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1 Introduction

Hazard models specify the likelihood that a duration-ending event occurs conditional on it not yet
having occurred. This modeling approach is valuable when studying spells such as unemployment
that are affected by ongoing shocks, resulting in survivorship bias and censoring.1 A particularly
important application of hazard modeling in finance is estimating loan default models, which are
an essential component of underwriting and credit rating, loan and bond pricing, risk management,
stress testing, and regulating credit markets. However, often the covariates capturing potential
default determinants are mismeasured or correlated with unobservable factors. In this paper, I
demonstrate how a control-function estimator that extends the canonical loan default hazard model
can account for endogeneity or measurement error in the regressors. Ignoring potential misspecifi-
cation of the covariates can significantly bias estimated loan-default parameters, prevents accurate
attribution of observed defaults to their determinants, and inhibits out-of-sample default prediction.

To demonstrate the utility of combining hazard-model and control-function estimation, I ap-
ply the method to characterize the drivers of the subprime foreclosure crisis. Subprime residential
mortgage loans were ground zero in the Great Recession, comprising over 50% of all 2006-2008 fore-
closures and triggering trillions of dollars of losses in the financial sector despite the fact that only
13% of outstanding residential mortgages were subprime at the time.2 The subprime foreclosure
rate—the number of new subprime foreclosure starts as a fraction of outstanding subprime mort-
gages—tripled from under 6% in 2005 to 17% in 2009.3 By 2013, more than one in five subprime
loans originated since 1995 had ended in a distressed termination, and by 2017, the five largest
banks in the United States had paid a collective $150 billion in fines to settle allegations related to
subprime mortgage defaults (Scannell, 2017).

Why did the performance of subprime loans decline so sharply? A focal point of the debate
around the crisis has been the observation that subprime mortgages originated in 2005-2007 per-
formed significantly worse than subprime mortgages originated in 2003-2004.4 This is visible in
Figure 1, which uses data from subprime private-label mortgage-backed securities to show this pat-
tern for 2003-2007 borrower cohorts.5 Each line shows the cumulative fraction of borrowers in the
indicated cohort that defaulted within a given number of months from origination.6 The pronounced
pattern is that the speed and frequency of default are higher for later cohorts; within any number

1See section 3 for a discussion of the advantages of hazard modeling over standard methods.
2Statistics derived from the Mortgage Bankers Association National Delinquency Survey. For the purposes of this

paper, subprime mortgages are defined as those in private-label mortgage-backed securities marketed as subprime as
in Mayer et al. (2009).

3AAA subprime residential mortgage-backed securities—widely held by institutional investors and an important
source of repo collateral at the time—had lost 60% of their value by 2009.

4For examples contrasting earlier and later borrower cohort default rates, see JEC (2007), Krugman (2007b),
Gerardi et al. (2008), Haughwout et al. (2008), Mayer et al. (2009), Demyanyk and Van Hemert (2010), Krainer and
Laderman (2011), Bhardwaj and Sengupta (2012, 2014), and Davis et al. (2022).

5By 2008, the subprime market was virtually nonexistent—the number of subprime loans originated in 2008 in
the securitization data fell by 99% from the number of 2007 originations.

6Following Mayer et al. (2009) and Sherlund (2011), I measure default as the first time that its delinquency status
is marked as in the foreclosure process or real-estate owned provided it ultimately terminated without being paid off
in full, although I show below that my results hold using more sensitive default definitions.
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of months since origination, each cohort has defaulted at a higher rate than the one previous to it
(with the exception of the 2007 cohort in later years). For example, within two years of origina-
tion, approximately 20% of subprime mortgages originated in 2006-2007 had defaulted, in contrast
with approximately 5% of 2003-vintage mortgages. Because a disproportionate share of subprime
defaults come from later cohorts, understanding why these cohorts performed so poorly informs
debate on the causes of the subprime crisis and is important for designing effective policy.

The canonical double-trigger model of mortgage default (Goldberg and Capone, 1998) guides the
exercise of understanding the cohort pattern. Default in this model is the joint result of cash-flow
shocks and negative equity. If there is an increase in ex-ante riskiness across origination cohorts
(e.g., from a decline in lending standards, an increase in fraud, or an increase in demand from risky
borrowers), an aggregate shock (e.g., to property values or unemployment) could produce a cohort
pattern in default rates. However, even without changes in selection, aggregate shocks will have a
stronger incidence on recent borrowers because they are more likely to have negative equity. The
extent to which the cohort pattern was generated by ex-ante selection or differential exposure to
circumstances is an important input into both ex-ante and ex-post policies (e.g., macroprudential
credit market regulation and loan modification programs, respectively). On the selection side, a
popular explanation for the increase in cohort default rates over time is that loosening lending
standards led to a change in the composition of subprime borrowers, potentially on both observable
(e.g., JEC, 2007; COP, 2009) and unobservable dimensions (Keys et al., 2010; Rajan et al., 2015).
Relatedly, an important source of unobserved credit quality declines across cohort appears to have
been the positive correlation between fraud and default (Ben-David, 2011; Piskorski et al., 2015;
Griffin and Maturana, 2016). Others blame an increase in the popularity of non-traditional mortgage
products (Krugman, 2007a), some arguing that if distressed borrowers had less exotic mortgage
products, their distress wouldn’t have happened in the first place (Bair, 2007). These selection-based
explanations are consistent with the observed heterogeneity in cohort-level outcomes seen in Figure
1, which could be generated by deteriorations in borrower creditworthiness or mortgage product
characteristics, and motivate policies that place restrictions on allowable mortgage contracts.

On the circumstances side, however, house prices declined nationally by 37% from 2005-2009
and the unemployment rate increased from 4.5% to 10% from 2007-2009. Borrowers who can no
longer afford their mortgage payments can sell their homes or refinance if they have sufficient
equity. Such alternatives are generally unavailable to distressed underwater homeowners—lenders
are often reluctant to refinance underwater mortgages or allow short sales (where the purchase price
is insufficient to cover liens against the property). Even if aggregate shocks (e.g., labor-market
shocks) affect borrowers uniformly, house price declines should therefore differentially affect more
recent cohorts, who have accumulated less equity when property values decline.

The counterfactual question I pose is what cohort default rates would have been if the better-
performing early cohorts had instead faced the housing-market conditions experienced by later
cohorts. Conversely, how strong would the cohort pattern have been if the composition of borrowers
and loans hadn’t changed across cohorts? If 2003 borrowers would have mimicked the performance of
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2006 borrowers if they hadn’t experienced mid-2000s home price appreciation—or if 2006 borrowers
would have had similar default patterns even with 2003 borrower characteristics—then this limits
the scope of mortgage-lending regulation to select resilient borrowers who can withstand significant
home price shocks.

To answer these questions, I apply the semiparametric control-function hazard model estimator
developed below using a panel of subprime loans that combines borrower and loan characteristics
with monthly updates on loan balances, imputed property values, default timing, and local price
changes. However, measuring default elasticities with respect to asset prices presents an identifi-
cation challenge because housing prices are an equilibrium outcome that depend on other factors
related to default risk; the potential for both price changes and defaults to be caused by a third
factor may induce bias. In other words, some of the sources of price shocks may also have direct
effects on the (static) unobserved quality of borrowers or the (dynamic) subsequent economic envi-
ronment faced by borrowers and hence on defaults. For example, subprime penetration itself may
subsequently have caused price declines and defaults: a credit expansion could amplify the price
cycle, initially increasing prices from the positive demand shock as the pool of potential buyers
grows.7 However, the decrease in average borrower quality from the credit expansion could eventu-
ally lead to an increase in defaults, accelerating price declines (Kermani, 2012). Thus, even though
individual borrowers are price takers in the housing market, a cohort’s average unobserved quality
may be correlated with the magnitude of the price declines its borrowers face, biasing estimates of
the causal effect of prices on default risk. Likewise, a simple reverse causality story—defaults cause
price declines—could bias default elasticity estimates. These endogeneity challenges complicate
identifying the sources of default-rate differences across cohorts.

To isolate the portion of cohort default rates causally driven by price changes, I exploit several
sources of plausibly exogenous variation in home prices. First, as observed by Sinai (2013), there
is persistence in the amplitude of home-price cycles—cities with strong price cycles in the 1980s
were more likely to have strong cycles in the 2000s. I use this historical variation in local home-
price cyclicality as an omnibus measure proxying for all of the features of a city that make its
housing market more prone to larger boom-bust cycles. Using this historical cyclicality measure,
I construct counterfactual price indices, which, crucially, are unrelated to housing market shocks
unique to the 2000s price cycle—intuitively because price volatility in the 1980s occurred well before
the widespread adoption of subprime mortgages. Indeed, I show below that my instrument does
not predict differential subprime expansion. I also verify that my results are robust to alternative
instruments for local house prices, including local sensitivities to regional housing-market shocks,
belief shocks to a given housing market from its social network, a predictor of local housing supply
inelasticity, and exposure to local publicly traded companies.

I find that differential exposure to price declines explains about 60% of the heterogeneity in
cohort default rates. I also estimate that the changing product characteristics of subprime mortgages

7See Mayer and Sinai (2009), Mian and Sufi (2009), Pavlov and Wachter (2011), Di Maggio and Kermani (2017),
and Justiniano et al. (2019). A parallel literature uses country-level data to show the simultaneity of asset-price and
credit bubbles (e.g., Jorda et al., 2011).
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(and correlated changes in unobservable borrower quality) play an important role, accounting for
30% of the rise in defaults across cohorts. Conditioning on price changes and loan and borrower
characteristics explains almost the entire deterioration in cohort-level default rates, suggesting that
the model captures the cohort pattern well. My counterfactual simulations predict that if 2003
borrowers had faced the prices that the average 2006 borrower did, 2003 borrowers would have
defaulted more than twice as frequently as they did, at an annual default rate of 17% instead
of 8% ceteris paribus. These results call into question the practice of inferring the success or
failure of lending-standards regimes from cohort-level outcomes (see section 2 for a discussion of the
complications caused by vintage effects in credit modeling). Overattribution of a cohort pattern
to dynamics in lending practices could lead to an overreliance on tighter lending rules as a policy
response. Similarly, using the low rate of foreclosures for cohorts originated since the crisis as
evidence that stronger mortgage regulation was a success would overlook the likely role of the house
price recovery in explaining much of that improvement.

The paper proceeds as follows. I contextualize the paper in the context of literatures on hazard
modeling, loan defaults, and the subprime mortgage crisis in section 2. Section 3 presents the identi-
fication concerns triggered by endogenous covariates in the context of a hazard model, along with a
description of how my estimator solves these challenges. Section 4 discusses the empirical application
to subprime mortgages. I describe the data and compare the observable characteristics of borrower
cohorts in section 5. Section 6 presents estimates of the determinants of cohort default rates, includ-
ing using instrumental-variables control-function hazard regressions. Using my preferred empirical
specification, I estimate cohort-level default rates under several counterfactual scenarios in section 7.
In section 8, I conclude by summarizing my main findings and briefly discussing policy implications.
The appendix covers theoretical results and several additional robustness exercises and provides
evidence on mechanisms.

2 Literature Review

In this section, I explain my contribution to both the econometrics and statistics literatures on
hazard modeling and the finance literature on loan default and the subprime mortgage crisis.

Hazard Model Literature The econometrics literature on hazard model identification usu-
ally assumes exogenous, correctly specified covariates and instead focuses on the conditions necessary
for nonparametric identification (e.g., Elbers and Ridder, 1982; Han and Hausman, 1990; Abbring
and van den Berg, 2003b). Other work in economics uses competing risks models—a form of hazard
modeling with multiple failure types—to study unemployment or mortgage default (e.g., Heckman
and Honoré, 1989; Meyer, 1990; Han and Hausman, 1990; McCall, 1996; Deng et al., 2000), again
assuming covariate exogeneity and no measurement error. A literature in statistics and biostatistics
examines the implications of functional form misspecification or classical covariate measurement
error on duration-model inference (e.g., Prentice, 1982; Lin and Wei, 1989; Huang and Wang, 2000,
2006, 2018; Li and Ryan, 2004; Song and Wang, 2014; Wang and Song, 2016). Another collection of
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papers studies instrumenting in duration models (Abbring and van den Berg, 2003b, 2005; Bijwaard,
2009; Terza et al., 2008; Atiyat, 2011; Wan et al., 2015; Kianian et al., 2021) but lacks ingredients
essential to typical applications of hazard models in economics and finance (e.g., time-varying co-
variates, continuous instruments and treatments, discretely measured durations and covariates, and
right-censoring).

In contrast to these literatures, this paper demonstrates how to use instrumental variables to
address potential covariate endogeneity in hazard models. Correlation between included covariates
and omitted variables potentially prevents causal inference of parameters that could otherwise be
used to simulate counterfactuals. I show how to apply control-function estimation (Heckman and
Robb, 1985; Newey, 1987) to semiparametric hazard models, illustrating how to diagnose and relax
deviations from the distributional assumptions that underly control function estimators. The loan-
default application showcases some of the distinguishing features of the model relative to the prior
literature: loan performance and prices are measured monthly instead of continuously, some loans
are outstanding in the data (right-censored durations), and important default factors are continuous
(e.g., price changes).

Loan Default Literature Many loan default models used in asset pricing are based on the
assumption that borrowers optimally exercise a loan’s embedded default and prepayment options.8

However, when researchers want to empirically test the assumption of the options-based framework
or to allow for deviations therefrom, they use hazard models (e.g., Schwartz and Torous, 1989; Deng
et al., 2000; Fuster and Willen, 2017).9 Building on the usual hazard approach, I demonstrate how
estimating the loan-termination model at the core of many MBS pricing models can be extended to
allow for covariate endogeneity or measurement error along with a nonparametric baseline hazard
function and unobserved heterogeneity.

More broadly, there is an extensive empirical literature on the determinants of mortgage de-
fault—see Foote and Willen (2018) for a review. While many of these papers consider the role of
negative equity, this paper is the first to instrument for home prices in a hazard model to address the
joint endogeneity of local home price declines and defaults.10 For example, the common practice of
imputing changes in property values using a metropolitan area home price index, although arguably
purged from property-specific price shocks, does not address the potential concern that price changes
at the metropolitan-area level are themselves the outcome of local demand and supply shocks that
are plausibly correlated with unobserved local borrower quality.11 Using a control-function approach

8For influential early examples, see Findley and Capozza (1977), Dunn and McConnell (1981), Foster and Van
Order (1984), and Epperson et al. (1985).

9Discrete choice models can also be used to characterize the determinants of default. For example, Haughwout
et al. (2008), Rajan et al. (2015), and Clapp et al. (2006) use linear-probability, logit, and multinomial logit models,
respectively. As I discuss in section 3, hazard models are particularly well suited to the analysis of time-varying
covariates and to samples that contain still-outstanding loans.

10For work on negative equity and default, see Foote et al. (2008), Pennington-Cross and Ho (2010), Goodman et
al. (2010), Campbell and Cocco (2015), Bhutta et al. (2017), Fuster and Willen (2017), Gerardi et al. (2018), Low
(2018), Schelkle (2018), and Ganong and Noel (2020, 2023).

11Valuable exceptions to the treatment of home equity as exogenous include Gupta (2019) and Gupta and Hansman
(2022), who use shocks to otherwise similar interest-rate benchmarks to isolate variation in mortgage payments and
balances, respectively.
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to account for the endogeneity of covariates in a hazard model setting, I confirm that prices are
endogenous, they are an important determinant of default, and they account for over half of the
cohort pattern in default rates.12

Motivating the need to scrutinize a model’s identification strategy when prices are a covariate,
several literatures in both macroeconomics and finance document how price levels both depend
on and affect lending conditions—see Mian and Sufi (2018) for a review. In financial accelerator
models (e.g., Kiyotaki and Moore, 1997; Bernanke et al., 1999; Iacoviello, 2005), shocks to housing
prices loosen collateral constraints, expanding credit. More recently, Foote et al. (2012), Favilukis
et al. (2017), Justiniano et al. (2019), Kaplan et al. (2020), and Greenwald and Guren (2021)
study the co-determination of price beliefs, credit conditions, house prices, and mortgage default in
equilibrium. Jorda et al. (2015) assemble a historical panel of house prices and credit conditions
across countries and find credit shocks have strong predictive power for house-price cycles. In
finance, several studies document effects of credit conditions on prices in cross-sections of borrowers
and regions (Adelino et al., 2012; Glaeser et al., 2013; Favara and Imbs, 2015; Di Maggio and
Kermani, 2017; Argyle et al., 2021). Taking this evidence of the joint endogeneity of prices and
credit quality seriously, I develop instruments to isolate home-price variation plausibly unrelated
to credit conditions and demonstrate how to address the endogeneity of any covariate in a hazard
model.

Accounting for endogenous covariates also helps address the important challenge of vintage
effects in credit modeling (Haughwout et al., 2017), which frustrate counterfactual mortgage per-
formance forecasting and stress testing (Foote and Willen, 2018). Etymologically, the term vintage
effect suggests static variation across loan cohorts in the conditions at origination. However, a plau-
sible source of eventual credit performance differences across vintages is age-dependent sensitivity
to ongoing shocks.13 Accordingly, the exercise of decomposing vintage effects into lending standards
and subsequent economic conditions is complicated by the correlation between unobserved cohort
quality and exposures to shocks that potentially bias estimated vintage effects. In the case of sub-
prime mortgage defaults, the corresponding concern is that home-price declines themselves were
partially caused by loose lending standards (Di Maggio and Kermani, 2017), preventing credible in-
ference about the degree to which lending standard changes explain the default wave. As I illustrate
below, using an instrumental-variables hazard model to account for endogenous covariates permits
unbiased estimation of default-model coefficients by isolating variation in home prices unrelated to
lending standards. The resulting estimates can then be used to determine the drivers of vintage
effects.

Subprime Crisis Literature The empirical application in this paper also contributes to the
literature studying the subprime foreclosure crisis’ proximate causes (e.g., Mian and Sufi, 2009;

12As an example of how this methodology has been useful in the literature, Ganong and Noel (2023) follow
the control-function strategy developed here to instrument for time-varying leverage with the historical cyclicality
instrument for house prices used below and find similar effects of negative equity on default using a sample of prime
mortgages and including later vintages.

