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ABSTRACT

This paper estimates the value of urban trees. The empirical strategy exploits an ecological 
catastrophe — the Emerald Ash Borer (EAB) infestation in Toronto to isolate exogenous 
variation in neighborhood tree canopy changes. Adding one tree to a postcode increases property 
prices by 0.40%; the hardest-hit areas lost 7% tree cover, resulting in a 6% property price decline. 
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total amenity value of trees exceeds the combined value of these services.
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Since 2002, the invasive Emerald Ash Borer beetle has affected millions of trees

in North America, including a significant portion of urban trees. This ecological

catastrophe has underscored the social value of green capital in cities. Urban forestry

enhances aesthetics (Benson et al., 1998; Price, 2003; Todorova et al., 2004), but trees

also provide a variety of important services (Willis and Petrokofsky, 2017; Manning

et al., 2023). For instance, studies have shown positive health effects (Kardan et

al., 2015), and trees reduce noise (Kragh, 1981), improve local air quality (Nowak

et al., 2006; Jones and McDermott, 2018b), provide wind-sheltering (Akbari and

Taha, 1992), help manage storm-water runoff (Rahman et al., 2023), and act as a

store of carbon (Pennisi, 2019; Hubau et al., 2020; Gatti et al., 2023; Barham et

al., 2023; Deshmukh et al., 2023; Tucker et al., 2023). Finally, the cooling benefits

offered by the tree canopy via evapotranspiration and shading alleviate urban heat

island effects, a climatic hazard to urban residents (Iungman et al., 2023; Hajat and

Kosatky, 2010).1

This paper aims to quantify the value of urban forestry. The empirical strategy

relies on the Emerald Ash Borer (EAB) infestation and its large, yet heterogeneous,

impact on urban forestry across neighborhoods in North-American cities.2 The

Emerald Ash Borer exclusively feeds on ash trees, one of the most common species

in New York, Chicago or Toronto. For instance, the City of Toronto (rightly) ex-

pected to lose nearly all of its 860,000 ash trees within ten years after the first

signs of infestation around 2007; this amounts to about 8% of the tree canopy

cover over both public and private land, with very significant variation within and

across neighborhoods.3 We rely on comprehensive urban forest assessments covering

1The urban heat island effect will affect a rapidly increasing share of the World population
because of climate change and the swift growth of large, densely-populated urban settlements in
developing economies (Tuholske et al., 2021). Earlier contributions have identified urban forestry
as an important mitigating factor (Peng et al., 2012), especially so in dry climates (Manoli et al.,
2019). The unequal distribution of urban forestry and built-up surfaces within urban settlements
thus induces large inequalities in exposure to extreme heat episodes (Hsu et al., 2021): Affluent,
greener neighborhoods experience more moderate temperature peaks during periods of extreme
heat.

2The Emerald Ash Borer, originally native to Asia, was inadvertently introduced to North
America during the summer of 2002. Since that fateful introduction, it has emerged as one of the
most devastating non-native insect species in North America. As of 2018, its destructive reach
extended across 33 U.S. states and the Canadian provinces of Ontario, Quebec, and Manitoba,
resulting in the demise of hundreds of millions of ash trees (Aukema et al., 2011; Herms and
McCullough, 2014). The ash borer was recently reported in Oregon, its first appearance west
of the rocky mountains (Popkin, 2022). Live updates are provided by the Emerald Ash Borer
Network.

3The previous infestation of such amplitude was the Dutch elm disease, spreading from 1940 to
1970 in North America. Interestingly, this catastrophe shaped the subsequent impact of the EAB
infestation: urban planners often decided to replace the infested elm trees—the first-best urban
tree—with ash trees. In Toronto, city-managed trees are predominantly from a few selected species,
e.g., maple trees, elm trees, ash trees, or linden trees, selected for their resistance to climatic and
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Toronto in 2007 and 2018 to evaluate local changes in the tree canopy, and we use

a geo-referenced register of all city-managed urban trees, which reports tree species,

maintenance dates, and cut downs, to isolate exposure to the EAB infestation within

each of 45,000 postal codes.4

We begin by assessing the hedonic value of the urban tree canopy, employing

exhaustive data on residential property transactions between 2007 and 2017. The

key challenge lies in establishing a causal link between tree canopies and house

prices. One may be concerned that leafy neighborhoods might also enjoy unobserved

amenities like superior school quality, which would bias the correlation between tree

density and property values upward. Conversely, in highly sought-after, densely

populated neighborhoods, the opportunity cost of land may be greater, potentially

causing a downward bias. To mitigate these concerns and establish causality, we

employ an instrumental variable approach and instrument the evolution of the tree

canopy within a postal code by its exposure to the EAB infestation. We find that one

additional tree within a postcode increases property prices by 0.40%; alternatively,

one additional percentage point in tree cover within a postcode elevates property

values by 0.86%. Neighborhoods where ash trees constituted the majority of city-

managed trees prior to the infestation witnessed a staggering 7 percentage point

reduction in tree cover, corresponding to a 6% drop in property prices.

Next, we aim to quantify the role of one specific tree service—energy savings—in

explaining the “tree premium.” Heatwaves trigger spikes in energy consumption,

and these surges are mitigated in neighborhoods with a generous tree canopy. Our

analysis reveals that one additional percentage point of tree cover within a postal

code area results in a 0.05-degree Celsius reduction in the local average Land Sur-

face Temperature (LST) during the months of July and August. This decrease in

temperature translates into a reduction in energy consumption of roughly 2.5%, cor-

responding to a monthly cost saving of CAD 5 during this two-month period. We

utilize these estimates to place a monetary value on the role of trees in alleviating

urban heat island effects under varying scenarios, encompassing more and less con-

hostile urban conditions. There is significant spatial clustering in the local composition of street-
managed trees such that some neighborhoods would mostly be populated by elm trees or maple
trees (and thus spared by the recent infestation), when others would predominantly feature ash
trees.

4The 2007 land cover data was part of the “Urban Tree Canopy (UTC) Assessment” conducted
by the City of Toronto and summarized in “Every Tree Counts: A Portrait of Toronto’s Urban
Forest”; the later update was titled the “2018 Tree Canopy Study”. Both assessments were based
on high-quality satellite imagery, LiDAR information, and manual corrections. We complement
these two highly-precise cross-sections with yearly vegetation indices constructed from satellite
imagery (Sentinel 2, 2016–2020, Landsat L8, 2013–2020, Landsat L7, 2006–2012) to document the
swift, persistent loss of tree canopy between 2012–2016 with little evidence of any reversion in the
medium run.
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servative climate change projections. Our findings reveal substantial energy savings

attributed to urban trees. The monetary value of this one tree service already ex-

ceeds the annual maintenance costs per tree. Yet, this is but a portion of the total

hedonic value associated with trees. This underscores that urban trees provide a

cost-effective way to regulate temperatures in urban areas.

While urban forests are widely recognized for their amenity value, urban devel-

opment plans that involve densification and sprawl may not consistently incorporate

this value, paradoxically leading to a reduction in tree canopies (Nowak and Green-

field, 2012, 2018). A specific concern arises from the potential exacerbation of the

existing inequality in tree canopy cover between economically disadvantaged and

affluent neighborhoods. Our study offers a plausible explanation for why such a

phenomenon could occur: the presence of non-linearities in the valuation of urban

forestry, coupled with coordination failures. In line with this, we observe that the

marginal value of a tree becomes more pronounced in neighborhoods with substan-

tial existing tree cover. This finding underscores the need for policy interventions

targeting cities or neighborhoods with limited green infrastructure. Public provision

of green space could yield positive outcomes by enhancing the returns on further

green policies or subsequent private investments, such as those in new residential

developments or private gardens.

Our identification strategy hinges on the assumption that the spatial distribu-

tion of ash trees is exogenous to the dynamics of residential prices and energy con-

sumption across postal codes. We offer support for this hypothesis through several

avenues. First, we condition the analysis on (i) the density of all city-managed

trees, (ii) ward fixed-effects, and (iii) 8 categories of 2007 land cover, interacted

with year fixed-effects. Second, we demonstrate that changes in the evolution of the

tree canopy between 2007 and 2018 can be predominantly attributed to variations

in the local density of ash trees rather than other tree species. Third, we show that

there are no differential dynamics in property prices before our baseline period (i.e.,

between 2002 and 2006). Fourth, although our main empirical framework leverages

the EAB infestation as an ecological catastrophe to isolate substantial shifts in tree

cover, we also leverage fluctuations in extreme weather episodes, interacted with

the positioning of trees around each property, to understand their potential to save

energy.5

5More precisely, we calculate the solar-shading potential and wind-sheltering potential of each
tree in each month of the year, by combining the relative positioning of the tree and the property
with solar angles and monthly wind roses across the year (as in Nikoofard et al., 2011; Upreti et
al., 2017). The annual average of these measures may be correlated with general levels of energy
consumption, as positions of trees might partly reflect optimization behavior from households.
The identifying assumption is that excess energy savings during extreme weather episodes are

4



The main contribution of this paper is to provide causal estimates for the amenity

value of urban forests and to isolate one increasingly important tree service: their

ability to mitigate temperature increases during heat waves. This paper is not the

first one to estimate the hedonic price of urban forestry (see, e.g., Morales, 1980;

Wachter and Wong, 2008; Conway et al., 2010; Franco and Macdonald, 2018), or

its effect on temperature during heat waves and on energy savings (see, e.g., Akbari

and Taha, 1992; Nikoofard et al., 2011). These previous attempts however suffer

from omitted variation and reverse causation. An exception to this is Druckenmiller

(2023), which exploits differences in temperatures across the American West, cre-

ating conditions that are more or less conducive to the survival of bark beetles. In

contrast to our approach, this study centers on forests in a broader sense, while our

research specifically delves into the distinct role of urban forestry.

Our research relates to different strands of the literature. First, it contributes to

research at the intersection of urban and environmental economics which assesses

the value of green urban infrastructure. The (monetary) value of trees has been

widely recognized by urban planners and Mullaney et al. (2015) provide a compre-

hensive review of this literature.6 Druckenmiller (2022) highlights the challenges

in measuring the value of tree cover and ecosystem services more broadly for use

in climate change policy. We contribute to this literature by leveraging exogenous

variation and providing causal estimates of the amenity value of trees. Secondly, we

leverage our source of exogenous variation to gauge the capacity of the tree canopy

to curtail energy consumption during periods of extreme heat. This part relates

to Auffhammer (2018) who assesses how future climate change will affect energy

consumption in California, and to research on the value of green buildings (Eich-

holtz et al., 2010, 2013) and energy-efficient houses (as reviewed in Kahn and Walsh,

2015). Lastly, we add to the literature on the effects of climate change on densely

populated urban areas (see, for instance, the review articles by Dell et al., 2014;

Graff Zivin and Neidell, 2013; Kahn and Walsh, 2015). Indeed, urbanization comes

with a concentration of impervious surfaces like stone, concrete and asphalt, at the

expense of vegetation. The resulting temperature differentials between urban areas

and the adjacent countryside, the urban heat island effect (Oke, 1973), raises energy

not directly correlated with either the solar-shading potential or the wind-sheltering potential—
other than through the mitigation effect of trees themselves. Using panel data on residential
electricity meter readings at the postcode/month level from 2011–2021 and natural gas data at
the postcode/month level from 2010–2017, we show that the tree canopy substantially affects the
elasticity of energy consumption to heat waves and episodes of wind chill (to a lesser extent).

6Jones and McDermott (2018a) point out that most papers focus on the benefits of trees without
consideration of costs. To address this, they develop a bio-economic health model that accounts
for a range of benefits, costs and externalities and calibrate it to data from New York City. They
report positive, yet smaller, net benefits of trees than commonly reported in the literature.
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demand for cooling (an effect expected to worsen in the presence of climate change,

see Santamouris et al., 2015; Estrada et al., 2017). One way to mitigate urban heat

island effects is to invest in the urban canopy (Bowler et al., 2010; Roy et al., 2012).

We contribute to this literature by providing more direct and granular evidence of

the effect of urban forestry on household energy consumption.

The remainder of the paper is structured as follows. In Section 1, we describe

the context, the data sources and the effect of the Emerald Ash Borer infestation on

urban forestry. Section 2 presents the empirical strategy. Sections 3 and 4 provide

causal estimates of the hedonic price of urban forestry and its effect on urban heat

and energy savings. The final section concludes.

1 Context, data and evolution of the tree canopy

This section discusses the allocation of ash trees across neighborhoods of Toronto

and the evolution of the Emerald Ash Borer (EAB) infestation since 2007. We

then describe our data sources and data construction. We finally shed light on the

relationship between the EAB infestation and the evolution of the tree canopy, which

constitutes the first stage of our baseline empirical strategy.

1.1 Context

Toronto is one of the greenest cities in North America. The 2018 Tree Canopy Study

found that Toronto has an estimated 11.5 million trees, as much as the combined

number of trees in New York (5.2 million) and Los Angeles (6 million).7 The tree

population in Toronto consists of a large number of native trees, which date back to

the Carolinian forests before the 18th century. These species include: black, green

and white ash; birch; white cedar; American chestnut; white elm; maple; black,

red, white oak; white pine, etc. Additional non-native species were introduced by

European settlers, e.g., barberry, larch, lilac, Norway maple or pine.

