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1 Introduction

Communicating uncertainty about one’s conclusions is a fundamental task of scientists.

Within empirical economics a conventional approach is to report a statistic, often a stan-

dard error, alongside the point estimate of a target parameter (Athey and Imbens, 2023).

An important question is whether, and when, this convention accurately conveys the

uncertainty about the target parameter.

In this paper we propose to approach the problem of communicating uncertainty

about a target parameter from a Bayesian perspective. Theoretically, we argue that this

perspective leads to a natural notion of what is a “good” summary of the uncertainty

about the target parameter. Practically, we argue that this perspective leads to a widely

applicable toolkit for diagnosing and addressing failures of the conventional report.

We begin with the theoretical question of what constitutes a good summary of un-

certainty for a Bayesian audience. We formulate this question in a model of statistical

communication following Andrews and Shapiro (2021). An analyst makes a report about

a target parameter to an audience of agents. Each agent faces a decision problem with

an associated loss function, and holds a prior in a density ratio neighborhood of some

central prior. Different agents may face different decision problems and hold different

priors, reflecting heterogeneity in the uses of scientific knowledge. Nevertheless, well-known

results imply that reporting the central posterior that results from updating the central

prior is as good—in terms of the loss it induces—as reporting the full data.

We ask what harm is done if, instead of reporting the central posterior, the analyst

reports an approximation to it, and the audience treats the approximation as if it is exact.

For an agent with a given prior and loss, we measure the harm by the agent’s posterior

regret: the expected loss from the action they will take based on the approximation, minus

the expected loss from the best action they could take given the data. We establish a

fundamental bound on the posterior regret. The bound has an intuitive economic structure,

and is sharp when the agents’ decision problems are sufficiently rich.

We turn next to the question of when to accept a given conventional report, such

as a point estimate and standard error. We allow that there is a benefit to reporting a

conventional approximation to the central posterior, for example because of the convention’s

simplicity and familiarity. Our theoretical results suggest a natural procedure for the analyst
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to follow in this case. Compute the conventional report, the central posterior, and the

implied regret bound. If the regret bound is smaller than the benefit of adhering to the

convention, make the conventional report. If the regret bound is larger than the benefit

of adhering to the convention, report the central posterior. This procedure ensures that

the audience’s regret is no greater than the benefit of adhering to the convention.

To make this procedure a practical one, we need three ingredients: a conventional report,

a class of audience decision problems, and a central posterior. For the conventional report,

we focus on the practice of reporting a point estimate and standard error, which we model as

reporting a normal approximation to the central posterior. We motivate this convention by

noting that, if the central posterior for the target parameter satisfies a Bernstein-von Mises

(BvM) Theorem, then well-known results imply a variety of senses in which a normal dis-

tribution parameterized by the point estimate and standard error is a good approximation.

For the class of audience decision problems, we focus on the case where agents’ loss

functions and density ratio functions are bounded and of bounded increasing and decreasing

variation. We argue that this class is sufficiently inclusive for use in practice. Under the

proposed assumption, we prove that the bound on regret is itself bounded, both above

and below, by scalar multiples of the signed Kolmogorov (SK) metric between the central

posterior and the conventional approximation. The SK metric measures the distance

between two distributions on the real line by adding together the magnitudes of the largest

positive and negative vertical distances between their CDFs. Conveniently, the SK metric

can therefore be read directly off of a p-p plot.

For the central posterior, the analyst may have a subjective prior whose implied

posterior can serve in this role. To accommodate the remaining (and, we suspect, many)

situations where this is not the case, we extend our results to show that if the analyst uses

a surrogate central posterior that is close to the central posterior, the bounds we derive

continue to apply up to a slack term that depends on the difference between the surrogate

central posterior and the true central posterior.

We propose to use the Bayesian bootstrap distribution (Rubin 1981, Gasparini 1995)

as a default surrogate central posterior. We characterize two situations in which this is

reasonable. One situation is where the central prior is a Dirichlet process, in which case

we adapt standard results to show that the Bayes bootstrap approximates the central

posterior when the informativeness of the prior is low. The other situation is where the
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target parameter is a functional of some other parameter, for example the CDF of the

data or a vector of regression coefficients, that obeys a BvM theorem under both the

bootstrap distribution and the central prior. In that case, we show that the Bayes bootstrap

distribution serves as a surrogate with high probability as the sample grows large. Under

these same conditions, we show that the Bayes bootstrap distribution is similar to that

of other weighted bootstraps, such as the nonparametric bootstrap, so that these other

bootstraps can reasonably be used when more convenient.

We thus arrive at a practical recipe for researchers in empirical economics. Calculate

the point estimate and standard error. Sample from a bootstrap distribution. Make a

p-p plot comparing the two distributions. If the distributions are close in SK metric,

make the conventional report. If not, report the bootstrap distribution directly, for ex-

ample with a histogram or CDF. An accompanying Python package and web app called

BootstrapReport facilitate adoption.

We illustrate practicality by applying the recipe to the universe of articles in the 2021

American Economic Review which bootstrap some target parameter, and for which we were

able to recover bootstrap replicates. These articles cover a wide range of fields and methods.

Our proposed approach applies readily to all of them. For some target parameters, the

conventional report approximates the bootstrap distribution well. For others, it does not.

The quality of the approximation can differ meaningfully even across different parameters

targeted in the same article.

This paper makes two main contributions. The main theoretical contribution is a set of

novel bounds on the posterior regret from reporting an approximate central posterior to an

audience of decision-makers who believe they have received an exact report.1 In addition

to those we explore here, these bounds may have other uses. For example, in situations

where the analyst performs an explicitly Bayesian analysis, and wishes to provide a low-

dimensional summary of the posterior distribution for a target parameter (e.g., a posterior

mean and standard deviation), our results can be used to bound the harm from doing so.2

1Our focus on communicating a useful summary of data to an audience of decision-makers is related
to research on omniprediction (e.g., Gopalan et al. 2022) and sequential calibration (e.g., Noarov et al.
2023), though our setting, problem statement and, consequently, proposed solutions, are different.

2Cohen and Einav (2007), for example, summarize many marginal posterior distributions with two
statistics, the posterior mean and standard deviation. Smets and Wouters (2007) summarize with four
statistics, the mode, mean, and 5th and 95th quantiles. In each case, if we think of these statistics as
parameterizing some family of approximating distributions, our bound can be used directly to evaluate
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The main practical contribution is a procedure for evaluating the quality of a normal (or

other) approximation to the uncertainty in an estimated parameter. Previous work in the

frequentist tradition (e.g., Beran, 1997; Zhan, 2018; Angelini, Cavaliere, and Fanelli, 2022,

2024) has proposed using a bootstrap to diagnose failures of conventional asymptotic approx-

imations.3 In contrast to this work, and to much other previous work on uncertainty quan-

tification in economics, our approach neither aims for, nor achieves, frequentist guarantees

such as size control.4 Instead, our approach focuses on limiting the potential for bad decision-

making by Bayesian agents treating the reported approximation as a central posterior.

There are twomain reasons we believe the Bayesian communication perspective we adopt

here is useful for empirical economics. First, the description of agents who treat the scientist’s

report as a summary of a revised belief (posterior) about the target parameter matches

well with how we and, we suspect, others, consume empirical research. Second, the use of a

Bayesian perspective allows us to make certain statements without reference to asymptotic

or other approximations. In particular, if the bootstrap distribution differs meaningfully

from the default report, our results establish that there exists some agent who would be

meaningfully better off basing their decision-making directly on the bootstrap distribution.

Wide applicability of our procedure does require substantive assumptions. When these

assumptions are reasonable, our procedure affords a recipe for quantifying uncertainty

about a target parameter without assuming approximate normality of the sampling dis-

tribution of the estimator, and without specializing the recipe for particular use cases.

This is in contrast to the large frequentist literature on failures of the conventional normal

approximation, which requires specialized treatments depending on the nature of the target

parameter and the reason for the failure of the conventional normal approximation, and

which aims at goals, such as size control, that differ from those we pursue here.

The remainder of the paper is organized as follows. Section 2 introduces our commu-

nication framework and our main theoretical result bounding the regret from reporting

an approximate posterior. Section 3 introduces the conventional report and the procedure

to control regret. Section 4 introduces the class of audience decision problems, and the

the quality of the resulting approximation to the sampled posterior.
3Previous work in the frequentist tradition also recommends reporting richer bootstrap information

than the standard error (see, e.g., Efron 1982, Hall 1992, and Hahn and Liao 2021).
4Indeed, for the frequentist goal of describing the sampling distribution of the target parameter, results

in Singh (1981) and Weng (1989) suggest that the nonparametric bootstrap is more accurate than the
Bayes bootstrap that we recommend as the default surrogate for the central posterior (see also Hall 1992).

5



theoretical results, that justify the use of the SK metric. Section 5 introduces the idea of

a surrogate central posterior and develops the use of the bootstrap in this role. Section

6 presents the findings from our census of articles in the 2021 American Economic Review

that use the bootstrap. A running example throughout the article serves to illustrate

the main ideas and limitations. An Appendix contains proofs of all results stated in the

main text. An Online Appendix contains additional theoretical results, illustrations for

the running example, and findings from the bootstrap census.

2 A Bound on Regret from Approximate Posterior Reports

In this section we lay out our abstract framework, which follows ideas in Andrews and

Shapiro (2021). We use the framework to derive a fundamental bound on the regret from

reporting an approximate posterior belief on the target parameter. We develop practical

implications in later sections.

2.1 Communicating a Posterior Report

Consider an analyst who observes data X∈X . The analyst reports some function of the

data to an audience of agents, who each must take an action a∈A.5 The consequences of

each agent’s decision depend on the value of an unknown target parameter θ∈Θ. Specif-

ically, each agent is endowed with a loss function L :A×Θ→ [0,λ] in some class L, so that

an agent with loss function L∈L who takes action a∈A realizes loss 0≤L(a,θ)≤λ<∞
when the target parameter’s true value is θ∈Θ. The assumption that the loss is bounded

by λ reflects the idea that most research findings have finite stakes.

Each agent is further endowed with a prior π∈∆(Θ×X ) that is dominated by some

central prior π∗. We can describe the agent’s prior with a marginal prior π(θ)∈∆(Θ) on

the target parameter, and a conditional prior π(X|θ)∈∆(X ) on the data given the target

parameter. We assume that each agent’s conditional prior given θ agrees with that of

the central prior, so that π(X|θ)=π∗(X|θ) for all θ∈Θ.6 All prior disagreement in the

5As the dimension of A is unrestricted, the assumption that all agents share a common action space
A is without loss of generality.

6Here and throughout, we use π(θ) and π(X|θ) as shorthand for the measures πθ (B) for B ⊆Θ
and πX|θ (B|θ) for B ⊆ X , respectively. Other similar notation may be read analogously, and our
assumption that each agent’s conditional prior agrees with that of the central prior may be read as
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audience therefore concerns the marginal prior, and we can compactly describe any prior

π by a density ratio function w(θ)= dπ
dπ∗ (θ). We let W denote a class of such density ratio

functions, w∈W. We assume that the class W includes w(θ)=1, which corresponds to

an agent whose prior agrees with the central prior.

Example. (Get out the vote.) Our running example follows Nickerson, Friedrichs, and King

(2006). The analyst observes the results of an experiment in which
(
NT ,NC

)
citizens are

chosen at random to either receive (T) or not receive (C) a phone call encouraging them to

vote. The data consist of the number X=
(
XT ,XC

)
of citizens in each group who vote. All

agents believe that the data are binomially distributed according to XT ∼B
(
NT ,βT

)
and

XC∼B
(
NC,βC

)
where βT ,βC∈ [0,1] are probabilities and XT and XC are independent.

The agents in the audience are campaign managers for local candidates who must

decide what share a∈ [0,1]=A of a fixed budget to devote to phone calls instead of other

campaign activities. For a given campaign manager, the loss L(a,θ)∈ [0,1] is the probability

that their candidate is defeated.

The loss depends on the effectiveness of a phone call, which is encoded in the prob-

abilities
(
βT ,βC

)
. If the target parameter θ is maximally rich, θ =

(
βT ,βC

)
, then the

assumption that all disagreement concerns the marginal prior is without loss. If instead the

parameter of interest is more restrictive, then our assumptions on the form of disagreement

are more substantive.

To illustrate, suppose that the loss depends on θTC=βT−βC∈ [−1,1]=Θ, the effect

of a phone call on the probability of voting. Suppose further that, under the central prior

π∗, we have that θTC∼U [θ,1], for θ>0 a small value, and βC|θTC∼U
[
0,1−θTC

]
, which

together suffice to also describe βT |θTC and therefore, given the binomial likelihood, the

distribution of the data X. Figure 1 depicts the density implied by the central prior.

Under the assumption that π (X|θ) = π∗ (X|θ), audience members all agree that

βC|θTC ∼U
[
0,1−θTC

]
, but may disagree that θTC ∼U [θ,1]. Notice that, under all such

prior distributions, we have that βT >βCa.s., i.e., that the intervention increases turnout.

Certain forms of disagreement can be incorporated directly into the loss function, rather

than the prior. Suppose, for example, that a particular campaign manager believes that

the experiment is confounded, so that θTC overstates the causal effect of a phone call by

πX|θ(B|θ)=π∗
X|θ(B|θ) for all measurable sets B⊆X .
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Figure 1: Central prior in the example
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Notes: The plot shows the density of the joint central prior on the probability βC of voting for
citizens in the control group, and the effect θTC of a phone call on the probability of voting.

a factor of η≥1. We can write such a manager’s loss as L
(
a,θTC

)
=L̃
(
a,θTC/η

)
for L̃ a

loss that is parameterized by the causal effect θTC/η. △

What remains is to describe the analyst’s report. The analyst’s information consists of

the data X. If an agent with prior π were to directly observe the data X, their posterior

belief about the target parameter would be π(θ|X). It follows that, from the agent’s

standpoint, no report can improve upon a report of π(θ|X). Importantly, the same is also

true of a report that consists of the central posterior π∗(θ|X). The reason is that each

agent’s posterior is just a reweighting of the central posterior, i.e., π(θ|X)∝w(θ)π∗(θ|X).7

This is a classical justification for reporting posterior distributions (see, e.g., Raiffa and

Schlaifer 1961, Hildreth 1963, and Geweke 1997).

A leading possibility is, then, that the analyst reports π∗(θ|X). For reasons we discuss

below, the analyst may instead prefer to report some other distribution π̂∗(θ|X), for ex-

ample as an approximation to π∗(θ|X). We assume that π̂∗(θ|X) is absolutely continuous

7Here and throughout, we use w(θ)π∗(θ|X) to denote the measure defined by µ(A)=
∫
A
w(θ)dπ∗(θ|X)

for measurable A⊆Θ.
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with respect to the central prior π∗, and denote by ∆π∗(Θ) the set of such distributions.

