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ABSTRACT

Opioid overdose death rates in the United States have risen continuously for over three decades, 
increasing 2,142 percent in total from 1990 to 2020. This is surprising. One might expect drug 
epidemics to be self-limiting, as policy and individual behavior reacts to observed deaths. We 
study why opioid deaths have risen so greatly and for so long. We consider three reasons for a 
prolonged epidemic: exogenous and continuing changes in demand or supply, and spillovers in 
demand for opioids across users, which we term “thick market externalities.” We show there is no 
evidence of sufficiently large exogenous changes in the demand or supply of opioids that could 
explain such a prolonged increase in death rates. We test for spillovers using county-level data on 
opioid deaths from 1991–2018 and opioid shipments from 2006–2009, combined with data on 
friendships and distance between counties. Estimating a model with addiction and spatial 
spillovers, we find large spillovers in opioid use and deaths across areas. A shock that increases 
opioid death rates by 1 in an index county causes 0.38 to 0.76 more deaths in other counties 
because of spillovers. Because opioids are addictive, this leads to even more deaths and spillovers 
in future years. In some specifications, these effects are large enough to generate a continuously 
increasing epidemic without any ongoing changes in demand or supply. We estimate spillovers 
explain 84 to 92 percent of opioid deaths from 1990 to 2018 and are the main reason deaths have 
increased for so long.
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The continuous rise in opioid overdose deaths in the past few decades is one of the worst 

health crises in history. Figure 1 shows total drug overdose deaths, opioid overdose deaths, and 

the composition of opioid deaths by type of substance from 1990 through 2020. Total opioid deaths 

rose in all years but one over this time. In total, more than 1 million people died of a drug overdose 

since 1990, 58 percent of which involved opioids.1 The situation is, if anything, getting worse. 

2020 saw the largest percentage increase in opioid mortality (38 percent) since 1990, even as the 

baseline rate was the highest.  

One might expect that drug overdose epidemics would be self-limiting. As people that 

become addicted are seen to suffer, fewer people will initiate addictive substances. Policy may 

also respond, disrupting drug markets and providing treatment and harm reduction services to 

people experiencing harm. Each of these would be expected to lower death rates. So far, the opioid 

experience belies this expectation. 

In this paper, we examine why opioid death rates have increased so greatly and for so long. 

We consider three theories that could explain the continual increase in deaths. The first two are 

that demand or supply was steadily and exogenously increasing. With respect to demand, people 

may demand more opioids because they experience more physical or mental pain and desire relief 

from it. However, while people do report increased pain over time, this increase has been far less 

than the increase in opioid use and death rates (Cutler and Glaeser 2021). Mental distress, another 

possible contributor to demand for opioids, has also been relatively constant over time. Opioid use 

has increased mostly because people use more opioids given their level of pain, not because they 

experience more of it (Cutler and Glaeser 2021). 

On the supply side, there have been changes in the types of opioids responsible for 

increased deaths, from misuse of legal opioids in the 1990s and early 2000s to use of illegal ones 

starting in the 2010s—first heroin and then illicitly made fentanyl (see Figure 1). However, these 

illegal opioids were not new to this time. Heroin has been circulating in the U.S. for over a century, 

and fentanyl has been available for decades. Greater use of these drugs involved ramping up 

existing supply to meet higher demand, rather than creating new narcotics. Consistent with this, 

we show that heroin prices rose as people switched from legal opioids to heroin and then reset to 

baseline levels as heroin deaths increased further – consistent with relatively inelastic short-run 

                                                            
1 This is likely an undercount, as 20-25 percent of overdose deaths are not tested for the specific cause (Ruhm 2017). 
Ruhm (2017) estimates that opioids were involved in 77 percent of drug deaths since 1990.   
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supply and more elastic long-run supply.  

Accordingly, we focus the bulk of our explanation on a third theory: that demand increases 

endogenously, due to spillovers in demand for opioids across people. Spillovers in demand for 

illegal opioids, or illegal uses of legal opioids, may result from several factors: spread of 

information about the substances, and ease and safety in ability to acquire the substances with 

more users. We collectively refer to these spillovers as “thick market externalities” (Caulkins and 

Kleiman 2018; Cook et al. 2007; Jacobson 2004). While spillovers are common for many goods 

and behaviors,2 they have even stronger effects for addictive products. Spillovers and addiction 

reinforce each other, generating dynamic and spatial feedback (Becker 1992; Reif 2019). The 

result can be unstable equilibria that feature perpetual increases in use and harms.  

We first show how spillovers can affect the dynamics of an epidemic theoretically. While 

there are several models of use of addictive drugs in the literature (Becker and Murphy 1988; 

Gruber and Köszegi 2001; Orphanides and Zervos 1995), these models consider isolated 

individuals and focus on steady-state substance use, not deaths. We expand the theoretical models 

to include spillovers in use and to add in death rates. We show that use and deaths can trend very 

differently. We further show that spillovers can turn even temporary shocks to drug demand or 

supply into long-term epidemics by amplifying the shocks across time and space.  

We consider the importance of spillovers empirically by combining data on county opioid 

death rates and opioid shipments with data on physical distance and friendships across counties, 

taken from the universe of Facebook friend linkages in 2016 (Bailey et al. 2018). We ask whether 

opioid deaths in county A increase if deaths increase in counties that are geographically close to 

A or in other counties where people in county A have more friends.  

We start with a case study of the first areas to have significant ‘pill mills,’ Southern Ohio 

and Northern Kentucky (Quinones 2015). We show that deaths increased in areas with pill mills 

and in two additional areas: areas that were geographically close to the pill mill counties and areas 

where more people had friends living in pill mill counties. Even as early as 2010 (before the 

transition to heroin and illicit fentanyl), opioid deaths in areas with the most friends in the pill mill 

                                                            
2 See, for example: alcohol (Eisenberg, Golberstein, and Whitlock 2014; Kremer and Levy 2008), cigarettes (Cutler 
and Glaeser 2010; Fletcher 2010; Powell, Tauras, and Ross 2005), crime (Glaeser, Sacerdote, and Scheinkman 1996), 
illegal guns (Cook et al. 2007), social welfare enrollment (Dahl, Kostøl, and Mogstad 2014), new technologies (Agha 
and Zeltzer 2022; Bailey et al. 2022), retirement plan enrollment (Duflo and Saez 2003), and youth risky behaviors 
(Case and Katz 1991). 
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counties were higher than in the typical county in 2020. 

The main empirical challenge to estimating spillovers empirically is the well-known 

reflection problem (Manski, 1993): it is difficult to separate out spillovers from correlated demand 

or supply shocks across areas. We overcome this challenge by using exogenous factors affecting 

opioid usage and lagged opioid deaths in peer and neighboring counties as instruments for opioid 

deaths in peer and neighboring counties. We divide our empirical analysis of spillovers into two 

time periods. The first is from 1996 through 2010, a time where deaths mostly involved excessive 

use of prescription opioids. The variables that identify exogenous increases in opioid utilization 

include presence of state triplicate prescription programs (Alpert et al. 2021); mid-1990s cancer 

mortality rates (Arteaga and Barone 2021); and 1990 disability rates (Cutler and Glaeser 2021). 

All three of these instruments are highly predictive of county-level death rates. To smooth out 

short-term fluctuations in death rates and ease computation of our models, we estimate persistence 

and spillover effects using county-level data grouped into three- to five-year intervals.  

We find that opioid deaths are highly persistent over time and that there are large spillovers 

across areas. Due to persistence of opioid use, each death at time 𝑡𝑡 is followed by 0.5 to 0.9 deaths 

in the same county at time 𝑡𝑡 + 1. Further, when opioid death rates increase in one county, they 

increase in neighboring counties and in counties where people in the index county have more 

friends. Averaging across county pairs, we find that shocks that increase opioid death rates by 1 in 

one county increase opioid deaths in other counties by 0.38 to 0.76 deaths in the same period.  

Beginning around 2010, there was a transition from deaths resulting primarily from excess 

use of legal opioids to deaths resulting from excess use of illegal opioids. Most studies attribute 

this transition to prescription opioid users substituting to heroin as prescription opioids became 

more difficult for them to obtain and abuse (Alpert, Powell, and Pacula 2018; Compton, Jones, 

and Baldwin 2016; Evans, Lieber, and Power 2019). Our focus is not on this transition. Rather, we 

study whether there were also thick market spillovers in the period after 2010.   

To do so, we estimate models for opioid deaths in three-year intervals from 2010 to 2018. 

To instrument for demand for illicit opioid deaths in a county, we use each area’s historical rate of 

prescription opioid shipments prior to 2010 (as in Cutler and Glaeser 2021); heroin death rates 

prior to 2010 interacted with geographic variation in the share of heroin that was white powder 
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(thus, more substitutable for fentanyl) (Pardo et al. 2019); and lagged death rates.3 As in the earlier 

period, we find that opioid death rates are persistent and that there are large spillovers in illicit 

opioid deaths across areas. The coefficients are of similar magnitude to those in the prescription 

opioid period, with autocorrelation in mortality of 0.5 to 0.7 and spillovers of 0.40 to 0.75 deaths 

in other counties for each death in the index county.  

Using these estimates, we simulate the path of opioid deaths under an assumption of no 

spatial spillovers and compare that to actual trends in mortality. While we find persistence in opioid 

deaths over time, the persistence coefficients are all significantly less than 1. Thus, in the absence 

of spatial spillovers, the opioid epidemic would die out reasonably quickly over time. However, 

spatial spillovers change that calculation. Using our preferred models, counterfactual calculations 

indicate that opioid deaths would have been 84 to 92 percent lower without spatial spillovers and 

would have peaked by 2006. We conclude that thick market spillovers, not exogenous increases 

in demand or supply, are the most important reason why the opioid epidemic has lasted for so long. 

In addition to helping to understand the opioid epidemic, our paper contributes to the 

literature on models of addictive goods. The Becker and Murphy (1988) rational addiction model 

has been widely studied in the literature, including a variety of evidence consistent with at least 

some forward-looking behavior (Cawley and Ruhm 2011). However, we show the model has 

difficulty explaining persistent epidemics and high death rates. We extend this literature to 

consider deaths as well as substance use and to endogenize spatial spillovers. Each of these 

extensions is vital to understanding observed epidemics. 

The remainder of the paper is structured as follows. Section I presents a summary of the 

opioid epidemic. Section II develops a theoretical model of opioid death rates and discusses 

reasons opioid epidemics may last for a longer or shorter period. Section III describes our data. 

Section IV presents a case study of opioid deaths spilling over into other geographic areas from 

areas where the first pill mills in the U.S. were established. Section V presents the empirical 

methodology, and Section VI presents the main results. Section VII presents several robustness 

checks. Section VIII concludes.  

 

 

                                                            
3 If we instead use the exogenous factors that predict prescription opioid utilization (state triplicate prescription 
programs; mid-1990s cancer mortality rates; and 1990 disability rates), results are similar. 
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I. The Opioid Epidemic 
Opium and its derivatives (called opioids) have been used for millennia.4 Because opioids 

are addictive, there is almost always a low level of chronic use, and epidemics are common 

(Courtwright 2009). Prior to the current epidemic, the most recent widescale epidemic in the U.S. 

took place in the mid- to late-1800s (Courtwright 1983; Musto 1999). Like today’s epidemic, it 

was ignited by the widespread medical use of opium and morphine to alleviate pain.5 The epidemic 

peaked in 1890, when the medical profession became reluctant to prescribe opioids outside isolated 

and acute clinical settings (Musto 1999), and states implemented policies to stem prescribing (Kolb 

and Du Mez 1924). Still, opioid use remained a concern in the U.S. until the 1910s. 

Since that time, epidemics involving illicit opioids have taken place in some urban areas, 

but these have been smaller on a national scale and lasted less long. For example, there was a good 

deal of press and public concern about heroin entering in the US in the 1960s and 1970s through 

the French Connection, which ultimately led to President Nixon’s famous declaration of the “War 

on Drugs”.6 Death rates during these epidemics peaked in around a decade (DuPont and Greene 

1973). It was around this time that drug policy in the U.S. shifted from opioids to other drugs such 

as marijuana and cocaine, for which use was increasing (Musto 1999). Like the 1960s heroin 

epidemics, the crack cocaine epidemic that subsequently took place in the 1980s was also 

comparatively short, peaking and declining in around a decade (Fryer Jr et al. 2013). 

The current opioid epidemic has lasted much longer. The epidemic is generally dated to 

the mid-1990s, with the FDA approval and subsequent heavy marketing of OxyContin in 1995 

(Humphreys et al. 2022; Van Zee 2009). OxyContin, which released opioids more slowly than 

previous prescription opioids, was promoted as less addictive. This perceived innovation in safety, 

and subsequent marketing of such, convinced the medical profession to again prescribe opioids 

more liberally for common and chronic pain. This was accompanied by broader changes, with 

industry-funded advocacy groups persuading clinicians to treat pain more aggressively and 

                                                            
4 The earliest reference to opium poppies comes from the third millennium B.C., where it was cultivated in 
Mesopotamia and referred to by Sumerians as Hul Gil, the “joy plant” (Brownstein 1993). Lengthy discussions of 
various opioid epidemics that have occurred throughout history can be found in Courtwright (2009). 
5 Records from physicians at the time indicate opioids were used to treat virtually any type of pain or mental unrest, 
including conditions as diverse as nausea, asthma, bronchitis, cholera, colic, diarrhea, dysentery, hemorrhoids, and 
intermittent fevers (Courtwright, 1983) 
6 The French Connection describes a heroin trade route that originated in Indochina, with heroin being smuggled from 
there through Turkey and France before arriving in Canada and the U.S.  
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prescribe all kinds of opioids more liberally (Humphreys et al. 2022). This included promotion of 

other opioids that had already been in circulation for some time, such as Percocet, Roxicodone, 

Vicodin, as well as generic opioid products. 

Unfortunately, just as it had a century prior, widespread opioid prescribing resulted in 

massive collateral damage. Prescription opioid use soared in the late 1990s and 2000s. Along with 

it came the more than three-fold increase in opioid death rates from 1995 to 2010, mostly involving 

prescription opioids, as shown in Figure 1.  

Consistent with OxyContin playing an important role in this, Alpert and colleagues (2021) 

show harms were experienced most acutely in areas where documents indicate that OxyContin’s 

manufacturer (Purdue Pharmaceuticals) initially targeted promotions: states without triplicate 

prescription programs. Arteaga and Barone (2021) provide further support, showing deaths 

increased more in counties with higher mid-1990s cancer mortality. This is consistent with internal 

documents from Purdue showing a desire to target marketing at physicians treating cancer patients. 

