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A wealth of recent research shows a dramatic surge in industrial concentration since 1990.1

In response, academics are raising concerns about increasing markups and declining com-

petitiveness, while regulators are calling for stronger enforcement of antitrust regulations

(Zingales, 2017; De Loecker, Eeckhout, and Unger, 2020; Federal Trade Commission, 2022).

In light of this concerning trend in industrial concentration, it is imperative that we under-

stand the theoretical and methodological assumptions that underlie the evidence.

In this paper, we re-evaluate the evidence on concentration and find that the prior results

are sensitive to methodological assumptions. Using alternative, but equally valid assump-

tions, we find that from 1990 to 2020, employment concentration decreased. These findings

cast doubt on the wide-spread belief that markets have become less competitive.

Why do our results differ from the prior evidence? The difference lies in the nature of con-

centration. Market concentration is defined by two distinct properties: the number of firms

(richness) and the uniformity of their market shares (evenness). Each property is crucial

for the definition of concentration. Without considering richness, a market with two equally

sized firms would be as concentrated as a market with 100 equally-sized firms. Without

considering evenness, a market with two equally sized-firms would be as concentrated as a

market in which one firm had 99% of the market share and the other had 1%. Standard

measures of concentration, such as the Hirschman-Herfindahl Index (HHI), make implicit

assumptions to compress these two properties into a single summary statistic of concentra-

tion. While it is clear that a meaningful measure of concentration must account for both

richness and evenness, the relative importance given to each property is a choice of the

econometrician.

To make the methodological assumptions explicit, we introduce a generalized measure of

concentration that parametrizes the weight placed on evenness and richness. Using this mea-

sure, we show that HHI is a special case of the generalized measure in which the importance

1See Gutiérrez and Philippon (2017), Grullon, Larkin, and Michaely (2019), Autor, Dorn, Katz, Patterson,
and Van Reenen (2020), Autor, Patterson, and Reenen (2023), and Rossi-Hansberg, Sarte, and Trachter
(2020).
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of evenness is overweighted and the importance of richness is underweighted. These implicit

weightings of HHI are not trivial. When we assign equal weights to evenness and richness in

our generalized measure, we find that the stylized facts of concentration documented in re-

cent research do not hold. Thus, the widely-reported increase in concentration is conditioned

on implicit assumptions made by researchers.

Our generalized measure of concentration is based on a parsimonious set of axioms derived

by both economists and ecologists (Hannah and Kay, 1977; Encaoua and Jacquemin, 1980;

Daly, Baetens, and De Baets, 2018). Just as economic concentration reflects the lack of

variety of economic entities within the economy, ecological diversity reflects the variety of

species or traits within a given ecosystem. Following the mathematical ecology literature,

our measure of ‘true diversity’ is indexed by order q and measured in units of ‘effective firms.’

Though q can take any value, we focus on three special cases of true diversity. When q = 0,

true diversity puts all weight on the count of firms (Count Diversity). When q = 1, true

diversity is equally sensitive to firm counts and market shares (Balanced Diversity). When

q = 2, true diversity is the inverse of HHI and is more sensitive to the evenness of market

shares than firm counts (Dominance Diversity). As q goes to infinity, all weight is placed on

the firm with the largest market share.

We consider both economic and statistical criteria to determine the relative merits of

balanced diversity versus dominance diversity (HHI). First, though HHI is the status quo

among researchers and regulators, there is little economic theory that ties HHI to important

economic outcomes (Demsetz, 1973, 1974; Syverson, 2019). In particular, though HHI is

positively related to profitability under some theoretical assumptions (Stigler, 1964), it is

also negatively related to profitability under other equally valid assumptions (Tirole, 1988,

p. 223). Second, HHI is not unique. The theoretical results in Encaoua and Jacquemin

(1980) show that for any weighting on richness and evenness across a variety of models

of competition, the generalized measure of diversity can be related to the Lerner index.

Similarly, in the canonical Cournot model with symmetric firms, evenness is canceled out,
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which means that any weighting on evenness and richness will generate the same relationship

between concentration and profitability. Thus, though HHI is ubiquitous, it is not a superior

measure based on economic theory.

Based on statistical criteria, HHI is also not superior to other weightings. In particular,

following prior work on the firm size distribution (de Wit, 2005), we study the statistical

traits of our generalized concentration measure under the assumption that market shares

follow fat-tailed distributions, such as the Pareto or lognormal distribution. First, we show

that HHI is not mathematically defined when the Pareto parameter value α is less than

two. This is a serious limitation because nearly all empirical estimates of α are close to

one. This means that the true value of HHI is not a valid mathematical construct for most

distributions of market shares, especially when concentration is high. In contrast, balanced

diversity is defined for nearly all estimates of α. Furthermore, we show that in lognormal

distributions, balanced diversity has better statistical properties than HHI. Finally, we show

that dominance diversity (HHI) exhibits much larger small-sample biases in both Pareto and

lognormal distributions than does balanced diversity. Thus, we argue that our new results

using balanced diversity provide a more accurate representation of concentration trends than

existing research based on HHI.

Beyond the flexibility of weighting schemes, our framework has two additional advantages

over traditional concentration measures. First, it measures diversity in intuitive units of

‘effective firms,’ defined as the number of firms with equal shares necessary to generate an

equivalent measure of diversity (Adelman, 1969; Hill, 1973). For example, using weights

based on HHI, a market with six firms with shares of (0.49, 0.28, 0.10, 0.054, 0.04, 0.016)

has three effective firms because it has the same diversity as a market with three firms

with equal market shares. This provides a more meaningful quantification of diversity than

standard measures. For example, the economic meaning of an industry with an HHI of 250

is not readily apparent. In contrast, a market with 40 equally-sized effective firms is more

easily understood.
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The second advantage of our framework is that is allows diversity to be systematically

decomposed from an aggregate into within-industry and between-industry components, with

meaningful units. For example, the true diversity of national industries can be decomposed

into true diversities of industry-counties. In this setting, within-diversity reflects the number

of effective firms in the average industry-county and between diversity reflects the number of

‘effective industry-counties.’ If three markets have completely different firms from each other,

then the between-industry diversity is three effective markets. In contrast, if the same set of

firms have the same market shares in each of the three markets, then the between-industry

diversity is one effective market. Between these two extremes, between-industry diversity

reflects the degree of overlap between two markets, weighing firm counts and market shares

based on parameter q. This decomposition allows us to quantify the difference between local

and national diversity, which standard measures, such as HHI, cannot.

To apply our new approach to the data, we use establishment-level observations of em-

ployment from the National Establishment Time Series (NETS) database from 1990 to 2020,

used by Rossi-Hansberg, Sarte, and Trachter (2020). To address concerns of over-sampling

of very small firms in the NETS data (Barnatchez, Crane, and Decker, 2017), we restrict the

data to include only firms with at least 20 employees. Using this data filter, the time-series

of firm counts in NETS is highly correlated with the time-series of firm counts reported in

Census data. To further address concerns about imputed data in NETS, we show that all of

our results hold if we only use non-imputed data in NETS.

Within the average 4-digit national industry, dominance diversity (the inverse of HHI)

of employment was 46.8 effective firms in 1990, relative to count diversity of 941.4 firms.

From 1990 to 2013, dominance diversity fell by 40%, consistent with prior evidence of an

increase in HHI at the national-industry level. Extending the sample period through 2020,

we find that dominance diversity remained stable at around 30 effective firms from 2015 to

2020. In contrast, the balanced diversity of the average industry was 649.9 firms in 1990,

increasing to 693.2 effective firms by 2020, for an increase of 6.7%. Thus, in contrast to
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conventional wisdom, when firm counts and evenness are equally weighted, concentration

actually decreased slightly over the last 30 years.

We next decompose aggregate diversity into between-industry diversity. In 1990, there

were 21.6 effective industries based on dominance diversity and 130.7 effective industries

based on balanced diversity, relative to a count diversity of 875 industries. Using dominance

diversity, the number of effective industries increased to 36.3 by 2020, while the number of

effective industries decreased to 113.2 using balanced diversity. These results reflect that the

declining prevalence of multi-segment conglomerates is concentrated among larger firms.

Next, decomposing industry diversity by geography, we find that the diversity within the

average county and industry-county increased for both dominance and balanced diversity,

while the diversity across counties and industry-counties decreased. These results indicate

that counties and industry-counties have become significantly more homogenous over time,

even as the diversity within the average industry-county has increased. These results provide

quantifiable evidence that is consistent with the differing trends in HHI at the local and

national levels presented in Rossi-Hansberg, Sarte, and Trachter (2020).

This paper has two main contributions. First, this paper advances a new, more flexible

method to quantify economic concentration. Since the development of HHI by Hirschman

(1945) and Herfindahl (1950), there have been few lasting advances in the measurement of

concentration. Adelman (1969) first showed that HHI can be transformed into a numbers

equivalent statistic, though few papers adopted his approach. Finkelstein and Friedberg

(1967) advocated for an entropy-based measure of concentration, similar to the true diversity

when q = 1. However, in a published comment on the paper, Stigler (1967) argued that that

entropy does not have a theoretical connection to competition, whereas HHI does. However,

subsequent research shows that the connection between HHI and competition is tenuous

(Demsetz, 1968; 1973; 1974). Our framework extends the axiomatic approach of Hannah

and Kay (1977) and Encaoua and Jacquemin (1980) by borrowing from the vast literature on
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diversity in ecology. For reviews of recent literature on methodologies in ecological diversity,

see Daly, Baetens, and De Baets (2018) and Roswell, Dushoff, and Winfree (2021).

The second contribution of this paper is to use our new method to show that the widely-

cited evidence of increases in market concentration relies on a set of ad hoc assumptions.

In particular, we show that HHI is just one measure of concentration based on arbitrary

assumptions, but other measures are equally valid and have superior statistical properties

for typical firm size distributions. In particular, using balanced diversity, we show that

market concentration of employment has declined, not increased, as widely reported. These

results imply that concentration is more nuanced than suggested by prior evidence and that

regulatory policies based on HHI could have unintended consequences.

I. Firm Counts, Market Shares, and Diversity Order q

In economics, the concept of market concentration is used to refer to the degree to which

market share is concentrated among a few dominant firms or individuals. The inverse of

concentration is diversity, or the variety and dispersal of market shares. While concentration

is the standard framing used in economics research, we frame our mathematical approach in

terms of diversity rather than concentration, which aligns our work more closely with recent

advances in ecology. As we describe below, adopting this diversity perspective allows for a

more intuitive unit of measurement that follows the mathematical formulation of diversity

more closely.

I.A. Axiomatic Approach to Defining Diversity

There are four key axioms that define a useful measure of diversity independently proposed

by economists and ecologists (Hannah and Kay, 1977; Encaoua and Jacquemin, 1980; Daly,

Baetens, and De Baets, 2018).
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1. Evenness. Diversity is maximized when market shares are equal across all firms in a

market.

2. Principle of transfers. A transfer of market share from a firm with greater market share

to one with lesser market share increases diversity.

3. Entry. The entrance of a new firm increases diversity.

4. Replication principle. If there are m sub-groups of firms such that each sub-group has

equal diversity and no firms spans two subgroups, then the diversity of the super-group

of the pooled m sub-groups is m times the diversity of a single sub-group.

Axioms 1, 2, and 3 are equivalent to the axioms specified by Hirschman (1945) and Herfind-

ahl (1950) to define HHI. In particular, both Hirschman and Herfindahl argued that a mea-

sure of concentration should increase with the relative dispersion of market shares and it

should decrease with the number of firms in the market. Hirschman noted that the axiom

of entry was required to distinguish between measures of concentration and inequality. As

noted above, without the axiom of entry, a market comprised of two equally sized firms

would be as concentrated as a market with 100 equally sized firms. Thus, the number of

unique firms is a critical component of diversity.

Axiom 4 has been proposed by ecologists, but it has not been included among the axioms

of standard measures of economic concentration. However, it has important consequences

for both the intuitive value of a diversity measure as well as its ability to be decomposed

into sub-units. In particular, this axiom requires that a diversity measure scales linearly. For

example, if the dollar values of sales for three different firms in Market A is [10, 5, 5] and the

dollar values for six different firms in Market B is [10, 5, 5, 10, 5, 5], this axiom requires the

intuitive result that the diversity of Market B should be double the diversity of Market A.

We show below that this axiom means that diversity should be measured in intuitive units,

not arbitrary indices, and also that a diversity measure should be able to be decomposed into

smaller sub-groups while maintaining a consistent and intuitive unit of measurement. As an
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example, this axiom implies that the value of diversity of an industry that is measured at

the national level should be intuitively related to the aggregation of the industry’s diversity

values that are measured at the local level.

I.B. Classical Diversity Measures

We next assess classical diversity indices and their alignment with the standard axioms.

