variable Costs (Bil. $) 0.464
(0.247)

Variable Costs per 7.063
Capacity (Mil. $/MW) (2.203)

Variable Costs per High 8.543
Load (Mil. $/MWh) (4.317)

Panel (c): Dependent Variable: Rate Base
Principal Regressor:

Variable Costs (Bil. $) −1.840
(0.800)

Variable Costs per −10.059
Capacity (Mil. $/MW) (4.749)

Variable Costs per High −16.045
Load (Mil. $/MWh) (6.228)

Utility FE Y Y Y

Note: Each column in each panel presents regression results from a separate regression on
our analysis data merged with Regulatory Research Associates data on reported RoR and
rate base, with standard errors in parentheses. We calculate variable profits as reported RoR
times reported rate base. Variable costs include fuel and import costs. High load is the 95th
percentile of hourly load by utility-year. Standard errors cluster at the rate hearing level.
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A4 Details of Estimation

This appendix section details the assumptions underpinning the estimation of our model.

We begin with details of the investment/retirement model estimation. We then discuss the

estimation of the operations model, which we use to estimate regulatory and operations cost

parameters. Finally, we explain how we recover import supply curves, which are an input

into operations decisions.

A4.1 Investment and Retirement Decisions

We estimate investment and retirement decisions with a nested fixed point GMM estimator

that requires solving for the dynamically optimal investment/retirement decisions across

states. We compute the optimal investment/retirement decisions with a Bellman equation.

After the final decision period, when t > 10, the state no longer evolves and the utility no

longer makes investment/retirement decisions. Hence, we solve for the value at this state as

the discounted flow of π∗, evaluated at the terminal state. We then solve the remaining 10

period problem with backward recursion, starting with the CCNG investment decision for

all states at t = 10, then the coal retirement decision for all states at t = 10, the CCNG

investment decision for all states at t = 9, etc.

We can write utility i’s CCNG investment decision Bellman equation for t ≤ 10 as:

V CCNG
i (KCOAL′

, KCCNG, pNG, t, εCCNG) = max
xCCNG≥0

{
− InvCostsCCNG(xCCNG|εCCNG)

+β

∫
EV COAL

i (KCOAL′
, KCCNG + xCCNG, p′, t+ 1)dg(p′|pNG)

}
,(A1)

where we include an index i to account for the effect of the utility’s fixed states on profits,

KCOAL′
is the coal capacity after the coal retirement decision, g(p′|pNG) is the conditional

density of the next period’s fuel prices, and EV COAL
i is the expectation of the value function

at the start of the next period, integrating over the εCOAL investment cost shock.

For its coal retirement decision, the Bellman equation is:

V COAL
i (KCOAL, KCCNG, pNG, t, εCOAL) = π∗

i (K
COAL, KCCNG, pNG) + (A2)
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max
xCOAL≤0

{
−InvCostsCOAL(xCOAL|εCOAL) + EV CCNG

i (KCOAL + xCOAL, KCCNG, pNG, t)
}
,

where EV CCNG
i is the expectation of the value function at the start of the CCNG investment

decision, before the εCCNG investment cost shock is realized.

Equation (A2) includes utility i’s variable profits, π∗
i (K

COAL, KCCNG, pNG), since they

are a function of its state at this stage. These variable profits reflect optimizing decisions

within a period, as calculated from the operations model. Although the value function varies

across period t, variable profits do not, and vary only across utility and the three indicated

(time-varying) states. For our estimation of the investment/retirement model, we calculate

variable profits by solving the operations model across a counterfactual grid of coal capacity,

CCNG capacity, and natural gas fuel prices that enter our Bellman equation, using the

estimated operations model parameters and the utility i’s mean NGT capacity and coal fuel

price over the sample period.

For load and the import supply curve parameters—which are fixed across periods but

vary across hours within a period—we use hours from the first year that utility i is observed

in our data, generally 2006. We use data from one year here rather than using the mean

across years to preserve the level of fluctuations that occurs between hours and accurately

capture ramping and other costs.