13For example, younger cohorts of student-loan borrowers are more sensitive to labor-market shocks (Looney and
Yannelis, 2015).
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Hubbard and Mayer, 2009; Keys et al., 2010; Dell’Ariccia et al., 2012; Nadauld and Sherlund,
2013; Ferreira and Gyourko, 2015; Adelino et al., 2016). Several papers have estimated the relative
contributions of subprime underwriting standards and housing market conditions in the increase
in the subprime default rate over time (e.g., Bajari et al., 2008; Sherlund, 2011; Kau et al, 2011;
Bhardwaj and Sengupta, 2012, 2014; Corbae and Quintin, 2015). In contrast to the set of valuable
post-mortem studies on the subprime foreclosure crisis that traditionally takes imputed negative
equity levels as given and treats metropolitan area home price changes as exogenous, I explicitly
consider how to isolate variation in prices and current leverage unrelated to the contemporaneous
housing boom and bust. As I discuss in Appendix D, the observation that price momentum is a
more powerful predictor of foreclosure than current leverage is consistent with the literature on the
role of beliefs in housing and mortgage markets and on housing-market liquidity being positively
correlated with prices.14

Finally, this paper’s methodology and findings are particularly relevant to analysis of differences
in default across borrower cohorts. Haughwout et al. (2008) and Mayer et al. (2009) document
that loosening downpayment requirements and declining home prices are both highly correlated
with increases in early defaults across cohorts. Demyanyk and Van Hemert (2011) consider vintage
effects in borrower quality and find that that the bulk of the early deterioration in vintage quality was
due to unobservables. Krainer and Laderman (2011) and Bhardwaj and Sengupta (2012, 2014) find
that prepayment rate declines across cohorts mirror cohort default rate increases. Lam et al. (2013),
Ferreira and Gyourko (2015), and Haughwout et al. (2017) document vintage effects in non-subprime
mortgages. Davis et al. (2022) construct a counterfactual exercise similar to section 7 below to study
prime cohort performance holding constant mortgage product and borrower characteristics. These
papers all generally find significant unexplained quality differences across cohorts and ignore both
the endogeneity of prices and the measurement error from imputing property values with price
indices. In contrast, I isolate quasi-exogenous variation in price changes and use a specification
that explains nearly all of cohort-level heterogeneity in default rates. I also demonstrate how a
borrower’s current equity position is not a sufficient statistic for the role of price declines on loan
performance, showing that the cohort default pattern is more successfully explained by recent price
declines than a borrower’s current leverage.

In summary, existing work in economics and statistics on hazard models has not dealt with
covariate endogeneity. I demonstrate how to use a control-function approach in a hazard model,
including its identifying assumptions and how to relax them and how to conduct inference. Although
robust literatures in macroeconomics and finance establish the joint endogeneity of credit conditions
and housing prices, empirical work on mortgage default has mostly taken price levels and negative
equity positions as given. However, in a world where price declines are themselves caused by lending
activity because of the feedback between asset and credit markets, these results are somewhat hard
to interpret without testing the robustness of their conclusions to addressing price endogeneity. In

14Extrapolative beliefs and falling housing prices can spook potential buyers, further depressing prices and exac-
erbating illiquidity (Glaeser and Nathanson, 2017; Gennaioli and Shleifer, 2018; Armona et al., 2019; Bailey et al.,
2019; Liu and Palmer, 2021).
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contrast to these papers, I apply my methodology to separate the effect of price changes from the
effect of borrower composition on cohort-level default rates and explain virtually all of the default
pattern across subprime borrower cohorts.

3 Hazard Model, Identification, and Estimation

In this section, I discuss assumptions sufficient for identification, introduce a control-function strat-
egy when assumptions around the exogeneity and measurement of covariates are not met, and
explain how to conduct consistent estimation and inference.

There are two main advantages to hazard modeling over specifications that do not condition on
an event not yet having occurred, both related to sample selection concerns. First, researchers often
seek to estimate the effects of time-varying covariates on the likelihood an event occurs. Studying the
effect of time-varying covariates on duration data creates an unbalanced panel where the sample’s
observations disproportionately represent individuals with long durations. Second, economic data
often contain many spells whose durations have not yet ended, resulting in censored observations
where the econometrician only observes a lower bound on the duration. Besides censoring caused by
a sample being collected before all durations have ended, a common form of censoring arises when
there are multiple failure types. When a duration ends because of one type of failure (e.g., loan
prepayment), this censors the observability of the duration until another type of failure (e.g., loan
default)—known as a competing risks model. Specifying the problem as a hazard model directly
accounts for both forms of sample selection.

The workhorse hazard model in econometrics and statistics is a proportional hazard model
where the effects of covariates multiply a baseline hazard function. For this paper’s application, I
specify the duration from loan origination until default as a proportional hazard model with time-
varying covariates and a nonparametric baseline hazard function. Although loan-performance data
are often grouped into monthly observations, the proportional hazards functional form estimates a
continuous-time hazard model using discrete data (Prentice and Gloeckler, 1978; Allison, 1982)—see
further discussion of interval censoring below.15

Let the latent continuous time-to-default random variable be denoted τ , and let the instanta-
neous probability of a borrower defaulting at month t given that the borrower has not yet defaulted
be specified as

lim
ξ→0+

Pr
(
τ ∈ (t− ξ, t]

∣∣τ > t− ξ
)

ξ
≡ λ(X(t), t) (1)

= exp(X(t)′β)λ0(t) (2)

where λ0(·) is the baseline hazard function that depends only on the time since origination t, and

15The Cox (1972) partial likelihood hazard model is particularly popular because it allows conditioning out the
baseline hazard function to avoid its specification or estimation. While estimation using the Cox model is likely
sufficiently reliable in many applications, the approach I use here has three main advantages over the Cox model.
The model below does not require any special treatment for “ties” in the data (multiple observations with the same
duration) as in the Cox model and allows for nonparametric estimation of the baseline hazard function.
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X(t) is a vector of time-varying covariates that in practice will be measured at discrete monthly
intervals. The proportional hazards framework in (2) assumes that the conditional default prob-
ability depends on the elapsed duration through a baseline hazard function that is shared by all
loans and is scaled up and down by covariates to capture the effects of observable individual hetero-
geneity. A convenience of this framework is that the coefficient vector β is readily interpretable as
measuring the effect of the covariates on the log hazard rate. That is, βj captures the proportional
increase in the likelihood of default conditional on not yet having defaulted associated with a one
unit change in the jth element of X holding all other covariates fixed. When some covariates in X
are potentially measured with error or plausibly covary with omitted default factors not included in
X, econometricians can better interpret the magnitude of estimated coefficients β̂ when accounting
for such endogeneity with a control function, as discussed below.

3.1 Identification

The proportional hazard model is identified—implying that the population objective function is
uniquely maximized at the true parameter values—under the assumptions that 1) conditional on
current covariates, past and future covariates do not enter the hazard (often termed strict exo-
geneity), and 2) any sample attrition is unrelated to the covariates (Lancaster, 1979; Wooldridge,
2002).16 Stated in terms of the conditional distribution F (·|·) of failure times τ , the strict exogeneity
and non-informative censoring assumptions are met provided the following assumption holds.

Assumption 1 (Strict Exogeneity and Non-informative Censoring). The distribution F (·|·) of du-
ration τ until default conditional on the full vectors of time-varying covariates X and censoring
indicators c satisfy the following relationship

F
(
τ
∣∣τ > t− 1, {X(s), c(s); 0 ≤ s ≤ T}

)
= F (τ |τ > t− 1, X(t)) (3)

where X(s) is a vector of covariates measured at time s and c(s) is an indicator for whether a given
loan’s duration was censored at time s.

This standard assumption in hazard modeling requires that only contemporaneous variables mat-
ter, any censoring is independent, and individual observations are independent conditional on the
covariates. In principle, if lags or leads of the covariates enter into λ, the strict exogeneity condition
can be satisfied by including them as explanatory variables in the vector X(t).

An important form of censoring in loan-performance data arises from borrowers prepaying their
loans in full. Loans that have been prepaid are treated as censored because all that can be learned
about their latent time until termination by default is that it would have been at least as long as the
observed elapsed time until prepayment. Technically, any such hazard model with multiple failure
types is a competing risks model, which can be generalized to accommodate the potential depen-
dence of one risk on shocks to another. Under the assumption there is no unobserved individual

16The linear-index functional form assumption that the effect of covariates on the hazard is linear in logs is not
necessary for identification and is made for the sake of parsimony and convenience in interpreting the coefficients.
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heterogeneity in the default hazard (or that unobserved heterogeneity in the default and prepay-
ment hazards are independent at the individual level), competing risks models can be estimated as
separable hazard models with observations representing other failure types treated as censored.17

As in Gerardi et al. (2008), Sherlund (2011), Foote et al. (2010), and Demyanyk and Van Hemert
(2011), I adopt this approach and focus on estimation of the default hazard.18 In Appendix B, I
further validate this independent competing risks approach by verifying that my main results are
unaffected by allowing for unobserved heterogeneity in the default hazard.

To estimate causal relationships, the key identifying assumption for the estimated coefficients
in equation (2) to be interpretable as the causal effect of the regressors is that the covariates must
be independent of unobserved shocks to default risk. For example, to estimate the causal effect of
collateral value changes on default, fluctuations in collateral values need to be unrelated to any other
change in default risk not captured by the other regressors. The exogeneity condition necessary for
the maximum likelihood estimates of the hazard model parameters to represent causal effects is
that the probability of failure (conditional on reaching a given period) is correctly specified by
λ(X, t) in (2) and the functional form of how X enters the hazard function. Assumption 2 states
this necessary covariate exogeneity assumption formally. Combined with Assumption 1, estimates
of β will represent the partial effects of X on the conditional likelihood of failure under these two
assumptions.

Assumption 2 (Proportional Hazards). The hazard λ(·, t) specified in (2) satisfies the following
relationship with the expectation of an indicator for failure at duration τ conditional on covariates
X and not having yet failed

lim
ξ→0+

E

[
1 (τ ∈ (t− ξ, t])

ξ

∣∣∣X, τ > t− ξ
]
≡ λ(X, t) = exp(X ′β)λ0(t), (4)

where 1(·) is the indicator function.

This condition would be violated if there were an omitted factor ω which affects failure risk
and is not independent of X. However, unlike classic omitted variables bias in a linear model, even
independent ω would bias estimates of β, as in many nonlinear models. In either case, unobserved
heterogeneity leads to violation of the proportional hazards assumption in (2) because ω affects
failure, is not included in λ, and survives conditioning on X or τ > t− ξ. To see this, suppose that
the true instantaneous conditional probability of default is not λ(X, t) but is λ̃(X,ω, t) where

λ̃(X,ω, t) = exp(X ′β + ω)λ0(t). (5)

In this case, the condition in (4) becomes to

lim
ξ→0+

E

[
1 (t− ξ < τ ≤ t)

ξ
− λ(X, t)

∣∣∣X, τ > t− ξ
]

= E
[
λ̃(X,ω, τ)

∣∣X, τ ≥ t]− λ(X, t)

17See Heckman and Honoré (1989) and Abbring and van den Berg (2003a) for a full discussion of identification in
competing risks models.

18The best-known example of allowing for correlated default and prepayment unobserved heterogeneity is Deng et
al. (2000), who jointly estimate a competing risks model of mortgage termination using the mass-points estimator of
McCall (1996).
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= exp(X ′β)λ0(t) (E [eω|X, τ ≥ t]− 1)

6= 0

When ω and X are not independent then the omission of ω from (2) leads to a violation of equation
(4) because E(eω|X, τ ≥ t) depends on X, the proportional hazards assumption fails, and the
estimated β̂ will be inconsistent for the marginal effect of X on default. However, even when ω

and X are unconditionally independent, conditioning on τ ≥ t induces a conditional correlation
between ω and X. Similar to how selecting on the dependent variable in a linear regression induces
a correlation between observed and unobserved variables (because high values of y are likely to have
both high X and high ε), long-surviving units selected by conditioning on τ ≥ t are more likely to
have high X ′β and high ω. Failing to control for ω in estimating this model results in estimated
coefficients β̂ not converging to the marginal effect of X on the log hazard and instead combining
both the direct effect of X on default and the indirect effect of ω on default after projecting onto
X and τ ≥ t. While independent unobserved heterogeneity can be addressed with random effects,
known in this setting as the mixed proportional hazard model estimated in Appendix B, correlated
omitted variables require instruments, as developed in section 3.2.

A special case of Assumption 2 being violated is when components of X are measured with error
such that a variable x∗ is not observed and instead the econometrician observes x = x∗ + v. As in
linear models, this measurement error can cause attenuation bias in hazard models (Prentice, 1982;
Li and Ryan, 2004; Song and Wang, 2014). While alternative measures of a mismeasured covariate
are suitable instruments to address the errors-in-variables problem, such instruments may not meet
the conditions necessary to address covariate endogeneity. An instrument that addresses covariate
endogeneity, however, will also address covariate measurement error using the approach below.

3.2 Control-Function Approach

To address violations of Assumption 2 arising from omitted variable correlated with observable
variables, I use the control-function approach (Heckman and Robb, 1985; Newey, 1987). Control-
function estimators condition on an approximation of the endogeneity in the endogenous explanatory
variables. Labeling the right-hand side endogenous variables x, let their reduced-form (equivalent
to the 2SLS first stage) be specified as

x = Z1Π1 + Z2Π2 + v, (6)

where Z1 is a vector of excluded instruments, and Z2 is a vector containing the included right-hand
side exogenous controls such that X = [x Z2].19 As discussed above, the misspecification arises
because of some omitted variable ω. However, the identifying assumption behind control-function
estimators is that conditioning on the control function c(v) restores the ability to estimate the
partial effect of X. Formally, the replacement for Assumption 2 is

19The control-function approach is best suited to endogenous covariates that are continuous (or are functions of
observed continuous variables). For a LIML approach applicable to discrete covariates, see Wooldridge (2014).
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Assumption 3 (Control Function Specification). The hazard λ(·, t) specified in (2) satisfies the
following relationship after conditioning on the control function c(v) with the expectation of an
indicator for failure at duration τ conditional on covariates X and not having yet failed

lim
ξ→0+

E

[
1 (τ ∈ (t− ξ, t])

ξ

∣∣∣X, ω, τ > t− ξ
]

= λ(X, c(v), t) = exp(X ′β + c(v))λ0(t), (7)

where 1(·) is the indicator function.

Assumption 3 requires that the control function c(·) itself is known. While control-function practi-
tioners often assume a linear form, an arbitrary c(·) can be approximated and estimated semipara-
metrically with series or splines. As a robustness check, Appendix C considers third- and fifth-order
polynomial approximations to c(·) and finds that the results are insensitive to this semiparametric
flexibility.

Identification further requires the following two familiar assumptions on the relevance and exo-
geneity of the instruments Z1 and included controls Z2.

Assumption 4 (Instrument Relevance). The reduced-form relationship for endogenous variable x
given instruments Z1 and included controls Z2 is linear, and the coefficients Π1 on Z1 in the first-
stage equation satisfy Π1 6= 0. Moreover, there are at least as many instruments as endogenous
explanatory variables such that rank{E(Z ′1x|Z2)} ≥ dimx.

Assumption 5 (Instrument Exogeneity). The set of instruments Z = [Z1 Z2] consisting of ex-
cluded instruments Z1 and controls Z2 is independent of (v, ω), where v are the first-stage residuals
and ω are the variables omitted from the hazard equation.

Assumption 4 is the usual relevance condition that the instruments Z1 have sufficient predictive
power for x, X is full rank, and there are more instruments than endogenous covariates.20 If there
is only a weak first stage in the sense that Π1 ≈ 0, then conditioning on v and Z2 will absorb all
of the variation in x, and β will not be identified.21 Assumption 5 is the key instrument exogeneity
condition that the instruments Z1 and controls Z2 are independent from v and ω. In practice,
empiricists replace v with a consistent estimate v̂. Assumption 5 also motivates the estimation of v
by OLS as the most parsimonious estimator imposing the orthogonality of Z and v.

I use these identification conditions to state a formal consistency theorem below after introducing
the quasi-ML estimator in section 3.3.

3.3 Estimation and Inference

Arranging the data into a monthly panel with a dependent variable default icgt equal to one if
existing mortgage i defaulted in month t, the likelihood h(t) of observing failure for a given monthly

20In models with linear second stages, Kelejian (1971) and Angrist and Pischke (2009) recommend estimating a
linear first stage even when the true relationship must be nonlinear, as with a discrete endogenous variable. However,
allowing for a discrete endogenous explanatory variable using the control-function method with a nonlinear second
stage requires stronger assumptions (Wooldridge, 2014).

21The statement of Assumption 4 ignores any weak-instruments issues where Π1 6= 0 but the relationship is not
significantly strong (Stock et al., 2002). However, the first-stage F -statistics in the empirical application below suggest
weak instruments are not a concern in my setting.
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observation must take into account the sample selection process. Namely, loans are not observed
after they have defaulted such that the likelihood of sampling a given month is a discrete hazard,
which conditions on failure not having yet occurred. Suppressing dependence on X momentarily for
ease of exposition, the discrete hazard can be derived from the continuous density of default time
as

h(t) ≡ Pr(default icgt = 1)

= Pr(τ ∈ (t− 1, t]
∣∣τ > t− 1)

= (F (t)− F (t− 1))/S(t− 1)

= 1− S(t)/S(t− 1)

where F (·) is the cumulative density of τ , the random variable representing mortgage duration until
failure, and S(·) = 1 − F (·) is the survivor function, the unconditional probability that observed
mortgage duration exceeds the given amount of time. Using the identity that S(t) = exp(−Λ(t)),
where Λ(·) is the integrated hazard function Λ(t) =

∫ t
0 λ(τ)dτ , I can rewrite the discrete likelihood

of observing failure for a given observation as

h(t
∣∣X) = 1− exp(−Λ(t) + Λ(t− 1))

= 1− exp

(
−
∫ t

t−1
exp(X(τ)′β)λ0(τ)dτ

)
(8)

using the proportional hazards assumption from (2). I incorporate the control function approach into
the log likelihood (10) in two steps by first estimating (6) to estimate residuals v̂ = x−Z1Π̂1−Z2Π̂2

and then augmenting Xicgt in (10) with v̂ or, in robustness-checks, a higher-order polynomial of
v̂ to approximate potentially nonlinear c(v). If time-varying covariates are constant within each
discrete time period (for example if the observed value of Xt represents the average of X(τ) for
τ ∈ (t− 1, t]),

h(t
∣∣X) = 1− exp

(
− exp(X ′tβ)(Λ0(t)− Λ0(t− 1))

)
(9)

where Λ0(·) is the integrated baseline hazard Λ0(t) =
∫ t
0 λ0(τ)dτ .

Incorporating this likelihood of observing default icgt = 1, each month × loan observation’s
contribution to the overall sample’s log-likelihood is

`icgt = default icgt · log(h(t|Xicgt)) + (1− default icgt) log(1− h(t|Xicgt)). (10)

Note that this framework with time-varying covariates readily accommodates prepaid loans that
are essentially censored observations on duration until default. I can then estimate the hazard
model parameters of equation (2) by Quasi-Maximum Likelihood in a Generalized Linear Model
framework where the link function G(·) satisfying E(defaultt|Xt) = h(t|Xt) = G−1(X ′tβ + ψt) is
the complementary log-log function

G(h(t)) = log(− log(1− h(t))) = X ′tβ + log(Λ0(t)− Λ0(t− 1))︸ ︷︷ ︸
ψt

. (11)

Estimating coefficients ψt on a full set of dummies in event-time t allows for the baseline hazard to be
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nonparametric (Han and Hausman, 1990).22 Under some additional technical regularity conditions,
estimates of β will be consistent and asymptotically normal, as stated formally by Theorem 1.23

Theorem 1 (Consistency and Asymptotic Normality of IV Hazard Model Estimator). Under As-
sumptions 1, 3-5, and the standard regularity conditions in Assumption A1 in Appendix A, quasi-
maximum likelihood estimates of β̂ in equation (7) obtained by maximizing the sum of the log like-
lihoods given by (10) will be consistent and asymptotically normal estimates of β.