Nearly all classical indices of diversity are transformations of the following measure (Chao,

Chiu, and Jost, 2014):

(1) qλ =

N
∑

i=1

pqi ,

where parameter q determines the influence of common versus rare firms on the measure,

such that the larger is q, the greater is qλ’s sensitivity to the uniformity of market shares.

The first classical measure is richness, which is generated when q = 0. Richness is simply

the number of unique firms in a market, without considering their market shares. The

second classical measure is Shannon entropy derived as limq→1
qH = (1−q λ) /(q−1), which

equals −
∑N

i=1 pi ln(pi). Though this measure was originally developed in information theory

(Shannon, 1948), it was first proposed in an economics setting by Finkelstein and Friedberg

(1967) and it is widely used by ecologists as a measure of diversity. Finally, when q = 2,

the third classical index of diversity, known as Simpson’s index (Simpson, 1949) in ecology,

is identical to HHI. Ecologists transform Simpson’s index from a measure of concentration

to a measure of diversity, as 1−2λ, which is known as the Gini-Simpson index. Though q is

typically set to 0, 1, or 2, qλ is not limited to integer values for q.

This formulation reveals that HHI is a special case of a more general family of diversity

measures. Moreover, the choice of q = 2 to define HHI is arbitrary. For example, defining

HHI as 1.5λ or 3λ would also have satisfied HHI’s axioms. Both Hirschman and Herfindahl

recognize that HHI is not a unique solution to their axioms, but they chose 2λ as their
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measure for ease of calculation and for its relationship to statistical measures of dispersion.

As we show below, this seemingly innocuous assumption has important implications for

the interpretation of HHI and its usefulness in empirical settings characterized by fat-tailed

distributions of firm sizes.

Though the classical diversity measures are widely used, recent research argues that they

have two significant drawbacks (Ellison, 2010; Roswell, Dushoff, and Winfree, 2021). First,

they do not satisfy all of the axioms of diversity. Richness does not satisfy the principle of

transfers because it ignores market shares. Shannon entropy and the Gini-Simpson index do

not satisfy the replication principle because they do not scale linearly.

Second, the units and interpretation of classical measures of diversity vary across measures.

Richness is measured in the number of firms, while the Gini-Simpson index is the probability

that two random sales in the same market belong to different firms. Similarly, HHI is the

probability that two random sales belong to the same firm. Further, Shannon entropy is

measured in units of information and reflects the uncertainty of a firm of a randomly chosen

sale in a market. When q takes values other than 0, 1, or 2, classical diversity measures

are even harder to interpret. Thus, these measures are not easily compared across different

orders of q and they do not have intuitive interpretations as ‘diversity.’

I.C. True Diversity

To address the limitations of classical diversity measures, a seminal paper in mathematical

ecology by Jost (2006) advocates for the adoption of diversity indices variously known as

‘numbers equivalents’ (Adelman, 1969), Hill numbers after Hill (1973), or what Jost calls

‘true diversities.’ Using true diversities is now the consensus among ecologists (Ellison, 2010;

Chao and Ricotta, 2019) and in this paper, we advocate for their use in economics, just as
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Adelman did 50 years ago. The following equations transform qλ into true diversities:

qD = (qλ)
1

1−q =

(

N
∑

i=1

pqi

)

1

1−q

if q 6= 1(2)

and

qD = exp

(

−

N
∑

i=1

pi ln pi

)

if q = 1.

The transformations of the three classical diversity indices are easily calculated. If q = 0,

then 0D is the count of the firms in a market, or richness. If q = 1, then 1D is the exponential

of Shannon entropy. If q = 2, then 2D is the inverse of HHI.

True diversity (qD) exhibits at least two advantages over classical diversity measures (Daly,

Baetens, and De Baets, 2018). First, true diversity satisfies all four axioms, including the

replication principle, for all q > 0. Second, true diversity possesses a consistent unit and

interpretation across all q values. These units are ‘effective firms’ and represent the number

of firms with equal market shares that would yield the same qD value as the observed market.

To illustrate the notion of effective firms, Figure I presents four different distributions of

market shares. The first chart on the left represents a market with three firms with equal

market shares. Moving to the right, the charts represent markets with increasing numbers of

firms, though with more unequal market shares. However, the value of 1D for each of these

four markets equals three, which means that all four markets have a true diversity of three

effective firms. In other words, when q = 1, the diversity in each market is equivalent to the

diversity of a market with three firms with equal market shares of 1/3, as in the first chart.

This example highlights that true diversity measures have precise interpretations that can

be easily compared across different distributions of market shares, in contrast to classical

diversity indices, such as HHI. For instance, the concentration of a market with three firms

with equal market shares is easy to comprehend. In contrast, the concentration of a market



THE ANATOMY OF CONCENTRATION 11
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Figure I
Effective Number of Firms

This figure illustrates the concept of effective firms. Each chart has the same true diversity
of 3 at a diversity of order q = 1. The diversity of each market is equivalent to a market
with three equally-sized firms.

with six firms with market shares of 64%, 20%, 8%, 3%, 3%, and 2% is not easily grasped.

Using true diversities reveals that both markets are equally diverse when q = 1. Though we

have shown equivalence with q = 1 in this case, the same general concept applies for any q.

I.D. Firm Counts versus Market Dominance and Diversity Order q

Figure I highlights the central trade-off of diversity: richness versus evenness. The entrance

of a new firm increases diversity, but greater unevenness in firms’ market shares decreases

diversity. In our example, the increase in diversity caused by additional firms is exactly offset

by the decrease in diversity caused by greater unevenness in market shares. The sensitivity

of diversity to the count of firms and the evenness of market shares is determined by the

order q. For values of q less than unity, true diversity is more influenced by the count of firms

than the evenness of their market shares. For values of q greater than unity, true diversity

is more influenced by the evenness of market shares than by the number of firms. At q = 1,

counts and evenness have equal influence.

Figure II illustrates the role of q on diversity. The top five panels represent markets

with two firms. In each panel, the horizontal axis represents variation in evenness from a

perfectly even 50-50 share to a perfectly uneven share in which one firm has a market share

approaching 100% and the other approaches 0%. The vertical axis represents the value of
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true diversity, qD and the value of qλ as the evenness of market shares changes. From Panel

A to Panel E, the value of q increases from 0 to 100.

The top five panels show that for any value of q, when market shares are perfectly even,

true diversity is two firms. Likewise, for any value of q, when the market shares are perfectly

uneven, the true diversity is one firm. However, the transition from a diversity of two to one

is controlled by the order q. When q = 0, evenness has no effect on diversity because market

shares are ignored. As q increases, the effect of the unevenness of market shares on diversity

intensifies. This is driven by the convexity of qλ. When q < 1, qλ is concave, which gives

more influence to small firms with low market shares. When q > 1, qλ is convex, which gives

more influence to large firms with high market shares. The larger is q, the more convex is qλ.

The point at which evenness has a constant influence on diversity is when q = 1, as shown

in Panel C. This is the unique value of q that weighs the frequency of each observation in

proportion to its market share.

The bottom five panels of Figure II further illustrate the impact of q on the trade-off

between the count of firms and the evenness of their market shares. Evenness is defined

in these figures as the market share of the largest firm, p1, assuming the remaining n − 1

firms have equal market shares of 1−p1
n−1

(Jost, 2010). The minimum level of unevenness is

represented by the parabola 1/n and the maximum is one. The true diversity of each market

is indicated by color-coded iso-bars representing equal diversity across variation in counts

and evenness.

In Panel F, q = 0 and diversity is richness (0D). At this extreme, diversity is completely

independent of the evenness of market shares. At the other end of the spectrum, in Panel

J, when q = 100, qD is highly sensitive to evenness and insensitive to the number of firms.

Panels G, H, and I, represent intermediate steps in which q = 0.5, 1.0, and 2.0. As q increases,

the sensitivity of diversity to evenness increases as q increases. At q = 1, consistent with

Panel C, the substitution is balanced equally between counts and unevenness. Given this
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discussion, for ease of exposition in the rest of the paper, we refer to 0D as Count Diversity,

1D as Balanced Diversity, and 2D as Dominance Diversity.2

II. Diversity of Employment: Preliminary Evidence

To illustrate the importance of the underlying assumptions of concentration measures, we

estimate true diversity of the employment shares of employers. Our first set of tests show

strikingly different results for balanced and dominance diversity at the national industry

level. Therefore, after these tests, we discuss the relative merits of using balanced diversity

versus dominance diversity. Then, we consider decompositions of national-level industry

diversity into within- and between-industry diversity based on local geographic markets.

II.A. Data Sources

To estimate diversity within an industry requires firm-level data on market shares of

both public and private firms. In addition, as we show later, to estimate diversity between

industries and counties requires detailed geographic and segment-level data to account for the

overlap between industries created by multi-segment and multi-regional firms. To address

these requirements, we use data from the National Establishment Time Series (NETS), as

used to study concentration in Rossi-Hansberg, Sarte, and Trachter (2020).3 The NETS

data cover over 74 million establishments from 1990 to 2020, both public and private, where

an establishment is a business or plant at a single physical location. For each establishment,

NETS provides the location, industry code, ultimate owner, employment level, and sales. To

2In Section A2 of the Internet Appendix, we provide a mathematical proof that q = 1 is the unique case
that perfectly balances evenness and richness. In particular, when market shares are uneven, transferring a
small amount of market share from one firm to another is of the same order as a change in the number of
firms only when q = 1.
3Other papers that use NETS include Bernstein, McQuade, and Townsend (2021), Faccio and Hsu (2017),
Farre-Mensa, Hegde, and Ljungqvist (2020), Crouzet and Mehrotra (2020), and Borisov, Ellul, and Sevilir
(2021). For a detailed description of the NETS database, see Kolko, Neumark, and Lefebvre-Hoang (2007)
and Barnatchez, Crane, and Decker (2017).
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our knowledge, NETS is the most comprehensive establishment-level dataset available other

than confidential Census micro-data.

To make NETS data more closely match official data sources, we apply filters following

suggestions from prior research. First, we exclude SIC codes related to government entities

and federal reserve banks. Second, we filter by firm size. In particular, Barnatchez, Crane,

and Decker (2017) find that though NETS is consistent with official data sources in terms

of distributions across industries and geographic regions, NETS tends to mismeasure the

incidence of very small firms. To address this issue, Barnatchez et al. show that excluding

establishments with less than ten employees in the NETS data from 1990 to 2014 substan-

tially improves the correlation between the number of establishments in NETS and official

sources from the Census Bureau. We confirm the findings of Barnatchez et al. for 1990

to 2014, but we observe a large disparity in firm counts between official sources and NETS

for the period from 2015 to 2020. Instead, we find that the correlation between NETS and

Census records across the entire sample period is highest when we exclude firms with less

than twenty employees, rather than ten.

Panel A of Figure III compares the time-series of firm counts from 1990 to 2020 from the

Census Bureau’s Statistics of U.S. Business (SUSB) to firms counts from NETS in which

both series are restricted to firms with at least 20 employees. The figure shows a similar

time-series pattern for both series with similar magnitudes, though the SUSB data displays

more extreme volatility in the second half of the sample period. The results in Panel A

suggest that NETS lags the SUSB time series. Therefore, Panel B presents the three-year

leading NETS data which appears to match the official SUSB data more closely.

To quantify the correlation between NETS and SUSB, we estimate the following equations

using yearly observations from 1990 to 2020:

ln(SUSBt) = 2.916 + 0.760 ln (NETSt) + εt(3)
(1.841) (0.135)
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ln(SUSBt) = −0.215 + 0.988 ln (NETSt+3) + εt(4)
(1.959) (0.143)

where SUSBt and NETSt are the number of firms with at least twenty employees in the

SUSB and NETS databases in year t. Standard errors of the coefficient estimates are reported

in parentheses. These results show that the time-series of firm counts in NETS is statistically

and economically significantly correlated with the time-series of firm counts in SUSB. The

results also suggest that the official data lead the NETS data by three years. Based on these

results, in all of our empirical tests we use NETS data restricted to firms with at least twenty

employees and note that the patterns we observe may better represent the period three years

prior to the date in NETS.

A related criticism of NETS data is that many of its observations are imputed, especially

for sales data.4 To address this concern, we re-run all of our analyses using only observations

4It is important to note that all micro-data, including administrative data collected by government agencies,
include imputed data, especially for small firms. For example, Chow, Fort, Goetz, Goldschlag, Lawrence,
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Figure III
Census Bureau Data vs. Filtered NETS Data

This figure presents the time-series of firm counts normalized by 1990 values in the Sta-
tistics of U.S. Business (SUSB) compared to the National Establishment Time Series
(NETS) from 1990 to 2020. Panel A presents concurrent time-series. Panel B presents
three-year leading NETS data. In both series, firm counts include only firms with at least
20 employees.
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in NETS that are flagged as not imputed. We find that the results are nearly identical for

employment shares, but the results for market shares of sales deviate in the non-imputed data

in the later part of our sample. Therefore, throughout the paper we use only employment

data from NETS and when we refer to firms, we mean firms with at least twenty employees.