Lastly, consistent with demand for pain relief playing an important role, Cutler and Glaeser (2021) 

show that opioid shipments and deaths increased the most in areas with high levels of pain, as 

measured by the percent of adults that received disability benefits in 1990.   

By the mid-2000s, public and private policies started to act against prescribing believed to 

be excessive. Early efforts predominantly involved litigation against OxyContin’s manufacturer 

(Meier 2007) and enforcement interventions that targeted prescribers, dispensers, and distributors 

that supplied opioids recklessly (Donahoe 2023; Kennedy-Hendricks et al. 2016). Around mid-

2010, OxyContin was also reformulated to be abuse-deterrent (Alpert et al. 2018; Evans et al. 

2019). Other substantial policy interventions, such as state programs that require prescribers to 

query each patient’s opioid prescribing history before issuing a prescription (Horwitz et al. 2021), 

came later, starting around 2013. While these policies reduced use of prescription opioids 

(Compton et al. 2016) and some even reduced mortality (Donahoe 2023; Kennedy-Hendricks et 

al. 2016), they did not stem aggregate death rates. Rather, deaths transitioned to illicitly made 

opioids, heroin and then non-prescription fentanyl. The increase in opioid deaths since 2010 has 

been almost entirely among illegal opioids.  

 

II. Theories About The Extended Opioid Epidemic 
In this section, we develop a theoretical model of addictive drug consumption and deaths 
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to frame explanations for why drug epidemics may last for an extended period (like the current 

opioid epidemic) or be over relatively quickly (like the 1980s crack cocaine epidemic). We model 

consumer behavior allowing for addiction and spillovers, as in Reif (2019).7  

 

A. Consumption with addiction and spillovers  

Consumers experience temporal utility 𝑉𝑉(𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖 ,𝐸𝐸[𝑎𝑎�𝑡𝑡]), where 𝑎𝑎𝑖𝑖𝑖𝑖 is 𝑖𝑖’s 

consumption of addictive goods (e.g., opioids) in period 𝑡𝑡. 𝑆𝑆𝑖𝑖𝑖𝑖 is the consumer’s consumption 

stock, with evolution 𝑆𝑆𝑖𝑖𝑖𝑖+1 = (1 − 𝑑𝑑)(𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖) and depreciation rate 𝑑𝑑. 𝑥𝑥𝑖𝑖𝑖𝑖 are ‘taste’ parameters 

that increase utility from drug use (e.g., pain, exposure to drug marketing, etc.) and 𝑐𝑐𝑖𝑖𝑖𝑖 is a 

composite of all other goods. Lastly, 𝐸𝐸[𝑎𝑎�𝑡𝑡] denotes expected addictive drug consumption by a 

person’s peers. This may affect utility because there is adjacent complementary in consumption, 

or because of information spillovers across people.8 As in Reif (2019), we assume quasi-linear 

utility in the private and social components (i.e., that 𝑉𝑉 = 𝑈𝑈(𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖) + 𝐺𝐺(𝑎𝑎𝑡𝑡 ,𝐸𝐸[𝑎𝑎�𝑡𝑡])) and 

linear spillovers (𝐺𝐺(𝑎𝑎𝑡𝑡 ,𝐸𝐸[𝑎𝑎�𝑡𝑡]) = 𝑏𝑏𝑔𝑔𝑎𝑎𝑡𝑡𝐸𝐸𝑡𝑡[𝑎𝑎�𝑡𝑡]) for group g. Taking 𝑈𝑈 as concave and quadratic and 

choice of 𝑐𝑐𝑖𝑖𝑖𝑖∗  as optimal, the consumer’s optimization problem for use of the addictive product can 

be written as follows: 

 

max
𝑎𝑎𝑖𝑖𝑖𝑖

�𝛽𝛽𝑡𝑡−1𝑉𝑉∗(𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖 ,𝐸𝐸[𝑎𝑎�𝑡𝑡])
∞

𝑡𝑡=1

, (1) 

 

with discount rate 𝛽𝛽. The consumer faces a budget constraint:  

 

𝐴𝐴𝑖𝑖0 = �(1 + 𝑟𝑟)−(𝑡𝑡−1)(𝑐𝑐𝑖𝑖𝑖𝑖∗ + 𝑝𝑝𝑡𝑡𝑎𝑎𝑖𝑖𝑖𝑖)
∞

𝑡𝑡=1

, (2) 

 

with interest rate 𝑟𝑟 and the price of addictive drugs 𝑝𝑝𝑡𝑡.  

                                                            
7 There is another set of models that simulate drug epidemic dynamics using contact models of infectious disease 
(MacKintosh and Stewart 1979). While these may be parameterized to fit a drug epidemic’s dynamics, drug epidemics 
are fundamentally different from infectious disease epidemics. Thus, these models are ill-suited for explaining why 
people behave in a particular way. 
8 There may also be spillovers because the product is easier to obtain from friends or relatives instead of in the black 
market. This could be modeled a variety of different ways, e.g., through lower search costs or prices associated with 
thicker markets. Quantitatively, these alternative representations would have similar impacts. 
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For ease of illustration, first consider the case where consumers are fully myopic (i.e., they 

ignore the effect that consuming drugs today will have on their utility in the future). Assume also 

that V(.) is quadratic in its elements.9 Maximizing equations 1 and 2 with 𝛽𝛽 = 0 yields a demand 

equation of the following form, 

 

𝑎𝑎𝑖𝑖𝑖𝑖∗ = 𝛼𝛼𝑆𝑆𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑎𝑎�𝑡𝑡 + 𝜋𝜋𝑝𝑝𝑡𝑡 + 𝛿𝛿𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑘𝑘. (3) 

 

In equation (3), 𝛼𝛼 = 𝑏𝑏𝑎𝑎𝑎𝑎
𝑏𝑏𝑎𝑎𝑎𝑎

> 0 captures the addictiveness of drugs, 𝛾𝛾 = 𝑏𝑏𝑔𝑔
𝑏𝑏𝑎𝑎𝑎𝑎

 denotes spillovers, which 

may be positive or negative, 𝜋𝜋 = − 𝜆𝜆
𝑏𝑏𝑎𝑎𝑎𝑎

< 0 denotes downward sloping demand (𝜆𝜆 is the marginal 

utility of wealth), 𝛿𝛿 = 𝑏𝑏𝑎𝑎𝑎𝑎
𝑏𝑏𝑎𝑎𝑎𝑎

> 0  denotes the demand response to the tastes parameter, and 𝑘𝑘 =

𝑏𝑏𝑎𝑎
𝑏𝑏𝑎𝑎𝑎𝑎

> 0 is a constant term.  

The fully dynamic specification, where consumers have perfect foresight, is similar, with 

additional terms for future individual consumption (𝛼𝛼2𝑎𝑎𝑖𝑖𝑖𝑖+1), future group consumption (𝛾𝛾2𝑎𝑎�𝑡𝑡+1), 

future prices (𝜋𝜋2𝑝𝑝𝑡𝑡+1), and future tastes (𝛿𝛿2𝑥𝑥𝑖𝑖𝑖𝑖+1): 

 

𝑎𝑎𝑖𝑖𝑖𝑖∗ = 𝛼𝛼1𝑆𝑆𝑖𝑖𝑖𝑖 + 𝛼𝛼2𝑎𝑎𝑖𝑖𝑖𝑖+1 + 𝛾𝛾1𝑎𝑎�𝑡𝑡 + 𝛾𝛾2𝑎𝑎�𝑡𝑡+1 + 𝜋𝜋1𝑝𝑝𝑡𝑡 + 𝜋𝜋2𝑝𝑝𝑡𝑡+1 + 𝛿𝛿1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛿𝛿2𝑥𝑥𝑖𝑖𝑖𝑖+1 + 𝑘𝑘′. (4) 

   

The details of each term in equation (4) are in Appendix A. 

Some people that use addictive substances become poisoned and die. Even with optimally 

chosen consumption, poisoning deaths are stochastic, for two reasons. First, the line between the 

quantity of opioids that will get a person high or prevent withdrawal, and the quantity that will kill 

them, is very thin (Gable 2004). Small variations in quality can cause a person to take more than 

they intended to and overdose. Second, even if a person takes the same dose that they always have, 

death can occur due to random fluctuations in a person’s metabolism or interactions with other 

drugs or health problems the person has at the time (Humphreys, 2023). We model the probability 

                                                            
9 The quadratic parameterization of 𝑉𝑉∗(𝑎𝑎𝑖𝑖𝑖𝑖, 𝑆𝑆𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖) is as follows: 𝑏𝑏𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 +
𝑏𝑏𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 −

1
2

(𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖2 + 𝑏𝑏𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖2 + 𝑏𝑏𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖2 ). 
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that a person dies as a hazard function 𝐻𝐻(𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑖𝑖𝑖𝑖), where 𝐻𝐻𝑎𝑎 > 0; 𝐻𝐻𝑎𝑎𝑎𝑎 > 0; and 𝐻𝐻𝑎𝑎𝑎𝑎 < 0.10  

The time series behavior of deaths would be expected to differ from that of use. Deaths 

will increase when use rises in relation to past use and fall when use stabilizes or falls.  

 

B. Inciting an epidemic 

We discuss factors in the model that could cause drug use and deaths to increase, inciting 

an epidemic, and to continue to rise. We temporarily ignore spillovers (i.e., assume that 𝛾𝛾 = 0) 

and focus on the myopic model; the model with dynamics and spillovers is presented below.  

The condition for an epidemic to continue indefinitely (i.e., without any exogenous changes 

to the taste or price parameters) is: 

𝑏𝑏𝑎𝑎𝑎𝑎(1 − 𝑑𝑑)
𝑑𝑑

> 𝑏𝑏𝑎𝑎𝑎𝑎. (5) 

The left-hand side reflects addictiveness, how much utility from current use rises with past use. 

The right-hand side reflects the slope of marginal utility of consumption, defined as positive in the 

model.11 Assuming the left-hand side is sufficiently small relative to 𝑏𝑏𝑎𝑎𝑎𝑎 and thus this equation is 

not satisfied, equation 3 will lead to an internal equilibrium: (𝑎𝑎𝑖𝑖∗(1 − 𝑑𝑑) = 𝑆𝑆𝑖𝑖∗𝑑𝑑) (Reif 2019).  

Two factors can disrupt this equilibrium. The first is exogenous changes in tastes (𝑥𝑥𝑖𝑖𝑖𝑖): 

e.g., rising pain or mental distress, or more favorable perceptions about drugs due to marketing. 

The second is an exogenous expansion of supply (resulting in lower prices 𝑝𝑝𝑡𝑡) or development of 

a new drug.12 In the static model, only current 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑝𝑝𝑡𝑡 affect demand. In a dynamic model 

(equation 4), expected changes to prices and tastes in the future can also cause more drug use. If 

people expect that their tastes for drugs will be higher in the future (𝑥𝑥𝑖𝑖𝑖𝑖+1) or that prices will decline 

(𝑝𝑝𝑡𝑡+1), they will increase current use in response to higher expected future marginal utility.  

In response to a positive demand or supply change, average consumption of addictive drugs 

will converge to a new, higher level, as shown in the solid blue line in Figure 2(A). Along the 

adjustment path, consumption increases over what people have developed a tolerance for, and 

                                                            
10 To formally model deaths below, we use a logistic model: 𝐻𝐻(𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑖𝑖𝑖𝑖) = exp�𝜓𝜓0+𝜓𝜓𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖+𝜓𝜓𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

2 +𝜓𝜓𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖�
1+exp (𝜓𝜓0+𝜓𝜓𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖+𝜓𝜓𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

2 +𝜓𝜓𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖)
, with 𝜓𝜓0 <

0; 𝜓𝜓𝑎𝑎 > 0; 𝜓𝜓𝑎𝑎𝑎𝑎 > 0; and 𝜓𝜓𝑎𝑎𝑎𝑎 < 0. While it is natural to assume 𝐻𝐻𝑎𝑎𝑎𝑎 is convex around the dose a particular person 
uses, it will clearly become concave at some point as the overall hazard approaches 1.  
11 Note in footnote 8, 𝑏𝑏𝑎𝑎𝑎𝑎 is pre-multiplied by -1/2. 
12 A new drug can also be conceptualized through lower prices (as prices for drugs that are unavailable are infinite). 
If the new drug is perceived to be safer than other drugs, demand could shift out even if it is sold at the same price. 
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deaths rates will rise. When the new steady state consumption is reached, deaths should peak and 

then decline. This yields the characteristic “epidemic” curve in the solid line (without spillovers) 

in Figure 2(B).  

This inverse U-shaped epidemic curve may be enhanced if public policies are enacted in 

response to the increase in deaths that aim to reduce utilization. Policymakers observing increases 

in drug deaths might increase the price of legal drugs or make illegal versions of the drug more 

difficult to obtain, for example by disrupting drug markets. Further, if demand for the good 

increased because people believed a new drug to be non-addictive and effective, that belief may 

reset as people learn they have been deceived or that the prior science was wrong.13 This would 

lower death rates below pre-change levels until the new equilibrium is reached.  

 

C. Difficulty with Exogenous Demand and Supply Changes 

The initial increase in opioid use in the 1990s, described in section I, has features that match 

the model above. A new formulation of opioids was introduced, which was promoted as safer and 

more effective than existing formulations. In response to this, demand shifted out, and use rose. 

Deaths increased along with it. The subsequent pattern does not fit this pattern, however. As 

described above, deaths should have plateaued and returned to initial levels once use reached a 

new steady state. Further, one would expect the reaction to increased deaths and the variety of 

restrictive policies that were implemented in response to the epidemic (see section I) would have 

caused demand to fall and for opioids to become more costly, leading to further declines in use 

and a temporary reduction in deaths below the steady-state level. Instead, Figure 1 shows death 

rates kept climbing.  

One theory about why opioid deaths have kept increasing is that tastes for opioids are 

continuing to rise (i.e., 𝑥𝑥𝑖𝑖𝑖𝑖 is still increasing) due to rising physical or mental pain in the population. 

The latter is commonly referred to as the “deaths of despair” theory (Case and Deaton 2015, 2017, 

2020, 2021). However, data show that increases in pain (physical and mental) have not been large 

enough to explain these trends. Between 1999 and 2018, opioid overdose death rates increased 

four-fold while population prevalence of physical pain increased by at most around 20 percent 

(Cutler and Glaeser 2021). Trends in mental pain and life dissatisfaction were flat or falling over 

the same time. Thus, trends in pain are simply not quantitatively large enough to explain why 

                                                            
13 Demand may come from individuals, their physicians, or their health insurance company. 
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opioid deaths rose so continuously or for so long.  