Proof. See Appendix A.

3.3.1 Inference

Although the resulting quasi-ML estimates correct for potential endogeneity in or mismeasurement
of covariate x, the usual MLE standard errors will usually be biased downwards by failing to take
into account the uncertainty in v̂ (Newey, 1987).24 Again, consistently estimating Π in a first stage
to generate v̂ does not affect the consistency of the hazard-model parameters. However, by treating
v̂ as fixed and failing to account for the correlation between the estimation error in Π̂ and the error
in estimating β, the usual ML asymptotic standard errors will generally be understated unless there
is no unobserved heterogeneity or measurement error.

To estimate asymptotically valid standard errors, I recast the estimation problem as a General-
ized Method of Moments (GMM) objective function, which establishes the asymptotic normality of
the estimates. The moment functions gi(·) are the stacked together first-order conditions for both
the OLS first stage (6) and the quasi-ML hazard model (10), which depend on the parameter vector
θ = (β′, ψ′, ρ′,Π′)′, where ρ parameterizes the control function c(·).

gi(θ) =


∂`i/∂β

∂`i/∂ψ

∂`i/∂ρ

(Z ′1i Z ′2i)
′(xi − Z1iΠ1 − Z2iΠ2)

 ≡
(

g`i(θ)

gπi(θ)

)
. (12)

Given that the two-step estimator minimizes the GMM objective function (Newey, 1984), asymp-
totically valid standard errors can be obtained by plugging two-step estimates Π̂, β̂, and ψ̂ into the
usual GMM variance formula. In the results below, I use a cluster-robust estimator for the GMM
standard errors.

3.3.2 Unobserved Heterogeneity

In the general case, even unobserved heterogeneity that is independent of the controls will affect
the conditional distribution of τ |X (and hence the estimated coefficients), a common obstacle in

22The estimates of the baseline hazard function represent the average value of the continuous-time baseline hazard
function λ0(·) over each discrete interval λ̄0t =

∫ t

t−1
λ0(τ)dτ and are obtained as ˆ̄λ0t = exp(ψ̂t). Alternatively, ψt can

be thought of as estimating a piecewise-constant baseline hazard function.
23See Liu (2023) for more details and a longer discussion of the technical issues involved in the proof.
24This understatement of the standard errors is a form of the generated regressor problem (Pagan, 1984; Murphy

and Topel, 1985) and arises because v depends on an unknown parameter vector Π.

14



nonlinear models. Lancaster (1979) introduced the Mixed Proportional Hazard (MPH) model where
the heterogeneity enters in multiplicatively (additively in logs).25 Conditional on unobserved het-
erogeneity ε, the hazard function becomes

λ(t|Xicgt, εi) = exp(X ′icgtβ + εi)λ0(t). (13)

The literature on unobserved heterogeneity in duration models has broadly found that ignoring
unobserved heterogeneity biases estimated coefficients down in magnitude. Intuitively, the presence
of ε induces survivorship bias—loans with low draws of ε last longer and are thus overrepresented in
the sample relative to their observables. Individuals whose observable characteristics put them at a
high ex-ante risk of default and yet have lengthy durations are likely observed in the sample because
they have low unobserved individual-specific default risk (high latent quality). The negative corre-
lation between X and ε induced by the sample selection process can prevent consistent estimation
of β. A related form of potentially problematic unobserved heterogeneity is if there is unobserved
heterogeneity in ω that is not captured by c(v). If ω = c(v) + ε, with c(v) = E(ω|v) such that ε is
orthogonal to c(v), then even a valid instrumentation strategy that solves the endogeneity of x will
still need to address bias from unobserved heterogeneity ε. In Appendix B, I verify that my results
are robust to the presence of independent unobserved heterogeneity by specifying ε ∼ N (0, σ2) so
that the distribution F̃ of latent failure times τ is F̃ (τ |Xicgt) =

∫∞
−∞ F (τ |Xicgt, εi)dR(εi), where

R(ε) = Φ(ε/σ) and Φ(·) is the standard normal cumulative density function.

4 Application to Subprime Mortgage Default

The surge in subprime mortgage defaults across cohorts during the Great Recession could have been
exacerbated by the differential sensitivity of younger loans to housing price shocks and by changes in
selection across cohorts (e.g., from changes to underwriting standards or fraud). Under the double-
trigger model of mortgage default, looser underwriting standards predict higher default rates both
because riskier borrowers are more likely to have income shocks and because riskier borrowers are
less likely to be able to continue making mortgage payments after a given negative shock. Younger
loans are also more sensitive to price declines because they have not yet accumulated as much equity
and are thus more apt to be constrained in their ability to sell or refinance their mortgage. Even
if cohort quality does not change over time such that an equal share of each cohort has an income
shock that prevents its borrowers from making their mortgage payments, cohorts with positive
equity are more likely to sell their homes or refinance.26 Moreover, motivating the instrumental-
variables strategy below, there will be feedback between price expectations and lending standards
in the double-trigger model. Accordingly, both the selection channel and the house-price channel
could generate variation across cohorts that could feature what credit analysts commonly refer to

25Elbers and Ridder (1982) showed that the MPH model is identified provided there is at least minimal variation
in the regressors.

26Note that labor-market shocks alone cannot generate the cohort pattern without differences in ex-ante risk
(exposure to shocks) or ex-post sensitivity to shocks (e.g., through differences in accumulated equity).
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as vintage effects (Foote and Willen, 2018).
Figure 2 illustrates the differential effect that declining home prices had on origination cohorts

by plotting the median mark-to-market combined loan-to-value ratio (CLTV) of each cohort of bor-
rowers over time.27 Each cohort’s median current CLTV began rising in 2007 as prices declined
nationwide. However, there are two main differences between early and late cohorts. First, origina-
tion CLTVs increased over time—the median 2007 CLTV in January 2007 was 10 percentage points
higher than the median 2003 CLTV in January 2003, consistent with deteriorating underwriting
standards. Second, earlier cohorts’ median CLTVs declined from origination until 2007 as prices
rose and as borrowers made their mortgage payments, reducing their indebtedness (with the former
effect dominating because of the low amount of principal paid early in the mortgage amortization
schedule). By contrast, later cohorts had not accumulated any appreciation or paid down any
principal as prices fell almost immediately after their origination dates. By early 2008, more than
one-half of borrowers in both the 2006 and 2007 cohorts were underwater, and by early 2009, more
than one-half of the 2005 cohort was underwater.

To test the relative importance of each of these factors, I estimate how much of the hetero-
geneity in cohort default rates is explainable by observable composition differences, unobservable
composition differences, and the differential effects of price declines across cohorts. Comparing
observationally similar loans (i.e., by controlling for origination characteristics and loan age with
a flexible baseline hazard specification within a geography) that were originated at different times
allows me to exploit temporal variation in home prices within a geographic region. Likewise, com-
paring observationally similar loans originated at the same time but in different cities utilizes spatial
variation in home prices. Cohort effects conditional on both observable origination quality and price
changes capture potential unobservable differences in cohort quality, such as misrepresented orig-
ination characteristics (Ben-David, 2011; Piskorski et al., 2015; Griffin and Maturana, 2016). To
account for the endogeneity of the home price series of each geographic area, I estimate counterfac-
tual price series using a variety of plausible instruments for prices, as discussed in detail in section
6.2 below. This setup allows me to decompose observed cohort heterogeneity into its driving factors
by successively introducing additional controls that explain differences in cohort default rates.

Combining a nonparametric baseline hazard function λ0(·) with covariates entering through
a parametric linear index function results in a semiparametric model of default. I specify the
contribution of covariates as

X ′icgtβ = γc +W ′iθ + µ ·∆Pricesicgt + αg (14)

where γc and αg are cohort and geographic fixed effects, respectively; W is a vector of borrower
and loan attributes measured at mortgage origination; and ∆Pricesicgt is a measure of the change
in prices faced by property i at time t. Borrower characteristics include FICO score (a credit score
measuring the quality of the borrower’s credit history), debt-to-income (DTI) ratio (calculated

27CLTV is the sum of all outstanding principal balances secured by a given property divided by the value of that
property. The data used in Figure 2 estimate market values from CoreLogic’s Automated Valuation Model—see
section 5 for more details.
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using all outstanding debt obligations), an indicator variable for whether the borrower provided full
documentation of income during underwriting, and an indicator variable for whether the property
was to be occupied as a primary residence. Attributes of the mortgage include the combined loan-
to-value ratio at origination (using all open liens on the property for the numerator and the sale
price for the denominator), the mortgage interest rate, and indicator variables for adjustable-rate
mortgages, cash-out refinance mortgages (when the new mortgage amount exceeds the outstanding
principal due on the previous mortgage secured by the same house), mortgages with an interest-only
period (when payments do not pay down any principal), balloon mortgages (non-fully amortizing
mortgages that require a balloon payment at the end of the term), and mortgages accompanied by
additional second liens.

As 2003 is the omitted cohort, the estimated baseline hazard function represents the conditional
probability of default for a 2003 mortgage of each given age. The γc parameters scale this up or
down depending on how cohort c mortgages default over their life-cycle, conditional on X and rela-
tive to 2003 mortgages of the same loan age. Successively conditioning on geographic fixed effects,
borrower characteristics, loan characteristics, and price changes reveals the extent to which each
factor explains the systematic variation in default risk across cohorts. The estimated γ̂c without
conditioning on any covariates are a measure of the average performance of each cohort. Condi-
tioning on prices, γ̂c estimates the quality of each cohort using default rates as an ex-post quality
measure. Conditioning on observable loan and borrower characteristics and prices, γ̂c represents
the residual quality of each cohort. If cohort-level mortgage performance differences were driven by
borrower unobservables, or if the explanatory power of the observables declined over time, then this
would be captured by the cohort coefficients after controlling for all observables.

Cohort fixed effects present a challenge for many applications of loan-default models. For exam-
ple, their interpretation affects the ability of loan-default models to be used to forecast cash flows
and default events, including under counterfactual stress-test scenarios of interest to policymak-
ers, financial intermediaries, and mortgage investors (Haughwout et al., 2017). If these parameters
reflect unmeasured heterogeneity in underwriting stringency across loan vintages at the time of orig-
ination, then estimated vintage effects could reasonably be expected to persist over the life of the
corresponding loans. However, if estimated cohort effects belie differential sensitivity to aggregate
shocks by loans of different ages, then the extent to which they will capture persistent default-rate
differences across cohorts is less clear. Similarly, if cohort fixed effects are simply nuisance param-
eters that reflect time-varying model misspecification, this obstructs inference about the relative
quality of origination regimes. Accordingly, a useful feature of a loan default model is its specifica-
tion’s ability to attribute variation in default rates across cohorts to various default factors without
large and unexplained cohort effects (Foote and Willen, 2018).

As discussed in section 3, I address two potential challenges inhibiting identification of the coef-
ficients in (14): covariate measurement error and correlation between covariates and omitted factors
ω. In the case of housing prices as a covariate in mortgage default models, the market value of a
given home is unobserved in between sales and can only be estimated. Moreover, because individual-
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level price changes are endogenous to borrower behavior such as maintenance, analysts usually use
local price indices to impute time-varying collateral values, leading to further measurement error
in home-price proxies. As an example of a problematic omitted variable, credit supply shocks may
directly affect both defaults and prices, potentially leading to a spurious estimated relationship
between prices and defaults.28 If a credit supply expansion leads to a decrease in the quality of the
marginal borrower, prices will eventually fall as these riskier borrowers default (Baron and Xiong,
2017; Lopez-Salido et al., 2017). Their defaults will depress prices in at least three ways: from a
positive shock to the supply of collateral for sale (Anenberg and Kung, 2014; Hartley, 2014), from
negative foreclosure externalities (Campbell et al., 2011; Fisher et al., 2015), and by changing the
beliefs of buyers and lenders (Brueckner et al., 2012; Glaeser and Nathanson, 2017; Armona et al.,
2019; Liu and Palmer, 2021).

5 Data and Descriptive Statistics

In this section I briefly describe the data sources used in my analysis.

CoreLogic LoanPerformance (LP) Data. The main data source underlying this paper
is the CoreLogic LoanPerformance (LP) Asset-Backed Securities database, a loan-level database
providing detailed information on mortgages in private-label mortgage-backed securities including
static borrower characteristics (DTI, FICO, owner-occupant, etc.), static loan characteristics (LTV,
interest rate, purchase mortgage, etc.), and time-varying mortgage attributes updated monthly
such as delinquency status and outstanding balance.29 The LP data record monthly loan-level data
on most private-label securitized mortgage balances, including an estimated 87% coverage of out-
standing subprime securitized balances. Because about 75% of 2001-2007 subprime mortgages were
securitized, this results in over 65% coverage of the subprime mortgage market.30 My estimation
sample is taken from a 1% random sample of first-lien subprime mortgages originated in 2003-2007
in the LP database followed through April 2013, resulting in a final dataset of over one million loan
× month observations.31

28For evidence that credit expansions initially increase prices as demand increases, see Mayer and Sinai (2009),
Mian and Sufi (2009), Favara and Imbs (2015), Landvoigt et al. (2015), Di Maggio and Kermani (2017), Argyle et
al. (2021).

29Using LP data is standard in the economics literature for microdata-based analysis of subprime and near-
prime loan performance. See Sherlund (2011), Mayer et al. (2009), Demyanyk and Van Hemert (2011), Krainer and
Lederman (2011), and Fuster and Willen (2017) for examples. See GAO (2010) for a more complete discussion of the
LP database and comparison with other loan-level data sources.

30See Mayer and Pence (2009) for a description of the relative representativeness of subprime data sources. Foote
et al. (2008) and Elul (2015) suggest that non-securitized subprime mortgages are less risky than securitized ones.

31There is no standardized definition of a subprime mortgage. Popular classification methods include mortgages
originated to borrowers with a credit score below certain thresholds, mortgages with an interest rate that exceeds the
comparable Treasury rate by three percentage points, certain mortgage product types, mortgages made by lenders
who self-identify as making predominantly subprime mortgages, and mortgages serviced by firms that specialize in
servicing subprime mortgages. For my purposes a subprime loan is one that is in a mortgage-backed security that
was marketed at issuance as subprime, as in Mayer et al. (2009). Following Sherlund (2011), I additionally drop
mortgages originated for less than $10,000, mortgages whose first payment date is listed as before the origination
date or 90 days after the origination date, and non-standard property types such as manufactured housing.
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Table 1 reports descriptive statistics for static loan-level borrower and mortgage characteristics
at origination by origination cohort. On these observable dimensions, subprime borrowers comprise
a population with high ex-ante default risk. The average subprime borrower in my data has a credit
score of 617, slightly above the then-national 25th percentile FICO score and substantially below
the national median score of 720 (Board of Governors of the Federal Reserve System, 2007). Among
borrowers who reported their income on their mortgage application, the average back-end debt-to-
income ratio, which combines monthly debt payments made to service all open property liens, is
almost 40%, well above standard affordable housing thresholds. More than half of the loans in my
estimation sample are for cash-out refinances, where the borrower is obtaining the new mortgage
for an amount higher than the outstanding balance of the prior mortgage. I define default as when
a loan’s delinquency status is in foreclosure or real-estate owned provided it ultimately terminated
without being paid off in full (Mayer et al., 2009; Sherlund, 2011). As of April 2013, 24% of the
mortgages in my sample have defaulted and 50% have been paid off, leaving 26% of the loans in
the data still outstanding.

The distribution of many borrower characteristics is stable across cohorts. Average FICO scores,
DTI ratios, combined loan-to-value ratios (measured using all concurrent mortgages and the sale
price of the home, both at the time of origination), documentation status, and the fraction of loans
that were owner-occupied or were taken out as part of a cash-out refinance are roughly constant
across cohorts.32 While there is substantial evidence that, pooling prime, near-prime, and subprime
mortgages, borrower characteristics were deteriorating across cohorts (e.g., JEC, 2007), the lack
of a noticeable decrease in borrower observables in my data is consistent with observations from
Gerardi et al. (2008) and Demyanyk and Van Hemert (2011) who argue that the declines within
the population of subprime borrowers were too small to fully account for the heterogeneity in
performance across cohorts. Among mortgage product characteristics, however, there are important
differences across cohorts, including a marked increase in prevalence of interest-only loans, mortgages
with balloon payments, and mortgages accompanied by additional liens on the property. This finding
of relatively stable borrower observables and large changes in certain mortgage characteristics is
consistent with the findings of Rajan et al. (2015) and Mayer et al. (2009).

The trend in prepayment rates across cohorts in Table 1 is suggestive evidence that the dif-
ferential availability of refinancing or reselling opportunities is an important aspect of the cohort
default pattern. Appendix Figure A1 shows the cumulative prepayment probability by cohort—the
fraction of each cohort’s mortgages that had been paid off within the given number of months since
origination. The pattern across cohorts is exactly reversed from the cohort heterogeneity in default
rates depicted in Figure 1—more recent borrowers prepaid their mortgages much less frequently
and at slower rates than borrowers from 2003-2005. Given the evidence that later cohorts were
more likely to face price declines early in their mortgage’s life, the contrast between the cohort-level

32Note that the at-origination CLTVs reported here use the sale price of the home for its value, whereas the
contemporaneous (mark-to-market) CLTVs in Figure 2 use estimated market values. If the divergence between these
two measures over time is an important predictor of default, it will affect the magnitude of the estimated cohort main
effects, which capture all unobserved factors changing across cohorts.
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trends in defaults and prepayments is consistent with the notion that many underwater borrowers
in distress default and many above-water borrowers in distress prepay.

Specifications which directly examine the effects of negative equity make use of a novel feature
of the LP dataset: contemporaneous combined loan-to-value ratios (CLTVs), which are a measure
of the total amount of debt secured against a property relative to its market value. To calculate the
CLTV numerator, CoreLogic uses public records filings on additional liens on the property to esti-
mate the total debt secured against the property at origination. For the denominator, CoreLogic’s
automated valuation model (popular in the mortgage lending industry) uses the characteristics of a
property combined with recent sales of comparable properties in the area and monthly home price
indices to impute a value for each property in each month.

Regional Data. For regional measures of home prices, I use the CoreLogic monthly Home
Price Index (HPI) at the Core-Based Statistical Area (CBSA) level. These indices follow the Case-
Shiller weighted repeat-sales methodology to construct a measure of quality-adjusted market prices
from January 1976 to April 2013. They are available for several property categories—I use the
single family combined index, which pools all single-family structure types (condominiums, detached
houses, etc.) and sale types (i.e., does not exclude distressed sales). Each CBSA’s time series is
normalized to 100 in January 2000. I match loans to CBSAs using each loan’s zip code and a 2008
crosswalk between zip codes and CBSAs from the U.S. Census Bureau.