We next measure the harm to the agents if π̂∗(θ|X)≠π∗(θ|X).

2.2 Regret from an Approximate Posterior Report

We assume that each agent treats the analyst’s report as if it is a report of the central

posterior π∗(θ|X). Each agent therefore forms their perceived posterior belief π̂(θ|X), with

π̂(θ|X)∝w(θ)π̂∗(θ|X), by reweighting the report. Each agent then seeks to minimize their

perceived posterior expected loss Ew(θ)π̂∗(θ|X)[L(a,θ)].
8 A perceived optimal action is then

â∈argmin
a∈A

Ew(θ)π̂∗(θ|X)[L(a,θ)].

For concreteness, we proceed here as if an optimal action exists. The proofs in the Appendix

cover the more general case where an optimal action may not exist, in which case the

bounds we derive below continue to hold up to an arbitrarily small slack term.

If the analyst’s report differs from the central posterior, an agent’s perceived optimal

action â may differ from their true posterior optimal action conditional on the data. We

define an agent’s posterior regret to be the increase in expected loss from taking the perceived

optimal action â rather than the true optimal action. Formally, given data X ∈X , an

agent with loss L∈L and density ratio w∈W has regret from the report π̂∗(θ|X) given by

R(π̂∗(θ|X);X,L,w,π∗)=Ew(θ)π∗(θ|X)[L(â,θ)]−min
a∈A

Ew(θ)π∗(θ|X)[L(a,θ)],

where, importantly, both expectations are taken with respect to the agent’s true posterior

π(θ|X)∝w(θ)π∗(θ|X).9

2.3 A Fundamental Bound on Regret

Our goal is to bound R(π̂∗(θ|X);X,L,w,π∗). As notation, for any class F of functions

Y×Θ→R, we let F(Y) denote the class of functions formed by fixing a value of y∈Y and

8Here and throughout, for any measure µ on Θ and any function f : Θ→ R, we let the operator

Eµ[f(θ)]=
∫
Θ
f(θ)dµ(θ)∫
Θ
dµ(θ)

denote the expectation of f with respect to the normalized measure µ/
∫
Θ
dµ(θ).

If µ is a probability measure, so that
∫
Θ
dµ(θ)=1, then Eµ[·] corresponds to the usual expectation.

9If multiple optimal actions â exist, we consider the selection among them that yields the largest
regret, i.e., the selection that maximizes the value of Ew(θ)π∗(θ|X)[L(â,θ)].
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a function f∈F, i.e., functions of the form f(y,·), and we let f(Y)⊆F(Y) denote the set of
such functions formed using a particular f∈F. For ease of exposition, we suppose that the

set of pairs of expectations of differences of pairs of functions in L(A) under the true and

perceived posteriors is compact.10 If this condition fails, as we discuss in the Appendix the

sharpness result that we state below continues to hold up to an arbitrarily small slack term.

We then have the following result.

Theorem 1. (Fundamental bound on regret) For any report π̂∗(θ|X)∈∆π∗(Θ), data X∈X ,

loss L∈L, and density ratio w∈W, the regret R(π̂∗(θ|X);X,L,w,π∗) is bounded above by

R(π̂∗(θ|X);X,L,W,π∗)= sup
ℓ1,ℓ0∈L(A),w∈W

Ew(θ)π∗(θ|X)[ℓ1(θ)−ℓ0(θ)]

s.t. Ew(θ)π̂∗(θ|X)[ℓ1(θ)−ℓ0(θ)]≤0.

Moreover, there exist w ∈ W and L : A × Θ → R such that L (A) ⊆ L (A) and

R
(
π̂∗(θ|X);X,L,w,π∗

)
=R(π̂∗(θ|X);X,L,W,π∗).

Intuitively, the regret bound R measures the difference between the approximation

π̂∗(θ|X) and the true central posterior π∗(θ|X), an interpretation that we return to later.

To motivate the form of the bound, observe that if we fix an action a∈A, any loss function

L∈L implies a function ℓ(θ)=L(a,θ) only of the target parameter. Consider an agent

choosing between actions a0 and a1, with corresponding ℓ0,ℓ1∈L(A). The worst case for

this agent arises when ℓ1 has a weakly lower perceived posterior expectation than ℓ0, but

a much larger true posterior expectation, since in this case the agent is willing to make

a choice yielding a large regret. The proof of Theorem 1 shows that characterizing the

worst-case two-action decision problem is sufficient to bound the regret over all decision

problems. The theorem also states that the bound is sharp in the sense that, if the audience

is sufficiently rich, then there exists some agent whose regret achieves the bound.

The bound R(π̂∗(θ|X);X,L,W,π∗) can be practical to work with in some cases. For

example, when L(A) is convex and w(θ)=1, the bound solves a convex programming

problem. When |Θ|<∞ the program is finite-dimensional. When |Θ|=∞ the program is

10That is, we assume that the set{
Ew(θ)π∗(θ|X)[ℓ1(θ)−ℓ0(θ)],Ew(θ)π̂∗(θ|X)[ℓ1(θ)−ℓ0(θ)]:ℓ1,ℓ0∈L(A),w∈W

}
is compact.
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infinite-dimensional, but approximation methods exist under suitable restrictions on L(A)

(see, e.g., Devolder, Glineur, and Nesterov 2010). When w(θ) is non-constant, the program

becomes non-convex but may remain tractable in some situations. As we seek a method

that is generally computationally light, we prefer to offer a bound that can be read directly

from the distributions π̂∗(θ|X) and π∗(θ|X). We later derive such a bound based on an

integral probability metric.

Remark 1. Theorem 1 fixes a particular realization of the data and imagines that agents

treat the analyst’s report π̂∗(θ|X) as if it is a report of the central posterior π∗(θ|X). We

may instead imagine that, as in Andrews and Shapiro (2021), the analyst commits in

advance to a reporting procedure and each agent updates according to Bayes’ rule with

full knowledge of the procedure. In that case, Online Appendix A shows that each agent’s

expected regret is bounded above by the agent’s expectation of the bound derived in

Theorem 1, though this bound is not sharp.

3 Controlling the Regret from a Conventional Report

Within empirical economics, it is conventional to report a point estimate and standard

error (Athey and Imbens, 2023). Scientific conventions are often imperfect but they do

have value, for example because of their simplicity and familiarity (see, e.g., the discussion

in Benjamin et al. 2018). Here, we consider the situation of an analyst who values adhering

to a convention but wishes to limit the harm from a poor approximation. We show how

the analyst can use the bound in Theorem 1 to balance these goals. Lastly, we formalize

the convention of reporting a point estimate and standard error as a normal (Gaussian)

approximation to the central posterior, and discuss how this convention can be justified

via Bernstein-von Mises theory.

3.1 A Procedure for Controlling Regret

Consider the situation of an analyst who must choose between reporting the central poste-

rior π∗(θ|X) and reporting some particular approximation π0(θ|X)∈∆π∗(Θ) prescribed by

convention. There is an intrinsic value of κ≥0 to reporting the conventional approximation,

in the sense that, all else equal, each agent would be willing to accept an additional loss

11



of κ≥0 to receive the conventional report.

We continue to assume that agents treat any report as if it is a report of π∗(θ|X), and

update accordingly. This may be because agents trust that π0(θ|X) approximates π∗(θ|X),

or because agents find it difficult to compute the posterior π(θ|π0(θ|X)) that results from

updating their beliefs directly from the conventional report.

The analyst seeks a procedure that, for any X∈X , satisfies the following criteria:

(C1) The analyst reports π0(θ|X) only when the regret from doing so is no more than

κ for all agents.

(C2) The analyst reports π∗(θ|X) only when the regret from reporting π0(θ|X) exceeds

κ for some agent.

A procedure that satisfies Criterion (C1) avoids using the conventional report when doing

so imposes, on some agent, regret that exceeds the intrinsic value κ of adhering to the

convention. A procedure that satisfies Criterion (C2) conserves the conventional report

when doing so does not impose a large regret on any agent.

Consider the following procedure for the analyst.

Procedure 1 Controlling regret from a conventional report

• Calculate

– central posterior π∗(θ|X)

– conventional approximation π0(θ|X)

– regret bound R(π0(θ|X);X,L,W,π∗)

• Choose threshold τ

• Report threshold τ and

– π̂∗(θ|X)=π0(θ|X) if R(π0(θ|X);X,L,W,π∗)≤τ
– π̂∗(θ|X)=π∗(θ|X) otherwise

We then have the following corollary of Theorem 1, taking L to be the loss function

defined in the statement of the theorem.
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Corollary 1. If τ≤κ, then Procedure 1 satisfies Criterion (C1). If τ≥κ and L∈L, then
Procedure 1 satisfies Criterion (C2). If τ=κ and L∈L, then any procedure for choosing

between reports π∗(θ|X) and π0(θ|X) that satisfies Criteria (C1) and (C2) is equivalent

to Procedure 1.

Corollary 1 states that for τ sufficiently small, Procedure 1 satisfies Criterion (C1). Corol-

lary 1 further states that, for τ sufficiently large, Procedure 1 satisfies Criterion (C2) if

the class of losses is sufficiently rich, in the sense that it contains the loss L that attains

the bound in Theorem 1. When both conditions hold, so τ = κ, Procedure 1 is the

unique procedure for choosing between reporting the central posterior and reporting the

conventional approximation that satisfies both criteria.

Implementing Procedure 1 requires specifying a conventional approximation. We focus

on a conventional normal approximation, which can be justified by Bernstein-von Mises

(BvM) theory.

3.2 Justification for Conventional Normal Reports

One way to interpret the common convention of reporting a point estimate and standard

error is as a normal approximation to the central posterior, that is,

π0(θ|X)=πN(θ|X)=N
(
θ̂(X),Σ̂(X)

)
where θ̂(X) is a point estimate, Σ̂(X) is an estimated variance, and Θ is a finite-dimensional

Euclidean space. One way to justify such a convention is via Bernstein-von Mises (BvM)

theory, which provides a range of conditions on the prior and target parameter under

which πN(θ|X)≈π∗(θ|X) in large samples.11 Such approximations appear reasonable in

many economic settings.

Example. (Get out the vote, continued.) The first row of plots in Figure 2 shows five

marginal prior distributions on θTC. The middle plot in this row corresponds to the

central prior π∗, which is uniform. The left plots correspond to audience priors that are

“pessimistic” about the intervention in the sense that they put more density on lower values

of the effect θTC than does the central prior. The right plots correspond to audience priors

11See, for example, Theorems 12.1 and 12.8 of Ghosal and van der Vaart (2017).
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that are “optimistic” about the intervention in the sense that they put more density on

higher values of the effect θTC than does the central prior.

The second row of plots shows, for each prior distribution in the first row, a histogram

of MCMC draws from the corresponding posterior distribution, conditional on the real-

ized data X reported in Nickerson, Friedrichs, and King (2006, Table 3), pooled across

congressional districts. The middle plot in this row corresponds to the central posterior

π∗
(
θTC|X

)
. The left and right plots in this row correspond to the audience posteriors

π
(
θTC|X

)
. The audience posteriors are more similar to the central posterior than the

audience priors are to the central prior. But, the audience posteriors reflect the pessimism

and optimism of the corresponding priors.

In the second row, we overlay on each histogram the corresponding perceived posterior

π̂
(
θTC|X

)
formed by reweighting the normal approximation πN

(
θTC|X

)
that is parameter-

ized by the maximum likelihood point estimate θ̂TC(X) and estimated variance Σ̂TC(X),

and truncated to θTC∈ [θ,1]. For the central posterior, the normal approximation applies

directly, π̂
(
θTC|X

)
= πN

(
θTC|X

)
. For the other posteriors, the normal approximation

must be reweighted according to π̂
(
θTC|X

)
∝w(θ)πN

(
θTC|X

)
. In all cases, the perceived

posterior is a close visual match to the true posterior.

An alternative way for agents to update would be to treat a report of θ̂TC(X), Σ̂TC(X)

as describing a quadratic approximation to the log-likelihood for θTC rather than as a

normal approximation to the posterior for θTC. Using a point estimate and standard

error as the basis for a quadratic approximation to a log-likelihood can be justified by

large-sample approximations similar to those underlying BvM theory (see, e.g., Geyer 2013).

If the agents treat the log-likelihood as quadratic with mode θ̂TC(X) and Hessian Σ̂TC(X),

they arrive at posteriors identical to the perceived posteriors appearing in the second row

of plots in Figure 2. Interpreting the conventional normal report as an approximation to

the likelihood therefore offers an alternative justification for the model of agents’ belief

updating that we encode in our definition of regret. △

3.3 Failures of Conventional Normal Reports

While there are many economic settings where the approximation πN (θ|X)≈ π∗(θ|X)

appears reasonable, there are others where it does not. Such situations are an important

14



F
ig
u
re

2:
E
xa
m
p
le
p
ri
or

d
is
tr
ib
u
ti
on
s,
p
os
te
ri
or

d
is
tr
ib
u
ti
on
s,
an
d
d
ec
is
io
n
p
ro
b
le
m
s

M
or
e
p
es
si
m
is
ti
c

L
es
s
p
es
si
m
is
ti
c

C
en
tr
al

L
es
s
op
ti
m
is
ti
c

M
or
e
op
ti
m
is
ti
c

P
ri
or

on
th
e
ef
fe
ct

of
a
p
h
on
e
ca
ll
(θ

T
C
)

0.
02

0.
04

0.
06

0.
08

0.
10

θT
C

010203040 Density

 P
rio

r

0.
02

0.
04

0.
06

0.
08

0.
10

θT
C

012345 Density

 P
rio

r

0.
02

0.
04

0.
06

0.
08

0.
10

θT
C

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Density

 P
rio

r

0.
02

0.
04

0.
06

0.
08

0.
10

θT
C

012345 Density

 P
rio

r

0.
02

0.
04

0.
06

0.
08

0.
10

θT
C

010203040 Density

 P
rio

r

T
ru
e
an
d
p
er
ce
iv
ed

p
os
te
ri
or

on
th
e
ef
fe
ct

of
a
p
h
on
e
ca
ll
(θ

T
C
)

0.
02

0.
04

0.
06

0.
08

0.
10

θT
C

010203040506070 Density

Tr
ue

 p
os

te
rio

r
Pe

rc
ei

ve
d 

po
st

er
io

r

0.
02

0.
04

0.
06

0.
08

0.
10

θT
C

010203040506070 Density

Tr
ue

 p
os

te
rio

r
Pe

rc
ei

ve
d 

po
st

er
io

r

0.
02

0.
04

0.
06

0.
08

0.
10

θT
C

010203040506070 Density

Tr
ue

 p
os

te
rio

r
Pe

rc
ei

ve
d 

po
st

er
io

r

0.
02

0.
04

0.
06

0.
08

0.
10

θT
C

010203040506070 Density

Tr
ue

 p
os

te
rio

r
Pe

rc
ei

ve
d 

po
st

er
io

r

0.
02

0.
04

0.
06

0.
08

0.
10

θT
C

010203040506070 Density

Tr
ue

 p
os

te
rio

r
Pe

rc
ei

ve
d 

po
st

er
io

r

T
ru
e
an
d
p
er
ce
iv
ed

p
os
te
ri
or

on
th
e
co
st

p
er

vo
te

(θ
K
)

0
5

10
15

20
25

θK
0.