Dutch elm disease and the allocation of trees before 2007 Growing trees

in cities is notoriously difficult. Road salt, compact soil, pollution and Canada’s

winters all make urban areas of Toronto unkind to trees. The tree of choice in such

harsh environments used to be elm trees, which thrive in urban areas and present

7Apart from the Central Business District and industrial parks, most neighborhoods have alleys
of trees or public parks.; and houses in rich residential neighborhoods have backyard gardens with
significant tree coverage. The City of Toronto estimates that the structural value of its urban forest
amounts to CAD 7 billion, with ecosystem services worth more than CAD 55 million each year
(City of Toronto, 2019).
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convenient aesthetic features. Elm trees were primarily planted at the beginning

of the 20th century in North America, such that their allocation across the city of

Toronto coincides with neighborhood growth between 1900 and 1930.

Elm trees steadily disappeared from most North-American cities due to the Dutch

elm disease. Around 1930, elm bark beetles appeared in New York, carrying the

Dutch elm disease and threatening the large population of trees in New Haven.

However, the disease did not start to propagate until the Second World War when

the quarantine and sanitation procedures that had been implemented since 1928 were

abandoned due to budget restrictions. After the Dutch elm disease swept through

toward the second half of the last century, most municipalities planted ash trees as a

“second-best” urban tree (MacFarlane and Meyer, 2005). The more recent allocation

of ash trees thus closely relates to the past allocation of elm trees across and within

cities of the East Coast. Neighborhoods of Toronto with large populations of elm

trees in 1930, e.g., Scarborough or Mount Pleasant, had a large population of ash

trees until very recently.

Emerald Ash Borer infestation The Emerald Ash Borer is a beetle that was

accidentally introduced to North America around 2000. This invasive species sur-

vives well in the North American environment, due to a lack of natural predators.

The beetle attacks ash trees at all stages of its life-cycle: the larva feeds aggressively

on tissues, which produces larval galleries and frass; the young adult escapes the

tree, leaving holes in the bark—one of the first recognizable symptoms of infesta-

tion; and the full-grown beetle then feeds on ash foliage and would lay clusters of

eggs in crevices of the bark. Accordingly, infested trees present bark fissures, larval

galleries, high woodpecker activity (feeding on borers), and yellow foliage. Without

specific treatment at the very early stages of the infestation, e.g., TreeAzin injec-

tions, it takes between 1 and 4 years for an infested ash tree to die.8 Between 2007

and 2018, the City of Toronto had lost a majority of its ash trees.9

1.2 Data sources

This section presents the data sources used in this research.

8Alternative efforts to protect the ash tree population through selective breeding have been
undertaken as well (Popkin, 2022).

9Removals were concentrated in Scarborough, North York and Etobicoke. Trees in Downtown
Toronto received early TreeAzin injections, possibly delaying or preventing their full infestation.
To address this possible issue, our instrument will use an Intention-To-Treat (ITT) approach and
leverage the initial density of ash trees, rather than the actual removal of infested trees.
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Figure 1. Land use classification in 2007 and (city-managed) ash trees.

(a) Land use (2007)

(b) City-managed ash trees

Notes: Panel (a) displays land use as produced by the Urban Tree Canopy (UTC) Assessment in 2007. Land use
is divided into 8 categories: tree canopy (dark green), grass/shrub (lighter green), bare earth (sand), water (blue),
buildings (red), roads (dark gray), other paved surfaces (light gray) and agriculture (yellow). Panel (b) shows the
local density of city-managed ash trees, across 8 bins of density. Except for the central area, the neighborhoods
of Scarborough (East), Mount Pleasant, North York and Etobicoke are the ones with the highest concentration of
(city-managed) ash trees.

Tree canopy and land cover To estimate the tree cover and its evolution, we

use high-resolution land cover classifications in 2007 and in 2018. These land clas-

sifications were conducted by the Urban Forestry services of the City of Toronto

using a combination of multispectral QuickBird satellite imagery at a resolution of

0.6m, LiDAR information, and manual corrections (City of Toronto, 2019). The

land classifications isolate the following eight categories: tree canopy, grass, bare
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earth, water, buildings, roads, other paved surfaces, and agriculture. Panel (a) of

Figure 1 provides an illustration of land usage across the City of Toronto in 2007. We

combine the land classifications in 2007 and 2018 with the delineations of postcodes

to construct the area shares of all categories within the different postcodes.10

While the city aimed at harmonizing the classification techniques in 2007 and

2018, there may still be measurement error in the assessed evolution of the tree

canopy. Our main empirical strategy, based on a two-stage specification, should cor-

rect for the possible attenuation bias associated with classification errors—at least to

some extent. We complement and validate these measures of land cover with vegeta-

tion and built-up indices constructed between 2007 and 2018 from lower-resolution,

high-frequency satellite imagery (Sentinel 2, 2016–2020, Landsat L8, 2013–2020,

Landsat L7, 2007–2012). We describe the construction of these indices and a few

validation exercises in Appendix A.1 and shed some light on the evolution of the

tree canopy in Appendix A.2.

Ash trees To identify the location of ash trees, we rely on the register of all

publicly maintained street trees provided by the City of Toronto in 2010 (with about

600,000 trees in total, and more than 45,000 ash trees). The data contains the street

address, the common tree species and the diameter at breast height, which can be

used to infer the crown size. For the latter, we rely on estimates of the relationship

between the crown diameter and stem diameter to approximate the area that the

crown covers (Hemery et al., 2005; Peper et al., 2014). An additional register focuses

on the sub-population of ash trees and on the activity related to the EAB infestation,

i.e., the dates of EAB removals and TreeAzin injections. Panel (b) of Figure 1 shows

the distribution of city-maintained ash trees across the wider City of Toronto. While

ash trees are present in every ward, they are most concentrated in the North-East

of the city.

Property values We use exhaustive property transaction data between 2007 and

2017 in order to estimate the hedonic value of the local tree canopy. The data comes

with a wide range of transaction and property attributes: the transaction date; price;

type of property (35 categories); number of floors; number of bedrooms, kitchens,

washrooms, family rooms, and fireplaces; the size of the lot; and parking space. The

dataset contains about 387,000 transactions (between 30,000-40,000 per year). To

10We use a buffer of 10m around each postal code in the baseline specification to properly
capture street trees in front of houses. Further, to facilitate the calculations of the solar-shading or
wind-sheltering potential (see Section 4 and Appendix C), we transform the “tree cover” surface
into a discrete number of individual trees. More specifically, we construct synthetic trunk locations
by randomizing tree trunks every 10 meters inside the “tree coverage” surface.
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geolocate properties, we combine the transaction data with a geolocated address

register provided by the City of Toronto, and perform a fuzzy string matching al-

gorithm on addresses. Appendix Figure A5 shows the distribution of transactions

and their average price across the City of Toronto between 2007 and 2017. In order

to correct for the over-representation of transactions in certain neighborhoods, e.g.,

downtown Toronto or York, the main empirical strategy will weigh each transaction

such as to equalize the overall contribution of each postal code.11

Energy consumption, temperature, and pollution We gained access to data

from all residential electricity meters in the City of Toronto. About 800,000 customer

IDs i are nested within 21,000 postcodes p over the period 2012–2020, from which

we extract monthly consumption for the median household within a postal code. We

also collect monthly data on the aggregate consumption of natural gas per postcode

over the period 2010 to 2017; we divide the total gas consumption in a year by

the number of registered gas meters to derive a measure of average household gas

consumption.12

Finally, we collect the Land Surface Temperature (LST) for the months of July

and August for each year between 2006 and 2018 using the Thermal Infrared (TIRS)

band provided by Landsat L7 (2006–2012) and L8 (2013–2018). Specifically, we

calculate the Top of Atmosphere (TOA) Reflectance, convert this brightness measure

into a temperature measure, correct for Land Surface Emissivity (LSE) and collapse

the measure at the level of postcodes in a given year, Tpt . Note that the LSE

employs a fractional vegetation measure that is based on the Normalized Difference

Vegetation Index (NDVI, see Ermida et al., 2020, for more details). While the LSE

correction might induce some mechanical correlation with the presence of trees,

this procedure is one of the current state-of-the-art techniques to capture surface

temperature at a fine spatial scale with limited in situ measurements (Li et al., 2023),

and the induced bias would be an order of magnitude smaller than our estimates. We

also rely on Van Donkelaar et al. (2021) to nest monthly estimates of fine particulate

matter (PM2.5) across postal codes from 2007 to 2018.

11We complement the transaction data with neighborhood characteristics from the cadastre
of the City of Toronto that includes detailed information about green spaces, protected ravines,
property boundaries, building footprints, the general urban infrastructure, and school locations.
We employ this cartographic information to calculate distance to amenities and other controls
capturing neighborhood quality.

12There are important seasonal patterns in energy consumption. We describe these patterns
in Appendix A.5, in which we also discuss the construction of harmonized energy consumption
measures at the postcode level.
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Figure 2. Ash trees and the evolution of the tree canopy—an illustration.

(a) Tree canopy (2007) (b) Tree canopy (2018)

Notes: This Figure shows the land use classification in a given neighborhood in the North-East of Toronto (James
Park Square, Scarborough)—with a relatively high density of ash trees. The data was produced in 2007 (left panel)
and 2018 (right panel) by Urban Forestry as part of an Urban Tree Canopy (UTC) Assessment. Land cover is
represented by the following classes: tree canopy (dark green), grass/shrub (lighter green), bare earth (sand), water
(dark blue), buildings (red), roads (dark gray), other paved surfaces (light gray) and agriculture (yellow). The green
symbols represent the location of city-managed ash trees, as geolocated from their street addresses (Street Tree
General Data, 2010). The latter explains why city-managed trees appear to be located within private lots. In our
baseline specification, we aggregate tree cover at the postal code level, which mitigates the repercussions of such
approximation.

1.3 EAB infestation and the tree canopy

We now discuss important evidence on the effect of the EAB infestation on the

evolution of urban forestry between 2007 and 2018. We first provide an illustration

of the systematic removal of infested ash trees by focusing on the North-East of

Toronto where we observe a relatively high density of publicly maintained ash trees

at baseline. Figure 2 compares the land classifications provided by Urban Forestry

in 2007 and in 2018 around James Park Square, in the municipal area of Scarbor-

ough. There is a marked decrease in the area covered by trees which coincides with

the location of city-managed ash trees (green symbols). We provide an additional

illustration of such tree felling in Appendix A.2 with successive street views of the

same neighborhood in 2007 (before the infestation), 2014 (after the cut-downs), and

2020 (with replanted tree saplings). In the same Appendix A.2, we exploit a regis-

ter of planned work from Parks and Forestry to discuss the timing and selection of

planned removals and TreeAzin injections.

We investigate the systematic relationship between the evolution of urban forestry

and tree removals in Figure 3. We consider a postcode as the main unit of observa-

tion, and we first construct the long difference in area share of tree cover between

2007 and 2018. Panel (a) of Figure 3 shows the correlation between the evolution of

the tree canopy and a measure of ash tree density—the number of street ash trees

11



Figure 3. The effect of ash tree density on the tree canopy between 2007 and 2018.

(a) Tree canopy (difference, 2007–2018) (b) Tree canopy (residual, 2007–2018)

(c) NDVI (2006–2020) (d) LAI (2006–2020)

Notes: Panel (a) represents the relationship between the evolution of the area share of tree cover between 2007 and
2018 and the density of ash trees within a postal code (number of street ash trees per area within a 10m buffer,
as measured in 2010). We group postal codes by bins of ash tree density: the dots represent the average evolution
of the tree canopy within each bin. Panel (b) represents the same relationship in which the evolution of the area
share of tree cover between 2007 and 2018 and the ash tree density are residualized: we regress both measures on
a measure of street tree density, latitude, longitude, area shares from the land classification in 2007 (tree canopy,
grass/shrub, bare earth, water, buildings, roads, other paved surfaces and agriculture) and ward fixed effects. The
lines are locally weighted regression on all observations. Panels (c) and (d) show the estimated correlation between
ash tree density and vegetation cover from 2006 to 2020. More specifically, we regress the Normalized Difference
Vegetation Index (NDVI, panel c) and the Leaf Area Index (LAI, panel d) across postcodes on: a measure of ash
tree density (number of street ash trees per area within a 10m buffer, as measured in 2010); a measure of street tree
density; ward fixed effects; latitude, longitude; dummies for the land classification in 2007 (tree canopy, grass/shrub,
bare earth, water, buildings, roads, other paved surfaces and agriculture)—all interacted with year fixed effects. The
reported coefficients are the ones in front of the measure of ash tree density interacted with period fixed-effects,
and vertical lines show 95 percent confidence intervals. Both indices are obtained by combining the reflection in
the near-infrared spectrum (NIR) with the reflection in the visible range of the spectrum and rely on a cloud-free
mosaic of Landsat imagery (L7/L8, 30m resolution) covering May–September from 2006 to 2020.

per area , as measured in 2010—across postcodes. Panel (b) conditions this rela-

tionship on a measure of street tree density (irrespective of their species), latitude,

longitude, the land classification in 2007 (the area shares of tree canopy, grass/shrub,

bare earth, water, buildings, roads, other paved surfaces and agriculture) and ward

fixed effects. We find that there is a strong, precisely estimated, negative correlation

12



between the evolution of tree cover from 2007–2018 and the initial density of ash

trees: an additional 0.003 ash trees per square meter is associated with a decrease

of 0.04 in the area share of tree cover (see panel b for instance). To rationalize

the previous relationship, an additional 0.003 ash tree per square meter corresponds

to 3,000 ash trees per square kilometer. If each ash tree uniquely covered about

35 square meters, these 3,000 ash trees would cover 10% of a square kilometer.13

Compared to this back-of-the-envelope calculation, the actual tree cover decreases

by only 4-5% of a square kilometer. The difference between the two numbers could

be explained by: (i) significant overlap between tree crowns; (ii) sluggish tree re-

movals and trees having received TreeAzin injections; and (iii) fast replacement by

tree saplings.