Equations (A1) and (A2) show that the utility can adjust its next period’s capital deter-

ministically but is faced with a stochastic evolution of fuel prices and cost shocks. For t > 10,

both Bellman equations look similar to these equations except that the utility does not make

investment or retirement decisions and natural gas fuel prices do not evolve. The assumption

that the state does not evolve when t > 10 allows us to solve the dynamic programming

problem by backward induction, with the state-contingent value function at t = 10 being

the discounted sum of future profits.

We discretize the state space and compute continuation values by interpolating across

discretized states. Here, we use 10 evenly divided bins for each of the time-varying states of

coal capacity, CCNG capacity, and natural gas fuel price. Since we consider only retirements

for coal, we let the coal capacity bins range from 0 to the observed coal capacity at the

beginning of the sample. Since we consider only investment for CCNG, we let CCNG capacity
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bins range from the observed CCNG capacity at the beginning of our sample to 110% of

peak load, defined as the 95th percentile of hourly load. Finally, we let the natural gas fuel

price bins range from 75% of the lowest three-year mean fuel price (as described below) to

the maximum three-year mean price. Given that there are 10 evaluation time periods and

two decisions (investment and retirement) in each period, we solve for continuation values

at 104 × 2 = 20,000 states per utility.

For each of the 20,000 states, we solve for the continuation value using the GSD algorithm

(Gowrisankaran and Schmidt-Dengler, 2025). This algorithm discretizes the continuous (in

our case, investment/retirement) decision and requires that we specify the number and values

of the discrete levels and suggests using a relatively large number of choice bins. Based on

our examination of changes in the data, we specify 20 bins each for CCNG and coal capacity

change, ranging from 0 to 3,000 MW of CCNG investment and between 0 and 5,000 MW of

coal retirement. We allow for smaller bins for capacity changes between 0 and 1,000 MW to

capture investment/retirement of single plant, which typically lie within this range. We also

exclude coal retirement bins that would imply negative coal capacity.

We chose 10 discrete bins for the state space discretization instead of, for instance, 20

(as for the capacity change choices), because of computational cost. Doubling the number

of state space bins for coal capacity, CCNG capacity, and natural gas fuel price would

increase the number of states by a factor of eight, necessitating eight times as many solutions

of the operations model. In contrast, increasing the number of capacity change bins is

computationally much easier with the GSD algorithm, because it does not require solving

the operations model for more states. Given this, we suggest potentially trying a greater

number of choice bins when using the GSD algorithm, as a robustness check.

We estimate our GMM objective function with 18 moments. Each of the moments

indicates the difference between the estimated model value of a statistic and the value in the

data. For a given parameter vector, we calculate the model probability for each of the 20,000

states in our grid along with the Bellman equations and then find the model probability for

any element of the data by interpolating the computed policy function across the three

continuous and time-varying states. We use 9 moments each for coal and CCNG decisions.

For coal, we include (1) an indicator for positive retirement, (2) the quantity of capacity
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retired, (3) quantity squared, and (4) an indicator for retirement of more than 500 MW. We

interact these four moments with coal capacity (5–8) and include (9) the retirement quantity

variance. For CCNG, we include the analogous moments, but for investment (10-18).

We estimate an asymptotically optimal GMM weighting matrix by bootstrapping the

model moment values across observations and using the inverse estimated variance-covariance

matrix as the weighting matrix. We calculate standard errors using the standard GMM

formulas. Because of computational complexity, our standard errors for the investment/re-

tirement model do not account for the fact that π∗ is estimated.

Finally, we estimate the natural gas fuel transitions using a panel of Henry Hub natural

gas spot prices as reported by https://www.eia.gov/dnav/ng/hist/rngwhhdM.htm. We

use data from 2003–20, and let each observation denote the three-year mean price. We then

estimate gas price transitions with a simple autoregressive specification of price on lagged

price. We take the slope and residual from the regression and discretize quantiles of the

prediction to obtain transition probabilities of the natural gas fuel price state from period

to period.

A4.2 Operations Decisions

We estimate regulatory and operating cost parameters from utilities’ operating decisions by

solving for the utility’s optimal actions given an investment/retirement state and candidate

parameter vector and then running indirect inference regressions on those actions. We then

find the parameter vector that best matches these indirect inference coefficients to those

obtained when the same regressions are run on the data. We present the details of how

we solve for utilities’ optimal actions before turning to the details of the indirect inference

regressions.