A second factor that could cause an extended epidemic is further technological innovations 

(e.g., development of new opioids) or exogenously expanding supply (causing further reductions 

in prices). The expansion in use of illegal opioids after 2010 is potentially such a supply shock. 

However, neither of the products commonly used in this era (heroin and fentanyl) were new. As 

noted, heroin has been circulating in the U.S. since the early 1900s (Courtwright 2009; Musto 

1999). Fentanyl was synthetized in 1959 and there were even been small-scale epidemics of illicit 

fentanyl deaths in the mid-2000s in several areas heavily affected by fentanyl today (e.g., Chicago, 

Detroit, and Philadelphia) (Centers for Disease Control and Prevention 2008; Westhoff 2019).  

The idea of using fentanyl to augment heroin—and later to incorporate it in counterfeit 

pills—is newer to this era, suggesting innovations in the production process if not the specific 

drug. Fentanyl is significantly cheaper to produce than heroin.14 Thus, fentanyl (which is a white 

powder) was used to cut and replace white powder heroin in areas where white power heroin is 

common.15 Because the potency of fentanyl-based products varies significantly from batch to 

batch,16 this adulteration of heroin would be expected to increase deaths, though it would explain 

a one-time change and not a continual increase. How long it takes a one-time shock to play out is 

unknown, though a decade of ever greater increases seems unusual historically. 

The importance of exogenous expansions of supply can be assessed by matching trends in 

illicit opioids prices with death rates. If exogenous supply shifts are the driving factor in increased 

deaths, we should see reductions in prices coincident with or just prior to increased use and death 

rates and an increase in use consistent with demand elasticities for that substance. In contrast, if 

illegal drug supply was responding to an increase in demand from users, prices should increase at 

times of heavy demand and then decline over time, as long-run supply expands. 

Heroin price data are more readily available than fentanyl prices. Figure 3 presents real (in 

2020 dollars) street prices of heroin based on drug seizures data and death rates from 1999 to 2020 

                                                            
14 The cost is roughly 1/300 to 1/400 as much per effective dose (Mars, Rosenblum, and Ciccarone 2019). Further, 
fentanyl can be manufactured anywhere and with limited resources. 
15 Qualitative research obtained from interviews with opioid users (Mars, Rosenblum, and Ciccarone 2019)  suggests 
that initially, users they did not know they were being sold fentanyl instead of heroin, suggesting a supplier- rather 
than user-driven shift from heroin to fentanyl. 
16 To divide wholesale fentanyl into retail products, many suppliers mixed it with other additives using magic bullet 
blenders (Quinones 2021). This is clearly not ideal for quality control and led to a lot of people using more fentanyl 
than they intended to and overdosing.  
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(UNODC 2020). 17 Heroin death rates started increasing in 2005, rising eight percent annually from 

2005 to 2010. Over that same time, heroin prices were also increasing—rising 60 percent from 

2005 to 2010. The confluence of rising death rates and rising prices is consistent with an increase 

in demand, not supply. Heroin prices only started declining after 2010, as supply expanded.18  

Accounting for the increases and subsequent decreases, the price of heroin has changed 

little from prior to the major increase in heroin deaths up through recent years – in real terms, 

heroin prices were approximately the same in 2020 as they were in 2005. Even still, deaths were 

over five times higher. The data are thus strongly consistent with an exogenous increase in demand 

that was satisfied by elastic supply rather than an exogenous increase in illegal drug supply.  

Data on fentanyl prices are somewhat more nuanced. Illicit fentanyl enters the US drug 

supply in two primary ways: directly shipped from China to individuals in the US, who further 

refine it; and via Mexican drug trafficking organizations, who distribute refined fentanyl alongside 

heroin – and often in combination.19 The share from each route is not generally known, though 

both are believed to be significant (Dudley et al. 2019). Dark web prices for Chinese fentanyl fell 

by roughly 50 percent from 2014 to 2016 (Miller, 2020). Similarly, bulk purchases prices of 

fentanyl in the US fell roughly 63 percent between 2016 and 2020 (Kilmer et al., 2022).  

Retail prices, in contrast, have been far less affected. Street prices of heroin containing 

fentanyl are typically sold at the same price as heroin without fentanyl (Mars, Rosenblum, and 

Ciccarone 2019). Further, as noted above, heroin prices were rising in the mid-2010s, even as the 

heroin was increasingly cut or replaced with fentanyl.   

The net impact of these fentanyl price changes on expected utilization is unclear. By retail 

prices, there is no reason for illegal fentanyl use to increase. However, even if the 63 percent price 

decline in wholesale fentanyl prices were passed through fully to retail prices, estimates of the 

demand elasticity for heroin (-0.8) (Olmstead et al. 2015) suggest that the decline in fentanyl prices 

can explain only a 50 percent increase in fentanyl deaths from 2016 to 2020. In contrast, fentanyl 

deaths rose 188 percent over the same time.  

Overall, therefore, the data do not suggest that exogenous changes in demand for pain 

                                                            
17 This is a price per pure gram. Over this time period, the DEA data show that purity was reasonably constant; the 
increase in price was because nominal prices were increasing. 
18 There was another spike in heroin prices from 2016 to 2018. The cause of this price increase is not known, but it 
may reflect declining production of heroin in Columbia and the shift of production to Mexico around this time, 
combined with continued high demand (Drug Enforcement Administration 2019, p. 24, Figure 14) 
19 The precursor chemicals may come from China or India, or be made in Mexico. 
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relief, expansions of supply, or new modes of production are a major reason why deaths have risen 

as much and for as long as they have. We thus turn to other explanations.  

 

D. The impact and importance of thick markets 

An alternative theory about the long epidemic is that increased opioid use by some people 

causes other people to use more opioids as well. Returning to our model and equation 3, we model 

this through spillovers (through 𝑏𝑏𝑔𝑔𝑎𝑎�𝑡𝑡). While spillovers are common for many goods, they have 

particularly large impacts for addictive goods. Consider a shock that leads to higher use at time 𝑡𝑡. 

That shock will lead to an increase in consumption capital in 𝑡𝑡 + 1, which will lead to higher 

opioid use among those who used in the first period, as well as everyone else who interacts with 

first period users, due to the spillover effects. This has potential to generate a self-perpetuating 

cycle of continuously increasing opioid use and deaths. Specifically, the model of use in equation 

3 does not have a steady-state equilibrium if:  

 

𝑏𝑏𝑎𝑎𝑎𝑎(1 − 𝑑𝑑)
𝑑𝑑

+ 𝑏𝑏𝑔𝑔 > 𝑏𝑏𝑎𝑎𝑎𝑎. (6) 

 

The first term on the left-hand side of equation 6 is the same as in equation 5. The second term, 

(𝑏𝑏𝑔𝑔), is new, reflecting the importance of social spillovers. Equation (6) is more likely to be true 

than is equation (4).20 Because spillovers lead opioid use in subsequent periods to continue to 

exceed the stock of past consumption, they will likely cause deaths to continue increasing as well. 

This is illustrated in Figure 2, for a scenario where spillovers are 80 percent as large as the effect 

of past use on current use, close to empirical estimates that we present in section VI. In this 

scenario, use continues to increase and deaths along with it. 

There are several reasons that one would expect spillovers to be important for opioids. The 

first is information conveyance. In illegal markets, information does not flow as freely as it does 

in legal markets. Users and dealers cannot openly advertise their intent to use or sell opioids 

without incurring risk, and informal methods of communication (such as through social networks) 

are more important (Cook et al. 2007). Having more people using opioids in one’s social network 

eases this friction. One of the earliest reports about OxyContin misuse in the U.S. describes the 

                                                            
20 See Reif (2019) for the similar stability condition for the fully dynamic model in equation 4.  
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epidemic spreading in this way: 

 
“The earliest reported cases of OxyContin abuse were in rural Maine, rust-belt counties in western 
Pennsylvania and eastern Ohio, and the Appalachian areas of Virginia, West Virginia, and 
Kentucky. The problem travelled through these regions, as friends told friends and the word spread 
from town to town, county to county, up and down the Appalachians… Part of what makes the 
spread of OxyContin abuse so difficult to track, let alone to stop, is that the drug moves not 
physically but conceptually… a recovering OxyContin addict and former small-time dealer offered 
an explanation for OxyContin’s sudden geographical shifts. `It’s the idea that passes on,’ he told 
me. `That’s how it spreads… It’s dealt by word of mouth. I call a friend in Colorado and explain 
it to him: Hey I’ve got this crazy pill, an OC 80 [OxyContin 80 mg]… You’ve got to go to the 
doctor and get it. Tell him your back hurts.” (Tough 2001) 

 

Second, the costs of obtaining opioids may fall when there are more opioid users. On the 

monetary side, the risk of interdiction of drug sales creates high fixed costs that must be spread 

across many users. This can lead to lower per-user prices when there are more users (Caulkins and 

Reuter 2006). Jacobson (2004) demonstrates evidence of this phenomenon for marijuana, 

exploiting plausibly exogenous variation in the size of youth cohorts. Thicker markets for opioids 

may also lower non-monetary costs associated with obtaining opioids, such as time spent searching 

for a seller, an idea that dates back to search models of macroeconomics (Diamond 1982).  

Third, when there are many users, one can more readily obtain the product from friends or 

relatives. Drug markets are often characterized by participants being both buyers and sellers of the 

good. When familiar individuals are also sellers, the costs and risks from entering an illegal market 

can be reduced. Data from the National Survey on Drug Use and Health show that half of people 

who first misused prescription opioids obtained them from a friend or relative (Lipari and Hughes 

2017).  

Finally, other non-monetary costs of using opioids (such as health harms and social 

penalties) may also fall when there are more users. When addiction is more widespread, policy 

may shy away from the harsher legal responses that may be pursued when drug use is concentrated 

among smaller and stigmatized groups (Courtwright 2009; Kim, Morgan, and Nyhan 2020). 

Greater opioid use may also contribute to use becoming normalized and thereby associated with 

lower social penalties.  

Understanding whether these spillovers can explain why opioid deaths have been 

increasing for so long is ultimately an empirical question. We turn to that next, starting with an 

explanation of our data. 
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III. Sources of Data  
A. County opioid poisoning death rates  

We obtained counts of county drug overdose deaths from 1990 to 2018 from restricted-

access vital statistics data from the National Centers for Health Statistics (NCHS 2018).21 We used 

these data to construct county-specific overdose death counts from any drug, opioids, and (since 

1999) opioids by type (prescription opioids, heroin, and synthetic opioids other than methadone 

[which includes fentanyl]). Coding conventions for these deaths followed prior literature.22 Deaths 

are reported by area of residence. Thus, a person who travels to obtain opioids and dies in another 

county will be attributed to the county in which they live. Data on county population sizes, which 

we use to construct death rates, are from the National Institutes of Health Surveillance, 

Epidemiology, and End Results Program (N.I.H. and Vilhuber 2021). We age- and sex-adjust all 

death rates to the U.S. 2010 population. 

Figure 4 shows a map of average annual opioid deaths per 100,000 people (average from 

1990 to 2018) across 3,117 counties for which we have data. Death rates are censored when fewer 

than 10 total deaths occurred, per our data use agreement. From the figure, death rates are clearly 

highly spatially correlated: counties that have high opioid death rates tend to be near others with 

high death rates and vice versa. The clustering also tends to bleed across state boundaries, making 

it clear that this is not purely the result of differences in state policies across areas. The largest 

clusters include Appalachia (particularly southeastern Ohio, eastern Kentucky, West Virginia, and 

western Virginia); several states in the northeast (from Connecticut and upwards through to 

Maine); and several clusters of counties out west in Nevada, Utah, and New Mexico. We formally 

                                                            
21 Counts of national opioid deaths for 2019 and 2020, used in Figure 1, were obtained using publicly available NCHS 
data for those years. 
22 Drug deaths after 1999 were identified based on the International Classification of Diseases (ICD), 10th edition 
underlying cause-of-death codes X40–X44, X60–X64, X85, and Y10–Y14. Overdoses by category were identified by 
multiple-cause-of-death codes T40.1 (heroin), T40.2 (prescription opioids = natural and semisynthetic opioids), T40.3 
(methadone), and T40.4 (fentanyl/tramadol = synthetic opioids other than methadone). Total opioid deaths also 
included code T40.6 (other/unspecified narcotics). Drug deaths before 1999 were identified based on ICD, 9th edition 
underlying cause-of-death codes E850-E858, E950.0-E950.5, E9620, and E980.0-E980.5. Opioid deaths before 1999 
were identified from underlying cause-of-death codes E850.1-E850.2 and 305.5, as well as multiple-cause-of-death 
codes 965.00-965.09. Deaths involving more than one opioid category are counted in both. See Fingerhut and Cox 
(1998) and Hedegaard, Miniño, and Warner (2020) for more details. To account for the change from ICD-9 codes 
(1990–1998) to ICD-10 codes (1999–2017), the following comparability ratios were applied to ICD-9 codes E850-
E858, E950-E950.5, E9620, and E980.0-E980.5 (respectively) in the calculation of total drug deaths: 1.0365, 1.0013, 
0.9870, and 1.0417 (Miniño et al. 2006). Total opioid deaths were adjusted upward by about 20 percent (comparability 
ratio = 1.195) (Hoyert et al. 2001). 
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taste for spatial correlation in section VI.  

 

B. County opioid shipments  

Data on opioid shipments are from publicly available summary reports of the Automation 

of Reports and Consolidated Orders System (ARCOS) and include all shipments of codeine, 

oxycodone, fentanyl base, hydrocodone, hydromorphone, and morphine.  The ARCOS reports 

shipments at the 3-digit zip-code level, which we convert to counties using a 2010 zip-to-county 

crosswalk from the U.S. Census Bureau. These data include all shipments to the area and thus 

likely dispensed in the area, including to people who live in other counties. We use the data to 

construct each county’s average rate of opioid shipments from 1997 to 2010, standardized in terms 

of 50 morphine milligram equivalents (MMEs) per capita. This is equivalent to roughly one high 

dose of opioids (Dowell, Haegerich, and Chou 2016).  