I use publicly available Home Mortgage Disclosure Act (HMDA) data to calculate the subprime
market share in a given CBSA × year by merging the lender IDs in the HMDA data with the
Department of Housing and Urban Development subprime lender list as in Mian and Sufi (2009).
HMDA data discloses the census tract of each loan, which I allocate proportionally to CBSAs using
a crosswalk from tracts to zip codes and then from zip codes to CBSAs. I also use Metropolitan
Statistical Area and Micropolitan Statistical Area unemployment rates from the Bureau of Labor
Statistics (BLS) Local Area Unemployment Statistics series.33

6 Loan Default Model Estimates

In this section, I first report loan default model estimates that take recent local home price changes
as given. I then develop an instrument for home price changes based on projecting national price
changes onto the historical cyclicality of each local housing market. After demonstrating the strength
of the first stage and several tests consistent with the exclusion restriction being satisfied, I present
control-function loan default model estimates accounting for the endogeneity and potential mismea-
surement of of price changes. As an additional test of the identification strategy, I show that four
other home-price instruments from the literature each pass relevance and exogeneity checks and that
the control-function estimator returns similar results regardless of the instrument used. Finally, I
test whether the misrepresentation of mortgage characteristics is a confounding force biasing my
results.

33Available at http://www.bls.gov/lau/home.htm.
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6.1 Treating Price Changes as Exogenous

Table 2 reports estimates of equation (2) using the estimator described above, treating price changes
as exogenous to offer initial estimates of the relationship between price changes, underwriting stan-
dards, and cohort-level differences in default rates. I cluster all standard errors at the CBSA level to
account for area-specific shocks to the default rate in inference. All specifications include nonpara-
metric controls for the baseline hazard function.34 Column 1 includes only cohort fixed effects to
quantify the pattern of declining cohort-level performance from Figure 1 in a hazard-model frame-
work. These coefficients can be interpreted as the change in the log hazard rate and imply, for
example, that subprime loans in the 2007 cohort had a default hazard 73 log points greater than
the 2003 cohort (the omitted category). These unadjusted cohort coefficients are large and precisely
estimated, implying that the probability of a 2005-2007 cohort mortgage defaulting in a given month
conditional on the mortgage having survived to that month is more than twice as high as 2003 cohort
mortgages. Column 2 adds fixed effects for each CBSA in the sample (568 fixed effects) to verify
that cohort differences are not driven by the geographic composition of later cohorts. Conditioning
on CBSA fixed effects does not materially affect the estimated differences in cohort default hazards.

Column 3 adds borrower characteristics and loan characteristics, as detailed in section 5. The
coefficients on these credit risk factors (available upon request) all have intuitive signs. Borrowers
had higher default rates if they lacked full income documentation, were not owner-occupants, or
had lower FICO scores and higher DTI ratios. Mortgages defaulted more frequently if they were
non-fixed-rate mortgages, had higher CLTVs or interest rates, or were accompanied by additional
liens. Conditioning on origination characteristics in column 3 explains on average 29% of the
unadjusted cohort effects estimated in column 1. This suggests that the loan product and borrower
characteristics that were changing across cohorts (and the change in borrower unobservables that
they represent) were an important driver of defaults.35

Column 4 drops all borrower- and loan-level covariates and instead controls for the 12-month
change in the log of the CoreLogic repeat-sales Home Price Index (HPI), defined at the CBSA-level
as

∆ log(HPIicgt) ≡ log(HPIicgt)− log(HPIicgt−12) (15)

where HPIicgt is the value of the CoreLogic repeat-sales price index for CBSA g in the calendar
month corresponding to loan i having a duration of t.36 Price declines are a strong predictor of

34The baseline hazard controls consist of an indicator variable for each possible value of loan age from 1-70 months,
with the final indicator variable including all values of loan age exceeding 70 months. The estimated baseline hazard
functions resemble the hump-shaped baseline hazards of Deng et al. (2000) and are available by request.

35Given prior work documenting that there are important nonlinearities and interactions in how origination char-
acteristics affect mortgage risk (e.g., Davis et al., 2022), I test whether the ability of characteritcics to explain the
cohort pattern in default rates is limited by the linear and additively separable specification above. Appendix Table
A1 replaces the origination characteristics controls above with fixed effects for 144 borrower cells, defined as unique
combinations of 20-point FICO bins, 10-point DTI bins, 10-point CLTV bins, and most of the binary characteris-
tics controlled for in Table 2. While the cells add explanatory power, as evidenced by their individual statistical
significance and increase in the log likelihood, they do not significantly affect estimates of conditional cohort default
rates.

36I index HPI by i as well to emphasize that in my notation t refers to event time (i.e., loan age). Even though
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default. The coefficient on the 12-month change in log HPI implies that properties experiencing
the 25th percentile 12-month price change (-5%) would have a 45% higher default hazard than
properties exposed to the 75th percentile 12-month change in prices (+5%), corresponding to a 3.9
percentage point increase in the annual default rate. The differences in default rates across cohorts
in column 4 decrease by an average of 50% relative to the baseline cohort coefficients in column 1.
Even without adjusting for observable compositional differences across cohorts, price declines alone
can explain half of the cohort default pattern.

Controlling for both borrower and loan characteristics and price changes explains most of the
cohort-level heterogeneity in default rates. The estimates in column 5 of each cohort’s unobservable
quality (i.e., the portion of cohort outcomes not attributable to price changes or individual-level
controls) are small and, with the exception of the 2005 cohort, statistically insignificant (with 74%
of the 2005 cohort default rate in column 1 explained in column 5).

As discussed above, the definition of default used in Table 2 is closely related to a foreclosure
start. In Appendix Table A2, I test the explainability of the cohort pattern when using a more
sensitive default measure defined as the first time a loan is at least 90 days past due.37 In general,
mortgage delinquencies seem more idiosyncratic and are harder to explain empirically than fore-
closure starts. Price changes and characteristics are again important delinquency predictors but
together explain only half of cohort delinquency rates. Again, the qualitative pattern holds that
even without adjusting for changes in borrower and loan composition across cohorts, price declines
alone are the most important predictor of mortgage delinquencies.38

Overall, these results illustrate that both observable loan characteristics and prices play im-
portant roles in explaining the rise in default rates across origination cohorts, together explaining
on average 85% of the cohort disparities in column 1. Empirically, the patterns in Table 2 indi-
cate that the incidence of price declines is disproportionately borne by later cohorts. To evaluate
the counterfactual question of how much price declines alone would have increased default rates
across cohorts even if cohort quality had not declined, I next apply the methods developed above
to estimate causal effects.

6.2 Control Function Estimation

The interpretation of hazard-model estimates as causal—e.g., that cohort default rates would not
have increased as much if a given factor hadn’t changed—requires Assumption 2 above. The poten-
tial for changes in local home prices to be mismeasured or themselves be a function of contempora-
neous shocks to the default hazard (e.g., through shocks to subprime lending, fraud, or employment)
necessitates instrumenting for prices. I use several different instruments for price changes. First, I

HPI only varies by CBSA × calendar month, not all, for example, six-month old (t = 6) mortgages in CBSA g have
the same HPI value.

37Potentially limiting the economic importance of delinquencies relative to foreclosure starts, I note that only 17%
of loans in my sample that are ever 90 days past due eventually end up in some form of foreclosure.

38The attenuated importance of price changes for delinquency prediction relative to default is more consistent with
double-trigger models than strategic default models. Moreover, in contrast to what I find for default, I fail to reject
that price changes are exogenous in delinquency using the instrumentation strategy described in section 6.2.
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develop an instrument that isolates the long-run component of each Core Based Statistical Area’s
(CBSA) price cycle and is arguably independent of contemporaneous shocks to prices or default
rates. Second, I confirm in section 6.2.4 that several alternative instruments for housing prices from
the literature produce very similar default model estimates.

6.2.1 Isolating Exogenous Variation in House-Price Cyclicality

Sinai (2013) notes that a similar set of metropolitan areas had large or small 1980s and 2000s price
cycles. There could be several drivers of this persistent cyclicality, including local demographics,
housing supply elasticity, migration elasticity, and industry composition, and one virtue of this
omnibus approach is that it does not require explicitly specifying the aspect of housing market
structure that leads to this predictability. For a measure of historical cyclicality to be a valid
instrument for subsequent price changes, whatever leads a given area to have a consistently cyclical
housing market must be unrelated to the subprime credit expansion (Assumption 5), as I describe
and test in section 6.2.2 below.

To measure this persistence, I determine the portion of a CBSA’s price cycle that is predictable
using only the historical cyclicality of that city. First, I form a summary measure σPg quantifying
the long-run cyclicality of CBSA g defined as the standard deviation of monthly changes in the
CoreLogic repeat sales home price index from 1980-1995

σPg ≡

(
1

T − 1

∑
t∈T

(∆HPIgt −∆HPIg)
2

)1/2

(16)

where T = 180 is the number of months over which the standard deviation is calculated; T is
the set of months from January 1980 to December 1995, inclusive; ∆HPIgt = HPIgt −HPIgt−1;
and ∆HPIg is the average value of ∆HPIgt for CBSA g and t ∈ T .39 Plotting the 1980-1995
HPI paths shows that high-σP areas had more pronounced boom-bust cycles and that the actual
timing of each CBSA’s house price cycle was unrelated to σP , consistent with the asynchronicity of
regional price fluctuations during that time period. Panel I of Figure 3 shows the average value of
the CoreLogic repeat sales home price index by quartile of σP . The persistence in price volatility
isolated by the first stage is apparent: the average price cycle in the late 2000s was more pronounced
for CBSAs that had stronger price cycles in the 1980s, that is, higher quartiles of σP have stronger
price cycles. As discussed below, a key virtue of this instrument is that many of the places with the
strongest subprime expansions did not have large price cycles in the 1980s such that instrumenting
using historical variation deemphasizes these areas’ price declines that were arguably the most
confounded with the subprime credit expansion.

The first instrument set for the price change variable is the long-run cyclicality measure σPg
interacted with calendar-month indicator variables. The first stage for the 12-month price change

39I calculate the standard deviation of the first differences in the HPI variable to emphasize the importance of the
(low-frequency) price cycle. CBSAs with high variance of HPI in levels (as opposed to high ∆HPI) could simply be
areas that had sustained price growth or strong seasonality.
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is then
∆ log(HPIicgt) =

∑
s

πsσ
P
g · 1(s = t0(i) + t) + Z ′2,icgtπ2 + vicgt (17)

where Z2,icgt contains the same covariates as equation (14) above—cohort effects, geographic fixed
effects, loan and borrower characteristics, and the nonparametric baseline hazard function to ensure
that predicted values from equation (17) are orthogonal to the other controls in equation (2). The
function t0(i) evaluates to the calendar time of loan i’s origination date, and the πs coefficients are
turned on when the observation on loan i at t months after origination corresponds to calendar
month s.

Table 3 tests Assumption 4 and reports the results from estimating first-stage equation (17) by
OLS with standard errors clustered at the CBSA level. Column 1 includes just the instrument set
and no other controls. The statistical relationship between actual price changes and the interactions
between the cyclicality measure and calendar time is strong—the instruments explain 50% of the
variation in twelve-month CBSA-level home price changes. Adding controls for the baseline hazard
and CBSA fixed effects in column 2 improves the overall fit slightly (R2 increases to 0.56). Including
loan and borrower characteristics in column 3 does not affect the partial F -statistic, which tests
the joint hypothesis that all of the coefficients on the instrument set are zero, suggesting that weak
instruments are not a problem in this setting and Assumption 4 holds.40

To provide intuition for how this instrument operates, I compute counterfactual price indices by
regressing log home-price indices on geographic fixed effects and an interaction of σPg with calendar-
month indicators

log(HPIgt) = αg +
∑
s

πsσ
P
g · 1(s = t) + ugt (18)

where HPIgt is the value of the CoreLogic home price index in CBSA g in calendar month t.
The estimated π̂s shift the baseline log HPI of each CBSA (αg) according to the cross-sectional
relationship each calendar month between prices and 1980s price volatility.41 Predicted values
̂logHPIgt from this regression provide an alternative time series of home prices in geography g

based on the quasi-fixed tendency of home prices in geography g to cycle up and down.
Figure 4 shows the actual log home price series for 2003-2013 (left-hand panel) along with

predicted values from equation (18) (right-hand panel). The left-hand panel shows that the actual
HPI series are characterized by idiosyncratic deviations from the national trend, i.e., price shocks
that potentially arise from factors such as local credit expansions and local labor market fluctuations
that may also independently affect default rates. It is precisely the effects of these types of shocks
from which the instrument is designed to abstract. Because nothing in equation (18) allows for

40The cohort coefficients in columns 2 and 3 illustrate that later cohorts were exposed to stronger price declines
than earlier cohorts, in part by virtue of selection—younger loans have had less time to prepay and are thus more
likely to be extant and exposed to recent price declines.

41Note that equation (18) does not control for main effects for each date. While this loads the national month-
to-month variation in home prices onto the πt, date effects—the embodiment of the rise in subprime defaults—are
the very object the hazard model seeks to explain. As they are not instruments and they do not belong in the
second-stage, I purposefully omit them here.
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differential price trends across CBSAs, the predicted time series in the right-hand panel all change
in the same direction each month, differing only in the magnitude of the price change depending on
their historical price volatility. To the extent that the actual price paths reflect time-varying local
housing market changes, each line on the right is an estimate of the counterfactual price path that
might occur absent local price shocks that are potentially driven by factors that also affect local
default risk. Intuitively, my empirical strategy instruments for the actual price series on the left
with the predicted price series on the right.

6.2.2 Exclusion Restriction

The necessary exclusion restriction (Assumption 5) for control-function results to be unbiased es-
timates of the causal effect of price changes is the independence of an instrument (e.g., the size of
a CBSA’s 1980s price cycle σPg ) from any omitted factors ω that affect default. Note that with
CBSA fixed effects, it is not a threat to identification if cyclical areas are fundamentally different
from less cyclical areas in some time-invariant way (e.g., an inherently risky area may always have
both higher defaults and larger price swings). However, this exclusion restriction would be violated
if pro-cyclical housing-market areas (high σPg ) also have pro-cyclical trends in the credit risk of
borrowers. For example, if high-σPg areas had more rapid subprime growth, then σPg may proxy for
changes in unobserved borrower quality in CBSA g. Similarly, if high-σPg areas have greater unem-
ployment rate fluctuations, these adverse shocks to local aggregate demand could increase defaults
(through income shocks) and decrease prices (through demand shocks).42

Figure 5 offers graphical evidence that subprime shares and unemployment rates—residualizing
both for CBSA fixed effects—did not vary systematically with σPg . The relevant period is differ-
ent for each endogeneity concern. Panel I of Figure 5 plots the annual adjusted subprime share of
HMDA-covered mortgages originated in 2003-2007 by quartiles of σPg . There is no apparent relation-
ship between σPg and subprime originations—places with historically large price cycles do not seem
to have been any more prone to subprime credit expansion.43 Results using the share of purchase
originations that were packaged into subprime mortgage-backed securities are similar. Importantly,
although many areas with a strong boom-bust in housing markets in the 2000s also had strong
subprime credit expansions, using historical cyclicality as an instrument isolates house-price fluctu-
ations unrelated to the credit expansion, as required by the identifying exclusion restriction. Panel
II of Figure 5 plots average smoothed unemployment rates from 1990-2013 by σPg quartile. Areas
that had cyclical housing markets from 1980-1995 had contemporaneously cyclical labor markets, as
evidenced by the top quartile having the strongest unemployment cycle in the early 1990s. However,
panel II shows that the top quartile of σPg had around a 1 percentage point lower unemployment
rate in the Great Recession than the bottom quartile, showing distressed employment conditions to

42Note that Mayer (2010), Mian (2010), and Mian and Sufi (2014) argue that price declines first caused unem-
ployment in the recent recession.

43Note that the same fact is not true about the relationship between subprime originations and the size of the 2000s
price cycle—areas that originated the highest share of subprime mortgages indeed had stronger (contemporaneous)
price cycles, consistent with Di Maggio and Kermani (2017).
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be unrelated to historical cyclicality.
As an additional test of the exclusion restriction, I examine whether σPg predicts trends in

observable mortgage and borrower characteristics. Intuitively, if an instrument is not predictive of
observable characteristics, it is more plausibly unrelated to unobservables as well. I reestimate the
first-stage equation (17), replacing ∆ log(HPIicgt) with xicgt where x is one of the borrower or loan
characteristics summarized in Table 1 and the controls corresponding to each regression consist of
the remaining controls. I also normalize σPg by its standard deviation so that each month’s coefficient
is interpretable as the predicted change in a given characteristic from a CBSA having a one standard
deviation higher historical cyclicality relative to the omitted months (January and February 2003).
Figure 6 plots the result of this exercise for four example origination characteristics: credit scores,
debt-to-income ratios, combined loan-to-value ratios, and the owner-occupied indicator. Across
all four panels, nearly every month is a statistically and economically insignificant predictor of the
indicated characteristic with no overall pattern or trend. I interpret this as σPg not being predictive of
any particular pattern in lending standards over time, consistent with the instrument independence
assumption required by Assumption 5.

6.2.3 Control Function Results

Table 4 employs a nonlinear control function approach, which accounts for the endogeneity of price
changes to the credit expansion by controlling for the first-stage residuals v̂icgt in the default hazard
index

X ′icgtβ = γc +W ′iθ + µ ·∆Pricesicgt + ρv̂icgt + αg (19)

where v̂ = ∆ log(HPI)− ̂∆ logHPI and ̂∆ logHPI is fitted from equation (17).
Column 1 of Table 4 repeats column 6 of Table 2 for reference, controlling for the 12-month

change in prices and not conditioning on origination characteristics W . Column 2 additionally
controls for the residuals v̂icgt, estimated from OLS on equation (17) (omitting loan and borrower
characteristics in the construction of the residuals). The coefficient on the price change variable is
still large and significant—borrowers experiencing a 1% price decline over the previous year have
a 4.4% higher conditional probability of default. The adjusted cohort differences are smaller in
column 2 than column 1, meaning that after accounting for endogeneity, the share of the cohort
pattern explainable by price declines is larger. Comparing column 2 to the benchmark differences
in cohort performance measured in column 1 of Table 2, controlling and instrumenting for prices
without controlling for borrower or loan characteristics explains 58% of the difference in unadjusted
cohort outcomes.44

The next two columns additionally control for borrower and loan characteristics. The estimated
cohort effects in these specifications capture the latent quality of each cohort, i.e., the heterogeneity
in cohort-level default rates not explained by ex-ante observable quality or price changes. Column

44A t-test on the coefficient ρ on the residuals is equivalent to a Rivers and Vuong (1988) test for endogeneity in a
probit model. However, although the statistical significance of ρ̂ in columns 2 and 4 confirms that price changes are
endogenous, the overall cohort effect decomposition in Table 4 is similar to Table 2.
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3 repeats column 5 of Table 2 for reference, controlling for price changes in addition to all of the
other controls. Column 4 reports control function estimates of this specification. The coefficient
on the price change variable increases in magnitude from -3.9 to -4.6 (see below discussion). The
coefficient on the endogenous portion of the 12-month change in home prices is again positive and
significant. As before, I cannot reject that each of the cohort latent quality measures is statistically
indistinguishable from zero with the exception of the 2005 cohort. Moreover, the estimated cohort
effects in column 4 are each smaller than those in column 3 which treat prices as exogenous. The
specification in column 4 explains 93% of the unadjusted differences in cohort default rates in column
1 of Table 2. The similarity of the price coefficient with and without origination characteristics
controls suggests price changes and origination characteristics are not strongly related and supports
the interpretation that columns 1 and 2 reveal the share of the cohort pattern explained by price
declines alone.