To solve for utilities’ optimal operations decisions, we construct a sample of 8 weeks

across the year. This sample includes four two-week spans starting at midnight on February

8th, May 8th, August 8th, and November 8th of each year. We assume that utilities pay

ramping costs between hours within these two-week spans but not between the spans.

As discussed in the main text, the utility’s Bellman equation in a given hour depends

upon four states: (1) cumulative TV C up to that hour, (2) cumulative coal usage up to
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that hour, (3) lagged coal generation, and (4) lagged CCNG generation. As in the invest-

ment/retirement estimation discussed in Section A4.1, we discretize each of these states into

ten bins. In this case, we have 104 = 10, 000 states for each utility-hour and interpolate

across discretized states. For the cumulative TV C state, we keep track of the average vari-

able cost—so that the state has a similar scale for earlier and later hours of the year—and

divide the bins evenly between a minimum marginal cost (defined as 50% of the utility’s low-

est marginal fuel cost for available fuel-technologies in the year) and a maximum marginal

cost (defined as the maximum of $200/MWh or 150% of the utility’s highest marginal fuel

cost for available fuel-technologies in the year). For cumulative coal usage, we choose evenly

divided bins between 0 and 1. For the lagged generation states, we choose evenly divided

bins between zero and the capacity of the respective fuel-technology.

In each hour, the utility chooses its coal and CCNG generation levels, both of which affect

the future state. We allow the utility to choose between 10 potential values of each of coal

and CCNG generation, for 100 possible generation choices. We define the minimum of these

equally-spaced bins as either 500 MWh below the lagged generation for that fuel-technology

or zero, whichever is bigger. We define the maximum of the bins as either 500 MWh above

the lagged generation for the fuel-technology or the fuel-technology’s installed capacity for

the utility, whichever is smaller. Thus, we do not allow utilities to ramp or deramp more

than 500 MW per hour, for both fuel-technologies.

For each hourly choice of coal and CCNG generation, the utility meets the remaining

load with some combination of NGT or imports. Since these fuel choices do not enter into

the utility’s end-of-year payoff except through TV C, the utility is incentivized to make the

cost-minimizing choice across these options. For each potential choice of coal and CCNG,

we find the quantity of imports that sets the price of imports equal to the marginal cost of

NGT. We then check whether this choice is feasible, or implies an NGT choice less than 0 or

more than NGT capacity. In the first case, we use the computed quantity of imports. In the

latter cases, we choose the boundary condition of NGT of 0 or capacity, as this will minimize

costs. We then compute variable costs for the hour with this combination of generation and

import choices and find the expected continuation value given this choice.

As discussed in the main text, we assume that the utility receives its regulatory profit in
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the terminal hour. We implement this by scaling annual outcomes (e.g. revenues and fuel

and import costs) from the 8 week sample to the annual level by multiplying by the hours in

a year divided by the hours in the sample, 8760/1344 for non-leap years and 8784/1344 for

leap years. The RoR that the regulator offers the utility increases as its costs decrease with

the implicit function given by r × ℓ = TV C + (r/r0)
γ × B. We calculate the RoR at each

terminal hour state by iterating on this implicit function until convergence. In calculating

its RoR, we limit TV C to be at least 10% of TV C in the utility’s first year in the data in

order to avoid some utilities choosing to export so much that they reach a negative, and

hence unrealistic, TV C.

For a given parameter vector, we first solve for the utility’s optimal operations decisions.

We then use these simulated data in our indirect inference regressions. For the regressions

using hourly data, we run these regressions on the same 8 weeks of data on which we solve

for the utilities’ optimal operations decisions. For the regressions run on annual data, we run

the regressions on the true annual data and the model-simulated data scaled to the annual

level.

We run a total of 10 regressions on both the observed data and the model-simulated data

and match 29 coefficients from these regressions. These regressions include:

1. Scale of Generation: We run regressions of the hourly utilization (generation divided

by capacity) for each fuel-technology on a constant. This yields three regressions, one

for each of coal, CCNG, and NGT. We cluster the standard errors of these regressions

at the utility level and match the three coefficients on the constants.

2. Scale of Variable Profit: We run one regression at the utility-year level of revenues

net of fuel and import costs on a constant. We cluster the standard errors of this

regression at the utility level and match the coefficient on the constant.