We also obtained exact MME shipments at the county level from 2006 to 2014 from a 

special extract of the ARCOS which was unsealed as part of multi-district litigation against opioid 

manufacturers, wholesalers, and pharmacies, and is only available for those specific years.23 We 

term this extract the detailed ARCOS data. For the detailed data, we calculate total MMEs along 

with OxyContin MMEs (including generic OxyContin during years that it was available) and other 

non-OxyContin opioid MMEs (including non-OxyContin oxycodone). These detailed ARCOS data 

are our dependent variable in modeling spillovers in opioid shipments. The longer-term ARCOS 

data are used to instrument for opioid death in our models of deaths during the illegal opioid era.24 

 

C. Exogenous factors related to initial increases in opioid deaths  

We obtained data on factors that have been cited in the literature as exogenously leading 

to greater opioid use. We first focus on three factors which were related to where prescription 

opioid use increased through 2010: areas without state triplicate prescription programs (Alpert et 

al. 2021); areas with higher 1994–96 cancer mortality rates (Arteaga and Barone 2021); and areas 

with higher shares of adults (age 25 to 64) that received disability benefits (Cutler and Glaeser 

2021). We define triplicate programs as in Alpert and colleagues (2021) and crude rates of cancer 

                                                            
23 Data are available at: https://www.slcg.com/opioid-data/.   
24 Because three-digit zip codes often cross county borders, data on county shipments formed from three-digit zip 
codes will induce some spatial correlation in opioid shipments. The detailed ARCOS shipment data (available at the 
exact county-level) do not have this problem. 

https://www.slcg.com/opioid-data/
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deaths per 1,000 people from 1994-1996,25 following Arteaga and Barone (2021), using our NCHS 

data. Data on the number of adults receiving disability benefits in 1990 comes from an Old-Age, 

Survivors, and Disability Insurance 1990 report (Cutler and Glaeser 2021); we divide these counts 

by the number of adults aged 25 to 64 using SEER population counts.  

For the analysis of illicit opioids (after 2010), we focus on instruments that have been 

related to illicit opioid use. These include pre-2010 (1997 to 2010) opioid shipments per capita 

and each county’s pre-2010 heroin death rate, interacted with the share of heroin seizures that were 

white powder in eastern vs. western states. This latter instrument is included because fentanyl is a 

more natural substitute for white powder heroin than black tar heroin. Data on heroin seizures 

come from the Drug Enforcement Administration’s Heroin Domestic Monitoring Program, which 

analyzes undercover purchases of retail heroin in several major U.S. cities (Drug Enforcement 

Administration 2004–2010). The dividing line for white powder heroin is the Mississippi River 

(east is almost exclusively white powder; west is almost exclusively black tar) (Ciccarone 2009). 

We do not have seizures for all counties, so we estimate each county’s share of heroin that is white 

powder using the average share of seizures that is white powder in each county’s geographic region 

(east or west of the Mississippi).  

In supplementary analyses, we also use several other variables that have been identified in 

the literature as leading to more opioid deaths. For initial prescription opioid increases, we use the 

percent of people aged 25 to 64 without a college degree (from the 2005 to 2009 American 

Community Survey); and predicted increases in import competition from China based on industry 

shares in 1990 from Autor, Dorn, and Hanson (2013).26 For increases in illicit opioid use, we 

examine effects separately for OxyContin use in the area and other drugs. Because OxyContin was 

reformulated to be abuse deterrent in 2010 (Alpert et al. 2018; Evans et al. 2019), pre-2010 

OxyContin use may be more related to post-2010 illegal drug use than use of other opioids is.27  

 

D. Measures of social interactions across areas 

We obtained two measures of interactions between two counties. The first is the geographic 

                                                            
25 We include all deaths with an ICD10 underlying cause of death code for a malignant neoplasm (C00-C97).  
26 Case and Deaton (2021) show that people without college education were particularly vulnerable to opioids as the 
epidemic expanded, due to higher levels of pain and despair. Autor, Dorn, and Hanson (2013) show that opioid deaths 
increased more in areas where rising imports from China reduced wages and displaced people from jobs.  
27 Several studies argue OxyContin reformulation was the cause of increased heroin deaths immediately after 2010, 
due to users substituting from OxyContin to heroin (Alpert, Powell, and Pacula 2018; Evans, Lieber, and Power 2019).  
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distance (in miles) between county centroids (denote 𝑑𝑑𝑖𝑖,𝑗𝑗 for counties 𝑖𝑖 and 𝑗𝑗).28 This measures 

how physically close two counties are to one another and picks up, among other things, how easily 

one can move from one county to the other to obtain opioids that are being supplied there. The 

second is based on the amount of Facebook friendships between people in different counties, from 

Bailey and colleagues (2018). Specifically, it is the normalized total number of Facebook 

friendship links between two counties 𝑖𝑖 and 𝑗𝑗 as of April 2016.29 We refer to this measure as Social 

Connectedness Index (denote 𝑆𝑆𝑆𝑆𝐼𝐼𝑖𝑖,𝑗𝑗 for counties 𝑖𝑖 and 𝑗𝑗). We translate this to a measure of relative 

probability by dividing the SCI for counties 𝑖𝑖 and 𝑗𝑗 by the sum of the SCI for county 𝑖𝑖 and all other 

counties 𝑗𝑗 ≠ 𝑖𝑖, as in Kuchler, Russel, and Stroebel (2021). This measure is likely to be particularly 

valuable in picking up information flows about opioids and their availability across counties.  

As described in Bailey and colleagues (2018), social connectedness is inversely correlated 

with distance. Averaging across counties, the elasticity of social connectedness with respect to 

distance is -1.2 (Bailey et al. 2018). Still, the relationship is non-monotonic and may differ across 

areas, as we discuss below. 

 

IV. Case Study of Spillovers from Initial Pill Mill Counties 
In this section, we analyze a case study of exposure to an area that was one of the first areas 

where prescription opioid addiction and overdose deaths greatly increased—Greenup County, 

Kentucky, and neighboring Portsmouth County, Ohio. David Procter, considered the founder of 

the first pill mill in the U.S. (and who later was sentenced to jail), practiced in these two counties 

and prescribed large amounts of opioids to patients who did not have legitimate medical need for 

them in exchange for cash payments, starting in the 1990s (Quinones 2015). Journalistic accounts 

frequently cite this initial pill mill as foundational in the trajectory of the overall epidemic, often 

describing the epidemic as spreading outward from this very first pill mill:  

 

“In Ohio, pain-pill addiction and its consequences got bad first in Portsmouth. After that, the 
state’s public health maps each year showed the red stain spreading north, as if the dope had 
captured an outpost and from there it conquered more of Ohio every year.” (Quinones 2021)  
 

                                                            
28 Data are from the Census Gazetteer files.  
29 Note that this stock measure reflects current friendships in April 2016 as well as friendships in a person’s past.  
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We empirically examine whether opioid deaths increased more in areas where people more 

frequently interacted with people in the counties where Procter initially practiced, based on 

physical distance to these counties and having more friends in them. Figure 5 maps where people 

have more friends in these two counties. Distance is clearly an important predictor of friendships. 

However, friend relationships do not decline as rapidly as distance increases. The elasticity of 

social connectedness to Greenup and Scioto counties with respect to distance between them is -

0.81. Thus, there is significant interaction between Greenup and Scioto counties and other areas 

of the U.S. that are not immediately nearby, as shown in the map. 

Figure 6 shows trends in opioid overdose death rates from 1990 to 2018 for four cohorts 

of counties: Greenup and Scioto counties (where the initial pill mills were established); counties 

with above 95th percentile social connectedness to Greenup or Scioto County; counties with a 5th 

to 95th percentile social connectedness to them; and counties with less than 5th percentile 

connectedness. We censor the rates when fewer than ten total opioid deaths occur, per stipulations 

from the National Center for Health Statistics.  

Starting in the early 1990s, the counties with the highest rates of opioid deaths were those 

with the lowest degree of social connectedness to where the pill mills were initially established. 

Many of these areas are urban, such as New York and San Francisco, where there was a 

longstanding rate of heroin use. However, as time progressed, the relationship reversed. Opioid 

death rates started increasing in Greenup and Scioto County in the late-1990s (initial years not 

shown, due to data censoring). Opioid death rates in the counties with the most friends in Greenup 

and Scioto counties quickly followed, surpassing death rates in other areas by 2001 and converging 

with the death rates in Greenup and Scioto counties in 2011. Though opioid death rates increased 

in all areas, they increased much sooner and by far more in the counties where pill mills got their 

start and counties where people had more friends in Greenup and Scioto counties. Even after the 

transition from prescription opioids to heroin and fentanyl in the 2010s, death rates were twice as 

high in areas where early pill mills were established and those that were connected to them.   

Figure 7 shows a binned scatter plot of the change in opioid deaths per 100,000 people 

from 1992–1995 to 2008–2011 (the peak of overall U.S. prescription opioid shipments and death 

rates) against log miles to Greenup or Scioto County, whichever is closer (Panel A) and the log 

social connectedness to Greenup and Scioto County (Panel B). Distance and social connectedness 

to the two initial pill mill counties are both strongly related to changes in opioid deaths. The 
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coefficients imply that halving distance to Greenup or Scioto County is associated with a 0.70 (10 

percent) greater increase in the rate of opioid deaths per 100,000 people. Doubling social 

connectedness to Greenup and Scioto County is associated with a 2.27 (33 percent) greater increase 

in the opioid death rate. 

 

V. Empirical Framework 
In this section, we discuss how we test for spatial spillovers in opioid use and show how 

thick market externalities can cause extended opioid epidemics. As noted in Section III, the data 

on county-level opioid deaths are available for a longer period (1990 to 2018) than the detailed 

ARCOS data on county-level opioid shipments (2006 to 2014). Thus, our primary models focus 

on death rates. The methodology extends to opioid shipments as well. 

Building on our theoretical framework, our model takes the following form: 

𝑦𝑦𝑐𝑐,𝑡𝑡 = 𝜆𝜆�𝑤𝑤𝑗𝑗,𝑐𝑐𝑦𝑦𝑗𝑗,𝑡𝑡

𝐼𝐼

𝑗𝑗≠𝑐𝑐

+ 𝛾𝛾𝑥𝑥𝑐𝑐 + 𝜌𝜌𝑦𝑦𝑐𝑐,𝑡𝑡−1 + 𝜏𝜏𝑡𝑡 + 𝜖𝜖𝑐𝑐,𝑡𝑡 . (7) 

𝑦𝑦𝑐𝑐,𝑡𝑡 denotes county 𝑐𝑐’s opioid death rate at time 𝑡𝑡. This is regressed on weighted averages of death 

rates in other counties at time 𝑡𝑡 (∑ 𝑤𝑤𝑗𝑗,𝑐𝑐𝑦𝑦𝑗𝑗,𝑡𝑡
𝐼𝐼
𝑗𝑗≠𝑐𝑐 ), lagged opioid death rates in county c (𝑦𝑦𝑐𝑐,𝑡𝑡−1), time 

fixed effects (𝜏𝜏𝑡𝑡), and an error term (𝜖𝜖𝑐𝑐,𝑡𝑡). Relative to the theoretical model, we do not have price 

in the model, as we do not observe it.  

We use two alternative forms of weighting for 𝑤𝑤𝑗𝑗,𝑐𝑐. The first is the inverse geographic 

distance (in miles) between county 𝑗𝑗 and 𝑐𝑐 (1/𝑑𝑑𝑗𝑗,𝑐𝑐). The second is based on the relative probability 

of a Facebook friendship between county 𝑗𝑗 and 𝑐𝑐. We follow the recommendations of Kelejian and 

Prucha (2010) and normalize the weighting matrices by the largest eigenvalue to facilitate 

interpretation and comparisons between the two different forms of weighting.  

The primary concern with estimating equation (7) with ordinary least squares is the 

reflection problem. Common shocks in neighboring counties will appear as spillovers in deaths 

when that is not really the case. To account for these sources of bias, we use the exogenous 

determinants of opioid use (𝑥𝑥𝑐𝑐) and lagged death rates (𝑦𝑦𝑐𝑐,𝑡𝑡−1) in other areas (denote 𝑧𝑧𝑐𝑐,𝑡𝑡) as 

instruments for identifying spillovers. Specifically, we implement a generalized spatial two-stage 

least squares (GS2SLS) procedure that instruments for weighted averages of opioid deaths in other 
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areas (∑ 𝑤𝑤𝑗𝑗,𝑐𝑐𝑦𝑦𝑗𝑗,𝑡𝑡
𝐼𝐼
𝑗𝑗≠𝑐𝑐 ) with weighted averages of the instruments (∑ 𝑤𝑤𝑗𝑗,𝑐𝑐𝑧𝑧𝑐𝑐𝐼𝐼

𝑗𝑗≠𝑐𝑐 ) (Arraiz et al. 2010; 

Drukker, Egger, and Prucha 2013; Kelejian and Prucha 1998, 1999, 2004, 2004).30 The estimating 

equation is in Appendix A. Identification relies on exogeneity of determinants of current use in 

other counties (including lagged death rates), conditional on determinants of use in one’s own 

county. 

 We divide estimation into two time periods: the first period, from 1996 to 2010, that was 

largely driven by rising prescription opioids deaths, and the second from 2010 to 2018 that saw 

sharply rising deaths from heroin and illicit fentanyl. We do not estimate models that span the 

period before and after 2010 because the nature of utilization and deaths changed in the two 

periods, as noted above. Estimating GS2SLS variant of equation 4 is computationally intensive. 

In addition, we wish to focus on average use over some interval, not necessarily the impact of one 

or two deaths at a specific moment.31 Both of these considerations lead us to take averages over 

several years. In the models for pre-2010 deaths, we divide the interval into four five-year time 

windows: 1991–1995, 1996–2000, 2001–2005, and 2006–2010. In the post-2010 period, when 

deaths are more common, we divide the sample into four three-year time intervals: 2007–2009, 

2010–2012, 2013–2015, 2016–2018. In both models, the first period of observation (1991–1995 

and 2007–2009 respectively) only shows up as the lagged observation for the next period (i.e., not 

as dependent variables themselves).  

In analyzing spillovers in opioid shipments, we use annual data from 2006 to 2009 (before 

any major policy efforts to curtail supply). We do this because there are fewer years of data and 

shipments are more stable than deaths. Again, data from the first period (2006) only enters the 

model as a lagged observation for 2007. 

