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ABSTRACT

This paper estimates the value of urban trees and shows their ability to moderate temperatures 
during heatwaves and reduce energy consumption. The empirical strategy exploits an ecological 
catastrophe—the Emerald Ash Borer infestation in Toronto—to isolate exogenous variation in 
neighborhood tree canopy changes and finds that a single tree adds 0.45% to property prices 
within a postal code; the hardest-hit areas lost 7 percentage points in tree canopy cover, resulting 
in a 7% property price decline. Trees significantly cool urban areas and save energy, but their 
total amenity value surpasses the value of these ecosystem services, highlighting their cost-
effectiveness in combating urban heat island effects.
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A combination of climate change, pollution, and economic development has resulted

in the average North American city being more than 3 degrees Celsius warmer in the

summer of 2020 compared to 1985. Interestingly, cities that enhanced their green infras-

tructure over this period experienced less warming, indicating that green urban infras-

tructure can play a crucial role in mitigating urban heat island effects. Toronto serves as

a prime example of this dynamic until the Emerald Ash Borer (EAB), an invasive beetle

accidentally imported with wood from China, started decimating the ash tree popula-

tion. Comparing Toronto with North-American cities unaffected by the EAB infestation,

Figure 1 highlights the cooling effect of urban trees and its subsequent reversal as the

EAB infestation began to reduce the local urban tree canopy. This paper will leverage

the ecological disaster in Toronto to determine the value of urban trees and assess their

role in mitigating urban heat island effects.1

Figure 1. Tree canopy, temperature, and the Emerald Ash Borer infestation in Toronto.

Notes: This figure presents a local polynomial fit for the annual difference in forest cover (percentage points, green line) and average
Land Surface Temperature during Summer months (Celsius degrees, purple line) between Toronto and a “placebo” group of non-
Northeastern cities, defined as all Canadian and American cities but the ones situated North and East compared to the most western
and southern location of Illinois. The dashed lines show the best linear fit for these differences from 1985 to 2010. Additionally,
the figure includes the yearly number of publicly-managed ash trees removed in Toronto (in thousands), based on a register of all
tree-maintenance orders from the city’s Parks and Forestry department. Further details are available in Appendix A (urban forestry
and temperature across North-American cities) and Appendix B.2 (tree removals in Toronto).

1Urban heat island effects will affect a rapidly increasing share of the World population because of cli-
mate change and the swift growth of large, densely-populated urban settlements in developing economies
(Hajat and Kosatky, 2010; Tuholske et al., 2021; Iungman et al., 2023). Earlier contributions have identified
urban forestry as an important mitigating factor (Peng et al., 2012), especially so in dry climates (Manoli
et al., 2019).

2



To quantify the value of urban trees, we develop an empirical strategy around the

exogenous Emerald Ash Borer infestation and its large, yet heterogeneous, impact on

urban forestry across neighborhoods in Toronto and other North-American cities.2 The

Emerald Ash Borer exclusively feeds on ash trees, one of the most common species in

NewYork, Chicago or Toronto. Across North America, the pest has killed tens of millions

of ash trees and the City of Toronto (rightly) expected to lose most of its 860,000 ash trees

within ten years after the first signs of infestation around 2007; this amounts to about 8%

of the tree canopy cover over both public and private land, with very significant variation

within and across neighborhoods.3 To develop a comprehensive understanding of the

lost value of these urban trees and their ecosystem services, we rely on comprehensive

urban forest assessments covering Toronto in 2007 and 2018 to evaluate local changes

in the tree canopy, and combine this with a unique, geo-referenced register of all city-

managed urban trees, which reports tree species, maintenance dates, and cut downs, to

isolate exposure to the EAB infestation within each of the city’s 45,000 postal codes.4 We

combine the tree data with exhaustive data on residential property transactions between

2007 and 2020, and a monthly panel of electricity and gas meter readings to complete

the picture.

We begin with an assessment of the hedonic value of urban trees using residential

property transactions. The key challenge lies in establishing a causal link between tree

canopies and house prices. One may be concerned that leafy neighborhoods might also

enjoy unobserved amenities like superior school quality, which would bias the correla-

tion between tree density and property values upward. Conversely, in highly sought-

after, densely populated neighborhoods, the opportunity cost of land may be greater,

2The Emerald Ash Borer, originally native to Asia, was inadvertently introduced to North America
during the summer of 2002. Since that introduction, it has emerged as one of the most devastating non-
native insect species in North America. As of 2021, its destructive reach extended across 36 U.S. states and
five Canadian provinces, resulting in the demise of hundreds of millions of ash trees (Aukema et al., 2011;
Herms and McCullough, 2014). The ash borer was recently reported in Oregon, its first appearance west
of the rocky mountains (Popkin, 2022). Live updates are provided by the Emerald Ash Borer Network.

3The previous infestation of such amplitude was the Dutch elm disease, spreading from 1940 to 1970
in North America. Interestingly, this catastrophe shaped the subsequent impact of the EAB infestation:
urban planners often decided to replace the infested elm trees—the first-best urban tree—with ash trees.
In Toronto, city-managed trees are predominantly from a few selected species, e.g., maple trees, elm trees,
ash trees, or linden trees, selected for their resistance to climatic and hostile urban conditions. There is
significant spatial clustering in the local composition of street-managed trees such that some neighbor-
hoods would mostly be populated by elm trees or maple trees (and thus spared by the recent infestation),
when others would predominantly feature ash trees.

4The 2007 land cover data was part of the “Urban Tree Canopy (UTC) Assessment” conducted by the
City of Toronto and summarized in “Every Tree Counts: A Portrait of Toronto’s Urban Forest”; the later
update was titled the “2018 Tree Canopy Study”. Both assessments were based on high-quality satellite
imagery, LiDAR information, and manual corrections. We complement these two highly-precise cross-
sections with yearly vegetation indices constructed from satellite imagery (Sentinel 2, 2016–2020, Landsat
L8, 2013–2020, Landsat L7, 2006–2012) to document the swift, persistent loss of tree canopy between
2012–2016 with little evidence of any reversion in the medium run.
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potentially causing a downward bias. To mitigate these concerns and establish causality,

we employ an instrumental variable approach and instrument the evolution of the tree

canopy within a postal code by its exposure to the EAB infestation. We find that one

additional tree within a postcode increases property prices by 0.45%; alternatively, one

additional percentage point in tree cover within a postcode elevates property values by

1%. Neighborhoods where ash trees constituted the majority of city-managed trees prior

to the infestation witnessed a staggering 7 percentage point reduction in tree cover and

a 7% drop in property prices.

The hedonic value of trees is a composite measure that combines their amenity value

with the value of other ecosystem services. One particularly important ecosystem ser-

vice provided by urban forestry is its cooling potential. Heatwaves trigger spikes in

energy consumption, and these surges are mitigated in neighborhoods with a gener-

ous tree canopy. Our analysis reveals that one additional percentage point of tree cover

within a postal code area results in a 0.05-degree Celsius reduction in the local average
Land Surface Temperature (LST) during the months of July and August. This decrease

in temperature translates into a reduction in energy consumption of roughly 2.5%, cor-

responding to a monthly cost saving of CAD 5 during this two-month period. We utilize

these estimates to place a monetary value on the role of trees in alleviating urban heat

island effects under varying scenarios, encompassing more and less conservative climate

change projections. Our findings reveal substantial energy savings attributed to urban

trees. Most importantly, the monetary value of this one tree service already exceeds the

annual maintenance costs per tree. Yet, this is but a portion of the total hedonic value

associated with trees. This underscores that urban trees provide a highly cost-effective

way to regulate temperatures in urban areas.

While urban forests are widely recognized for their amenity value, urban develop-

ment plans that involve densification and sprawl may not consistently incorporate this

value, paradoxically leading to a reduction in tree canopies (Nowak and Greenfield, 2012,

2018). A specific concern arises from the potential exacerbation of the existing inequality

in tree canopy cover between economically disadvantaged and affluent neighborhoods

(Hsu et al., 2021). Our study offers a plausible explanation for why such a phenomenon

could occur: the presence of non-linearities in the valuation of urban forestry, coupled

with coordination failures. Our findings reveal that the incremental benefit of adding a

tree is much more pronounced in areas already rich in tree cover, corroborating Ziter

et al. (2019), who show that temperature reduction is nonlinear with increasing canopy

cover, with the cooling effect becoming more significant when canopy cover exceeds

40%. This nonlinearity underscores the need for policy interventions targeting cities or

neighborhoods with limited green infrastructure. Public provision of a baseline amount
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of green space could yield positive outcomes by enhancing the returns on further green

policies or subsequent private investments, such as those in new residential develop-

ments or private gardens.

Our identification strategy hinges on the assumption that the spatial distribution of

ash trees is exogenous to the dynamics of residential prices and energy consumption

across postal codes. We offer support for this hypothesis through several avenues. First,

we provide balance tests, and we condition the baseline analysis on (i) the density of

all city-managed trees, (ii) ward fixed-effects, and (iii) eight categories of land cover in

2007, interacted with year fixed-effects. Second, we demonstrate that changes in the

evolution of the tree canopy between 2007 and 2018 can be predominantly attributed to

variations in the local density of ash trees rather than other tree species. Third, we show

that there are no differential dynamics in property prices before our baseline period (i.e.,

between 2002 and 2006). Fourth, although our main empirical framework exploits the

EAB infestation as an ecological catastrophe to isolate substantial shifts in tree cover, we

also leverage fluctuations in extreme weather episodes, interacted with the positioning

of trees around each property, to understand their potential to save energy.5

The main contribution of this paper is to provide causal estimates of the amenity

value of urban trees and to isolate one increasingly important ecosystem service: trees’

ability to mitigate temperature increases during heat waves. This paper is not the first

one to estimate the hedonic price of urban forestry (see, e.g., Morales, 1980; Wachter and

Wong, 2008; Conway et al., 2010; Franco and Macdonald, 2018), or its effect on tempera-

ture during heatwaves and on energy savings (see, e.g., Akbari and Taha, 1992; Nikoofard

et al., 2011). These previous attempts however suffer from omitted variation and reverse

causation. Exceptions to this are Kovacs et al. (2011) who estimate the impact of sudden

oak deaths on property prices along the Pacific Coast of the United States and Drucken-

miller (2023), who exploits climatic variation affecting the survival rates of bark beetles

to value tree mortality in the Western United States. Our hedonic estimates in Toronto

are within the ranges reported in the latter two studies. The novel insight brought by

our study is to combine these estimates with (i) evidence on how urban trees mitigate

urban heat island effects and (ii) a quantification of the energy savings associated with

5More precisely, we calculate the solar-shading potential and wind-sheltering potential of each tree in
eachmonth of the year, by combining the relative positioning of the tree and the property with solar angles
andmonthlywind roses across the year (as in Nikoofard et al., 2011; Upreti et al., 2017). The annual average
of these measures may be correlated with general levels of energy consumption, as positions of trees might
partly reflect optimization behavior from households. The identifying assumption is that excess energy
savings during extreme weather episodes are not directly correlated with either the solar-shading potential
or the wind-sheltering potential—other than through the mitigation effect of trees themselves. Using panel
data on residential electricity meter readings at the postcode/month level from 2011–2021 and natural gas
data at the postcode/month level from 2010–2017, we show that the tree canopy substantially affects the
elasticity of energy consumption to heat waves and episodes of wind chill (to a lesser extent).
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such cooling effects. Given that the development of tree canopy coverage and tempera-

tures in Toronto before the Emerald Ash Borer (EAB) infestation reflects similar trends

observed in other North American cities, we cautiously conclude that our findings have

broader applicability across the region.

Our research relates to different strands of the literature. First, it contributes to re-

search at the intersection of urban and environmental economics which assesses the

value of green urban infrastructure. The (monetary) value of trees has been widely rec-

ognized by urban planners, and Mullaney et al. (2015) provide a comprehensive review

of this literature while Druckenmiller (2022) highlights the challenges in measuring the

value of tree cover and ecosystem services for use in climate change policy.6 A broad

literature aims to delineate the specific ecosystem services underlying the value of ur-

ban trees. In this context, urban forestry not only enhances aesthetics (Benson et al.,

1998; Price, 2003; Todorova et al., 2004), but trees also provide a variety of other impor-

tant services (Willis and Petrokofsky, 2017; Manning et al., 2023). For instance, studies

have shown positive health effects (Kardan et al., 2015), and trees reduce noise (Kragh,

1981), improve local air quality (Nowak et al., 2006; Jones and McDermott, 2018b), pro-

vide wind sheltering (Akbari and Taha, 1992), help manage storm-water runoff (Rahman

et al., 2023), and act as a store of carbon (Pennisi, 2019; Hubau et al., 2020; Gatti et al.,

2023; Barham et al., 2023; Deshmukh et al., 2023; Tucker et al., 2023). We contribute

to this literature by providing causal estimates of the amenity value of trees and of the

cooling benefits offered by the tree canopy via evapotranspiration and shading.

Second, we leverage exogenous variation to gauge the capacity of tree canopy to cur-

tail energy consumption during periods of extreme heat. This part relates to Auffhammer

(2022) who assesses how future climate change will affect energy consumption in Cali-

fornia, and to research on the value of green buildings (Eichholtz et al., 2010, 2013) and

energy-efficient houses (as reviewed in Kahn and Walsh, 2015).

Lastly, we add to the literature on the effects of climate change on densely populated

urban areas (see, for instance, the review articles by Dell et al., 2014; Graff Zivin and Nei-

dell, 2013; Kahn and Walsh, 2015). Indeed, urbanization comes with a concentration of

impervious surfaces like stone, concrete and asphalt, at the expense of vegetation. The

resulting temperature differentials between urban areas and the adjacent countryside,

the urban heat island effect (Oke, 1973), raises energy demand for cooling (an effect ex-

pected to worsen in the presence of climate change, see Santamouris et al., 2015; Estrada

et al., 2017). One way to mitigate urban heat island effects, a climatic hazard to urban

6Jones and McDermott (2018a) point out that most papers focus on the benefits of trees without con-
sideration of costs. To address this, they develop a bio-economic health model that accounts for a range
of benefits, costs and externalities and calibrate it to data from New York City. They report positive, yet
smaller, net benefits of trees than commonly reported in the literature.
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residents (Hajat and Kosatky, 2010), is to invest in the urban canopy (Bowler et al., 2010;

Iungman et al., 2023; Roy et al., 2012). We contribute to this literature by providing more

direct and granular evidence of the effect of urban forestry on household energy con-

sumption.

The remainder of the paper is structured as follows. In Section 1, we describe the

context, the data sources and the effect of the Emerald Ash Borer infestation on urban

forestry. Section 2 presents the empirical strategy. Sections 3 and 4 provide causal es-

timates of the hedonic price of urban forestry and its effect on urban heat and energy

savings. The final section concludes.

1 Context, data, and evolution of the tree canopy

This section provides further details on the origins of the Emerald Ash Borer (EAB) in-

festation and its spread across North America. It also covers our data sources, how we

construct our dataset, and explores the connection between the EAB infestation and

changes in Toronto’s tree canopy. This examination forms the initial phase of our foun-

dational empirical approach.

1.1 Context

North American cities have undergone significant changes in urban forestry and tem-

perature over recent decades due to growth, public policies, and climate change. The

Emerald Ash Borer (EAB) infestation, a more recent development, has had a profound

impact on the urban forests of North-Eastern cities and Toronto in particular.

Tree canopy and temperature across North-American cities The following para-

graphs position our in-depth analysis of Toronto within a broader regional context and

summarize findings for the 120 largest Canadian and American cities from 1985 onward,

details of which are provided more extensively in Appendix A.

North American cities are greener today than they were in 1985; they also tend to

be several degrees Celsius warmer, possibly due to increased pollutant concentrations,

human activity, and air temperature changes linked to climate change. However, these

general trends hide significant heterogeneity in the dynamics of urban forestry and local

temperatures across urban agglomerations. Some cities, such as Toronto, Atlanta, and

Pittsburgh, are considerably greener than in 1985, while others, particularly in Arizona

or Texas, have seen a reduction in urban forestry. Cities that have become greener are

warming at a much slower rate than others, as illustrated in Figure 2 (and as discussed in

Peng et al., 2012; Manoli et al., 2019). Nonetheless, a recent disturbance has negated some
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Figure 2. Tree canopy and temperature across North-American cities.

Notes: This figure displays the correlation between city-specific differentials in Land Surface Temperature in Celsius degrees (𝑇 15−20

𝑐 −

𝑇
85−90

𝑐 ), computed between 1985–1990 and 2015–2020, and in Summer forest cover (𝜑15−20
𝑐,𝑠 − 𝜑85−90

𝑐,𝑠 ). The purple (resp. blue) line
is a local polynomial fit of degree 1 with a bandwidth of 0.02, for the Summer differential (resp. Winter differential); the 95%
confidence interval is represented as the shaded area; and the values for Toronto are highlighted with squares. The gap between the
most greening and least greening cities is around 0.06 in area share of tree cover and 2 Celsius degrees during Summer (0.6 Celsius
degrees duringWinter). Appendix A provides a comprehensive description of data construction and complementary evidence about:
the warming of North-American cities; and the relative impact of the Emerald Ash Borer infestation in Toronto—notably estimating
its “average treatment effect” in a stylized difference-in-differences specification.

of the previous improvements in green infrastructure in many cities in the North-East

and Toronto, as depicted in Figure 1 and further discussed in Appendix A: the Emerald

Ash Borer infestation.