All of the results using non-imputed employment data are reported in Section A6 of the

Internet Appendix.

By limiting attention to employee data of firms with at least 20 employees in NETS,

we help mitigate concerns about data limitations. However, the contribution of this paper

is methodological, not empirical. Limitations in the data do not reflect limitations in our

methodological approach. The empirical tests we offer are meant to be illustrative, not

definitive, and we encourage researchers to apply our methodological approach to alternative

datasets to compare results.

II.B. Count, Balanced, and Dominance Industry Diversity

Table I provides industry-weighted averages of count, balanced, and dominance diversity

of employment, for years 1990, 2000, 2010, and 2020.5 To provide a more tangible picture

of the data, Table II presents the industries at key percentiles of diversity. For example, the

industry with the largest number of firms is eating places with over 83,000 firms, while the

least diverse industry at q = 1 and q = 2 is household laundry equipment.

Perlman, Stinson, and White (2021) explain that the Census’s confidential Longitudinal Business Database
(LBD) relies on imputed data during intercensal years to ‘smooth out’ the bunching of establishment births
and deaths that are observed in years in which the more complete Economic Census is conducted. In
particular, total employment at the firm level is allocated across establishments either reported or imputed
in intercensal years. Imputation is not uncommon because most small and medium size single-establishment
firms with fewer than 500 employees are not included in the annual Report of Organization. According to
CBP data, in 2019, only 0.3% of firms in the U.S. have more than 500 employees.
5Diversity measures, including HHI, rely on sample-based population estimates prone to measurement error,
including the omission of rare species. The smaller is q, the bigger is the effect of undercounting rare
species. Chao and Jost (2015) provide a bootstrap procedure to calculate standard error bounds and address
undercounting by estimating the distribution of uncounted species using the number of species with one or
two observations in the sample. In our setting, where sampling units are number of employees in national
samples, the bootstrapped confidence intervals are extremely small. Moreover, the sampling procedure in
ecology is different than in economics, so the correction for undercounting does not apply.
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Table I
Employment Diversity

Year

1990 2000 2010 2020

Count Diversity (q = 0) 941.4 1,111.2 1,086.1 1,106.2
Balanced Diversity (q = 1) 649.9 646.3 708.7 693.2
Dominance Diversity (q = 2) 46.8 42.1 34.4 28.0

Notes: This table presents snapshots of weighted average industry diversity of
employment at the SIC 4-digit nationwide industry level for diversity orders q = 0,
1, and 2. Diversity is in units of effective firms. Data are from NETS and include
firms with at least 20 employees.

Table I shows that in 1990, the average industry had 941.4 firms, increasing over the

sample period, to 1,106.2 by 2020. This represents an average annual growth rate of firms

of 0.539%. This growth rate is very close to the growth rate in SUSB data of 0.558%, which

validates that our sample closely approximates official Census data.

Consistent with prior evidence of increasing HHI, dominance diversity (q = 2) fell sub-

stantially from 1990 to 2020. The number of effective firms in the average industry when

q = 2 was 46.8 in 1990. By 2020, dominance diversity had fallen by 40% to 28.0 effective

firms. However, when we consider balanced diversity, the results contradict the prior evi-

dence of increasing concentration. Using balanced diversity, the average industry had 649.9

effective firms in 1990, rising slightly to 693.2 effective firms by 2020. Figure IV presents

the time-series changes in each diversity measure from 1990 to 2020. The figure shows that

in contrast to the dramatic decline in dominance diversity, balanced diversity increased by

nearly 20% from 1990 to 2012, followed by a dip, then a recovery to end around 6.7% higher

in 2020 than in 1990.
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Table II
Diversity Percentiles by Industries

Rank/Percentile Industry Effective Firms

Panel A: Count Diversity (q = 0)

Minimum House Slippers 6.0
5th Creamery Butter 28.0
25th Drapery, Curtain, and Upholstery Stores 110.0
50th Sewing, Needlework, and Piece Goods 284.0
75th Florists 803.0
95th Repair Shops, Not Elsewhere Classified 3951.0
Maximum Eating Places 83002.0

Panel B: Balanced Diversity (q = 1)

Minimum Household Laundry Equipment 2.1
5th Malt Manufacturing 9.2
25th Aeronautical, and Nautical Systems and Instruments 31.4
50th Mobile Home Dealers 79.5
75th Newspapers - Publishing, or Publishing and Printing 243.7
95th Engineering Services 1487.8
Maximum Eating Places 13454.4

Panel C: Dominance Diversity (q = 2)

Minimum Household Laundry Equipment 1.5
5th Household Vacuum Cleaners 5.3
25th Softwood Veneer and Plywood 13.4
50th Men’s and Boys’ Suits, Coats, and Overcoats 33.6
75th Airports, Flying Fields, and Airport Terminal Services 77.5
95th Local Trucking With Storage 415.7
Maximum Elementary and Secondary Schools 1629.6

Notes: This table presents the nationwide SIC 4-digit industries for a range of
diversity percentiles for diversity orders q = 0 (Count Diversity), 1 (Balanced Diversity),
and 2 (Dominance Diversity). Data are from NETS and include firms with at least 20
employees.
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Figure IV
Weighted Average Industry Diversity

This figure presents the time-series of employment diversity at the SIC 4-digit nationwide
industry level, from 1990 to 2020, normalized by 1990 values, for diversity order q = 0,
1, and 2. Data are from NETS and include firms with at least 20 employees.

The striking difference between balanced and dominance diversity is driven by the relative

weighting of firm counts and unevenness of market shares. Because dominance diversity

underweights firm counts, it is less affected by the increasing number of firms in the average

industry, as observed in both NETS and the Census data. These results illustrate that

the choice of q, and hence, the weight given to richness versus unevenness, can have large

implications for our understanding of diversity.

For a more disaggregated view, Figure V presents the time series of industry-weighted

diversity at the sector level. Count diversity rose in nearly all sectors and the net gain of

balanced diversity is larger than dominance diversity in nearly all sectors. Some sectors real-

ized small changes in diversity, including mining, manufacturing, and wholesale, while other

sectors realized large increases in balanced diversity, including agriculture and construction,

and others realized large decreases, including retail and finance.
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Figure V
Weighted Average Industry Diversity by Sector

This figure presents the time-series of employment diversity at the sector level from 1990
to 2020, normalized by 1990 values, for diversity order q = 0, 1, and 2. Data are from
NETS and include firms with at least 20 employees.
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III. Which Diversity Measure Is Best?

The foregoing empirical evidence reveals that the choice of q has important consequences

for the meaning of diversity. In particular, HHI’s assumption that q = 2 is non-trivial.

Using balanced weights with q = 1 provides a starkly different picture of the diversity of

employment in the average industry. Thus, it is important to ask which q is most appropriate.

To answer this question, we consider both economic and statistical criteria for the choice of

q.

III.A. Economic Rationale for q

Even though the vast majority of economics research relies on HHI to measure concentra-

tion, industrial organization economists have long recognized that HHI is not well grounded

in economic theory (Bresnahan, 1989). In particular, though a line of research starting with

Stigler (1964) connects HHI with profitability in Cournot oligopoly models,6 subsequent re-

search showed that these models rely on unrealistic assumptions about firm entry and their

results do not hold empirically (Demsetz, 1968, 1973, 1974).

Second, just as HHI is not a unique solution to the axioms of Herfindahl and Hirschman,

its theoretical properties are also not unique. In particular, Encaoua and Jacquemin (1980)

show that any measure of concentration that satisfies the Herfindahl and Hirschman axioms,

including both HHI and balanced diversity, can be theoretically related to the Lerner index

in a variety of models of competition, including non-cooperative oligopoly with differentiated

and homogenous products and in both static and dynamic price leadership models. This

means that for any value of q > 0, the properties of qD are equivalent to the properties of

HHI in a wide range of theoretical settings.

To illustrate why HHI is not unique, consider the canonical symmetric Cournot model,

where each firm is assumed to have identical costs and market shares. In this model, it is

6See Dansby and Willig (1979) and Donsimoni, Geroski, and Jacquemin (1984) for subsequent papers.
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well known that total industry profit is increasing with HHI. However, as our discussion of

concentration has shown, when market shares are equal, true diversity equals the count of

firms in the market for all q. Intuitively, the symmetric Cournot model eliminates variation

in market shares and focuses solely on firm counts. Thus, any true diversity measure would

generate the same relationship between concentration and profitability as does HHI in a

symmetric Cournot model because all true diversities are equivalent to the count of firms

in a perfectly even market. Thus, HHI does not represent a unique measure in symmetric

Cournot models.

Alternatively, in asymmetric Cournot models, cost functions are not identical across firms,

and market shares are not perfectly even. Thus, the choice of q will influence true diversity.

However, as we have shown above, HHI can be held constant, while changing the number of

firms and their market shares. For HHI to be a reliable predictor of profitability, profitability

should be constant if HHI is constant, even if the number of firms vary. However, HHI fails

this criterion. In Internet Appendix Section A1, we show that total profit varies as firm

counts change, even holding HHI constant. This means that HHI does not uniquely identify

profit in asymmetric Cournot models.

In summary, while HHI is ubiquitous, it is not an optimal measure of concentration based

on existing economic theory. Our analysis based on Cournot models and the extensive

analysis in Encaoua and Jacquemin (1980) show that HHI does not have unique properties

for measuring economic outcomes. More generally, the economic relationship between any

measure of concentration and profitability is tenuous. Tirole (p. 231, 1988) sums up the

vagueness of concentration in existing economic theory, writing “. . . [concentration indices]

have no systematic relationship with economic variables of interest for assessing changes in

cost, demand, or policy.”
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III.B. Statistical Rationale for q

Given that the link between concentration and economic theory is tenuous, we next eval-

uate the statistical properties of diversity measures. Though concentration may not directly

relate to economic fundamentals such as competitive intensity or profit, it still represents a

key descriptive statistic of market conditions. Without any economic interpretation, con-

centration measures serve as summary statistics for statistical distributions.

To assess the relative statistical merits of different diversity measures, we focus on two

statistical distributions commonly predicted in stochastic growth models: lognormal and

Pareto. In a seminal work, Gibrat (1931) shows that with a fixed number of firms that

receive random growth shocks drawn from a common distribution, the firm size distribu-

tion approaches a lognormal distribution. Subsequent work allowed for the entry of small

firms which led to a Pareto, or power law, distribution, or its discrete counterpart, a Yule

distribution (Simon, 1955, 1960). Further refinements, such as restricting firm sizes to be

larger than a minimum threshold, allowing for a selection mechanism for survival, or as-

suming growth rates that are decreasing in firm size also generate Pareto-like distributions

(Levy and Solomon, 1996; Luttmer, 2007; de Wit, 2005). Thus, the majority of economic

theory predicts that market shares will follow a fat-tailed distribution, whether Pareto or

lognormal.7

Consistent with theory, the vast majority of empirical evidence is consistent with Pareto

and lognormally-distributed firm sizes. Using U.S. Census data, Axtell (2001) finds that

firm sizes follow a Pareto distribution with a shape parameter close to one, consistent with

Zipf’s law. More recently, Kondo, Lewis, and Stella (2022) find evidence in support of

lognormally-distributed firm sizes using U.S. Census microdata. Similarly, in French and

U.K. data, evidence supports both Pareto (di Giovanni, Levchenko, and Rancière, 2011;

Garicano, Lelarge, and Reenen, 2016; Montebruno, Bennett, van Lieshout, and Smith, 2019)

7See de Wit (2005) for an extensive summary of the stochastic growth literature.
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and lognormally-distributed firm sizes (Clarke, 1979; Bee, Riccaboni, and Schiavo, 2017).

Similar findings are reported for firms in Portugal (Cabral and Mata, 2003), Belgium (Ar-

tige and Bignandi, 2023), India (Amirapu and Gechter, 2020), and across a range of other

countries (Giovanni and Levchenko, 2013; Gaffeo, Gallegati, and Palestrini, 2003).

Given the strength of the evidence for lognormal and Pareto distributions, we provide

analytic expressions of qD assuming firm sizes follow these two distributions.8 First, we

assume that firm sizes follow the Pareto distribution F (x) = 1 − (k/x)α for x > k, where

k is the location parameter and α is the shape parameter. Using this distribution, we can

rewrite Equation 2 as follows,

qDPareto = N ·
α(α− q)

1

q−1

(α− 1)
q

q−1

if q 6= 1 and α > q,(5)

1DPareto = N ·

(

α

α− 1

)

e−
1

α−1 if α > q = 1.