 An important question is whether opioid death rates should be related to contemporaneous 

or lagged death rates in other areas (i.e., whether the weighting term should involve ∑ 𝑤𝑤𝑗𝑗,𝑐𝑐𝑦𝑦𝑗𝑗,𝑡𝑡
𝐼𝐼
𝑗𝑗≠𝑐𝑐  

or ∑ 𝑤𝑤𝑗𝑗,𝑐𝑐𝑦𝑦𝑗𝑗,𝑡𝑡−1
𝐼𝐼
𝑗𝑗≠𝑐𝑐 ). Because we use large time intervals (3 to 5 years for opioid deaths), we use 

contemporaneous deaths, as it is more natural to assume that spillovers due to thicker markets 

                                                            
30 Readers should refer to the references therein for the derivation of the estimator and its asymptotic distribution. A 
related estimation technique is to translate equation 4 into 𝑌𝑌𝑡𝑡 = (𝐼𝐼 − 𝜆𝜆𝜆𝜆)−1(𝜌𝜌𝑌𝑌𝑡𝑡−1 + 𝑋𝑋𝑋𝑋 + 𝜏𝜏𝑡𝑡 + 𝜖𝜖𝑡𝑡), which can be 
estimated by maximum likelihood (Case and Katz 1991). Using this alternative technique yields similar results.  
31 Opioid deaths are rare outcomes: e.g., the average county with 100,000 people would have experienced 5 deaths in 
2010. For a small county with fewer people, there will be years where no deaths occur even with high opioid use. 
Averaging over a wider interval reduces such measurement error. 
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would occur within a few years period. If we were to use shorter intervals, it might make sense 

that death rates in one area would depend on lagged death rates in other areas (allowing enough 

time for spillovers through information or product flows to occur). Regardless, this choice does 

not meaningfully affect our estimates, as we discuss later.  

For the estimation of opioid deaths and shipments models through 2010, the primary 

instruments we use are the variables related to where prescription opioid use increased: state 

triplicate prescription programs; mid-1990s cancer mortality rates; and 1990 disability rates. For 

the estimation after 2010 involving mainly illicit opioid deaths, the primary instruments we use 

are each county’s average annual rate of prescription opioid shipments from 1997 to 2010 

(denominated in MME per capita); heroin death rate (2005–2009); regional share of heroin 

seizures that were white powder (2004–2010); and heroin death rate interacted with the share of 

seizures that were white powder. In all the models, lagged opioid death rates in previous periods 

(which account for persistence) are also used as instruments. 

 

VI. Estimates of Spillovers 
We start by testing for spatial correlation of overall opioid death rates from 1990 to 2018. 

Figure 4 shows visually a high degree of spatial correlation in opioid deaths. Table 1 presents 

Moran I statistics which formally test for spatial correlation of death rates across areas, before and 

after conditioning on area-level factors that may influence opioid death rates and state fixed 

effects.32 Across all specifications, the data show strong evidence of spatial correlation with 

respect to geographic distance and cross-county friendship patterns, even controlling for area 

characteristics and state fixed effects.  

 

A. Determinants of the opioid epidemic’s first wave  

  We next turn to analyzing determinants of opioid deaths in the first wave of the opioid 

epidemic, from 1996 to 2010. Results from estimating equation 5 are presented in Table 2. Models 

1 to 3 use OLS and models 4 to 6 use GS2SLS to instrument for the spillover parameters. In each 

case, we have 9,351 observations, three for each county.   

 We start with the OLS results. While these may be biased by the presence of unobserved 

                                                            
32For a linear model of opioid death rates, Deaths = X𝛽𝛽 + u, the Moran I statistic (𝐼𝐼) tests the null hypothesis that 𝑢𝑢𝑖𝑖 
are uncorrelated (i.e. 𝐻𝐻0 = 𝜎𝜎2𝐼𝐼).  



23 

 

variables correlated across counties, comparing the OLS and GS2SLS estimates can indicate how 

large that bias is. Models 1 to 3 show that opioid death rates in one period are strongly related to 

opioid death rates in the prior period. The autocorrelation coefficient, 𝜌𝜌�, ranges from 0.52 to 0.90. 

In all cases, the estimate is statistically significantly less than 1. Thus, without further exogenous 

changes or spillovers, opioid epidemics would burn out over time.  

The next row shows large spillovers in death rates across counties. In model 1, which uses 

distance weighting, the effect of more opioid deaths in geographically proximate areas is 70 

percent as large as the effect of having more opioid deaths in the same county in the last period. 

In model 2, which uses friend-based weighting, the effect of more opioid deaths in socially 

connected areas is 70 percent larger than the effect of lagged death rates. When both measures are 

included in the model together, spillovers load on the friends-based term and the distance-based 

term becomes slightly negative. Because of the relatively high collinearity between the two 

measures (Pearson’s correlation coefficient = 0.75), we interpret this as mild preference for the 

weighting measure based on friends, but this is difficult to determine firmly. 

  In columns (4) to (6), the exogenous variables that affect prescription opioid use are 

strongly related to the endogenous variable (opioid death rates). Being in a non-triplicate state and 

having a higher percent of adults who were disabled in 1990 are strongly related to growth in 

opioid overdose death rates, consistent with past research (Alpert et al. 2021; Cutler and Glaeser 

2021). However, the direct effects of these variables on deaths are smaller than past research, 

which does not allow for these variables to have spillovers.33 Cancer mortality rates are not 

significantly related to growth in mortality after we include the percent of adults who were 

disabled; however, as in Arteaga and Barone (2022), it is positively and significantly related to 

growth when it is included in the model by itself (see Appendix Table B4). 

  The coefficients on lagged death rates and deaths in other counties are very similar to the 

OLS estimates; the two are generally within one standard error of each other. Lagged opioid death 

rates are strongly related to current opioid death rates (𝜌𝜌� = 0.55 to 0.91), depending on the 

specification). This estimate is again statistically significantly below 1, implying the opioid 

epidemic would have burned out without spillovers or further exogenous shocks. The GS2SLS 

estimates of spillovers are the same direction and very similar in magnitude to the OLS results—

                                                            
33 The coefficients for the non-triplicate prescription programs and disability rates are roughly double if we estimate 
equation 7 without the spillovers term and are closer to those in Alpert et al. (2021) and Cutler and Glaeser (2021).   
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implying limited bias in the OLS estimates. There are positive spillovers with both the distance 

and friends-based weighting metrics for deaths in other areas when included in the model 

separately, and spillovers load more on the friends-weighted deaths terms when both are included 

together. We return to what coefficients of this magnitude imply in subsection VI.C. 

 

B. Determinants of prescription opioid shipments growth 

  In addition to opioid deaths, we also examine determinants of growth in opioid shipments 

during the first wave of the epidemic. As noted above, we analyze spillovers using the detailed 

ARCOS data from 2007 to 2009 (including the lag in 2006). We present spillover results for 

OxyContin, other prescription opioids, and all opioids separately, as two of our instruments relate 

specifically to OxyContin marketing. Results using the friends-based weighting are presented in 

Table 3. Starting with the first column, which reports results from OLS, we show that OxyContin 

shipments are highly persistent over time and that there are modest spillovers (22 percent as large 

as the direct effects of past shipments). There are also significant spillovers for other types of 

opioid shipments and opioid shipments overall, though the magnitudes are smaller (5 to 7 percent 

of lagged direct effects).  

  The instrumental variables results are similar. As in prior literature, non-triplicate states 

experienced higher growth rates of shipments of OxyContin, as well as other opioids (particularly 

non-OxyContin oxycodone). Impacts on other types of opioid shipments are even larger than 

impacts on OxyContin. Alpert and colleagues (2021) interpret this as spillovers of OxyContin 

marketing onto other types of oxycodone. We also find cancer mortality rates were unrelated to 

growth in OxyContin shipments and predominantly affected growth of other types of opioids 

(particularly non-OxyContin oxycodone).34 Disability rates were generally positively related to 

shipments, but not significantly so with the other variables in the model.35  

  As with mortality, the spillover estimates in the instrumental variables models are very 

similar to the OLS estimates. The persistence effect is near 1 on an annual basis, and spillover 

effects are about 0.05 to 0.15 as large. Results using distance-based weighting for the spillovers 

                                                            
34 It is possible this is due to OxyContin growth being slower over this period, ten years after it was initially approved, 
and spillovers to other types of opioids were more important over this time. Alternatively, the variable may be picking 
up factors related to more general increases in oxycodone use. Whether or not we include this variable does not affect 
our main estimates of spillovers in opioid deaths (see section VII). 
35 Disability rates are strongly related to opioid shipments growth over a longer time-period (e.g., 1999 to 2010), as 
shown in Cutler and Glaeser (2021). They are less related to growth over this shorter period after 2006.   
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term are shown in Appendix Table B1 and imply spillovers of similar magnitudes.  

 

C. Determinants of deaths after 2010 

   Next, we examine spillovers associated with deaths after 2010, which entailed sharply 

rising illicit opioid deaths. In these models, we again have three observations for each county, each 

with a three-year average opioid death rate.  

  Table 4 shows the results. As with Table 2, we first report OLS estimates (columns 1 to 3) 

and then equivalent GS2SLS estimates (columns 4 to 6). Starting with the OLS estimates, lagged 

county-level opioid death rates are highly related to current opioid death rates, but the relationship 

is again statistically significantly less than 1. The coefficients are a bit smaller here than in the 

earlier period (𝜌𝜌� = 0.44 to 0.71), reflecting somewhat lower persistence.36 This may be due to 

more variability in toxicity of opioid products in this era. Illicit opioids are more variable in 

potency relative to prescription opioids, which may lead to quicker deaths of the drug using 

population. All else equal, this would be expected to cause epidemics to burn out more quickly. 

We also estimate large spatial spillovers in this period. The coefficients on spillovers which rely 

on distance between counties are larger than in the legal era, with spillovers 88 percent as large as 

the effects of past opioid deaths on present opioid deaths. Spillovers that use friendship-based 

weighting are even larger, nearly twice the direct effect of past opioid deaths. 

 The results from the instrumental variables estimates are presented in the last three 

columns. Consistent with prior research, historical opioid shipments (including OxyContin) are 

strongly related to the increase in illicit opioid death rates (Alpert et al. 2018; Cutler and Glaeser 

2021; Evans et al. 2019). Heroin death rates prior to 2010, particularly in areas where white powder 

heroin was more common, are also strongly related to growth in death rates after 2010. Using these 

variables to instrument for spillovers, we obtain similar results to the OLS models. In the models 

where distance and friend spillovers are separate, spillovers through friend relationships across 

counties are 48 percent larger than the effects of having higher opioid death rates in the past. 

Spillovers through geographic distance are 70 percent as large. We also confirm that spillover 

estimates are similar if we use the instruments that affected prescription opioid usage in the first 

period (1996 to 2010) rather than actual opioid shipments (see Appendix Table B2).  

                                                            
36 The same annual persistence would be associated with a higher correlation using three-year averages than using 
five-year averages. 
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D. The Implication of Thick Market Effects  

Because the model has a dynamic component, the long-run impacts of social spillovers 

cannot be determined without additional analysis. Accordingly, we use the estimates in Tables 2 

and 4 to simulate various equilibria. 

Table 5 translates the GS2SLS estimates of equation 5 to show three effects and their 95% 

confidence intervals. The first is the persistence (or autocorrelation effect). This comes directly 

from equation 7, i.e. 𝜌𝜌�. The second is the spillover effect of a hypothetical shock that increases 

opioid death rates by 1 death per 100,000 in the average county. We define this effect as follows: 

 

Average spillover effect =
𝜆̂𝜆
𝑁𝑁
��𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗≠𝑖𝑖

𝑁𝑁

𝑖𝑖=1

. (8) 

 

The third effect is the multiplier of the effect of current death rates on death rates in the next period, 

accounting for both persistence and spillover effects. This is defined as: 

 

Average next period multiplier = 𝜌𝜌� �1 +
𝜆̂𝜆
𝑁𝑁
��𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗≠𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 � . (9) 

 

Intuitively, this multiplier depreciates (by the persistence parameter) the sum of each death in the 

previous period plus the spillovers it had. If equation (9) is close to 1, the epidemic will be very 

persistent and temporary shocks will have long-term effects on death rates. If it is greater than 1, 

the epidemic will increase in perpetuity, even without any exogenous changes in tastes or drug 

supply. For both equations 8 and 9, we obtain 95% confidence intervals using the Delta method.  

  The first row of Table 5 shows the persistence effects and their 95% confidence intervals. 

The second row shows the averages spillover effect of a hypothetical shock that increases death 

rates by 1 death per 100,000 in the average county. This causes 0.38 to 0.76 deaths per 100,000 in 

other counties, depending on how we measure spillovers. The next row shows how this affects the 

epidemic’s dynamics, evaluating equation (9). In all cases, the estimate is close to 1 (ranging from 

0.78 to 1.24)—implying that spillovers will cause any temporary shocks to have long-lasting 

effects. In some of the models, shocks will have permanent effects, as the dynamics are unstable 

(the next period multiplier is > 1). Thus, the combination of spillovers and addictiveness will cause 
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deaths to increase in perpetuity.  

  To show this directly, we run two simulations that increase opioid death rates by 1 death 

per 100,000 in the average county: one using estimates from model 1 (where the impact in the next 

period is greater than 1 death) and one using estimates from model 3 (where the impact in the next 

period is just below 1). We illustrate how the simulation is done in Figure 8, using the numbers 

from model 1. We consider a hypothetical shock that initially increases deaths by 1 per 100,000. 

This will cause opioid use to rise in other countries due to spillovers, and thus 0.38 further deaths 

in those counties. The total effect on deaths initially is 1.38. Because use is addictive and death 

rates are persistent, both sets of areas will have a higher death rate in the next period (1 × 0.89 =

0.89 in the initially affected counties and 0.38 ∗ 0.89 = 0.34 in the areas where the shock spilled 

over). Both those sets of deaths will then cause further spillover effects: (0.89 + 0.34) × 0.38 =

0.47, leading deaths to rise to 1.70 (0.89 + 0.34 + 0.47), higher than they were initially. This 

continues to play out over time and will not stop unless there is some shock to reverse it or there 

are no further populations for the epidemic to spread to.  

  We plot this graphically in Figure 9 panel A. The blue line shows the effects of the initial 

shock on death rates, and its persistence in affected counties. This is the only exogenous increase 

in deaths in the simulation. Due to persistence of death rates across periods, opioid deaths remain 

higher in areas affected by the initial shock in subsequent periods but ultimately asymptote towards 

zero. However, the shock also leads to spillovers. These persist and cause additional spillovers in 

subsequent years. Though each manifestation of shocks and spillovers fade, they fade slowly, and 

the combined effect of this is a continuous and exponential increase in opioid death rates. Six 

periods later, the vast majority (85 percent) of deaths are due to spillovers, not the initial shock.  