The Emerald Ash Borer infestation The Emerald Ash Borer is a beetle that was

accidentally introduced to North America around 2000. This invasive species survives

well in the North American environment, due to a lack of natural predators. The beetle

attacks ash trees at all stages of its life-cycle: the larva feeds aggressively on tissues,

which produces larval galleries and frass; the young adult escapes the tree, leaving holes

in the bark—one of the first recognizable symptoms of infestation; and the full-grown

beetle then feeds on ash foliage and would lay clusters of eggs in crevices of the bark.

Accordingly, infested trees present bark fissures, larval galleries, high woodpecker activ-

ity (feeding on borers), and yellow foliage. Without specific treatment at the very early

stages of the infestation, e.g., TreeAzin injections, it takes between 1 and 4 years for an

infested ash tree to die.7 For instance, between 2007 and 2018, the City of Toronto had

lost a majority of its ash trees.

We illustrate the aggregate impact of the Emerald Ash Borer infestation on the city of

Toronto in Figure 1, where we compare urban forestry and local warming in Toronto to

7Alternative efforts to protect the ash tree population through selective breeding have been under-
taken as well (Popkin, 2022).
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those observed in a “placebo” group of cities: the non-Northeastern cities of our sample.

Until 2007–2010, Toronto is gradually becoming cooler than the average placebo city,

mirroring a gradual increase in urban forestry.8 There is a marked inflection in the posi-

tive trajectory of Toronto from then on—due to the Emerald Ash Borer infestation—and

the gap with other cities narrows down significantly. As we discuss next, this aggregate

shock also had an heterogeneous impact on different neighborhoods or blocks within

neighborhoods, as disciplined by the initial allocation of tree species across the city.

The distribution of urban forestry in Toronto The tree population in Toronto con-

sists of a large number of native trees, which date back to the Carolinian forests before

the 18th century. These species include: black, green and white ash; birch; white cedar;

American chestnut; white elm; maple; black, red, white oak; white pine, etc. Additional

non-native species were introduced by European settlers, e.g., barberry, larch, lilac, Nor-

way maple or pine. Growing trees in cities is however notoriously difficult. Road salt,

compact soil, pollution and Canada’s winters all make urban areas of Toronto unkind to

trees. The tree of choice in such harsh environments used to be elm trees, which thrive in

urban areas and present convenient aesthetic features. Elm trees were primarily planted

at the beginning of the 20th century in North America, such that their allocation across

the city of Toronto coincides with neighborhood growth between 1900 and 1930.

Elm trees steadily disappeared from most North-American cities due to the Dutch

elm disease. Around 1930, elm bark beetles appeared in New York, carrying the Dutch

elm disease and threatening the large population of trees in New Haven. However, the

disease did not start to propagate until the Second World War when the quarantine and

sanitation procedures that had been implemented since 1928were abandoned due to bud-

get restrictions. After the Dutch elm disease swept through toward the second half of the

last century, most municipalities planted ash trees as a “second-best” urban tree (Mac-

Farlane and Meyer, 2005). The more recent allocation of ash trees thus closely relates

to the past allocation of elm trees across and within cities of the East Coast. Neighbor-

hoods of Toronto with large populations of elm trees in 1930, e.g., Scarborough or Mount

Pleasant, had a large population of ash trees until very recently.9

8Toronto is a green city in the context of North America. The 2018 Tree Canopy Study found that
Toronto has an estimated 11.5 million trees, as much as the combined number of trees in New York (5.2
million) and Los Angeles (6 million). Apart from the Central Business District and industrial parks, most
neighborhoods have alleys of trees or public parks.; and houses in rich residential neighborhoods have
backyard gardens with significant tree coverage. The City of Toronto estimates that the structural value
of its urban forest amounts to CAD 7 billion, with ecosystem services worth more than CAD 55 million
each year (City of Toronto, 2019).

9Removals were concentrated in Scarborough, North York and Etobicoke. Trees in DowntownToronto
received early TreeAzin injections, possibly delaying or preventing their full infestation. To address this
possible issue, our instrument will use an Intention-To-Treat (ITT) approach and leverage the initial den-

9



Figure 3. Land use classification in 2007 and (city-managed) ash trees.

(a) Land use (2007)

(b) City-managed ash trees

Notes: Panel (a) displays land use as produced by the Urban Tree Canopy (UTC) Assessment in 2007. Land use is divided into 8
categories: tree canopy (dark green), grass/shrub (lighter green), bare earth (sand), water (blue), buildings (red), roads (dark gray),
other paved surfaces (light gray) and agriculture (yellow). Panel (b) shows the local density of city-managed ash trees, across 8 bins
of density. Except for the central area, the neighborhoods of Scarborough (East), Mount Pleasant, North York and Etobicoke are the
ones with the highest concentration of (city-managed) ash trees.

1.2 Data sources

This section presents the data sources used in this research.

Tree canopy and land cover To estimate the tree cover and its evolution, we use

high-resolution land cover classifications in 2007 and in 2018. These land classifications

sity of ash trees, rather than the actual removal of infested trees.
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were conducted by the Urban Forestry services of the City of Toronto using a combina-

tion of multispectral QuickBird satellite imagery at a resolution of 0.6m, LiDAR informa-

tion, and manual corrections (City of Toronto, 2019). The land classifications isolate the

following eight categories: tree canopy, grass, bare earth, water, buildings, roads, other

paved surfaces, and agriculture. Panel (a) of Figure 3 provides an illustration of land

usage across the City of Toronto in 2007. We combine the land classifications in 2007

and 2018 with the delineations of postcodes to construct the area shares of all categories

within the different postcodes.10

While the city aimed at harmonizing the classification techniques in 2007 and 2018,

there may still be measurement error in the assessed evolution of the tree canopy. Our

main empirical strategy, based on a two-stage specification, should correct for the pos-

sible attenuation bias associated with classification errors—at least to some extent. We

complement and validate these measures of land cover with vegetation and built-up in-

dices constructed between 2007 and 2018 from lower-resolution, high-frequency satellite

imagery (Sentinel 2, 2016–2020, Landsat L8, 2013–2020, Landsat L7, 2007–2012). We de-

scribe the construction of these indices and a few validation exercises in Appendix B.1

and shed some light on the evolution of the tree canopy in Appendix B.2.

Ash trees To identify the location of ash trees, we rely on the register of all publicly

maintained street trees provided by the City of Toronto in 2010 (with about 600,000

trees in total, and more than 45,000 ash trees). The data contains the street address, the

common tree species and the diameter at breast height, which can be used to infer the

crown size. For the latter, we rely on estimates of the relationship between the crown

diameter and stem diameter to approximate the area that the crown covers (Hemery et

al., 2005; Peper et al., 2014). An additional register focuses on the sub-population of ash

trees and on the activity related to the EAB infestation, i.e., the dates of EAB removals

and TreeAzin injections. Panel (b) of Figure 3 shows the distribution of city-maintained

ash trees across the wider City of Toronto. While ash trees are present in every ward,

they are most concentrated in the North-East of the city.

Property values We use exhaustive property transaction data between 2007 and 2020

in order to estimate the hedonic value of the local tree canopy. The data comes with a

wide range of transaction and property attributes: the transaction date; price; type of

property (10 categories); number of floors; number of bedrooms, kitchens, washrooms,
10We use a buffer of 10m around each postal code in the baseline specification to properly capture

street trees in front of houses. Further, to facilitate the calculations of the solar-shading or wind-sheltering
potential (see Section 4 and Appendix D), we transform the “tree cover” surface into a discrete number
of individual trees. More specifically, we construct synthetic trunk locations by randomizing tree trunks
every 10 meters inside the “tree coverage” surface.
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family rooms, and fireplaces; and parking space. The dataset contains about 457,000

transactions (between 30,000-40,000 per year). To geolocate properties, we combine the

transaction data with a geolocated address register provided by the City of Toronto, and

perform a fuzzy string matching algorithm on addresses. Appendix Figure B6 shows the

distribution of transactions and their average price across the City of Toronto between

2007 and 2020. In order to correct for the over-representation of transactions in certain

neighborhoods, e.g., downtown Toronto or York, the main empirical strategy will weigh

each transaction such as to equalize the overall contribution of each postal code.11

Energy consumption, temperature, and pollution We gained access to data from

all residential electricity meters in the City of Toronto. About 800,000 customer IDs 𝑖

are nested within 21,000 postcodes 𝑝 over the period 2012–2020, from which we extract

monthly consumption for the median household within a postal code. We also collect

monthly data on the aggregate consumption of natural gas per postcode over the period

2010 to 2017; we divide the total gas consumption in a year by the number of registered

gas meters to derive a measure of average household gas consumption.12

Finally, we collect the Land Surface Temperature (LST) for the months of July and

August for each year between 2006 and 2018 using the Thermal Infrared (TIRS) band

provided by Landsat L7 (2006–2012) and L8 (2013–2018). Specifically, we calculate the

Top of Atmosphere (TOA) Reflectance, convert this brightness measure into a tempera-

ture measure, correct for Land Surface Emissivity (LSE) and collapse the measure at the

level of postcodes in a given year, 𝑇𝑝𝑡 . Note that the LSE employs a fractional vegetation

measure that is based on the Normalized Difference Vegetation Index (NDVI, see Ermida

et al., 2020, for more details). While the LSE correction might induce some mechanical

correlation with the presence of trees, this procedure is one of the current state-of-the-

art techniques to capture surface temperature at a fine spatial scale with limited in situ

measurements (Li et al., 2023), and the induced bias would be an order of magnitude

smaller than our estimates. We also rely on Van Donkelaar et al. (2021) to nest monthly

estimates of fine particulate matter (PM2.5) across postal codes from 2007 to 2018 (see

Appendix E).

11We complement the transaction data with neighborhood characteristics from the cadastre of the City
of Toronto that includes detailed information about green spaces, protected ravines, property boundaries,
building footprints, the general urban infrastructure, and school locations. We employ this cartographic
information to calculate distance to amenities and other controls capturing neighborhood quality.

12There are important seasonal patterns in energy consumption. We describe these patterns in Ap-
pendix B.5, in which we also discuss the construction of harmonized energy consumption measures at the
postcode level.
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Figure 4. Ash trees and the evolution of the tree canopy—an illustration.

(a) Tree canopy (2007) (b) Tree canopy (2018)

Notes: This Figure shows the land use classification in a given neighborhood in the North-East of Toronto (James Park Square,
Scarborough)—with a relatively high density of ash trees. The data was produced in 2007 (left panel) and 2018 (right panel) by
Urban Forestry as part of an Urban Tree Canopy (UTC) Assessment. Land cover is represented by the following classes: tree canopy
(dark green), grass/shrub (lighter green), bare earth (sand), water (dark blue), buildings (red), roads (dark gray), other paved surfaces
(light gray) and agriculture (yellow). The green symbols represent the location of city-managed ash trees at baseline, as geolocated
from their street addresses (Street Tree General Data, 2010). The latter explains why city-managed trees appear to be located within
private lots. In our baseline specification, we aggregate tree cover at the postal code level, which mitigates the repercussions of such
approximation.

1.3 EAB infestation and the tree canopy

We now discuss important evidence on the effect of the EAB infestation on the evo-

lution of urban forestry between 2007 and 2018. We first provide an illustration of the

systematic removal of infested ash trees by focusing on the North-East of Toronto where

we observe a relatively high density of publicly maintained ash trees at baseline. Fig-

ure 4 compares the land classifications provided by Urban Forestry in 2007 and in 2018

around James Park Square, in the municipal area of Scarborough. There is a marked

decrease in the area covered by trees which coincides with the location of city-managed

ash trees (green symbols). We provide an additional illustration of such tree felling in

Appendix B.2 with successive street views of the same neighborhood in 2007 (before the

infestation), 2014 (after the cut-downs), and 2020 (with replanted tree saplings). In the

same Appendix B.2, we exploit a register of planned work from Parks and Forestry to

discuss the timing and selection of planned removals and TreeAzin injections.

We investigate the systematic relationship between the evolution of urban forestry

and tree removals in Figure 5. We consider a postcode as the main unit of observation,

and we first construct the long difference in area share of tree cover between 2007 and

2018. Panel (a) of Figure 5 shows the correlation between the evolution of the tree canopy

and a measure of ash tree density—the number of street ash trees per area , as measured

in 2010—across postcodes. Panel (b) conditions this relationship on a measure of street
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Figure 5. The effect of ash tree density on the tree canopy between 2007 and 2018.

(a) Tree canopy (difference, 2007–2018) (b) Tree canopy (residual, 2007–2018)

(c) NDVI (2006–2020) (d) LAI (2006–2020)

Notes: Panel (a) represents the relationship between the evolution of the area share of tree cover between 2007 and 2018 and the
density of ash trees within a postal code (number of street ash trees per area within a 10m buffer, as measured in 2010). We group
postal codes by bins of ash tree density: the dots represent the average evolution of the tree canopy within each bin. Panel (b)
represents the same relationship in which the evolution of the area share of tree cover between 2007 and 2018 and the ash tree
density are residualized: we regress both measures on a measure of street tree density, latitude, longitude, area shares from the land
classification in 2007 (tree canopy, grass/shrub, bare earth, water, buildings, roads, other paved surfaces and agriculture) and ward
fixed effects. The lines are locally weighted regression on all observations. Panels (c) and (d) show the estimated correlation between
ash tree density and vegetation cover from 2006 to 2020. More specifically, we regress the Normalized Difference Vegetation Index
(NDVI, panel c) and the Leaf Area Index (LAI, panel d) across postcodes on: a measure of ash tree density (number of street ash
trees per area within a 10m buffer, as measured in 2010); a measure of street tree density; ward fixed effects; latitude, longitude;
dummies for the land classification in 2007 (tree canopy, grass/shrub, bare earth, water, buildings, roads, other paved surfaces and
agriculture)—all interacted with period fixed effects (where a period groups two consecutive years for the sake of exposition). The
reported coefficients are the ones in front of the measure of ash tree density interacted with period fixed-effects, and vertical lines
show 95 percent confidence intervals. Both NDVI and LAI indices are obtained by combining the reflection in the near-infrared
spectrum (NIR) with the reflection in the visible range of the spectrum and rely on a cloud-free mosaic of Landsat imagery (L7/L8,
30m resolution) covering May–September from 2006 to 2020.

tree density (irrespective of their species), latitude, longitude, the land classification in

2007 (the area shares of tree canopy, grass/shrub, bare earth, water, buildings, roads,

other paved surfaces and agriculture) and ward fixed effects. We find that there is a

strong, precisely estimated, negative correlation between the evolution of tree cover

from 2007–2018 and the initial density of ash trees: an additional 0.003 ash trees per

square meter is associated with a decrease of 0.04 in the area share of tree cover (see

panel b for instance). To rationalize the previous relationship, an additional 0.003 ash

tree per square meter corresponds to 3,000 ash trees per square kilometer. If each ash
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tree uniquely covered about 35 square meters, these 3,000 ash trees would cover 10%

of a square kilometer.13 Compared to this back-of-the-envelope calculation, the actual

tree cover decreases by only 4-5% of a square kilometer. The difference between the two

numbers could be explained by: (i) significant overlap between tree crowns; (ii) sluggish

tree removals and trees having received TreeAzin injections; and (iii) fast replacement

by tree saplings.

The previous evidence quantifies the swift loss of urban forestry in postal codes with

numerous ash trees. We shed additional light on the average timing of such loss in

panels (c) and (d) of Figure 5. To do so, we leverage yearly vegetation indices constructed

from satellite imagery and run an event-study specification estimating the relationship

between vegetation indices, 𝐼𝑝𝑡 , in postcode 𝑝 at time 𝑡 (we group years into two-year

periods) and our baseline measure of exposure to the EAB infestation, 𝐴𝑝,2010:

𝐼𝑝𝑡 =

𝜏=2020

∑

𝜏=2006

𝛽𝜏𝐴𝑝,2010 × 1𝜏 + 𝛾𝐭𝐗𝑝 + 𝜂𝑝 + 𝜇𝑡 + 𝜀𝑝𝑡 ,

where 𝐗𝑝 includes: a measure of street tree density; ward fixed effects; latitude, longi-

tude; area shares for each land category in 2007 (tree canopy, grass/shrub, bare earth,

water, buildings, roads, other paved surfaces and agriculture)—all interacted with year

fixed effects 𝛾𝐭. Panels (c) and (d) of Figure 5 show that the differential dynamics of

vegetation indices across neighborhoods materialize from 2012 onward with most of

the vegetation loss occurring before 2016. An additional 0.003 ash trees per square me-

ter leads to an incremental decrease in the Normalized Difference Vegetation Index of

0.003 × 7 ≈ 0.021 (to be compared with its standard deviation of 0.14 across postal codes)

and in the Leaf Area Index of 0.003 × 1.15 ≈ 0.0035 (to be compared with its standard de-

viation of 0.02 across postal codes). Both amount to a loss of 15% of a standard deviation,

which is a very significant vegetation loss over a period of 4-5 years. Equally important

is the observation that there is no immediate rebound in tree cover: the felling of mature

trees cannot be mitigated in the shorter and medium run; growing a proper substitute

to maturity should take about 25-30 years.

Finally, our identification exploits the unanticipated, random occurrence of an eco-

logical catastrophe to isolate exogenous variation in urban forestry. However, our instru-

mental variable is based on the initial location of vulnerable, city-managed trees. The

13The crown radius of the average (lost) ash tree is not observable in our data. We do, however, observe
the diameter at breast height of injected trees (28.7 cm on average) and non-injected trees (29.1 cm on
average)—the latter constituting arguably the bulk of our “compliers”, i.e., the population of trees lost
between 2007–2018. These diameters at breast height would imply an average crown radius of 3.3-3.4m
using the relationships estimated in Hemery et al. (2005) for Fraxinus excelsior or Peper et al. (2014) for
Fraxinus americana. The equivalent crown radius would be 4m using the (cruder) ratio between crown
radius and diameter at breast height of 14 (Lockhart et al., 2005).
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Table 1. Ash trees and the evolution of the tree canopy between 2007 and 2018.