3. Determinants of Rate of Return: We run one regression of a proxy for the utility’s

RoR on a proxy for total variable costs. Specifically, our dependent variable is the

utility’s revenues net of fuel and import costs divided by the utility’s total coal, CCNG,

and NGT capacity in the year. Our independent variable is fuel and import costs. We

include utility fixed effects in this regression, but we only match the coefficient on our
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TV C proxy, not the fixed effect estimates, and we do not cluster these standard errors.

4. Determinants of Variable Profit: We run one regression at the utility-year level

of a proxy for variable profits (revenues net of fuel and import costs) on the utility’s

coal capacity, coal capacity multiplied by coal usage rate, CCNG capacity, and NGT

capacity. We cluster the standard errors at the utility level and match the three

coefficients on capacity and the interaction term.

5. Usage of Coal and CCNG: We run two regressions at the hourly level where the

dependent variables are the log of coal (or CCNG) generation divided by the sum of

coal and CCNG generation in the hour. For the coal regression, the primary dependent

variables are quintiles of annual coal utilization across all utility-years where a utility

has positive coal capacity and these quintiles interacted with the difference in marginal

cost between coal and CCNG. We include analogous regressors in the CCNG generation

share regression. We also include utility fixed effects in both regressions. We run these

regressions only on hours of the year where the load is between 75% and 125% of

the utility’s CCNG capacity (for the coal regression) or coal capacity (for the CCNG

capacity) in that year. We cluster the standard errors at the utility level. We match

the nine coefficients in each regression on the usage shares and their interactions with

fuel prices.

6. Extent of Ramping: We run two regressions at the hourly level of current coal

or CCNG generation on lagged generation with the same fuel-technology. In these

regressions, we control for the fuel price of coal, the fuel price of CCNG, the current

electricity price, current load, and six leads for each of load, the import supply curve

intercept, and the electricity price. We include utility, month-of-year, and hour-of-

year fixed effects and cluster standard errors at the utility and hour-of-year level. We

only match the one coefficient from each regression (two coefficients total) on lagged

generation.

This indirect inference approach also requires us to choose a weighting matrix to deter-

mine how differences across moments will be summed. We use a weighting matrix based on

A19



the inverse of the variance-covariance matrix of the regressions on the actual data above.

We assume that there is no covariance across regressions.

A4.3 Import Supply Curves

We estimate import supply curves for each utility in each hour in an initial step before these

curves enter into the estimation of the operations model. Each hour, a utility u chooses the

share of load to meet with its own generation and the share to import from facilities it does

not own. To understand these decisions, we follow Bushnell et al. (2008), Gowrisankaran

et al. (2016), and Reguant (2019) and estimate a linear import supply curve that models the

quantity of electricity imported to the utility as a function of import price and controls.

Building on this literature—and important in our context, because the supply curves in

exporting regions will change as fuel prices change—we allow the intercept and slope of the

import supply curve to vary with the natural gas fuel price:

qmuth = (ψu0 + ψu1p
NG
ut )pmuth + ψu2p

NG
ut + ψu3Xuth + εmuth. (A3)

We allow all parameters to vary across utilities and, as discussed in Section 2.2, we approx-

imate the import price with the wholesale market price in the closest state in an ISO and

define import quantity as the difference between load and generation with coal, CCNG, and

NGT. The controls, Xuth, capture demand shocks in the exporting region, and include cool-

ing degree days, heating degree days, and their squares for every U.S. state in the nearest

ISO, interacted with hour of the day. We also include fixed effects for the day of week, month

of year, and hour of day.

Recovering the import supply curves requires understanding the causal impact of import

price on import quantity, but an OLS regression of (A3) would not consistently estimate

the supply curve because the data reflect variation in both demand and supply. Therefore,

we identify the import supply curve using instruments that plausibly shift the demand for

imports without affecting the import supply curve. Specifically, as in the literature discussed

above, we instrument for the import price with the utility’s local load, after controlling for
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Xuth.
48 In many contexts, demand shifters are used as instruments for price in supply

estimation. In electricity markets, since local load is nearly perfectly inelastic, load itself

instruments for price in supply curve estimation. This instrument is valid if, in addition to

local load being perfectly inelastic, it is unaffected by local supply shocks and uncorrelated

with shocks to demand (conditional on Xuth) in exporting regions.