In both columns 2 and 4, instrumenting increases the magnitude of the estimated effect of price
changes relative to not instrumenting (columns 1 and 3). A default elasticity of -4.5 implies that for a
10 log-point decrease in housing prices, the probability of default increases by 45 log points (or a 54%
increase in default for a 10% decrease in prices). As discussed below, similar patterns emerge when
using alternative instruments for house price declines. There are two candidate explanations for the
increase in the estimated price elasticity of default after instrumenting.45 First, as discussed above,
instrumenting may solve an errors-in-variables problem with ∆Prices—CBSA-level HPI estimates
may be an imperfect proxy for the relevant property value shock faced by an individual borrower
in a given CBSA. Because the literature has generally found that such covariate measurement error
causes attenuation bias, larger control-function estimates are consistent with baseline results being
downward biased from measurement error. Second, this pattern is also potentially consistent with
some degree of treatment effect heterogeneity—locales that are compliers to the instrument that
have experienced large price declines historically may be more sensitive (i.e., their default behavior
more elastic) to current price declines.

Besides the relevance and exogeneity conditions (Assumptions 4 and 5 tested in sections 6.2.1
and 6.2.2), the control function results of Table 4 also rely on the control function being correctly
specified as linear. Appendix C addresses the possibility that the conditional distribution of the
endogeneity is misspecified. Results in Appendix Table A4 allowing for flexible specifications of c(v)

are consistent with the results of Tables 2 and 4, providing evidence that there is a large causal
effect of price declines on defaults that explains much of the cohort default pattern.

6.2.4 Robustness to Alternative Instruments

In this section, I introduce four alternative instruments for house prices from the literature and
demonstrate that they each result in similar control function estimates of the subprime loan default

45Instrumenting for the underwater indicator in Appendix Table A3 decreases its magnitude, consistent with
measurement-error attenuation bias dominating CBSA-level prices and endogeneity bias dominating individual equity
positions.
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model above. First, Guren et al. (2021) build on the persistence in cyclicality developed here but
estimate a slightly different specification, estimating a MSA-specific loading γg on regional house
prices using data from 1976-2017. They then use γ̂g∆Pr(g)t as an instrument for ∆Pricesgt, where
∆Pr(g)t is the change in a regional house price index for the region r(g) corresponding to CBSA g.
Intuitively, their strategy isolates variation in local house prices driven by regional price fluctuations
and a static factor loading free from contemporaneous CBSA-specific shocks in a similar spirit to σPg
above—see Guren et al. (2021) for further details. To implement their instrument in my framework,
I replace σPg with γ̂g in the first-stage equation (17) and use interactions of date fixed effects and
γ̂g as the instrument set, projecting house prices onto the sensitivity of each CBSA to its regional
housing cycle.

Second, I incorporate the social network house price instrument of Bailey et al. (2020), who
find that beliefs about house prices propagate through social networks. Using shocks to out-of-state
housing markets weighted by the share of each housing market to a given county’s social network,
they find that the housing markets of socially connected counties comove in a way that cannot be
explained by their shared economics or common shocks. To implement this beliefs-based instrument,
I construct a predicted change in the county-level log home price index for each county j in month
t as

̂∆ logHPIjt =

∑
k 6∈s(j) αjkpopk∆ logHPIkt∑

k 6∈s(j) αjkpopk
, (20)

where the instrument averages the change in the log housing price index of each county k not in
the same state s(j) as county k weighted by how socially connected counties j and k are using a
county-level measure αjk aggregated from Facebook networks by Bailey et al. (2020) and the 2000
population popk of county k. To aggregate from counties to CBSAs, I use a HUD county-CBSA
crosswalk and average county-level ̂∆ logHPIjt for each county j in a given CBSA weighted by
the population of county j in 2000. The coefficient on ∆ ̂logHPIgt in the first stage is 1.3 with a
t-statistic of 10.

Third, Saiz (2010) finds that housing markets with a high share of land unavailable for building
(because of steep terrain, water, etc.) have higher housing supply elasticities and larger housing price
swings. Despite widespread use of the various predictors of housing supply elasticities in Saiz (2010)
as instruments for house prices, Davidoff (2016) questions their validity given their correlation with
demand factors. For comparability with other work using these measures as instruments, I present
results here using the share of unavailable land as a potential instrument for house prices. MSAs
with higher Saiz (2010) land unavailability had more pronounced booms and busts in the CoreLogic
HPI data while not having differentially worse credit scores, LTV ratios, or DTI ratios. Given
the correlation documented by Davidoff (2016) between land unavailability and demand factors,
it is notable that the other instruments used here are uncorrelated with land unavailability—for
example, the R2 of a regression of land unavailability on σPg is 0.01.

Finally, Choi et al. (2016) argue that when there are many publicly traded companies headquar-
tered nearby, local bias by investors can divert capital away from housing markets, leading to more
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muted fluctuations in home prices. I use the log of the ratio of the total book value of all publicly
traded companies headquartered in a given MSA to the total income of that MSA from Choi et
al. (2016) as a candidate instrument for house price changes plausibly unrelated to contemporane-
ous shocks to lending standards, etc. Consistent with Choi et al. (2016), I find that MSAs with a
larger share of income attributable to public companies headquartered therein have a smaller 2000s
boom-bust cycle.

Figure 3 demonstrates the degree to which the instruments predict price changes by plotting
the average HPI over time by quartile of each instrument. I focus on the four static instruments
for this exercise to be able to assign each CBSA to a fixed quartile of the instrument; because the
social network predicted HPI of equation (20) is time-varying, a given CBSA is in different quartiles
in different months. Consistent with the large first-stage partial F -statistic for each instrument
mentioned below, the instruments are broadly predictive of the boom-bust cycle in prices, with
quartiles more exposed to each instrument having larger price cycles. Next, I reexamine whether
each instrument is related to local economic and individual origination characteristics, similar to
Figures 5 and 6 discussed above. Appendix Figures A2-A7 examine whether each instrument is
predictive of subprime shares, unemployment rates, credit scores, DTI ratios, CLTV ratios, and
owner occupancy rates. Each of the four instruments is almost always a statistically (and economi-
cally) insignificant predictor of origination credit scores, debt-to-income ratios, leverage ratios, and
the owner occupied share.46 Moreover, the lack of trends across origination months suggests that
any spurious relationship between an instrument and unobservable lending standards is unlikely
to explain the predictive power of instrumented prices on the cohort default pattern. Subprime
shares are broadly similar across quartiles of each instrument. Appendix Figure A3 shows that
there are notable differences in unemployment rate trends across quartiles of the regional sensitivity
instrument. This helps illustrate the conceptual difference between the cyclicality and sensitivity
instruments; while regional sensitivity measures how a housing market comoves with its broader
regional economy, cyclicality is measured idiosyncratically. Appendix Figure A3 demonstrates that
this results in the sensitivity instrument weighting areas whose labor markets are also more sensitive
to regional or aggregate shocks.

Table 5 estimates equations (2) and (19) in the text with the first stage given by (17). Column
1 repeats column 4 of Table 4 for ease of comparison. Each instrument is a sufficiently strong
predictor of house price changes, with first-stage partial F -statistics ranging from 20 for the public
headquarters instrument in column 5 to 309 for the regional sensitivity instrument in column 2.
Across all five instruments, the instrumented elasticity of default with respect to house prices is
large, statistically significant, and greater in magnitude than the results in Table 2 treating CBSA
price changes as exogenous and measured without error. With the exception of results using the land
unavailability measure in column 4 that may be indicative of some of the problems highlighted by
Davidoff (2016), the magnitude of the default elasticity is quite consistent across columns, ranging

46The most notable exception is that areas with higher land unavailability have lower average CLTV ratios, which
is the opposite prediction of the expected endogeneity of the price boom being caused by looser lending standards.
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from -4.5 to -4.7. Moreover, across all five instruments, the share of the cohort default pattern
that is explainable by price declines is consistently around 60% with the entire model of observable
loan product and borrower characteristics and price declines explaining around 95% of cohort-level
default rates.

In summary, I use the control-function estimator of section 3 with a variety of instruments to
decompose the default pattern across origination cohorts into differences in cohort characteristics,
differences in their exposure to price declines, and unobservable cohort quality. The results confirm
that prices and observable mortgage characteristics are both important, with price changes alone
causally explaining at least 60% of the increase in cohort default rates. Even after accounting for
the simultaneous relationship between collateral values and default risk, there is only weak evidence
that a decline in unobserved borrower quality is a substantial explanation for the increase in defaults
across cohorts.

6.3 Accounting for Misrepresented Mortgage Characteristics

An important consideration when interpreting the results above is that they take origination char-
acteristics recorded by servicers as given. In fact, there is evidence that the securitization chain
involved a significant amount of misrepresentation of mortgage characteristics. For example, Griffin
and Maturana (2016) document the prevalence properties seemingly overvalued by more than 20%
or false claims that borrowers were owner occupants or did not have second mortgages. Moreover,
Piskorski et al. (2015) find that default rates were 70% higher for loans with misrepresentations,
and Griffin et al. (2021) find that house prices had a stronger boom-bust cycle in areas with more
misbehaving originators. Such misreported data poses a problem for the cohort-effects decomposi-
tion exercise; perhaps observed origination characteristics predict some of the cohort pattern, but
actual origination characteristics would predict more.

I assess the magnitude of this concern in several ways. First, using data on the prevalence of
three types of potential mortgage fraud at the CBSA-level from Griffin and Maturana (2016), I
estimate additional specifications controlling for measures of fraud directly and interacted with the
characteristics most likely to have been misrepresented. Second, I allow the effects of CBSA-level
fraud measures to vary across cohorts to directly test the extent to which the cohort pattern can
be explainable by increasing fraud. Finally, I use estimates from the literature about the increase
in fraud across origination cohorts and the effect of fraud on default to bound how much of the
increase in defaults across cohorts could potentially be explained by misrepresentations.

In Appendix Table A5, I first demonstrate in column 1 that the Griffin and Maturana (2016)
CBSA-level fraud variables are predictive of default and jointly highly significant. Columns 2-3
repeat columns 2-3 of Table 2 for comparison. Column 4 reestimates the specification of column
3, but interacts the four origination characteristics most affected by misreporting with the Griffin
and Maturana (2016) variables: owner occupancy, CLTV ratio, and the indicator for a second
mortgage. Both the main effects and the interaction terms in column 4 show that the origination
characteristics are generally stronger predictors of default when fraud is lower. However, comparing
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the cohort effects in column 4 to column 3 shows that the extra explanatory power provided by the
fraud interactions does not improve the ability of origination characteristics to explain the cohort
pattern above what is already captured by CBSA fixed effects and the vector of observed origination
characteristics.

To directly test for the ability of misrepresentations over time to explain the cohort pattern,
in Appendix Table A6, I interact the cohort indicators with each measure of fraud. Because the
Griffin and Maturana (2016) fraud measures are averages across 2002-2007 origination cohorts,
I use interaction terms to allow for the incidence of any misrepresentation to load more heavily
on particular cohorts. The cohort main effects controlling for the cohort by fraud interaction
terms shows what the pattern would be when each fraud measure is normalized to zero.47 The
overall pattern of the cohort and fraud interaction terms is that later cohorts seem to be more
sensitive to fraud measures than earlier cohorts. However, consistent with Appendix Table A5, the
cohort decomposition pattern itself is mostly unaffected by allowing for later cohorts to have greater
exposure to fraud.

Finally, I conduct a back-of-the-envelope exercise using estimates from the literature of the
effect of misrepresentations on defaults and prices to bound the potential contribution of misrepre-
sentations to the cohort pattern. For misrepresented origination characteristics to directly affect the
cohort pattern, misrepresentations need to change across cohorts. Griffin and Maturana (2016) show
that most types of misrepresentations were relatively constant across origination cohorts, limiting
their scope to directly impact cohort-level default rates. However, they show that the prevalence
of unreported second liens increased by around 10 pp from 2003-2005 before declining again. Con-
servatively using this as the maximal amount of unreported second liens across cohorts, I apply
to it the estimates of the association between unreported second liens and defaults. Griffin and
Maturana (2016) estimate that mortgages with an unreported second lien had 1.97 times higher
delinquency odds, and Piskorski et al. (2015) estimate that delinquency rates were 10.15 pp higher
for mortgages with unreported second liens. Using these estimates and the increase in default rates
across cohorts in my data using their respective delinquency definitions, I estimate that a 10% in-
crease in unreported second liens would explain 3-4% of the observed increase in delinquencies across
cohorts. I also bound the indirect effect of misrepresentations on defaults through price declines
given the result in Griffin et al. (2021) that average prices would have fallen by 3.8 pp less from
2007-2010 if the market share of mortgage originators with a high share of misrepresentations were
zero. Annualizing this effect of misrepresentations on prices, I multiply it by the price elasticity of
default estimated in column 4 of Table 4. I conservatively estimate that the default hazard would
have increased by 5.8% less across cohorts without fraud-induced stronger price declines, which
potentially explains another 3.1% of the increase in defaults across cohorts. This bounding exercise
helps explain why measures of the the prevalence of misrepresentations had limited additional power

47Because a zero fraud share is outside the range of the data for each of these measures, I choose the 25th percentile
of each measure for the normalization. Accordingly, the cohort main effects controlling for the interactions capture
the expected increase in the cohort default rate relative to the 2003 cohort in a CBSA at the 25th percentile of the
distribution of each fraud measure.
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to explain the increase in defaults across cohorts in Appendix Tables A5 and A6.
Overall, the main conclusions from this analysis are that a) CBSA-level fraud measures are

individually predictive of default, consistent with the literature, b) the observable individual-level
origination characteristics and the CBSA-level fixed effects already seem to capture the bulk of
the effect of CBSA-level fraud measures on default such that including CBSA-level fraud measures
does not change the hazard model’s ability to decompose cohort effects, and c) given the estimates
in the literature on the increase in misreported characteristics across origination cohorts and the
associated increase in the default rate, the ability of fraud to explain the cohort pattern is likely
modest.

7 Estimating Counterfactual Default Rates

One way to characterize the relative importance of selection and circumstances in explaining co-
hort default rates is to model subprime cohort mortgage default rates under alternative scenarios
wherein credit standards did not decline across cohorts or all cohorts faced similar price declines at
similar loan ages. To account for the possibility that price changes were larger because of the sub-
prime expansion, I also consider counterfactual scenarios with attenuated price changes. Because
the coefficients in the control-function loan default model account for endogeneity and potential
mismeasurement of local house prices, they can be used for such counterfactual estimation.48 I
calculate expected cumulative default rates for each cohort 24 months from origination using coun-
terfactual explanatory variables as an estimate of the impact of the price and lending standards
channels. Appendix Table A7 reaches similar qualitative conclusions analyzing predicted five-year
default rates. Using the control function specification estimated in column 4 of Table 4 as my
preferred specification, I predict the cumulative default rate within 24 months of origination given
covariates X as

F̂icg,60 = 1− exp

(
−

24∑
t=1

exp(X ′icgtβ̂ + ρ̂v̂icgt + ψ̂t)dt

)
, (21)

where ψ̂t are nonparametric estimates of the log average baseline hazard function between time
t− 1 and t as discussed in section 3.3. I calculate F̂icg,24 for all loans in the sample, even ones that
defaulted before t = 24 in the data. The expected share of loans in cohort c that will have defaulted
within 24 months of origination is then

̂Cumulative Default Ratec =
1

Nc

∑
i

F̂icg,24 (22)

where Nc is the number of cohort-c loans in the sample.
Table 6 shows the counterfactual two-year default rates for 12 scenarios, each representing a

different combination of counterfactual price paths and loan characteristics. The first row uses the
estimates of column 4 of Table 4 to predict the cumulative two-year default rate for each cohort

48See Davis et al. (2022) for a related counterfactual exercise testing how prime mortgage default would have
evolved under alternative scenarios.
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—the share of each cohorts loans predicted to default within two years of origination using the same
default definition used above. The spread between the predicted 2-year default rates of 2003 and
2006 mortgages is 14 pp.

Rows 2 and 3 estimate the cumulative default rates that would have prevailed if all mortgages
had the characteristics reported in Table 1 of the average 2003 (row 2) or 2006 (row 3) mortgage but
faced actual price declines. Default rates would have been lower if the characteristics of mortgages
had not deteriorated over time, especially for later borrower cohorts. If all borrowers had taken out
the average 2006 mortgage, row 3 shows that default rates would have been roughly 1.5 pp higher for
2003-2005 cohorts than predicted in row 1. The spread between the 2003 and 2006 cohorts is cut by
24% to 42% in rows 3 and 2, respectively, by holding origination characteristics constant. However,
even if the composition of mortgage products did not change from 2003 to 2006—a conceptual upper
bound on the effect of tighter subprime mortgage regulation—the 2006 cohort is still predicted to
have defaulted 8 pp (116%) more frequently than the 2003 cohort (row 2).

The remaining rows experiment with counterfactual price paths. Rows 4-5 use actual individual
loan characteristics and two alternative price scenarios. Row 4 assigns each loan to have the average
price change that 2003-cohort loans faced at the same number of months since origination. Row
5 does the same exercise using the prices to which 2006-cohort loans were exposed. As expected,
mortgages from every cohort would have defaulted much less if they had initially experienced several
years of rapid price appreciation, as did 2003-cohort mortgages. Ceteris paribus, if 2006-cohort
mortgages had faced the same prices that the average 2003 mortgage did (row 4), their default rate
is predicted to have been 10% instead of 22% in row 1. Similarly, if 2003-cohort mortgages had
faced the prices that the average 2006 mortgage faced (row 5), their default rate would have been
17% instead of 8%. The spread between the 2003 and 2006 cohorts seen in row 1 is significantly
smaller in rows 4-5, showing that if they had faced the same prices, the 2006 cohort default rate
would have been 2-3.5 pp higher than the 2003 default rate instead of 14 pp higher in row 1.

In rows 6-7, I fix both characteristics and price changes at 2003 (row 6) or 2006 (row 7) lev-
els. The combination of common prices and common mortgage characteristics explains the entire
difference in the unadjusted cohort default rates of row 1. In fact, the 2006 cohort is predicted to
outperform the 2003 cohort if both had faced the same price growth and had taken out mortgages
with the characteristics of either the average 2003-cohort mortgage (row 6) or the average 2006-
cohort mortgage (row 7). As a measure of the latent quality of each of these cohorts, rows 6 and 7
suggest that declines in unobserved borrower quality not captured by loan and borrower observables
are not particularly important in explaining the subprime cohort pattern.