Tree cover (2007–2018) (1) (2) (3)

Ash tree density -12.23 -13.78 -13.96
(1.349) (1.365) (1.372)

Street tree density 1.444 1.910
(0.197) (0.287)

Spruce tree density 1.189
(1.305)

Elm tree density 3.408
(2.042)

Maple tree density -2.000
(0.575)

Observations 45,520 45,520 45,520
Notes: Robust standard errors are reported between parentheses. The unit of observation is a postcode in the City of Toronto, and
the dependent variable is change in the area share of tree cover between 2007 and 2018. All specifications include: ward fixed effects;
latitude and longitude; and area shares from the land classification in 2007 (tree canopy, grass/shrub, bare earth, water, buildings,
roads, other paved surfaces and agriculture). In column (2), we add the number of public trees normalized by the postcode area. In
column (3), we add the number of spruce trees, elm trees and maple trees normalized by the postcode area.

correlation between the initial distribution of a specific tree species and the dynamics of

tree cover could theoretically be driven by other urban policies, e.g., aimed at diversify-

ing the green capital within the city. We explore the relationship between the evolution

of the tree canopy from 2007–2018 and the density of publicly maintained trees in Ta-

ble 1. In this table, as in Figure 5, the unit of observation is a postal code, the dependent

variable is the change in tree cover between 2007 and 2018, and we control for ward fixed

effects, latitude and longitude, and area shares of trees, grass/shrub, bare earth, water,

buildings, roads, other paved surfaces and agriculture in 2007. In column (2), we add a

control for the density of all publicly maintained trees within a 10m buffer of the post-

code. In column (3), we add the densities of other popular species of publicly maintained

trees (i.e., spruce trees, elm trees, maples). The negative effect of the initial density of

ash trees is robust across specifications and is one order of magnitude larger than the

effects of other tree species. This ash-specific effect is key to supporting our empirical

strategy: the initial distribution of city-managed trees should only capture the quasi-

random allocation of an otherwise common tree species across space and be orthogonal

to concurrent planning policies or green initiatives.

In Figure 6, we provide further reassurance that the initial location of ash trees is not

16



Figure 6. The initial allocation of ash trees—a balance test.

Notes: This Figure displays the standardized estimates of regressions relating neighborhood characteristics and attributes with the
initial density of publicly maintained ash trees. More specifically, we consider a similar specification as in column (2) of Table 1 and
replace the left-hand side variable by: the standardized difference in area share of urban forestry within the postcode between 2007
and 2018; the (log) area of the postal code; the area share of water within the postcode in 2007; the share of detached properties sold
in 2007–2008, the share of multi-stories properties sold during the same period, the property size (as captured by the average number
of rooms across transactions), and the average (log) property price within the postal code in 2007–2008. For the sake of exposition,
we standardize the treatment—the density of publicly maintained ash trees—and all outcomes. The darker band represents a 10%
confidence interval, the medium band shows a 5% confidence interval, and the lighter band represents the 1% confidence interval.

correlated with neighborhood attributes which could affect the dynamics of house prices

between 2007 and 2018. In effect, we rely on the previous specification (see column 2

of Table 1) and replace the explained variable by important neighborhood characteris-

tics (e.g., property prices and property type at baseline). For the sake of exposition, we

standardize the treatment—the density of publicly maintained ash trees—and the vari-

ous outcomes, such that the estimates reflect standardized effects. As shown in Figure 6,

the treatment predicts a sharp decrease in the area share of urban forestry within the

postcode between 2007 and 2018: one standard deviation in the density of publicly main-

tained ash trees reduces tree cover by 0.04 standard deviations. The treatment is how-

ever (conditionally) orthogonal to the postcode area, the area share of water within the

postcode, the share of detached properties sold in 2007–2008, the share of multi-stories

properties, the property size (as captured by the number of rooms), and the average

(log) property price. The (conditional) correlation between ash trees and Land Surface

Temperature (Summer 2013) is significant at conventional levels, but quite small.

2 Empirical strategy

This section describes our empirical strategy and provides a few descriptive statistics.
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2.1 Estimating the hedonic value of the tree canopy

The hedonic value of urban forestry should encompass all the net present benefits of

a tree in a given proximity to a property, including its long-term effect on energy con-

sumption. An empirical strategy aiming to estimate the causal effect of trees on property

values should exploit exogenous and permanent shocks to the tree canopy. The shock

used in this paper is the initial relative allocation of city-managed ash trees that will

(mostly) be lost to the Emerald Ash Borer infestation and thus affect tree cover in the

medium and longer run—as documented in the previous section.

A naive empirical strategy would correlate transaction prices with local tree cover,

possibly controlling for time-invariant local characteristics and trends along some ob-

servables. Such a specification would suffer from three major issues: omitted variation,

reverse causality, and measurement error. First, the dynamics of urban forestry may

relate to local developments, for instance, neighborhood quality, investments in green

infrastructure, transport infrastructure, or the construction of new offices. Each of these

sources of omitted variation would strongly affect property prices and lead to changes

in the tree canopy. Second, a rise in the local price of land increases the opportunity cost

of maintaining urban forestry. Third, the measure of tree density may be contaminated

by measurement error related to the procedures employed to evaluate the tree canopy.

We address these identification issues by isolating variation in the tree canopy gener-

ated by an irreversible and exogenous shock: the Emerald Ash Borer infestation. Letting

𝑖 denote a transaction with associated price 𝑃𝑖𝑝𝑡 and 𝑇𝐷𝑝𝑡 denote the inferred area share

of tree canopy within the postcode 𝑝 at time 𝑡, we estimate:

ln(𝑃𝑖𝑝𝑡) = 𝛼 + 𝛽𝑇𝐷𝑝𝑡 + 𝛾𝐭𝐗𝑖𝑝𝑡 + 𝜂𝑝 + 𝜇𝑡 + 𝜀𝑖𝑝𝑡 , (1)

where 𝑇𝐷𝑝𝑡 is instrumented by the density of publicly managed ash trees, 𝐴𝑝𝑡 , and 𝛾𝐭𝐗𝑖𝑝𝑡

captures the evolution of the time-varying premium associated to: observable house

characteristics (i.e., number of bedrooms, number of rooms, and type of dwelling); ward

fixed effects; a measure of city-managed tree density; latitude and longitude; and area

shares from the land classification in 2007 (tree canopy, grass/shrub, bare earth, water,

buildings, roads, other paved surfaces and agriculture). The specification thus flexibly

controls for the differential evolution of prices across neighborhoods and time-varying

returns to house characteristics. Standard errors are clustered at the postcode × year

level in the baseline specification, but we consider alternative clustering strategies in

robustness checks.

Equation (1) requires measures that capture the evolution of tree density, 𝑇𝐷𝑝𝑡 , and

ash tree density, 𝐴𝑝𝑡 . We do not have detailed information on the yearly evolution of the

18



tree canopy: we only observe it at the time of the surveys conducted in 2007 and 2018.

We do however know from records of the City of Toronto that 2011 is the beginning of

work orders to remove ash trees that were infested with the Emerald Ash Borer, with a

marked acceleration in 2013 and a deceleration after 2016—an observation that is con-

firmed by our less precisemeasures of land cover at the yearly level sourced from satellite

imagery (see Figure 5).14 We thus construct the baseline exposure to urban forestry and

the baseline instrument as follows: 𝑇𝐷𝑝𝑡 = 𝑇𝐷𝑝,2007 for 𝑡 ≤ 2013 and 𝑇𝐷𝑝𝑡 = 𝑇𝐷𝑝,2018

for 𝑡 ≥ 2016, 𝐴𝑝𝑡 = 𝐴𝑝,2010 for 𝑡 ≤ 2013 and 𝐴𝑝𝑡 = 0 for 𝑡 ≥ 2016, and we interpolate

linearly both measures 𝑇𝐷𝑝𝑡 and 𝐴𝑝𝑡 between 2013 and 2016.

With forward-looking agents capitalizing the future flow of amenities provided by

urban forestry, property prices should reflect future tree removals once the informa-

tion about the EAB infestation becomes public. One assumption behind our strategy is

that the vast majority of anticipated tree removals occur before 2018 such that all lost

publicly-managed ash trees are already captured within our measure of urban forestry in

2018. Imperfect “compliance” from a few remaining trees that would be expected to dis-

appear after 2018 would lead to an over-estimate of the hedonic value of urban forestry.

Further, we cannot really observe the evolution of the information set of land market

participants. For this reason, we provide robustness checks with alternative cut-offs and

without any inference to show that the previous inference is not driving our main find-

ings. For instance, we can focus on a sub-sample of property transactions covering (i) a

pre-treatment period between 2007–2009, where no EAB-related damages had occurred

yet; and (ii) a post-treatment period between 2016–2020 when the majority of ash trees

had been removed.

The identification of specification (1) hinges on the assumption that the allocation

of ash trees is orthogonal to the evolution of residential prices at the postcode level—

conditioning on the evolution of the overall number of public trees. This empirical strat-

egy may be threatened by the possible correlation between the spatial distribution of ash

trees, inherited from the earlier spatial distribution of elm trees, and neighborhood dy-

namics in the City of Toronto. For instance, neighborhoods may go through long cycles

related to the age of the housing stock (Brueckner and Rosenthal, 2009), and growing

areas in the 1930s may now experience a gentrification from the redevelopment of his-

toric neighborhoods. We provide reassuring evidence about this threat by assessing the

existence of pre-treatment differential trends between 2002 and 2006.

14In Appendix B.2 and Figure B4, we discuss and illustrate the timing of work orders to remove city-
managed infested trees by the City of Toronto between 2008—we observe orders prior to that date, but
their number is negligible—and 2023. We find that the vast majority of trees are removed between 2011
and 2016.
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Table 2. Descriptive statistics.

Tree density
Mean Stand. dev. High Low

Panel A: Transaction characteristics
Transaction price 13.12 0.649 13.16 13.09
Number of bedrooms 2.193 1.157 2.375 2.014
Number of rooms 4.859 2.668 5.165 4.556

Panel B: Land cover in 2007
Tree canopy 0.220 0.191 0.318 0.122
Grass/shrub 0.151 0.102 0.175 0.127
Bare earth 0.010 0.086 0.001 0.018
Water 0.001 0.007 0.001 0.001
Buildings 0.225 0.161 0.200 0.250
Roads 0.159 0.161 0.129 0.189
Other paved surfaces 0.232 0.220 0.173 0.291
Agriculture 0.000 0.002 0.000 0.000

Panel C: City-managed trees
Ash trees (density, per sq. km) 77.2 261.3 87.7 66.9
All trees (density, per sq. km) 1,923 2,074 1,914 1,933

Observations 461,304 229,359 231,945
Notes: All statistics are computed using the baseline sample of transactions. The samples of high- and low-tree density are defined
with respect to the median share of tree canopy as produced by Urban Forestry as part of an Urban Tree Canopy Assessment in 2007.

2.2 Descriptive statistics

Before we move on to the main estimation, this subsection provides some descriptive

statistics that aim to provide a better understanding of the variation underlying the iden-

tification strategy.

We start by reporting descriptive statistics about transaction data in Table 2: the

mean and standard deviations of the main variables, control variables and their values

for transactions in postal codes with above- or below-median tree canopy. As appar-

ent in Table 2, there are wide differences in tree density across properties. Postcodes

with above-median tree density have almost three times more tree cover than postcodes

with below-median tree density in 2007. Urban forestry correlates with property prices,

which are about 8% higher for properties with above-median tree density. This price

differential may illustrate a tree premium, but they also seem to indicate differential

property characteristics: Properties with above-median tree density have, on average,

0.3 additional bedrooms and 0.6 additional rooms.

Panels (a) and (b) of Figure 7 show the correlation between house prices and the sur-

rounding urban forestry. The x-axis is the area share of tree cover in 2007, 𝑇𝐷𝑝2007; and

the y-axis is the average (log) house price. The association between transaction prices
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Figure 7. Housing prices, temperature, and density of the tree canopy.

(a) Housing prices (b) Housing prices (res.)

(c) Temperature (d) Temperature (res.)

Notes: Panel (a) represents the relationship between the (logarithm) transaction price and our measure of tree cover at the postcode
level. We group transactions by bins of tree cover: the dots represent the average transaction price within each bin. The green area
represents the distribution of the x-axis variable across all panels. Panel (b) represents the same relationship in which the (logarithm)
transaction price and the tree cover within the postcode are residualized: we regress both measures on the number of bedrooms,
the number of washrooms, the latitude, the longitude, ward fixed effects—all interacted with year fixed effects. Panel (c) represents
the relationship between the average temperature during the summer in 2018 and our measure of tree cover at the postcode level
(with a buffer of 10m around the postcode shape and in 2018). We group postcodes by bins of tree cover: the dots represent the
average temperature within each bin. Panel (d) represents the same relationship in which the temperature and the tree cover within
the postcode are residualized: we regress both measures on the latitude, the longitude, and ward fixed effects. The lines are locally
weighted regression on all observations.

and tree density should reflect the price premium associated with leafy suburbs, but also

the opportunity cost of maintaining urban forestry. As shown in panel (a), this correla-

tion is positive for almost any share of tree cover in 2007, especially so in residential areas

with significant urban forestry. Panel (b) displays the same relationship conditioning on

our main control variables: the number of bedrooms andwashrooms; latitude, longitude;

and ward fixed effects—all interacted with year fixed effects. As apparent, the price gra-

dient between less and more leafy neighborhoods remains substantial. Panels (c) and (d)

show a strongly negative correlation between summer temperatures (June-September

2018), 𝑇𝑝, and the surrounding urban forestry. There is an average difference of about

four degrees Celsius between postcodes with very low versus very high tree cover. This

holds true even when conditioning on ward fixed effects and our baseline controls.
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3 The hedonic value of urban trees

In this section, we estimate the hedonic value of urban forestry. Our headline finding is

that the tree premium is both economically and statistically significant: adding one tree

within a postcode increases property prices by 0.45%.

Figure 8. Ash trees and the evolution of housing prices.

Notes: This Figure shows the estimated correlation between ash tree density and housing prices from 2006 (2007) to 2020. More
specifically, we regress the (log) transaction price on a measure of ash tree density (number of street ash trees per area within a
10m buffer, as measured in 2010) interacted with period fixed effects, controlling for: (i) postcode fixed effects; (ii) ward fixed effects
interacted with period fixed effects; (iii) a measure of city-managed tree density interacted with period fixed effects; (iv) latitude and
longitude interacted with period fixed effects; and (v) area shares from the land classification in 2007 (tree canopy, grass/shrub, bare
earth, water, buildings, roads, other paved surfaces and agriculture) interacted with period fixed effects. As in Figure 5, a period
groups two consecutive years for the sake of exposition. The reported coefficients are the ones in front of the measure of ash tree
density interacted with period fixed-effects, and vertical lines show 95 percent confidence intervals. Standard errors are clustered at
the postcode × year level, and the specification is weighted by the inverse of the number of observations in a given postcode.

3.1 Baseline specification

Before presenting our main estimates based on Equation (1), we shed some light onto the

temporal relationship between home values and the infestation. We estimate a reduced-

form specification, isolating the time-varying correlation between the price 𝑃𝑖𝑝𝜏 associ-

ated with transaction 𝑖, postcode 𝑝, and time 𝜏 and the density of publicly-managed ash

trees prior to removals,

ln(𝑃𝑖𝑝𝜏) = 𝛼 +∑

𝜏

𝛽𝜏𝐴𝑝 + 𝛾𝜏𝐗𝑖𝑝𝜏 + 𝜂𝑝 + 𝜇𝜏 + 𝜀𝑖𝑝𝜏 , (2)

where 𝛾𝜏𝐗𝑖𝑝𝜏 captures the evolution of the time-varying premium associated to ward

fixed effects, a measure of city-managed tree density, latitude and longitude, and area

shares from the land classification in 2007.
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We report the outcome of this “event-study” design in Figure 8. One can see that

the correlation between house prices and ash tree density is stable until 2010; it then

decreases gradually and stabilizes from 2016 onward.15 As previously illustrated in Fig-

ure 5, adding 0.003 ash trees per square meter at baseline leads to a decrease in tree

cover of about 4-5 percentage points between 2007 and 2018. The end-line estimate in

Figure 8 implies that such tree losses would be associated with a decrease in house prices

of 0.003 × 18 ≈ 5%, consistent with a sizable amenity value of trees. Our two-stage spec-

ification will quantify this amenity value in a more straightforward manner.

Table 3. The amenity value of trees—baseline specification.

OLS IV
Transaction price (log) (1) (2) (3)

Tree cover -0.056 0.971 1.024
(0.014) (0.259) (0.242)

Transaction controls No No Yes
Observations 457,047 457,047 457,035
F-statistic - 123.91 135.26
Notes: Standard errors are reported between parentheses and are clustered at the postcode × year level. Column (1) reports OLS
results and columns (2)-(3) report the estimates from the IV specification in which tree cover is instrumented by the the density
of city-managed ash trees. The unit of observation is a transaction, and the dependent variable is the (log) transaction price. All
specifications are weighted by the inverse of the number of observations in a given postcode. All specifications include: (i) postcode
fixed effects; (ii) ward fixed effects interacted with year fixed effects; (iii) a measure of city-managed tree density interacted with
year fixed effects; (iv) latitude and longitude interacted with year fixed effects; and (v) area shares from the land classification in
2007 (tree canopy, grass/shrub, bare earth, water, buildings, roads, other paved surfaces and agriculture) interacted with year fixed
effects. The set of transaction controls include the number of rooms, the number of bedrooms, and 10 dwelling types (e.g., detached,
apartment, duplex, commercial) interacted with year fixed effects.