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Density

Tr
ue

 p
os

te
rio

r
Pe

rc
ei

ve
d 

po
st

er
io

r

0
5

10
15

20
25

θK
0.

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Density

Tr
ue

 p
os

te
rio

r
Pe

rc
ei

ve
d 

po
st

er
io

r

0
5

10
15

20
25

θK
0.

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Density

Tr
ue

 p
os

te
rio

r
Pe

rc
ei

ve
d 

po
st

er
io

r

0
5

10
15

20
25

θK
0.

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Density

Tr
ue

 p
os

te
rio

r
Pe

rc
ei

ve
d 

po
st

er
io

r

0
5

10
15

20
25

θK
0.

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Density

Tr
ue

 p
os

te
rio

r
Pe

rc
ei

ve
d 

po
st

er
io

r

T
ru
e
an
d
p
er
ce
iv
ed

ri
sk

fu
n
ct
io
n
s
fo
r
th
e
lo
ss
L
( a,θK

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Expected loss

Tr
ue

 ri
sk

 fu
nc

tio
n

Pe
rc

ei
ve

d 
ris

k 
fu

nc
tio

n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

Expected loss

Tr
ue

 ri
sk

 fu
nc

tio
n

Pe
rc

ei
ve

d 
ris

k 
fu

nc
tio

n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

0.
84

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

Expected loss

Tr
ue

 ri
sk

 fu
nc

tio
n

Pe
rc

ei
ve

d 
ris

k 
fu

nc
tio

n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

0.
75

0.
80

0.
85

0.
90

0.
95

Expected loss

Tr
ue

 ri
sk

 fu
nc

tio
n

Pe
rc

ei
ve

d 
ris

k 
fu

nc
tio

n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Expected loss

Tr
ue

 ri
sk

 fu
nc

tio
n

Pe
rc

ei
ve

d 
ris

k 
fu

nc
tio

n

N
ot
es
:
T
h
e
fi
rs
t
ro
w

sh
ow

s
th
e
ce
n
tr
al

p
ri
or
,
an
d
fo
u
r
p
os
si
b
le

au
d
ie
n
ce

p
ri
or
s,

on
th
e
ef
fe
ct
θT

C
of

a
p
h
on
e
ca
ll
on

th
e

p
ro
b
ab
ili
ty

of
vo
ti
n
g.

T
h
e
h
is
to
gr
am

s
in

th
e
se
co
n
d
ro
w

d
es
cr
ib
e
th
e
co
rr
es
p
on
d
in
g
tr
u
e
p
os
te
ri
or
s
on

θT
C
gi
ve
n
th
e
ob
se
rv
ed

d
at
a,

ap
p
ro
xi
m
at
ed

by
M
C
M
C
.
T
h
e
h
is
to
gr
am

s
in

th
e
th
ir
d
ro
w
d
es
cr
ib
e
th
e
co
rr
es
p
on
d
in
g
tr
u
e
p
os
te
ri
or
s
on

θK
gi
ve
n
th
e

ob
se
rv
ed

d
at
a,

ap
p
ro
x
im

at
ed

b
y
M
C
M
C
.
W
e
ov
er
la
y
on

ea
ch

h
is
to
gr
am

th
e
d
en
si
ty

of
th
e
p
er
ce
iv
ed

p
os
te
ri
or

fo
rm

ed
b
y

re
w
ei
gh
ti
n
g
th
e
n
or
m
al

d
is
tr
ib
u
ti
on

p
ar
am

et
er
iz
ed

b
y
th
e
m
ax
im

u
m

li
ke
li
h
o
od

p
oi
n
t
es
ti
m
at
e
an
d
(d
el
ta

m
et
h
od

)
st
an
d
ar
d

er
ro
r.

T
h
e
fo
u
rt
h
ro
w
d
es
cr
ib
es

th
e
ex
p
ec
te
d
va
lu
e
of

a
p
ar
ti
cu
la
r
lo
ss

fu
n
ct
io
n
w
it
h
re
sp
ec
t
to

th
e
tr
u
e
an
d
p
er
ce
iv
ed

p
os
te
ri
or
s.

15



motivation for Procedure 1.

Example. (Get out the vote, continued.) Nickerson, Friedrichs, and King (2006, Table

6) report the cost per vote obtained via phone calls. We can write this parameter as

θK =K/
(
βT−βC

)
where K>0 is the cost per phone call and where we recall that βT

and βC are the probabilities of voting in the treatment and control groups, respectively.

Previously we took the target parameter to be θTC=
(
βT−βC

)
, but the target parameter

θK=K/
(
βT−βC

)
may be more directly useful to local campaign managers interested in

optimally allocating their budgets.

The third row of plots in Figure 2 shows, for each prior distribution on θTC in the first

row, a histogram of MCMC draws from the corresponding posterior distribution π
(
θK|X

)
.

We overlay on each histogram the corresponding perceived posterior π̂
(
θK|X

)
formed by

reweighting the normal approximation πN
(
θK|X

)
that is parameterized by the maximum

likelihood point estimate θ̂K(X) and the delta-method estimated variance Σ̂K(X), and

truncated to θK∈
[
K,K

θ

]
. In all cases, the perceived posterior is visually distinct from the

true posterior.

The difference between the reweighted normal approximation and the agent’s posterior

opens up the possibility of poor decision-making. To illustrate this possibility, we imagine

a local campaign manager with a fixed budgetM>0, a share a∈ [0,1] of which is allocated

to phone calls. The remaining funds are spent on a last-minute rally the night before the

election, which generates a return of Y votes per dollar, where Y is uncertain and drawn

according to a known distribution with CDF G(·). The opponent is ahead by V votes,

and the loss is the probability of defeat. We can therefore write the loss as

L
(
a,θK

)
=G

(
V/M−a/θK

1−a

)
.

For any prior π, we can define both the true risk function Eπ(θK |X)

[
L
(
a,θK

)]
and the

perceived risk function obtained by replacing π
(
θK|X

)
with a reweighting of πN

(
θK|X

)
.

The fourth row of plots in Figure 2 shows, for an illustrative parameterization of the loss,

the true and perceived risk functions associated with each example prior. Under both

the true and perceived posteriors, the optimal action for the more pessimistic agent is to

devote no resources to phone calls, a= â=0, and the optimal action for the more optimistic

agent is to devote all resources to phone calls, a= â=1. Because their optimal actions
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are identical under the true and perceived posteriors, these agents experience no regret

from the conventional normal report. By contrast, under the true posterior, the optimal

action for the agents with the less pessimistic and central priors is to devote no resources

to phone calls, a=0, whereas these agents’ optimal action under the perceived posterior is

to devote all resources to phone calls, â=1. These agents experience regret of, respectively,

0.046 and 0.036, from the conventional normal report.

Procedure 1 can avoid this regret. We have learned that there is an agent who ex-

periences regret of at least 0.046 from the conventional report. If this regret exceeds the

threshold τ , then Procedure 1 prescribes reporting π∗
(
θK|X

)
rather than πN

(
θK|X

)
. △

The example shows, in a particular setting, how Procedure 1 can help the analyst to

control the regret from reporting a poor approximation to the central posterior. To enable

practitioners to apply Procedure 1 in a wide range of economic settings, we would ideally

like to avoid the need to calculate the (possibly infinite-dimensional) program in Theorem

1. We next propose a more convenient bound that avoids that computation.

4 A Convenient Bound Using the SK Metric

To facilitate adoption of Procedure 1, we would like a more convenient bound that avoids

the need to solve the (possibly infinite-dimensional) program in Theorem 1. In this section

we first derive such a bound using an integral probability metric that depends on the

classes of losses L and density ratio functions W in the audience. We then propose default

choices for these classes that we argue are reasonable for many economic settings, and

show that these choices lead to an especially convenient procedure.

4.1 A Bound in Terms of an Integral Probability Metric

For probability measures µ,ν ∈ ∆(Θ) and a class F of functions f : Θ → R that are

absolutely integrable w.r.t. µ,ν, let

dF(µ,ν)=sup
f∈F

|Eµ[f(θ)]−Eν[f(θ)]|

17



denote the largest difference in the expected values that the two measures assign to any

function in F. When |Eµ[f(θ)]−Eν[f(θ)]|≠0 for some f∈F whenever µ≠ν, dF(·,·) is an
integral probability metric (IPM).12 IPMs play a role in many areas of probability theory.

For example, if F is the set of all functions f :Θ→ [0,1], then dF(µ,ν)=dTV (µ,ν) is the

total variation distance, also defined as the largest difference in measure assigned to any

set.13 To concisely describe other function classes, for scalars ϕ≤ϕ we let ϕ≤F≤ϕ denote

that f :Θ→
[
ϕ,ϕ
]
for all f∈F. Further, for function classes G and F we let G·F denote

the class formed by the product of g∈G and f∈F, i.e., functions of the form g(·)f(·).
We now state a bound on regret that takes the form of an IPM. This bound will be

the basis of our practical recommendations.

Proposition 1. (Convenient bound on regret) For any report π̂∗(θ|X) ∈∆π∗ (Θ), data

X∈X , loss class 0≤L≤λ, scalar ω≥1, and density ratio class ω−1≤W≤ω, the bound

R(π̂∗(θ|X);X,L,W,π∗) is itself bounded above by 2ω·dW·L(A)(π̂
∗(θ|X),π∗(θ|X)). If, further,

L(A) is centrosymmetric around λ
2
and L(A) contains all constant functions with values

in [0,λ], then R(π̂∗(θ|X);X,L,W,π∗) is bounded below by dL(A)(π̂
∗(θ|X),π∗(θ|X)).

Proposition 1 states that, if the density ratios in the audience are bounded, the fundamental

regret bound R is no larger than a scalar multiple of the IPM for the function classW·L(A)

that depends on products of the density ratios w ∈W and losses L(A)∈L(A) in the

audience. The scalar multiple depends, in turn, on the bound ω on the density ratio

neighborhood. Proposition 1 further states that, under suitable conditions, the bound R

is bounded below by the IPM for the function class L(A) that depends only on the class

of losses in the audience. When the bound R is sharp, it follows directly that some agent

has regret at least as large as the IPM for L(A).

4.2 Losses and Density Ratios of Bounded Signed Variation

To use Proposition 1 in practice, we must select a class of losses L and density ratios W.

In some settings these choices may be clear from the communication problem faced by the

analyst. For the remaining settings where this is not the case, we recommend default choices.

12Otherwise, it is a pseudometric, as it always satisfies symmetry, nonnegativity, and the triangle
inequality.

13That is, dTV (µ,ν)=supΘ′⊆Θ|µ(Θ′)−ν(Θ′)|.
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For our recommended default we consider the case where θ is scalar, Θ⊆R, and take

L and W to consist of bounded functions of bounded signed variation. For any function

f :Θ→R, let

V (f)=max

{
sup

K∈N,t0≤...≤tK∈Θ

K∑
k=1

(f(tk)−f(tk−1))+, sup
K∈N,t0≤...≤tK∈Θ

K∑
k=1

(f(tk−1)−f(tk))+

}

denote the signed variation of the function, where we take (x)+=max{x,0} to be the positive
part of x∈R. The signed variation is akin to the usual notion of total variation, but takes sep-
arate account of increasing and decreasing regions. For any class of functionsF, we let V (F)

denote the largest signed variation of all functions in the class, i.e., V (F)=supf∈FV (f).

We suppose losses in L, which we recall are bounded by λ, also have signed variation

bounded by λ, V (L)≤λ. Bounded signed variation seems like a palatable restriction. Any

loss function with L(a,θ)∈ [0,λ] that is, for each a∈A, either quasi-concave or quasi-convex

in θ must have signed variation in θ bounded by λ. This admits a wide range of losses

under which, for instance, there is a best or worst value θ(a) for each a∈A, and the loss

increases or decreases with distance from this value. It also admits monotone losses under

which, for each a∈A, the agent always prefers either higher or lower values of θ.

We likewise suppose that the density ratio functions in W are bounded, ω−1≤W≤ω,
and that they have bounded signed variation, V (W)≤ (ω−ω−1). This class of density

ratio functions is again permissive. Any density ratio function with w(θ)∈ [ω−1,ω] that is

quasi-concave or quasi-convex in θ has signed variation bounded by ω−ω−1. This admits

density ratios that are monotone in the distance from some peak θ or trough θ, such that

the agent finds values near to θ or far from θ more likely than under the central prior. It

also admits any monotone density ratio function such that the agent finds higher or lower

values of θ more likely than under the central prior.

What bounded signed variation does rule out are losses and density ratio functions

that oscillate repeatedly as θ changes, for instance functions that are highly cyclical in θ,

or that depend sensitively on the parity (even or odd) of the digits in θ.

Example. (Get out the vote, continued.) Recall that the loss is L
(
a,θK

)
=G

(
V/M−a/θK

1−a

)
,

which is bounded by 1. Because for any G(·) the loss is monotone in θK for any a, this

loss also has signed variation bounded by 1. For the signed variation of L
(
a′,θK

)
to be
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greater than one for some a′∈ [0,1] would require that L
(
a′,θK

)
is non-monotone in θK,

for example because a more effective phone campaign induces more turnout from the

opponent’s voters. And, it would require that L
(
a′,θK

)
is not single-peaked in θK, so that,

over the range of θK, the loss switches multiple times from increasing to decreasing in

θK. Turning to the density ratios w(θ), because the density ratios implied by the priors

in Figure 2 are quasi-concave, their signed variation is bounded above by ω−ω−1. For the

agent experiencing greatest regret, this bound is 3.8. △

4.3 Equivalence to the Signed Kolmogorov Metric

In addition to being economically plausible, the class of functions of bounded signed

variation pairs with a convenient IPM. We first define this metric and then show its

connection to the class of functions of bounded signed variation.

Definition 1. For measures µ,ν∈∆(R), the signed Kolmogorov (SK) metric is

dSK(µ,ν)=sup
t∈Θ

(µ(θ≤t)−ν(θ≤t))++sup
t∈Θ

(ν(θ≤t)−µ(θ≤t))+

where µ(θ≤t)=µ({θ∈Θ:θ≤t}).