  Figure 9 panel B shows the predicted path of the shock based on model 3, which results in 

a declining (but slowly declining) epidemic. The same process that played out before plays out 

again. However, the spillovers are not large enough to override the decline in deaths in subsequent 

periods. Deaths asymptote back towards 1, though much more slowly than if spillovers were not 

occurring. Like panel A, six periods later, most deaths (96 percent) are the result of spillovers and 

not the initial shock.  

  These results show that the combination of addictiveness and spillovers are large enough 

to cause epidemics to persist for long periods of time after initial shocks fade away. To quantify 

the importance of spillovers in the actual time series of opioid deaths, we use our model estimates 
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to decompose the share of actual deaths that can be explained by spillovers and their dynamic 

effects. Starting in the first time-period for each of our two estimation samples, we predict death 

rates setting the spillover parameter from equation (4) (𝜆𝜆) to 0. We then simulate death rates in the 

next period, using the other parameters of the model. We continue this process until the most recent 

year of each phase (2010 or 2018).  

  Results are shown graphically in Figure 10, for the prescription opioid period (panel A) 

and the more recent illicit opioid period (panel B). We use models 3 and 6 from the table, which 

include both friend- and distance-based spillovers. Starting with prescription opioid wave in panel 

A, the predicted path of the epidemic without spillovers is shown in the dashed blue line. The path 

increases through the 2001–2005-time interval because of the coefficients on the exogenous 

variables and then starts to decline. The impact of spillovers of these variables (including dynamic 

spillovers) is shown in the dashed red line, which grows sharply over time and accounts for the 

bulk of total opioid death rates. From 1996 to 2000, around a quarter of deaths are due to the direct 

effects of exogenous variables. By the 2006–2010 period, deaths would have been declining if not 

for the impacts of spillovers, and spillovers account for 93 percent of deaths. For the illicit period 

(shown in panel B), deaths decline even more rapidly in the scenario without spillovers—the 

exogenous variables driving higher death rates are not sufficiently large to sustain increases. 

However, as their effects are amplified by spillovers, deaths keep increasing to higher levels. In 

the final period, from 2016–2018, 99 percent of deaths are due to spillovers.  

   The overall share of opioid deaths that are explained by spillovers in each of our different 

models is shown in the bottom row of Table 5. In all cases, spillovers explain most opioid deaths 

since 1990. In our preferred models that include the stronger friend-based spillovers, spillovers 

explain essentially all of them, upwards of 84 percent.  

 

VII. Robustness Checks 
  Our results are robust to alternative estimation strategies. First, rather than basing spillovers 

on contemporaneous deaths in other areas, we base them on lagged death rates in other areas. As 

mentioned in section V, this may be more appropriate if it takes a long time for information 

spillovers to occur. Results, which we estimate using OLS, are reported in Appendix Table B3. 

The coefficients are very similar to the models which relate opioid death rates to weighted averages 

of contemporaneous death rates. In several cases, they are even larger. In models 1 to 3, spillovers 
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range from 20 to 224 percent larger than the direct effects of having higher death rates in the past. 

In models 4 to 6, spillovers range from 96 percent as large to 179 percent larger. In these models, 

even when friend and neighbor spillover terms are included in the model, both remain positive and 

significant: with the model still preferring the friend-based spillover terms.  

  Second, we study whether there are cross-substance spillovers—i.e., spillovers from heroin 

deaths in an index county on non-heroin deaths in other counties. While some such spillovers are 

to be expected, we suspect they would be smaller than spillovers of the same substance. We focus 

on the illicit wave of the epidemic, where the specific type of opioid is known in all years. We 

analyze results for heroin and fentanyl separately. We do not have separate instruments for heroin 

and fentanyl; however, earlier regressions indicate there is limited bias in the OLS estimates 

relative to the instrumental variables ones. Thus, we use OLS models for this exercise.  

  Results are reported in Table 6 and show spillovers are specific to the type of opioid being 

used. Heroin death rates in other socially connected counties matter much more for heroin death 

rates in one’s own county than prescription opioid or fentanyl death rates. Similarly, fentanyl death 

rates in other socially connected counties are more likely to cause increases in fentanyl death rates 

than increases in heroin or prescription opioid death rates in socially connected counties. This 

supports the notion of these being externalities due to opioid markets becoming thicker—when 

heroin use increases locally, it spills over and causes increases in heroin use elsewhere. The same 

is true for fentanyl.  

  Finally, we test whether our results are robust if we use different combinations of 

instruments to identify spillovers. Starting with the prescription opioid wave, we separately 

consider each of the instruments for initial OxyContin marketing (triplicate prescription and cancer 

death rates), and the 1990 share of workers that received disability benefits, along with two other 

potential instruments: the 2005 to 2007 share of adults aged 25–64 that did not have a college 

degree, and predicted increases in import competition from China based on 1990 industry shares. 

We also include all these variables in the model together.  

  Results are shown in Appendix Table B4. Four of the five variables (triplicate 

prescriptions, cancer death rates, the share disabled, and the share without a college degree) are 

positively related to opioid deaths. The last variable, predicted import competition from China, is 

negatively related to growth in opioid death rates. This is the opposite sign from prior literature 
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(Autor et al. 2013) and results from including the spatial correlation terms.37 In all of these models, 

the estimates of spillovers through friend relationships are remarkably stable, varying no more 

than 7 percent. The last column, which includes the variables jointly, shows that triplicate 

prescription legislation and the share of the population that is disabled are the strongest predictors 

of opioid death rates. 

  For the illicit opioid wave, we look at results if we use each instrument separately, as well 

as if we split opioid shipments into OxyContin vs. non-OxyContin opioids. The opioid shipments 

variables are meant to pick up substitution from these drugs to heroin after 2010, and to see whether 

it differs for OxyContin or other types of prescription opioids. Our results, shown in Appendix 

Table B5, show that both pre-2010 OxyContin and pre-2010 non-OxyContin shipments were 

related to growth in opioid deaths during the illicit opioid wave (columns 1 and 2). Again, our 

estimates of spillovers are very stable regardless of which sets of instruments we use. Overall, they 

vary by no more than 13 percent across specifications and are large in all cases.  

 

VIII. Conclusions 
  This paper studies why opioid overdose death rates have been rising nearly continuously 

in the U.S. for the past thirty years. Historically, there are a mix of long and short drug epidemics. 

Some epidemics last no more than a decade, while the opioid epidemic continues to expand even 

three decades later.  

Our main finding is that we can explain the prolonged and substantial increase in opioid 

deaths by reference to thick market spillovers: as opioid markets become thicker, information 

flows and ease of obtaining the substances lead people to use more of them. We demonstrate 

theoretically and empirically that in the presence of addiction, spillovers can create unstable 

equilibrium that may lead to perpetual increases in epidemic death rates. Even if not perpetually 

increasing, death rates with spillovers and addiction can increase for a long time. In our preferred 

models, spillovers explain most opioid deaths since 1990 and are the main reason the epidemic has 

not burned out.  

  These findings have important implications for economics and policy. They show that even 

                                                            
37 We obtain similar results to Autor, Dorn, and Hanson (2013) if we estimate equation 7 without the spillovers term. 
We also obtain similar results if we replicate Autor, Dorn, and Hanson’s long differences specification, relating 
changes in opioid death rates from 1990–1995 to 2006–2010 to predicted increases in import competition from China.  
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temporary misconduct or mistakes on the part of regulators or suppliers can lead to long-term 

harms, even well after the initial mistake or misconduct has ended. It is important for policymakers 

to take this potential into account when regulating addictive products. 

  The results also show how rational models of addiction can be extended to explain drug 

epidemics. When goods are addictive and there are spillovers, use will persist at higher levels in 

society than one would predict through addiction alone. Understanding how the opioid epidemic 

differs from other epidemics, some of which had shorter durations, is a key issue following from 

our research. 
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FIGURES 
 

Figure 1: Trends in drug and opioid overdose deaths per 100,000, 1990 to 2020 
 

 
 
Notes. Data on overdose deaths are from the National Center for Health Statistics, age and sex 
adjusted to the U.S. population in 2010. Cause of death codes that were used to identify overdose 
deaths (overall and by cause) are described in section III.A of the text.  
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Figure 2: A hypothetical opioid epidemic with and without spillovers 
 

 
 
Notes. See section II for model details and Appendix A for specific parameters. Spillovers (𝑏𝑏𝑔𝑔) 
are 80 percent as large as the effect of past use on current use (𝑏𝑏𝑎𝑎𝑎𝑎(1 − 𝑑𝑑)/𝑑𝑑).  
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Figure 3: Trends in real heroin prices and heroin death rates, 1999 to 2020 
 

 
Notes. Data on heroin prices are based on drug seizures made by the US Office of Drug Control 
Policy (ONDCP) and are adjusted for purity, available at: https://dataunodc.un.org/dp-drug-prices-
Europe-USA. Data on age- and sex-adjusted heroin death rates are from the National Vital 
Statistics System and described in section III.   

 
 

  

https://dataunodc.un.org/dp-drug-prices-Europe-USA
https://dataunodc.un.org/dp-drug-prices-Europe-USA
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Figure 4: Map of Average Annual Opioid Deaths Per 100,000, 1990 to 2018 
 

 
 

Notes. Data are from the National Vital Statistics System. Death rates in counties with fewer than 
ten total opioid overdose deaths over the period are censored, as per NCHS requirements.  
 
  



40 

 

Figure 5: Distribution of social connectedness to Greenup County, Kentucky, and Scioto 
County, Ohio 

 

 
 
Notes. The figure plots the percentile of social connectedness between each county in the U.S. and Greenup, 
KY/Scioto, OH, where initial pill mills were established.  
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Figure 6: Trends in opioid death rates in Greenup County, Kentucky, and Scioto 
County, Ohio, and socially connected counties, 1990 to 2018 

 

 

Notes. Data are from the National Vital Statistics System. Rates are censored when fewer than 10 total 
deaths occurred. The figure present trends in opioid deaths for Greenup County, Kentucky, and Scioto 
County, Ohio, where initial pill mills were established. It also presents trends for counties below the 5th, 
between the 5th to 95th, and above the 95th percentile of social connectedness to the counties Greenup and 
Scioto Counties. * Deaths are censored when fewer than 10 total deaths occurred.  
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Figure 7: Opioid deaths increased more in areas close to and with more friends in initial 
pill mill counties 

 

 

Notes. Binned scatter plots of log miles to Greenup or Scioto county (whichever is closer) (A) and log social 
connectedness to Greenup and Scioto counties (B) vs. the change in opioid deaths per 100,000 people from 
1992-95 to 2008-11. See section IV of the text for more details. 
  



43 

 

Figure 8: Quantifying the dynamic effects of an exogenous shock to opioid use over time 

 
 
Notes. Simulates death rates based on estimates from Table 5 model 1. We consider a hypothetical shock 
that increases deaths by 1 in the initial period. This has spillover effects of 0.38. Both have some 
persistence (at rate 0.89) and then further spillovers in the future. See Section VI for more details.  
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Figure 9: Predicted paths of epidemics following an initial shock to opioid death rates 
 

 
 
Notes. Figure plots the effects of an exogenous shock to opioid use (which leads to 1 death) in the first period. The 
blue line shows how death rates persist at higher rates in initially affected counties, due to opioid use being addictive 
and persistent. Each successive dashed line with markers shows a wave of spillovers (from higher use persisting in 
other areas), and how each of these persist (but fade) over time. The two simulations use models 1 (A) and 3 (B) of 
Table 5. See also Figure 8 for numerical estimates for the first three waves of panel A.  
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Figure 10: Contribution of spillovers to overall opioid death rates, 1996–2018 
 

 
 

Notes. Figure plots how much total opioid death rates (the solid black line) are explained by the direct effects of 
exogenous variables, lagged opioid death rates, and year fixed effects (the dashed blue line) and spillovers (the dashed 
red line) over time, separately for the phases of the epidemic that involved primarily prescription opioids (1996–2010) 
and illicit opioids (2010–2018). The simulations use models 3 and 6 from Table 5. See section VI.D for more details.
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TABLES 

 
Table 1: Spatial correlation of counties’ average annual opioid deaths and shipments 

 
 Weighting Based On: 
 Distance  Friendships  Distance + friendships 

 (1)  (2)  (3) (4) (5) 
        
Moran I statistic 33,602.7  7,010.5  33,748.0 23,858.6 2,925.6 
(p-value) <0.001  <0.001  <0.001 <0.001 <0.001 

        
Controls:        

State triplicate prescription program      X X 
 1994–96 cancer mortality rate       X X 
 Share with a college degree (2005–09)      X X 
Share males age 25–64 not working (05–09)      X X 
Share not married (05–09)      X X 
Share employed in mining (05–09)      X X 
Poverty rate (05–09)      X X 
State fixed effects       X 

Number counties 3,117  3,117  3,117 3,117 3,117 
 
Notes. The sample is all U.S. counties. The table presents Moran I statistics for spatial correlation of opioid death rates and shipments in terms of 
geographic proximity (model 1), social networks (model 2), and both geographic proximity and social networks jointly (models 3–5). P-values test 
the null hypothesis of no spatial correlation in opioid death rates. See section VI.a. 
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Table 2: The impact of opioid death rates in peer and neighboring counties on own opioid death rates, 1996 to 2010 
 

 Ordinary least squares  Spatial two-stage least squares 
 (1) (2) (3)  (4) (5) (6) 
Opioid deathst-1 (𝜌𝜌) 0.90*** 0.54*** 0.52***  0.89*** 0.59*** 0.54*** 
 (0.03) (0.03) (0.03)  (0.03) (0.03) (0.03) 
Death spillovers (distance) (𝜆𝜆𝑑𝑑) 0.64***  -0.13***  0.42***  -0.18*** 

(0.04)  (0.04)  (0.04)  (0.04) 
Death spillovers (friends) (𝜆𝜆𝑓𝑓)  0.92*** 0.97***   0.76*** 0.90*** 

 (0.03) (0.04)   (0.04) (0.05) 
Instruments        
Non-triplicate state     0.27** 0.30*** 0.37*** 
     (0.11) (0.09) (0.10) 
1994–96 cancer mortality rate     -0.09** 0.05 0.05 
     (0.04) (0.04) (0.03) 
1990 percent disabled      0.26*** 0.14*** 0.14*** 
     (0.03) (0.03) (0.02) 

Year (rel. 1996–00)        
Year = 2001–05  0.38*** -0.07 0.15  0.96*** 0.30** 0.44*** 
 (0.14) (0.11) (0.13)  (0.15) (0.13) (0.14) 
Year = 2006–10  -0.91*** -1.21*** -0.69***  0.35 -0.51** -0.11 
 (0.28) (0.18)  (0.24)  (0.27) (0.22) (0.25) 
N (counties x intervals) 9,351 9,351 9,351  9,351 9,351 9,351 
R2 (1–3)/Pseudo R2 (4–6) 0.50 0.61 0.61  0.49 0.53 0.52 

 
Notes. Estimates of equation 7. The sample is all U.S. counties, and the dependent variable is the county’s average annual opioid death rate per 
100,000 people. Data are pooled from 1996 to 2010 in 5-year intervals (1996–2000; 2001–2005; and 2006–2010). Data from 1991–1995 also serve 
as a lag period for the 1996–2000 period. Models 1 to 3 use OLS. Models 4 to 6 use GS2SLS. Heteroskedasticity robust standard errors are reported 
in parentheses. ***(**)* denotes p<0.01(0.05)0.1. See section V and Appendix A for more details. 
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Table 3: The impact of opioid shipments in peer counties on own opioid shipments, 2007 to 2009 

 
Notes. Estimates of equation 7. The sample is all U.S. counties, and the dependent variable is the county’s average annual rate of morphine milligram 
equivalent shipments per capita: for OxyContin, other prescription opioids (non-OxyContin oxycodone, hydrocodone, codeine, fentanyl base, 
hydrocodone, hydromorphone, and morphine), and all opioids. Data are from 2007 to 2009 and in 1-year intervals. Data from 2006 serve as the lag 
period for 2007. Models 1 to 3 use OLS. Models 4 to 6 use GS2SLS. Heteroskedasticity robust standard errors are reported in parentheses. ***(**)* 
denotes p<0.01(0.05)0.1. See section V and Appendix A for more details. 
  