Table 3 reports the estimates of Equation (1). By default, all estimations are condi-

tioned on postcode fixed-effects and year fixed effects interactedwith: eight categories of

land cover in 2007; the density of city-managed trees; latitude; longitude; and ward-fixed

effects. Column (1) reports OLS estimates; and columns (2) and (3) report IV estimates

in which the evolution in tree density, 𝑇𝐷𝑝𝑡 , is instrumented by the density of ash trees,

𝐴𝑝𝑡 . In column (3), we add transaction controls, i.e., the number of rooms, the number

of bedrooms, and 10 dwelling types interacted with year fixed effects to control for val-

uations of house characteristics that are allowed to vary over time in a flexible manner.

The OLS specification shows that the correlation between tree density and property

values is negative and quantitatively irrelevant (column 1). The IV specification finds

instead a positive and significant causal effect of urban forestry on property prices. One

15We provide a placebo specification in Section 3.2 and Figure 9, where we replicate this exercise with
the density of publicly-managed elm trees and the density of publicly-managed maple trees—two species
similarly used as urban forestry. In both cases, we see no differential dynamics in housing prices depending
on the initial density of such other species.
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additional percentage point in tree cover within a postcode increases property values by

1% in our preferred specification (column 3). To help understand the magnitude of these

estimates, consider the following thought experiment: the average non-injected ash tree

increases the tree canopy by about 35 square meters; the average postcode covers about

8,000 square meters; thus, one additional tree increases the area share of tree canopy by

0.45 percentage points. Using our preferred estimate, this additional tree would cause

a property price increase of about 0.45%.16 Alternatively, postal codes that were most

affected by the ecological catastrophe had an initial density of (city-managed) ash trees

around 0.005; the loss in the area share of tree cover would amount to 0.005×13.78 ≈ 0.07

(column 2 of Table 1) leading to a drop in housing prices around 7%.

This average treatment effect masks significant heterogeneity. We shed some light

onto the heterogeneity of treatment effects across more or less deprived postal codes,

postal codes withmore or less urban trees at baseline, and across property characteristics

(single-unit versus multi-unit buildings) in Appendix C. We find that the tree premium

is larger in more affluent neighborhoods. More strikingly, we find that a marginal tree

is only valued in neighborhoods with significant tree cover, in line with the shape of

the price gradient in urban forestry depicted in panel (a) of Figure 7. Demand for urban

forests thus depends on many factors (see, for instance, Zhu and Zhang, 2008), and one

important driver is the pre-existing state of local green infrastructure.

3.2 Identification and robustness checks

One threat to identification is that the initial distribution of ash trees, partly reflecting

urban developments in 1900–1930 and the associated distribution of elm trees, corre-

lates with secular neighborhood dynamics. We reduce concerns about this identification

threat by testing for the existence of pre-treatment differential trends. Specifically, we

consider the period 2002–2006 in which we do observe property transactions, albeit with

limited transaction controls, and estimate Equation (1) on this sample of transactions dis-

placing treatment and the transition of land cover between 2007–2018 from 2013–2016

to 2004–2005. It is reassuring that Panel A of Table 4 shows no differential trends be-

fore the treatment date: the OLS estimate (column 1) is similar to that obtained on the

baseline sample, but the IV estimate (column 2) is small, negative, and non-significant.

We then provide a systematic sensitivity analysis around the baseline specification in

16Our instrument addresses the endogenous allocation of trees at baseline; it does not however untan-
gle the mechanisms through which tree loss affects property values. In theory, our estimate could both
reflect the amenity value of trees and the (dis)amenity value of trees waiting to be felled. Note that the
latter effect does not arise from the publicly-managed trees used as exogenous variation; it would arise
from private ash trees if their presence were correlated with that of publicly-managed trees. As an illus-
tration, removing an average-sized ash tree from a private property would cost around CAD 1,500, and a
dying tree sitting on a property for sale would be partly accounted for in the transacted price.
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Table 4. The amenity value of trees—robustness checks of the main IV specification.

Transaction price (log) (1) (2) (3)
Panel A: Placebo specification (2002–2006)

Tree cover -0.067 -0.197
(0.020) (0.388)

Observations 168,457 168,457
F-statistic - 48.26

Panel B: No inference
Tree cover 0.837 0.940 0.887

(0.189) (0.222) (0.240)
Sample S1 S2 S3
Observations 394,144 323,554 252,097
F-statistic 148.33 121.67 96.35

Panel C: Long difference
Tree cover 1.018 1.081 1.090

(0.345) (0.399) (0.508)
Sample S1 S2 S3
Observations 21,411 18,666 14,872
F-statistic 67.48 54.51 37.40

Panel D: Sensitivity
Tree cover 1.547 1.173 0.853

(0.371) (0.284) (0.258)
Exposure Buffer: 20m Winsorizing: 90% Winsorizing: 99%
Observations 452,507 457,035 457,035
F-statistic 50.05 104.41 86.23

Panel E: Additional controls
Tree cover 0.952 1.048 1.008

(0.237) (0.238) (0.244)
Controls Amenities Topography Income
Observations 457,035 444,689 457,035
F-statistic 138.98 141.58 132.61

Panel F: Clustering
Tree cover 1.024 1.024 1.024

(0.305) (0.262) (0.405)
Clustering Postcode Ward × year Ward
Observations 457,035 457,035 457,035
F-statistic 53.48 68.36 12.96
Notes: Standard errors are reported between parentheses and are clustered at the postcode × year level (except in Panel F). All columns
report the estimates from the IV specification in which tree cover is instrumented by the ash tree density. In Panel B, D, E and F, the
unit of observation is a transaction, the dependent variable is the (log) transaction price, and the specifications include: (i) postcode
fixed-effects; (ii) ward fixed effects interacted with year fixed effects; (iii) a measure of street tree density interacted with year fixed
effects; (iv) latitude and longitude interacted with year fixed effects; (v) area shares from the land classification in 2007 (tree canopy,
grass/shrub, bare earth, water, buildings, roads, other paved surfaces and agriculture) interacted with year fixed effects; and (vi) the
number of rooms, the number of bedrooms, and 10 dwelling types interacted with year fixed effects (except in Panel A, mirroring
Table 3). All specifications are weighted by the inverse of the number of observations in a given postcode. In Panel A, the sample
consists of observations between 2002 and 2006 (excluded from our baseline sample), and the dependent variable is constructed
using a treatment date in 2004. In Panel B, we restrict the sample to 2007–2011/2014–2020 in column (1), 2007–2010/2015–2020 in
column (2), 2007–2009/2016–2020 in column (3). In Panel C, we apply the same sample restrictions and consider a specification
in long difference in which all variables are collapsed at the postcode level. In Panel D, we explore variations around the baseline
specification: a buffer of 20m around postcodes in column (1), a winsorizing at 90% for publicly-managed densities in column (2),
a winsorizing at 99% for publicly-managed tree densities in column (3). In Panel E, we condition on time-varying dependence in:
amenities (distance to green areas, ravines, schools, area share of sidewalk, length of pedestrian paths), topography (elevation, slope),
and neighborhood income at baseline. In Panel F, we explore variations around the baseline clustering procedure: at the postcode
level in column (1), at the ward × year level in column (2), at the ward level in column (3). There are about 50 wards in Toronto.
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the remainder of Table 4. In Panel B, we construct the baseline exposure to urban forestry

and the baseline instrument as follows: 𝑇𝐷𝑝𝑡 = 𝑇𝐷𝑝,2007 for 𝑡 ≤ 𝑇1 and 𝑇𝐷𝑝𝑡 = 𝑇𝐷𝑝,2018

for 𝑡 ≥ 𝑇2, 𝐴𝑝𝑡 = 𝐴𝑝,2010 for 𝑡 ≤ 𝑇1 and𝐴𝑝𝑡 = 0 for 𝑡 ≥ 𝑇2. However, we do not interpolate

between 𝑇1 and 𝑇2 and rather exclude the years in between. In short, this specification

is equivalent to defining a pre-treatment period [2007, 𝑇1] and a post-treatment period

[𝑇2, 2020]. Panel B shows that our main estimate varies between 0.70 and 0.90, when the

pre-treatment period changes from [2007, 2011] to [2007, 2009] and the post-treatment

period from [2014, 2020] to [2016, 2020]. In Panel C, we consider a long difference setting,

similar in essence to the previous exercise, but rather collapse the data at the postcode

level. The estimated equation is:

Δ ln(𝑃𝑝) = 𝛼 + 𝛽Δ𝑇𝐷𝑝 + 𝛾𝐗𝑝 + 𝜀𝑝 (3)

where Δ𝑇𝐷𝑝 is instrumented by 𝐴𝑝,2010, and controls (e.g., transaction characteristics,

land cover in 2007) are collapsed at the postcode level. The estimate remains close to

1 when we change the pre-treatment period from [2007, 2011] to [2007, 2009] (and the

post-treatment period from [2014, 2020] to [2016, 2020]). In Panel D, we consider mi-

nor alterations around our baseline specification: we construct land cover and ash tree

density with a 20m buffer in column (1), instead of 10m; we winsorize non-zero val-

ues for ash tree density and all street tree density at 90% or 99%, rather than at 95% in

the baseline. Again, the exercise confirms the robustness of our baseline estimations. In

Panel E, we condition on time-varying dependence in amenities (distance to green areas,

ravines, schools, area share of sidewalk, length of pedestrian paths), in topography (el-

evation, slope), and in neighborhood income at baseline. Lastly, in Panel F, we consider

alternative clustering procedures: at the postcode level in column (1); at the ward × year

level in column (2); and at the ward level in column (3). Even in the most demanding

specification with about 50 clusters at the level of wards, our estimated effects remain

significantly different from 0 at the 1%-level.

Finally, we explore the possibility that diverging dynamics in housing demand and

supply across neighborhoods with different levels of city-managed ash trees may drive

our results. In a placebo specification building on the exercise of Figure 8, we look at the

time-varying relationship between home values and the distribution of other publicly-

managed tree species (i.e., elm trees and maple trees—see column 3 of Table 1). We

estimate Equation (2), where 𝐴𝑝 is now the density of publicly-managed elm trees or

maple trees. While Figure 8 was showing a gradual decrease in house prices in locations

with a high density of publicly-managed ash trees at baseline, Figure 9 shows no such

patterns for locations with a high density of publicly-managed elm trees or maple trees.

This finding provides supporting evidence that the joint dynamics of urban forestry and
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Figure 9. Other tree species and the evolution of housing prices—a placebo check.

(a) Elm trees (b) Maple trees

Notes: This Figure shows the estimated correlation between elm/maple tree density and housing prices from 2006 (2007) to 2020.
More specifically, we regress the (log) transaction price on a measure of elm/maple tree density (number of street elm/maple trees
per area within a 10m buffer, as measured in 2010) interacted with period fixed effects, controlling for: (i) postcode fixed effects;
(ii) ward fixed effects interacted with period fixed effects; (iii) a measure of city-managed tree density interacted with period fixed
effects; (iv) latitude and longitude interacted with period fixed effects; and (v) area shares from the land classification in 2007 (tree
canopy, grass/shrub, bare earth, water, buildings, roads, other paved surfaces and agriculture) interacted with period fixed effects.
As in Figure 5, a period groups two consecutive years for the sake of exposition. The reported coefficients are the ones in front
of the measure of elm/maple tree density interacted with period fixed-effects, and vertical lines show 95 percent confidence inter-
vals. Standard errors are clustered at the postcode × year level, and the specification is weighted by the inverse of the number of
observations in a given postcode.

property prices is indeed explained by the disappearance of ash trees.

4 Ecosystem services provided by urban forestry

The previous section has established the amenity value to urban forestry. Part of this

value derives from the aesthetic appeal of greenery in urban settings. Yet, beyond aes-

thetics, urban trees offer additional ecosystem services that improve the living conditions

for residents. For instance, street trees mitigate the urban heat island effect through

shade and evapotranspiration. In cooler seasons, they can reduce the need for heating

by providing windbreaks and reducing cold air infiltration into buildings. Trees also en-

hance air quality by capturing and absorbing particulate pollutants at street level.17 This

section quantifies these ecosystem services and looks at the effect of urban trees on (i)

local temperatures, (ii) energy consumption, and (iii) fine particulate matter pollution.

Urban forestry and urban heat Urban forestry arguably reduces the urban heat is-

land effect (Oke, 1973; Roy et al., 2012). Our experiment provides a natural setting to

quantify such an effect, as we isolate exogenous variation in the evolution of the tree

canopy within postcodes over time. This design alleviates concerns that households re-

siding in green neighborhoods are inherently more environmentally conscious and, con-

17Additionally, urban trees serve as natural water filters, slow storm-water movement, and decrease
runoff volume, thereby easing the strain on sewer systems and reducing soil erosion and flooding.
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sequently, utilize energy more judiciously, but also addresses the alternate concern that

wealthier households gravitate toward greener neighborhoods, which could potentially

result in higher energy consumption.

To investigate this relationship, we consider the following specification,

𝑇𝑝𝑡 = 𝛼 + 𝛽𝑇𝐷𝑝𝑡 + 𝛾𝐭𝐗𝑝 + 𝜂𝑝 + 𝜇𝑡 + 𝜀𝑝𝑡 , (4)

where each observation is a postal code in a given year (see Panel A of Table 5), 𝑇𝑝𝑡 is

the average Land Surface Temperature within postcode 𝑝 during July and August of that

year, and urban forestry, 𝑇𝐷𝑝𝑡 , is instrumented by the density of ash trees, 𝐴𝑝𝑡 . Con-

trols include postcode fixed effects and: latitude and longitude; the density of publicly

maintained trees; and area shares from the land classification in 2007, all interacted with

year fixed effects. As shown in Table 5, urban forestry significantly reduces urban heat

during summer months: one additional percentage point in tree cover within a postcode

reduces temperature by about 0.05 degrees (Celsius). Themost affected postal codes have

lost an area share of 0.07 in tree cover to the Emerald Ash Borer infestation; as a result,

the average temperature during July and August is now 0.35 degrees (Celsius) higher.

We shed additional light on the gradual effect of the ecological catastrophe in postal

codes with high density of city-managed ash trees in Appendix D.1, where we see an

increasingly negative effect from 2010 to 2018. This increase reflects higher treatment

compliance over time, i.e., ash trees are cut down in a gradual manner as illustrated

in Section 1.3, but also secular trends in summer temperatures due to climate change.

Global warming is indeed expected to increase temperatures across neighborhoods in

Toronto; the previous exercise sheds some light on the value of trees in reducing urban

heat island effects in the future.18

Urban forestry and energy savings Urban forestry reduces temperatures during the

warm summer months, which should affect energy consumption, e.g., through less fre-

quent recourse to air conditioning.

We investigate this energy saving effect in Panel B of Table 5 where we replicate

the exercise performed in Panel A of Table 5 with the electricity consumption during

July and August as the main dependent variable. One shortcoming is that we do not

observe consumption at the beginning of the treatment period, but for intermediate and

post-catastrophe years (2012–2020). We thus consider a stacked specification, similar

to that of Equation (4), but without postcode fixed-effects. Table 5 shows that one addi-

18Appendix B.4 provides additional visual illustrations of the relationship between local summer tem-
peratures and the local extent of the tree canopy—focusing on a heat wave in 2018. We study non-
linearities in the cooling and energy-saving effects of trees in Appendix C.2.
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Table 5. The cooling effect of trees—temperature, energy consumption, and pollution.

OLS IV
Land Surface Temperature (LST) (1) (2)

Panel A: Temperature
Tree cover 0.195 -5.144

(0.049) (1.059)

Observations 702,138 702,138
F-statistic - 646.49

Electricity usage (1) (2)
Panel B: Electricity consumption

Tree cover 0.077 -2.483
(0.015) (0.516)

Observations 280,931 280,931
F-statistic - 217.64

Pollution (PM2.5) (1) (2)
Panel C: PM2.5 concentration

Tree cover -0.005 -0.120
(0.001) (0.015)

Observations 373,610 373,610
F-statistic - 548.50
Notes: Robust standard errors are reported between parentheses. The unit of observation is a postcode. Across both panels, col-
umn (1) reports the OLS estimate while column (2) reports the estimates from an IV specification where tree cover is instrumented
by a measure of ash tree density. All specifications include: latitude and longitude; the density of publicly maintained trees; and
area shares from the land classification in 2007, all interacted with year fixed effects. In Panel A, the dependent variable is the Land
Surface Temperature (LST) computed as an average during July/August, and we control for postcode fixed effects. In Panel B, the
dependent variable is the (log) electricity consumption in July/August for the median household within a postal code and for all
years between 2012–2020, and we control for ward fixed effects. In Panel C, the dependent variable is (log) concentration of PM2.5
in July/August (in 𝜇𝑔/𝑚3), and we control for postcode fixed effects (see Appendix E).

tional percentage point in tree cover within a postcode reduces the average consumption

during the summer months by about 2.5% which corresponds to CAD 5 per month.