This formulation shows that in Pareto-distributed data, qD reflects the product of the number

of firms in the market and a shrinkage factor that ranges from zero to one based on the shape

parameter and the diversity order. As α approaches infinity, the distribution approaches

perfect evenness such that qD = N and the shrinkage factor approaches one for all q. As α

approaches q, the distribution becomes less even, the shrinkage factor approaches zero, and

qD decreases. Likewise, as q goes to zero, the shrinkage factor goes to one.

Equation 5 reveals a critical boundary condition of qD in Pareto-distributed data: qDPareto

is only defined when α > q. This is because higher values of q rely on higher moments and

higher moments of the Pareto distribution only exist for higher values of α. For example,

HHI is based on squared values of market shares, similar to the variance. However, the

variance of the Pareto distribution is infinite for α ∈ (1, 2]. Thus, if firm sizes are distributed

following a Pareto distribution with α < 2, the variance of firm sizes is infinite and diversity

measures based on the second moment, including HHI and 2D, are not mathematically valid

8This analysis is an extension of Hart (1975). See the Internet Appendix for details.
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measures. This is a serious limitation for HHI and 2D because nearly all empirical estimates

of α in firm size distributions are below two.

In contrast, when q = 1, the expression for 1DPareto only requires that α > 1, which is

consistent with the large majority of estimates of α in the empirical literature. While any

true diversity with q < 1 will provide reliable statistics for Pareto distributions, because

most firm size distributions have α > 1, there is no advantage from using lower values of

q. Thus, statistically, 1D is an ideal measure of diversity in the most commonly observed

Pareto distributions. In contrast, HHI is mathematically undefined.

Second, if firm sizes X follow a lognormal distribution where σ is the standard deviation

of log(X), the true diversity of order q is

(6) qDLognormal = Ne−
σ2

2
q.

As in Pareto-distributed data, this formulation shows that in lognormally-distributed data,

qDLognormal reflects a shrinkage of the number of firms in the market. If there is no variance in

the firm size distribution (σ = 0), then the shrinkage factor e−
σ2

2
q equals one, market shares

are perfectly even, and qDLognormal = N for all q. As σ increases, market shares become less

even and true diversity shrinks. Likewise, as q goes to zero, the shrinkage factor goes to one,

and qDLognormal is equivalent to richness.

Diversity order q = 1 represents a unique value in lognormally-distributed data. In

Section A2 of the Internet Appendix, we show that the elasticity of richness (N) with respect

to σ is qσ2. In other words, holding diversity fixed, a one percent increase in the standard

deviation of log(X) is exactly offset by a qσ2 percent increase in firm counts. Thus, elasticity

is scaled by q. When q < 1, the elasticity of richness and evenness is smaller; when q > 1,

the elasticity is larger; and when q = 1, diversity is equally balanced between richness and

evenness.
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Second, 1D is a natural statistic for lognormal distributions because it represents a weighted

geometric mean. In particular, Equation 2 can be rewritten as the reciprocal of a weighted

generalized mean of market shares:

(7) qD =
1

(

∑N
i=1 pi · p

q−1
i

)
1

q−1

.

Based on the definition of the generalized mean, when q = 0, the generalized mean is the

arithmetic mean; when q = 1, it is the geometric mean; and when q = 2, it is the harmonic

mean.9 It is well-known that the most natural measure of central tendency for lognormally

distributed data is the geometric mean (Aitchison and Brown, 1958). In particular, the

geometric mean of lognormally distributed data is eµ, compared to the arithmetic mean

of eµ+σ2/2 and the harmonic mean of eµ−σ2/2. Thus, q = 1 represents a stable measure of

location that is independent of variance, in contrast to q < 1 and q > 1.

III.C. Small-Sample Bias of qD

The analytic formulations of qD for lognormal and Pareto distributions allow us to evaluate

the small-sample properties of qD relative to their population values. For example, though

2D is not analytically defined for α < 2, it can always be calculated in sample data. Thus, the

sample-based estimate of HHI is biased downward when α < 2 because the population value

of HHI is infinite. The severity of the bias depends on the sample size and the parameters

of the assumed distribution, and importantly, on the value of q used to estimate diversity.

In Section A4 of the Internet Appendix, we show that 1D has substantially less small-

sample bias than 2D for both lognormal and Pareto distributions. First, when q = 1, we

show that the estimates of σ and α are nearly identical when we assume that our sample data

represents the entire population as when we assume that our sample data does not represent

9The generalized mean inequality states that the generalized mean of (p1, p2, . . . , pn) when q = a is less than
or equal to the mean when q = b if a < b, with equality if p1 = p2 = · · · = pn. This explains why count
diversity is larger than balanced diversity which is larger than dominance diversity. It also explains why true
diversity is the same for any q when market shares are equal.
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the entire population. In contrast, when q = 2, the bias is considerably larger. In particular,

when q = 1, the deviation between data-derived estimates and analytically-derived estimates

of σ and α are less than 1%, on average, compared to more than 50% when q = 2. This

implies that balanced diversity calculated using sample data better reflects population-level

diversity than does dominance diversity.

Second, we calculate the mean value of 1D and 2D across 10,000 random samples of a given

sample size N and shape parameter α or σ. We then calculate the ratio of the empirical

estimate of 1D and 2D to their analytical values. The upward small-sample bias of 2D is

substantially larger than the bias for 1D in both Pareto and lognormal distributions for all

sample sizes and parameter values. For example, in a sample of 100 firm shares drawn from

a lognormal distribution with σ = 1, the empirical estimate of 1D is 1.8% larger than the

analytical value compared to 13.3% larger for 2D. For smaller samples drawn from a Pareto

distribution the bias is magnified. The estimate of 1D is 3.7% larger than its analytical value

in a sample of 25 firms, while the empirical estimate of 2D is 39.6% larger.

III.D. Summary: Balanced Diversity is Superior to Dominance Diversity

In sum, though HHI is widely used in practice, we have shown that it does not have superior

properties from either an economic or statistical view. In terms of economic rationales, in

the relatively rare settings in which HHI can be linked to economic outcomes, such as static

Cournot models, Encaoua and Jacquemin (1980) show that the same relation holds for any

q. From a statistical view, the properties of HHI limit its usefulness when firm sizes follow

Pareto and lognormal distributions, as commonly observed. In contrast, though 1D does not

have special economic properties, we have shown that it is has superior statistical properties

in markets characterized by either Pareto or lognormal distributions. In addition, we show

that HHI exhibits substantial small-sample bias in lognormal and Pareto distributions. In

contrast, balanced diversity has little small-sample bias. Thus, for an average market, 1D is

likely to be a better measure of diversity than 2D or HHI.
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III.E. Diversity Profiles

While the prior discussion indicates that 1D is a better measure of diversity for most

settings, there is no reason to restrict attention to one level of q. A central theme of this

paper is that diversity indices combine a multidimensional concept into a single number.

This compression necessarily hides important information about the underlying structure

of the market. Rather than choosing one q to measure diversity, it is more informative to

analyze diversity for multiple values of q (Patil and Tallie, 1979; Chiu, Jost, and Chao, 2014).

To analyze diversity for multiple values of q, we use a diversity profile, which plots qD

as a function of q. In particular, a diversity profile helps to visualize a market’s degree of

evenness and firm counts. The slope of the profile indicates the evenness of the market. A

perfectly even market has constant diversity for any level of q, and a profile slope of zero.

The more uneven is a market, the steeper is its diversity profile, as diversity falls faster as

more weight is placed on the unevenness of market shares. If the diversity profile for one

market is higher than another market for all values of q, we can conclude that it is more

diverse unconditionally. Instead, if the diversity profile of one market intersects the diversity

profile of another market, we can only conclude that the first is conditionally more diverse

within some interval of q.

Figure VI presents the diversity profile for employment for q = 0 to q = 2 at the national

industry level for years 1990, 2000, 2010, and 2020. The profile reveals that when using

diversity measures that emphasize the number of firms (q < 1), diversity increased slightly

from 1990 to 2020. However, using diversity measures that emphasize evenness (q > 1), such

as HHI, diversity fell from 1990 to 2020. In contrast, balanced diversity of sales (q = 1) has

remained roughly constant over the last 30 years. A second trait of the diversity profile is

that the profiles for 2010 and 2020 are both steeper than 1990 and 2000 and also intersect

their profiles. The steeper profile in 2010 and 2020 indicates that market shares have become
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Figure VI
Employment Diversity Profiles

This figure presents the profile of diversity for industry-level employment for years 1990,
2000, 2010, and 2020. Diversity reflects the number of effective firms within an industry.
The diversity order q controls how much weight is given to unevenness versus richness.
Data are from NETS and include firms with at least 20 employees.

more uneven over time. However, the intersection indicates that we cannot conclude that

diversity decreased unconditionally from 1990 to 2020.

The diversity profile results provide a more nuanced view of diversity than is possible by

using just one indicator of diversity. In particular, the prior literature’s sole focus on HHI

overemphasizes the evenness of market shares and underemphasizes the importance of firm

counts. Thus, the common wisdom about the time series of diversity is a conditional result,

not an unconditional fact.

IV. Partitioning Diversity: Alpha, Beta, and Gamma

So far, we have only considered the diversity within a single market. However, it is also

important to understand how diversity varies at different levels of aggregation. Markets can
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be defined at national, state, and local levels, or by industry, product, and brand levels and

the disparity between aggregate and local HHI is an important finding in recent research on

concentration (Rossi-Hansberg, Sarte, and Trachter, 2020).

Recent research studies local concentration using HHI. However, HHI does not allow for

a systematic decomposition of aggregate HHI into local HHI. In contrast, true diversities

allow for aggregate diversity to be systematically decomposed, using common units, into

a component based on the diversity within a subdivision and a component based on the

diversity across subdivisions.

Following the terminology of ecology, gamma diversity (qDγ) is the diversity of the aggre-

gate market; alpha diversity (qDα) is the diversity of a particular market; and beta diversity

(qDβ) is the diversity between markets (Whittaker, 1972). For example, if gamma diversity

is the diversity of the entire economy, alpha diversity could be defined as the diversity within

industries and beta diversity as the diversity between industries. Likewise, alpha diversity

could represent the diversity within particular geographic regions and beta diversity could

represent the diversity between the regions.

Following Whittaker (1972), Jost (2007) defines the relationship between alpha, beta, and

gamma diversity as,

(8) qDγ =q Dα × qDβ,

where qDα is a weighted average of the true alpha diversity of each sub-market, defined as

qDα =

[

∑M
j=1w

q
j ×

qλj
∑M

j=1w
q
j

]
1

1−q

for q 6= 1,(9)
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and

1Dα = exp

[

−

M
∑

j=1

N
∑

i=1

wjpij ln pij

]

for q = 1,(10)

for j = 1, 2, . . . ,M sub-markets, where qλj is the diversity index for sub-market j, and wj is

the weight on the jth sub-market, such that
∑

wj = 1. Notice that qDα is a generalized mean

of the individual sub-markets’ diversities, where weights are raised to the order q to preserve

the relationship qDγ = qDα × qDβ. In practice, beta diversity is derived from Equation 8

by first calculating alpha diversity using data on sub-markets and gamma diversity using

pooled data.

As in the diversity of a single market, using true diversity versions of alpha, beta, and

gamma diversity, provides intuitive and meaningful measures of diversity. In particular, beta

diversity represents the number of distinct sub-markets, without any overlaps with any other

sub-market, needed to account for the total diversity, given the diversity within an average

sub-market, represented by alpha diversity. In particular, if the firms that operate in one

market are completely different than those in another market, there is greater diversity across

markets. If the same firms operate in both markets, there is less diversity across markets,

holding the diversity within the markets fixed.

As a numerical illustration, consider an economy with three industries and six firms, as

depicted in Panel A of Figure VII. Industry 1 includes 5 firms and produces an output of

$95 (Firm A: 40, B: 28, D: 3, E: 10, and F: 14); Industry 2 includes 2 firms and produces an

output of $60 (D: 37 and F: 23); and Industry 3 includes 4 firms and produces $85 (B: 12,

C: 40, E: 30, and F: 3).