Weren’t prices themselves driven by the subprime credit expansion? For rows 8-12, I model
an attenuated counterfactual trajectory of house prices using results from Griffin et al. (2021).
While the control-function strategy above purges the estimated price elasticity of default of bias
from potential correlation between local price changes and local credit conditions, the level of prices
changes may have been different but for the nationwide subprime expansion. Griffin et al. (2021)
estimate that a one standard deviation increase in the subprime share increased house prices by an
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additional 2.6 pp from 2003-2006 and decreased prices by an additional 3.7 pp from 2007-2010. This
implies that nationwide, average price increases were 1.4 log points per year higher in 2003-2006
and 1.9 log points lower per year from 2007-2010 than they would have been if the subprime share
had been zero nationwide. Rows 8-10 of Table 6 use these conservative counterfactual price changes
with the estimated coefficients from Table 4. Row 8 looks at the effect of the attenuated prices with
actual origination characteristics. The counterfactual default rates for the scenario in which there is
attenuated price growth are mostly in between the 2003 and 2006 price scenarios. Rows 9-10 report
default rates under the counterfactual of an attenuated boom-bust price cycle and fixed mortgage
characteristics at either the 2003- or 2006-cohort averages. Even with fixed mortgage characteristics
and the average trajectory of prices estimated to have prevailed if the subprime expansion hadn’t
happened, there would still be a sizable spread between 2003 and 2006 cohort default rates.

Finally, rows 11 and 12, respectively, consider scenarios that hold mortgage characteristics fixed
and fix prices at an attenuated version of 2003 and 2006 average price changes. Scenarios such
as rows 6-7 that hold both prices and characteristics fixed facilitate fair comparisons of cohorts
holding both circumstances and selection fixed. However, the levels of cohort default rates in these
scenarios may be too low or high given that the average price changes faced by the 2003 and 2006
cohorts were likely higher and lower, respectively, than they would have been absent the mid-2000s
subprime credit expansion. However, the effect of this adjustment is minor. Default rates in row 11
are about 0.4 pp higher than row 6, and default rates in row 12 are about 1.3 pp lower than row
7, consistent with the relatively modest effect of the subprime expansion on the boom and bust in
house prices estimated by Griffin et al. (2021).

Using any of the scenarios holding prices changes and characteristics fixed across cohorts as a
benchmark, it seems that the low and high actual default rates experienced by the 2003 and 2006
cohorts, respectively, were not particularly representative of the relative quality of these cohorts’
unobservables. Notably, this demonstrates that raw comparisons of mortgage vintage performance
are not a particularly useful barometer of lending standards given the historically abnormal price
paths faced by each vintage.

8 Conclusion

This paper presents a methodology to account for endogeneity in duration models via a control
function approach. When covariates in a hazard model are endogenous or mismeasured, the abil-
ity of the model to evaluate claims about how the likelihood of failure would be different given
alternative covariate values is limited. I demonstrate how instrumental variables that satisfy the
usual relevance and exogeneity conditions can be used to consistently estimate causal effects in
a proportional hazards model. The estimator readily accommodates nonparametric baseline haz-
ard specifications and semi-parametric control-function specifications, while facilitating testing for
covariate misspecification.

Using a novel identification strategy to address the joint endogeneity of defaults and house-
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price declines, I estimate a model of mortgage default that combines observable loan and borrower
characteristics with data on price changes and explains 93% of the heterogeneity in the performance
of subprime borrower cohorts. Mortgage default is particularly sensitive to changes in local house
prices. Across a variety of instruments, I find an elasticity of default with respect to house prices
changes of about -4.5, implying that for every 10% decrease in local house prices, the likelihood of
subprime mortgage default increase by 54%. I find that deteriorating underwriting standards can
explain at most 30% of the default rate differences across cohorts. These results imply that while
tighter subprime lending standards would have muted the increase in defaults somewhat, even the
well-performing 2003-2004 subprime cohorts were sensitive to significant property value declines,
especially early on in their life cycle.

Given their central role in precipitating the Great Recession, there has been sustained, active
debate about the surge in the subprime-mortgage defaults in the late 2000s, resulting in new legis-
lation, regulation, at least $150 billion in fines for mortgage-originating banks (Scannell, 2017), and
many subprime MBS-related lawsuits. Much of the post-mortem analysis has focused on contrast-
ing the relative performance of late and early borrower cohorts given the disproportionate share
of subprime defaults by late-cohort borrowers. Diverse views of the cause of this deterioration in
cohort-level mortgage outcomes have motivated strong opinions about the appropriate regulatory
response to the subprime crisis. Advocates of stricter primary and secondary mortgage market regu-
lation argue that the cohort pattern stems from a deterioration in underwriting standards over time,
i.e., the lending of riskier mortgage products to riskier borrowers, and that these looser standards
were the main cause of the crash. This view has motivated a regulatory response that aims to avert
future crises and ensure that mortgages are robust to economic shocks, for example, by restricting
the mortgage contract space.

Did the relatively more stringent underwriting of the 2003 cohort lead to that cohort’s borrowers
being relatively immune to the stress of negative price shocks? No, 2003 borrowers would have also
been quite sensitive to price declines if they had faced them earlier in their mortgage life-cycle.
I estimate that if 2003 borrowers had faced the prices that the average 2006 borrower did, 2003
borrowers would have had a two-year cumulative default rate of 17% instead of 8%. Similarly, only
10% of subprime loans in the maligned 2006 cohort would have defaulted within two years instead
of 22% if they had faced the initial appreciation the 2003 mortgages did. Finally, I consider what
cohort default rates would have been if the subprime credit expansion hadn’t amplified the housing
price cycle, again finding that cohorts would have defaulted at similar rates.

The results of this paper suggest a scope for both underwriting standards to ex-ante affect mort-
gage outcomes and for ex-post loan modification programs to reduce the frictions associated with
negative equity and housing-market illiquidity. More broadly, the methodology in this paper is a use-
ful input into designing and evaluating stress-testing and risk-management procedures. Attributing
the ex-post performance of vintages of debt or insurance contracts—a common analytical technique
in the finance industry—to fixed differences in environmental conditions at issuance is potentially
misleading. This study highlights the reality that cohort outcomes are driven by both vintage ef-
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fects (i.e., characteristics bottled into the contracts at origination) and path dependency, i.e., that
exposure to economic conditions affect cohorts differently depending on their history. Finally, to
the extent that macroprudential policy can be used to compress the amplitude and frequency of
house-price cycles—a promising open question for research—policymakers could employ such tools
to both avoid and cope with similar situations in the future.
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Figure 1: Cumulative Default Rate by Origination Cohort
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Notes: Figure plots the Kaplan-Meier estimate of the fraction of each cohort that has terminated
by default within a given number of months since origination. Default is measured as the first
time that a loan’s delinquency status is marked as in foreclosure or real-estate owned provided it
ultimately terminated without being paid off in full.
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Figure 2: Median Current Combined Loan-to-Value Ratio Over Time by Origination Cohort
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Notes: Figure shows the median current combined loan-to-value ratio (CLTV) of subprime borrowers
for existing subprime mortgages in each cohort in each calendar month in percentage points. Current
CLTV is calculated by LoanPerformance as the total outstanding principal on a loan divided by
CoreLogic’s automated assessing model’s estimate of the market value of each home.
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Figure 3: Average Home Price Index by Instrument Quartile

I. Historical Cyclicality II. Regional Sensitivity
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Notes: Figures plot monthly average HPI values by quartile of the indicated instrument. Cyclicality
is measured as the standard deviation of one month changes to the log home price index from 1980-
1995, as defined in equation (16) in the text. Regional sensitivity from Guren et al. (2021) is
the sensitivity of each CBSA’s price index to a regional price index. Land unavailability from Saiz
(2010) is the share of land unavailable for development. Public headquarters from Choi et al. (2016)
is the ratio of the total book value of publicly traded companies headquartered in each MSA to
that MSA’s income. See section 6.2.4 for more details. Each series has been normalized to 100 in
January 2000.
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Figure 4: Observed and Predicted Home Price Indices

I. Actual log(HPI) II. Predicted log(HPI)
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Notes: Figure plots observed log home price indices (left panel) and predicted indices (right panel)
using long-run variation in the price cycle. The right-hand panel lines show the predicted values
from a first stage regression of log(HPI) on CBSA fixed effects and the instrument set, as specified
in equation (18) in the text.
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Figure 5: Subprime Share and Unemployment Rate by Historical Cyclicality
I. Subprime Market Share by Historical Cyclicality Quartile
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II. Unemployment Rates by Historical Cyclicality Quartile
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Notes: Figures plot average subprime market shares (panel I) and average unemployment rates in
percentage points (panel II) by quartile of the historical cyclicality measure defined by equation (16).
Subprime market shares are calculated using HMDA data as the fraction of mortgages originated
in a given year that were made by a lender on the HUD subprime lender’s list in any year after
residualizing for CBSA fixed effects. Unemployment rates are obtained from the Bureau of Labor
Statistics Local Area Unemployment Series after residualizing for CBSA fixed effects and then
filtering with a HP filter with λ = 1,600.
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Figure 6: Testing Whether Historical Cyclicality Predicts Mortgage Characteristics

I. FICO Score II. Debt-to-Income Ratio
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III. Combined Loan-to-Value Ratio IV. Owner-Occupied Indicator
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Notes: Figures plot regression coefficients of the indicated individual mortgage or borrower char-
acteristic measured at origination on origination-month indicators interacted with the historical
cyclicality instrument defined by equation (16). The instrument has been standardized such that
plotted coefficients represent the relationship between a one standard deviation increase in σPg in
the given month and the average value of the indicated origination characteristic. All regressions
control for CBSA fixed effects, cohort main effects, baseline hazard dummies, and the remaining
mortgage or borrower characteristics used as controls in Table 2. Dashed lines plot 95% confidence
intervals clustered at the CBSA level.
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Table 1: Summary Statistics by Cohort

Cohort
2003 2004 2005 2006 2007 Pooled

Default 0.11 0.13 0.25 0.36 0.32 0.24
(0.31) (0.34) (0.43) (0.48) (0.47) (0.42)

Prepaid 0.76 0.71 0.52 0.28 0.18 0.50
(0.43) (0.45) (0.50) (0.45) (0.38) (0.50)

FICO Score 617.0 618.2 618.6 616.1 614.3 617.3
(61.9) (61.2) (59.7) (56.5) (54.7) (59.1)

Debt-to-Income x DTI non-missing 0.29 0.30 0.27 0.32 0.31 0.30
(0.19) (0.19) (0.20) (0.19) (0.19) (0.19)

DTI missing 0.26 0.23 0.32 0.21 0.24 0.26
(0.44) (0.42) (0.47) (0.41) (0.43) (0.44)

Combined LTV 0.83 0.84 0.86 0.86 0.84 0.85
(0.13) (0.13) (0.14) (0.14) (0.15) (0.14)

Interest Rate 7.23 6.78 6.89 7.89 8.07 7.27
(1.29) (1.21) (1.18) (1.25) (1.39) (1.33)

Full Documentation 0.71 0.70 0.68 0.67 0.68 0.68
(0.45) (0.46) (0.47) (0.47) (0.46) (0.46)

Owner Occupied 0.91 0.91 0.92 0.92 0.91 0.92
(0.28) (0.28) (0.28) (0.27) (0.29) (0.28)

Cash-out Refi 0.57 0.57 0.53 0.51 0.58 0.54
(0.50) (0.49) (0.50) (0.50) (0.49) (0.50)

Adjustable Rate 0.61 0.63 0.57 0.45 0.34 0.54
(0.49) (0.48) (0.50) (0.50) (0.47) (0.50)

Interest-only 0.03 0.11 0.21 0.13 0.09 0.13
(0.16) (0.31) (0.41) (0.33) (0.29) (0.34)

Balloon 0.01 0.00 0.02 0.21 0.28 0.09
(0.10) (0.04) (0.15) (0.41) (0.45) (0.28)

Has 2nd Lien 0.07 0.15 0.24 0.28 0.16 0.20
(0.25) (0.36) (0.42) (0.45) (0.37) (0.40)

Observations 4,407 7,251 9,444 8,336 2,734 32,172

Notes: Table reports means and standard deviations in parentheses of individual loan characteristics
by borrower cohort. Default, prepaid, and censored are indicator variables for a mortgage’s termina-
tion type. The remaining characteristics are measured at time of origination. Full documentation,
owner occupied, cash-out refinance, adjustable rate, interest-only, balloon mortgage, and has second
lien are all indicator variables for the given characteristic. See section 5 in the text for more details.
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Table 2: Default Hazard Model Estimates

(1) (2) (3) (4) (5)

2004 Cohort 0.217*** 0.223*** 0.188*** 0.137** 0.094
(0.072) (0.071) (0.069) (0.068) (0.066)

2005 Cohort 0.717*** 0.709*** 0.519*** 0.407*** 0.190***
(0.100) (0.097) (0.087) (0.075) (0.068)

2006 Cohort 0.954*** 0.984*** 0.579*** 0.470*** 0.045
(0.130) (0.129) (0.121) (0.093) (0.086)

2007 Cohort 0.734*** 0.800*** 0.466*** 0.235*** -0.107
(0.120) (0.116) (0.116) (0.083) (0.084)

Δlog(HPI) -3.685*** -3.857***
(0.131) (0.152)

CBSA Fixed Effects X X X X
Origination Characteristics X X
Observations 1,224,716 1,224,716 1,224,716 1,224,716 1,224,716
Log likelihood -44,335 -43,574 -42,498 -43,142 -42,033

Notes: Table reports maximum-likelihood estimates of the default hazard model given in equations
(2) and (14) in the text. The change in log(HPI) is the 12-month difference in the log of the CBSA-
level CoreLogic HPI. Origination characteristics include FICO score, debt-to-income (DTI) ratio,
a full documentation of income indicator, an owner-occupied indicator, the combined loan-to-value
ratio, the mortgage interest rate, and indicator variables for adjustable-rate mortgages, cash-out
refinance mortgages, mortgages with an interest-only period, balloon mortgages, and mortgages
accompanied by additional second liens. All specifications include indicator variables for each value
of loan age as a nonparametric baseline hazard function estimate. Standard errors in parentheses
are clustered at the CBSA level.
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Table 3: First-Stage Effect of Long-Run Cyclicality on Price Changes

(1) (2) (3)

2004 Cohort -0.009*** -0.009***
(0.003) (0.003)

2005 Cohort -0.026*** -0.026***
(0.006) (0.006)

2006 Cohort -0.047*** -0.045***
(0.010) (0.009)

2007 Cohort -0.057*** -0.053***
(0.011) (0.011)

Baseline Hazard X X
CBSA Fixed Effects X X
Origination Characteristics X
Partial F -statistic 49.0 31.4 31.2
Observations 1,224,716 1,224,716 1,224,716
R-squared 0.50 0.56 0.56

Notes: Table estimates first stage specifications detailed by equation (17) by OLS. Dependent
variable is the 12-month change in the log house price index. The 124 instruments are calendar
month indicator variables interacted with the historical cyclicality measure defined by equation (16)
in the text (coefficients not reported). Baseline hazard controls include indicator variables for each
value of loan age. Origination characteristics include FICO score, debt-to-income (DTI) ratio, a full
documentation of income indicator, an owner-occupied indicator, the combined loan-to-value ratio,
the mortgage interest rate, and indicator variables for adjustable-rate mortgages, cash-out refinance
mortgages, mortgages with an interest-only period, balloon mortgages, and mortgages accompanied
by additional second liens. Standard errors in parentheses are clustered by CBSA.
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Table 4: Control-Function Estimates of Default Hazard

(1) (2) (3) (4)

2004 Cohort 0.137** 0.127* 0.094 0.083
(0.068) (0.068) (0.066) (0.066)

2005 Cohort 0.407*** 0.362*** 0.190*** 0.142**
(0.076) (0.075) (0.068) (0.067)

2006 Cohort 0.470*** 0.392*** 0.045 -0.034
(0.093) (0.095) (0.086) (0.088)

2007 Cohort 0.235*** 0.146* -0.107 -0.196**
(0.084) (0.087) (0.084) (0.088)

Δlog(HPI) -3.685*** -4.381*** -3.857*** -4.597***
(0.131) (0.348) (0.152) (0.360)

∆log(HPI) Fitted Residuals 0.977** 1.033**
(0.409) (0.419)

CBSA Fixed Effects X X X X
Origination Characteristics X X
Observations 1,224,716 1,224,716 1,224,716 1,224,716
Log likelihood -43,142 -43,137 -42,033 -42,028

Notes: Table reports maximum-likelihood control-function estimates of the default hazard model
given in equations (2) and (19) in the text with the first stage given by (17). The change in log(HPI)
is the 12-month difference in the log of the CBSA-level CoreLogic HPI. Fitted residuals are estimated
from a linear first stage regression of the 12-month change in the log price index on the instruments
and remaining controls. Origination characteristics include FICO score, debt-to-income (DTI) ratio,
a full documentation of income indicator, an owner-occupied indicator, the combined loan-to-value
ratio, the mortgage interest rate, and indicator variables for adjustable-rate mortgages, cash-out
refinance mortgages, mortgages with an interest-only period, balloon mortgages, and mortgages
accompanied by additional second liens. All specifications include indicator variables for each value
of loan age as a nonparametric baseline hazard function estimate. Standard errors in parentheses
are adjusted for the first-stage estimation of the fitted residuals by GMM and clustered at the CBSA
level.
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Table 5: Control-Function Estimates of Default Hazard Using Alternative Instruments

(1) (2) (3) (4) (5)
Instruments Historical

Cyclicality
Regional
Sensitivity

Social
Network

Land
Unavailability

Public
Headquarters

2004 Cohort 0.083 0.078 0.077 0.079 0.076
(0.066) (0.058) (0.058) (0.058) (0.059)

2005 Cohort 0.142** 0.140** 0.122** 0.113** 0.160***
(0.067) (0.055) (0.056) (0.055) (0.056)

2006 Cohort -0.034 -0.030 -0.061 -0.088 -0.020
(0.088) (0.057) (0.062) (0.058) (0.061)

2007 Cohort -0.196** -0.191*** -0.227*** -0.257*** -0.188***
(0.088) (0.066) (0.071) (0.067) (0.069)

Δlog(HPI) -4.597*** -4.536*** -4.716*** -5.178*** -4.512***
(0.360) (0.172) (0.240) (0.219) (0.265)

Fitted Residuals 1.033** 1.779*** 1.291*** 2.161*** 0.856***
(0.419) (0.288) (0.303) (0.287) (0.319)

CBSA Fixed Effects X X X X X
Origination Char. X X X X X
First-stage F -statistic 31.2 308.7 102.4 40.7 19.6
Observations 1,224,716 1,195,600 1,195,600 1,213,592 1,127,673
Log likelihood -42,028 -41,228 -41,239 -41,798 -38,831