Appendix D considers two alternative specifications. First, Appendix D.1 documents

the gradual energy-consumption effect of the Emerald Ash Borer infestation in postal

codes with high density of city-managed ash trees and provides a placebo experiment

based on winter months. Second, we consider an alternative specification exploiting

short-term, weekly weather fluctuations interacted with solar exposure induced by the

positioning of trees and solar angles in Appendix D.3. Such an approach also allows

us to better characterize the (limited) sheltering effect of urban forestry during winter

months: trees play a role in reducing heat effects in the summer, but can also provide

some shelter from wind in the winter.
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The quantitative role of energy savings How do these energy savings compare

with the hedonic value of urban trees? When smoothed over a period of 12 months, one

additional percentage point in tree cover reduces energy consumption by 0.4% through

its cooling effect, and by 0.1% through its wind-sheltering properties (see Appendix D.4).

Those cumulative effects would amount to CAD 1 per month. In comparison, the asso-

ciated increase in the flow value of a property of 1% would correspond to CAD 25 per

month—a calculation based on the fact that the average monthly rent for a two-bedroom

apartment was around CAD 2,500 in 2018.

Could the expected rise in global temperatures and the exacerbation of urban heat

island effects account for the disparity between the estimated energy-saving premium

and the discounted hedonic value of urban trees? The latter, after all, is intended to

encompass all future discounted benefits of urban trees. Our back-of-the-envelope cal-

culations do not support such an interpretation. While global warming is projected to

increase the energy-saving premium, this is not enough to explain the full extent of the

hedonic value attributed to urban trees. The number of annual hours with average tem-

peratures surpassing 30 degrees Celsius is expected to double between 2020 and 2050,

transitioning from the equivalent of 10 to 20 days. Moreover, there exists a non-linear

relationship between temperature and energy consumption during the summer months

(see Appendix D.4). Even under an extreme scenario, global warming would at most

explain a doubling of the energy-saving premium by 2050. While this increase would be

substantial, it remains one order of magnitude too small to explain the hedonic value of

urban trees.

The energy benefits derived from urban forests alone outweigh the maintenance

costs of urban forestry. The addition of a single tree within a postcode results in a 0.45

percentage point increase in the area covered by the tree canopy and leads to an annual

energy consumption reduction of approximately CAD 12 × 1 × 0.45 ≈ 5.40 per household.
Given that there are roughly 20 households per postcode, the total energy-saving bene-

fit derived from a tree exceeds CAD 100. This is an order of magnitude greater than the

annual maintenance cost, which was estimated at approximately CAD 4.20 according to

the 2011 City of Toronto Parks and Forestry budget proposal. While these calculations

do not account for the opportunity cost of land, including this factor would not alter the

conclusion of a net benefit attributable to urban trees, considering that the energy-saving

effect of urban forestry pales in comparison to its amenity value.

Urban forestry and pollution Lastly, we investigate the impact of urban trees on

pollution. Specifically, we use monthly estimates of fine particulate matter (PM2.5) pol-

lution from Van Donkelaar et al. (2021) for the period 1998–2021 (see Appendix E). The
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data combine Aerosol Optical Depth (AOD) measures with a dispersion model which

is calibrated using a subsample of ground-based observations. While the data come at

a coarser spatial resolution than our other satellite-based measures, there is significant

local variation as illustrated in Figure E1. We investigate the impact of trees on air pollu-

tion in a specification akin to Equation (4) where we regress the average concentration

of fine particulate matter within postcode 𝑝 during July and August of that year on ur-

ban forestry, instrumented by the density of ash trees. Controls include postcode fixed

effects, latitude and longitude interacted with time fixed effects, the density of publicly

maintained trees interacted with time fixed effects, and area shares from the land classi-

fication in 2007, interacted with year fixed effects.

We report the estimates in Panel C of Table 5. We find a negligible, yet negative,

correlation in the OLS specification (column 1). The causal IV estimate, reported in

column (2), is negative as well, but one order of magnitude larger: a percentage point

increase in the area share of tree cover reduces the estimated PM2.5 concentration by

0.12% during the months of July and August. This effect is statistically significant, but

remains small: postal codes that were most affected by the ecological catastrophe lost

0.07 in tree cover, leading to a 0.84% increase in PM2.5 pollution. We further provide

year-specific estimates in panel (b) of Appendix Figure E2 where we see that the (loss

of) pollution-abatement effect of trees materializes between 2013 and 2016—the period

in which city-managed ash trees were removed. We also consider a placebo exercise

focusing on the winter months (December-February) in Appendix Table E1: this placebo

experiment—where foliage is significantly reduced during Winter—provides negligible

and non-statistically significant effects, supporting our conclusion that the evolution of

pollution abatement in the summer is caused by changes in the tree canopy and the loss

of ash trees.19

5 Concluding remarks

This paper assesses the value of urban trees. This is a challenging empirical exercise be-

cause of (i) omitted variation affecting tree density and demand for neighborhoods (e.g.,

neighborhood quality) and (ii) reverse causation (e.g., land prices affecting the opportu-

19We note that our estimated effects are comparable to those reported in Venter et al. (2024), who uti-
lize similar data. These authors highlight the variability and context specificity of green spaces’ impact
on urban air pollution levels. Trees moderate air pollution primarily through deposition, where air pollu-
tants are absorbed by vegetation, and dispersion, which dilutes concentrations of air pollutants. Notably,
dispersion effects are stronger than deposition effects, which can lead to spatial pollution spillovers de-
pending on the vegetation type and urban structure. While exploring these mechanisms in detail falls
outside the scope of our paper, it is important to acknowledge that dispersion effects may account for
the relatively modest reduction in pollution levels documented in Table 5. Another potential explanation
could be attenuation bias due to the use of coarser grid cells.
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nity cost of maintaining urban forestry). To establish causality and present robust quan-

titative estimates, we exploit large, persistent and quasi-experimental variation stem-

ming from the Emerald Ash Borer infestation in Toronto. We find that the hedonic value

of urban forestry far outweighs the associated maintenance costs, rendering it a highly

profitable investment.

Existing research has shown that trees have a number of beneficial effects on their en-

vironment which may contribute to this estimated amenity effect. For instance, Nowak

and Aevermann (2019) provide a valuation toolbox accounting for the discounting of fu-

ture benefits and possible replacement; Kardan et al. (2015) highlight the positive effect

of trees on mental health in a study that uses the 2007 canopy survey in Toronto; and a

recent study by Jones and McDermott (2018b) analyzes how the loss of ash trees leads to

increased air pollution across American cities. Less research has systematically explored

the energy-saving potential offered by the urban tree canopy. Leveraging novel data on

energy consumption, our study reveals that trees effectively lower local temperatures

during heatwaves, resulting in substantial energy savings. While this energy-saving as-

pect is significant and expected to gain even greater importance in the future, particularly

as temperatures and energy costs continue to rise, it is noteworthy that these direct mon-

etary benefits fall short of accounting for the full amenity value associated with urban

forestry. One plausible explanation for this discrepancy is that the substantial cooling

effect provided by urban forestry is not solely confined to energy consumption; it also

has a direct positive impact on the well-being of residents by creating cooler living en-

vironments both indoors and outdoors. Additionally, previous research has established

that trees offer a variety of amenity effects, which are all capitalized in house prices.

Through an indirect analysis, we discover that these other facets explain a significant

portion of the “tree premium.”

While the qualitative understanding that urban forestry confers benefits to urban res-

idents is not surprising, our quantitative findings offer additional insights that are both

novel and striking. We demonstrate that substantial private benefits are already accrued

from the cooling attributes of urban forestry, and the predicted change in temperature

over the coming decades will further exacerbate demand for green infrastructure to pro-

vide shade and evapotranspiration. Moreover, urban residents place a high value on

urban forests that extends well beyond the realm of energy savings. This strong and ap-

parent demand for urban forestry stands in stark contrast to the observed public policies

in place. In numerous North American cities, there is a relatively modest, and in per-

centage terms, even decreasing inventory of urban trees (in recent years), as documented

in prior studies (e.g., Nowak and Greenfield, 2012, 2018). Several explanations might ac-

count for this misalignment. It is possible that governments have yet to fully internalize
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the costs associated with climate change or may fail to fully recognize the perceived

value of urban forestry. Alternatively, coordination issues could be at play. We uncover

that the valuation of urban forestry is nonlinear, with the marginal effect only manifest-

ing in areas with a substantial existing tree cover. Given that cities or neighborhoods

with limited green infrastructure often correspond to economically disadvantaged ar-

eas, policy interventions targeting such cities or regions could potentially address not

only coordination challenges but also generate significant redistributive effects.
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Online Appendix for “Cool cities: The value of urban trees”—not for publication

This online appendix places our context and experiment within the wider context of ur-

ban forestry across North-American cities, provides further details about the data, dis-

cusses neighborhood segregation and treatment heterogeneity, and details additional

empirical results about energy consumption and pollution.
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A Tree canopy and temperature across North-American cities

This section sheds light on the evolution of forest cover and temperature across North-

American cities and describes our main experiment—the Emerald Ash Borer infestation

in Toronto—within this wider context.

Figure A1. The distribution of tree canopy and temperature across North-American cities.

(a) Land Surface Temperature (b) Forest cover

Notes: Panel (a) displays the distribution of Land Surface Temperature in 2015 (based on the procedure developed in Ermida et al.,
2020) across 122 Canadian and American cities with more than 200,000 inhabitants. We distinguish the Winter season (in blue) from
the Summer season (in red). Note that Land Surface Temperature usually differs from air temperature, and this difference can be
higher than 10 Celsius degrees during Summer (Naserikia et al., 2023). Panel (b) displays the distribution of forest cover in 2015
(based on the procedure developed in Ermida et al., 2020) across the same cities. We display the sample average in the legend, and
we show the Toronto average as a dashed line.

A.1 A dataset of North-American cities

In this section, the analysis relies on a cartographic dataset of American and Canadian

cities compiled from Census boundary files around 2010.20 We restrict the main analysis

to cities with more than 200,000 inhabitants, leaving us with 122 agglomerations across

Canada and the United States. We combine these geographies with data constructed

from satellite imagery to construct averages at the city level over time: Land Surface

Temperature, Normalized Difference Vegetation Index, forest cover using the Thermal

Infrared (TIRS) band provided by Landsat L5 (1985–1999), Landsat L7 (1999–2013) and

Landsat L8 (2013–2018) and the procedure developed in Ermida et al. (2020); monthly

maximum/minimum temperatures and wind-speed at 10m using TerraClimate (Abat-

zoglou et al., 2018); typical monthly temperature and precipitation usingWorldClim (Hi-

jmans et al., 2005); land cover in recent period from ESAWorldCover 10m (Zanaga et al.,

20In Canada, we collect the census metropolitan areas and census agglomerations boundaries provided
by the Boundary Files (2016 Census, Statistics Canada Catalogue no. 92-160-X) and restrict the sample to
cities with more than 200,000 inhabitants. In the United States, we rely on the 500 Cities Project developed
by the Centers for Disease Control and Prevention and based on the 2010 Census files.
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2022) and Dynamic World 10m (Brown et al., 2022); topographic data (from the SRTM

90m Digital Elevation Data and the Global ALOS mTPI, see Jarvis et al., 2008; Theobald

et al., 2015); and soil content/bulk (Hengl, 2018; Hengl and Wheeler, 2018).

Figure A1 shows the distribution of tree canopy and temperature across these cities

duringWinter and during Summer. Themain take-awaymessage is that: (i) there is large

variation in temperatures duringWinter due to climatic variation, but Land Surface Tem-

peratures are generally high during Summer;21 (ii) there is large variation in (Summer)

forest cover across North-American cities, illustrating disparities in population density,

green infrastructure, and climate; and (iii) the city of Toronto is not an outlier.

Figure A2. The evolution of tree canopy and temperature across North-American cities.

(a) Land Surface Temperature (b) Forest cover

Notes: Panel (a) displays the average evolution of Land Surface Temperature from 1985 to 2020 (based on the procedure developed
in Ermida et al., 2020). The blue line shows the average Land Surface Temperature during Winter (with the dashed line illustrating
the best linear fit); and the red line shows the average Land Surface Temperature during Summer. Note that the Summer of 1992
was exceptionally cold in North America—one of the coldest Summer in a century. Panel (b) displays the average evolution of forest
cover within the same sample of cities (Ermida et al., 2020). We report the yearly increases in tree canopy and temperature in the
legend, e.g., the average Land Surface Temperature during Summer increases annually by 0.12 degrees (Celsius)—or by 4 degrees
(Celsius) over the whole period. By contrast, the average Land Surface Temperature during Winter increases annually by 0.056
degrees (Celsius)—or by 2 degrees (Celsius) over the whole period.

A.2 Evolution of temperature and forest cover over time

Climate change, economic development, and public investment have affected temper-

ature and forest cover in North-American cities. We illustrate these secular trends in

Figure A2. First, Land Surface Temperature steadily increases between 1985 and 2020,

especially during Summer: the surface of the average North-American city is 4 degrees

(Celsius) warmer in 2020 than in 1985, due to changes in climate but also changes in

pollutant concentration, in human activity, and in the nature of impervious areas. By

contrast, the increase in Land Surface Temperature during the Winter season is around

21Land Surface Temperature might significantly differ from air temperature, as a function of seasons,
the urban structure, and how the surface absorbs solar radiation (Naserikia et al., 2023).
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2 degrees (Celsius). Second, this increase occurs in spite of an expansion of tree canopy:

the average North-American city experiences an increase in the area share of forests of

about 5-6 percentage points over the period (in spite of a stabilization/slight decrease in

the 2010s, as documented in Nowak and Greenfield, 2018).

Figure A3. The correlation between tree canopy and temperature across North-American cities.

(a) Summer (b) Winter

Notes: Panel (a) displays the city-specific differential in Land Surface Temperature (𝑇 15−20

𝑐,𝑠 − 𝑇
85−90

𝑐,𝑠 ) and in forest cover (𝜑15−20
𝑐,𝑠 −

𝜑85−90
𝑐,𝑠 ), both computed during Summer, between 1985–1990 and 2015–2020. Panel (b) displays the city-specific differential in Land

Surface Temperature (𝑇 15−20

𝑐,𝑤 − 𝑇
85−90

𝑐,𝑤 ) and in forest cover (𝜑15−20
𝑐,𝑤 − 𝜑85−90

𝑐,𝑤 ), both computed during Winter, between 1985–1990 and
2015–2020. In both panels, the city of Toronto is represented with a darker square. The lines are local polynomials of degree 1 with
a bandwidth of 0.02; the 95% confidence interval is represented as the shaded area. The coefficients [standard errors] of a linear
regression would be: -26.88 [3.08] in panel (a); and -6.19 [6.12] in panel (b). Note that those two panels are summarized in Figure 2.

Figure A2 however masks a large disparity in the dynamics of local temperature and

forestry across different cities. In Figure A3, we display the city-specific differential in

Land Surface Temperature and in forest cover from 1985–2020. More specifically, we

correlate the Land Surface Temperature difference between 1985–1990 and 2015–2020

(y-axis) with the forest cover difference between 1985–1990 and 2015–2020 (x-axis)—

during Summer (panel a) and Winter (panel b). We find a strong, negative correlation

between local warming and forestry expansion: the gap in Summer temperature between

the “most greening city” and the “least greening city” is around 1.5 degrees. A 0.01 rel-

ative loss in forest cover would be associated with an increase in Summer temperature

of around 0.27 degrees (Celsius). Interestingly, this correlation—possibly indicative of

the cooling effect of urban forestry—is not present for Winter temperatures (panel b): a

0.01 relative loss in forest cover would be associated with a very mild increase in Winter

temperature of around 0.06 degrees (Celsius). How does the city of Toronto compare

to other North-American cities? Toronto—highlighted with a square—becomes slightly

greener than the average city and tends to experience a slightly lower increase in tem-

perature. We will see next that it is the outcome of a secular greening of the city, in part

mitigated by the Emerald Ash Borer infestation.

Overall, the negative relationship between tree cover and temperature rise suggests
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that urban forestry might help mitigate the impact of climate change and its interaction

with the urban structure in a context where urban temperatures increase steadily and

markedly so (Peng et al., 2012; Manoli et al., 2019). Our next section shows that the Emer-

ald Ash Borer infestation has offset part of the prior improvement in green infrastructure

in Toronto over the past decades.

Figure A4. The Emerald Ash Borer infestation in Toronto.

(a) Land Surface Temperature (b) Forest cover

Notes: Panel (a) reports the annual difference in Land Surface Temperature between Toronto and a “placebo” group of cities: the
non-Northeastern cities of our sample—where Northeastern cities are defined as all American and Canadian cities situated North and
East compared to the most western and southern location of Illinois. A red dot thus shows 𝑇𝑡𝑜𝑟,𝑡,𝑠 − 𝑇 𝑐,𝑡,𝑠 , where 𝑇𝑐,𝑡,𝑠 is the average
(Summer) Land Surface Temperature at time 𝑡 and city 𝑐 and �̄�𝑐,𝑡,𝑠 is the mean of all such temperatures across non-Northeastern cities.
Panel (b) reports the annual difference in forest cover between Toronto and the “placebo” group of cities. Dashed lines represent
the best linear fit, as computed from 1985–2010. Plain lines represent a local polynomial fit computed throughout the whole period.
Note that those two panels are summarized in Figure 1.

A.3 The Emerald Ash Borer infestation

Since 2002, the Emerald Ash Borer infestation has spread across the North-East of the

United States, from the most northern and eastern states to the south of West Virginia,

Illinois, and Wisconsin, and throughout the bordering Canadian provinces of Ontario,

Quebec, and Manitoba (Aukema et al., 2011; Herms and McCullough, 2014). The infesta-

tion has threatened a significant share of urban forestry, with Toronto being a prominent

example. In theory, the loss of vulnerable ash trees would be sufficient to offset green

investments over the past few decades (for example, the creation of parks or the devel-

opment of green office buildings, as studied in Eichholtz et al., 2010).