The previous evidence quantifies the swift loss of urban forestry in postal codes

with numerous ash trees. We shed additional light on the average timing of such loss

in panels (c) and (d) of Figure 3. To do so, we leverage yearly vegetation indices con-

structed from satellite imagery and run an event-study specification estimating the

relationship between vegetation indices, Ipt , in postcode p at time t (we group years

into two-year periods) and our baseline measure of exposure to the EAB infestation,

Ap,2010:

Ipt =
�=2020
∑

�=2006
��Ap,2010 × 1� + 
tXp + �p + �t + "pt ,

where Xp includes: a measure of street tree density; ward fixed effects; latitude,

longitude; area shares for each land category in 2007 (tree canopy, grass/shrub, bare

earth, water, buildings, roads, other paved surfaces and agriculture)—all interacted

with year fixed effects 
t. Panels (c) and (d) of Figure 3 show that the differential

dynamics of vegetation indices across neighborhoods materialize from 2012 onward

with most of the vegetation loss occurring before 2016. An additional 0.003 ash

trees per square meter leads to an incremental decrease in the Normalized Difference

Vegetation Index of 0.003 × 7 ≈ 0.021 (to be compared with its standard deviation

of 0.14 across postal codes) and in the Leaf Area Index of 0.003 × 1.15 ≈ 0.0035 (to

be compared with its standard deviation of 0.02 across postal codes). Both amount

to a loss of 15% of a standard deviation, which is a very significant vegetation loss

over a period of 4-5 years. Equally important is the observation that there is no

13The crown radius of the average (lost) ash tree is not observable in our data. We do, however,
observe the diameter at breast height of injected trees (28.7 cm on average) and non-injected
trees (29.1 cm on average)—the latter constituting arguably the bulk of our “compliers”, i.e., the
population of trees lost between 2007–2018. These diameters at breast height would imply an
average crown radius of 3.3-3.4m using the relationships estimated in Hemery et al. (2005) for
Fraxinus excelsior or Peper et al. (2014) for Fraxinus americana. The equivalent crown radius
would be 4m using the (cruder) ratio between crown radius and diameter at breast height of 14
(Lockhart et al., 2005).
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immediate rebound in tree cover: the felling of mature trees cannot be mitigated in

the shorter and medium run; growing a proper substitute to maturity should take

about 25-30 years.

Table 1. Ash trees and the evolution of the tree canopy between 2007 and 2018.

Tree cover (2007–2018) (1) (2) (3)

Ash tree density -12.23 -13.78 -13.96
(1.349) (1.365) (1.372)

Street tree density 1.444 1.910
(0.197) (0.287)

Spruce tree density 1.189
(1.305)

Elm tree density 3.408
(2.042)

Maple tree density -2.000
(0.575)

Observations 45,520 45,520 45,520
Notes: Robust standard errors are reported between parentheses. The unit of observation is a postcode in the
City of Toronto, and the dependent variable is change in the area share of tree cover between 2007 and 2018. All
specifications include: ward fixed effects; latitude and longitude; and area shares from the land classification in 2007
(tree canopy, grass/shrub, bare earth, water, buildings, roads, other paved surfaces and agriculture). In column (2),
we add the number of public trees normalized by the postcode area. In column (3), we add the number of spruce
trees, elm trees and maple trees normalized by the postcode area.

Finally, our identification exploits the unanticipated, random occurrence of an

ecological catastrophe to isolate exogenous variation in urban forestry. However,

our instrumental variable is based on the initial location of vulnerable, city-managed

trees. The correlation between the initial distribution of a specific tree species and

the dynamics of tree cover could theoretically be driven by other urban policies, e.g.,

aimed at diversifying the green capital within the city. We explore the relationship

between the evolution of the tree canopy from 2007–2018 and the density of publicly

maintained trees in Table 1. In this table, as in Figure 3, the unit of observation is

a postal code, the dependent variable is the change in tree cover between 2007 and

2018, and we control for ward fixed effects, latitude and longitude, and area shares

of trees, grass/shrub, bare earth, water, buildings, roads, other paved surfaces and

agriculture in 2007. In column (2), we add a control for the density of all publicly

maintained trees within a 10m buffer of the postcode. In column (3), we add the

densities of other popular species of publicly maintained trees (i.e., spruce trees,
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elm trees, maples). The negative effect of the initial density of ash trees is robust

across specifications and is one order of magnitude larger than the effects of other

tree species. This ash-specific effect is key to supporting our empirical strategy:

the initial distribution of city-managed trees should only capture the quasi-random

allocation of an otherwise common tree species across space and be orthogonal to

concurrent planning policies or green initiatives.

2 Empirical strategy

This section describes the empirical strategy and a few descriptive statistics.

2.1 Estimating the hedonic value of the tree canopy

The hedonic value of urban forestry should encompass all the net present benefits

of a tree in a given proximity to a property, including its long-term effect on energy

consumption. An empirical strategy aiming to estimate the causal effect of trees on

property values should exploit exogenous and permanent shocks to the tree canopy.

The shock used in this paper is the initial relative allocation of city-managed ash

trees that will (mostly) be lost to the Emerald Ash Borer infestation and thus affect

tree cover in the medium and longer run—as documented in the previous section.

A naive empirical strategy would correlate transaction prices with local tree

cover, possibly controlling for time-invariant local characteristics and trends along

some observables. Such a specification would suffer from three major issues: omitted

variation, reverse causality, and measurement error. First, the dynamics of urban

forestry may relate to local developments, for instance, neighborhood quality, in-

vestments in green infrastructure, transport infrastructure, or the construction of

new offices. Each of these sources of omitted variation would strongly affect prop-

erty prices and lead to changes in the tree canopy. Second, a rise in the local price

of land increases the opportunity cost of maintaining urban forestry. Third, the

measure of tree density may be contaminated by measurement error related to the

procedures employed to evaluate the tree canopy.

We address these identification issues by isolating variation in the tree canopy

generated by an irreversible and exogenous shock: the Emerald Ash Borer infesta-

tion. Letting i denote a transaction with associated price Pipt and TDpt denote the

inferred area share of tree canopy within the postcode p at time t, we estimate:

ln(Pipt) = � + �TDpt + 
tXipt + �p + �t + "ipt , (1)

where TDpt is instrumented by the density of publicly managed ash trees, Apt , and
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tXipt captures the evolution of the time-varying premium associated to: observable

house characteristics (i.e., number of bedrooms and number of washrooms); ward

fixed effects; a measure of city-managed tree density; latitude and longitude; and

area shares from the land classification in 2007 (tree canopy, grass/shrub, bare earth,

water, buildings, roads, other paved surfaces and agriculture). The specification

thus flexibly controls for the differential evolution of prices across neighborhoods

and time-varying returns to house characteristics. Standard errors are clustered at

the postcode × year level in the baseline specification, but we consider alternative

clustering strategies in robustness checks.

Equation (1) requires measures that capture the evolution of tree density, TDpt ,

and ash tree density, Apt . We do not have detailed information on the yearly evo-

lution of the tree canopy: we only observe it at the time of the surveys conducted

in 2007 and 2018. We do however know from records of the City of Toronto that

2011 is the beginning of work orders to remove ash trees that were infested with

the Emerald Ash Borer, with a marked acceleration in 2013—an observation that

is confirmed by our less precise measures of land cover at the yearly level sourced

from satellite imagery (see Figure 3).14 We thus construct the baseline exposure to

urban forestry and the baseline instrument as follows: TDpt = TDp,2007 for t ≤ 2013
and TDpt = TDp,2018 for t ≥ 2016, Apt = Ap,2010 for t ≤ 2013 and Apt = 0 for t ≥ 2016,
and we interpolate linearly both measures TDpt and Apt between 2013 and 2016.

With forward-looking agents capitalizing the future flow of amenities provided by

urban forestry, property prices should reflect future tree removals once the informa-

tion about the EAB infestation becomes public. One assumption behind our strategy

is that the vast majority of anticipated tree removals occur before 2018 such that all

lost publicly-managed ash trees are already captured within our measure of urban

forestry in 2018. Imperfect “compliance” from a few remaining trees that would be

expected to disappear after 2018 would lead to an over-estimate of the hedonic value

of urban forestry. Further, we cannot really observe the evolution of the information

set of land market participants. For this reason, we provide robustness checks with

alternative cut-offs and without any inference to show that the previous inference

is not driving our main findings. For instance, we can focus on a sub-sample of

property transactions covering (i) a pre-treatment period between 2007–2009, where

no EAB-related damages had occurred yet; and (ii) a post-treatment period between

2016–2017 when the majority of ash trees had been removed.

The identification of specification (1) hinges on the assumption that the alloca-

14We observe one work order for an ash tree removal in 2010; 1,646 work orders for ash tree
removals in 2011; 3,912 in 2012 and 7,151 in 2013. Unfortunately, we do not have data for later
years.
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Table 2. Descriptive statistics.

Tree density
Mean Stand. dev. High Low

Panel A: Transaction characteristics
Transaction price 13.03 0.627 13.20 12.86
Number of bedrooms 1.981 1.351 2.331 1.630
Number of washrooms 2.182 1.114 2.479 1.886

Panel B: Land cover in 2007
Tree canopy 0.220 0.191 0.380 0.060
Grass/shrub 0.152 0.121 0.181 0.123
Bare earth 0.009 0.083 0.001 0.017
Water 0.001 0.007 0.001 0.001
Buildings 0.225 0.161 0.192 0.259
Roads 0.161 0.165 0.114 0.207
Other paved surfaces 0.229 0.218 0.129 0.330
Agriculture 0.000 0.003 0.000 0.000

Panel C: City-managed trees
Ash trees (density, per sq. km) 78.28 263.2 89.59 66.98
All trees (density, per sq. km) 1,949 2,083 2,164 1,734

Observations 385,933 192,839 193,094
Notes: All statistics are computed using the baseline sample of transactions. The samples of high- and low-tree
density are defined with respect to the median share of tree canopy as produced by Urban Forestry as part of an
Urban Tree Canopy Assessment in 2007.

tion of ash trees is orthogonal to the evolution of residential prices at the postcode

level—conditioning on the evolution of the overall number of public trees. This em-

pirical strategy may be threatened by the possible correlation between the spatial

distribution of ash trees, inherited from the earlier spatial distribution of elm trees,

and neighborhood dynamics in the City of Toronto. For instance, neighborhoods

may go through long cycles related to the age of the housing stock (Brueckner and

Rosenthal, 2009), and growing areas in the 1930s may now experience a gentrifi-

cation from the redevelopment of historic neighborhoods. We provide reassuring

evidence about this threat by assessing the existence of pre-treatment differential

trends between 2002 and 2006.

2.2 Descriptive statistics

Before we move on to the main estimation, this subsection provides some descriptive

statistics that aim to provide a better understanding of the variation underlying the

identification strategy.

We start by reporting descriptive statistics about transaction data in Table 2:

the mean and standard deviations of the main variables, control variables and their
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values for transactions in postal codes with above- or below-median tree canopy.

As apparent in Table 2, there are wide differences in tree density across properties.

Postcodes with above-median tree density have almost six times more tree cover

than postcodes with below-median tree density in 2007. Urban forestry correlates

with property prices, which are about 40% higher for properties with above-median

tree density. This price differential may illustrate a tree premium, but they also seem

to indicate differential property characteristics: Properties with above-median tree

density have, on average, 0.6 additional bedrooms and one additional washroom.

Figure 4. Housing prices, temperature, and density of the tree canopy.

(a) Housing prices (b) Housing prices (res.)

(c) Temperature (d) Temperature (res.)

Notes: Panel (a) represents the relationship between the (logarithm) transaction price and our measure of tree
cover at the postcode level. We group transactions by bins of tree cover: the dots represent the average transaction
price within each bin. The green area represents the distribution of the x-axis variable across all panels. Panel (b)
represents the same relationship in which the (logarithm) transaction price and the tree cover within the postcode
are residualized: we regress both measures on the number of bedrooms, the number of washrooms, the latitude, the
longitude, ward fixed effects—all interacted with year fixed effects. Panel (c) represents the relationship between the
average temperature during the summer in 2018 and our measure of tree cover at the postcode level (with a buffer
of 10m around the postcode shape and in 2018). We group postcodes by bins of tree cover: the dots represent the
average temperature within each bin. Panel (d) represents the same relationship in which the temperature and the
tree cover within the postcode are residualized: we regress both measures on the latitude, the longitude, and ward
fixed effects. The lines are locally weighted regression on all observations.

18



Panels (a) and (b) of Figure 4 show the correlation between house prices and

the surrounding urban forestry. The x-axis is the area share of tree cover in 2007,

TDp2007; and the y-axis is the average (log) house price. The association between

transaction prices and tree density should reflect the price premium associated with

leafy suburbs, but also the opportunity cost of maintaining urban forestry. As shown

in panel (a), this correlation is positive for almost any share of tree cover in 2007, es-

pecially so in residential areas with significant urban forestry. Panel (b) displays the

same relationship conditioning on our main control variables: the number of bed-

rooms and washrooms; latitude, longitude; and ward fixed effects—all interacted

with year fixed effects. As apparent, the price gradient between less and more leafy

neighborhoods remains substantial. Panels (c) and (d) show a strongly negative

correlation between summer temperatures (June-September 2018), Tp, and the sur-

rounding urban forestry. There is an average difference of about four degrees Celsius

between postcodes with very low versus very high tree cover. This holds true even

when conditioning on ward fixed effects and our baseline controls.