The aggregate output is $240, equally contributed by the six firms, which means that

gamma diversity is 6; the aggregate diversity is equivalent to six firms with equal market

shares. At q = 1, the gamma diversity of 6 is decomposed into an alpha diversity of 3 and a

beta diversity of 2. This means that the diversity in this economy is equivalent to an economy



THE ANATOMY OF CONCENTRATION 33

A

B

D E

F

Market 1

D

F

Market 2

B

C

E

F

Market 3

(a) Observed Industry Diversity

1

2

3

Market X

4

5

6

Market Y

(b) Equivalent True Diversity

Figure VII
Decomposition Example

Panel A presents the market shares of firms A–F in three different markets, 1–3. Panel B
presents the decomposition of the three markets into effective firms and effective markets,
in which the total diversity in Panel A is equal to the total diversity in Panel B when
q = 1 (balanced diversity).

with two industries (1Dβ = 2), each with three unique firms (1Dα = 3) that command equal

market shares only in one industry, as represented in Panel B of Figure VII. Though there

are three actual industries, because some firms operate in multiple industries, the effective

number of industries is smaller. The greater is the overlap in firms across industries, the

fewer are the number of unique industries.

This example illustrates that using true diversities allows for a meaningful decomposition

of aggregate diversity into within-industry concentration in the average industry and across-

industry concentration. In contrast, though we can calculate HHIs of 0.30, 0.53, and 0.37 in

the example industries and a HHI of 0.17 in the aggregate, these numbers are not particular

intuitive on their own or in relation to aggregate diversity. Moreover, they do not account

for overlapping firms across industries. Thus, HHI values do not reveal how each firm and

industry contributes to total diversity.

A crucial axiom for decomposing diversity is that gamma diversity is always greater than

or equal to alpha diversity (Jost, 2007). If this axiom is violated, it would imply that one

sub-market has a larger diversity than the aggregate market. It would also imply that beta

diversity is less than one, which means that there is less than one unique market. Both
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implications are unappealing and non-intuitive. Jost shows that when the weights of sub-

markets are unequal, the only orders of q that satisfy this axiom are q = 0 (count diversity)

and q = 1 (balanced diversity). Because count diversity ignores market shares, its usefulness

is limited. This leaves balanced diversity as the only true diversity that allows for a consistent

decomposition of diversity and provides an intuitive measure. This means that widely used

diversity measures based on q = 2, including dominance diversity and HHI, do not provide

valid decompositions of aggregate diversity into local diversity. This provides an additional

advantage of balanced diversity over dominance diversity. In our empirical decompositions,

we will decompose gamma diversity using q = 0, 1, and 2, with the caveat that when q = 2,

the decomposition axiom may be violated.

V. The Decomposition of Diversity: Empirical Evidence

Rossi-Hansberg, Sarte, and Trachter (2020) show that while HHI has increased for in-

dustries defined at the national level, concentration has decreased for industries defined by

smaller geographic regions. To illustrate our proposed methods, we evaluate this finding by

decomposing national diversity into smaller regional components.

V.A. Gamma Diversity

First, we define gamma diversity using the widest definition available: the entire country.

Thus, a firm’s market share is defined by its total employment across all industries and

geographic regions as a fraction of the total employment of all firms in the data. This is

not intended to define a competitive market, but rather to quantify diversity at the largest

scale possible. We then decompose gamma diversity into sub-markets defined by industries,

counties, and industry-counties.

Column 1 of Table III presents gamma diversity estimates in the NETS data for 1990,

2000, 2010, and 2020, for count diversity, balanced diversity, and dominance diversity. Panel
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A of Figure VIII presents the time series of gamma diversity normalized by 1990 estimates.

In 1990, NETS reports about 761,000 firms with at least 20 employees. This number grew

to 864,000 by 2020, as illustrated in Figure VIII.

Table III
Industry, County, and Industry-County Diversity Decomposition

Industry County Industry-County

Year Gamma Alpha Beta Alpha Beta Alpha Beta

(1) (2) (3) (4) (5) (6) (7)

Panel A: Count Diversity (q = 0)

1990 760,968.0 941.4 808.3 349.9 2,174.7 3.9 197,419.8
2000 840,343.0 1,111.2 756.3 475.7 1,766.5 4.2 201,895.2
2010 865,102.0 1,087.2 795.7 464.0 1,864.3 4.0 216,096.8
2020 864,089.0 1,107.4 780.3 495.7 1,743.3 4.3 198,755.8

Panel B: Balanced Diversity (q = 1)

1990 84,911.6 649.9 130.7 497.9 170.5 6.4 13,223.9
2000 82,100.8 646.3 127.0 558.3 147.1 6.8 12,122.4
2010 91,098.8 708.7 128.5 626.8 145.3 7.2 12,599.1
2020 78,508.9 693.2 113.2 610.9 128.5 7.9 9,975.2

Panel C: Dominance Diversity (q = 2)

1990 4,033.0 186.5 21.6 230.8 17.5 5.5 727.0
2000 4,052.4 122.6 33.1 228.8 17.7 5.7 713.8
2010 2,888.6 71.1 40.6 283.4 10.2 6.4 452.5
2020 2,926.3 80.7 36.3 245.6 11.9 6.3 464.6

Notes: This table presents snapshots of alpha, beta, and gamma diversity of employment
diversity at the SIC 4-digit nationwide industry level, county level, and industry-county level
for diversity orders q = 0, 1, and 2. Alpha diversity reflects the number of effective firms
within an industry, county or industry-county. Beta diversity reflects the number of effective
industries, counties, or industry-counties. Gamma diversity reflects the total diversity as the
product of alpha and beta diversity. Data are from NETS and include firms with at least 20
employees.

Panel B of Table III reports that the balanced diversity across the entire economy in 1990

was equivalent to an economy with roughly 85,000 firms with equal shares of employment.
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Figure VIII
Diversity Decomposition: Within and Between Industries

This figure presents the time-series of alpha, beta, and gamma diversity of employment
at the SIC 4-digit nationwide industry level, from 1990 to 2020, normalized by 1990
values, for diversity order q = 0, 1, and 2. Alpha diversity reflects the number of effective
firms within an industry (within diversity). Beta diversity reflects the number of effective
industries (between diversity). Gamma diversity reflects the total diversity as the product
of alpha and beta diversity. Data are from NETS and include firms with at least 20
employees.

Balanced gamma diversity declined by about 7% to 78,500 effective firms in 2020. In contrast,

dominance diversity at the national level fell by about 27% from 1990 to 2020. These

estimates represent the total diversity across the entire economy. Next, we decompose these

aggregate estimates into diversity within smaller subdivisions and diversity across smaller

subdivisions.
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V.B. Industry-Level Diversity

Columns 2 and 3 of Table III decompose the national level of diversity into a within-

industry and between-industry component, using 4-digit SIC code definitions. Panel B of

Figure VIII presents the time series of average within-industry diversity. Balanced diversity is

649.9 effective firms in 1990. In comparison, the dominance diversity of the average industry

in 1990 is 186.5 effective firms. Consistent with prior evidence on HHI, dominance diversity

in the average industry fell significantly from 1990 to a low in 2013, and then partially

reversed. In contrast, balanced diversity was slightly higher in 2020 than in 1990.

Next, column 3 of Table III and Panel C of Figure VIII report beta diversity at the industry

level. The nearly constant solid line represents count diversity and indicates that the number

of industries is close to identical across years. Using balanced diversity, the beta diversity

between industries remained constant from 1990 to 2010 at around 128 effective industries,

then fell to 113 effective industries in 2020. These units imply that the observed diversity

in 1990 across industries is equivalent to an economy with 113 equally-sized industries, in

which no firms operated in more than one industry. The decline in beta diversity reflects

an increase in the prevalence of firms operating in multiple industries. In contrast, the beta

dominance diversity increased substantially from 1990 to 2010, indicating that conglomerate

firms with large employment shares became less common, and industries were less likely to

be spanned by large firms.

These results are important for at least two reasons. First, true diversities provide an

intuitive meaning to concentration. In particular, using dominance diversity, we can char-

acterize the average industry in 1990 as one with 186.5 symmetric firms. In 2010, there

were 71.1 symmetric firms. If we use balanced diversity, there were 649.9 symmetric firms

in the average industry in 1990, rising to 708.7 symmetric firms in 2010. This provides a

more meaningful and intuitive interpretation of concentration than does HHI. For instance,

though the change in dominance diversity represents a substantial decline of 62%, it is not
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obvious how an industry with 187 equally-size firms is substantially different economically

than one with 71 equally-sized firms.

Second, these results provide a quantitative estimate of the importance of within- versus

between-industry diversity for national diversity. Based on balanced diversity, the results

show that the decline in aggregate gamma diversity began around 2010 and was driven in

part by a decline in diversity between industries, even as within-industry diversity remained

relatively stable from 2012 to 2020. This presents an explanation for changes in diversity

that is not obvious from observing industry averages alone.

V.C. County-Level Diversity

Figure IX and columns 4 and 5 of Table III present the decomposition of aggregate diversity

by county. Based on balanced diversity, there were about 500 effective firms in the average

county in 1990. The between-counties diversity was only 170.5 for employment, relative to the

roughly 2,500 counties in the sample. This shows that the average firm-share of employment

is highly similar across counties. From 1990 to 2020, balanced diversity within the average

county increased by 23% in the average county, while between-county balanced diversity

decreased by about 25%. This reveals that the decrease in aggregate gamma diversity at the

national level was driven by less diversity across counties, even while within-county diversity

increased. These results indicate that as firms enter new geographic areas they increase the

diversity of employment at the local level and also make local employment markets more

homogenous across counties. The same rough patterns appear for dominance diversity which

indicates that the homogenization across counties is driven by firms of all sizes.

To illustrate the importance of the choice of q, Figure X presents the cross-sectional vari-

ation in diversity across counties in California in 2020. These figures represent the abnormal

level of diversity, relative to population for q = 0, 1, 2. In particular, abnormal diversity is

the residual from the regression ln(1+qD) = α+β ln(1+population)+ε, which is estimated
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Figure IX
Diversity Decomposition: Within and Between Counties

This figure presents the time-series of alpha and beta diversity of employment at the
county level, from 1990 to 2020, normalized by 1990 values, for diversity order q = 0, 1,
and 2. Alpha diversity reflects the number of effective firms within a county or industry-
county. Beta diversity reflects the number of effective counties or industry-counties. Data
are from NETS and include firms with at least 20 employees.

over all counties in the U.S. Using count diversity, California counties tend to have less than

normal numbers of firms given the size of their populations. However, using dominance di-

versity, California counties tends to have more effective firms than predicted based on their

populations. This implies that when more weight is given to a firm’s employment share,

counties in California tend to be more diverse than average. This suggests that the employ-

ment shares in California are relatively more even than in other places. This pattern also

varies across California counties. For instance, while the counties connecting Sacramento to

the Lake Tahoe area become more diverse when more weight is given to employment shares,

Los Angeles county becomes less diverse. This indicates that in Los Angeles, employers

with large shares of employment decrease the number of effective firms, while the counties

near Sacramento are characterized by relatively even market shares. Panel B represents the
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Abnormal Diversity per Capita in California in 2020

This figure presents abnormal diversity for q = 0 (Panel A), q = 1 (Panel B), and q = 2 at
the county level in California in 2020. Abnormal diversity is the county-level residual in
a regression of log(1+qD) on a constant and log(1+population). Darker values represent
higher abnormal diversity per capita. Categories of abnormal diversity are based on
quartile values across all counties in the US. Internet Appendix Figure III presents maps
of the lower 48 states. Data are from NETS and include firms with at least 20 employees.

balanced version of these two extremes. Maps of the entire U.S. are reported in Internet

Appendix Figure III.

V.D. Industry-County-Level Diversity

Figure XI and columns 6 and 7 of Table III decompose aggregate diversity into industry-

counties. The within-market balanced diversity in the average industry-county increased

significantly from 6.4 firms in 1990 to a peak in 2009 and then decreased slightly by 2020 to

7.9 firms, which still represents a 23% increase from 1990 levels. In contrast, beta diversity of
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employment between industry-counties decreased significantly from 13,224 effective industry-

counties down to 9,975. A similar pattern appears for dominance diversity. These results

indicate that industry-counties have become significantly more homogenous over time, even

as the diversity within the average industry-county has increased.

These results confirm the findings in Rossi-Hansberg, Sarte, and Trachter (2020), who show

that HHI decreased within local levels, while it increased at the national level. We extend

their results because the decomposition method we use allows us to quantify these trends

using intuitive, but precise estimates. Using effective firms and industry-counties allows

us to quantify the effect originally documented in Rossi-Hansberg et al. in a meaningful

way. Moreover, to identify the effects of large firms on this trend, Rossi-Hansberg et al.

compare HHI measures after dropping large firms. In our setting, by using a higher order

of q, we put more weight on the unevenness of market shares. We find that the within

industry-county dominance diversity of sales remained roughly constant over time, but the

between-industry-county diversity fell considerably.

V.E. Diversity Profiles at the County and Industry-County Level

Figure XII provides diversity profiles at the county and industry-county levels for years

1990, 2000, 2010, and 2020. Because the profiles are steep, we take the log values of diversity

to help understand the patterns by year. The profiles reveal that alpha diversity in 2020 is

unconditionally higher than diversity in 1990 at both the county and industry-county levels.