We use the estimates from (A3) to recover a supply curve for each utility-year-hour. We

follow the above papers and specify intercepts of these curves as including the residual from

(A3), i.e. ψ̂u2p
NG
ut + ψ̂u3Xuth + ε̂muth where the hats indicate estimated values.

In a few utility-years, we estimated import supply curves where the slope—of import

quantity with respect to import price—was negative and very flat. With those slopes, utili-

ties’ profits became implausibly large with exports, which could result in utilities who export

unreasonable amounts. To avoid this issue, we limited the slope to be less than or equal to

−100 when we estimated a negative slope.

A5 Implementation of Counterfactuals

This appendix provides details on our implementation of the counterfactuals for both the

operations decisions and the long-run decisions that simulate an energy transition. These

counterfactuals compare the current regulatory structure to (1) the cost minimization solu-

tion and (2) the social planner solution. They also analyze changes to the current regulatory

framework, specifically (3) imposing carbon taxes within the context of RoR regulation, (4)

adjusting the usage incentives, and (5) altering the penalties for high electricity rates.

To simulate operations decisions, we start with each utility-year in our analysis sample

and simulate how operations would change under these counterfactual environments. To

simulate the long-run decisions under counterfactual environments, we calculate a grid of

state-contingent profits π∗
i for each utility i observed in our sample under these environments.

Our simulation process then follows the computation described in the estimation of the

investment and retirement parameters, in On-Line Appendix A4.1, but with different profit

48Given that we interact import price with natural gas fuel price, we also use the interaction of local load
with the natural gas price as an additional instrument.

A21



grids from those used in the baseline estimation.

We report outcomes for each counterfactual that include information on the generation

decisions, carbon externalities, and—in the case of the long-run counterfactuals—coal and

CCNG capacity. To calculate the carbon externalities, we multiply the EPA’s 2023 carbon

cost (Environmental Protection Agency, 2023b) by the carbon intensity of each fuel source

in CO2 tons per MWh. We calculate the carbon intensity of each utility and fuel-technology

by multiplying its heat rate, measured in MMBtu per MWh, by its emissions tons per heat

input, measured in CO2 tons per MMBtu. We recover the heat rate by utility and fuel-

technology from our analysis data and the emissions per heat input for coal and natural

gas from Energy Information Administration (2023). Our reported counterfactual carbon

cost measures further account for the carbon intensity of imports. We assume that the

carbon intensity for imports is the 2019 national mean carbon intensity of generation, which

we calculate from Environmental Protection Agency (2023a). Because we fix the carbon

intensity of imports across counterfactual policies, the carbon impacts of these policies most

accurately indicate the impact of a policy change affecting a single utility.

Finally, we discuss our implementation of each of the five types of counterfactuals.

1. Cost minimization. For the operations model, cost minimization is equivalent to the

current regulatory problem with µ2 set to 0. This is because, without usage incentives,

the regulated utility is incentivized to minimize operations costs. In the long run,

however, investment/retirement decisions will differ between the cost minimization so-

lution and the current regulatory framework with µ2 = 0, since utilities earn regulated

profits. To solve the cost minimization solution for the energy transition, we maximize

a value function where the period objective is the negative of total cost, rather than

profits.

2. Social planner. The social planner in our model seeks to minimize the expected dis-

counted costs of electricity production plus the CO2 externality from this production.

Thus, we compute the social planner solution in the same way as the cost minimization

solution, except that we subtract from the criterion function the social cost of carbon

from generation with each of the fuels and from imports.
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3. Carbon tax within existing regulatory structure. We assume here that utilities

are charged a carbon tax of $190/ton on both their generation and imports. Because

this carbon tax then enters TV C, utilities can partly increase consumer rates in re-

sponse. The penalty for high electricity rates limits their ability to fully pass through

this tax, and creates long-run incentives to invest in and generate with low-carbon fuel

sources. Our carbon tax counterfactual results account for these mechanisms.

4. Altering usage incentives. We consider counterfactuals that eliminate or double

the logit slope µ2 on coal capacity’s extra contribution to the rate base with additional

usage. As noted above, µ2 = 0 is equivalent to cost minimization in operations de-

cisions. However, it is different in its long-run implications, and hence we report the

impact of an energy transition separately for cost minimization and for the regulatory

framework with µ2 = 0.