3 The hedonic value of urban trees

In this section, we estimate the hedonic value of urban forestry. Our headline finding

is that the tree premium is both economically and statistically significant: adding

one tree within a postcode increases property prices by 0.40%.

3.1 Baseline specification

Table 3 reports the estimates of Equation (1). By default, all estimations are con-

ditioned on postcode fixed-effects and year fixed effects interacted with: eight cate-

gories of land cover in 2007; the density of city-managed trees; latitude; longitude;

and ward-fixed effects. Column (1) reports OLS estimates; and columns (2) and (3)

report IV estimates in which the evolution in tree density between 2007 and 2018,

TDpt , is instrumented by the density of ash trees, Apt . In column (3), we add trans-

action controls, i.e., the number of bedrooms and washrooms interacted with year

fixed effects to control for valuations of house characteristics that are allowed to vary

over time in a flexible manner.

The OLS specification shows that the correlation between tree density and prop-

erty values is negative and quantitatively irrelevant (column 1). The IV specification

finds instead a positive and significant causal effect of urban forestry on property

prices. One additional percentage point in tree cover within a postcode increases

property values by 0.86% in our preferred specification (column 3). To help under-
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Table 3. The amenity value of trees—baseline specification.

Transaction price (log) (1) (2) (3)

Tree cover -0.049 1.009 0.866
(0.015) (0.310) (0.272)

Transaction controls No No Yes
Observations 374,295 374,295 374,286
F-statistic - 80.73 83.82

Notes: Standard errors are reported between parentheses and are clustered at the postcode × year level. Column (1)
reports OLS results and columns (2)-(3) report the estimates from the IV specification in which tree cover is
instrumented by the the density of city-managed ash trees. The unit of observation is a transaction, and the
dependent variable is the (log) transaction price. All specifications are weighted by the inverse of the number
of observations in a given postcode. All specifications include: (i) postcode fixed effects; (ii) ward fixed effects
interacted with year fixed effects; (iii) a measure of city-managed tree density interacted with year fixed effects; (iv)
latitude and longitude interacted with year fixed effects; and (v) area shares from the land classification in 2007
(tree canopy, grass/shrub, bare earth, water, buildings, roads, other paved surfaces and agriculture) interacted with
year fixed effects. The set of transaction controls include the number of washrooms and bedrooms interacted with
year fixed effects.

stand the magnitude of these estimates, consider the following thought experiment:

the average non-injected ash tree increases the tree canopy by about 35 square me-

ters; the average postcode covers about 8,000 square meters; thus, one additional

tree increases the area share of tree canopy by 0.45 percentage points. Using our

preferred estimate, this additional tree would cause a property price increase of

about 0.40%. Alternatively, postal codes that were most affected by the ecological

catastrophe had an initial density of (city-managed) ash trees around 0.005; the loss

in the area share of tree cover would amount to 0.005 × 13.78 ≈ 0.07 (column 2 of

Table 1) leading to a drop in housing prices around 0.07 × 0.866 ≈ 6%.

This average treatment effect masks significant heterogeneity. We shed some

light onto the heterogeneity of treatment effects across more or less deprived postal

codes, postal codes with more or less urban trees at baseline, and across property

characteristics (single-unit versus multi-unit buildings) in Appendix B. We find that

the tree premium is larger in more affluent neighborhoods. More strikingly, we find

that a marginal tree is only valued in neighborhoods with significant tree cover, in

line with the shape of the price gradient in urban forestry depicted in Panel (a) of

Figure 4. Demand for urban forests thus depends on many factors (see, for instance,

Zhu and Zhang, 2008), and one important driver is the pre-existing state of local

green infrastructure.
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3.2 Identification and robustness checks

One threat to identification is that the initial distribution of ash trees, partly re-

flecting urban developments in 1900–1930 and the associated distribution of elm

trees, correlates with secular neighborhood dynamics. We reduce concerns about

this identification threat by testing for the existence of pre-treatment differential

trends. Specifically, we consider the period 2002–2006 in which we do observe prop-

erty transactions, albeit with limited transaction controls, and estimate Equation (1)

on this sample of transactions displacing treatment and the transition of land cover

between 2007–2018 from 2013–2016 to 2004–2005. It is reassuring that Panel A of

Table 4 shows no differential trends before the treatment date: the OLS estimate

(column 1) is similar to that obtained on the baseline sample, but the IV estimate

(column 2) is small, negative, and non-significant.

We then provide a systematic sensitivity analysis around the baseline specifica-

tion in the remainder of Table 4. In Panel B, we construct the baseline exposure to

urban forestry and the baseline instrument as follows: TDpt = TDp,2007 for t ≤ T1 and

TDpt = TDp,2018 for t ≥ T2, Apt = Ap,2010 for t ≤ T1 and Apt = 0 for t ≥ T2. However,

we do not interpolate between T1 and T2 and rather exclude the years in between.

In short, this specification is equivalent to defining a pre-treatment period [2007, T1]
and a post-treatment period [T2, 2017]. Panel B shows that our main estimate varies

between 0.70 and 0.90, when the pre-treatment period changes from [2007, 2011]
to [2007, 2009] and the post-treatment period from [2014, 2017] to [2016, 2017]. In

Panel C, we consider a long difference setting, similar in essence to the previous

exercise, but rather collapse the data at the postcode level. The estimated equation

is:

Δ ln(Pp) = � + �ΔTDp + 
Xp + "p (2)

where ΔTDp is instrumented by Ap,2010, and controls (e.g., transaction characteristics,

land cover in 2007) are collapsed at the postcode level. The estimate varies between

0.70 and 1 when we change the pre-treatment period from [2007, 2011] to [2007, 2009]
(and the post-treatment period from [2014, 2017] to [2016, 2017]). In Panel D, we

consider minor alterations around our baseline specification: we construct land cover

and ash tree density with a 20m buffer in column (1), instead of 10m; we winsorize

non-zero values for ash tree density and all street tree density at 90% or 99%,

rather than at 95% in the baseline. Again, the exercise confirms the robustness of

our baseline estimations. In Panel E, we condition on time-varying dependence in

amenities (distance to green areas, ravines, schools, area share of sidewalk, length

of pedestrian paths), in topography (elevation, slope), and in neighborhood income
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at baseline. Lastly, in Panel F, we consider alternative clustering procedures: at

the postcode level in column (1); at the ward × year level in column (2); and at

the ward level in column (3). Even in the most demanding specification with about

50 clusters at the level of wards, our estimated effects remain significantly different

from 0 at the 10%-level.

4 The cooling effect of urban forestry

The previous section has shown that there is an amenity value to local urban forestry.

One possible component of this value derives from the cooling effect of the tree

canopy during heat waves. We explore this specific effect in two steps. First, we

look at local temperatures during summer and subsequently, we analyze energy

consumption.

Urban forestry and urban heat Urban forestry arguably reduces the urban

heat island effect (Oke, 1973; Roy et al., 2012). Our experiment provides a natural

setting to quantify such an effect, as we isolate exogenous variation in the evolution

of the tree canopy within postcodes over time. This design alleviates concerns that

households residing in green neighborhoods are inherently more environmentally

conscious and, consequently, utilize energy more judiciously, but also addresses the

alternate concern that wealthier households gravitate toward greener neighborhoods,

which could potentially result in higher energy consumption.

To investigate this relationship, we consider the following specification,

Tpt = � + �TDpt + 
tXp + �p + �t + "pt , (3)

where each observation is a postal code in a given year (see Panel A of Table 5),

Tpt is the average Land Surface Temperature within postcode p during July and

August of that year, and urban forestry, TDpt , is instrumented by the density of

ash trees, Apt . Controls include postcode fixed effects and: latitude and longitude;

the density of publicly maintained trees; and area shares from the land classification

in 2007, all interacted with year fixed effects. As shown in Table 5, urban forestry

significantly reduces urban heat during summer months: one additional percentage

point in tree cover within a postcode reduces temperature by about 0.05 degrees

(Celsius). The most affected postal codes have lost an area share of 0.07 in tree

cover to the Emerald Ash Borer infestation; as a result, the average temperature

during July and August is now 0.35 degrees (Celsius) higher.

We shed additional light on the gradual effect of the ecological catastrophe in
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postal codes with high density of city-managed ash trees in Appendix C.1, where we

see an increasingly negative effect from 2010 to 2018. This increase reflects higher

treatment compliance over time, i.e., ash trees are cut down in a gradual manner

as illustrated in Section 1.3, but also secular trends in summer temperatures due to

climate change. Global warming is indeed expected to increase temperatures across

neighborhoods in Toronto; the previous exercise sheds some light on the value of

trees in reducing urban heat island effects in the future.15

Urban forestry and energy savings Urban forestry reduces temperatures dur-

ing the warm summer months, which should affect energy consumption, e.g., through

less frequent recourse to air conditioning.

We investigate this energy saving effect in Panel B of Table 5 where we replicate

the exercise performed in Panel A of Table 5 with the electricity consumption during

July and August as the main dependent variable. One shortcoming is that we do not

observe consumption at the beginning of the treatment period, but for intermediate

and post-catastrophe years (2012–2020). We thus consider a stacked specification,

similar to that of Equation (3), but without postcode fixed-effects. Table 5 shows

that one additional percentage point in tree cover within a postcode reduces the

average consumption during the summer months by about 2.5% which corresponds

to CAD 5 per month.

Appendix C considers two alternative specifications. First, Appendix C.1 docu-

ments the gradual energy-consumption effect of the Emerald Ash Borer infestation

in postal codes with high density of city-managed ash trees and provides a placebo

experiment based on winter months. Second, we consider an alternative specification

exploiting short-term weather fluctuations interacted with solar exposure induced

by the positioning of trees and solar angles in Appendix C.3. Such an approach

also allows us to better characterize the (limited) sheltering effect of urban forestry

during winter months: trees play a role in reducing heat effects in the summer, but

can also provide some shelter from wind in the winter.

The quantitative role of energy savings How do these energy savings compare

with the hedonic value of urban trees? When smoothed over a period of 12 months,

one additional percentage point in tree cover reduces energy consumption by 0.4%

through its cooling effect, and by 0.1% through its wind-sheltering properties (see

Appendix C.4). Those cumulative effects would amount to CAD 1 per month. In

15Appendix A.4 provides additional visual illustrations of the relationship between local summer
temperatures and the local extent of the tree canopy—focusing on a heat wave in 2018. We study
non-linearities in the cooling and energy-saving effects of trees in Appendix B.2.
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comparison, the associated increase in the flow value of a property of 0.86% would

correspond to CAD 21 per month—a calculation based on the fact that the average

monthly rent for a two-bedroom apartment was around CAD 2,500 in 2018.

Could the expected rise in global temperatures and the exacerbation of urban

heat island effects account for the disparity between the estimated energy-saving

premium and the discounted hedonic value of urban trees? The latter, after all, is

intended to encompass all future discounted benefits of urban trees. Our back-of-the-

envelope calculations do not support such an interpretation. While global warming

is projected to increase the energy-saving premium, this is not enough to explain

the full extent of the hedonic value attributed to urban trees. The number of annual

hours with average temperatures surpassing 30 degrees Celsius is expected to double

between 2020 and 2050, transitioning from the equivalent of 10 to 20 days. Moreover,

there exists a non-linear relationship between temperature and energy consumption

during the summer months (see Appendix C.4). Even under an extreme scenario,

global warming would at most explain a doubling of the energy-saving premium by

2050. While this increase would be substantial, it remains one order of magnitude

too small to explain the hedonic value of urban trees.

The energy benefits derived from urban forests alone outweigh the maintenance

costs of urban forestry. The addition of a single tree within a postcode results in

a 0.45 percentage point increase in the area covered by the tree canopy and leads

to an annual energy consumption reduction of approximately CAD 12 × 1 × 0.45 ≈
5.40 per household. Given that there are roughly 20 households per postcode, the

total energy-saving benefit derived from a tree exceeds CAD 100. This is an order

of magnitude greater than the annual maintenance cost, which was estimated at

approximately CAD 4.20 according to the 2011 City of Toronto Parks and Forestry

budget proposal. While these calculations do not account for the opportunity cost of

land, including this factor would not alter the conclusion of a net benefit attributable

to urban trees, considering that the energy-saving effect of urban forestry pales in

comparison to its amenity value.

5 Concluding remarks

This paper assesses the value of urban trees. This is a challenging empirical exercise

because of (i) omitted variation affecting tree density and demand for neighborhoods

(e.g., neighborhood quality) and (ii) reverse causation (e.g., land prices affecting the

opportunity cost of maintaining urban forestry). To establish causality and present

robust quantitative estimates, we exploit large, persistent and quasi-experimental

variation stemming from the Emerald Ash Borer infestation in Toronto. We find
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that the hedonic value of urban forestry far outweighs the associated maintenance

costs, rendering it a highly profitable investment.