This means that for any choice of weighting of richness and evenness, diversity in 2020

was substantially higher than in 1990. However, in 2020, the profile at the county-level is

significantly steeper, indicating greater unevenness in employment shares within the average

county.
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Figure XI
Diversity Decomposition: Within and Between Industry-Counties

This figure presents the time-series of alpha and beta diversity of employment at the
industry-county level, from 1990 to 2020, normalized by 1990 values, for diversity order
q = 0, 1, and 2. Alpha diversity reflects the number of effective firms within a county
or industry-county. Beta diversity reflects the number of effective counties or industry-
counties. Data are from NETS and include firms with at least 20 employees.
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Figure XII
Diversity Profiles at County and Industry-County Levels

This figure presents the profile of log alpha diversity at the county level (Panel A) and
industry-county level (Panel B) for years 1990, 2000, 2010, and 2020. Alpha diversity
reflects the number of effective firms within a county or industry-county. The diversity
order q controls how much weight is given to unevenness versus richness. Data are from
NETS and include firms with at least 20 employees.
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VI. Additional Tests

VI.A. Non-Imputed Data

As mentioned previously, Section A6 of the Internet Appendix provides results of our

analysis using only non-imputed data in NETS. The absolute values of effective firms are

mechanically reduced because our sample is smaller. However, the time series patterns and

diversity profiles provide comparable analysis as using the full dataset. The qualitative

patterns are nearly identical in the non-imputed data as in the imputed-data. In particular,

at the national level, dominance diversity of the average industry declined, consistent with

prior research, while balanced diversity increased. Likewise, the decomposition of aggregate

diversity into county and industry-county diversity follows nearly identical patterns as in the

full dataset. The robustness of these results mitigates concerns that imputation of data in

NETS drives our results.

VI.B. Estimates of Sales Diversity: 1963–1992

One of the advantages to the analytic formulations of diversity in Equations 5 and 6 is that

they allow diversity to be estimated with relatively little information. Under an assumption

of lognormal or Pareto-distributed firm sizes, if the total number of firms N is known and

if we have parameter estimates of σ and α, we can calculate qD. Moreover, given estimates

of HHI and N , we could back out the distribution parameters, then calculate diversity for

any value of q under each firm-size distribution assumption. This analysis depends on the

validity of the distributional assumptions, but if these assumptions are reasonably close to

reality, then the analytic formulas provide a reasonable estimate of diversity.

Unfortunately, it is rare to observe all necessary parameters in public data. For example,

though the U.S. Economic Census reports the number of firms per industry, it only reports

HHI for the top 50 firms in the industry. To estimate the parameters, we require HHI for

the entire population of firms, not just the top 50. To address this limitation, we estimate
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σ and α using the 4-, 8-, 20-, and 50-firm concentration ratios reported in the Economic

Censuses from 1963 to 1992 using the machine-readable tabulations provided by Keil (2017).

In particular, for a given value of N in the Census reports, we find the parameter value that

produces an estimated concentration ratio from a Monte Carlo simulation that is nearest the

concentration ratio reported by the Census. The Census only reports enough information to

estimate sales diversity at the 4-digit SIC code-level for the manufacturing sector.

Internet Appendix Figure II reports the results of the simulation. We find that diversity

for each diversity order q declined from 1963 to the mid 1970s, but then increased through

1992. Dominance diversity was roughly equivalent in 1992 as it was in 1963. The increase

in diversity during the 1970s and 1980s may reflect the general trend towards deregulation.

The figure also reveals that the three diversity measures comove closely over time. This

indicates that the driving force is the number of firms in the sector, not the evenness of their

market shares. Indeed, the estimate of σ is highly persistent over the sample period.

This analysis illustrates the benefit of the analytical formulation of diversity under an

assumed distribution of firm sizes. If a distributional assumption is reasonable, to calculate

the full set of diversity measures only requires an estimate of the shape parameter and the

number of firms in the market.

VII. Conclusion

Though concentration is ubiquitous in economic research, there is little discussion of its

underlying assumptions or how best to measure it. This paper adopts advances from ecology

to introduce a generalized measure of economic diversity that makes the underlying assump-

tions explicit. This measure has three key advantages. First, it allows the researcher to vary

the weight given to the two components of diversity: the number of firms and their market

shares. By using a range of weightings, this measure provides a more complete understand-

ing of diversity. Second, the measure is in units of ‘effective firms,’ defined as the number of
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equally-sized firms needed to match the observed diversity. Using these units allows for an

intuitive understanding of diversity and also satisfies the replication principle which implies

that a doubling of the number of effective firms is equivalent to a doubling of diversity. Third,

the measure can be systematically decomposed into components that reflect the diversity

within an industry and the diversity between industries. The most widely-used measure of

concentration in economics, HHI, lacks these advantages.

We apply this method to the diversity of employment. We show that stylized facts of

large increases in concentration are conditional on the use of diversity measures, such as

HHI, that over-weight market shares relative to firm counts. As an alternative to HHI,

we present balanced diversity which gives equal weight to firm counts and market shares.

We show that balanced diversity has an equivalent economic meaning as HHI, but displays

superior statistical properties and less small-sample bias than HHI. In contrast to the stylized

facts, we find that employment diversity increased, rather than decreased, when measured

with balanced diversity. Further empirical decompositions show that well-known stylized

facts are sensitive to methodology choices.

We believe the diversity methods we have presented here provide a useful and flexible

framework for future economic research. Though we have used market shares of firms to

describe the method, it is not limited to this setting. For instance, in unreported tests, we

use our decomposition approach to quantify the the rise in ‘niche’ household consumption as

documented in Neiman and Vavra (2023). In particular, we find that the average household

purchased 311 effective products in 2004, but only 221 in 2019, a decline of about 20%. At

the same time, the number of effective households increased by 64%, indicating a rise in

‘niche’ households. Another use of this method could be to calibrate the diversity parameter

q to maximize an objective function, such as a correlation between diversity and markups.

Alternatively, this method could help motivate new theoretical research that incorporates a

broader definition of diversity.
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In addition, the broader ecology literature provides many future avenues for economics

research. For example, ecologists have developed diversity measures that account for shared

evolutionary history and biological traits. A natural analogy for economic diversity is to

account for the similarity of firms’ production functions and customer bases. Another avenue

for future research is to apply new methods from ecology to address sampling bias. Typical

ecological surveys are likely to under-represent rare species, which will affect estimates of

diversity. Economists could use ecological sampling methods to estimate the size of the

informal economy that is absent in administrative survey data.
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Internet Appendix

“The Anatomy of Concentration: New Evidence from a Unified Framework”

Kenneth R. Ahern, Lei Kong, and Xinyan Yan

A1. Cournot Competition and Generalized Diversity

In this section we show how diversity is related to profitability in Cournot models of

competition. First, we provide numerical examples to show that HHI is not a sufficient

statistic for profitability under symmetric or asymmetric cost assumptions. Then we provide

analytical solutions that demonstrate the same result.

The non-cooperative Cournot model of competition generates market shares based on the

cost functions of the firms. If cost functions are identical, then all firms have equal market

shares, so there is perfect evenness, and all firms have equal profits. In this case, only the

number of firms (richness) matters for profits. More firms reduce total profits in aggregate.

If cost functions are not identical, then firms with lower costs will have higher market shares

and there will be unevenness, which will affect diversity.

For example, assume a linear aggregate demand curve P (q) = A−b
∑n qi, where q =

∑n qi

and qi is the output of firm i. Firm i profit is πi = P (q)qi − ciqi, where ci is the marginal

cost of firm i. The equilibrium output per firm qi, total output Q and P is as follows,

qi =
1

b

(

A+
∑n ci

n + 1
− ci

)

Q =
1

b

(

nA−
∑n ci

n + 1

)

P =
A+

∑n ci
n+ 1
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I.A. Numerical Examples

A.1. Example 1

Let A = 10 and b = 1 in a market with two firms who have zero marginal costs, each firm

has an equal market share and produces 3.3 units of output at a price of 3.3. The HHI of

this market is 0.5 and the aggregate profit is 22.2.

If we add another firm with zero marginal cost, each firm produces 2.5 units at a price of

2.5. The HHI is 0.33 and the aggregate profit is 18.75. Both markets are perfectly even, but

the second market has more diversity (less concentration) because it has more richness.

In the third market, assume that firm 1 has zero marginal costs, but two other firms each

have marginal costs of 3. In this case, the low-cost firm produces 4 units and the other two

firms produce 1 unit at a price of 4. Therefore, the low-cost firm has a market share of 0.67

and the other two firms have market shares of 0.167. Now, the HHI of this market is 0.5,

equivalent to the first market with two symmetric firms.

Compared to the first market, HHI decreased with the addition of another firm, but

increased by the unevenness in their cost functions. In this case, these two forces balanced

such that the HHI remained at 0.5. However, the aggregate profit in the third market is 18,

compared to 22.2 in the first market, even though the HHI is the same. Thus, HHI does not

predict profitability.

A.2. Example 2

Consider a more extreme example using the same aggregate demand function, but different

numbers of firms and cost functions. In the first market there are five firms. The low-cost

firm has a marginal cost of 2 and the four high cost firms have marginal costs of 3.2. At a

market price of 4.13, the low-cost firm will sell 2.13 units and earn profit of 4.55, while the

high-cost firms will each sell 0.93 units and earn profits of 0.871. The low-cost firm has a

market share of 0.36 and the high-cost firms each have market shares of 0.16. This generates
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an HHI of 0.233 in a market in which aggregate profit is 8.03 and average profit per firm is

1.606.

In the second market, there are 31 firms. This serves to decrease concentration. However,

assume that the low-cost firm has zero marginal costs, while the other 30 firms have marginal

costs of 3.1. At a market price of 3.215, the low-cost firm will sell 3.22 units and earn profits

of 10.34. The remaining firms each sell 0.119 units and earn profits of 0.014. The greater

disparity in costs leads the low-cost firm to command 0.47 of the market, while each of

the high cost firms has a market share of 0.0175. This generates an HHI of 0.234, nearly

identical to the first market. However, the aggregate profit is 10.77 and average profit per

firm is 0.347.

This simple example shows that two markets with the same HHI have different aggregate

profits and different profits per firm. Thus, this example demonstrates that HHI is not a

sufficient statistic in a Cournot model to identify profitability.

I.B. Analytic Relationships

One can show that a firm’s profit in this basic Cournot model can be expressed as πi =

P ⋆

ε
qimi, where ε is the price elasticity of demand at the equilibrium quantity Q⋆ and price

P ⋆, and mi is firm i’s market share. Therefore, the aggregate profit in this simple Cournot

model is related to HHI as follows:

(A.1)

n
∑

πi =
Q⋆P ⋆

ε
HHI

This shows a direct relationship between aggregate profit and HHI. However, the same forces

that shape HHI, richness and evenness of firm cost structures, also influence elasticity and the

equilibrium quantity and price. Therefore, it is possible to have the same HHI for different

profit levels.
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We can rewrite the equation for sum of profit using the fundamentals of the market. First,

normalize A = 1 for simplicity, then,

(A.2)

n
∑

πi =
1

b

n−
∑n ci

n + 1
HHI

Notice that the first part of this expression is determined solely by the richness of the

market. Under mild assumptions about costs, the unevenness of costs does not influence

the total profit through the market equilibrium and elasticity channel. Instead, the HHI

component captures both richness and evenness of costs.

In a symmetric Cournot model, where all firms have equal costs, we can rewrite the

equation for aggregate profits as

(A.3)

n
∑

πi =
(1− c)2

b

(

n

n+ 1

)2
1

n

where 1
n
is the value of HHI when market shares are equal. Thus, for symmetric Cournot,

only richness is related to aggregate profit.

A2. The Trade off Between Richness and Evenness: Elasticity

There is a trade-off between richness and evenness such that a reduction in true diversity

can be obtained by reducing richness or reducing evenness. In particular, for any order q,

when evenness is maximized, true diversity equals to the number of species, n. If we maintain

perfect evenness, but remove one species, true diversity will equal n − 1. Alternatively, we

can reduce diversity by transferring abundance and making the distribution uneven. Starting

from a perfectly even assemblage, in which each species has a relative abundance of 1
n
, the

transfer that provides the most unevenness for the same amount of transfer is to increase the

relative abundance of one species by ∆ > 0 through transfers of equal amounts from all other

species equal to ∆
n−1

. We denote the relative abundance of the species with higher abundance
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as pmax = 1
n
+∆. For each order q, there is a value of ∆ such that both methods (decreasing

richness or decreasing evenness) will generate the same reduction in true diversity.10

We can write this equivalence as follows:

(A.4)

[(

1

n
+∆

)q

+ (n− 1)

(

1

n
−

∆

n− 1

)q] 1

1−q

= n− 1.