5. Altering the penalties for high electricity rates. We consider counterfactuals

that increase or decrease γ by 50%, which indicates the penalty that a high electricity

rate gives the utility in terms of a lower RoR, s. An increase in γ implies both a

steeper drop in profits from higher electricity rates and a drop in profits overall. For

these counterfactuals, we would like to study the impact of changing the slope of profits

with respect to electricity rates rather than the level. Thus, for these counterfactuals,

we also proportionally adjust the α parameters—which indicate the rate base per

MW of capacity—to hold mean variable profits across utility-year observations at the

baseline operating decisions constant.

A6 Additional Long-Run Counterfactual Results

This appendix considers three additional sets of long-run counterfactuals. First, the long-run

counterfactuals in the main text keep import curves fixed, consistent with a single utility

facing alternate incentives. This allows the utility to increase imports when coal generation

is costly, for instance when it faces the social planner’s incentives. This assumption is

consistent with counterfactual outcomes for a single utility rather than a setting where many
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regulated utilities across the Eastern Interconnection simultaneously move to, for instance,

cost minimization. An alternative assumption is that the utility holds constant its import

quantities at the 2006 baseline level. Import prices will vary because they will reflect the

different natural gas prices.

Figure A3 shows the decisions of the social planner and cost-minimizing utility in this

environment. Comparing panel (a) of this figure to that of Figure 4, coal retirement decisions

look quite similar. However, the social planner invests in CCNG more quickly since it cannot

rely on imports to reduce carbon emissions in the short run. Turning to generation, panel

(b) of Figure A3 shows that the social planner continues to generate with coal in the short-

run since it cannot rely on imports to lower costs and carbon emissions. In the long run,

however, investments in CCNG capacity allow the social planner to move completely away

from coal generation, as when we allow import quantities to vary.

Second, we investigate the impact of changing the penalty for high electricity rates, γ.

The results, in Figure A4, show that changing this penalty leads to changes in both coal and

CCNG capacity, with lower electricity rate penalties leading to higher capital investment.

Increasing the electricity rate penalty by 50% decreases coal capacity by 18% relative to

the baseline over the 30 year horizon, and leads to 18% less CCNG investment, but still

does not bring the utility close to the cost minimizing solution. Differences in electricity

rate penalties cause somewhat different coal generation levels but do not substantially affect

CCNG generation levels.

Finally, Figure A5 reports total carbon emissions over time for four counterfactuals: the

baseline, the cost minimizer, the planner, and the regulated utility facing carbon taxes. We

find distinct differences in immediate carbon emissions following a sudden drop in natural

gas fuel prices. However, by the end of our 30-year horizon, the carbon emissions for the

social planner, cost minimizer, and regulated utility facing a carbon tax are all roughly 25%

below the baseline level, consistent with substitution from coal to CCNG generation.
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Figure A3: Capacity and Generation for Baseline, Social Planner, and Cost Minimizer with
Fixed Imports
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Note: Figures present counterfactual simulations over 10 3-year periods starting with 2006 capac-
ities but imposing 2018–20 natural gas fuel prices. The social planner minimizes costs including
a $190/ton carbon cost. The cost minimizer has the same incentives but does not value carbon
externalities. In both of these cases, we hold hourly imports for each utility fixed at their simulated
quantities for the first year the utility appears in the analysis sample.
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Figure A4: Capacity and Generation for Different Electricity Rate Penalties
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Note: Figures present counterfactual simulations over 10 3-year periods starting with 2006 capaci-
ties but imposing 2018–20 natural gas fuel prices. The counterfactuals change the electricity rate
penalty, γ, as indicated.

Figure A5: CO2 Carbon Costs for Baseline, Planner, Cost Minimizer, and Carbon Tax
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Note: The Figure presents counterfactual simulations over 10 3-year periods starting with 2006 ca-
pacities but imposing 2018–20 natural gas fuel prices. The social planner minimizes costs including
a $190/ton carbon cost. The cost minimizer has the same incentives but does not value carbon
externalities. The carbon tax counterfactual leaves the regulatory structure unchanged but adds
the carbon cost to TV C.
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