Existing research has shown that trees have a number of beneficial effects on

their environment which may contribute to this estimated amenity effect. For in-

stance, Nowak and Aevermann (2019) provide a valuation toolbox accounting for

the discounting of future benefits and possible replacement; Kardan et al. (2015)

highlight the positive effect of trees on mental health in a study that uses the 2007

canopy survey in Toronto; and a recent study by Jones and McDermott (2018b)

analyzes how the loss of ash trees leads to increased air pollution across American

cities.16 Less research has systematically explored the energy-saving potential of-

fered by the urban tree canopy. Leveraging novel data on energy consumption, our

study reveals that trees effectively lower local temperatures during heatwaves, re-

sulting in substantial energy savings. While this energy-saving aspect is significant

and expected to gain even greater importance in the future, particularly as temper-

atures and energy costs continue to rise, it is noteworthy that these direct monetary

benefits fall short of accounting for the full amenity value associated with urban

forestry. One plausible explanation for this discrepancy is that the substantial cool-

ing effect provided by urban forestry is not solely confined to energy consumption;

it also has a direct positive impact on the well-being of residents by creating cooler

living environments both indoors and outdoors. Additionally, previous research has

established that trees offer a variety of amenity effects, which are all capitalized

in house prices. Through an indirect analysis, we discover that these other facets

explain a significant portion of the “tree premium.”

While the qualitative understanding that urban forestry confers benefits to urban

residents is not surprising, our quantitative findings offer additional insights that are

both novel and striking. We demonstrate that substantial private benefits are al-

ready accrued from the cooling attributes of urban forestry, and the predicted change

in temperature over the coming decades will further exacerbate demand for green

infrastructure to provide shade and evapotranspiration. Moreover, urban residents

place a high value on urban forests that extends well beyond the realm of energy sav-

ings. This strong and apparent demand for urban forestry stands in stark contrast to

the observed public policies in place. In numerous North American cities, there is a

relatively modest, and in percentage terms, even decreasing inventory of urban trees,

as documented in prior studies (e.g., Nowak and Greenfield, 2012, 2018). Several

16We find a similar (moderate) effect for the concentration of small particles across neighbor-
hoods of Toronto during summer, as shown in Panel C of Table 5. We provide a detailed description
of the data in Appendix D, together with a discussion about the dynamics of such a pollution-
abatement effect and a placebo exercise focusing on the effect of trees during winter.
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explanations might account for this misalignment. It is possible that governments

have yet to fully internalize the costs associated with climate change or may fail

to fully recognize the perceived value of urban forestry. Alternatively, coordination

issues could be at play. We uncover that the valuation of urban forestry is nonlinear,

with the marginal effect only manifesting in areas with a substantial existing tree

cover. Given that cities or neighborhoods with limited green infrastructure often

correspond to economically disadvantaged areas, policy interventions targeting such

cities or regions could potentially address not only coordination challenges but also

generate significant redistributive effects.
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Table 4. The amenity value of trees—robustness checks.

Transaction price (log) (1) (2) (3)
Panel A: Placebo specification (2002-2006)

Tree cover -0.067 -0.197
(0.020) (0.388)

Observations 168,457 168,457
F-statistic - 48.26

Panel B: No inference
Tree cover 0.707 0.874 0.901

(0.198) (0.454) (0.315)
Sample S1 S2 S3
Observations 311,261 240,448 168,598
F-statistic 115.44 79.72 51.66

Panel C: Long difference
Tree cover 0.761 1.006 0.934

(0.333) (0.385) (0.310)
Sample S1 S2 S3
Observations 21,264 18,404 14,312
F-statistic 64.93 55.48 41.26

Panel D: Sensitivity
Tree cover 1.378 1.013 0.795

(0.418) (0.314) (0.298)
Exposure Buffer: 20m Winsorizing: 90% Winsorizing: 99%
Observations 370,556 374,286 374,286
F-statistic 30.33 65.12 48.07

Panel E: Additional controls
Tree cover 0.803 0.881 0.858

(0.265) (0.264) (0.275)
Controls Amenities Topography Income
Observations 374,286 364,737 374,286
F-statistic 86.79 90.74 81.84

Panel F: Clustering
Tree cover 0.866 0.866 0.866

(0.345) (0.290) (0.485)
Clustering Postcode Ward × year Ward
Observations 374,286 374,286 374,286
F-statistic 40.41 38.57 9.86

Notes: Standard errors are reported between parentheses and are clustered at the postcode × year level (except in
Panel F). All columns report the estimates from the IV specification in which tree cover is instrumented by the ash
tree density. In Panel B, D, E and F, the unit of observation is a transaction, the dependent variable is the (log)
transaction price, and the specifications include: (i) postcode fixed-effects; (ii) ward fixed effects interacted with
year fixed effects; (iii) a measure of street tree density interacted with year fixed effects; (iv) latitude and longitude
interacted with year fixed effects; (v) area shares from the land classification in 2007 (tree canopy, grass/shrub,
bare earth, water, buildings, roads, other paved surfaces and agriculture) interacted with year fixed effects; and (vi)
the number of washrooms and bedrooms interacted with year fixed effects (except in Panel A, mirroring Table 3).
All specifications are weighted by the inverse of the number of observations in a given postcode. In Panel A, the
sample consists of observations between 2002 and 2006 (excluded from our baseline sample), and the dependent
variable is constructed using a treatment date in 2004. In Panel B, we restrict the sample to 2007–2011/2014–2017
in column (1), 2007–2010/2015–2017 in column (2), 2007–2009/2016–2017 in column (3). In Panel C, we apply the
same sample restrictions and consider a specification in long difference in which all variables are collapsed at the
postcode level. In Panel D, we explore variations around the baseline specification: a buffer of 20m around postcodes
in column (1), a winsorizing at 90% for public and ash tree densities in column (2), a winsorizing at 99% for public
and ash tree densities in column (3). In Panel E, we condition on time-varying dependence in: amenities (distance
to green areas, ravines, schools, area share of sidewalk, length of pedestrian paths), topography (elevation, slope),
and neighborhood income at baseline. In Panel F, we explore variations around the baseline clustering procedure:
at the postcode level in column (1), at the ward × year level in column (2), at the ward level in column (3). There
are about 50 wards in Toronto.
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Table 5. The cooling effect of trees—temperature, energy consumption, and pollution.

Land Surface Temperature (LST) (1) (2)

Panel A: Temperature
Tree cover 0.195 -5.144

(0.049) (1.059)

Observations 702,138 702,138
F-statistic - 646.49

Electricity usage (1) (2)

Panel B: Electricity consumption
Tree cover 0.077 -2.483

(0.015) (0.516)

Observations 280,931 280,931
F-statistic - 217.64

Pollution (PM2.5) (1) (2)

Panel C: PM2.5 concentration
Tree cover -0.005 -0.120

(0.001) (0.015)

Observations 373,610 373,610
F-statistic - 548.50
Notes: Robust standard errors are reported between parentheses. The unit of observation is a postcode. Across
both panels, column (1) reports the OLS estimate while column (2) reports the estimates from an IV specification
where tree cover is instrumented by a measure of ash tree density. All specifications include: latitude and longitude;
the density of publicly maintained trees; and area shares from the land classification in 2007, all interacted with year
fixed effects. In Panel A, the dependent variable is the Land Surface Temperature (LST) computed as an average
during July/August, and we control for postcode fixed effects. In Panel B, the dependent variable is the (log)
electricity consumption in July/August for the median household within a postal code and for all years between
2012–2020, and we control for ward fixed effects. In Panel C, the dependent variable is (log) concentration of PM2.5
in July/August (in �g/m3), and we control for postcode fixed effects (see Appendix D).
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Isabel F. Trigoe, “Google Earth Engine open-source code for Land Surface
Temperature estimation from the Landsat series.,” Remote Sensing, 2020, 12,
1471.

Estrada, Francisco, W. J. Wouter Botzen, and Richard S. J. Tol, “A global
economic assessment of city policies to reduce climate change impacts,” Nature
Climate Change, 2017, 7, 403–406.

Franco, Sofia F and Jacob L Macdonald, “Measurement and valuation of ur-
ban greenness: Remote sensing and hedonic applications to Lisbon, Portugal,”
Regional Science and Urban Economics, 2018, 72, 156–180.

Gatti, Luciana, Camilla Cunha, and et al. Machado Guilherme, “Increased
Amazon carbon emissions mainly from decline in law enforcement,” Nature, 2023,
621.

Hajat, Shakoor and Tom Kosatky, “Heat-related mortality: a review and ex-
ploration of heterogeneity,” Journal of Epidemiology & Community Health, 2010,
64 (9), 753–760.

Hemery, Gabriel E., Peter S. Savill, and Simon N. Pryor, “Applications of
the crown diameter-stem diameter relationship for different species of broadleaved
trees,” Forest Ecology and Management, 2005, 215 (1), 285–294.

Herms, Daniel A. and Deborah G. McCullough, “Emerald ash borer invasion
of North America: history, biology, ecology, impacts, and management,” Annual
Review of Entomology, 2014, 59, 13–30.

Hsu, Angel, Glenn Sheriff, Tirthankar Chakraborty, and Diego Manya,
“Disproportionate exposure to urban heat island intensity across major US cities,”
Nature communications, 2021, 12 (1), 2721.

30



Hubau, Wannes, Simon Lewis, and et al. Zemagho Lise, “A comparative
analysis of urban forests for storm-water management,” Nature, 2020, 579.

Iungman, Tamara, Marta Cirach, Federica Marando, Evelise Pereira Bar-
boza, Sasha Khomenko, Pierre Masselot, Marcos Quijal-Zamorano, Na-
talie Mueller, Antonio Gasparrini, JosÃ© Urquiza, Mehdi Heris, Mee-
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A Data appendix

This section complements Section 1 with: (i) a description of vegetation indices

constructed from satellite imagery; (ii) an illustration of the dynamics of urban

forestry over time using Google Street View; (iii) a description of transactions across

neighborhoods of Toronto; and (iv) additional details about the construction of the

energy data.

A.1 Satellite imagery

Our baseline specification relies on the land classification provided by the Urban

Forestry services of the City of Toronto and based upon high-resolution satellite

imagery and LiDAR information (City of Toronto, 2019). We however complement

and validate these measures of land cover with low-resolution satellite imagery (Sen-

tinel 2, 2016–2020, 10m resolution; Landsat L8, 2013–2020, 30m resolution; Landsat

L7, 2007–2012, 30m resolution). One important benefit of using coarser, but more

frequent, data is to shed light on the dynamics of tree cover over time (see Figure 3

in Section 1 for instance).

Figure A1. Satellite imagery and vegetation/built-up indices (2018).

(a) NDVI (b) NDBI

Notes: This Figure displays vegetation against built-up indices, as constructed from a cloud-free mosaic of Sentinel
imagery (S2, 10m resolution) covering May–September 2018 (North-East of Toronto). The Normalized Difference
Vegetation Index (NDVI) is obtained by combining the reflection in the near-infrared spectrum (NIR) with the
reflection in the red range of the spectrum (RED). The Normalized Difference Built-up Index (NDBI) is obtained
by combining the reflection in the near-infrared spectrum (NIR) with the reflection in the short-wave infrared range
of the spectrum (SWIR).

To construct vegetation, built-up and water indices, we proceed as follows for

each collection of satellite imagery: (i) we isolate a summer period in any given
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year from June 1st to September 30th (to best capture vegetation); (ii) we construct

a cloud-free mosaic of images taken during this period; (iii) we construct a set

of indices, most notably, the Normalized Difference Vegetation Index (NDVI)—

obtained by combining the reflection in the near-infrared spectrum (NIR) with the

reflection in the red range of the spectrum (RED)—the Leaf Area Index (LAI),

and the Normalized Difference Built-up Index (NDBI)—obtained by combining the

reflection in the near-infrared spectrum (NIR) with the reflection in the short-wave

infrared range of the spectrum (SWIR); and (iv) we construct the average indices

within each postcode and every year covered by the collection. We illustrate the

variation captured by NDVI and NDBI in Figure A1 (based on Sentinel S2 in 2018).

Figure A2. Validation of the measure of tree cover.

(a) NDVI (Landsat, 2007) (b) NDVI (Landsat, 2018) (c) NDVI (Sentinel, 2018)

(d) LAI (Landsat, 2007) (e) LAI (Landsat, 2018) (f) LAI (Sentinel, 2018)

Notes: This Figure correlates the measure of tree cover produced by Urban Forestry as part of an Urban Tree
Canopy (UTC) Assessment in 2007 and 2018 with standard vegetation indices extracted from recent satellite imagery.
Panels (a), (b) and (c) correlate the area share of tree canopy in 2007 and 2018 with the Normalized Difference
Vegetation Index (NDVI) across postcodes. The NDVI is obtained by combining the reflection in the near-infrared
spectrum (NIR) with the reflection in the red range of the spectrum (RED). Panels (d), (e) and (f) correlate the
share of tree coverage in 2007 and 2018 with the Leaf Area Index (LAI) across postcodes. The green area displays
the distribution of the x-axis variable for each panel. Panels (a) and (d) rely on a cloud-free mosaic of Landsat
imagery (L7, 30m resolution) covering May–September 2007. Panels (b) and (e) rely on a cloud-free mosaic of
Landsat imagery (L8, 30m resolution) covering May–September 2018. Panels (c) and (f) rely on a cloud-free mosaic
of Sentinel imagery (S2, 10m resolution) covering May–September 2018.

We use these indices to validate the land classification data and shed some light

onto the dynamics of urban forestry over our period of interest. In Figure A2, we

correlate the measure of tree cover produced by Urban Forestry as part of an Urban

Tree Canopy (UTC) Assessment in 2007 and in 2018 with our vegetation indices, as
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extracted from recent satellite imagery (Landsat L7, Landsat L8, and Sentinel S2).