Notes: Table reports maximum-likelihood control-function estimates of the default hazard model
given in equations (2) and (19) in the text with the first stage given by (17), replacing the instrument
set with the instrument indicated in each column. The change in log(HPI) is the 12-month difference
in the log of the CBSA-level CoreLogic HPI. Fitted residuals are estimated from a linear first
stage regression of the 12-month change in the log price index on the indicated instruments and
remaining controls. Origination characteristics include FICO score, debt-to-income (DTI) ratio, a
full documentation of income indicator, an owner-occupied indicator, the combined loan-to-value
ratio, the mortgage interest rate, and indicator variables for adjustable-rate mortgages, cash-out
refinance mortgages, mortgages with an interest-only period, balloon mortgages, and mortgages
accompanied by additional second liens. All specifications include indicator variables for each value
of loan age as a nonparametric baseline hazard function estimate. Standard errors in parentheses
are adjusted for the first-stage estimation of the fitted residuals by GMM and clustered at the CBSA
level.
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Table 6: Counterfactual 2-Year Default Rates by Cohort

Counterfactual Scenario Predicted 2-Year Cumulative Default Rate
Prices Loan Composition 2003 2004 2005 2006 2007 Overall

(1) Actual Actual 8.2% 9.4% 14.9% 22.2% 21.7% 15.2%
(2) Actual 2003 7.0% 8.0% 11.8% 15.1% 16.0% 11.5%
(3) Actual 2006 9.7% 11.0% 16.0% 20.4% 21.4% 15.6%
(4) 2003 Actual 8.2% 9.0% 10.3% 10.1% 7.8% 9.4%
(5) 2006 Actual 17.2% 18.7% 21.0% 20.7% 16.2% 19.5%
(6) 2003 2003 7.2% 7.7% 7.9% 6.4% 5.2% 7.1%
(7) 2006 2006 20.8% 22.2% 22.7% 18.5% 15.4% 20.6%
(8) Attenuated Actual 8.7% 10.0% 14.9% 20.9% 20.2% 15.0%
(9) Attenuated 2003 7.5% 8.5% 11.7% 14.1% 14.8% 11.3%
(10) Attenuated 2006 10.3% 11.6% 16.0% 19.1% 19.9% 15.4%
(11) 2003 Attenuated 2003 7.6% 8.2% 8.4% 6.8% 5.5% 7.6%
(12) 2006 Attenuated 2006 19.5% 20.8% 21.3% 17.3% 14.4% 19.3%

Number of Loans 4,407 7,251 9,444 8,336 2,734 32,172

Notes: Table reports estimated cumulative default rates under the indicated counterfactual scenarios
of prices and loan characteristics. Cumulative default rates are defined as the predicted share of loans
that would have defaulted within 24 months of origination. Scenarios using actual characteristics
retain observed covariates. Scenarios using a given year’s prices replace all price changes with the
average price changes faced by the given cohort’s borrowers at each value of loan age. Scenarios
using a given year’s loan characteristics assign all loans the average characteristics from the indicated
cohort. Attenuated price scenarios in rows 8-10 replace actual 2003-2010 price changes with smaller
magnitude price changes that Griffin et al. (2021) estimate would have prevailed if the subprime
market share were zero. Attenuated scenarios in rows 11 and 12 replace all price changes with the
average price changes faced by the 2003 or 2006 cohorts, respectively, attenuated using Griffin et
al. (2021) estimates. See section 7 for more details.
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Internet Appendix

A Proof of Theorem 1

Given that in a survival model, the likelihood of failure depends on whether failure has already oc-
curred in a prior observation, classical GMM theoretical results that assume stationary, independent,
and identically distributed processes do not apply. Instead, the additional regularity conditions be-
low allow me to cast the MLE estimator defined in section 3.3 as a non-classical GMM estimator and
use the Lindeberg-Feller Central Limit Theorem to invoke the consistency and asymptotic normality
theorem of Huber (1967) to prove Theorem 1. Because the control-function survival estimator has
the same sandwich form for its asymptotic variance as classical GMM, the sequential GMM results
from Newey (1984) and Newey and McFadden (1994) apply. As such, the asymptotic variance of
the control-function survival estimator can be estimated using the standard GMM variance formula
after stacking the first- and second-stage moment conditions, as described in section 3.3.1.49

In order to prove Theorem 1, I first require the following additional regularity conditions. For
expositional clarity in what follows, I let i index observations (previously indexed by icgt).

Assumption A1 (Regularity Conditions). The following conditions hold on the the parameter space
(β, ψ, ρ, π) ≡ θ ∈ Θ, the covariates X and instruments Z, and the log likelihood function ` =

∑
i `i,

with `i defined by (10).

1. The true parameter θ0 lies in the interior of a compact parameter space Θ.

2. The matrix of covariates X and the matrix of instruments Z are each full rank.

3. The Lindeberg Condition holds for the individual-specific second-stage quasi-score contribu-
tions. Formally, this means that for each observation i, each element j of the MLE first-order
conditions g`(θ) defined by (12) has finite mean and variance and satisfies for all ε > 0:

lim
n→∞

1

s2n
E [Var(g`i,j(θ)) · 1 (|g`i,j(θ)− E [g`i,j(θ)]| > εsn)] = 0,

where s2n ≡
n∑
i=1

Var(g`i,j(θ)).

Parameter space compactness will help establish uniform convergence. The true parameter lying
in the interior of Θ is required for asymptotic normality but is mild given that Θ is not fixed.
A sufficient condition is that θ0 is real valued and there are no constraints on the parameters, in
which case there always exists a sufficiently large compact parameter space that includes θ0 in its
interior (Bahadur, 1971). Assumption A1.2 is the mild MLE equivalent of no collinearity among
the covariates or instruments and implies that the expected Hessian of the log likelihood function
` exists and is non-singular when evaluated at the true parameter θ0. Note that Assumption 4 is a
necessary condition for Assumption A1.2. Finally, the Lindeberg Condition in Assumption A1.3 is
weaker than the finite variance and identically and independently distributed assumptions needed to
invoke the Lindeberg-Levy Central Limit Theorem. Given the non-stationarity of duration models,
I follow Prentice and Gloeckler (1978) and instead use the Lindeberg-Feller Central Limit Theorem.
Intuitively, the Lindeberg Condition means that no single observation can affect the MLE first-order
condition for any variable too much. Sufficient conditions for the Lindeberg Condition to hold are
that the covariates are bounded and the hazard rate is bounded away from zero.

More formally, Theorem 1 can be restated as follows.
49See Liu (2023) for a more detailed discussion of the proof.
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Restatement of Theorem 1. Under Assumptions 1, 3-5, and A1, the maximum-likelihood esti-
mator θ̂ obtained by estimating the first-stage (6) by OLS and then maximizing the sum of the log
likelihoods defined by (10) is consistent and asymptotically normal, with

√
n(θ̂ − θ0)

d→ N (0, G−1Ω(G−1)′),

where θ0 is the true parameter, d−→ signifies convergence in distribution, N (·, ·) is the normal dis-
tribution, G is the derivative of the GMM moment conditions g(·) defined in (12), and Ω is the
asymptotic variance of g(·).

Proof. To prove this theorem, it suffices to show that five key conditions are met, in which case Hu-
ber’s (1967) Z-estimation consistency and asymptotic normality theorem holds for θ̂. Z-estimation is
extremum estimation with a differentiable objective function and can be considered a non-classical
generalization of GMM. Restated for my setting, the necessary conditions are as follows.

Assumption A2 (Conditions for Huber (1967) Z-estimation Theorem). The following conditions
hold on the score g(θ) = E(gi(θ)) and its empirical analog ĝ(θ̂)) ≡

∑n
i=1 gi(θ̂)/n, where gi(·) is the

vector of moment conditions for observation i of the GMM estimator as in (12), and the summation
is taken over all observations.

1. The estimator θ̂ uniquely solves the quasi-maximum likelihood objective function ĝ(θ̂)) = 0 and
the true parameter value θ0 is the unique solution of g(θ0) = 0.

2.
√
n (ĝ(θ0)− g(θ0))

d→ Γ0, where Γ0 is some random variable that has a known distribution.

3. The score g(·) is Frechet-differentiable at θ0 with nonsingular derivative G(θ0).

4. For every sequence δn → 0 as n→∞,

sup
‖θ−θ0‖≤δn

‖
√
n (ĝ(θ)− g(θ))−

√
n (ĝ(θ0)− g(θ0))‖

1 +
√
n ‖θ − θ0‖

p→ 0.

5. The true finite-dimensional parameter θ0 is in the interior of the parameter space Θ.

To see that each of the conditions in A2 holds given the assumptions in A1 above, first consider the
quasi-score of the proportional hazards model:

ĝ`(θ) =
1

n

n∑
i=1

∂`i
∂θ

.

To augment this estimator to account for the estimates of the control function, I follow Newey (1984)
and Newey and McFadden (1994) to stack the moment conditions for the first-stage estimation. I
define

ĝπ(θ) =
1

n

n∑
i=1

Z ′i(xi − Z ′iπ).

Then the combined Z-estimator criterion defining the estimator θ̂ is ĝ(θ̂) ≡
(
ĝ`(θ̂)

′ ĝ′π(θ̂)′
)′

= 0.

To establish Condition A2.1, the uniqueness of both θ̂ and θ0 follows from the monotonicity of
ĝ`(·) and g`(·) (see Prentice and Gloeckler, 1978) and of ĝπ(·) and gπ(·). The Leibniz integral rule
holds here at θ0 (Liu, 2023), implying that the score has expectation zero at θ0 whenever the MLE
first-order conditions (FOCs) hold in expectation at θ0, in which case g(θ0) = 0. Assumptions 1 and
3-5 imply the MLE FOCs will be expectation zero at θ0. If, for example, the exclusion restriction
in Assumption 5 fails, then the MLE FOC will hold at some θ 6= θ0.

59



Condition A2.2 is satisfied because the Lindeberg Condition holding (Assumption A1.3) is suffi-
cient for the Lindeberg-Feller Central Limit Theorem to hold, meaning A2.2 holds with Γ0 being a
mean-zero normal distribution. Assumption A1.2 means that the score’s derivative will be invertible
(i.e., the information matrix equality holds) so Condition A2.3 will hold.

To satisfy Condition A2.4, it is sufficient to demonstrate uniform convergence of ĝ(·). Given
the compact parameter space and the Lindeberg Condition, the absolute value of the components
of ĝ(·) is bounded over the parameter space such that the conditions of the Uniform Weak Law of
Large Numbers stated in Theorem 12.1 of Wooldridge (2002) are each met. Accordingly, ĝ(·) will
converge uniformly, satisfying Condition A2.4.

Finally, Condition A2.5 is directly provided by regularity Assumption A1.1. As mentioned
above, a sufficient condition for θ0 being in the interior of Θ is that θ0 is a real-valued vector and
there are no shape restrictions on Θ.

Thus, sufficient conditions for the Z-estimator consistency and asymptotic normality theorem of
Huber (1967) are met, and the control-function survival estimator is consistent and asymptotically
normal with the usual GMM variance.

B Unobserved Heterogeneity

This appendix examines the robustness of the results in Table 2 to misspecification from ignoring
independent unobserved heterogeneity ε by allowing the true hazard model to be specified as in
(13). This approach is referred to in the duration literature as the Mixed Proportional Hazards
Model. There is a large literature on the relative merits of parametric assumptions on the baseline
hazard function and the unobserved heterogeneity distribution. See Lancaster (1979), Heckman
and Singer (1984), Han and Hausman (1990), Meyer (1990), Horowitz (1999), and Hausman and
Woutersen (2014).

Equation (13) pins down the conditional distribution F of latent failure times τ to be

F (τ |Xicgt, εi) = 1− exp (−Λ((t|Xicgt, εi))

where Λ(·|X, ε) is the integrated hazard. Specifying the distribution of ε to have cumulative distri-
bution function R(·), the distribution F̃ (τ |Xicgt) of τ |X is then obtained by integrating out ε.

F̃ (τ |Xicgt) =

∫ ∞
−∞

F (τ |Xicgt, εi)dR(εi) (B.1)

The modified likelihood h̃(t|X) of observing failure at time τ ∈ (t− 1, t] is then

h̃(t|X) = 1− S̃(t|X)/S̃(t− 1|X) (B.2)

where the new survivor function is denoted S̃(·|X) = 1 − F̃ (·|X). Estimation then proceeds by
replacing h(·|X) with h̃(·|X) in the log-likelihood expression of equation (10).

The results of maximizing the sample log-likelihood function described by (10), replacing h(t|X)
with h̃(t|X) defined in equation (B.2) and modeling ε ∼ N (0, σ2), are presented in Appendix Table
A8. Consistent with the survivorship-bias intuition discussed in section 3.3.2 above, column 1
shows that the unadjusted differences in default rates across cohorts are even more pronounced
when accounting for independent unobserved heterogeneity than in the baseline results of column
1 of Table 2. To account for this in the exercise of decomposing the strongest factors in the cohort
default pattern, I compare the adjusted cohort coefficients in columns 2-4 to the unadjusted cohort
coefficients in column 1. Including CBSA fixed effects, borrower and loan characteristics in column
2 explains 30% of cohort heterogeneity—the average decrease in the estimated cohort dummies.
Controlling instead for CBSA fixed effects and 12-month price changes in column 3 reduces the
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residual difference in the default hazard across cohorts by an average of 61%. Conditioning on price
changes and loan and borrower characteristics in column 4 explains 81% of the cohort differentials
in column 1.

As before, the 2005 cohort is the only borrower cohort to have a default hazard that is statisti-
cally distinguishable from the 2003 cohort hazard after adjusting for prices and loan and borrower
observables, although these covariates explain 73% of the 2005 cohort coefficient in column 1. I
conclude that the qualitative pattern of Table 2 is robust to allowing for independent unobserved
heterogeneity: prices explain over 60% of cohort heterogeneity in default risk and combined with
borrower and loan characteristics explain most of the increase in defaults across cohorts. This has
important implications for the robustness of these results to employing correlated competing risks
specifications such as the estimators developed by Han and Hausman (1990) and McCall (1996),
which allow for correlated unobserved heterogeneity in both the default and prepayment hazards.
Given the insensitivity of the cohort pattern decomposition to allowing for unobserved heterogeneity,
the default hazard can safely be estimated separately, as discussed above.

C Robustness to Control Function Specification

In general, the control function c(v) need not be linear. I approximate an arbitrary form of c(·) in
Appendix Table A4 using third- and fifth-order polynomials in the fitted residuals, i.e., c(vicgt) =∑5

k=0 ρkv̂
k
icgt. Columns 1-3 of Appendix Table A4 do not control for borrower or loan characteristics.

Column 1 is repeated from column 2 of Table 4 for convenience. Column 2 adds squared and cubed
residuals. These coefficients are strongly significant, and a likelihood ratio test for the hypothesis
that ρ2 = ρ3 = 0 rejects, pointing to likely non-normality of the unobserved heterogeneity that
is correlated with price shocks. However, the slope coefficients are relatively unaffected from the
additional flexibility in the form of c(·). Column 3 adds fourth- and fifth-order terms, which again
do not noticeably affect the estimated effect of prices or differences in the latent quality of cohorts.
The estimated coefficients ρ̂ on the powers of the residuals in column 3 are very imprecise, and
a likelihood ratio test fails to reject that ρ4 = ρ5 = 0. Columns 4-6 repeat the specifications
in columns 1-3, additionally controlling for borrower and loan characteristics. The same findings
are apparent: higher-order polynomial terms of the residuals are jointly significant, rejecting the
exogeneity of price changes, and the estimated effects of the covariates are relatively unchanged.
Consistent with results only allowing for a linear control function, price declines alone explain over
60% of the deterioration in subprime mortgage cohort performance over time. The final model in
either columns 5 or 6 explains 96% of cohort heterogeneity in default rates, with the cohort effects
each insignificant at the 95% confidence level.

D Mechanisms

Through what mechanisms do price changes affect default rates? Are price declines important
for defaults only insofar as they push borrowers into negative equity positions? Below, I estimate
the causal effect of negative equity on defaults and to what extent indebtedness itself explains the
increase in defaults across subprime borrower cohorts.

The intuition above focuses on the differential effect of price declines on later cohorts in pushing
them underwater, as seen in Figure 2. In contrast to underwater homeowners, positive-equity
but distressed borrowers (i.e., borrowers unable to make their monthly mortgage payments) have
two main alternatives to default. First, homeowners with positive equity can sell their home and
use the proceeds to pay off their outstanding mortgage debt. Second, positive-equity borrowers can
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sometimes refinance into a lower payment and/or extract equity via a second lien to temporarily help
make their first-mortgage payments. These options are not readily available to distressed borrowers
who are underwater. Lenders are normally unwilling to originate a refinance mortgage to someone
who does not have sufficient equity, let alone negative equity—see DeFusco and Mondragon (2020)
for a discussion. Furthermore, selling a house secured by a mortgage in a negative equity position
(known as a short sale) requires either coming up with sufficient cash to pay the shortfall between
the sale price and the outstanding debt or working with the lender (and any junior lienholders) to
secure forgiveness of the remaining debt. By definition, distressed borrowers are unlikely to have
ample savings, making the former unlikely. Lenders are also wary of agreeing to short sales, partly
because of asymmetric information about the borrower’s current and future finances (Zhang, 2019).
An additional source of elevated default risk for underwater borrowers comes from the possibility
of strategic default (Gerardi et al., 2018), although recent work questions the empirical relevance of
strategic default in explaining mortgage default (Ganong and Noel, 2023).

Empirically testing that the differential prevalence of negative equity is the channel through
which price declines explain so much cohort heterogeneity presents several practical challenges.
First, a borrower’s current mortgage balance is determined by initial balance and principal paid
down, which in turn are endogenous to a borrower’s unobserved credit and income risk. I in-
strument for the actual balance of the mortgage with the scheduled balance calculated using the
origination interest rate as if the borrower had paid down a 30-year fixed-rate mortgage on schedule.
Second, constructing a measure of negative equity status requires knowing the current market value
of the home, an unknown (and endogenous) quantity that must be estimated by the borrower as
well as the econometrician. CoreLogic provides such a measure using their Automated Valuation
Model that imputes property values in each month for each subprime mortgage in the data. As this
estimated value is measured with error and partly a function of nearby market prices and therefore
affected by CBSA-level shocks, I instrument for this valuation using the origination loan amount
and counterfactual price indices computed using the historical cyclicality instruments, similar to
above. Third, because the prepayment obstacles faced by borrowers depend on the total debt of all
loans secured against their home, measuring current negative equity necessitates knowing updated
information about additional liens. Not observing updated information on the outstanding balance
of additional liens, I assume that all observed second mortgages have not been paid down. Although
this introduces additional measurement error into the estimated balances, instrumenting for out-
standing balances using scheduled balances addresses this concern. This approach also addresses
concerns that CLTVs are misstated because of unreported second lines (Griffin and Maturana, 2016).