We illustrate the aggregate impact of the Emerald Ash Borer infestation on urban

forestry and its subsequent effect on local warming in Figure A4. The y-axis reports the

average yearly difference in Land Surface Temperature between Toronto and a “placebo”

group of cities: the non-Northeastern cities of our sample.22 Panel (a) shows that Toronto

22Northeastern cities are defined as all American and Canadian cities situated North and East compared
to the most western and southern location of Illinois. Note that we could use a more convoluted approach
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Figure A5. The significant impact of the Emerald Ash Borer infestation in Toronto.

Notes: This Figure displays the “average treatment effect” of the Emerald Ash Borer infestation in Toronto, estimated using a stylized
difference-in-differences specification where: (i) each observation is a city in a given year between 1985 and 2020; (ii) the time
variation is a dummy equal to 1 if the year is post-2014; (iii) the cross-sectional variation is a dummy equal to 1 if the city is Toronto
against a “placebo” group of cities (the non-Northeastern cities of our sample, where Northeastern cities are defined as all American
and Canadian cities situated North and East compared to the most western and southern location of Illinois); (iv) the specification
controls for (less localized) air temperature, precipitation, and wind speed (during the relevant season in a given year), city fixed
effects and linear trends, differential trends along latitude, and year fixed effects; and (v) standard errors are clustered at the city
level. The bands represent 10%, 5%, and 1% confidence intervals. For the sake of exposition, we consider forest cover in percentage
points: Toronto lost 1.94 percentage points in Summer forest after 2014, relative to the placebo city; and Land Surface Temperature
ended up being 0.7 Celsius degrees higher.

becomes cooler than the average placebo city, at least until 2010: from 2010 onward, the

gap stabilizes or narrows down. Urban forestry provides a mirroring image: Toronto

becomes greener than placebo cities until 2010: from 2010 onward, the gap narrows

down significantly. Had Toronto followed the pre-2010 trends in urban forestry and

temperature between 2010–2020 as well, it would be 4 percentage points greener than

the “placebo” group of cities (against 1.6 percentage points in reality) and 3.3-3.4 degrees

cooler during Summer (against 2.8-2.9 degrees in reality). Under the assumption that the

inflection in tree coverage is entirely attributable to the Emerald Ash Borer infestation,

our local and causal estimates of Section 4 would associate to this loss a 0.15-degree Cel-

sius reduction in the average Land Surface Temperature. This is to be compared with

a lower bound of 0.4 degrees between the actual temperature and its placebo level (see

panel a of Figure A4). The difference between the two estimates could indicate that our

local identification of Section 4 ignores spillover effects across space and their interac-

tions: the effect of trees on temperatures might go beyond the postal code and interact

with the neighboring districts through heat trapping, air circulation, etc.—an interaction

that is key to the formation of urban heat islands. Finally, Figure A5 provides a more

based on synthetic difference-in-differences (Arkhangelsky et al., 2021), but each Northeastern city faces
an infestation with different timing and intensity—implying that we would need to deal with a continuous,
staggered treatment.
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rigorous estimation of these effects in a stylized difference-in-differences specification

controlling for differential trends in latitude and climatic differences across cities: in line

with the previous estimates, we find that: Toronto lost about 2 percentage points in Sum-

mer forest after 2014, relative to the placebo city; and Land Surface Temperature ended

up being 0.7 Celsius degrees higher.

In summary, this section has shown that: (i) there is a heterogeneous warming of

North-American cities, in spite of a secular, long-run increase in urban forestry; (ii) cities

investing most in urban trees mitigate such warming; (iii) the city of Toronto is generally

dealing with these secular trends better than the average; and (iv) the Emerald Ash Borer

infestation was sufficient in offsetting part of this positive trajectory.
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B Data appendix

This section complements Section 1 with: (i) a description of vegetation indices con-

structed from satellite imagery; (ii) an illustration of the dynamics of urban forestry over

time using Google Street View; (iii) a description of transactions across neighborhoods

of Toronto; and (iv) additional details about the construction of the energy data.

B.1 Satellite imagery

Our baseline specification relies on the land classification provided by the Urban Forestry

services of the City of Toronto and based upon high-resolution satellite imagery and Li-

DAR information (City of Toronto, 2019). We however complement and validate these

measures of land cover with low-resolution satellite imagery (Sentinel 2, 2016–2020, 10m

resolution; Landsat L8, 2013–2020, 30m resolution; Landsat L7, 2007–2012, 30m resolu-

tion). One important benefit of using coarser, but more frequent, data is to shed light on

the dynamics of tree cover over time (see Figure 5 in Section 1 for instance).

Figure B1. Satellite imagery and vegetation/built-up indices (2018).

(a) NDVI (b) NDBI

Notes: This Figure displays vegetation against built-up indices, as constructed from a cloud-free mosaic of Sentinel imagery (S2, 10m
resolution) covering May–September 2018 (North-East of Toronto). The Normalized Difference Vegetation Index (NDVI) is obtained
by combining the reflection in the near-infrared spectrum (NIR) with the reflection in the red range of the spectrum (RED). The
Normalized Difference Built-up Index (NDBI) is obtained by combining the reflection in the near-infrared spectrum (NIR) with the
reflection in the short-wave infrared range of the spectrum (SWIR).

To construct vegetation, built-up and water indices, we proceed as follows for each

collection of satellite imagery: (i) we isolate a summer period in any given year from

June 1st to September 30th (to best capture vegetation); (ii) we construct a cloud-free

mosaic of images taken during this period; (iii) we construct a set of indices, most no-

tably, the Normalized Difference Vegetation Index (NDVI)—obtained by combining the

reflection in the near-infrared spectrum (NIR) with the reflection in the red range of the
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spectrum (RED)—the Leaf Area Index (LAI), and the Normalized Difference Built-up In-

dex (NDBI)—obtained by combining the reflection in the near-infrared spectrum (NIR)

with the reflection in the short-wave infrared range of the spectrum (SWIR); and (iv)

we construct the average indices within each postcode and every year covered by the

collection. We illustrate the variation captured by NDVI and NDBI in Figure B1 (based

on Sentinel S2 in 2018).

Figure B2. Validation of the measure of tree cover.

(a) NDVI (Landsat, 2007) (b) NDVI (Landsat, 2018) (c) NDVI (Sentinel, 2018)

(d) LAI (Landsat, 2007) (e) LAI (Landsat, 2018) (f) LAI (Sentinel, 2018)

Notes: This Figure correlates the measure of tree cover produced by Urban Forestry as part of an Urban Tree Canopy (UTC) Assess-
ment in 2007 and 2018 with standard vegetation indices extracted from recent satellite imagery. Panels (a), (b) and (c) correlate the
area share of tree canopy in 2007 and 2018 with the Normalized Difference Vegetation Index (NDVI) across postcodes. The NDVI is
obtained by combining the reflection in the near-infrared spectrum (NIR) with the reflection in the red range of the spectrum (RED).
Panels (d), (e) and (f) correlate the share of tree coverage in 2007 and 2018 with the Leaf Area Index (LAI) across postcodes. The green
area displays the distribution of the x-axis variable for each panel. Panels (a) and (d) rely on a cloud-free mosaic of Landsat imagery
(L7, 30m resolution) covering May–September 2007. Panels (b) and (e) rely on a cloud-free mosaic of Landsat imagery (L8, 30m
resolution) covering May–September 2018. Panels (c) and (f) rely on a cloud-free mosaic of Sentinel imagery (S2, 10m resolution)
covering May–September 2018.

We use these indices to validate the land classification data and shed some light onto

the dynamics of urban forestry over our period of interest. In Figure B2, we correlate

the measure of tree cover produced by Urban Forestry as part of an Urban Tree Canopy

(UTC) Assessment in 2007 and in 2018 with our vegetation indices, as extracted from

recent satellite imagery (Landsat L7, Landsat L8, and Sentinel S2). We see that there is a

very strong, positive, quasi-linear relationship between the area share covered by the tree

canopy and the vegetation indices based on average reflectance across the visible, infra-

red, near infra-red spectrum. These relationships are behind our findings of Section 1.3

where we show that a loss of 0.04-0.05 in the share of tree cover is accompanied by

a decrease in the Normalized Difference Vegetation Index of 0.021 and in the Leaf Area

Index of 0.0035. Figure B2 indeed shows that an additional 0.10 in tree cover corresponds
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to a 0.04 higher NDVI and a 0.005 higher LAI; a loss of 0.04-0.05 in tree canopy would

thus be expected to decrease NDVI by 0.02 and LAI by 0.0025.

Figure B3. The dynamics of urban forestry over time—an illustration using Google Street View.

(a) 2007

(b) 2014

(c) 2020

Notes: This Figure shows three snapshots of the neighborhood depicted in Figure 4 (James Park Square, Scarborough, North-East of
Toronto)—with a relatively high density of ash trees at baseline. The images were extracted in 2007 (panel a, before the infestation),
2014 (panel b, after the cut-downs), and 2020 (panel c, with replanted tree saplings) from Google Maps.
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B.2 The dynamics of urban forestry over time

Google Street Views In Section 1.3 and Figure 5, we shed some light onto the swift

decrease in vegetation cover experienced by neighborhoods with a high density of city-

managed ash trees. We provide an illustration of the actual process of removal and re-

placement of city-managed trees in Figure B3. More specifically, we focus on the neigh-

borhood depicted in Figure 4, James Park Square in Scarborough (North-East of Toronto),

which experienced a massive loss in tree cover between 2007 and 2018 due to its row of

city-managed ash trees.

Figure B3 presents successive street views of this neighborhood in 2007, 2014, and

2020. We see that the neighborhood is a typical leafy suburb in 2007, with individual

homes, private gardens, and rows of city-managed (ash) trees. In 2014, the mature ash

trees are already cut down and replaced by young sprouts, leading to a significant change

in the visual appeal of the neighborhood and in shade coverage. In 2020, the substitute

sprouts have grown into tree saplings, still short of providing any significant tree cover,

shade or sheltering against wind. As argued in Section 1.3, the felling of mature trees

induces a loss in tree canopy that cannot be mitigated within a span of 25-30 years.

Figure B4. Removals and TreeAzin injections over time.

(a) Removals (b) Injections

Notes: Panel (a) shows the evolution of tree removals Panel (b) shows the evolution of TreeAzin injections between 2010 and 2014
and compares it to the evolution of tree removals over the same period. The data source is the register of ash trees—a specific
sub-module distinct from the general register of city-managed trees that we use in our baseline analysis (see Table 1 for instance).

The swift felling of ash trees and the distribution of injected trees In Figure 5

(Section 1.3), we show that most of the vegetation loss materializes between 2012–2016

in neighborhoods with high incidence of city-managed ash trees. We shed additional

light on the swift felling of ash trees in Figure B4, where we exploit a specific dataset—

distinct from the general register of city-managed trees—in which we do observe the

planned and actual removals of city-managed ash trees between 2008 (and earlier) and
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2023, and the injections of TreeAzin between 2012 and 2023 (both ordered by the City

of Toronto). We find that removals steadily increase between 2010 and the autumn of

2013 (panel a), when the monthly incidence of removals reaches about 1,000 ash trees.

It then gradually decreases until 2016–2017, in which less than 100 trees are removed

each month. By contrast, TreeAzin injections are entirely concentrated in the months of

June, July and August every year (panel b)—when water and nutrients are most actively

traveling upward through the bark.

Figure B5. Explaining TreeAzin injections.

(a) Neighborhood price (b) Diameter at breast-height

(c) Dosage across species (d) Dosage across size

Notes: Panel (a) shows the correlation between the share of publicly-managed ash trees that are injected by TreeAzin from 2012
onward and the average (log) transaction price as recorded between 2007–2008 within a postal code. Panel (b) shows the distributions
of diameters at breast-height for injected trees and removed trees. Panels (c) and (d) explain the dosage in ml for treated trees: (i)
across tree species in panel (c); and (ii) as a function of tree size in panel (d).

Analyzing the decision to save or remove a tree is complicated: we have limited evi-

dence nor insight about the decision process or the constraints hinging on the Parks and

Forestry department of the City of Toronto.23 Nonetheless, we do observe all TreeAzin

injections, tree removals and other tree-maintenance orders from the Parks and Forestry

department. In Figure B5, we correlate the share of injected trees among the publicly-

managed ash trees within a postcode with housing prices at baseline (panel a), we show
23For a more detailed discussion of ways to effectively protect urban ash trees we refer interested

readers to Sadof et al. (2023).
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that injected trees tend to be slightly larger than removed trees, and we show that the

dosage for treated trees is entirely explained by their size—the City of Toronto most

likely provided a rule to the (external) contractors. We further “quantify” the role of

tree characteristics, the way they are planted, and their neighborhood in a variance-

decomposition exercise where we regress removals/injections on: dummies for the ex-

act tree species (e.g., red ash) and deciles of trunk diameters; dummies for the way they

are planted (e.g, with pavers around the tree or as a container tree); and dummies for

their ward. We find that tree characteristics explain 13% of the variance in whether the

tree will be injected or removed; adding the planting structure explains 18%; and adding

neighborhood fixed-effects explains 33%. In summary, geography and the age/species of

the tree are the main predictors as to whether the tree will be saved or removed.

B.3 The dynamics of urban forestry and property prices

The transaction data used in Section 3 and described in Section 1.2 cover the whole City

of Toronto from 2007 to 2020. Note that we also have transaction data from 2002 to

2006—used in a robustness check—, but without detailed dwelling characteristics.

In this Appendix, we illustrate the geography of the housing market in Figure B6,

where we display the average transaction price for all transactions between 2007 and

2020 in panel (a) and the density of transactions in panel (b). One can see that a few

neighborhoods are highly demanded, most notably the area between Bloor-Yorkville

and North York. This area is quite green, traversed by ravines, as shown in Figure 3.

The correlation between transaction prices and the density of city-managed ash trees

is however unclear at the neighborhood level: the neighborhoods of Mount Pleasant,

North York, Scarborough (East), and Etobicoke are the ones with the highest density of

ash trees, but while the former two are quite demanded, Etobicoke is less demanded and

Scarborough is considered a relatively deprived area (compared to the rest of the City of

Toronto).

B.4 Tree canopy and temperature

In Section 4, we discuss the cooling effect of the tree canopy during heatwaves. Fig-

ure B7 further illustrates the correlation between urban temperature and urban forestry.

We construct an average mosaic of Landsat 8 satellite imagery in July and August 2018

and consider two indices based on the relative reflectance of different bands: the Nor-

malized Difference Vegetation Index (NDVI) capturing vegetation cover; and the Land

Surface Temperature (LST) which we also calculate at a 30-meter spatial resolution.24

24As mentioned in section B, the two measures share some small, mechanical correlation because the
LST calculations employ a fractional vegetation measure that is based on the ratio of the maximum and
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Figure B6. Transactions and their average price across the City of Toronto.

(a) Average transaction price

(b) Number of transactions

Notes: Panel (a) shows the average transaction price for all transactions between 2007 and 2020 in 1,000 CAD (from green to yellow to
pink and then white, as standard in an elevation scale). One can see that the stretch between Yorkville and North York, Chestnut Hills
(West of Toronto), and a few coastal neighborhoods are the neighborhoods with the highest transaction prices. Panel (b) displays the
geography of property transactions between 2007 and 2020 across the City of Toronto. Each color class represents a bin of density
(from white to pink to yellow and then green, as an inverted elevation scale). Note that the density is obtained through a kernel
density procedure such that the scale does not have an easily-interpretable unit.

The left panel of Figure B7 displays the average Normalized Difference Vegetation Index

over the period, and the right panel shows the average Land Surface Temperature across

two adjacent neighborhoods with significant differences in tree canopy coverage (South

Parkdale, South-West of Toronto). We observe a sharp difference between the West and

minimumvalues of the NDVI to correct the temperaturemeasure derived from the Thermal Infrared (TIRS)
band (see Ermida et al., 2020; Li et al., 2023, for more details).

55



Figure B7. The cooling effect of urban forestry—an illustration during the heatwave in 2018.

(a) NDVI (b) Land Surface Temperature

Notes: This Figure exploits Landsat 8 satellite imagery in July and August 2018. The left panel shows the Normalized Difference
Vegetation Index (NDVI) where green colors indicate a higher vegetation cover. The right panel shows the Land Surface Temperature
(LST) where red colors indicate higher temperatures.

the East of Dufferin St: the tree coverage in the West of Dufferin St markedly alleviates

the rise in temperature during this heat wave episode.

Figure B8. The cooling effect of urban forestry—a map of Toronto during the heatwave in 2018.

Notes: This Figure displays the average Land Surface Temperature (LST) across the City of Toronto during July and August 2018.
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We shed additional light on the urban heat island effect and the role of urban forestry

in Figure B8, where we display the Land Surface Temperature (LST) for the months of

July and August 2018 across the City of Toronto and its immediate hinterlands. There are

two salient observations. First, there is a very significant temperature differential (of the

order of magnitude of 5 degrees) between the city and its hinterlands. This is within the

interval of urban island effects estimated in Manoli et al. (2019) across many cities of the

developed and developingWorld. Second, there is some variation within neighborhoods

of the City of Toronto: for instance, one can distinctly see the temperature gradient

between the numerous ravines, forming a large ravine system and hosting a dense urban

forest, and the impervious areas surrounding those ravines.