We see that there is a very strong, positive, quasi-linear relationship between the

area share covered by the tree canopy and the vegetation indices based on average

reflectance across the visible, infra-red, near infra-red spectrum. These relationships

are behind our findings of Section 1.3 where we show that a loss of 0.04-0.05 in

the share of tree cover is accompanied by a decrease in the Normalized Difference

Vegetation Index of 0.021 and in the Leaf Area Index of 0.0035. Figure A2 indeed

shows that an additional 0.10 in tree cover corresponds to a 0.04 higher NDVI and

a 0.005 higher LAI; a loss of 0.04-0.05 in tree canopy would thus be expected to

decrease NDVI by 0.02 and LAI by 0.0025.

A.2 The dynamics of urban forestry over time

Google Street Views In Section 1.3 and Figure 3, we shed some light onto the

swift decrease in vegetation cover experienced by neighborhoods with a high density

of city-managed ash trees. We provide an illustration of the actual process of removal

and replacement of city-managed trees in Figure A3. More specifically, we focus on

the neighborhood depicted in Figure 2, James Park Square in Scarborough (North-

East of Toronto), which experienced a massive loss in tree cover between 2007 and

2018 due to its row of city-managed ash trees.

Figure A3 presents successive street views of this neighborhood in 2007, 2014,

and 2020. We see that the neighborhood is a typical leafy suburb in 2007, with

individual homes, private gardens, and rows of city-managed (ash) trees. In 2014,

the mature ash trees are already cut down and replaced by young sprouts, leading to

a significant change in the visual appeal of the neighborhood and in shade coverage.

In 2020, the substitute sprouts have grown into tree saplings, still short of providing

any significant tree cover, shade or sheltering against wind. As argued in Section 1.3,

the felling of mature trees induces a loss in tree canopy that cannot be mitigated

within a span of 25-30 years.

The swift felling of ash trees and the distribution of injected trees In

Figure 3 (Section 1.3), we show that most of the vegetation loss materializes between

2012–2016 in neighborhoods with high incidence of city-managed ash trees. We shed

additional light on the swift felling of ash trees in Figure A4, where we exploit a

specific dataset—distinct from the general register of city-managed trees—in which

we do observe the planned removals of city-managed ash trees and the injections of

TreeAzin between 2010 and 2014 (both ordered by the City of Toronto). We find

that removals steadily increase between 2010 and the autumn of 2013, when the
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Figure A3. The dynamics of urban forestry over time—an illustration using Google Street View.

(a) 2007

(b) 2014

(c) 2020

Notes: This Figure shows three snapshots of the neighborhood depicted in Figure 2 (James Park Square, Scarbor-
ough, North-East of Toronto)—with a relatively high density of ash trees at baseline. The images were extracted in
2007 (panel a, before the infestation), 2014 (panel b, after the cut-downs), and 2020 (panel c, with replanted tree
saplings) from Google Maps.

monthly incidence of removals reaches about 1,000 ash trees. By contrast, TreeAzin

injections are entirely concentrated in the months of June, July and August every

year—when water and nutrients are most actively traveling upward through the
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Figure A4. Removals and TreeAzin injections over time.

Notes: This Figure shows the evolution of tree removals and TreeAzin injections between 2010 and 2014. The data
source is the register of ash trees—a specific sub-module distinct from the general register of city-managed trees
that we use in our baseline analysis (see Table 1 for instance).

bark.

Analyzing the decision to save or remove a tree is complicated: we have limited

evidence nor insight about the decision process or the constraints hinging on the

Parks and Forestry department of the City of Toronto. We “quantify” the role of

tree characteristics, the way they are planted, and their neighborhood in a variance-

decomposition exercise where we regress removals/injections on: dummies for the

exact tree species (e.g., red ash) and deciles of trunk diameters; dummies for the

way they are planted (e.g, with pavers around the tree or as a container tree); and

dummies for their ward. We find that tree characteristics explain 13% of the vari-

ance in whether the tree will be injected or removed; adding the planting structure

explains 18%; and adding neighborhood fixed-effects explains 33%. In summary,

geography and the age/species of the tree are the main predictors as to whether the

tree will be saved or removed.

A.3 Transactions across neighborhoods

The transaction data used in Section 3 and described in Section 1.2 cover the whole

City of Toronto from 2007 to 2017. Note that we also have transaction data from

2002 to 2006—used in a robustness check—, but without detailed dwelling charac-

teristics.
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Figure A5. Transactions and their average price across the City of Toronto.

(a) Average transaction price

(b) Number of transactions

Notes: Panel (a) shows the average transaction price for all transactions between 2007 and 2017 in 1,000 CAD (from
green to yellow to pink and then white, as standard in an elevation scale). One can see that the stretch between
Yorkville and North York, Chestnut Hills (West of Toronto), and a few coastal neighborhoods are the neighborhoods
with the highest transaction prices. Panel (b) displays the geography of property transactions between 2007 and
2017 across the City of Toronto. Each color class represents a bin of density (from white to pink to yellow and then
green, as an inverted elevation scale). Note that the density is obtained through a kernel density procedure such
that the scale does not have an easily-interpretable unit.

We illustrate the geography of the housing market in Figure A5, where we display

the average transaction price for all transactions between 2007 and 2017 in panel (a)

and the density of transactions in panel (b). One can see that a few neighborhoods

are highly demanded, most notably the area between Bloor-Yorkville and North

York. This area is quite green, traversed by ravines, as shown in Figure 1. The
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correlation between transaction prices and the density of city-managed ash trees is

however unclear at the neighborhood level: the neighborhoods of Mount Pleasant,

North York, Scarborough (East), and Etobicoke are the ones with the highest den-

sity of ash trees, but while the former two are quite demanded, Etobicoke is less

demanded and Scarborough is considered a relatively deprived area (compared to

the rest of the City of Toronto).

Figure A6. The cooling effect of urban forestry—an illustration during the heatwave in 2018.

(a) NDVI (b) Land Surface Temperature

Notes: This Figure exploits Landsat 8 satellite imagery in July and August 2018. The left panel shows the Normalized
Difference Vegetation Index (NDVI) where green colors indicate a higher vegetation cover. The right panel shows
the Land Surface Temperature (LST) where red colors indicate higher temperatures.

A.4 Tree canopy and temperature

In Section 4, we discuss the cooling effect of the tree canopy during heatwaves.

Figure A6 further illustrates the correlation between urban temperature and ur-

ban forestry. We construct an average mosaic of Landsat 8 satellite imagery in

July and August 2018 and consider two indices based on the relative reflectance of

different bands: the Normalized Difference Vegetation Index (NDVI) capturing veg-

etation cover; and the Land Surface Temperature (LST) which we also calculate at a

30-meter spatial resolution.17 The left panel of Figure A6 displays the average Nor-

malized Difference Vegetation Index over the period, and the right panel shows the

average Land Surface Temperature across two adjacent neighborhoods with signifi-

cant differences in tree canopy coverage (South Parkdale, South-West of Toronto).

17As mentioned in section A, the two measures share some small, mechanical correlation because
the LST calculations employ a fractional vegetation measure that is based on the ratio of the
maximum and minimum values of the NDVI to correct the temperature measure derived from the
Thermal Infrared (TIRS) band (see Ermida et al., 2020; Li et al., 2023, for more details).
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We observe a sharp difference between the West and the East of Dufferin St: the

tree coverage in the West of Dufferin St markedly alleviates the rise in temperature

during this heat wave episode.

Figure A7. The cooling effect of urban forestry—a map of Toronto during the heatwave in 2018.

Notes: This Figure displays the average Land Surface Temperature (LST) across the City of Toronto during July
and August 2018.

We shed additional light on the urban heat island effect and the role of urban

forestry in Figure A7, where we display the Land Surface Temperature (LST) for

the months of July and August 2018 across the City of Toronto and its immediate

hinterlands. There are two salient observations. First, there is a very significant

temperature differential (of the order of magnitude of 5 degrees) between the city

and its hinterlands. This is within the interval of urban island effects estimated

in Manoli et al. (2019) across many cities of the developed and developing World.

Second, there is some variation within neighborhoods of the City of Toronto: for

instance, one can distinctly see the temperature gradient between the numerous

ravines, forming a large ravine system and hosting a dense urban forest, and the

impervious areas surrounding those ravines.
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A.5 Energy consumption

In the raw data, energy consumption is reported in kilowatt hours (kWh) adjusted

for line losses over the billing period. The days of service in a billing period range

between 1 and 2 months (see Figure A8) and we know the start and end date of

each billing period which varies across households. To calculate the statistics about

energy consumption in postcode p, month m and year t, we construct a daily panel

of each household i’s average daily energy consumption and estimate:

eipmt = �i + Epmt + �ipmt

where the fixed effects Epmt capture the average daily energy consumption in postcode

p for a given month m of year t. To derive a measure epmt of the average energy

consumption per month and year, we multiply the average daily energy consumption

eipmt by the number of days in the respective month m. One nice feature of our

electricity data is that we can condition the estimation on energy meter fixed effects,

�i, which absorb all time-invariant house and occupant characteristics. The latter

control, for example, for the energy efficiency of the house.

Figure A8. Distribution of the days of service intervals across billing periods.

Notes: This Figure represents the distribution of the days of service intervals across billing periods and is based on
residential energy meters between 2011 and 2021.

There are important seasonal patterns in energy consumption which we illustrate

in Figure A9. Electricity consumption is high in the summer months, due to the

use of air conditioning. Between November–April, electricity consumption is a mix
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of light and electrical heating, even though natural gas is the most common source

of heating fuel. Consequently, we would expect trees to have more pronounced

electricity consumption effects in the summer. Natural gas is used for heating during

these winter months and there is indeed a significantly higher usage of natural gas

in these months with a spike in January and February, the coldest months.

Figure A9. Electricity and gas consumption over time.

(a) Electricity (b) Natural gas

Notes: The left panel of the graph shows the adjusted monthly electricity consumption measured in kWh across
postcodes in Toronto. The right panel shows the average monthly consumption of natural gas measured in cubic
meters across postcodes in Toronto. Gray shaded areas indicate winter months, i.e., November–April.
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B Neighborhood segregation and the heterogeneous value of trees

This section sheds some light onto the unequal distribution of urban forestry and

the possibly heterogeneous value of urban trees.

Figure B1. Deprivation and density of the tree canopy.

Notes: This Figure represents the relationship between the share of low-income households at the neighborhood
level and our measure of tree cover at the postcode level. We group transactions by bins of tree cover: the dots
represent the average share of low-income households within each bin. The green area represents the distribution of
the x-axis variable across all panels. The lines are locally weighted regression on all observations.

B.1 The unequal distribution of urban forestry

The distribution of urban forestry is unequal across space, as documented in Sec-

tion 1. The prevalence of trees interacts with neighborhood characteristics in a

systematic manner. We illustrate the inequalities in access to urban trees in Fig-

ure B1 where we correlate the density of the local tree canopy with a deprivation

measure, i.e., the share of low-income households. We find that the average share

of low-income households is around 20% in neighborhoods without any tree versus

12% in the leafiest postal codes.

B.2 The heterogeneous value of (the marginal) trees

The unequal distribution of urban forestry could illustrate the heterogeneous value of

(the marginal) trees: trees might be highly valued in richer, less densely-populated

neighborhoods with larger properties. In such a context, they might have higher

aesthetic value (Benson et al., 1998; Price, 2003; Todorova et al., 2004) and better

complement the “consumption of the public space” by residents.
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Table B1. The amenity value of trees—heterogeneous treatment effects.

Transaction price (log) (1) (2) (3)

Tree cover 1.047 -0.109 0.867
(0.306) (0.456) (0.305)

Tree cover × Deprived -0.420
(0.346)

Tree cover × Green 1.015
(0.510)

Tree cover × House -0.001
(0.088)

Transaction controls Yes Yes Yes
Observations 374,286 374,286 374,286
F-statistic 42.98 21.58 41.38
Notes: Standard errors are reported between parentheses and are clustered at the postcode × year level. All
specifications report the estimates from IV specifications in which tree cover and its interaction with different
variables are instrumented by the the density of city-managed ash trees and the interacted instrument. The unit of
observation is a transaction, and the dependent variable is the (log) transaction price. All specifications are weighted
by the inverse of the number of observations in a given postcode and include the following controls: (i) postcode
fixed effects; (ii) ward fixed effects interacted with year fixed effects; (iii) a measure of city-managed tree density
interacted with year fixed effects; (iv) latitude and longitude interacted with year fixed effects; (v) area shares from
the land classification in 2007 (tree canopy, grass/shrub, bare earth, water, buildings, roads, other paved surfaces
and agriculture) interacted with year fixed effects; and the number of washrooms and bedrooms interacted with
year fixed effects. Deprived is a dummy equal to 1 if the share of low-income household is above 20% within the
neighborhood. Green is a dummy equal to 1 if the area share of trees is above median (across postal codes) in 2007.
House is a dummy equal to 1 if the transaction is labeled as “Low Density Residential”, i.e., not within multi-unit
buildings.

We evaluate the heterogeneous treatment effects of trees on transaction prices

in Table B1 where we interact our treatment with a measure of deprivation—a

dummy equal to 1 if the share of low-income household is above 20% within the

neighborhood—, a measure of greenness—a dummy equal to 1 if the area share of

trees is above median (across postal codes) in 2007—and a dummy equal to 1 if the

transaction is not within multi-unit buildings. We find that the treatment effect is

larger in richer areas: one additional percentage point in tree cover within a postcode

increases property prices by 1.05% in non-deprived neighborhoods versus 0.62% in

deprived neighborhoods (column 1). The treatment effect is entirely explained by

postal codes that were originally quite green (column 2). Finally, there is no premium

associated with the type of transactions: multi-unit buildings command the same

premium as individual houses in leafy suburbs (column 3).