When q = 1, the above equation is undefined. In the limit, as q → 1, the equation is:

(A.5) e−(
1

n
+∆) ln( 1

n
+∆)−(n−1)( 1

n
−

∆

n−1) ln(
1

n
−

∆

n−1) = n− 1.

The left-hand sides of these equations reflects a change in true diversity by decreasing

evenness while holding fixed the richness n. From the perfect evenness benchmark in which

each species has a share 1
n
, we add ∆ to one species and subtract the same amount from

the other species, split equally across the other n − 1 species. The right-hand side reflects

a change in true diversity by decreasing richness while holding evenness fixed. With perfect

evenness, true diversity simply decreases by one. Solving this equation for ∆ explains how

large ∆ must be for a given n and q, to reduce diversity by one.

To convert ∆ into a more intuitive concept, we calculate the elasticity of substitution, ε,

between pmax and n. This represents the percentage increase in pmax (a measure of evenness)

that is required to maintain the same diversity for a one percent decrease in richness.

(A.6) ε =

∆
1

n

− 1
n

= −∆n2

10A trivial solution is ∆ = − 1

n
which holds for all q. It is also the only solution if q = 0.
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To our knowledge, a generalized closed-form solution for ε as a function of n and q does

not exist. However, closed form solutions exist for q = 0.5, 1, and 2 as follows:

(A.7) ε =



























4− 3n if q = 0.5 and n > 4
3

1− (e− 1)n if q = 1

−n if q = 2

First, note that the elasticity depends on n. This is consistent with Jost (2010), who shows

that the decomposition of diversity into independent evenness and richness components is

impossible. In other words, the elasticity of substitution between evenness and richness that

maintains diversity depends on the level of richness, n.

Second, note that for a fixed level n, the elasticity becomes larger in magnitude as q

increases. This means for the same decrease in diversity caused by a reduction in the number

of firms, the percentage decrease in evenness must be larger for larger q. For example, a

change from a diversity of 8 to 7 represents a 12.5% decrease in richness. To achieve the

same change through evenness requires an increase of 100% in pmax if q = 2, an increase of

159% if q = 1, and an increase of 250% if q = 0.5. This reflects that lower orders of q are

more sensitive to richness and less sensitive to evenness. Therefore, to maintain the same

level of diversity as richness changes requires a larger change in evenness when q is low.

Next, for a fixed level q, the magnitude of the elasticity of substitution increases as n

increases. For example, if q = 1, to maintain constant diversity, a 1% decrease in richness

requires a 16.2% increase in pmax if n = 10 and a 33.3% increase if n = 20. This reflects

that the tradeoff between richness and evenness requires larger changes in unevenness when

richness is large.

A final note of interest is that when q = 2, the solution for ∆ is 1
n
. This means that to

decrease the true diversity of a perfectly even market by one, one firm must have exactly

double the share of the share in an even market. For example, in a market with four equally
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sized firms, where each firm has a share of 25%, the true diversity is four. If we double the

share for one firm, taking away equally from the others, so we have shares of 50%, 16.7%,

16.7%, and 16.7%, true diversity is exactly three. Likewise, a market with five equally-size

firms with shares of 20% has a true diversity of five, while a market with five firms with

market shares of 40%, 15%, 15% 15%, and 15%, has a true diversity of four, when q = 2.

In sum, this exercise shows that the trade-off between evenness and richness depends on

both the level of n and the order q. When q is small, to maintain diversity as richness falls

requires a larger increase in unevenness than when q is larger. Because the large majority

of research on concentration in economics assumes an order of q = 2, which is relatively

more sensitive to unevenness than to richness, to find equal diversity between two different

assemblages requires larger changes in richness to offset smaller changes in unevenness. This

will tend to under-emphasize the entrance and exit of firms relative to changes in market

shares of dominant firms. However, if the same markets were analyzed using smaller orders

of q, the emphasis would be reversed.

A3. Diversity in Lognormal and Pareto Distributions

Hart (1975) shows that many common measures of concentration in economics, including

HHI and entropy, can be expressed in terms of moments of moment distributions. We extend

his analysis to provide closed form expressions of balanced diversity and dominance diversity

for the two most common distributions of market shares, log-normal and Pareto.

Following Hart (1975), assume N firms have sizes distributed according to F (z), with

γr =
∑

zri /N equal to the rth moment about zero. Let α0 =
∑

z/N be the arithmetic

mean of F (z) and log α0g =
∑

log z/N be the geometric mean of F (z). The first moment

distribution of F (z) is defined as F1(z) =
∫ z

0
zf(z)dz

∫

∞

0
zf(z)dz

. The arithmetic mean of F1(z) is α1 =

γ1
γ2

=
∑

z2/
∑

z and its geometric mean is log α1g =
∑

z log z/
∑

z.
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Using these moment distributions, Hart (1975) shows that for any distribution, HHI is

equivalent to

(A.8) HHI =
α1

Nα0

and entropy is equivalent to

(A.9) Entropy = − logα1g + logNα0.

Using these relations, we can derive true diversity as a function of q for any distribution.

III.A. True diversity with lognormal or Pareto-distributed firm sizes

First, assume that firm size is distributed log-normally with parameters µ and σ. Using

the moments of the moment distributions, we find that diversity of order q when shares are

distributed lognormally (qDL) is

(A.10) qDL = Ne−
σ2

2
q.

The analytic form of qDL are independent of the location parameter (µ). Diversity repre-

sents a scaling of the number of firms in the market N , where the shape parameters σ creates

a shrinkage factor. If σ = 0 in the lognormal distribution, then e−σ2

= 1 and market shares

are perfectly even. As σ increases, market shares become less even and true diversity shrinks.

The size of q determines the strength of the shrinkage factor, where q = 0 is equivalent to

richness.

Hart (1975) does not derive a closed-form solution for Pareto distributed data. To derive

the expression for true diversity for Pareto-distributed data, we first derive α0, α1, and logα1g

for Pareto distributions with scale parameter k and shape parameter α. First, α0 is the first

moment of the distribution, which is α0 = k
(

α
α−1

)

. Second, the first moment distribution of
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the Pareto distribution is F1(z) = 1−
(

k
z

)α−1
. α1 is the arithmetic mean of the first moment

distribution, which is equivalent to γ2
γ1

= k
(

α−1
α−2

)

. Next, log α1g =
∫

log(z)dF1 = log k+ 1
α−1

.

The same relations can be used for higher moment distributions necessary for larger q.

Substituting the moments from the Pareto distribution into Equations A.8 and A.9, and

converting to true diversities yields:

qDP = N ·
α(α− q)

1

q−1

(α− 1)
q

q−1

if q 6= 1 and α > q,(A.11)

1DP = N ·

(

α

α− 1

)

e−
1

α−1 if q = 1 and α > 1.

Note that the expression for qDP requires that α > q. This is because the higher moments

of the Pareto distribution do not exist unless α is larger. In particular, the variance of the

Pareto distribution is only defined if α > 2. Because HHI and 2D are based on the second

moment of the firm size distribution, they are not analytically defined in Pareto distributions

with α ≤ 2. However, much of the empirical evidence on the firm size distribution estimates

that α is less than two. In contrast, the expression for 1DPareto requires that α > 1, which

is consistent with empirical literature, though some studies estimate that α = 1 in a Zipf

distribution.

Equivalent to lognormally-distributed market shares, true diversity in Pareto data repre-

sents a shrinkage of N , based on the shape parameter α. In the Pareto distribution, as α

approaches infinity, the distribution approaches perfect evenness.

A.1. Substitution and Elasticity

Given the analytic solutions for true diversities in lognormal and Pareto distributions, we

can calculate the marginal rate of substitution between richness (N) and the shape parameter
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of the distributions. These are:

MRS(qDL) = Nσq

MRS(qDP ) =
−Nq

α(α− 1)(α− q)

These represent the trade-off between N and the shape parameter. The MRS of qD is

always increasing in q, which means that 2D is more sensitive than 1D.

We can also calculate the elasticities of substitution between N and the shape parameters.

These are the elasticities of the shape parameter with respect to N ,

Elasticity(qDL) =
1

qσ2

Elasticity(qDP ) =
−(α− 1)(α− q)

q

These elasticities reflect the percentage change in the shape parameter required to hold true

diversity constant for a 1% increase in N (the number of firms).

A.2. Which q is best?

Given that the lognormal and Pareto distributions are the most likely distributions for the

firm size distribution, we can use the analytic expressions for diversity in each distribution to

evaluate the relative merits of different orders of q, in particular, balanced diversity (q = 1)

and dominance diversity (q = 2).

First, in the Pareto distribution, true diversity is only defined analytically when the shape

parameter α is greater than q. Nearly all estimates of α in empirical research on the firm size

distribution are close to one. In particular, HHI and 2D are based on the second moment

of the distribution of firm sizes. Because the second moment of a Pareto distribution is

undefined if α < 2, HHI and 2D are not mathematically valid measures of concentration if

firm sizes are distributed following Pareto distributions with α < 2, as is commonly found
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in the data. Though it is possible to calculate HHI using data that is drawn from a Pareto

distribution with α < 2, the estimates will be biased.

In contrast, Balanced Diversity with q = 1 can accommodate nearly all distributions of

market shares, except when α = 1, which is equivalent to a Zipf’s law. While any true

diversity with q < 1 will provide reliable statistics for Pareto distributions, because we are

generally interested in distributions where α ≥ 1, there is no advantage from using lower

values of q because q < 1 gives excess importance to firm counts over unevenness of market

shares.

Second, in log-normally distributed data, there are no pathological diversity measures,

as in Pareto-distributed data. However, q = 1 represents a unique value for diversity of

lognormally distributed data. In particular, when q < 1, the elasticity of inverse variance

with respect to firm counts is magnified; when q > 1, the elasticity is attenuated. Instead

when q = 1, the elasticity is exactly equal to the inverse variance of the distribution. The

specialness of q = 1 is also apparent in the marginal rate of substitution (MRS) for lognormal

data. Holding richness (N) and standard deviation (σ) constant, when q < 1, MRS is

attenuated; when q > 1, MRS is magnified. At q = 1, MRS is Nσ, which means that rate

of substitution between richness and evenness is the product of the standard deviation and

richness.

Balanced diversity (q = 1) is also especially suited to log-normal data because it is based

on logarithms of moments, as shown in Equation A.9. By taking the log of the first moment,

the entropy-based measure 1D transforms the log-normally distributed data into symmetric,

Gaussian-distributed data. In contrast, 2D is based on an arithmetic mean of skewed data,

which provides a less valid measure of central tendency.

In summary, in data that follows either a Pareto or lognormal distribution, 1D has superior

statistical properties compared to 2D.
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A4. Small-Sample Bias of qD

As discussed above, qD is only defined in Pareto distributions if q < α. However, qD

can always be calculated using sample data. This means that the empirical estimates of qD

when q < α are biased upwards. Similarly, HHI is biased downward in such samples, because

the variance is infinite. Intuitively, as a distribution becomes more skewed, the likelihood

of an extreme tail observation is smaller in smaller samples. This biases the estimated

concentration downward, and the estimated true diversity upward. This is true for both

Pareto and lognormally-distributed data.

In this section, we consider the small-sample properties of 1D and 2D in lognormal and

Pareto distributed data. First, we consider deviations between population and sample sta-

tistics in our NETS data. Second, we consider difference between population and sample

statistics in simulated data.

IV.A. Small-Sample Bias in NETS Data

Using the analytic forms of 1D and 2D, we can match the summary statistics in Table I. In

particular, we substitute q, N , and qD from Table I into Equations A.10 and A.11 and solve

for the shape parameter values. Alternatively, for a given N , we find the shape parameter

such that the expected diversity value across 10,000 simulated distributions of employment

size matches the observed diversity values from NETS in Table I. Thus, the first method

finds parameter values under the assumption that the sample data equals the population

data, while the second method finds parameter values under the assumption that the sample

data does not reflect the population. The closer are these values for a given q, the smaller is

the small-sample bias in NETS.