The signed Kolmogorov (SK) distance between two measures is found by adding to-

gether the largest positive and negative vertical distances between their respective CDFs.14

The SK metric can be read off of a p-p plot, which, for two measures µ,ν, is a plot of the

CDF of one measure against the CDF of the other, i.e., of {µ(θ≤t),ν(θ≤t)}t∈Θ.

Example. (Get out the vote, continued.) Figure 3a shows a p-p plot comparing the central

posterior π∗
(
θTC|X

)
to the normal approximation πN

(
θTC|X

)
for the effect θTC of a phone

call. If the plot were on the 45-degree line, we would have dSK
(
π∗
(
θTC|X

)
,πN
(
θTC|X

))
=0.

In fact the SK metric is small, at approximately 0.005.

Figure 3b shows a p-p plot comparing the central posterior π∗
(
θK|X

)
to the normal

approximation π
(
θK|X

)
for the cost per vote θK. Here, the SK metric is larger, at

approximately 0.052. △

14This metric is distinct from what Filion (2015) terms the “signed Kolmogorov-Smirnov test.”
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Figure 3: Example p-p plots

(a) Target parameter is the effect of a phone call (b) Target parameter is the cost per vote

Notes:
Panel (a) shows a p-p plot comparing the central posterior π∗

(
θTC|X

)
to the normal

approximation πN
(
θTC|X

)
for the effect θTC of a phone call. Panel (b) shows a p-p plot

comparing the central posterior π∗
(
θK|X

)
to the normal approximation πN

(
θK|X

)
for

the cost per vote θK. In both panels, the dashed line is the 45-degree line.

The SK metric is equivalent to the IPM generated by the class of non-negative functions

with value and signed variation both bounded by one. The following lemma shows this

by extending a result of Müller (1997) for the Kolmogorov metric.

Lemma 1. If F is the set of all functions f :R→ [0,1] with V (f)≤1, then dF(µ,ν)=dSK(µ,ν)

for any probability measures µ,ν∈∆(R).

When the classes of losses L and density ratio functionsW are bounded and of bounded

signed variation, Lemma 1 immediately implies a connection between the SK metric and

the IPMs that bound the regret in Proposition 1.

Corollary 2. Fix any probability measures µ,ν ∈ ∆(Θ). If 0 ≤ L ≤ λ and V (L) ≤ λ,

then dL(A)(µ,ν)≤λdSK(µ,ν), with equality when L is otherwise unrestricted. If, further,

ω−1≤W≤ω and V (W)≤(ω−ω−1), then dW·L(A)(µ,ν)≤λ(2ω−ω−1)dSK(µ,ν).

Corollary 2 states that if the function classes L and W take the form we propose in Section

4.2, then the IPMs appearing in the bounds in Proposition 1 can be replaced with ones

proportional to the SK metric. We now make use of this fact to specialize Procedure 1.
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4.4 Procedure Based on the SK Metric

We propose the following specialization of Procedure 1 for the case where Θ⊆R.

Procedure 2 Controlling regret with the SK metric

• Calculate

– SK metric dSK(π
0(θ|X),π∗(θ|X))

• Report threshold τ and

– π̂∗(θ|X)=π0(θ|X) if dSK≤τ
– π̂∗(θ|X)=π∗(θ|X) otherwise

All other details follow Procedure 1.

We then have the following corollary of Proposition 1 and Lemma 1.

Corollary 3. Suppose that L and W satisfy the conditions of Corollary 2. Then if

τ ≤ κ
2λω(2ω−ω−1)

, Procedure 2 satisfies Criterion (C1). Moreover, whenever Procedure 2

recommends reporting π∗(θ|X), if L is maximally rich then there exists some agent in the

audience whose regret from reporting π0(θ|X) is at least λτ.

Because the upper bounds in Proposition 1 and Corollary 2 are not generally sharp,

Procedure 2 will not generally satisfy both Criterion (C1) and Criterion (C2) for the same

value of κ. However because Proposition 1 establishes a lower bound on regret, if Procedure

2 recommends abandoning the conventional report, and the class of losses is sufficiently

rich, then there is some agent whose regret from the conventional report is at least λτ .

Example. (Get out the vote, continued.) A loss function L
(
a,θK

)
maps the budget share

a∈ [0,1] and cost per vote θK>0 to the probability of defeat. A loss of 1 is certain defeat and

a loss of 0 is certain victory. If all loss functions have signed variation bounded by one and the

class L is otherwise unrestricted, then making the conventional report πN
(
θK|X

)
about the

cost per vote θK implies a willingness to increase some agent’s probability of defeat by 0.052,

relative to their posterior optimal action, in order to preserve the scientific convention. △

5 A Bootstrap Surrogate for the Central Posterior

To facilitate adoption of Procedure 2, we would like a default choice of central posterior

π∗(θ|X) that is both convenient and reasonable for many economic settings. We propose

to use a bootstrap distribution as a default surrogate for the central posterior. We first
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explain the logic behind using a surrogate. We then describe two classes of central priors

for which a bootstrap can be a surrogate.

5.1 Use of a Surrogate Central Prior

Procedure 2 requires that the analyst calculate the central posterior. Suppose that the

analyst has access instead to a surrogate central posterior πS(θ|X) that is close to the

central posterior in the sense that dSK
(
πS(θ|X),π∗(θ|X)

)
≤δ for some small δ∈ [0,1]. The

triangle inequality implies that

∣∣dSK(π0(θ|X),πS(θ|X)
)
−dSK

(
π0(θ|X),π∗(θ|X)

)∣∣≤δ.
Therefore, if the surrogate is far from the conventional report, then so is the central posterior.

Moreover, under the conditions of Corollary 2, dW·L(A)

(
πS(θ|X),π∗(θ|X)

)
≤λ(2ω−ω−1)δ,

so that by Proposition 1 reporting the surrogate controls regret even when the conventional

report is not a good approximation to the central posterior.

We can therefore modify Procedure 2 as follows.

Procedure 3 Controlling regret with a surrogate central posterior

• Calculate

– surrogate posterior πS(θ|X)

– SK metric dSK
(
π0(θ|X),πS(θ|X)

)
• Report threshold τ and

– π̂∗(θ|X)=π0(θ|X) if dSK≤τ
– π̂∗(θ|X)=πS(θ|X) otherwise

All other details follow Procedure 1.

We then have the following Corollary of Proposition 1 and Lemma 1.

Corollary 4. Suppose that L and W satisfy the conditions of Corollary 2 and that

dSK
(
πS(θ|X),π̂∗(θ|X)

)
≤δ. Then Procedure 3 satisfies Criterion (C1) for τ≤ κ

2λω(2ω−ω−1)
−

δ. Moreover, whenever Procedure 3 recommends reporting πS(θ|X), if L is maximally rich

then there exists some agent in the audience whose regret from reporting π0(θ|X) is at least

λ(τ−δ).
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5.2 Two Classes of Central Priors with a Bootstrap Surrogate Posterior

We now describe two classes of central priors for which a bootstrap can serve as a surrogate

posterior. To do this, we specialize to the case where X=(X1,...,Xn)∈Xn
0 =X consists

of n∈N i.i.d. draws from some (possibly unknown) probability distribution P ∈∆(X0).

We further suppose that θ=θ(P) for θ(·) a known functional, so that θ is identified from

the distribution of the data, as with a point-identified parameter, pseudotrue value from

a GMM procedure, or bound on an identified set. A prior π specifies a distribution for

P , which in turn implies a distribution for θ. We let Pn ∈∆(X0) denote the empirical

distribution of the sample.

5.2.1 Dirichlet Process Central Priors

Suppose that π∗α(P)=DP (α,Q) where DP (·,·) denotes a Dirichlet process (e.g., Ghosal

and van der Vaart 2017, Chapter 4), α>0 is a scalar, and Q∈∆(X0) is a distribution for

a single observation Xi. The parameter α controls the informativeness of the prior, with

a smaller value corresponding to a less informative prior. The parameter Q controls the

central tendency of the prior, and in particular corresponds to the marginal distribution

of a single observation Xi under the prior.

Example. (Get out the vote, continued.) An observation Xi∈{0,1}2 encodes both whether

citizen i votes and whether citizen i is assigned to receive a phone call. A measure Q

describes a contingency table for these two events. Any given sample X implies a sample

contingency table Pn. A prior is a distribution over contingency tables.

A prior of the form π∗α(P)=DP(α,Q) implies a posterior of the form

π∗α(P |X)=DP

(
α+n,

α

α+n
Q+

n

α+n
Pn

)
.

The centering measure of the posterior distribution is a weighted average of the prior contin-

gency table Q and the sample contingency table Pn. As the informativeness of the prior be-

comes large, α→∞, the posterior centers on the prior contingency table. As the informative-

ness of the prior becomes small, α→0, the posterior centers on the sample contingency table.

Just as the informativeness of the prior is controlled by the parameter α, the informa-

tiveness of the sample is controlled by the sample size n. As the informativeness of the
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sample becomes large, n→∞, the posterior centers on the sample contingency table, and

with increasing precision, so that draws from the posterior become increasingly concentrated

on the observed distribution of the data. As the informativeness of the sample becomes

small, n→0, the posterior converges to the prior distribution. As the informativeness of

the prior also becomes small, α→0, the prior distribution remains centered on the prior

contingency table, but becomes less concentrated, so that draws from the prior typically

place almost all mass in one cell (e.g., almost all citizens are treated and vote), with the

location of that cell drawn randomly from the prior contingency table. △

The Bayes bootstrap distribution is defined as πB (P |X) = DP (n,Pn). The Bayes

bootstrap distribution can be conveniently sampled by calculating the functional θ(·) on
data X whose observations have been reweighted by a standard Dirichlet (Rubin 1981).

Well-known properties of this bootstrap, together with conjugacy properties of Dirichlet

processes, imply that the Bayes bootstrap distribution is a surrogate posterior for a Dirichlet

process central prior with small informativeness α.

Lemma 2. If π∗α(P)=DP(α,Q) for some Q, θ(P) is continuous with respect to convergence

in distribution almost everywhere in the support of πB(P |X), and either (i) πB(θ|X) is

a continuous distribution or (ii) the range of θ(P) is countable, then

lim
α→0

dSK
(
πB(θ|X),π∗α(θ|X)

)
=0.

Lemma 2 states that, under continuity conditions, the Bayes bootstrap distribution for

θ is close, in SK metric, to the central posterior π∗α(θ|X) when the corresponding central

prior π∗α(P) is not very informative.

Lemma 2 justifies Procedure 3 under Dirichlet process central priors π∗α(P)=DP(α,Q)

with small α. We think this justification is reasonable for situations where audience

members have limited prior information about the target parameter, and so are happy

to adopt a nonparametric prior with low informativeness. For other situations, we turn

to an alternative justification for the use of πB(P |X) as a surrogate.
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5.2.2 Central Posteriors that Agree on a BvM Parameter

Suppose that θ(P)=θ(β(P)) for known functions β :∆(X0)→B and θ :B→R, where B
may be infinite-dimensional.15 On its own this restriction has no content, as we can always

take β(P)=P or β(P)=θ(P).

Example. (Get out the vote, continued.) The parameter β=
(
βT ,βC

)
describes the prob-

ability of voting with and without a phone call. The target parameters θTC(β)=βT−βC

and θK(β)=K/
(
βT−βC

)
can both be written as functions of β. △

If the central posterior π∗(β|X) and Bayes bootstrap distribution πB(β|X) are close in

a metric which implies closeness of π∗(θ|X) and πB(θ|X) in SK, then the Bayes bootstrap

distribution can serve as a surrogate. To state this formally, for a class of functions F let

F◦θ denote the class of functions of the form f◦θ=f(θ(·)) for f∈F.

Lemma 3. If dG
(
πB(β|X),π∗(β|X)

)
≤δ for a class of functions G, and F◦θ⊆G for F the

class of functions with value and signed variation bounded by one, i.e., the maximal class

satisfying 0≤F≤1 and V (F)≤1, it follows that dSK
(
πB(θ|X),π∗(θ|X)

)
≤δ.

Agreement on an underlying parameter β can, in turn, be justified by BvM theory.

BvM theory provides conditions on the central prior π∗, parameters β and the function

class G under which π∗(β|X) approaches the conventional normal approximation in the

metric dG as n grows large. When β is finite-dimensional, standard results require only

that G is bounded (see, e.g., van der Vaart 1998, Chapter 10; Ghosal and van der Vaart

2017, Chapter 12.3). When β is infinite-dimensional, existing results further require that

G have a bounded Lipschitz constant (see, e.g., Castillo and Nickl 2014).

Example. (Get out the vote, continued.) For β=
(
βT ,βC

)
, the left plot in Online Appendix

Figure 1 shows that the central posterior π∗(β|X) is visually similar to the conventional

normal approximation N
(
β̂(X),Σ̂β̂(X)

)
. △

Importantly, BvM theory can also be applied to the Bayes bootstrap distribution.

Online Appendix C shows a variety of conditions under which the hypotheses of Lemma

3 hold with probability tending to one as n grows large.

15Formally, θ(P)=θβ(β(P)), where θ :∆(X0)→R and θβ :B→R. We suppress the distinction between
θ(·) and θβ(·) in the main text to ease notation.
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Example. (Get out the vote, continued.) The right plot in Online Appendix Figure 1

shows that the Bayes bootstrap distribution πB(β|X) is visually similar to the conventional

normal approximation N
(
β̂(X),Σ̂β̂(X)

)
. △

5.3 Procedure with a Bootstrap Surrogate

The preceding arguments suggest the following refinement to Procedure 3.

Procedure 4 Controlling regret with Bayes bootstrap and a conventional normal report

• Calculate

– Bayes bootstrap distribution πB(θ|X)

– Conventional normal report π0(θ|X)=πN(θ|X)

– SK metric dSK
(
πN(θ|X),πB(θ|X)

)
• Report threshold τ and

– π̂∗(θ|X)=πN(θ|X) if dSK≤τ
– π̂∗(θ|X)=πB(θ|X) otherwise

All other details follow Procedure 1.

Corollary 5. Suppose that L and W satisfy the conditions of Corollary 2 and that either

(i) π∗α(P)=DP(α,Q) for α such that dSK
(
πB(θ|X),π∗α(θ|X)

)
≤δ or

(ii) dF◦θ
(
πB(β|X),π∗(β|X)

)
≤δ for F the maximal class satisfying 0≤F≤1 and V (F)≤1.

Then Procedure 4 satisfies Criterion (C1) for τ ≤ κ
2λω(2ω−ω−1)

−δ. Moreover, whenever

Procedure 4 recommends reporting πB(θ|X), if L is maximally rich then there exists some

agent in the audience whose regret from reporting πN(θ|X) is at least λ(τ−δ).