 Ordinary least squares  Spatial two-stage least squares 
 OxyContin Other opioids All opioids  OxyContin Other opioids All opioids 
MME per capitat-1 (𝜌𝜌) 0.96*** 1.07*** 1.06***  0.97*** 1.05*** 1.06*** 
 (0.01) (0.02) (0.02)  (0.01) (0.02) (0.02) 
MME spillovers (friends) (𝜆𝜆𝑓𝑓) 0.21*** 0.05*** 0.07***  0.14*** 0.06*** 0.06*** 

(0.02) (0.01) (0.02)  (0.02) (0.02) (0.02) 
Instruments        
Non-triplicate state     1.34** 3.73*** 4.53*** 
     (0.63) (1.32) (1.38) 
1994–96 cancer mortality rate     0.10 1.79*** 1.90*** 
     (0.22) (0.58) (0.61) 
1990 percent disabled     -0.09 1.06 0.51 
     (0.14) (0.64) (0.59) 

Year (rel. 2007)        
Year = 2008  16.94*** -31.3*** -11.63***  18.09*** -30.6*** -11.35*** 
 (0.69) (1.61) (1.58)  (0.69) (1.67) (1.60) 
Year = 2009  -5.32*** -6.83*** -12.78***  -4.75*** -6.32*** -12.18*** 
 (0.63) (1.65) (1.77)  (0.63) (1.65) (1.73) 
N (counties x years) 9,351 9,351 9,351  9,351 9,351 9,351 
R2 (1–3)/Pseudo R2 (4–6) 0.87 0.95 0.96  0.87 0.95 0.96 
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Table 4: The impact of opioid death rates in peer and neighboring counties on own opioid death rates, 2010 to 2018 
 

 Ordinary least squares  Spatial two-stage least squares 
 (1) (2) (3)  (4) (5) (6) 
Opioid deathst-1 (𝜌𝜌) 0.71*** 0.44*** 0.44***  0.63*** 0.46*** 0.44*** 
 (0.02) (0.02) (0.02)  (0.02) (0.02) (0.02) 
Death spillovers (distance) (𝜆𝜆𝑑𝑑) 0.63***  -0.05*  0.44***  -0.04 

(0.03)  (0.03)  (0.03)  (0.03) 
Death spillovers (friends) (𝜆𝜆𝑓𝑓)  0.86*** 0.89***   0.68*** 0.78*** 

 (0.03) (0.03)   (0.03) (0.03) 
Instruments        
Prescription opioid doses per capita (1997–2010)     0.48*** 0.19*** 0.14*** 
     (0.04) (0.04) (0.04) 
Heroin death rate (2005–09)     0.61*** 0.48** 0.47** 
     (0.22) (0.22) (0.22) 
Share white powder heroin (2004–2010)     0.76*** 0.36 0.04 
     (0.39) (0.32) (0.35) 
Heroin death rate × share white powder heroin     1.93*** 1.58*** 1.51*** 
     (0.42) (0.41) (0.41) 

Year (rel. 2010–12)        
Year = 2013–15  -0.15 -0.10 -0.05  0.23 0.14 0.09 
 (0.20) (0.18) (0.18)  (0.20) (0.18) (0.18) 
Year = 2016–18  -0.001 0.13 0.29  1.16*** 0.88*** 0.69*** 
 (0.25) (0.22) (0.22)  (0.26) (0.23) (0.24) 
N (counties x intervals) 9,351 9,351 9,351  9,351 9,351 9,351 
R2 (1–3)/Pseudo R2 (4–6) 0.50 0.59 0.59  0.51 0.54 0.53 

 
Notes. Estimates of equation 7. The sample is all U.S. counties, and the dependent variable is the county’s average annual opioid death rate per 
100,000 people. Prescription opioid doses are defined as 50 morphine milligram equivalents. Data are pooled from 2010 to 2018 in 3-year intervals 
(2010–2012; 2013–2015; and 2016–2018). Data from 2007–2009 serve as the lag period for 2010–2012. Models 1 to 3 use OLS. Models 4 to 6 use 
GS2SLS. Heteroskedasticity robust standard errors are reported in parentheses. ***(**)* denotes p<0.01(0.05)0.1. See section V and Appendix A 
for more details. 
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Table 5: Implied dynamics of opioid death rates, accounting for persistence and spillovers 
 

 Prescription opioid era: 1990–2010   Illicit opioid era: 2010–2018 
 Distance Friends Both  Distance Friends Both 
 (1) (2) (3)  (4) (5) (6) 
        

Persistence (𝜌𝜌�) 0.89 0.59 0.54  0.63 0.46 0.44 
[0.83, 0.96] [0.53, 0.65] [0.48, 0.60]  [0.37, 0.51] [0.42, 0.51] [0.39, 0.48] 

        

Average spillover �𝜆𝜆
�

𝑁𝑁
∑ ∑ 𝑤𝑤𝑖𝑖,𝑗𝑗𝑁𝑁

𝑗𝑗≠𝑖𝑖
𝑁𝑁
𝑖𝑖=1  �  0.38 0.76 0.73  0.40 0.68 0.75 

[0.31, 0.46] [0.67, 0.84] [0.65, 0.82]  [0.34, 0.46] [0.61, 0.74] [0.68, 0.81] 
        

Next period multiplier 𝜌𝜌� �1 + 𝜆𝜆�
𝑁𝑁
∑ ∑ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁
𝑗𝑗≠𝑖𝑖

𝑁𝑁
𝑖𝑖=1  �  1.24 1.04 0.94  0.89 0.78 0.76 

[1.12, 1.35] [0.95, 1.14] [0.84, 1.04]  [0.82, 0.95] [0.71, 0.84] [0.69, 0.83] 
        
Unstable dynamics? Yes Yes No  No No No 
% of deaths due to spillovers 57% 92% 86%  62% 84% 90% 

 
Notes. Reports the average persistence effect, spillover effect, and next period effect of a shock that increases opioid death rates by one initially. 
Results use the instrumental variables regressions (Tables 2 and 4, models 4 to 6). Robust 95% confidence intervals, which use the delta method, 
are shown in brackets. If the next period effect is greater than one, the epidemic has unstable dynamics, and deaths will increase in perpetuity. The 
bottom row re-simulates death rates without spillovers in any period and quantifies the percent of deaths due to spillovers and their dynamic effects.  
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Table 6: Spillovers in opioid death rates across areas are specific to the type of opioid used. 
 

Index Deaths: Heroin Deaths  Fentanyl Deaths 
 (1) (2) (3) (4)  (5) (6) (7) (8) 
Index deathst-1 (𝜌𝜌) 0.55*** 0.87*** 0.72*** 0.47***  0.61*** 0.30*** 0.70*** 0.33*** 
 (0.04) (0.04) (0.04) (0.04)  (0.06) (0.03) (0.06) (0.04) 
Spillovers (friends weighting)          
Heroin deaths other counties  0.91***   1.00***  1.64***   0.12** 

(0.04)   (0.05)  (0.06)   (0.05) 
Fentanyl deaths other counties 
 
Rx opioid deaths other counties 

 0.27***  -0.09***   1.26***  1.25*** 
 (0.02)  (0.03)   (0.04)  (0.05) 
  0.13*** 0.02    0.41*** -0.10*** 
  (0.01) (0.01)    (0.03) (0.02) 

Year (rel. 2010–12)          
Year = 2013–15  0.14*** 1.21*** 1.10*** 0.06  -1.43*** -0.13* 0.65*** -0.25*** 
 (0.07) (007) (0.07) (0.07)  (0.12) (0.08) (0.09) (0.09) 
Year = 2016–18  -0.50*** 1.10*** 0.10 -0.33  1.01*** -0.71*** 4.89*** -0.98*** 
 (0.09) (0.09) (0.10) (0.11)  (0.14) (0.14) (0.15) (0.15) 
N (counties x intervals) 9,351 9,351 9,351 9,351  9,351 9,351 9,351 9,351 
R2  0.52 0.41 0.44 0.53  0.47 0.62 0.31 0.62 

   
Notes. Table presents results from estimating equation 7 using OLS. The sample is all U.S. counties, and the dependent variable is the county’s average annual 
heroin (models 1 to 4) and fentanyl (models 5 to 8) death rate per 100,000. The spillover variables are weighted averages of opioid overdose death rates in the 
previous time-period in other counties, for different types of opioid deaths. Weighting is based on the relative probability of a cross-county Facebook friendship. 
Dependent variable observations are pooled from 2010 to 2018 in 3-year intervals, with the three-year interval from 2007–2009 serving as a lagged period for 
2010–2012. Heteroskedasticity robust standard errors are reported in parentheses. ***(**)* denote statistical significance at level 𝑝𝑝 < 0.01(0.05)0.1. 
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APPENDIX A: Additional Details on Theory and Estimation 

 

a. Parameters of demand equation 4  

The parameters for the demand equation for addictive substances when consumers are 

rational and have perfect foresight (equation 4 in the text) are derived in Reif (2019) and are as 

follows: 

• 𝛼𝛼1 = 𝑏𝑏𝑎𝑎𝑎𝑎−(1−𝑑𝑑)2𝛽𝛽(𝑏𝑏𝑎𝑎𝑎𝑎+𝑏𝑏𝑆𝑆𝑆𝑆)
Δ

; 

• 𝛼𝛼2 = (1−𝑑𝑑)𝛽𝛽(𝑏𝑏𝑎𝑎𝑎𝑎+𝑏𝑏𝑎𝑎𝑎𝑎)
Δ

> 0; 

• 𝛾𝛾1 = 𝑏𝑏𝑔𝑔
Δ

> 0; 

• 𝛾𝛾2 = −
(1−𝑑𝑑)𝛽𝛽𝑏𝑏𝑔𝑔

Δ
< 0; 

• 𝜋𝜋1 = − 𝜆𝜆
Δ

< 0; 

• 𝜋𝜋2 = (1−𝑑𝑑)𝛽𝛽𝛽𝛽
Δ

> 0; 

• 𝛿𝛿1 = 𝑏𝑏𝑎𝑎𝑎𝑎
Δ

; 

• 𝛿𝛿2 = (1−𝑑𝑑)𝛽𝛽(𝑏𝑏𝑆𝑆𝑆𝑆−𝑏𝑏𝑎𝑎𝑎𝑎)
Δ

; 

• 𝑘𝑘 = 𝑏𝑏𝑎𝑎−(1−𝑑𝑑)𝛽𝛽(𝑏𝑏𝑎𝑎−𝑏𝑏𝑠𝑠)
Δ

; and 

• Δ = 𝑏𝑏𝑎𝑎𝑎𝑎 + (1 − 𝑑𝑑)2𝛽𝛽(𝑏𝑏𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑆𝑆𝑆𝑆) > 0. 
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b. Simulation Details (Figure 2)  

Our simulation uses a closed population of 1,000 individuals with heterogeneous tastes for 

opioids 𝑥𝑥𝑖𝑖𝑖𝑖, drawn from a normal distribution with mean -1.25 and standard deviation 1. Parameter 

values are as follows, with utility maximization parameters following the simulation of Reif 

(2019):  

 

Parameter Meaning Value 
Panel A. Utility Maximization  

𝛽𝛽 Discount rate 0.75 
𝑑𝑑 Depreciation rate (consumption stock) 0.5 
𝜆𝜆 Marginal utility (MU) of income 1.0 
𝑏𝑏𝑎𝑎 Marginal utility of drug use 15 
𝑏𝑏𝑆𝑆 Marginal utility of consumption stock 10 
𝑏𝑏𝑎𝑎𝑎𝑎 Adjacent complementarity (addiction) 0.2 

𝑏𝑏𝑎𝑎𝑎𝑎 = 𝑏𝑏𝑆𝑆𝑆𝑆 = 𝑏𝑏𝑥𝑥𝑥𝑥 Slope of MU of drug use 0.3 
𝑏𝑏𝑎𝑎𝑎𝑎 Complementarity between drug and composite use 2.0 
𝑏𝑏𝑆𝑆𝑆𝑆 Complementarity between consumption stock and composite use 4 
𝑏𝑏𝑔𝑔 Spillover effect 0.079 

 
Panel B. Price Shock 

 

𝑝𝑝𝑡𝑡 for 𝑡𝑡 ∈ [0,5) Initial price 12 
𝑝𝑝𝑡𝑡 for 𝑡𝑡 ∈ [5,𝑇𝑇] Reduction in price (80%) after period 5  9.6 
 
Panel C. Hazard Rate 

 

𝜓𝜓 Constant -10 
𝜓𝜓𝑎𝑎 Increase in hazard with drug use 0.05 
𝜓𝜓𝑎𝑎𝑎𝑎 Increase in slope of hazard with drug use 0.005 
𝜓𝜓𝑎𝑎𝑎𝑎 Reduction in mortality of use with higher tolerance -0.005 

 