We further study the non-linear effects of the tree canopy on temperature and

electricity consumption during July and August in Table B2. The table reports
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Table B2. The non-linear value of trees.

Land Surface Temperature Electricity consumption (log)

Tree cover -7.469 -3.798
(3.390) (0.649)

Tree cover × Initial 1.254 0.892
(1.366) (0.119)

Observations 702,138 280,931
F-statistic 59.47 101.25
Notes: Standard errors are reported between parentheses and are clustered at the postcode × year level. All speci-
fications report the estimates from IV specifications in which tree cover and its interaction with the (standardized)
area share of tree cover in 2007 are instrumented by the the density of city-managed ash trees and the interacted in-
strument. The unit of observation is a postal code in a given year. In column (1), the dependent variable is the Land
Surface Temperature (LST) computed as an average during July/August. In column (2), the dependent variable is
the (log) electricity consumption in July/August for the median household within a postal code and for all years
between 2012–2020. All specifications are weighted by the inverse of the number of observations in a given postcode
and include the following controls: (i) postcode fixed effects; (ii) ward fixed effects interacted with year fixed effects;
(iii) a measure of city-managed tree density interacted with year fixed effects; (iv) latitude and longitude interacted
with year fixed effects; (v) area shares from the land classification in 2007 (tree canopy, grass/shrub, bare earth,
water, buildings, roads, other paved surfaces and agriculture) interacted with year fixed effects. In column (2), we
omit postcode fixed effects.

the estimates from a two-stage specification in which tree cover and its interaction

with the (standardized) area share of tree cover in 2007 are instrumented by the

density of city-managed ash trees and the interacted instrument. In other words,

the coefficient in front of the interaction can be understood as the impact of an

additional standard deviation in initial tree cover on the treatment effect.

We find moderate non-linearities in the cooling effect of the marginal tree. On

average, one additional percentage point in tree cover within a postcode reduces

temperature by about 0.05 degrees (see Panel A of Table 5); a standard deviation in

initial tree cover would reduce this effect by 0.01 degrees (see column 1 of Table B2).

These non-linearities translate into moderate non-linearities in the energy-saving

effect of the marginal tree: one additional percentage point in tree cover within

a postcode reduces electricity consumption by 2.5% (see Panel B of Table 5); a

standard deviation in initial tree cover would reduce this effect by 0.9% degrees (see

column 2 of Table B2). Interestingly, the direction of this treatment heterogeneity

goes opposite to that found for the hedonic value of urban forestry in Table B1.
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C Tree canopy and energy consumption

This section provides complements to Section 4. More specifically, we highlight the

time-varying effect of the ecological catastrophe on neighborhoods with high density

of city-managed ash trees, and we analyze this effect for Land Surface Temperature

between 2006–2018 and electricity consumption (during summer) between 2012–

2020. We also provide a “placebo” test analyzing the relationship between urban

forestry and electricity consumption during winter. We leverage episodes of high

temperatures (resp. wind chill) to estimate the energy-consumption effect of urban

forestry as a function of the solar-shading potential (resp. wind-sheltering potential)

of the local urban forestry. Lastly, we provide details behind our decomposition

exercise (see “The quantitative role of energy savings” in Section 4).

Figure C1. The ecological catastrophe and the cooling effects of tree canopy over time.

Notes: This Figure shows the estimated correlation between tree density and Land Surface Temperature (LST)
for the months of July and August for each year between 2006 and 2018 (see Equation 4). More specifically, we
regress the Land Surface Temperature (for a group of two consecutive years, �) across postcodes on the measure of
tree cover in 2018, instrumented by the number of street ash trees per area within a 10m buffer (as measured in
2010). We control for a measure of street tree density, ward fixed effects, latitude, longitude, and dummies for the
land classification in 2007 (tree canopy, grass/shrub, bare earth, water, buildings, roads, other paved surfaces and
agriculture). The reported coefficients are the ones in front of the measure of tree density, and vertical lines show
95 percent confidence intervals.

C.1 Temperature and energy consumption effects over time

Temperature effects over time We consider the following specification to isolate

the time-varying effects of the Emerald Ash Borer infestation (through its impact
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on the tree canopy),

T �
p = � + ��TDp,2018 + 
Xp + �w + "p, (4)

where each observation is a postal code, T �
p is the average Land Surface Temperature

within postcode p during July and August of a year � , and urban forestry in 2018,

TDp,2018, is instrumented by the density of ash trees at baseline, Ap,2010. Controls

include ward fixed effects �w , latitude and longitude, the density of publicly main-

tained trees, and area shares from the land classification in 2007. We estimate ��
separately for each year � and report the estimates with their confidence intervals

in Figure C1.

Intuitively, the estimates presented in Figure C1 are the causal effects of the

catastrophe in each year, mitigated through the evolution of the tree canopy, i.e.,

the exercise can be loosely interpreted as an event-study design. Figure C1 shows

that the impact of the infestation starts to materialize after 2010. In 2018, a 10

percentage point additional tree cover within a postcode reduces temperature by

about 0.8 degrees (Celsius). In theory, the gradient in the treatment effect could

reflect two forces: (i) the tree felling is gradually implemented across the City of

Toronto—as illustrated in Section 1.3—thus inducing higher treatment compliance

over time; and (ii) there are secular trends in summer temperatures due to climate

change.

Energy consumption over time and across seasons We replicate the exercise

of Figure C1 and Equation (4) for average energy consumption across the summer

months (July and August) in panel (a) of Figure C2. Note that, in contrast with

Figure C1, we do not observe electricity consumption before the start of the ecolog-

ical catastrophe such that all years should be considered “treated”, at least to some

extent. We find a small gradient in energy consumption from 2012–2014 and a sub-

sequent stabilization of the effect. In panel (b) of Figure C2, we look at electricity

consumption as the dependent variable of Equation (4), but we calculate it for the

winter months (December to February). We consider this specification as a placebo

test: the evolution of the tree canopy—as triggered by the ecological catastrophe—

should matter most during summer. Panel (b) of Figure C2 indeed finds a more

limited correlation between urban forestry and electricity saving during winter.
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Figure C2. The ecological catastrophe and its energy consumption effects over time.

(a) July-August (2012–2020) (b) December-February (2012–2020)

Notes: Panel (a) shows the estimated correlation between tree density and electricity consumption for the months
of July and August for each year between 2012 and 2020 (see Equation 4). More specifically, we regress the (log)
electricity consumption across postcodes on the measure of tree cover in 2018, instrumented by the number of street
ash trees per area within a 10m buffer (as measured in 2010). We control for a measure of street tree density,
ward fixed effects, latitude, longitude, and dummies for the land classification in 2007 (tree canopy, grass/shrub,
bare earth, water, buildings, roads, other paved surfaces and agriculture). The reported coefficients are the ones in
front of the measure of tree density, and vertical lines show 95 percent confidence intervals. Panel (b) replicates the
exercise for winter months (December to February).

C.2 Construction of the shade and shelter measures

In this section, we focus on the construction of two measures, the solar-shading

potential and the wind-sheltering potential, which underlie our alternative empirical

strategy based on the orientation of trees around homes.

For the shading potential of the neighboring tree canopy, we compute the measure

Siw for property i and week w of a given year as,

Siw =
∫ Sunw� × Sℎadeiw�d�

∫ Sunw�d�
,

where � is a time of the day (in practice, we divide the day into discrete intervals

of 15 minutes), Sunw� is the potential sun exposure at time � in week w , and

Sℎadeiw� is a measure of shade induced by the presence of trees around property i at

time � in week w. The variable Sℎadeiw� is constructed by reconstituting the week-

specific solar angle aw(� ) and sun direction �w(� ) as a function of time � . At time

� , we select all trees in direction �w(� ) originating from the centroid of a property.

We then calculate the share of the property which is in the shade of these trees,

Sℎadeiw� , exploiting the distance to the trees and the solar angle. This computation

requires several assumptions regarding the height of a tree, the diameter of its crown,

and the height of a property. We provide additional details about the computation
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Figure C3. Shading effect of trees as a function of the time of the day and week.

Notes: This Figure schematically represents the parameters used to derive the measure Sℎadeiw� , which depends on
a week of the year w, a time of the day � (a discrete interval of 15 minutes), and the surroundings of property i. We
calculate the shade, Sℎadeiw� , as follows. At a given time of the day � in week w, we identify the direction of the
sun (in degrees, e.g., North would be 90 degrees) and the associated sun angle a. For instance, the sun angle would
be generally lower during winter, and temporarily lower early in the day (when the direction is around 0 degrees)
or late in the afternoon (when the direction is around 180 degrees). We then calculate the percentage of the house
front covered in shade by the nearest tree (distance d) in the identified direction. This simplification allows us to
ignore the trees behind this closest tree and to abstain from calibrating an imperfect shading provided by trees.
For this exercise, we consider a house front to be between 2 and 7 meters, and we assume that trees are ℎt = 20
meters high with a crown radius of r = 5 meters—both parameters being probably on the higher end of the tree size
distribution. As apparent from the Figure, the percentage of the house front covered in shade is a simple function
of the sun angle a, the height of the house, the distance to the tree, and the tree dimensions.

in Figure C3. Note that we aggregate the property-specific measure, Siw , into an

average postcode measure, Spw .

Figure C4. Sheltering effect of trees.

Notes: This Figure schematically represents the parameters used in order to derive the measure Tree�i used to
construct the sheltering effect of trees. We combine the surroundings of property i with the direction of wind � as
follows: Tree�i is a dummy equal to 1 if there is a tree in direction � and within 20 meters of the property.
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To capture the sheltering potential of trees in the vicinity of property i in week

w of a given year, we compute

Wiw =
360
∑
�=0

w�w(1 − Tree�i)p�t ,

where: w�w is the Wind Chill Equivalent Temperature (WCET) used by Environ-

ment Canada, accounting for the average wind speed from direction � (Celsius de-

grees); Tree�i is a dummy equal to 1 if there is a tree in direction � and within

20 meters of the property; and p�t is the probability that the wind originated from

direction � in week w. We also compute a counterfactual measure for the Wind

Chill Equivalent Temperature (WCET), ignoring the neighboring urban forestry:

W c
iw = ∑

�
w�wp�w

In other words, any difference between Wiw and W c
iw has to relate to the distribution

of urban forestry. We illustrate the simple intuition behind the construction of

measure Wiw in Figure C4. We finally aggregate the property-specific measures,

(Wiw ,W c
iw), into average postcode measures, (Wpw ,W c

pw).

C.3 Shade, shelter, and energy consumption

Empirical strategy To estimate the (local) cooling effect of urban forestry, we

rely on a different empirical specification from that of the baseline strategy and

rather exploit short-run fluctuations in weather conditions. We run a simple difference-

in-differences specification at the postcode level for all weeks w in year t between

January 2011 and December 2015. Letting p denote a postcode, w a week and t a

particular year, we estimate the following equation:

ln(Epwt) = � + �2Spw × Tempt + �1Spw + �0Tempt + �p + �w + �t + "pwt , (5)

where Epwt is a measure of energy consumption in a postcode/date, the measure

Spw captures the shade induced by surrounding trees in week w, thus depending on

seasonal solar angles, and the measure Tempt is a dummy equal to 1 during episodes

of exceptionally high temperatures (within the top decile between May and Septem-

ber). The identification of the parameter �2 reflects excess energy savings during

extreme weather episodes in properties with higher solar-shading potential. The set

of fixed effects �w and �t capture seasonality and trends in energy consumption; these

fixed effects can also be interacted to clean for average consumption within a given
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week and isolate the (lower) excess consumption for properties surrounded by trees.

We run a similar regression during low-temperature episodes in order to estimate

the wind-sheltering effect of urban forestry.18 Letting p denote a postcode, w the

week, and t the year, we estimate the following equation:

ln(Epwt) = a + bWpwt + cW c
pwt + �p + �w + �t + "pwt , (6)

where the measures Wpt and W c
pt are measures of wind chill—Wpt accounting for

the presence of surrounding trees and prevailing wind directions at that date. The

identification of parameter b reflects excess energy savings during extreme (cold)

weather episodes in properties with higher wind-sheltering potential. As before, �w
and �t are week and year fixed effects that may also be interacted.

Figure C5. Excess energy consumption in extreme weather episodes and the relative positioning
of trees.

(a) Heat waves (b) Wind chill

Notes: This Figure represents the conditional correlations between energy consumption and the presence of trees
in different directions from the average property within a postal code. Panel (a) reports the correlations between
energy consumption and a dummy for heat waves interacted with the average number of trees within 10 meters for
all houses of a given postal code in given directions (discretized between 0 and 360 degrees, with 30-degree intervals).
Panel (b) reports the correlations between energy consumption and a dummy equal to 1 if the wind chill equivalent
temperature is lower than 0 Celsius degrees during a given week interacted with the average number of trees in a
certain direction across all houses of the postal code (East, North, West, South, every 30 degrees).