Example. (Get out the vote, continued.) Figure 4a shows a p-p plot comparing the Bayes

bootstrap distribution πB
(
θTC|X

)
to the normal approximation πN

(
θTC|X

)
for the effect

of the intervention. The SK metric is small, at approximately 0.003. Figure 4b shows a p-p

plot comparing the Bayes bootstrap distribution πB
(
θK|X

)
to the normal approximation

πN
(
θK|X

)
for the cost per vote. The SK metric is larger, at approximately 0.052. The

conclusions from Figure 4, which uses the bootstrap as a surrogate, are therefore similar

to those from Figure 3, which uses the central posterior.
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Figure 4: Comparing the Bayes bootstrap distribution to the normal approximation

(a) Target parameter is the effect of a phone call (b) Target parameter is the cost per vote

Notes:
Panel (a) shows a p-p plot comparing the Bayes bootstrap distribution πB

(
θTC|X

)
to the

normal approximation πN
(
θTC|X

)
for the effect θTC of a phone call. Panel (b) shows a p-p

plot comparing the Bayes bootstrap distribution πB
(
θK|X

)
to the normal approximation

πN
(
θK|X

)
for the cost per vote θK. In both panels, the dashed line is the 45-degree line.

Notice that here the Bayes bootstrap distribution is a surrogate for the central posterior

but not necessarily for all agents’ posteriors. Nevertheless, Procedure 4 allows that agents

may reweight the Bayes bootstrap distribution as if it were the central posterior. To us,

central priors of the form envisioned in Lemma 3 seem easier to contemplate, and hence

to reweight, than those of the form envisioned in Lemma 2. We therefore think that

the justification via Lemma 3 is more appealing for situations where the audience has

substantive beliefs about the parameter of interest. △

Remark 2. We recommend using the Bayes bootstrap distribution because it admits a direct

interpretation following Lemma 2. Weng (1989) shows a sense in which the nonparametric

bootstrap approximates the posterior distribution corresponding to a Dirichlet process

prior in a large sample, albeit not as accurately as does the Bayes bootstrap. Appendix D

shows that, under the same BvM conditions that can make the Bayes bootstrap a useful

surrogate for the central posterior, the Bayes bootstrap distribution will be close to that

of other weighted bootstraps, including the nonparametric bootstrap. The analyst may
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therefore alternatively substitute the nonparametric bootstrap as a surrogate.

6 Application to a Bootstrap Census

Procedure 4 is applicable to a wide range of economic settings. To demonstrate the

procedure’s applicability, we applied it to the papers in the 2021 American Economic

Review that use a bootstrap. We now describe our methods and findings.

6.1 Census of Papers Using a Bootstrap

We used a Google Scholar query to identify papers published in the American Economic

Review in 2021 that use a bootstrap. For each paper, we identified the main objects of

interest, which we define to be objects for which a quantitative or a qualitative description

appears in the abstract or introduction. We focus on objects of interest for which the

bootstrap is used for inference. We excluded from our census papers that are primarily

methodological, papers that use the bootstrap only to calculate a p-value, or papers that

use a bootstrap exclusively for objects reported in appendices. Online Appendix Table

1 lists the papers we include in our census along with the number of objects of interest

in each paper that we include in our analysis.

For each paper, we attempted to reproduce the bootstrap replicates for all objects of

interest using the published replication code and data. When this was not feasible (e.g.,

due to confidential data), we contacted the authors to request the bootstrap replicates.

We succeeded in obtaining bootstrap replicates covering 81 objects of interest across 14

papers, with only 1 paper for which we were unable to obtain the replicates.

Consistent with the wide applicability of Procedure 4, the papers in the census cover

a range of topics including public economics, labor economics, macroeconomics, behavioral

economics, industrial organization, and development economics. The objects of interest

include parameters describing technology, welfare calculations from a structural model,

impulse responses, and transformations of regression coefficients.

Our main calculations will use the replicates that we obtained from the replication

materials or from the authors. Given these replicates, applying Procedure 4 is trivial and

can be done in a web app.
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Although our theoretical development focuses on the Bayes bootstrap, only 1 paper in

the census actually uses the Bayes bootstrap. Among the others, the most popular form of

bootstrap is the nonparametric bootstrap (10 articles including block bootstraps), followed

by various forms of parametric bootstrap (3 articles).16 As we discuss in Section 5, there

are reasons to expect different bootstrap procedures to yield similar distributions in large

samples. For a subset of articles using a nonparametric bootstrap, we were able to use the

published replication code and data to compute a Bayes bootstrap. In no case do we reject

that the SK distance to the default normal differs between the two bootstrap distributions;

see Online Appendix Figure 2 for details.

Applying Procedure 4 requires specifying a conventional report. For our main analysis

we use the normal approximation π0(θ|X)=πN (θ|X)=N
(
θ̂(X),Σ̂(X)

)
implied by the

reported point estimate and the bootstrap standard error, defined as the standard deviation

of the bootstrap distribution. All of the papers in the census report point estimates for

all objects of interest, and 10 out of 14 report bootstrap standard errors. The remaining

4 out of 14 papers report bootstrap confidence intervals. To better capture such situations,

Online Appendix Figure 3 shows results where we take the variance of the default normal to

match the difference between the 97.5th and 2.5th percentiles of the bootstrap distribution,

rather than its standard deviation.

6.2 Findings from the Bootstrap Census

Figure 5 shows a series of p-p plots comparing the CDF of bootstrap replicates, i.e.,

samples from πB(θ|X), to the conventional normal report πN (θ|X). Each plot reports

the maximum positive and negative vertical distance between the CDF of the bootstrap

replicates and of the conventional report. The sum of these distances is an estimator of

SK
(
πB(θ|X),πN(θ|X)

)
that is consistent in the number of bootstrap replicates. For each

paper in our census, we depict two p-p plots, corresponding to the objects with the smallest

and largest estimated SK metric among the objects of interest in the paper. The figure

shows that, as in our running example, the estimated SK metric can differ meaningfully

even across objects of interest reported in the same paper.

16We include in the category of parametric bootstraps procedures that treat some statistics as exactly
normally distributed. In all but 1 of the papers in the census, the authors’ bootstrap procedure implicitly
treats the data as i.i.d. across some observed units.
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Across all of the objects of interest in our census, we find that the estimated SK metric

is greater than 0.1 in 72 percent of cases, and is greater than 0.2 in 32 percent of cases.

In these cases, if the Bayes bootstrap is a good surrogate for the central posterior, then

under the conditions of Corollary 4, the value of the conventional report must represent

a share of at least 0.1 or 0.2, respectively, of the worst-case loss to justify reporting the

conventional normal report. Online Appendix Figure 3 shows the full distribution of the

estimated SK metric across the objects of interest in our census.
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Figure 5: Comparison of Bootstrap Distribution to Default Normal Report

Paper Object with...
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Figure 5 (cont’d): Comparison of Bootstrap Distribution to Default Normal Report

Paper Object with...
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Figure 5 (cont’d): Comparison of Bootstrap Distribution to Default Normal Report

Paper Object with...
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Figure 5 (cont’d): Comparison of Bootstrap Distribution to Default Normal Report

Paper Object with...

least SK distance greatest SK distance

10
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Figure 5 (cont’d): Comparison of Bootstrap Distribution to Default Normal Report

Paper Object with...

least SK distance greatest SK distance

13

14

Notes: Each row corresponds to a paper in our bootstrap census. Each plot is a p-p plot comparing

the distribution of the bootstrap replicates to the distribution of the default normal report whose

mean is given by the point estimate and whose standard deviation is given by the bootstrap

standard error. The shaded region is a uniform confidence band designed to contain the empirical

CDF of the bootstrap replicates with probability at least 0.95 whenever the true bootstrap

distribution is given by the default normal report. Each plot legend reports the maximum positive

and negative vertical distances between the two distributions. Each row includes two plots, one

for the object of interest with the smallest sum of maximum positive and negative distances

(“least SK distance”) and one for the object of interest with the largest sum of distances (“greatest

SK distance”). Rows (papers) are in descending order according to their greatest SK distance.
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Appendix: Proofs

To extend Theorem 1 to the case where an optimal action may not exist, we need to

define regret for this case. For ε > 0 define the set of ε-optimal actions under (π,L),

Aε(π,L) = {â∈A :Eπ[L(â,θ)]≤ infa∈AEπ[L(a,θ)]+ε}. We consider the worst-case regret

over ε-optimal actions as ε→0,

R(π̂∗(θ|X);X,L,w,π∗)=

lim
ε→0

(
sup

{
Ew(θ)π∗(θ|X)[L(â,θ)−L(a,θ)]:

â∈Aε(w(·)π̂∗(·|X),L),a∈A,
Ew(θ)π̂∗(θ|X)[L(â,θ)−L(a,θ)]≤0

})
.

Theorem 2. For R as defined above,

sup
w∈W

sup
L∈L

R(π̂∗(θ|X);X,L,w,π∗)≤R(π̂∗(θ|X);X,L,W,π∗)

for R as defined in Theorem 1.

Proof of Theorem 2 For any L∈L and w∈W, consider any pair of actions â and a such

that the agent weakly prefers â to a under π̂,Ew(θ)π̂∗(θ|X)[L(â,θ)−L(a,θ)]≤0.Note that since

L(a,θ),L(â,θ)∈L(A), it is immediate that Eπ(θ|X)[L(â,θ)−L(a,θ)] is bounded above by

sup
ℓ1,ℓ0∈L(A),w∈W

Ew(θ)π∗(θ|X)[ℓ1(θ)−ℓ0(θ)] subject to: Ew(θ)π̂∗(θ|X)[ℓ1(θ)−ℓ0(θ)]≤0.

Hence, we see that for any ε>0 and any â∈Aε(π̂,L),a∈A such that Ew(θ)π̂∗(θ|X)[L(â,θ)−L(a,θ)]≤
0,

Ew(θ)π∗(θ|X)[L(â,θ)−L(a,θ)]≤R(π̂∗(θ|X);X,L,W,π∗(θ|X)),

from which the result is immediate. □

Proof of Theorem 1 The first part of the result is immediate from Theorem 2. For the

second part of the result, note that for any ℓ1, ℓ0∈L(A), w∈W such that

Ew(θ)π̂∗(θ|X)[ℓ1(θ)−ℓ0(θ)]≤0, (1)
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if we consider A={0,1} and the loss

L(a,θ)=

ℓ1(θ) if a=1

ℓ0(θ) if a=0
,

then the agent weakly prefers â= 1 based on their perceived posterior, but will incur

regret Ew(θ)π∗(θ|X)[ℓ1(θ)−ℓ0(θ)] from this action. Hence, if we take the worst case over ℓ1,

ℓ0∈L(A), w∈W satisfying (1), we obtain riskR(π̂∗(θ|X);X,L,W,π∗), where the conditions

of the theorem ensure that this worst-case is attained at some ℓ1, ℓ0, w, and we may take

L=

ℓ1(θ) if a=1

ℓ0(θ) if a=0
.

Note that L(A)⊆L(A), but we may have L∉L. If, contrary to our assumptions, the set

{
Ew(θ)π∗(θ|X)[ℓ1(θ)−ℓ0(θ)],Ew(θ)π̂∗(θ|X)[ℓ1(θ)−ℓ0(θ)]:ℓ1,ℓ0∈L(A),w∈W

}
is not compact, we can select ℓ1, ℓ0 ∈ L(A), w ∈ W to come arbitrarily close to the

worst-case regret R(π̂∗(θ|X);X,L,W,π∗). □

Proof of Corollary 1 If τ≤κ, Procedure 1 reports π0(θ|X) only ifR(π0(θ|X);X,L,W,π∗)≤
κ. Criterion (C1) is thus satisfied by Theorem 1. If τ≥κ and L∈L, Procedure 1 reports

π∗(θ|X) only if R(π0(θ|X);X,L,W,π∗)>κ. Criterion (C2) is thus satisfied by Theorem 1.

By Theorem 1, if L∈L any procedure satisfying Criteria (C1) and (C2) must report π0(θ|X)

if and only ifR(π0(θ|X);X,L,W,π∗)≤κ, and thus is equivalent to Procedure 1 with τ=κ. □

Proof of Proposition 1 Since w(θ)≥ω−1 by assumption, for any w ∈W and any ℓ1,

ℓ0∈L(A),
∫
w(θ)dπ∗(θ|X)≥ω−1 and

Ew(θ)π∗(θ|X)[ℓ1(θ)−ℓ0(θ)]≤ω
∫
(ℓ1(θ)−ℓ0(θ))w(θ)dπ∗(θ|X).

Note, next, that Ew(θ)π̂∗(θ|X)[ℓ1(θ)−ℓ0(θ)]≤0 implies that

ω

∫
(ℓ1(θ)−ℓ0(θ))w(θ)dπ∗(θ|X)≤
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ω

(∫
(ℓ1(θ)−ℓ0(θ))w(θ)dπ∗(θ|X)−

∫
(ℓ1(θ)−ℓ0(θ))w(θ)dπ̂∗(θ|X)

)
≤

≤2ω· sup
f∈W·L(A)

∣∣∣∣∫ f(θ)dπ∗(θ|X)−
∫
f(θ)dπ̂∗(θ|X)

∣∣∣∣=2ω·dW·L(A)(π̂
∗(θ|X),π∗(θ|X)).

Since this holds for all w∈W and any ℓ1, ℓ0∈L(A) with Ew(θ)π̂∗(θ|X)[ℓ1(θ)−ℓ0(θ)]≤0, the

first part of the result is immediate from Theorem 1.

For the second part of the result, centrosymmetry implies that

sup
f∈L(A)

∣∣∣∣∫ f(θ)dπ∗(θ|X)−
∫
f(θ)dπ̂∗(θ|X)

∣∣∣∣= sup
f∈L(A)

(∫
f(θ)dπ∗(θ|X)−

∫
f(θ)dπ̂∗(θ|X)

)
.

Consider f̃ which attains the preceding supremum (which exists by our compactness

assumptions), A={0,1}, and the loss

L(a,θ)=

f̃(θ) if a=1∫
f̃(θ)dπ̂∗(θ|X) if a=0

.

By construction, the agent is indifferent between the two actions based on their perceived

posterior, but choosing â=1 yields a regret of∫
f̃(θ)dπ∗(θ|X)−

∫
f̃(θ)dπ̂∗(θ|X)≥dL(A)(π

∗(θ|X),π̂∗(θ|X)).

The result is immediate. □

Proof of Lemma 1 We first show that for I the set of indicator functions for (open,

closed, and half-open) intervals in R, dI(µ,ν)=dSK(µ,ν).
To see that this is the case, note that since SK is a metric, |SK(µ,ν)|=SK(µ,ν).