B.5 Energy consumption

We secured access to detailed energy consumption data. For the period 2011–2015, we

observe households’ energy consumption per billing period which allows us to estimate

weekly energy consumption; for the period 2011–2021, we observe the average energy

consumption per month and postcode. We will now describe these two datasets in more

detail.

Weekly energy consumption In the raw data for the period 2011–2015, energy con-

sumption is reported in kilowatt hours (kWh) adjusted for line losses over the billing

period. The days of service in a billing period range between 1 and 2 months (see Fig-

ure B9) and we know the start and end date of each billing period which varies across

households. To calculate energy consumption in postcode 𝑝, week 𝑤 and year 𝑡, we

construct a daily panel of each household 𝑖’s average daily energy consumption and es-

timate:

𝑒𝑖𝑝𝑤𝑡 = 𝛼𝑖 + 𝐸𝑝𝑤𝑡 + 𝜖𝑖𝑝𝑤𝑡

where the fixed effects 𝐸𝑝𝑤𝑡 capture the average daily energy consumption in postcode 𝑝

for a givenweek𝑤 of year 𝑡. To derive ameasure 𝑒𝑝𝑤𝑡 of the average energy consumption

per week and year, we multiply the average daily energy consumption 𝑒𝑖𝑝𝑤𝑡 by seven

(days per week). One nice feature of our electricity data is that we can condition the

estimation on energy meter fixed effects, 𝛼𝑖, which absorb all time-invariant house and

occupant characteristics. The latter control, for example, for the energy efficiency of the

house.

We will use this shorter, weekly panel in a robustness check that exploits the shading

potential of trees.
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Figure B9. Distribution of the days of service intervals across billing periods.

Notes: This Figure represents the distribution of the days of service intervals across billing periods and is based on residential energy
meters between 2011 and 2021.

Monthly energy consumption In addition to the weekly data, we have access to

the average energy and gas consumption for every Toronto postcode (censored below a

minimum of five households) in a monthly panel spanning from 2011 to 2019 (gas) and

2022 (electricity). There are important seasonal patterns in energy consumption which

we illustrate in Figure B10. Electricity consumption is high in the summermonths, due to

the use of air conditioning. Between November–April, electricity consumption is a mix

of light and electrical heating, even though natural gas is the most common source of

heating fuel. Consequently, we would expect trees to have more pronounced electricity

consumption effects in the summer. Natural gas is used for heating during these winter

months and there is indeed a significantly higher usage of natural gas in these months

with a spike in January and February, the coldest months.
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Figure B10. Electricity and gas consumption over time.

(a) Electricity (b) Natural gas

Notes: The left panel of the graph shows the adjustedmonthly electricity consumptionmeasured in kWh across postcodes in Toronto.
The right panel shows the average monthly consumption of natural gas measured in cubic meters across postcodes in Toronto. Gray
shaded areas indicate winter months, i.e., November–April.
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C Neighborhood segregation and the heterogeneous value of trees

This section sheds some light onto the unequal distribution of urban forestry and the

possibly heterogeneous value of urban trees.

Figure C1. Deprivation and density of the tree canopy.

Notes: This Figure represents the relationship between the share of low-income households at the neighborhood level and our
measure of tree cover at the postcode level. We group transactions by bins of tree cover: the dots represent the average share of
low-income households within each bin. The green area represents the distribution of the x-axis variable across all panels. The lines
are locally weighted regression on all observations.

C.1 The unequal distribution of urban forestry

The distribution of urban forestry is unequal across space, as documented in Section 1.

The prevalence of trees interacts with neighborhood characteristics in a systematic man-

ner. We illustrate the inequalities in access to urban trees in Figure C1wherewe correlate

the density of the local tree canopy with a deprivation measure, i.e., the share of low-

income households. We find that the average share of low-income households is around

20% in neighborhoods without any tree versus 12% in the leafiest postal codes.

C.2 The heterogeneous value of (the marginal) trees

The unequal distribution of urban forestry could illustrate the heterogeneous value of

(themarginal) trees: treesmight be highly valued in richer, less densely-populated neigh-

borhoods with larger properties. In such a context, they might have higher aesthetic

value (Benson et al., 1998; Price, 2003; Todorova et al., 2004) and better complement the

“consumption of the public space” by residents.

We evaluate the heterogeneous treatment effects of trees on transaction prices in Ta-

ble C1 where we interact our treatment with a measure of deprivation—a dummy equal

to 1 if the share of low-income household is above 20% within the neighborhood—, a
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Table C1. The amenity value of trees—heterogeneous treatment effects.

Transaction price (log) (1) (2) (3)

Tree cover 1.379 -0.333 0.870
(0.303) (0.386) (0.272)

Tree cover × Deprived -0.769
(0.339)

Tree cover × Green 1.427
(0.421)

Tree cover × House 0.170
(0.097)

Transaction controls Yes Yes Yes
Observations 457,035 457,035 457,035
F-statistic 49.44 53.49 67.45
Notes: Standard errors are reported between parentheses and are clustered at the postcode × year level. All specifications report the
estimates from IV specifications in which tree cover and its interaction with different variables are instrumented by the the density
of city-managed ash trees and the interacted instrument. The unit of observation is a transaction, and the dependent variable is
the (log) transaction price. All specifications are weighted by the inverse of the number of observations in a given postcode and
include the following controls: (i) postcode fixed effects; (ii) ward fixed effects interacted with year fixed effects; (iii) a measure
of city-managed tree density interacted with year fixed effects; (iv) latitude and longitude interacted with year fixed effects; (v)
area shares from the land classification in 2007 (tree canopy, grass/shrub, bare earth, water, buildings, roads, other paved surfaces
and agriculture) interacted with year fixed effects; and the number of rooms, the number of bedrooms, and 10 dwelling types (e.g.,
detached, apartment, duplex, commercial) interacted with year fixed effects. Deprived is a dummy equal to 1 if the share of low-
income household is above 20% within the neighborhood. Green is a dummy equal to 1 if the area share of trees is above median
(across postal codes) in 2007. House is a dummy equal to 1 if the transaction is labeled as “Low Density Residential”, i.e., not within
multi-unit buildings.

measure of greenness—a dummy equal to 1 if the area share of trees is above median

(across postal codes) in 2007—and a dummy equal to 1 if the transaction is not within

multi-unit buildings. We find that the treatment effect is larger in richer areas: one

additional percentage point in tree cover within a postcode increases property prices

by 1.38% in non-deprived neighborhoods versus 0.61% in deprived neighborhoods (col-

umn 1). The treatment effect is entirely explained by postal codes that were originally

quite green (column 2). Finally, there is little premium associated with the type of trans-

actions: multi-unit buildings command about the same premium as individual houses in

leafy suburbs (column 3).

We further study the non-linear effects of the tree canopy on temperature and elec-

tricity consumption during July and August in Table C2. The table reports the estimates

from a two-stage specification in which tree cover and its interaction with the (standard-

ized) area share of tree cover in 2007 are instrumented by the density of city-managed

ash trees and the interacted instrument. In other words, the coefficient in front of the

61



Table C2. The non-linear value of trees.

Land Surface Temperature Electricity consumption (log)

Tree cover -7.469 -3.798
(3.390) (0.649)

Tree cover × Initial 1.254 0.892
(1.366) (0.119)

Observations 702,138 280,931
F-statistic 59.47 101.25
Notes: Standard errors are reported between parentheses and are clustered at the postcode × year level. All specifications report the
estimates from IV specifications in which tree cover and its interaction with the (standardized) area share of tree cover in 2007 are
instrumented by the the density of city-managed ash trees and the interacted instrument. The unit of observation is a postal code in a
given year. In column (1), the dependent variable is the Land Surface Temperature (LST) computed as an average during July/August.
In column (2), the dependent variable is the (log) electricity consumption in July/August for the median household within a postal
code and for all years between 2012–2020. All specifications are weighted by the inverse of the number of observations in a given
postcode and include the following controls: (i) postcode fixed effects; (ii) ward fixed effects interacted with year fixed effects; (iii) a
measure of city-managed tree density interacted with year fixed effects; (iv) latitude and longitude interacted with year fixed effects;
(v) area shares from the land classification in 2007 (tree canopy, grass/shrub, bare earth, water, buildings, roads, other paved surfaces
and agriculture) interacted with year fixed effects. In column (2), we omit postcode fixed effects.

interaction can be understood as the impact of an additional standard deviation in initial

tree cover on the treatment effect.

We find moderate non-linearities in the cooling effect of the marginal tree. On aver-

age, one additional percentage point in tree cover within a postcode reduces temperature

by about 0.05 degrees (see Panel A of Table 5); a standard deviation in initial tree cover

would reduce this effect by 0.01 degrees (see column 1 of Table C2). These non-linearities

translate into moderate non-linearities in the energy-saving effect of the marginal tree:

one additional percentage point in tree cover within a postcode reduces electricity con-

sumption by 2.5% (see Panel B of Table 5); a standard deviation in initial tree cover would

reduce this effect by 0.9% (see column 2 of Table C2). Interestingly, the direction of

this treatment heterogeneity goes opposite to that found for the hedonic value of urban

forestry in Table C1.
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D Tree canopy and energy consumption

This section complements Section 4. We highlight the time-varying effect of the eco-

logical catastrophe on neighborhoods with high density of city-managed ash trees, and

we analyze this effect for Land Surface Temperature between 2006–2018 and electric-

ity consumption (during summer) between 2012–2020. We also provide a “placebo” test

analyzing the relationship between urban forestry and electricity consumption during

winter. We leverage episodes of high temperatures (resp. wind chill) to estimate the

energy-consumption effect of urban forestry as a function of the solar-shading potential

(resp. wind-sheltering potential) of the local urban forestry. Lastly, we provide details

behind our decomposition exercise (see “The quantitative role of energy savings” in Sec-

tion 4).

Figure D1. The ecological catastrophe and the cooling effects of tree canopy over time.

Notes: This Figure shows the estimated correlation between tree density and Land Surface Temperature (LST) for the months of July
and August for each year between 2006 and 2018 (see Equation 5). More specifically, we regress the Land Surface Temperature (for a
group of two consecutive years, 𝜏) across postcodes on the measure of tree cover in 2018, instrumented by the number of street ash
trees per area within a 10m buffer (as measured in 2010). We control for a measure of street tree density, ward fixed effects, latitude,
longitude, and dummies for the land classification in 2007 (tree canopy, grass/shrub, bare earth, water, buildings, roads, other paved
surfaces and agriculture). The reported coefficients are the ones in front of the measure of tree density, and vertical lines show 95
percent confidence intervals.

D.1 Temperature and energy consumption effects over time

Temperature effects over time We consider the following specification to isolate the

time-varying effects of the Emerald Ash Borer infestation (through its impact on the tree

canopy),

𝑇
𝜏
𝑝 = 𝛼 + 𝛽

𝜏
𝑇𝐷𝑝,2018 + 𝛾𝐗𝑝 + 𝜂𝑤 + 𝜀𝑝, (5)

where each observation is a postal code, 𝑇 𝜏
𝑝 is the average Land Surface Temperature

within postcode 𝑝 during July and August of a year 𝜏, and urban forestry in 2018,
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𝑇𝐷𝑝,2018, is instrumented by the density of ash trees at baseline, 𝐴𝑝,2010. Controls in-

clude ward fixed effects 𝜂𝑤, latitude and longitude, the density of publicly maintained

trees, and area shares from the land classification in 2007. We estimate 𝛽𝜏 separately for

each year 𝜏 and report the estimates with their confidence intervals in Figure D1.

Intuitively, the estimates presented in Figure D1 are the causal effects of the catastro-

phe in each year, mitigated through the evolution of the tree canopy, i.e., the exercise can

be loosely interpreted as an event-study design. Figure D1 shows that the impact of the

infestation starts to materialize after 2010. In 2018, a 10 percentage point additional tree

cover within a postcode reduces temperature by about 0.8 degrees (Celsius). In theory,

the gradient in the treatment effect could reflect two forces: (i) the tree felling is gradu-

ally implemented across the City of Toronto—as illustrated in Section 1.3—thus inducing

higher treatment compliance over time; and (ii) there are secular trends in summer tem-

peratures due to climate change.

Figure D2. The ecological catastrophe and its energy consumption effects over time.

(a) July-August (2012–2020) (b) December-February (2012–2020)

Notes: Panel (a) shows the estimated correlation between tree density and electricity consumption for the months of July and August
for each year between 2012 and 2020 (see Equation 5). More specifically, we regress the (log) electricity consumption across postcodes
on the measure of tree cover in 2018, instrumented by the number of street ash trees per area within a 10m buffer (as measured in
2010). We control for a measure of street tree density, ward fixed effects, latitude, longitude, and dummies for the land classification
in 2007 (tree canopy, grass/shrub, bare earth, water, buildings, roads, other paved surfaces and agriculture). The reported coefficients
are the ones in front of the measure of tree density, and vertical lines show 95 percent confidence intervals. Panel (b) replicates the
exercise for winter months (December to February).

Energy consumption over time and across seasons We replicate the exercise of

Figure D1 and Equation (5) for average energy consumption across the summer months

(July and August) in panel (a) of Figure D2. Note that, in contrast with Figure D1, we do

not observe electricity consumption before the start of the ecological catastrophe such

that all years should be considered “treated”, at least to some extent. We find a small

gradient in energy consumption from 2012–2014 and a subsequent stabilization of the

effect. In panel (b) of Figure D2, we look at electricity consumption as the dependent
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variable of Equation (5), but we calculate it for the winter months (December to Febru-

ary). We consider this specification as a placebo test: the evolution of the tree canopy—as

triggered by the ecological catastrophe—should matter most during summer. Panel (b) of

Figure D2 indeed finds a more limited correlation between urban forestry and electricity

saving during winter.

D.2 Construction of the shade and shelter measures

In this section, we focus on the construction of two measures, the solar-shading potential
and thewind-sheltering potential, which underlie our alternative empirical strategy based

on the orientation of trees around homes.

Figure D3. Shading effect of trees as a function of the time of the day and week.

Notes: This Figure schematically represents the parameters used to derive the measure 𝑆ℎ𝑎𝑑𝑒𝑖𝑤𝜏 , which depends on a week of the
year𝑤, a time of the day 𝜏 (a discrete interval of 15 minutes), and the surroundings of property 𝑖. We calculate the shade, 𝑆ℎ𝑎𝑑𝑒𝑖𝑤𝜏 , as
follows. At a given time of the day 𝜏 in week𝑤, we identify the direction of the sun (in degrees, e.g., North would be 90 degrees) and
the associated sun angle 𝑎. For instance, the sun angle would be generally lower during winter, and temporarily lower early in the
day (when the direction is around 0 degrees) or late in the afternoon (when the direction is around 180 degrees). We then calculate
the percentage of the house front covered in shade by the nearest tree (distance 𝑑) in the identified direction. This simplification
allows us to ignore the trees behind this closest tree and to abstain from calibrating an imperfect shading provided by trees. For this
exercise, we consider a house front to be between 2 and 7 meters, and we assume that trees are ℎ𝑡 = 20 meters high with a crown
radius of 𝑟 = 5meters—both parameters being probably on the higher end of the tree size distribution. As apparent from the Figure,
the percentage of the house front covered in shade is a simple function of the sun angle 𝑎, the height of the house, the distance to
the tree, and the tree dimensions.

For the shading potential of the neighboring tree canopy, we compute the measure

𝑆𝑖𝑤 for property 𝑖 and week 𝑤 of a given year as,

𝑆𝑖𝑤 =
∫ 𝑆𝑢𝑛𝑤𝜏 × 𝑆ℎ𝑎𝑑𝑒𝑖𝑤𝜏𝑑𝜏

∫ 𝑆𝑢𝑛𝑤𝜏𝑑𝜏
,

where 𝜏 is a time of the day (in practice, we divide the day into discrete intervals of

15 minutes), 𝑆𝑢𝑛𝑤𝜏 is the potential sun exposure at time 𝜏 in week 𝑤 , and 𝑆ℎ𝑎𝑑𝑒𝑖𝑤𝜏

is a measure of shade induced by the presence of trees around property 𝑖 at time 𝜏 in
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week 𝑤. The variable 𝑆ℎ𝑎𝑑𝑒𝑖𝑤𝜏 is constructed by reconstituting the week-specific solar

angle 𝑎𝑤(𝜏) and sun direction 𝜃𝑤(𝜏) as a function of time 𝜏. At time 𝜏, we select all

trees in direction 𝜃𝑤(𝜏) originating from the centroid of a property. We then calculate

the share of the property which is in the shade of these trees, 𝑆ℎ𝑎𝑑𝑒𝑖𝑤𝜏 , exploiting the

distance to the trees and the solar angle. This computation requires several assumptions

regarding the height of a tree, the diameter of its crown, and the height of a property. We

provide additional details about the computation in Figure D3. Note that we aggregate

the property-specific measure, 𝑆𝑖𝑤, into an average postcode measure, 𝑆𝑝𝑤.

Figure D4. Sheltering effect of trees.

Notes: This Figure schematically represents the parameters used in order to derive the measure 𝑇 𝑟𝑒𝑒𝜃𝑖 used to construct the shel-
tering effect of trees. We combine the surroundings of property 𝑖 with the direction of wind 𝜃 as follows: 𝑇 𝑟𝑒𝑒𝜃𝑖 is a dummy equal
to 1 if there is a tree in direction 𝜃 and within 20 meters of the property.