The simulation starts from the steady state with initial prices as defined in section II. It is 

then allowed to adjust to new prices, under a situation with and without spillovers. The simulation 

including social interactions requires a multistep procedure outlined in Reif (2019). Specifically, 

we start by generating consumption without social interactions and calculate mean consumption: 

denote 𝑎𝑎0. One important difference from Reif is that we also account for mortality by calculating 

mean consumption among the living: i.e., averaging consumption times each person’s predicted 

survival rate up to that point in time. We then calculate mean consumption again (incorporating 

the spillovers) and iterate each of these steps (denote each iteration attempt 𝑖𝑖) until |𝑎𝑎�𝑖𝑖 − 𝑎𝑎�𝑖𝑖−1| <

0.01. This algorithm is repeated in each period, until the conclusion of the simulation.  
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c. Generalized Spatial Two Stage Least Squares Estimation 

Estimation of equation 4 with generalized spatial two stage least squares (GS2SLS) follows 

the approach developed in (Arraiz et al. 2010; Drukker, Prucha, and Raciborski 2013; Kelejian 

and Prucha 1998, 1999, 2004, 2010). To implement the estimator, we rewrite equation 7 in 

compact form:  

 

𝒀𝒀𝒕𝒕 = 𝒁𝒁𝒕𝒕𝛿𝛿 + 𝝐𝝐𝒕𝒕, 

 

With 𝒀𝒀𝒕𝒕 = an 𝑁𝑁𝑁𝑁 × 1 vector of opioid death rates for counties and time periods. 𝒁𝒁𝒕𝒕 =

[𝑾𝑾𝒀𝒀𝒕𝒕,𝑿𝑿,𝒀𝒀𝒕𝒕−𝟏𝟏,𝑻𝑻] (an 𝑁𝑁𝑁𝑁 × 𝑘𝑘 matrix of a weighted averages of deaths in other counties, 

determinants of use 𝑿𝑿𝒕𝒕, lagged death rates 𝒀𝒀𝒕𝒕−𝟏𝟏, and indicators for time 𝑻𝑻); 𝛿𝛿 = [𝜆𝜆, 𝛾𝛾, 𝜌𝜌]′; and 𝝐𝝐𝒕𝒕 = 

a vector of error terms. Define 𝑿𝑿𝒕𝒕𝒆𝒆 = [𝑿𝑿,𝒀𝒀𝒕𝒕−𝟏𝟏,𝑻𝑻] as a matrix that excludes the endogenous variable 

𝑾𝑾𝒀𝒀𝒕𝒕 (weighted averages of deaths in other areas). We then form an instruments matrix 𝑯𝑯 from 

linearly independent columns of  [𝑿𝑿𝒕𝒕𝒆𝒆,𝑾𝑾𝑿𝑿𝒕𝒕𝒆𝒆,𝑾𝑾𝟐𝟐𝑿𝑿𝒕𝒕𝒆𝒆], where the weighting matrix is interacted with 

exogenous variables up to the second power. In theory, interacting lower- or higher-powers of the 

weighting matrix with the exogenous variables may be included as instruments. However, 

including up to the second order has been shown to perform best in Monte Carlo simulations (see 

references above). With projection matrix 𝑷𝑷𝑯𝑯 = 𝑯𝑯(𝑯𝑯′𝑯𝑯)−1 and 𝒁𝒁� = 𝑷𝑷𝑯𝑯𝒁𝒁𝒕𝒕 and exogeneity of 𝑿𝑿𝒕𝒕𝒆𝒆 

(i.e., 𝐸𝐸[𝝐𝝐𝒕𝒕′𝜙𝜙𝝐𝝐𝒕𝒕] = 0 for some weighting matrix 𝜙𝜙 that satisfies 𝑡𝑡𝑡𝑡(𝜙𝜙) = 0), the estimating equation 

is analogous to traditional two-stage least squares: 

 

𝛿̂𝛿 = �𝒁𝒁�′𝒁𝒁𝒕𝒕�
−1𝒁𝒁�′𝒀𝒀𝒕𝒕. 

 

For implementation of the estimator, we use spregress in Stata. Readers should see Stata’s 

reference manual for spregress for further details.38   

 

                                                            
38 Available at: https://www.stata.com/manuals/spspregress.pdf.  

https://www.stata.com/manuals/spspregress.pdf
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APPENDIX B. Additional Tables 
 

Table B1: The impact of opioid shipments in neighboring counties on own opioid shipments, 2007 to 2009  
 

 Ordinary least squares  Spatial two-stage least squares 
 OxyContin Other opioids All opioids  OxyContin Other opioids All opioids 
MME per capitat-1 (𝜌𝜌) 1.00*** 1.07*** 1.07***  1.01*** 1.06*** 1.07*** 
 (0.01) (0.02) (0.01)  (0.01) (0.02) (0.02) 
MME spillovers (distance) (𝜆𝜆𝑑𝑑) 0.11*** 0.05*** 0.04***  0.08*** 0.03*** 0.04*** 

(0.01) (0.02) (0.01)  (0.01) (0.01) (0.01) 
Instruments        
Non-triplicate state     1.59** 3.12** 3.80*** 
     (0.65) (1.28) (1.34) 
1994–96 cancer mortality rate     -0.05 1.12* 1.21* 
     (0.22) (0.66) (0.67) 
1990 percent disabled     -0.09 1.52 0.88 
     (0.15) (0.94) (0.83) 

Year (rel. 2007)        
Year = 2008  18.81*** -31.26*** -11.60***  19.21*** -30.78*** -11.21*** 
 (0.70) (1.61) (1.61)  (0.70) (1.70) (1.66) 
Year = 2009  -4.88*** -6.83*** -12.53***  -4.58*** -5.67*** -11.71*** 
 (0.66) (1.65) (1.74)  (0.65) (1.71) (1.78) 
N (counties x years) 9,351 9,351 9,351  9,351 9,351 9,351 
R2 (1–3)/Pseudo R2 (4–6) 0.87 0.95 0.96  0.87 0.95 0.96 

 
Notes. Estimates of equation 7. The sample is all U.S. counties, and the dependent variable is the county’s average annual opioid death rate per 
100,000 people. Data are pooled from 1996 to 2010 in 5-year intervals (1996–2000; 2001–2005; and 2006–2010). Data from 1991–1995 also serve 
as a lag period for the 1996–2000 period. Models 1 to 3 use OLS. Models 4 to 6 use GS2SLS. Heteroskedasticity robust standard errors are reported 
in parentheses. ***(**)* denotes p<0.01(0.05)0.1. See section V and Appendix A for more details. 
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Table B2: The impact of opioid death rates in peer and neighboring counties on own opioid death rates, 2010 to 2018 

 
 (1) (2) (3) 
Opioid deathst-1 (𝜌𝜌) 0.73*** 0.49*** 0.46*** 
 (0.02) (0.02) (0.02) 
Death spillovers (distance) (𝜆𝜆𝑑𝑑) 0.59***  -0.03 

(0.03)  (0.03) 
Death spillovers (friends) (𝜆𝜆𝑓𝑓)  0.76*** 0.85*** 

 (0.03) (0.03) 
Instruments    
Non-triplicate state 0.28 0.64*** 0.59*** 
 (0.20) (0.18) (0.18) 
1994–96 cancer mortality rate 0.12 0.22*** 0.25*** 
 (0.07) (0.07) (0.07) 
1990 percent disabled  -0.24*** -0.12*** -0.14*** 
 (0.06) (0.05) (0.05) 

Year (rel. 2010–12)    
Year = 2013–15  -0.12 -0.02 -0.06*** 
 (0.20) (0.18) (0.05) 
Year = 2016–18  0.12 0.45** 0.27 
 (0.24) (0.22) (0.22) 
N (counties x intervals) 9,351 9,351 9,351 
Pseudo R2  0.47 0.51 0.50 

 
Notes. Estimates of equation 7. The sample is all U.S. counties, and the dependent variable is the county’s average annual opioid death rate per 100,000 people. 
Data are pooled from 2010 to 2018 in 3-year intervals (2010–2012; 2013–2015; and 2016–2018). Data from 2007–2009 also serve as a lag period for the 2010–
2012 period. Heteroskedasticity robust standard errors are reported in parentheses. ***(**)* denotes p<0.01(0.05)0.1. See section V and Appendix A for more 
details. 
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Table B3: Impact of lagged opioid death rates in neighboring/friend counties on own death rates 
 

 1996 to 2010  2010 to 2018 
 (1) (2) (3)  (4) (5) (6) 
Opioid deathst-1 (𝜌𝜌) 0.89*** 0.62*** 0.62***  0.72*** 0.52*** 0.52*** 
 (0.03) (0.03) (0.03)  (0.02) (0.03) (0.03) 
Death spilloverst-1 (distance) (𝜆𝜆𝑑𝑑) 1.07***  0.34***  0.69***  0.23*** 

(0.09)  (0.08)  (0.04)  (0.04) 
Death spilloverst-1 (friends) (𝜆𝜆𝑓𝑓)  1.15*** 1.05***   0.80*** 0.70*** 

 (0.07) (0.07)   (0.04) (0.04) 
Year (rel. 1996–00)        
Year = 2001–05  1.38*** 1.49*** 1.33***     
 (0.11) (0.10) (0.10)     
Year = 2006–10  -0.78** -0.10 -0.94***     
 (0.32) (0.20) (0.31)     
Year (rel. 2010–12)        
Year = 2013–15      -0.12 0.11 -0.09 
     (0.21) (0.19) (0.20) 
Year = 2016–18      1.11*** 1.61*** 1.17*** 
     (0.24) (0.23) (0.23) 
N (counties x intervals) 9,351 9,351 9,351  9,351 9,351 9,351 
R2  0.49 0.53 0.53  0.48 0.51 0.51 

 
Notes. Table presents results from estimating equation 7 using OLS. The sample is all U.S. counties, and the dependent variable is the county’s average annual 
opioid death rate per 100,000. The spillover variables are weighted averages of opioid overdose death rates in the previous time-period in other counties. Weighting 
is done separately for inverse geographic distance and the relative probability of a cross-county Facebook friendship. Dependent variable observations are pooled 
from 1996 to 2010 in 5-year intervals (models 1 to 3) and 2010 to 2018 in 3-year intervals (models 4 to 6); each have a lag period of the same interval. 
Heteroskedasticity robust standard errors are reported in parentheses. ***(**)* denote statistical significance at level 𝑝𝑝 < 0.01(0.05)0.1.  

  



58 

 

Table B4: The impact of opioid death rates in peer and neighboring counties on own opioid death rates, 1996 to 2010 
 

 (1) (2) (3) (4) (5) (6) 
Opioid deathst-1 (𝜌𝜌) 0.60*** 0.59*** 0.59*** 0.60*** 0.59*** 0.58*** 
 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 
Death spillovers (friends) (𝜆𝜆𝑓𝑓) 0.78*** 0.80*** 0.76*** 0.79*** 0.81*** 0.78*** 

(0.05) (0.04) (0.04) (0.04) (0.05) (0.05) 
Instruments       
Non-triplicate state 0.47***     0.29*** 
 (0.03)     (0.09) 
1994–96 cancer mortality rate  0.13***    0.04 
  (0.03)    (0.04) 
1990 percent disabled adults   0.16***   0.18*** 
   (0.02)   (0.03) 
2005–07 percent without a college degree    0.02***  -0.01 
    (0.004)  (0.01) 
Predicted increase in import competition from China (%)      -0.03** -0.07*** 
     (0.02) (0.02) 

Year (rel. 1996–00)       
Year = 2001–05  0.24* 0.19 0.31** 0.21 0.19 0.28** 
 (0.13) (0.13) (0.13) (0.13) (0.14) (0.14) 
Year = 2006–10  -0.65*** -0.72*** -0.49*** -0.69*** -0.77*** -0.67** 
 (0.22) (0.22) (0.21) (0.22) (0.22) (0.22) 
N (counties x intervals) 9,351 9,351 9,351 9,351 9,294 9,294 
Pseudo-R2  0.52 0.52 0.53 0.52 0.52 0.53 

 
Notes. Estimates of equation 7. The sample is all U.S. counties, and the dependent variable is the county’s average annual opioid death rate per 
100,000 people. Data are pooled from 1996 to 2010 in 5-year intervals (1996–2000; 2001–2005; and 2006–2010). Data from 1991–1995 also serve 
as a lag period for the 1996–2000 period. All models use GS2SLS, with different instruments (described above). Heteroskedasticity robust standard 
errors are reported in parentheses. ***(**)* denotes p<0.01(0.05)0.1. See section V and Appendix A for more details. 
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Table B5: The impact of opioid death rates in peer and neighboring counties on own opioid death rates, 2010 to 2018 
 

 (1) (2) (3) (4) 
Opioid deathst-1 (𝜌𝜌) 0.48*** 0.47*** 0.47*** 0.44*** 
 (0.02) (0.02) (0.02) (0.02) 
Death spillovers (friends) (𝜆𝜆𝑓𝑓) 0.69*** 0.64*** 0.72*** 0.67*** 

(0.03) (0.03) (0.03) (0.03) 
Instruments     
OxyContin doses per capita (2008–09) 0.99***   0.35** 
 (0.12)   (0.15) 
Other prescription opioid doses per capita (2008–09)  0.44***  0.29*** 
  (0.05)  (0.06) 
Heroin death rate (2005–09)   0.49** 0.48** 
   (0.22) (0.22) 
Share white powder heroin (2004–2010)   0.46 0.19 
   (0.32) (0.33) 
Heroin death rate × share white powder heroin   1.49*** 1.46*** 
   (0.41) (0.41) 

Year (rel. 2010–12)     
Year = 2013–15   0.11 0.19 0.08 0.20 
 (0.18) (0.18) (0.18) (0.18) 
Year = 2016–18   0.78*** 1.01*** 0.68*** 1.02*** 
 (0.22) (0.23) (0.23) (0.23) 
N (counties x intervals) 9,351 9,351 9,351 9,351 
Pseudo-R2  0.52 0.52 0.53 0.54 

 
Notes. Estimates of equation 7. The sample is all U.S. counties, and the dependent variable is the county’s average annual opioid death rate per 
100,000 people. OxyContin and other prescription opioid doses are defined as 50 morphine milligram equivalents. Data are pooled from 2010 to 
2018 in 3-year intervals (2010–2012; 2013–2015; and 2016–2018). Data from 2007–2009 also serve as a lag period for the 2010–2012 period. 
Heteroskedasticity robust standard errors are reported in parentheses. ***(**)* denotes p<0.01(0.05)0.1. See section V and Appendix A for more 
details. 