Internet Appendix Table I presents the results of the calibration exercise. The parameter

estimates from the first method are presented under the columns labelled ‘Analytic,’ and
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Internet Appendix Table I
Calibration to Lognormal and Pareto Distributions

lognormal (σ) Pareto (α)

Year Analytic Data Analytic Data

Panel A: Balanced Diversity (q = 1)

1990 0.8609 0.8576 1.8900 1.8505
2000 1.0411 1.0386 1.6994 1.6206
2010 0.9240 0.9213 1.8143 1.7570
2020 0.9668 0.9638 1.7690 1.7041

Panel B: Dominance Diversity (q = 2)

1990 1.7325 2.0510 2.0258 1.1070
2000 1.8092 2.1868 2.0195 1.0625
2010 1.8580 2.3101 2.0162 1.0204
2020 1.9174 2.4549 2.0129 0.9752

Notes: This table presents estimated shape parameters for lognormal and Pareto
distributions, calibrated to observed number of firms and diversity as reported in
Table I of the main paper. Analytic values are calibrated to the analytic solutions
for 1D and 2D in Equations A.10 and A.11. Data values are calibrated to match
the observed data.

the estimates from the second method are presented under the columns labelled ‘Data.’ The

analytic values are much closer to the values inferred from the data when q = 1 than when

q = 2 for both lognormal and Pareto distributions. In particular, the deviation between data-

derived estimates of the shape parameters versus analytically-derived values is less than 1%,

on average, compared to more than 50% for dominance diversity. This implies that balanced

diversity calculated using sample data better reflects population-level diversity than does

dominance diversity. As mentioned above, the limitation of dominance diversity for Pareto

distributions is severe. As shown here, dominance diversity does a poor job of matching

a Pareto distribution because the Pareto distribution is only defined for α > q, though to

match the observed values in the data, α < 2.
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As a side note, these results also indicate that neither Pareto nor lognormal distributions

are fully supported by the data. If the data were drawn from a lognormal or Pareto dis-

tribution, the shape parameters estimated from the data should be identical for q = 1 as

q = 2. The results in Internet Appendix Table I suggest that when more weight is placed on

the right-tail values using dominance diversity the distribution must have higher variance to

match the data.

IV.B. Small-Sample Bias in Simulated Data

To investigate the small sample properties of 1D and 2D in Pareto and lognormal distri-

butions, we compare their analytic values to simulated sample estimates. In particular, we

calculate the mean value of 1D and 2D across 10,000 random samples of a given sample size

N and shape parameter α or σ. We then calculate the ratio of the empirical estimate of 1D

and 2D to their analytical values from Equations A.10 and A.11. The results are plotted in

Internet Appendix Figure I.

The figures indicate that 2D exhibits more severe small-sample bias than 1D. For example,

in Pareto-distributed data with α = 3, the empirical estimate of 2D in a sample of 25 firms

is 12.3% larger than the true analytical value. In contrast, the empirical estimate of 1D is

1.6% larger. As α gets smaller, and the distribution becomes more skewed, the small-sample

biases increase. When α = 2.5, in a sample of 25 firms, the empirical estimate of 2D is 39.6%

larger than the analytical value, while 1D is 3.7% larger. Even in a sample of 5,000 firms,

2D is 9.6% above the analytical value when α = 2.5. When α < 2, the analytical value of 2D

is undefined. As α approaches 2, the ratio of the empirical estimate of 2D to the analytical

value goes to infinity. For α = 1.5, 1D is defined but biased in small samples. In a sample

of 250 firms, the empirical estimate 1D is 37.5% larger than its analytical value.

The small sample biases are larger in lognormally-distributed data, though the biases are

larger for 2D than 1D. For example, when σ = 1.0 in a sample of 100 firms, the empirical

estimate of 1D is 1.8% larger than the analytical value compared to 13.3% for 2D. As the
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distribution becomes more skewed, the biases increase. When σ = 1.8, in a sample of 100

firms, the empirical estimate of 1D is 35.9% larger than the analytical value, whereas the

empirical estimate of 2D is 265% larger than the analytical value.
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Internet Appendix Figure I
Small Sample Bias of Diversity Estimates

This figure presents the ratio of simulated diversity estimates to their analytical values
for 1D (blue dashed lines) and 2D (green dotted lines) in data that follows either a Pareto
distribution (subpanels A, C, and E) or a lognormal distribution (subpanels B, D, and
F). Simulated observations are the mean values of 1D and 2D across 10,000 samples,
each with size N and the distribution parameter indicated in the subpanel. For Pareto
distributions with α < 2, 2D is infinite.
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A5. Using Analytic Formulas to Estimate Diversity from 1963 to 1992

Given the analytic formulations of diversity in Equations 5 and 6 in the main paper, it is

possible to estimate diversity if the total number of firmsN is known and if we have parameter

estimates of σ assuming lognormally-distributed firm sizes or α assuming Pareto-distributed

firm sizes. For example, given estimates of HHI and N , we could back out the distribution

parameters, then calculate diversity for any value of q under each firm-size distribution

assumption. This analysis depends on the validity of the distributional assumptions, but

if these assumptions are reasonably close to reality, then the analytic formula provide a

reasonable estimate of diversity. Unfortunately, it is rare to observe all necessary parameters

in public data. For example, though the U.S. Economic Census reports the number of firms

per industry, it only reports HHI for the top 50 firms in the industry. To estimate the

parameters, we require HHI for the entire population of firms, not just the top 50.

To address this limitation, we estimate σ and α using the 4-, 8-, 20-, and 50-firm con-

centration ratios reported in the Economic Censuses. These concentration ratios represent

estimates of the probability mass in the upper tail of the firm-size distribution. Under the

assumption of lognormal or Pareto distributions, we can estimate the entire distribution

using these summary statistics. Because concentration ratios are based on rank orderings,

we cannot directly identify the sales value that corresponds to the probability mass from

the distributions CDF. Instead, we simulate the expected concentration ratios for a grid of

paramater pairs (N ,σ) and (N ,α) in a Monte Carlo simulation. For a given value of N in the

Census reports, we find the parameter value that produces an estimated concentration ratio

from the Monte Carlo simulations nearest the concentration ratio reported by the Census.

In validation tests, we find that the most accurate match for the lognormal distribution is

the average value of σ across the four concentration ratios. For Pareto, it is the 50-firm

concentration ratio.
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We find that the estimates of σ assuming lognormal distributions are better behaved than

the α estimates from Pareto estimates. The Pareto estimates vary considerably and many

of the estimates are less than one, which indicates a more extreme distribution than a power

law and we cannot estimate dominance diversity or balanced diversity for α < 1. Therefore,

we present results using the lognormal estimates.

An advantage of this approach is that we can exploit the Census data back to the 1960s

because the Census reports numbers of firms and concentration ratios in the Economic

Census. We use the data generously provided by Jan Keil on his website that tabulates

the Census reports as used in Keil (2017). The Census only reports enough information

to estimate sales diversity at the 4-digit SIC code-level for the manufacturing sector. The

number of industries prior to 1963 are sparse, and in 1997 the Census switched to NAICS

codes which are difficult to harmonize between 1992 and 1997, so we limit our analysis to

1963 to 1992.

Internet Appendix Figure II reports the results of the simulation. We find that diversity

for each diversity order q declined from 1963 to the mid 1970s, but then increased through

1992. Dominance diversity was roughly equivalent in 1992 as it was in 1963. The increase

in diversity during the 1970s and 1980s may reflect the general trend towards deregulation.

The figure also reveals that the three diversity measures comove closely over time. This

indicates that the driving force is the number of firms in the sector, not the evenness of their

market shares. Indeed, the estimate of σ is highly persistent over the sample period.

This analysis illustrates the benefit of the analytical formulation of diversity under an

assumed distribution of firm sizes. If a distributional assumption is reasonable, to calculate

the full set of diversity measures only requires an estimate of the shape parameter and the

number of firms in the market.
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Internet Appendix Figure II
Sales Diversity in the Manufacturing Sector Assuming Lognormally

Distributed Market Shares
This figure presents the time-series of sales diversity at the SIC 4-digit nationwide industry
level for Manufacturing industries, from 1963 to 1992, normalized by 1963 values, for
diversity order q = 0, 1, and 2. Original data are from the Economic Census of the
United States, following Keil (2017), generously provided on Jan Keil’s website. Diversity
is estimated using Equation 6, where σ is estimated from the best fit of a lognormal
distribution to the 4-, 8-, 20-, and 50-firm concentration ratios provided by the Census.
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Internet Appendix Figure III
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Internet Appendix Figure III
Abnormal Diversity per Capita in the U.S. in 2020

This figure presents abnormal diversity for q = 0 (Panel A), q = 1 (Panel B), and q = 2 at
the county level in 2020. Abnormal diversity is the county-level residual in a regression
of log(1 +q D) on a constant and log(1+population). Darker values represent higher
abnormal diversity per capita. Categories of abnormal diversity are based on quartile
values across all counties in the US. Data are from NETS and include firms with at least
20 employees.
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A6. Results Using Non-Imputed Data

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Count Diversity (0D)

Balanced Diversity (1D)

Dominance Diversity (2D)

1990 1995 2000 2005 2010 2015 2020

Normalized
Diversity
(qD)

Internet Appendix Figure IV
Weighted Average Industry Diversity: Non-Imputed Data

This figure presents the time-series of employment diversity at the SIC 4-digit nationwide
industry level, from 1990 to 2020, normalized by 1990 values, for diversity order q = 0,
1, and 2. Data are from NETS and include firms with at least 20 employees and only
include non-imputed data.
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Internet Appendix Figure V
Diversity Decomposition: Within and Between Industries:

Non-Imputed Data
This figure presents the time-series of alpha, beta, and gamma diversity of employment
at the SIC 4-digit nationwide industry level, from 1990 to 2020, normalized by 1990
values, for diversity order q = 0, 1, and 2. Alpha diversity reflects the number of effective
firms within an industry (within diversity). Beta diversity reflects the number of effective
industries (between diversity). Gamma diversity reflects the total diversity as the product
of alpha and beta diversity. Data are from NETS and include firms with at least 20
employees and only include non-imputed data.
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Internet Appendix Figure VI
Employment Diversity Profiles: Non-Imputed Data

This figure presents the profile of diversity for industry-level employment for years 1990,
2000, 2010, and 2020. Diversity reflects the number of effective firms within an industry.
The diversity order q controls how much weight is given to unevenness versus richness.
Data are from NETS and include firms with at least 20 employees and only include non-
imputed data.
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Internet Appendix Figure VII
Diversity Decomposition: Within and Between Industries:

Non-Imputed Data
This figure presents the time-series of alpha, beta, and gamma diversity of employment
at the SIC 4-digit nationwide industry level, from 1990 to 2020, normalized by 1990
values, for diversity order q = 0, 1, and 2. Alpha diversity reflects the number of effective
firms within an industry (within diversity). Beta diversity reflects the number of effective
industries (between diversity). Gamma diversity reflects the total diversity as the product
of alpha and beta diversity. Data are from NETS and include firms with at least 20
employees and only include non-imputed data.
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Internet Appendix Figure VIII
Diversity Decomposition: Within and Between Counties:

Non-Imputed Data
This figure presents the time-series of alpha and beta diversity of employment at the
county level, from 1990 to 2020, normalized by 1990 values, for diversity order q = 0,
1, and 2. Alpha diversity reflects the number of effective firms within a county. Beta
diversity reflects the number of effective counties. Data are from NETS and include firms
with at least 20 employees and only includes non-imputed data.



THE ANATOMY OF CONCENTRATION 27

0.95

1.00

1.05

1.10

1.15

1.20

1990 2000 2010 2020

(a) Effective Firms in the
Average Industry-County

(qDα)

0.8

1.0

1.2

1.4

1990 2000 2010 2020

(b) Effective
Industry-Counties (qDβ)

Count Diversity
(q = 0)

Balanced Diversity
(q = 1)

Dominance Diversity
(q = 2)

Internet Appendix Figure IX
Diversity Decomposition: Within and Between Industry-Counties:

Non-Imputed Data
This figure presents the time-series of alpha and beta diversity of employment at the
industry-county level, from 1990 to 2020, normalized by 1990 values, for diversity order
q = 0, 1, and 2. Alpha diversity reflects the number of effective firms within an industry-
county. Beta diversity reflects the number of effective industry-counties. Data are from
NETS and include firms with at least 20 employees and only include non-imputed data.
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(b) Industry-County Level

Internet Appendix Figure X
Diversity Profiles at County and Industry-County Levels:

Non-Imputed Data
This figure presents the profile of log alpha diversity at the county level (Panel A) and
industry-county level (Panel B) for years 1990, 2000, 2010, and 2020. Alpha diversity
reflects the number of effective firms within a county or industry-county. The diversity
order q controls how much weight is given to unevenness versus richness. Data are from
NETS and include firms with at least 20 employees and only include non-imputed data.



THE ANATOMY OF CONCENTRATION 29

References

Hart, P.E., “Moment Distributions in Economics: An Exposition,” Journal of the Royal

Statistical Society. Series A (General), 138 (1975), 423–434.

Jost, Lou, “The Relation Between Evenness and Diversity,” Diversity, 2 (2010), 207–232.

Keil, Jan, “The trouble with approximating industry concentration from Compustat,” Jour-

nal of Corporate Finance, 45 (2017), 467–479.