Shade and energy consumption We now quantify the energy-saving effect of

trees. For illustrative purposes, we will use figures to show our main findings, and we

leave the underlying regression models to Tables C1 and C2. Panel (a) of Figure A9

describes the relationship between excess energy consumption during heat waves and

18Since 70 percent of energy used in the residential sector comes from oil or gas (Mohareb and
Mohareb, 2014), we expect a stronger effect of wind-sheltering on gas consumption. However, some
heating is electric and we still expect to find some effect.
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the relative positioning of trees. We estimate the conditional correlation between

excess energy consumption and surrounding trees as follows. We regress the post-

code energy consumption on a dummy for heat waves, the average number of trees

within 10 meters for all houses of a given postal code in a certain direction and their

interaction, while controlling for time-fixed effects and postcode fixed-effects. Fig-

ure A9 reports the energy premium guaranteed by the presence of trees during heat

waves (the interaction term), conditional on a given direction (discretized between

0 and 360 degrees, with 30-degree intervals). As apparent, the energy premium as-

sociated with the presence of a tree is not negligible. The premium is significant

across all directions, but even more so in the East and South where shade is likely

to provide cooling. For instance, one additional tree for all houses of a given postal

code—within 10 meters of each house and oriented South—is associated with a 14%

decrease in energy consumption during heatwaves. One additional tree towards the

North-West is associated with a 8% decrease in energy consumption.

Table C1. Energy consumption and the cooling effect of trees.

Energy consumption (1) (2) (3)

Heat wave .1073 .0437 .0437
(.0137) (.0109) (.0109)

Heat wave × Shade -.2997 -.3154 -.3157
(.0518) (.0528) (.0528)

Observations 2,271,628 2,271,628 2,271,628
Fixed effects (postcode) No Yes Yes
Fixed effects (time) Year Week/year Week/year
Controls (historical temperature) No No Yes
Standard errors are reported between parentheses and are clustered at the date-level. The unit of observation is a
date × postcode.

Table C1 reports the estimates from Equation (5). We find that heat waves

increase energy consumption, but less so in neighborhoods with high average shading

potential across houses. More specifically, consumption increases by about 11% in

postal codes without trees and this premium reduces to 0.11 − 0.26 × 0.30 ≈ 3% for

neighborhoods within the highest percentile of shade potential (0.26).

Sheltering effect and energy consumption Panel (b) of Figure A9 sheds light

on the role of urban forestry during episodes of extreme cold. We regress the average

energy consumption within a postal code on a dummy equal to 1 if the wind chill

equivalent temperature is lower than 0 Celsius degrees during a given week, the
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average number of trees in a certain direction across all houses of the postal code

(East, North, West, South, every 30 degrees), and their interaction, while controlling

for time-fixed effects and postcode fixed-effects. The energy premium associated with

the presence of a tree is smaller than it is for extreme heat episodes: on average,

a tree in the path of the wind reduces energy consumption by 5% during weeks

of frosty episodes. The estimated effect is not consistently (significantly) different

from 0 across all directions: it is higher when winds originate from the South/East,

possibly because such winds create a phenomenon called “ lake-effect snow”.19 One

additional tree for all houses of a given postal code—within 10 meters of each house

and oriented South-East—is associated with a 8% decrease in energy consumption

during cold waves.

Table C2. Energy consumption and the sheltering effect of trees.

Energy consumption (1) (2) (3)

Wind chill (no shelter) -.0047 -.0039 -.0038
(.0004) (.0005) (.0005)

Wind chill (shelter) .0015 .0016 .0016
(.0003) (.0003) (.0003)

Observations 2,161,759 2,161,759 2,161,759
Fixed effects (postcode) No Yes Yes
Fixed effects (time) Year Week/year Week/year
Controls (historical temperature) No No Yes
Standard errors are reported between parentheses and are clustered at the date-level. The unit of observation is a
date × postcode. Wind chill is a measure of felt temperature accounting for wind speed (and shelter in the second
row).

Table C2 reports the estimates from Equation (6). We find that a decrease of

one degree (Celsius) during winter increases the weekly energy consumption by 0.4%

for neighborhoods without urban forestry. The presence of a “blocking tree” in the

path of the wind for all houses within the postal code reduces this effect to 0.22%.

These effects are markedly lower than the cooling effects of urban forestry during

summer, as discussed in the next section.

C.4 The quantitative role of energy savings

This section provides complements to the sub-section entitled “The quantitative role

of energy savings” in Section 4.

19Note that prevailing winds in Toronto blow from the West, sometimes from the South or
North, but more rarely from the East.
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Energy savings and the amenity value of urban forestry Panel B of Ta-

ble 5 shows that one percentage point in the area share of urban forestry reduces

the average electricity consumption within a postal code by about 2.5%. This ef-

fect is however confined to two months in July and August; and the tree-saving

effect is much lower during other times of the year. For instance, Figure C2 shows

that the effect is about six-seven times lower during winter. Based on these causal

estimates, we consider that one additional percentage point in tree cover reduces

energy consumption by 0.4% through its cooling effect, and by 0.1% through its

wind-sheltering properties—both effects being here smoothed over a period of 12

months. Considering that the average monthly expenditure in our sample is around

CAD 200 in 2018, those cumulative effects would amount to CAD 1 per month. In

comparison, the associated increase in the flow value of a property of 0.86% would

correspond to CAD 21 per month—a calculation based on the fact that the average

monthly rent for a two-bedroom apartment was around CAD 2,500 in 2018.

Energy savings and maintenance costs The previous calculations are nested

at the level of a household. In order to compare the energy benefits of urban forestry

with its maintenance costs, we need to aggregate those effects at the level of the City

of Toronto. We also need to convert the cover in urban forestry into a number of

trees.

First, please note that adding one tree within a postcode increases the area

share of tree canopy by 0.45 percentage points (a calculation that we explain in

Section 1.3); this 0.45 is the conversion rate that we will use thereafter. Second, from

the previous calculations, adding a tree lowers the annual energy consumption by

CAD 12×1×0.45 ≈ 5.40 for each household. With about 20 households per postcode,

the total energy-saving benefit of a tree is thus CAD 108 per year. Ignoring the

opportunity costs of land usage, such energy benefits would be much larger than

the maintenance costs of urban forestry (estimated at around CAD 4.20 in the 2011

City of Toronto Parks and Forestry budget proposal).

Energy savings in a changing climate With a non-linear relationship between

temperature and energy consumption, there should be an increasing impact of urban

forestry on energy savings over time—owing to the marked increase in the expected

occurrence of heat waves.

We illustrate the non-linear relationship between temperature and energy con-

sumption in Figure C6 where we leverage weekly data on electricity consumption

between 2012 and 2020, which we match with maximum weekly temperature. We
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Figure C6. Electricity consumption and weekly temperature.

Notes: This Figure represents the relationship between the (weekly) energy consumption and the maximum weekly
temperature. We group weeks by bins of weekly temperature: the dots represent the average energy consumption
within each bin. The green area represents the distribution of the x-axis variable; and the sample is confined to
summer months (July and August).

find that an increase of temperature from 23 degrees (Celsius) to 24 degrees is not

associated with any increase in electricity consumption. An increase of temperature

from 27 degrees (Celsius) to 28 degrees increases electricity consumption by 3%;

and an increase of temperature from 30 degrees (Celsius) to 32 degrees increases

electricity consumption by 6%. The number of annual hours with average tempera-

tures above 30 degrees (Celsius) is expected to double between 2020 and 2050, from

an equivalent of 10 days to 20 days. According to these estimates, global warming

would at most explain a doubling of the energy-saving premium by 2050.
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D Tree canopy and pollution

This section describes the data underlying Panel C of Table 5 and provides additional

empirical analyses of the pollution-abatement effect of trees.

Figure D1. PM2.5 concentration in July 2007.

Notes: This Figure displays the PM2.5 concentration as recorded in July 2007 and nested at the level of postal
codes. The color scale goes from light blue to red (corresponding to equal intervals of pollution between 9 �g/m3

to 13 �g/m3). The data is based on Aerosol Optical Depth (AOD) measures from NASA MODIS (250m horizontal
resolution), NASA MISR (about 1.1 km horizontal resolution), and NASA SeaWIFS (to cover the oceans). Source:
Van Donkelaar et al. (2021), and CANUE.

D.1 Data sources

We rely on monthly estimates of fine particulate matter (PM2.5) provided by Van Donke-

laar et al. (2021) for the period 1998–2021.20 The data is based on Aerosol Optical

Depth (AOD) measures from NASA MODIS (250m horizontal resolution), NASA

MISR (about 1.1 km horizontal resolution), and NASA SeaWIFS (to cover the

oceans). These satellite-based measures are combined with a dispersion model (i.e.,

the GEOS-Chem chemical transport model, see Van Donkelaar et al., 2021), which

is calibrated using a subsample of ground-based observations.

The main input (and constraint on spatial resolution) is the Aerosol Optical

Depth (AOD) from MODIS, inducing a coarser spatial resolution than in our other

20The data is available on the CANUE website. Acknowledgments: PM2.5 metrics, indexed
to DMTI Spatial Inc. postal codes , were provided by CANUE (Canadian Urban Environmental
Health Research Consortium).
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satellite-based measures. We illustrate the resulting variation in fine particulate

matter nested across postal codes in Figure D1, where we display PM2.5 concentra-

tion in July 2007. One can see that there is still significant local variation, partly

explained by the location of the main entry/exit points to/from the city—the Don

Valley Parkway in the center of the map, Toronto Pearson airport (West), or the

King’s Highway 401. One corollary is that there might exist a spurious correlation

between urban forestry (e.g., along the Don Valley) and air pollution. Our empirical

strategy arguably addresses this issue.

Figure D2. Pollution concentration over time.

(a) Evolution over time (b) Treatment effect

Notes: The left panel of the graph shows the monthly concentration of small particles (PM2.5, in �g/m3) across
postcodes in Toronto. The right panel shows the estimated correlation between tree density and (log) pollution for
the months of July and August for each year between 2007 and 2018 (in a specification akin to Equation 4). More
specifically, we regress (log) pollution across postcodes on the measure of tree cover in 2018, instrumented by the
number of street ash trees per area within a 10m buffer (as measured in 2010). We control for a measure of street
tree density, ward fixed effects, latitude, longitude, and dummies for the land classification in 2007 (tree canopy,
grass/shrub, bare earth, water, buildings, roads, other paved surfaces and agriculture). The reported coefficients
are the ones in front of the measure of tree density, and vertical lines show 95 percent confidence intervals.

Panel (a) of Figure D2 illustrates seasonal and more secular variations in the

concentration of fine particulate matter across the City of Toronto. The series is

quite volatile and exhibits irregular seasonal patterns: pollution peaks are more fre-

quent in summer, but a few occur in winter as well. There is no academic consensus

about the local pollution-abatement effect of a tree canopy (and its variation across

seasons). Indeed, foliage prevents the dispersion of vehicle emissions (especially in

road canyons, e.g., along the Don Valley Parkway), but increases the concentration

of pollutants below the tree canopy (see, e.g., Salmond et al., 2013; Jin et al., 2014).

We investigate these effects within our context in the next section.
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D.2 The pollution-abatement effect of trees

The pollution-abatement effect of trees (during summer) We investigate

the impact of trees on air pollution in a specification akin to Equation (3), i.e., we

estimate,

ln(Ppt) = � + �TDpt + 
tXp + �p + �t + "pt , (7)

where each observation is a postal code in a given year, Ppt is the average concen-

tration of fine particulate matter within postcode p during July and August of that

year, and urban forestry, TDpt , is instrumented by the density of ash trees, Apt .

Controls include postcode fixed effects, latitude and longitude interacted with time

fixed effects, the density of publicly maintained trees interacted with time fixed ef-

fects, and area shares from the land classification in 2007, interacted with year fixed

effects.

We reported the estimates from Equation (7) in Panel C of Table 5. We find a

negligible, yet negative, correlation in column (1). The causal estimate, reported in

column (2), is negative as well, but one order of magnitude larger: a one percentage

point increase in the area share of tree cover reduces the estimated PM2.5 concen-

tration by 0.12% during the months of July and August. This effect is statistically

significant, but remains quite small: postal codes that were most affected by the

ecological catastrophe lost 0.07 in tree cover, leading to a drop in pollution of 0.84%.

The pollution-abatement effect of trees over time We replicate the exercises

discussed in Figures C1 and C2 (see Equation 4) to shed light on the dynamic impact

of the ecological catastrophe. We report the year-specific estimates in Panel (b) of

Figure D2; we see that the pollution-abatement effect of trees materializes between

2013 and 2016—the period in which city-managed ash trees were removed.

The pollution-abatement effect of trees (during winter) We finally conduct

a placebo exercise in Table D1, in which we replicate Panel C of Table 5 with PM2.5

concentration during winter (December-February) as the dependent variable. Both

the OLS and the IV specifications provide negligible estimates, non-statistically

significant for the latter. The absence of foliage indeed limits the impact of a tree

canopy, whether positive or negative (Salmond et al., 2013; Jin et al., 2014).
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Table D1. The pollution-abatement effect of trees—a placebo.

Pollution (PM2.5) (1) (2)

Tree cover 0.0010 -0.0018
(0.0002) (0.0036)

Observations 373,610 373,610
F-statistic - 548.50
Notes: Robust standard errors are reported between parentheses. The unit of observation is a postcode. Across
both panels, column (1) reports the OLS estimate while column (2) reports the estimates from an IV specification
where tree cover is instrumented by a measure of ash tree density. All specifications include: latitude and longitude;
the density of publicly maintained trees; and area shares from the land classification in 2007, all interacted with
year fixed effects. The dependent variable is (log) concentration of PM2.5 in December-February (in �g/m3), and we
control for postcode fixed effects.
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