Note that for all tµ,tν∈R,

|µ(θ≤tµ)−µ(θ≤tν)−ν(θ≤tµ)+ν(θ≤tν)|=

|µ(θ∈(tµ∧tν,tµ∨tν])−ν(θ∈(tµ∧tν,tµ∨tν])|,

where a∧b=min{a,b} and a∨ b=max{a,b}. Hence, we can rewrite dSK as the IPM
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generated by indicator functions for half-open intervals

dSK(µ,ν)=sup
l,u

∣∣∣∣∫ 1{t∈(l,u]}dµ(t)−
∫
1{t∈(l,u]}dν(t)

∣∣∣∣.
By definition dI(µ,ν)≥dSK(µ,ν), so to prove the result it suffices to show that we cannot

have a strict inequality.

To this end, note that for any −∞≤a≤b≤∞ and any measure µ∈∆(R),

lim
ε↓0

∫
1{t∈(a−ε,b]}dµ(t)=

∫
1{t∈ [a,b]}dµ(t),

while for any −∞≤a<b≤∞

lim
ε↓0

∫
1{t∈(a,b−ε]}dµ(t)=

∫
1{t∈(a,b)}dµ(t),

lim
ε↓0

∫
1{t∈(a−ε,b−ε]}dµ(t)=

∫
1{t∈ [a,b)}dµ(t).

Since the same argument applies when integrating over ν, it is immediate that dI(µ,ν)=

dSK(µ,ν). The result of Lemma 1 thus follows provided dI(µ,ν)=dF (µ,ν), as we prove

in the following lemma.

Lemma 4. For I the set of indicator functions for (open, closed, and half-open) intervals

in R, and F the set of all functions f :R→ [0,1] with V (f)≤1, we have dI(µ,ν)=dF for

all measures µ,ν.

The proof of Lemma 4 is broadly similar to arguments in Müller (1997), and is provided

in the online appendix. □

Proof of Corollary 2 Under the assumptions of the corollary, note that for ℓ∈L(A) and

w∈W, 0≤ℓ(θ)w(θ)≤λω. Note further that for θ′≤θ,

(ℓ(θ)w(θ)−ℓ(θ′)w(θ′))+=(ℓ(θ)w(θ)−ℓ(θ′)w(θ)+ℓ(θ′)w(θ)−ℓ(θ′)w(θ′))+≤

ℓ(θ′)(w(θ)−w(θ′))++w(θ)(ℓ(θ)−ℓ(θ
′))+.
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Hence, for an increasing sequence t0,...,tK,

K∑
k=1

(ℓ(tk)w(tk)−ℓ(tk−1)w(tk−1))+≤
K∑
k=1

ℓ(tk)(w(tk)−w(tk−1))++
K∑
k=1

w(tk)(ℓ(tk−1)−ℓ(tk))+

≤ω
K∑
k=1

(ℓ(tk−1)−ℓ(tk))++λ
K∑
k=1

(w(tk)−w(tk−1))+≤ωλ+λ
(
ω−ω−1

)
.

Since ω≥1, it follows that 0≤W·L(A)≤λ(2ω−ω−1) and V (W·L(A))≤λ(2ω−ω−1), from

which the result is immediate noting that for the first part of the result we can take ω=1. □

Proof of Corollary 3 By Corollary 2,

dW·L(A)(π̂
∗(θ|X),π∗(θ|X))≤λ

(
2ω−ω−1

)
dSK(π̂

∗(θ|X),π∗(θ|X)).

By the first part of Proposition 1, we thus know that

R(π̂∗(θ|X);X,L,W,π∗)≤2ωλ
(
2ω−ω−1

)
dSK(π̂

∗(θ|X),π∗(θ|X)).

Procedure 2 reports π0 (θ|X) only when dSK (π0(θ|X),π∗(θ|X)) ≤ τ , and hence when

R (π0(θ|X);X,L,W,π∗) ≤ 2ωλ(2ω−ω−1)τ, so the first part of the result follows from

Corollary 1.

For the second part of the result, note that Procedure 2 reports π∗(θ|X) only when

dSK(π
0(θ|X),π∗(θ|X))>τ . By our assumption that L is maximally rich, there exists an

agent with the loss used to construct the lower bound in the proof of Proposition 1. Hence,

there exists an agent with regret at least

dL(A)

(
π0(θ|X),π∗(θ|X)

)
=λdSK

(
π0(θ|X),π∗(θ|X)

)
>λτ,

which implies the result. □

Proof of Corollary 4 Procedure 3 reports π0 only when dSK
(
π0(θ|X),πS(θ|X)

)
≤τ . By

the triangle inequality, this implies that dSK(π
0(θ|X),π∗(θ|X))≤ τ+δ, and thus by the

argument in the proof of Corollary 3 above that

R
(
π0(θ|X);X,L,W,π∗

)
≤2ωλ

(
2ω−ω−1

)
(τ+δ),
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so the first part of the result follows from Proposition 1.

Procedure 3 reports πS only when dSK
(
π0(θ|X),πS(θ|X)

)
> τ , in which case the

triangle inequality implies that dSK(π
0(θ|X),π∗(θ|X))>τ−δ. By our assumption that L

is maximally rich, there exists an agent with the loss used to construct the lower bound

in the proof of Proposition 1. Hence, there exists an agent with regret at least

dL(A)

(
π0(θ|X),π∗(θ|X)

)
=λdSK

(
π0(θ|X),π∗(θ|X)

)
>λ(τ−δ),

which implies the result. □

Proof of Lemma 2 By Theorem 4.6 in Ghosal and van der Vaart (2017), for anyQ∈∆(X0)

and π∗α=DP (α,Q), π∗α(P |X)=DP
(
α+n, α

α+n
Q+ n

α+n
Pn

)
. By Theorem 4.16 of Ghosal

and van der Vaart (2017), π∗α (P |X) →d π
B (P |X) = DP (n,Pn) as α → 0, where →d

denotes convergence in distribution. By assumption θ is continuous in P (with respect

to the topology of weak convergence) almost everywhere on the support of πB (P |X).

Hence, by the continuous mapping theorem (e.g., Theorem 18.11 of van der Vaart, 1998),

π∗α(θ|X)→dπ
B(θ|X). By the definition of convergence in distribution, it follows that the

distribution function of π∗α(θ|X) converges to that of πB(θ|X) at every continuity point of

the latter distribution function. If πB(θ|X) is continuous then all values of θ are continuity

points for the distribution function of πB(θ|X). If instead the range of θ(P) is countable then

for any point t in the range there is a value ε(t)>0 such that t+ε(t) is smaller than any point

in the range above t, and is trivially a continuity point of πB(θ|X). Hence, convergence in

distribution implies that the distribution function of π∗α(θ|X) at t+ε(t) converges to that of

πB(θ|X), and thus that the same holds at t. For both cases, convergence in distribution thus

implies point-wise convergence of distribution functions. However, point-wise convergence

of distribution functions implies uniform convergence (by, e.g., Lemma 2.11 of van der Vaart,

1998), and uniform convergence of distribution functions implies convergence in dSK. □

Proof of Lemma 3 By assumption f(θ(·))∈G for all f∈F, so by Lemma 1,

dSK
(
πB(θ|X),π∗(θ|X)

)
=sup

f∈F

∣∣EπB(θ|X)[f(θ)]−Eπ∗(θ|X)[f(θ)]
∣∣=

sup
f∈F

∣∣EπB(β|X)[f(θ(β))]−Eπ∗(β|X)[f(θ(β))]
∣∣≤sup

g∈G

∣∣EπB(β|X)[g(β)]−Eπ∗(β|X)[g(β)]
∣∣,

from which the result is immediate. □
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Proof of Corollary 5 Follows immediately from Lemmas 2 and 3 and Corollary 4. □
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Online Appendix for

“Communicating Scientific Uncertainty via Approximate Posteriors”

Isaiah Andrews, MIT and NBER1

Jesse M. Shapiro, Harvard University and NBER

A Ex-Ante Regret Bounds for Fully Bayesian Agents

Our main results assume that agents treat the analyst’s reported distribution π̂∗(θ|X) as if

it were the central posterior. If instead the analyst publicly commits to take π̂∗(θ|X)=c(X)

for some function c :X→∆(Θ) and the agent takes their Bayes-optimal action based on

c(X), then the ex-ante expected regret for each agent is bounded above by the agent’s

ex-ante expectation of our regret bound.

Specifically, if the agent takes the optimal action based on their posterior belief

after observing c(X), then as in Andrews and Shapiro (2021) their expected loss is

Eπ[infaEπ[L(a,θ)|c(X)]]. By construction this is bounded above by Eπ[L(b(c(X)),θ)] for

any function b :∆(Θ)→A. However, the actions â studied in the main text are one such

function, so

Eπ

[
inf
a
Eπ[L(a,θ)|c(X)]

]
≤Eπ[L(â,θ)],

which immediately implies a bound on the expected regret under the agent’s prior

Eπ

[
inf
a
Eπ[L(a,θ)|c(X)]−inf

a
Eπ[L(a,θ)|X]

]
≤Eπ[R(π̂

∗(θ|X);X,L,w,π∗)].

Theorem 1 implies that the right hand side is, in turn, bounded above by Eπ

[
R(π∗(θ|X);X,L,W,π∗)

]
.

Unlike for our main results, however, this bound is not in general tight. For instance if c

is constant irrespective of the data, then the value of c(X) is irrelevant for the actions, and

regret, of a Bayesian agent, since this agent knows that c(X) is not informative about X

(or θ) and so ignores it. By contrast, an agent who acts based on their perceived posterior,

as we assume in the main text, will take different actions (and thus incur different regret)

for different choices of constant c.

1E-mail: iandrews@mit.edu, jesse shapiro@fas.harvard.edu.
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B Proof of Lemma 4 from Main Appendix

Recall that we aim to show that for I the set of indicator functions for (open, closed, and

half-open) intervals in R, and F the set of all functions f :R→ [0,1] with V (f)≤1, we

have dI(µ,ν)=dF for all measures µ,ν.

To this end, for ε> 0 let us consider a set [−C,C] such that µ([−C,C])≥ 1− ε
2
and

ν([−C,C])≥1− ε
2
, and note that for F the class of functions with range contained in [0,1]

and signed variation bounded by one and any f∈F,∣∣∣∣∣∣∣∣∫ C

−C

f(t)dµ(t)−
∫ C

−C

f(t)dν(t)

∣∣∣∣−∣∣∣∣∫ f(t)dµ(t)−∫ f(t)dν(t)∣∣∣∣∣∣∣∣<ε.
For f∈F, t∈ [−C,C], f[a,b] the restriction of f to [a,b], and

IV
(
f[a,b]

)
= sup

K∈N,t0≤...≤tK∈[a,b]

K∑
k=1

(f(tk)−f(tk−1))+,

DV
(
f[a,b]

)
= sup

K∈N,t0≤...≤tK∈[a,b]

K∑
k=1

(f(tk−1)−f(tk))+,

in the same spirit as Jordan’s theorem for functions of bounded variation we can write

f(t)=f(−C)+IV
(
f[−C,t]

)
−DV

(
f[−C,t]

)
.

Hence, f (t) = f+(t)+f−(t) for f+(t) = IV
(
f[−C,t]

)
and f−(t) = f (−C)−DV

(
f[−C,t]

)
,

where f+ is increasing with f+ (−C) = 0 and f+ (C) ≤ 1, while f− is decreasing with

f−(−C)=f(−C) and f−(C)≥f(−C)−1.

For each s∈N, consider the partition of [0,1] by z
2s

for z∈Zs={1,...,2s}. Note that the
simple functions

fs,+(t)=
∑
z∈Zs

1
{
f+(t)≥ z

2s

}
2s

,fs,−(t)=
∑
z∈Zs

1
{
−f−(t)≥ z

2s
+f(−C)−1

}
2s

+f(−C)−1

differ from f+ and f−, respectively, by at most 1
2s

in the sup norm. Next, let

ts,+,z=inf
{
t :f+(t)≥

z

2s

}
,os,+,z=1

{
f+(ts,+,z)≠

z

2s

}

2



ts,−,z=sup
{
t :−f−(t)≥

z

2s
+f(−C)−1

}
,os,−,z=1

{
f−(ts,−,z)≠

z

2s
+f(−C)−1

}
,

and note that

fs,+(t)=
1

2s

∑
z∈Zs

(os,+,z1{t>ts,+,z}+(1−os,+,z)1{t≥ts,+,z})

while

fs,−(t)=− 1

2s

∑
z∈Zs

(os,−,z1{t<ts,−,z}+(1−os,−,z)1{t≤ts,−,z})+f(−C)−1.

Let

fs,z(t)=
os,+,z1{t>ts,+,z}+(1−os,+,z)1{t≥ts,+,z}+

os,−,z1{t<ts,−,z}+(1−os,−,z)1{t≤ts,−,z}−1{ts,+,z<ts,−,z}
,

and note that we can write fs,z(t) as either 1{t∈I} or 1{t∉I} for an interval I depending

on the values of (ts,+,z,os,+,z,ts,−,z,os,−,z). Moreover,

fs(t)=fs,+(t)+fs,−(t)=
1

2s

∑
z∈Zs

(fs,z(t)+1{ts,+,z<ts,−,z}+f(−C)−1),

so ∣∣∣∣∫ C

−C

fs(t)dµ(t)−
∫ C

−C

fs(t)dν(t)

∣∣∣∣=∣∣∣∣∣ 12s∑
z∈Zs

(∫ C

−C

fs,z(t)dµ(t)−
∫ C

−C

fs,z(t)dν(t)

)∣∣∣∣∣≤
1

2s

∑
z∈Zs

∣∣∣∣∫ C

−C

fs,z(t)dµ(t)−
∫ C

−C

fs,z(t)dν(t)

∣∣∣∣≤
sup
I

∣∣∣∣∫ C

−C

1{t∈I}dµ(t)−
∫ C

−C

1{t∈I}dν(t)
∣∣∣∣∨∣∣∣∣∫ C

−C

1{t∉I}dµ(t)−
∫ C

−C

1{t∉I}dν(t)
∣∣∣∣. (2)

Note, however, that since µ([−C,C])≥1− ε
2
and ν([−C,C])≥1− ε

2
,∣∣∣∣∫ C

−C

1{t∈I}dµ(t)−
∫
1{t∈I}dµ(t)

∣∣∣∣≤ ε

2
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and similarly for ν, so∣∣∣∣∣∣∣∣∫ C

−C

1{t∈I}dµ(t)−
∫ C

−C

1{t∈I}dν(t)
∣∣∣∣−∣∣∣∣∫ 1{t∈I}dµ(t)−

∫
1{t∈I}dν(t)

∣∣∣∣∣∣∣∣<ε
and the same holds for 1{t∉I}, so (2) is bounded above by dI (µ,ν)+ε. Since fs → f

uniformly in t∈ [−C,C] as s→∞, we thus have that∣∣∣∣∫ C

−C

f(t)dµ(t)−
∫ C

−C

f(t)dν(t)

∣∣∣∣=
lim
s→∞

∣∣∣∣∫ C

−C

fs(t)dµ(t)−
∫ C

−C

fs(t)dν(t)

∣∣∣∣≤dI(µ,ν)+ε.
Moreover, since 0≤f(t)≤1, ∣∣∣∣∫ C

−C

f(t)dµ(t)−
∫
f(t)dµ(t)

∣∣∣∣≤ ε

2

and similarly for ν, so by the triangle inequality∣∣∣∣∫ f(t)dµ(t)−∫ f(t)dν(t)∣∣∣∣≤dI(µ,ν)+2ε.