To capture the sheltering potential of trees in the vicinity of property 𝑖 in week 𝑤 of

a given year 𝑡, we compute,

𝑊𝑖𝑤𝑡 =

360

∑

𝜃=0

𝑤𝜃𝑤𝑡(1 − 𝑇 𝑟𝑒𝑒𝜃𝑖)𝑝𝜃𝑤𝑡 ,

where: 𝑤𝜃𝑤𝑡 is the Wind Chill Equivalent Temperature (WCET) used by Environment

Canada, accounting for the averagewind speed from direction 𝜃 (Celsius degrees); 𝑇 𝑟𝑒𝑒𝜃𝑖
is a dummy equal to 1 if there is a tree in direction 𝜃 andwithin 20meters of the property;

and 𝑝𝜃𝑤𝑡 is the probability that the wind originated from direction 𝜃 in week𝑤 of year 𝑡.

We also compute a counterfactual measure for the Wind Chill Equivalent Temperature
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(WCET), ignoring the neighboring urban forestry:

𝑊
𝑐
𝑖𝑤𝑡 = ∑

𝜃

𝑤𝜃𝑤𝑡𝑝𝜃𝑤𝑡

In other words, any difference between 𝑊𝑖𝑤𝑡 and 𝑊 𝑐
𝑖𝑤𝑡 has to relate to the distribution

of urban forestry. We illustrate the simple intuition behind the construction of measure

𝑊𝑖𝑤𝑡 in Figure D4. We finally aggregate the property-specific measures, (𝑊𝑖𝑤𝑡 ,𝑊
𝑐
𝑖𝑤𝑡),

into average postcode measures, (𝑊𝑝𝑤𝑡 ,𝑊
𝑐
𝑝𝑤𝑡).

D.3 Shade, shelter, and energy consumption

Empirical strategy To estimate the (local) cooling effect of urban forestry, we rely

on a different empirical specification from that of the baseline strategy where we ex-

ploit short-run fluctuations in weather conditions at the weekly level. We run a simple

difference-in-differences specification at the postcode level for all weeks 𝑤 in year 𝑡

between January 2011 and December 2015 (during which we have weekly energy con-

sumption data, see Appendix Section B.5). Letting 𝑝 denote a postcode, 𝑤 a week and 𝑡

a particular year, we estimate the following equation:

ln(𝐸𝑝𝑤𝑡) = 𝛼 + 𝛽2𝑆𝑝𝑤 × 𝑇𝑒𝑚𝑝𝑤𝑡 + 𝛽1𝑆𝑝𝑤 + 𝛽0𝑇𝑒𝑚𝑝𝑡 + 𝛿𝑝 + 𝜈𝑤 + 𝜇𝑡 + 𝜀𝑝𝑤𝑡 , (6)

where 𝐸𝑝𝑤𝑡 is a measure of energy consumption in a postcode/date, the measure 𝑆𝑝𝑤

captures the shade induced by surrounding trees in week𝑤, thus depending on seasonal

solar angles, and the measure 𝑇𝑒𝑚𝑝𝑤𝑡 is a dummy equal to 1 during episodes of ex-

ceptionally high temperatures (within the top decile between May and September). The

identification of the parameter 𝛽2 reflects excess energy savings during extreme weather

episodes in properties with higher solar-shading potential. The set of fixed effects 𝜈𝑤 and

𝜇𝑡 capture seasonality and trends in energy consumption; these fixed effects can also be

interacted to clean for average consumption within a given week and isolate the (lower)

excess consumption for properties surrounded by trees.

We run a similar regression during low-temperature episodes in order to estimate

the wind-sheltering effect of urban forestry.25 Letting 𝑝 denote a postcode, 𝑤 the week,

and 𝑡 the year, we estimate the following equation:

ln(𝐸𝑝𝑤𝑡) = 𝑎 + 𝑏𝑊𝑝𝑤𝑡 + 𝑐𝑊
𝑐
𝑝𝑤𝑡 + 𝛿𝑝 + 𝜈𝑤 + 𝜇𝑡 + 𝜀𝑝𝑤𝑡 , (7)

25Since 70 percent of energy used in the residential sector comes from oil or gas (Mohareb andMohareb,
2014), we expect a stronger effect of wind-sheltering on gas consumption. However, some heating is
electric and we still expect to find some effect.
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where the measures 𝑊𝑝𝑤𝑡 and 𝑊 𝑐
𝑝𝑤𝑡 are measures of wind chill—𝑊𝑝𝑤𝑡 accounting for

the presence of surrounding trees and prevailing wind directions at that date. The iden-

tification of parameter 𝑏 reflects excess energy savings during extreme (cold) weather

episodes in properties with higher wind-sheltering potential. As before, 𝜈𝑤 and 𝜇𝑡 are

week and year fixed effects that may also be interacted.

Figure D5. Excess energy consumption in extreme weather episodes and the relative positioning of trees.

(a) Heat waves (b) Wind chill

Notes: This Figure represents the conditional correlations between energy consumption and the presence of trees in different direc-
tions from the average property within a postal code. Panel (a) reports the correlations between energy consumption and a dummy
for heat waves interacted with the average number of trees within 10 meters for all houses of a given postal code in given directions
(discretized between 0 and 360 degrees, with 30-degree intervals). Panel (b) reports the correlations between energy consumption
and a dummy equal to 1 if the wind chill equivalent temperature is lower than 0 Celsius degrees during a given week interacted with
the average number of trees in a certain direction across all houses of the postal code (East, North, West, South, every 30 degrees).

Shade and energy consumption We now quantify the energy-saving effect of trees.

For illustrative purposes, we will use figures to show our main findings, and we leave

the underlying regression models to Tables D1 and D2. Panel (a) of Figure B10 describes

the relationship between excess energy consumption during heat waves and the rela-

tive positioning of trees. We estimate the conditional correlation between excess energy

consumption and surrounding trees as follows. We regress the postcode energy con-

sumption on a dummy for heat waves, the average number of trees within 10 meters for

all houses of a given postal code in a certain direction and their interaction, while con-

trolling for time-fixed effects and postcode fixed-effects. Figure B10 reports the energy

premium guaranteed by the presence of trees during heat waves (the interaction term),

conditional on a given direction (discretized between 0 and 360 degrees, with 30-degree

intervals). As apparent, the energy premium associated with the presence of a tree is not

negligible. The premium is significant across all directions, but even more so in the East

and South where shade is likely to provide cooling. For instance, one additional tree for

all houses of a given postal code—within 10 meters of each house and oriented South—is

associatedwith a 14% decrease in energy consumption during heatwaves. One additional
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tree towards the North-West is associated with a 8% decrease in energy consumption.

Table D1. Energy consumption and the cooling effect of trees.

Energy consumption (1) (2) (3)
Heat wave .1073 .0437 .0437

(.0137) (.0109) (.0109)

Heat wave × Shade -.2997 -.3154 -.3157
(.0518) (.0528) (.0528)

Observations 2,271,628 2,271,628 2,271,628
Fixed effects (postcode) No Yes Yes
Fixed effects (time) Year Week/year Week/year
Controls (historical temperature) No No Yes
Standard errors are reported between parentheses and are clustered at the date-level. The unit of observation is a date × postcode.

Table D1 reports the estimates from Equation (6). We find that heat waves increase

energy consumption, but less so in neighborhoods with high average shading potential

across houses. More specifically, consumption increases by about 11% in postal codes

without trees and this premium reduces to 0.11 − 0.26 × 0.30 ≈ 3% for neighborhoods

within the highest percentile of shade potential (0.26).

Sheltering effect and energy consumption Panel (b) of Figure B10 sheds light on

the role of urban forestry during episodes of extreme cold. We regress the average energy

consumption within a postal code on a dummy equal to 1 if the wind chill equivalent

temperature is lower than 0 Celsius degrees during a given week, the average number

of trees in a certain direction across all houses of the postal code (East, North, West,

South, every 30 degrees), and their interaction, while controlling for time-fixed effects

and postcode fixed-effects. The energy premium associated with the presence of a tree

is smaller than it is for extreme heat episodes: on average, a tree in the path of the wind

reduces energy consumption by 5% during frosty episodes. The estimated effect is not

consistently (significantly) different from 0 across all directions: it is higher when winds

originate from the South/East, possibly because such winds create a phenomenon called

“ lake-effect snow”.26 One additional tree for all houses of a given postal code—within

10 meters of each house and oriented South-East—is associated with a 8% decrease in

energy consumption during cold waves.

Table D2 reports the estimates from Equation (7). We find that a decrease of one

degree (Celsius) during winter increases the weekly energy consumption by 0.4% for
26Note that prevailing winds in Toronto blow from the West, sometimes from the South or North, but

more rarely from the East.
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Table D2. Energy consumption and the sheltering effect of trees.

Energy consumption (1) (2) (3)
Wind chill (no shelter) -.0047 -.0039 -.0038

(.0004) (.0005) (.0005)

Wind chill (shelter) .0015 .0016 .0016
(.0003) (.0003) (.0003)

Observations 2,161,759 2,161,759 2,161,759
Fixed effects (postcode) No Yes Yes
Fixed effects (time) Year Week/year Week/year
Controls (historical temperature) No No Yes
Standard errors are reported between parentheses and are clustered at the date-level. The unit of observation is a date × postcode.
Wind chill is a measure of felt temperature accounting for wind speed (and shelter in the second row).

neighborhoods without urban forestry. The presence of a “blocking tree” in the path

of the wind for all houses within the postal code reduces this effect to 0.22%. These

effects are markedly lower than the cooling effects of urban forestry during summer, as

discussed in the next section.

D.4 The quantitative role of energy savings

This section provides complements to the sub-section entitled “The quantitative role of

energy savings” in Section 4.

Energy savings and the amenity value of urban forestry Panel B of Table 5 shows

that one percentage point in the area share of urban forestry reduces the average elec-

tricity consumption within a postal code by about 2.5%. This effect is however confined

to two months in July and August; and the tree-saving effect is much lower during other

times of the year. For instance, Figure D2 shows that the effect is about six-seven times

lower during winter. Based on these causal estimates, we consider that one additional

percentage point in tree cover reduces energy consumption by 0.4% through its cooling

effect, and by 0.1% through its wind-sheltering properties—both effects being smoothed

over a period of 12 months. Considering that the average monthly expenditure in our

sample is around CAD 200 in 2018, those cumulative effects would amount to CAD 1 per

month. In comparison, the associated increase in the flow value of a property of 0.86%

would correspond to CAD 21 per month—a calculation based on the fact that the average

monthly rent for a two-bedroom apartment was around CAD 2,500 in 2018.
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Energy savings and maintenance costs The previous calculations are nested at the

level of a household. In order to compare the energy benefits of urban forestry with its

maintenance costs, we need to aggregate those effects at the level of the City of Toronto.

We also need to convert the cover in urban forestry into a number of trees.

First, please note that adding one tree within a postcode increases the area share

of tree canopy by 0.45 percentage points (a calculation that we explain in Section 1.3);

this 0.45 is the conversion rate that we will use thereafter. Second, from the previous

calculations, adding a tree lowers the annual energy consumption by CAD 12×1×0.45 ≈

5.40 for each household. With about 20 households per postcode, the total energy-saving

benefit of a tree is thus CAD 108 per year. Ignoring the opportunity costs of land usage,

such energy benefits would bemuch larger than the maintenance costs of urban forestry

(estimated at around CAD 4.20 in the 2011 City of Toronto Parks and Forestry budget

proposal).

Figure D6. Electricity consumption and weekly temperature.

Notes: This Figure represents the relationship between the (weekly) energy consumption and the maximum weekly temperature.
We group weeks by bins of weekly temperature: the dots represent the average energy consumption within each bin. The green
area represents the distribution of the x-axis variable; and the sample is confined to summer months (July and August).

Energy savings in a changing climate With a non-linear relationship between tem-

perature and energy consumption, there should be an increasing impact of urban forestry

on energy savings over time—owing to the marked increase in the expected occurrence

of heat waves.

We illustrate the non-linear relationship between temperature and energy consump-

tion in Figure D6 where we leverage monthly data on electricity consumption between

2012 and 2020, which we match with maximum weekly temperature. We find that an

increase of temperature from 23 degrees (Celsius) to 24 degrees is not associated with
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any increase in electricity consumption. An increase of temperature from 27 degrees

(Celsius) to 28 degrees increases electricity consumption by 3%; and an increase of tem-

perature from 30 degrees (Celsius) to 32 degrees increases electricity consumption by

6%. The number of annual hours with average temperatures above 30 degrees (Celsius)

is expected to double between 2020 and 2050, from an equivalent of 10 days to 20 days.

According to these estimates, global warming would at most explain a doubling of the

energy-saving premium by 2050.
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E Tree canopy and pollution

This section describes the data underlying Panel C of Table 5 and provides additional

empirical analyses of the pollution-abatement effect of trees.

Figure E1. PM2.5 concentration in July 2007.

Notes: This Figure displays the PM2.5 concentration as recorded in July 2007 and nested at the level of postal codes. The color
scale goes from light blue to red (corresponding to equal intervals of pollution between 9 𝜇𝑔/𝑚3 to 13 𝜇𝑔/𝑚3). The data is based
on Aerosol Optical Depth (AOD) measures from NASA MODIS (250m horizontal resolution), NASA MISR (about 1.1 km horizontal
resolution), and NASA SeaWIFS (to cover the oceans). Source: Van Donkelaar et al. (2021), and CANUE.

E.1 Data sources

We rely on monthly estimates of fine particulate matter (PM2.5) provided by Van Donke-

laar et al. (2021) for the period 1998–2021.27 The data is based on Aerosol Optical Depth

(AOD) measures from NASA MODIS (250m horizontal resolution), NASA MISR (about

1.1 km horizontal resolution), and NASA SeaWIFS (to cover the oceans). These satellite-

based measures are combined with a dispersion model (i.e., the GEOS-Chem chemical

transport model, see Van Donkelaar et al., 2021), which is calibrated using a subsample

of ground-based observations.

The main input (and constraint on spatial resolution) is the Aerosol Optical Depth

(AOD) from MODIS, inducing a coarser spatial resolution than in our other satellite-

based measures. We illustrate the resulting variation in fine particulate matter nested
27The data is available on the CANUE website. Acknowledgments: PM2.5 metrics, indexed to DMTI

Spatial Inc. postal codes , were provided by CANUE (Canadian Urban Environmental Health Research
Consortium).
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across postal codes in Figure E1, where we display PM2.5 concentration in July 2007.

One can see that there is still significant local variation, partly explained by the location

of the main entry/exit points to/from the city—the Don Valley Parkway in the center of

the map, Toronto Pearson airport (West), or the King’s Highway 401. One corollary is

that there might exist a spurious correlation between urban forestry (e.g., along the Don

Valley) and air pollution. Our empirical strategy arguably addresses this issue.

Figure E2. Pollution concentration over time.

(a) Evolution over time (b) Treatment effect

Notes: The left panel of the graph shows the monthly concentration of small particles (PM2.5, in 𝜇𝑔/𝑚3) across postcodes in Toronto.
The right panel shows the estimated correlation between tree density and (log) pollution for the months of July and August for each
year between 2007 and 2018 (in a specification akin to Equation 5). More specifically, we regress (log) pollution across postcodes
on the measure of tree cover in 2018, instrumented by the number of street ash trees per area within a 10m buffer (as measured in
2010). We control for a measure of street tree density, ward fixed effects, latitude, longitude, and dummies for the land classification
in 2007 (tree canopy, grass/shrub, bare earth, water, buildings, roads, other paved surfaces and agriculture). The reported coefficients
are the ones in front of the measure of tree density, and vertical lines show 95 percent confidence intervals.

Panel (a) of Figure E2 illustrates seasonal and more secular variations in the con-

centration of fine particulate matter across the City of Toronto. The series is quite

volatile and exhibits irregular seasonal patterns: pollution peaks are more frequent in

summer, but a few occur in winter as well. There is no academic consensus about the

local pollution-abatement effect of a tree canopy (and its variation across seasons). In-

deed, foliage prevents the dispersion of vehicle emissions (especially in road canyons,

e.g., along the Don Valley Parkway), but increases the concentration of pollutants be-

low the tree canopy (see, e.g., Salmond et al., 2013; Jin et al., 2014). We investigate these

effects within our context in the next section.

E.2 The pollution-abatement effect of trees

The pollution-abatement effect of trees over time We replicate the exercises dis-

cussed in Figures D1 and D2 (see Equation 5) to shed light on the dynamic impact of the

ecological catastrophe. We report the year-specific estimates in Panel (b) of Figure E2; we
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see that the pollution-abatement effect of trees materializes between 2013 and 2016—the

period in which city-managed ash trees were removed.

Table E1. The pollution-abatement effect of trees—a placebo.

Pollution (PM2.5) (1) (2)

Tree cover 0.0010 -0.0018
(0.0002) (0.0036)

Observations 373,610 373,610
F-statistic - 548.50
Notes: Robust standard errors are reported between parentheses. The unit of observation is a postcode. Across both panels, col-
umn (1) reports the OLS estimate while column (2) reports the estimates from an IV specification where tree cover is instrumented
by a measure of ash tree density. All specifications include: latitude and longitude; the density of publicly maintained trees; and
area shares from the land classification in 2007, all interacted with year fixed effects. The dependent variable is (log) concentration
of PM2.5 in December-February (in 𝜇𝑔/𝑚3), and we control for postcode fixed effects.

The pollution-abatement effect of trees during winter Wefinally conduct a placebo

exercise in Table E1, in which we replicate Panel C of Table 5 with PM2.5 concentration

during winter (December-February) as the dependent variable. Both the OLS and the

IV specifications provide negligible estimates, non-statistically significant for the latter.

The absence of foliage indeed limits the impact of a tree canopy, whether positive or

negative (Salmond et al., 2013; Jin et al., 2014).
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