Since we can repeat this argument for all ε>0, we obtain that
∣∣∫ f(t)dµ(t)−∫ f(t)dν(t)∣∣≤

dI(µ,ν) for all f∈F. Conversely, 1{t∈I} is an element of F for all I, so

sup
f∈F

∣∣∣∣∫ f(t)dµ(t)−∫ f(t)dν(t)∣∣∣∣≤dI(µ,ν),
proving the result.

C Sufficient Conditions for Bernstein-von Mises

This section provides sufficient conditions for the Bernstein-von Mises (BvM) results dis-

cussed in Section 5.2 of the paper. As in that section, we assume X=(X1,...,Xn)∈Xn
0 =X

consists of n∈N i.i.d. draws from a distribution P ∈∆(X0). Our goal is to provide sufficient

conditions on (P,β,θ,π∗) such that for F the set of functions with range contained in [0,1]

and signed variation bounded by one, there exists a class of functions G with F◦θ⊆G such

4



that for all δ>0, dF◦θ
(
πB(β|X),π∗(β|X)

)
≤δ with probability tending to one as n→∞,

allowing us to apply Lemma 3.

Our arguments in this section rely on approximate normality of the posterior π∗(β|X)

as n→∞. BvM results in the literature typically quantify deviations from normality

using IPMs, specifically total variation metric when β is finite-dimensional and bounded

Lipschitz metric when β is infinite-dimensional. Consequently, we structure our analysis

in this appendix around these two metrics.

C.1 BvM in Total Variation

Let us first consider the case where the central posterior π∗(β|X) satisfies a BvM Theorem

in total variation. For this case, we will limit attention to the case where β corresponds to

a finite-dimensional vector of moments, β(P)=EP [ψ(Xi)]∈B⊆Rq. Correspondingly, let

β(Pn)=
1
n

∑n
i=1ψ(Xi) and Σ(P)=VarP (ψ(Xi)) denote the sample mean and population

variance, respectively. We assume that as n→∞, the reference posterior π∗(β|X) converges

to a normal with mean β(Pn) and variance 1
n
Σ(P).

Assumption 1. As n→∞

dTV

(
π∗(β|X),N

(
β(Pn),

1

n
Σ(P)

))
→p0.

A variety of sufficient conditions for Assumption 1 are available in the literature—see for

instance Theorem 12.8 in Ghosal and van der Vaart (2017). These results apply to general

functionals and do not in general require that β(P) correspond to a vector of population

moments. However, this additional structure allows us to establish a corresponding result

for the Bayes Bootstrap.

Lemma 5. Provided Σ(P) is finite and full-rank, as n→∞

dTV

(
πB(β|X),N

(
β(Pn),

1

n
Σ(P)

))
→p0.

Recall that if we let G collect all functions g :B→ [0,1] then dG(µ,ν)=dTV (µ,ν). Since

functions in F have range contained in [0,1] it is immediate that F◦θ⊆G for all θ. Hence,

Assumption 1 and Lemma 5 together imply that the conditions of Lemma 3 hold with

probability tending to one, without imposing any further restrictions on θ.
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Proposition 2. If Assumption 1 and the conditions of Lemma 5 hold, then for G the class

of all functions g :B→ [0,1], as n→∞

dG
(
πB(β|X),π∗(β|X)

)
→p0,

so for any δ>0 and any θ :B→R the conditions of Lemma 3 hold with probability tending

to one.

C.2 BvM in Bounded Lipschitz

We next consider the case where π∗(β|X) satisfies a BvM Theorem in bounded Lipschitz

metric. Convergence in bounded Lipschitz metric is implied by convergence in total variation,

so this condition is weaker than that considered in the previous section, and has been used

in infinite-dimensional settings where convergence in total variation is too demanding.

Let β :∆(X0)→B be some (possibly infinite-dimensional) transformation of the data

distribution and B a normed vector space. Let β(Pn) be the analogous transformation

of the empirical distribution. We assume β is “well-behaved” in the sense that β(Pn) is

asymptotically normal.

Assumption 2. As n→∞

√
n(β(Pn)−β(P))→dGP(0,Σ(P))

where GP(0,Σ(P)) is the mean-zero Gaussian process with covariance function Σ(P).

We assume that the posterior distribution π∗(β|X) matches the limiting distribution in

large samples, where the discrepancy is measured in bounded Lipschitz metric, dBL=dFBL
,

for FBL is the set of functions with absolute value and Lipschitz constant bounded by one.

Assumption 3. As n→∞

dBL

(
π∗
(√
n(β−β(Pn))|X

)
,GP(0,Σ(P))

)
→p0.

For the case where β(P) is the distribution function, sufficient conditions for Assumption

3 are provided in Castillo and Nickl (2014).

In parallel, we will assume that the Bayes bootstrap distribution, appropriately nor-

malized, converges to the same limit.
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Assumption 4. As n→∞

dBL

(
πB
(√
n(β−β(Pn))|X

)
,GP(0,Σ(P))

)
→p0.

Convergence of the bootstrap distribution to normality in bounded Lipschitz metric is the

standard definition of bootstrap consistency, and a wide variety of sufficient conditions are

available: see for instance Theorems 3.6.13 and 3.9.11 in van der Vaart and Wellner (1996).

We further restrict the function θ(β) to satisfy a mild continuity condition, and require

that the distributions πB(θ|X) and π∗(θ|X) not have point masses in large samples. See

Online Appendix D for further discussion of both assumptions.

Assumption 5. For all ϵ>0, there exists a constant K(ϵ)∈ [0,∞), a sequence of functions

θn,ϵ with Lipschitz constants K(ϵ), and an open set Zϵ such that for Zβ∼Qβ=GP(0,Σ(P)),

some norm ∥·∥, and cϵ the 1−ϵ quantile of ∥Zβ∥,

limsup
n→∞

sup
z∈Z\Zϵ

1{|θn(z+β(P))−θn,ϵ(z)|>0}=0 and sup
z∈Z:∥z∥≤cϵ

PrQβ
{Zβ+z∈Zϵ}≤ϵ.

In addition, ∥Zβ∥ is continuously distributed.

Assumption 6. For Bε,n(θ)=
{
θ̃ :
∣∣∣θ̃−θ∣∣∣<ε/√n},

lim
ε→0

limsup
n→∞

E

[
sup
θ∈R

πB(Bε,n(θ)|X)

]
=lim

ε→0
limsup
n→∞

E

[
sup
θ∈R

π∗(Bε,n(θ)|X)

]
=0.

Under these assumptions, the conditions of Lemma 3 again hold with probability

tending to one.

Proposition 3. Suppose Assumptions 2-6 hold. Then for G equal to F◦θ, as n→∞

dG
(
πB(β|X),π∗(β|X)

)
→p0,

so for any δ>0 the conditions of Lemma 3 hold with probability tending to one.

C.3 Proofs for Appendix C

Proof of Lemma 5 Note that

dTV

(
πB(β|X),N

(
β(Pn),

1

n
Σ(P)

))
=dTV

(
πB
(√
n(β−β(Pn))|X

)
,N(0,Σ(P))

)
.
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Hence, to prove the result, it suffices to show that the right hand side tends to zero.

By Theorem 12.2 of Ghosal and van der Vaart (2017), we know that

πB
(√
n(β−β(Pn))|X

)
→dN(0,Σ(P)),

where since convergence in bounded Lipschitz metric is equivalent to convergence in

distribution, this immediately implies that

dBL

(
πB
(√
n(β−β(Pn))|X

)
,N(0,Σ(P))

)
→p0.

Note, next, that by Proposition 4.3 in Ghosal and van der Vaart (2017),

EπB(β|X)

[√
n(β−β(Pn))

]
=0,

VarπB(β|X)

(√
n(β−β(Pn))

)
=

n

n+1
Σ(Pn)=

n

n+1
VarPn(ψ(Xi)).

Hence, the first two moments of
√
n(β−β(Pn)) correspond to those of N

(
0, n

n+1
Σ(Pn)

)
,

while since n
n+1

Σ(Pn)→pΣ(P) as n→∞,

dBL

(
N

(
0,

n

n+1
Σ(Pn)

)
,N(0,Σ(P))

)
→p0,

so by the triangle inequality

dBL

(
πB
(√
n(β−β(Pn))|X

)
,N

(
0,

n

n+1
Σ(Pn)

))
→p0.

Moreover, since Mn=
√

n+1
n
Σ(Pn)

−1
2 →pΣ(P)

−1
2 ,

dBL

(
πB
(
Mn

√
n(β−β(Pn))|X

)
,N(0,I)

)
→p0.

Theorem 2.2 of Choudhuri (1998) shows that if the convex hull of {ψ(Xi):i∈{1,...,n}}
has an interior, then the density of πB(

√
n(β−β(Pn))|X) is log-concave, and thus so is

the density of πB(Mn

√
n(β−β(Pn))|X). Since we have assumed Σ(P) is full rank, this

condition on the convex hull holds with probability tending to one. Proposition 1 of Meckes

and Meckes (2014) implies that for log-concave distributions µ and ν with mean zero and
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identity variance

dTV (µ,ν)≤C
√
dBL(µ,ν)

for a dimension-dependent constant C. It follows immediately that

dTV

(
πB
(√
n(β−β(Pn))|X

)
,N

(
0,

n

n+1
Σ(Pn)

))
=

dTV

(
πB
(
Mn

√
n(β−β(Pn))|X

)
,N

(
0,

n

n+1
Σ(Pn)

))
→p0

and, since dTV
(
N
(
0, n

n+1
Σ(Pn)

)
,N(0,Σ(P))

)
→p0, that

dTV
(
πB
(√
n(β−β(Pn))|X

)
,N(0,Σ(P))

)
→p0

as we aimed to show. □

Proof or Proposition 2 By the triangle inequality,

dG
(
πB(β|X),π∗(β|X)

)
=dTV

(
πB(β|X),π∗(β|X)

)
≤

dTV

(
πB(β|X),N

(
β(Pn),

1

n
Σ(P)

))
+dTV

(
π∗(β|X),N

(
β(Pn),

1

n
Σ(P)

))
,

where the second term converges to zero by Assumption 1, and the first converges to zero

by Lemma 5. □

Proof of Proposition 3 The result follows by the same argument used to prove Propo-

sition 4 below. Specifically, Assumptions 2 and 5 imply Assumption 7 below, while

Assumptions 3, 4, and 6 imply Assumption 8. Hence, it follows from Proposition 4 that

dSK
(
πB(θ|X),π∗(θ|X)

)
→p0, from which the result is immediate. □

D Equivalence of Bootstraps Under the SK Metric

This section provides sufficient conditions for two bootstraps, A and B, to coincide in SK

distance as n→∞. To emphasize the flexibility of the asymptotic setting, we here make

explicit that the data-generating process P0,n∈∆(X0) may depend on the sample size.

Our analysis assumes that the estimator θ̂ can be approximated by continuous functions

of objects which converge in distribution.
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Assumption 7. The parameter space Θ is a subset of R and the estimator θ̂ can be written as

θ̂=an+bnθn

(
β̂n

)
for an and bn non-random sequences of scalars, θn a sequence of functions,

and β̂n=βn(Pn) a sequence of statistics with population analogues β0,n=βn(P0,n). Moreover:

(a) As n→∞, we have that β̂n−β0,n→Zβ∼Qβ∈∆(Z) for Z a normed vector space

and Zβ a random variable such that ∥Zβ∥ is continuously distributed.

(b) For all ϵ > 0, and for FL,K the set of non-negative functions with Lipschitz con-

stant bounded by K, there exists a constant K(ϵ)∈ [0,∞), a sequence of functions

θn,ϵ∈FL,K(ϵ), and an open set Zϵ such that for cϵ the 1−ϵ quantile of ∥Zβ∥,

limsup
n→∞

sup
z∈Z\Zϵ

1{|θn(z+β0,n)−θn,ϵ(z)|>0}=0 and sup
z∈Z:∥z∥≤cϵ

PrQβ
{Zβ+z∈Zϵ}≤ϵ.

Assumption 7(a) states that the estimator can be represented as a function (or functional)

of a statistic that converges in distribution, where we do not restrict the dimension of β

beyond requiring convergence in distribution.2 Assumption 7(b) requires that the estimator

θ̂ be sufficiently continuous in β̂n, but is weaker than assuming continuity or differentiability

of θn, and does not in general imply normality of θ̂.3

For instance, if θ is the maximum of two means, θ(P0,n)=max
{
EP0,n[Xi,1],EP0,n[Xi,2]

}
where (Xi,1,Xi,2) are bounded, Assumption 7 holds if we take β̂n=βn(Pn)=

√
nFPn to be

the scaled empirical distribution function and β0,n=βn(P0,n)=
√
nFP0,n to be the scaled

distribution function of P0,n, even though θn(·) is non-differentiable and θ̂ need not be

asymptotically normal in this case. Similarly, if θ corresponds to a ratio of regression

coefficients, θ(P0,n) = β1(P0,n)/β2(P0,n), Assumption 7 holds under minimal conditions

when we take β̂n =
√
nβ (Pn) and β0,n =

√
nβ (P0,n) for β (Pn) = (β1(Pn),β2(Pn)) and

β(P0,n)=(β1(P0,n),β2(P0,n)) the sample and population regression coefficients, respectively.

In this case θn(·) is discontinuous, and θ̂ again need not be asymptotically normal.

We further assume that both bootstraps consistently recover the asymptotic distribution

of β̂n and deliver an asymptotically continuous distribution for θ̂.

2In cases where Z is infinite-dimensional and β̂n need not be measurable for finite n, the statements
below can be adapted by replacing the ordinary expectation E and convergence in probability →p by
the upper expectation E∗ and convergence in outer probability →p∗ respectively (see Chapter 1 of van der
Vaart and Wellner 1996).

3Assumption 7(b) is implied by local Lipschitz conditions such as those considered by Kitagawa et al.
(2020).
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Assumption 8. For a bootstrap with distribution η(X) and other objects as defined in

Assumption 7, we have that for FBL,K the set of functions with Lipschitz constant and

absolute value bounded by K,

(a)

sup
h∈BL1

{
Eηβ(X)

[
h
(
β−β̂n

)]
−EQβ

[
h
(
β̂n−β0,n

)]}
→p0. (3)

(b) For Bε,n(θ)=
{
θ̃ :
∣∣∣θ̃−θ∣∣∣<ε/bn},

lim
ε→0

limsup
n→∞

E

[
sup
θ∈R

ηθ(Bε,n(θ)|X)

]
=0.

Assumption 8(a) states a sense in which the bootstrap consistently recovers the asymptotic

distribution of the statistics β̂n. Importantly, Assumption 8(a) does not require that the

bootstrap consistently recovers the asymptotic distribution of the estimator θ̂, or even that

such a distribution exists. Assumption 8(b) states a sense in which the bootstrap implies

an asymptotically continuous distribution for θ̂. Again, this continuous distribution need

not coincide with a true sampling distribution for θ̂, so Assumption 8(b) allows for cases

where the bootstrap need not be consistent, such as the examples discussed above.

If Assumption 7 holds for the estimator θ̂ and Assumption 8 holds for two bootstraps

A and B, then the distributions over θ̂ implied by the two bootstraps A and B are

asymptotically equivalent in SK.

Proposition 4. If Assumption 7 holds for θ̂ and Assumption 8 holds for bootstraps A and

B with distributions ηA(X) and ηB(X), then

dSK
(
ηAθ (X),ηBθ (X)

)
→p0.

Proof of Proposition 4 Let β̂∗,A
n and β̂∗,B

n denote independent draws from the bootstrap

distributions ηAβ (X) and ηBβ (X), respectively. By the triangle inequality, Assumption 8(a)

implies that

sup
h∈FBL,1

{
EηAβ (X)

[
h
(
β−β̂n

)]
−EηBβ (X)

[
h
(
β−β̂n

)]}
=

sup
h∈FBL,1

{
E
[
h
(
β̂∗,A
n −β̂n

)
|X
]
−E
[
h
(
β̂∗,B
n −β̂n

)
|X
]}

→p0.
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To prove Proposition 4, we first show that the bootstrap distributions for θ̂∗,An =θn

(
β̂∗,A
n

)
and θ̂∗,Bn =θn

(
β̂∗,B
n

)
are equivalent in bounded Lipschitz metric,

sup
h∈FBL,1

∣∣∣E[h(θ̂∗,An

)
|X
]
−E
[
h
(
θ̂∗,An

)
|X
]∣∣∣→p0. (4)

To establish the equivalence (4), note that

sup
h∈FBL,1

∣∣∣E[h(θ̂∗,An

)
|X
]
−E
[
h
(
θ̂∗,Bn

)
|X
]∣∣∣=

sup
h∈FBL,1

∣∣∣E[h(θ̃n(β̂∗,A
n −β0,n

))
|X
]
−E
[
h
(
θ̃n

(
β̂∗,B
n −β0,n

))
|X
]∣∣∣

for θ̃n(β)=θn(β+β0,n). Note, next, that for n sufficiently large,{
(z1,z2)∈Z2 : θ̃n(z1+z2)≠θn,ϵ(z1+z2)

}
⊆{(z1,z2):∥z2∥≥cϵ}∪Cϵ

Cϵ=({(z1,z2):∥z2∥<cϵ}∩{(z1,z2):z1+z2∈Zϵ})

where Cϵ is open. We can write β̂∗,A
n −β0,n= β̂∗,A

n −β̂n+β̂n−β0,n, where Assumptions 7(a)

and 8(a) imply that (
β̂∗,A
n −β̂n
β̂n−β0,n

)
→d

(
Z∗
β

Zβ

)
, Z∗

β,Zβ
i.i.d.∼ Fβ. (5)

Hence,

limsup
n→∞

PrP0,n

{
θ̃n

(
β̂∗,A
n −β0,n

)
≠θn,ε

(
β̂∗,A
n −β0,n

)}
≤

limsup
n→∞

PrP0,n

{∥∥∥β̂n−β0,n∥∥∥≥cϵ}+limsup
n→∞

PrP0,n

{(
β̂∗,A
n −β̂n,β̂n−β0,n

)
∈Cϵ
}
.

Note, however, that

limsup
n→∞

PrP0,n

{∥∥∥β̂n−β0,n∥∥∥≥cϵ}≤ϵ, limsup
n→∞

PrP0,n

{(
β̂∗,A
n −β̂n,β̂n−β0,n

)
∈Cϵ
}
≤ϵ,

where the first inequality follows from (5) and the fact that ∥Zβ∥ is continuously distributed,

while the second follows from Assumption 7(a), the joint convergence (5), the Portmanteau
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Lemma (Lemma 2.2 of van der Vaart 1998), and the fact that Cε is open. We thus have that

limsup
n→∞

E

[
sup

h∈FBL,1

∣∣∣E[h(θ̃n(β̂∗,A
n −β0,n

))
−h
(
θn,ϵ

(
β̂∗,A
n −β0,n

))
|X
]∣∣∣]≤2ϵ,

so since the same also holds for β̂∗,B
n ,

limsup
n→∞

E

[
sup

h∈FBL,1

∣∣∣E[h(θn(β̂∗,A
n

))
|X
]
−E
[
h
(
θn

(
β̂∗,B
n

))
|X
]∣∣∣]≤

limsup
n→∞

E

[
sup

h∈FBL,1

∣∣∣E[h(θn,ϵ(β̂∗,A
n −β0,n

))
|X
]
−E
[
h
(
θn,ϵ

(
β̂∗,B
n −β0,n

))
|X
]∣∣∣]+4ϵ≤

limsup
n→∞

E

[
sup

h∈FBL,K(ϵ)

∣∣∣E[h(β̂∗,A
n

)
|X
]
−E
[
h
(
β̂∗,B
n

)
|X
]∣∣∣]+4ϵ,

where we have used the fact that a composition of a function FL,K(ϵ) with one in FBL,1 is

necessarily in FBL,K(ϵ) (where we assume without loss of generality thatK(ϵ)≥1). However,

sup
h∈FBL,K(ϵ)

∣∣∣E[h(β̂∗,A
n

)
|X
]
−E
[
h
(
β̂∗,B
n

)
|X
]∣∣∣=K(ϵ)· sup

h∈FBL,1

∣∣∣E[h(β̂∗,A
n

)
|X
]
−E
[
h
(
β̂∗,B
n

)
|X
]∣∣∣,

so Assumption 8(a) implies that

limsup
n→∞

E

[
sup

h∈FBL,1

∣∣∣E[h(θ̂∗,An

)
|X
]
−E
[
h
(
θ̂∗,Bn

)
|X
]∣∣∣]≤4ϵ.

Since we can repeat this argument for all ϵ>0, we have verified (4).

It remains to translate convergence of
(
θ̂∗,An ,θ̂∗,Bn

)
in bounded Lipschitz metric to

convergence of
(
ηAθ (X),ηBθ (X)

)
in SK metric. Let ηAθn(X) denote the distribution of θ̂∗,An ,

and note that since SK is unchanged by linear reparameterization, SK
(
ηAθ (X),ηBθ (X)

)
=

SK
(
ηAθn(X),ηBθn(X)

)
. Recall next that FηAθn(X)

(
θ̃
)
=EηAθn(X)

[
1
{
θ≤ θ̃

}]
, and note that for

any υ∈(0,1) and each θ̃∈R, there exists a function hυ∈FBL,1 such that hυ(θ)=υ·1
{
θ≤ θ̃

}
for all θ∉

(
θ̃−υ,θ̃

)
. Hence, for all υ∈(0,1)

sup
θ̃

∣∣∣FηAθn(X)

(
θ̃
)
−FηBθn(X)

(
θ̃
)∣∣∣≤
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υ−1· sup
h∈FBL,1

∣∣∣EηAθn(X)[h(θ)]−EηBθn(X)[h(θ)]
∣∣∣+

sup
θ̃

(
EηAθn(X)

[
1
{
θ∈
(
θ̃−υ,θ̃

)}]
+EηBθn(X)

[
1
{
θ∈
(
θ̃−υ,θ̃

)}])
.

Thus, we have that for all υ∈(0,1),

limsup
n→∞

E

[
sup
θ̃

∣∣∣FηAθn(X)

(
θ̃
)
−FηBθn(X)

(
θ̃
)∣∣∣]≤

υ−1·limsup
n→∞

E

[
sup

h∈BL1

∣∣∣EηAθn(X)[h(θ)]−EηBθn(X)[h(θ)]
∣∣∣]+

limsup
n→∞

E

[
sup
θ∈R

ηAθ (Bυ,n(θ)|X)

]
+limsup

n→∞
E

[
sup
θ∈R

ηBθ (Bυ,n(θ)|X)

]
.

However, we have already established that the first term goes to zero for all υ∈(0,1), while

the second and third terms go to zero as υ→0 by Assumption 8(b). Hence, ηAθn(X) and

ηBθn(X) converge in Kolmogorov metric. Since SK is bounded by twice the Kolmogorov

distance

SK
(
ηAθ (X),ηBθ (X)

)
≤2sup

θ̃

∣∣∣FηAθ (X)

(
θ̃
)
−FηBθ (X)

(
θ̃
)∣∣∣,

the conclusion of the proposition follows immediately. □

E Additional Plots from Running Example
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Online Appendix Table 1: List of Papers in Bootstrap Census

Citation
Objects Transmitted?

Abebe, Girum; Caria, A. Stefano; and Ortiz-Ospina, Esteban. Code for: “The Selection of Talent:
Experimental and Structural Evidence from Ethiopia.” https://doi.org/10.1257/aer.20190586.

7 N

Adermon, Adrian; Lindahl, Mikael; and Palme, M̊arten. Code for: “Dynastic Human Capital, Inequality,
and Intergenerational Mobility.” https://doi.org/10.1257/aer.20190553.

2 Y

Bailey, Martha J.; Sun, Shuqiao; and Timpe, Brenden. Code for: “Prep School for Poor Kids: The
Long-Run Impacts of Head Start on Human Capital and Economic Self-Sufficiency.”
https://doi.org/10.1257/aer.20181801.

6 Y

Bourreau, Marc; Sun, Yutec; and Verboven, Frank. Code for: “Market Entry, Fighting Brands, and Tacit
Collusion: Evidence from the French Mobile Telecommunications Market.”
https://doi.org/10.1257/aer.20190540.

20 Y

Braguinsky, Serguey; Ohyama, Atsushi; Okazaki, Tetsuji; and Syverson, Chad. Code for: “Product
Innovation, Product Diversification, and Firm Growth: Evidence from Japan’s Early Industrialization.”
https://doi.org/10.1257/aer.20201656.

2 N

Dinerstein, Michael; and Smith, Troy D. Code for: “Quantifying the Supply Response of Private Schools to
Public Policies.” https://doi.org/10.1257/aer.20151723.

1 N

Finkelstein, Amy; Gentzkow, Matthew; and Williams, Heidi. Code for: “Place-Based Drivers of Mortality:
Evidence from Migration.” https://doi.org/10.1257/aer.20190825.

3 Y

Goodman-Bacon, Andrew. Code for: “The Long-Run Effects of Childhood Insurance Coverage: Medicaid
Implementation, Adult Health, and Labor Market Outcomes.” https://doi.org/10.1257/aer.20171671.

2 Y
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Online Appendix Table 1 (continued): List of Papers in Bootstrap Census

Citation
Objects Transmitted?

Känzig, Diego R.. Code for: “The Macroeconomic Effects of Oil Supply News: Evidence from OPEC
Announcements.” https://doi.org/10.1257/aer.20190964.

6 N

Køstol, Andreas R.; and Myhre, Andreas S. Code for: “Labor Supply Responses to Learning the Tax and
Benefit Schedule.” https://doi.org/10.1257/aer.20201877.

5 Y

Mueller, Andreas I.; Spinnewijn, Johannes; and Topa, Giorgio. Code for: “Job Seekers’ Perceptions and
Employment Prospects: Heterogeneity, Duration Dependence, and Bias.”
https://doi.org/10.1257/aer.20190808.

3 N

Reimers, Imke; and Waldfogel, Joel. Code for: “Digitization and Pre-Purchase Information: The Causal and
Welfare Impacts of Reviews and Crowd Ratings.” https://doi.org/10.1257/aer.20200153.

7 N

Seibold, Arthur. Code for: “Reference Points for Retirement Behavior: Evidence from German Pension
Discontinuities.” https://doi.org/10.1257/aer.20191136.

4 Y

Weaver, Jeffrey. Code for: “Jobs for Sale: Corruption and Misallocation in Hiring.”
https://doi.org/10.1257/aer.20201062.

13 Y

Notes: For each paper in our bootstrap census, the table reports an abbreviated citation for the code and data, the number of objects of
interest for which we obtain replicates, and an indicator for whether or not we received a transmission of bootstrap replicates directly from

the authors. Papers are in ascending alphabetical order by the first author’s last name. In each case the publisher is “Nashville, TN:
American Economic Association,” the distributor is “Ann Arbor, MI: Inter-university Consortium for Political and Social Research,” and the

publication year is 2021.
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Online Appendix Figure 2: SK Distance, Nonparametric vs. Bayes Bootstrap
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Notes: The plot is a scatterplot. The unit of analysis is an object of interest, with the area of
each point inversely proportional to the total number of objects of interest in the same paper
as the given object. We include objects of interest for which we were able to compute a Bayes
bootstrap by adapting the authors’ original bootstrap code. The y-axis reports the SK distance
between the distribution of a set of nonparametric bootstrap replicates and the default normal
report, whose mean is given by the point estimate and whose standard deviation is given by
the bootstrap standard error. The x-axis reports the SK distance between the distribution of a
set of Bayes bootstrap replicates and the default normal report. In both cases, the number of
replicates is equal to the number used in the authors’ original bootstrap. For all objects of interest,
the displayed 45-degree line passes through a rectangle formed as the Cartesian product of a
95% confidence interval for the SK distance between the nonparametric bootstrap distribution
and the default normal report, and a 95% confidence interval for the SK distance between the
Bayes bootstrap distribution and the default normal report, where these confidence intervals are
constructed based on 95% uniform (DKW) bands for the bootstrap distributions.
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Online Appendix Figure 3: Distribution of SK Distance to Normal Report
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Notes: The plot is a weighted empirical CDF. The unit of analysis is an object of interest and, for
each paper, we weight each object of interest by the inverse of the number of objects of interest
in the paper. For each object of interest we calculate the SK distance between the distribution of
bootstrap replicates and the default normal report, whose mean is given by the point estimate
and whose standard deviation is given by the bootstrap standard error. We also calculate the
SK distance between the distribution of bootstrap replicates and the quantile normal report,
whose mean is given by the point estimate and whose standard deviation is taken to match the
difference between the 97.5th and 2.5th quantiles of the empirical distribution of the replicates.
The plot shows the weighted empirical CDF of each of these two distances across the objects of
interest in our census.
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