I define the variable Underwaterit for whether the current CLTV of a loan, estimated by Core-
Logic based on the outstanding debt owed to all outstanding liens and contemporaneous market
conditions, is greater than 100%. I first present estimates that do not account for the endogeneity
of CLTV. Appendix Table A3 contains default hazard specifications as above, replacing ∆Prices
with functions q(·) of CLTV

X ′icgtβ = γc +W ′iθ + η′q(CLTVit) + αg. (D.1)

Controlling for q(CLTV ) = 1(CLTV > 1) = Underwater in addition to loan and borrower charac-
teristics and CBSA fixed effects in column 1 of Appendix Table A3 shows that underwater mortgages
have more than double the conditional default probability of mortgages that are not underwater.
However there is substantial unexplained heterogeneity across cohorts in column 1. Compared with
column 5 of Table 2, the underwater indicator variable explains much less cohort heterogeneity than
the 12-month change in prices. Even after adjusting for location, mortgage age, borrower and loan
characteristics, and the estimated negative equity status, differences in cohort default rates relative
to the 2003 cohort are all positive and significant, with the exception of the 2007 cohort. Column
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2 of Appendix Table A3 tests whether this is driven by the functional form restriction on q(·) by
controlling for a linear spline in the current CLTV that allows for a location and scale shift in the
effect of CLTV in several bins:

q(CLTVit) =
J∑
j=1

1(CLTVit ∈ Cj)× (aj + bjCLTVit) (D.2)

where j indexes the set C consisting of J CLTV intervals {[0, 80), [80, 85), [85, 90), ..., [150,∞)}.
Adding flexibility in the specification of the leverage function q(·) further decreases the adjusted
differences across cohorts but only explains on average an additional 8% of the differences in the
latent quality of cohorts. The specification in column 2 explains 62% of the cohort-level differences
in default.

To test whether the effect of prices is driven entirely by negative equity or whether price changes
still explain cohort heterogeneity even conditional on underwater status, column 3 additionally
controls for the twelve-month change in log HPI. Adding in the price change variable to the linear
spline controls significantly affects the estimated cohort heterogeneity relative to column 2 but also
relative to column 5 of Table 2, which is identical to column 3 except for the inclusion of q(CLTV ).
This suggests that CLTVs and prices interact in explaining defaults, intuitively due to borrowers
with less equity being more sensitive to price declines. Controlling for both price changes and
current CLTVs reduces the 2006 and 2007 cohort differences to be strongly negative. In other
words, 2006-2007 cohort borrowers defaulted less than would be expected controlling for a flexible
function of their relative equity, the price changes they faced, and loan and borrower characteristics.
The estimated latent quality of the 2004-2005 cohorts in column 3 is significantly worse than the
2003 cohort, with the 2005 estimate smaller and the 2004 estimate larger than the results in Table
2 that do not control for current CLTVs. The coefficient on the price change variable is large and
significant.

There is a significant relationship between defaults and negative equity but also evidence that
prices affect defaults in other ways than through negative equity. Still, as discussed above, caution
is required interpreting these results because mark-to-market leverage (CLTV) could be correlated
with unobserved borrower quality.

D.1 Instrumenting for Loan-to-Value Ratios

The main obstacle in interpreting the results in columns 1-3 of Appendix Table A3 is the endogene-
ity of CLTVs, which are the ratio of loan principal balances and property values. To the extent that
borrowers whose unobserved quality is high pay back their mortgages more rapidly, loan balances
(and hence CLTVs) will be determined in part by unobserved borrower quality.50 Similarly, bor-
rowers with lower unobserved quality may take out mortgages with higher initial balances or slower
amortization schedules that leave them more likely to be underwater. To address the endogeneity of
the CLTV numerator, I calculate the scheduled loan principal amount at each month since origina-
tion if borrower i had taken out a 30-year fixed interest rate loan with the same origination interest
rate and purchase price and was always current on his or her payments.51 Using the amortization
formula,

Scheduled Principalit = Origination Amounti

(
(1 + ri)

360 − (1 + ri)
t

(1 + ri)360 − 1

)
(D.3)

50For example, statistically, low FICO-score borrowers are less responsive to in-the-money refinance opportunities.
51Cunningham and Reed (2013) refer to a similar approach as a synthetic-mortgage IV strategy.
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where Origination Amounti is the originated loan size of mortgage i, t is the loan age in months,
and the monthly interest rate ri is the origination interest rate divided by 12.

To account for the endogeneity in purchase prices, I compute what the purchase price of the
home would have been if the borrower had taken out only a first-mortgage for the same dollar
amount at the GSE conforming loan leverage ratio (80% of purchase price). In logs, using this
predicted purchase price is equivalent to using the log of the origination amount as an instrument.
Finally, with the predicted home price indices, I can calculate an alternative measure of the change
in a property’s value since origination using the predicted HPI series

̂Appreciationigt = ̂logHPIigt − ̂logHPIig1 (D.4)

where ̂logHPI are the predicted values from estimating equation (18).
Before presenting first stage results, Appendix Figure A8 illustrates the statistical relationship

between each of the three instruments and the corresponding component of CLTVs. Diagonal lines
depict the fitted bivariate linear regression line. Panel I plots actual log principal balances versus
scheduled log principal balances. The fit is strong and the slope of the bivariate regression line
is close to 1, showing the tight relationship between traditional amortization schedules and loan
balances. The most noticeable deviation is the presence of many outliers well below the regres-
sion line, representing a minority of people that paid their mortgages back faster than scheduled.
Instrumenting will address the possibility that their faster payback is a signal of these borrowers’
unobserved (high) quality.

Panel II plots actual log sale prices against log origination amounts. The average relationship
between origination balances and actual sale prices is not far off from a setting where all borrowers
took out mortgages at 80% of the sale price of the home, in which case there would be a perfect fit
between log origination amount and log sale price with an intercept of log(1.25) and a slope of 1. The
most obvious outliers are those well above the regression line—borrowers who took out mortgages
with much lower leverage (i.e., from accumulated equity in the case of refinances or through a larger
downpayment in the case of sales). Using log origination amounts as an instrument to explain
CLTVs will account for any correlation between actual sale prices, initial leverage, and unobserved
borrower quality.

Panel III plots assessed property values against counterfactual property values, defined as

V̂ alue = 1.25×Origination Amount× exp( ̂Appreciation) (D.5)

to show the predictive power of the generated instrument ̂Appreciation. The workhorse behind
this relationship is the long-run price cyclicality instrument σPg used to predict HPI values and sub-
sequently impute appreciation-since-origination and corresponding counterfactual property values.
There is a clear positive relationship between counterfactual property values and assessed values.
Positive deviations from the regression line represent homes in areas and months with much higher
prices than would be predicted based on the 1980s price cycle of that CBSA. Negative deviations
represent homes where price declines have been more acute than expected a priori. Instrumenting
for actual assessed values will address the potential for these local price changes to be correlated
with unobserved borrower default risk.

The first stage for CLTV is a linear regression of CLTV on the scheduled loan balance, the
loan origination amount, predicted appreciation using the counterfactual price series, and the usual
controls Z2

CLTVicgt = Z ′1,igtΥ1 + Z ′2,icgtΥ2 + νicgt (D.6)
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where the instrument set consists of

Z1,igt =
(

log(ScheduledPrincipalit), log(OriginationAmounti), ̂Appreciationigt

)
.

Appendix Table A9 reports the results of estimating the first-stage equation (D.6) by OLS with
clustered standard errors. Note that missing data—loans for which CoreLogic has not estimated a
contemporaneous CLTV in a given month—reduces the sample size of specifications involving CLTV
from 1.2 to 1.0 million monthly loan observations. Column 1 reports results of regressing CLTV on
Z1 without controlling for Z2. The relationship between each of the instruments and CLTV values is
large and precisely estimated. Mortgages with higher origination amounts (positive predictors of sale
prices) have lower CLTVs. Mortgages with higher scheduled principal balances have higher CLTVs.
Mortgages with higher predicted appreciation have lower CLTVs. Adding cohort indicator variables,
baseline hazard controls, and CBSA fixed effects in column 2 strengthens the estimated effect of
origination amounts and scheduled principal and attenuates the effect of predicted appreciation on
the CoreLogic contemporaneous CLTVs. The cohort pattern confirms the trends in median CLTVs
plotted in Figure 2, showing that later cohorts have much higher CLTVs. Successively controlling for
borrower and loan characteristics in column 3 and price change instruments in column 4 continues the
trend. The CLTV instruments are still powerful predictors of contemporaneous leverage. Column 5
additionally controls for the monthly CBSA unemployment rate. Local labor market conditions are
correlated with CLTVs: the coefficient on the unemployment rate suggests that the equity share of
property values in areas with high unemployment rate is lower. Controlling for the unemployment
rate, the predicted appreciation instrument is no longer significant. Still, the partial F -statistic for
the joint significance of the instruments is above 200 in every column.

Columns 4-6 of Appendix Table A3 report the results of estimating the default hazard function
after incorporating ν̂icgt from equation (D.6) into the linear index Xβ in equation (D.1).52 Column
4 includes the underwater indicator variable as a parsimonious summary of the causal influence
of negative equity on default conditional on the CLTV residuals, price changes, and price change
residuals. The effect of being underwater on default in column 4 is still significant but greatly
attenuated from column 1, suggesting that holding prices fixed, a mortgage being underwater causes
the default hazard to be 33% higher (28 log points) than that of above-water mortgages. This
suggests that some of the performance differences across cohorts that columns 1-3 attributed to
negative equity were actually unobserved differences in borrower quality across cohorts that affected
both defaults and equity. Furthermore, the CLTV residuals are significant in columns 4-6, rejecting
the null hypothesis that CLTVs are exogenous. Columns 5 and 6 instead control for a linear spline
in q. The estimated effect of prices is large and significant across all specifications, showing an
elasticity of default with respect to price declines of -3 to -5, meaning that even holding a property’s
CLTV fixed, a 1% price decline increases the default hazard by 3-5%.

Comparing columns 3 and 5, the estimated cohort differences after controlling and instrumenting
for price changes and mark-to-market leverage are smaller than the corresponding estimates column
3 that do not account for the endogeneity of prices or CLTVs. Consistent with the patterns above,
the control-function specification in column 5 is more successful at explaining the default rates of
later cohorts than earlier cohorts, suggesting that negative equity was a more important factor in
late-cohort defaults than early cohort defaults. While highly predictive of individual defaults, the
smaller effect of CLTV controls on earlier cohort default rates is consistent with earlier cohorts’
CLTVs not having increased as much (see Figure 2).

52Imbens and Wooldridge (2007) discuss the control function approach when the estimating equation contains
several nonlinear functions of the right-hand side endogenous variable. Under the assumption that the unobserved
component of default risk is independent of the instruments (the control function exclusion restriction), controlling
for the fitted residuals of CLTV is sufficient to instrument for any function of CLTV.
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To verify that these findings are robust to controlling for local labor market fluctuations, I
control directly for the unemployment rate in column 6 of Appendix Table A3. Conditional on all
of the other controls, mortgages in cities with increased unemployment rates are slightly less likely
to default. Accounting for local labor market fluctuations does not materially affect the estimated
coefficients on prices or CLTV residuals. However, including the unemployment rate decreases the
measure of the difference in latent quality between the 2003 and 2004-2005 cohorts enough to be
statistically insignificant.

Taken together, the results of Appendix Table A3 point to multiple mechanisms through which
price declines cause defaults. As expected, negative equity explains most of the relationship be-
tween cohort default rates and price changes, especially among later cohorts. Nevertheless, prices
affect default risk in other ways besides their effect on default through negative equity and their
correlation with local unemployment rates. This highlights the additional salience of recent price
changes to price expectations and market liquidity even conditional on negative equity. For any
given equity position, borrowers in areas with strongly declining prices may be less motivated to
make mortgage payments after adverse shocks. Moreover, given that buyers’ expectations of future
prices are strongly influenced by recent price changes (Glaeser and Nathanson, 2017; Gennaioli and
Shleifer, 2018; Guren, 2018; Armona et al., 2019; Bailey et al., 2019; Liu and Palmer, 2021), falling
prices can have affect default independent of the frictions associated with negative equity. Lazear
(2012) documents the comovement of volume and price move together in housing markets, with the
consequence being that housing-market illiquidity will be particularly acute when prices are falling.
Even above-water owners in areas experiencing recent price declines may be unable to sell in the face
of a thin market of spooked buyers. Still, there is strong evidence that negative equity is responsible
for much of the effect of prices on defaults and that the differential prevalence of negative equity
across cohorts explains most of the observed increase in cohort-level default rates.
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Figure A1: Cumulative Prepayment Rate by Origination Cohort
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Notes: Figure plots the Kaplan-Meier estimate of the fraction of each cohort that has terminated
by prepayment within a given number of months since origination. Prepayment means repayment
in full such as through refinancing or selling.
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Figure A2: Subprime Share by Instrument Quartile

I. Historical Cyclicality II. Regional Sensitivity
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III. Land Unavailability IV. Public Headquarters
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Notes: Figures plot average subprime market share by quartile of the indicated instrument. Sub-
prime market shares are calculated using HMDA data as the fraction of mortgages originated in a
given year that were made by a lender on the HUD subprime lender’s list in any year after resid-
ualizing for CBSA fixed effects. Cyclicality is measured as the standard deviation of one month
changes to the log home price index from 1980-1995, as defined in equation (16) in the text. Re-
gional sensitivity from Guren et al. (2021) is the sensitivity of each CBSA’s price index to a regional
price index. Land unavailability from Saiz (2010) is the share of land unavailable for development.
Public headquarters from Choi et al. (2016) is the ratio of the total book value of publicly traded
companies headquartered in each MSA to that MSA’s income. See section 6.2.4 for more details.
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Figure A3: Unemployment Rate by Instrument Quartile

I. Historical Cyclicality II. Regional Sensitivity
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Notes: Figures plot average subprime market share by quartile of the indicated instrument. Sub-
prime market shares are calculated using HMDA data as the fraction of mortgages originated in a
given year that were made by a lender on the HUD subprime lender’s list in any year after resid-
ualizing for CBSA fixed effects. Cyclicality is measured as the standard deviation of one month
changes to the log home price index from 1980-1995, as defined in equation (16) in the text. Re-
gional sensitivity from Guren et al. (2021) is the sensitivity of each CBSA’s price index to a regional
price index. Land unavailability from Saiz (2010) is the share of land unavailable for development.
Public headquarters from Choi et al. (2016) is the ratio of the total book value of publicly traded
companies headquartered in each MSA to that MSA’s income. See section 6.2.4 for more details.
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Figure A4: Testing Whether Alternative Instruments Predict FICO Scores

I. Regional Sensitivity II. Social Network
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Notes: Figures plot regression coefficients of origination FICO scores regressed on origination-
month indicators interacted with the indicated instrument in each panel as defined in 6.2.4. Each
instrument has been standardized such that plotted coefficients represent the relationship between
a one standard deviation increase in the indicated instrument in the given month and the average
value of origination FICO scores. All regressions control for CBSA fixed effects, cohort main effects,
baseline hazard dummies, and the remaining mortgage and borrower characteristics used as controls
in Table 2. Dashed lines plot 95% confidence intervals clustered at the CBSA level.
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Figure A5: Testing Whether Alternative Instruments Predict DTI Ratios

I. Regional Sensitivity II. Social Network
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Notes: Figures plot regression coefficients of origination back-end debt-to-income ratios regressed
on origination-month indicators interacted with the indicated instrument in each panel as defined in
6.2.4. Each instrument has been standardized such that plotted coefficients represent the relation-
ship between a one standard deviation increase in the indicated instrument in the given month and
the average value of origination DTI ratios. All regressions control for CBSA fixed effects, cohort
main effects, baseline hazard dummies, and the remaining mortgage and borrower characteristics
used as controls in Table 2. Dashed lines plot 95% confidence intervals clustered at the CBSA level.
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Figure A6: Testing Whether Alternative Instruments Predict CLTV Ratios

I. Regional Sensitivity II. Social Network
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Notes: Figures plot regression coefficients of origination combined loan-to-value ratios regressed on
origination-month indicators interacted with the indicated instrument in each panel as defined in
6.2.4. Each instrument has been standardized such that plotted coefficients represent the relation-
ship between a one standard deviation increase in the indicated instrument in the given month and
the average value of origination CLTV ratios. All regressions control for CBSA fixed effects, cohort
main effects, baseline hazard dummies, and the remaining mortgage and borrower characteristics
used as controls in Table 2. Dashed lines plot 95% confidence intervals clustered at the CBSA level.
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Figure A7: Testing Whether Alternative Instruments Predict Owner Occupied Status

I. Regional Sensitivity II. Social Network
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Notes: Figures plot regression coefficients of origination stated owner-occupied status regressed on
origination-month indicators interacted with the indicated instrument in each panel as defined in
6.2.4. Each instrument has been standardized such that plotted coefficients represent the relation-
ship between a one standard deviation increase in the indicated instrument in the given month
and the average owner occupancy rate. All regressions control for CBSA fixed effects, cohort main
effects, baseline hazard dummies, and the remaining mortgage and borrower characteristics used as
controls in Table 2. Dashed lines plot 95% confidence intervals clustered at the CBSA level.
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Figure A8: First-Stage Plots for Combined Loan-to-Value Ratio Components
I. Actual vs. Scheduled Log Principal Balance

II. Actual vs. Predicted Log Sale Price

III. Assessed vs. Counterfactual Property Values

Notes: Panel I plots actual log principal balances versus log balances corresponding to the 30-year fixed-
rate mortgage amortization schedule. Panel II plots log sale prices against log origination amounts. Panel
III plots property values against counterfactual values, imputed using home price indices predicted using
long-run local variation in home-price cyclicality. Solid lines show the fitted bivariate linear regression line.
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Table A1: Default Hazard Model Estimates Controlling for Borrower Cells

(1) (2) (3) (4)

2004 Cohort 0.188*** 0.197*** 0.094 0.101
(0.069) (0.069) (0.066) (0.067)

2005 Cohort 0.519*** 0.525*** 0.190*** 0.196***
(0.087) (0.086) (0.068) (0.066)

2006 Cohort 0.579*** 0.574*** 0.045 0.038
(0.121) (0.118) (0.086) (0.084)

2007 Cohort 0.466*** 0.464*** -0.107 -0.108
(0.116) (0.117) (0.084) (0.085)

Δlog(HPI) -3.857*** -3.856***
(0.152) (0.153)

CBSA Fixed Effects X X X X
Origination Characteristics X X
Borrower Cell Fixed Effects X X
Observations 1,224,716 1,201,349 1,224,716 1,201,349
Log likelihood -42,498 -41,998 -42,033 -41,543

Notes: Table reports maximum-likelihood estimates of the default hazard model given in equations
(2) and (14) in the text. Origination characteristics controls in columns 1 and 3 include FICO
score, debt-to-income (DTI) ratio, a full documentation of income indicator, an owner-occupied
indicator, the combined loan-to-value ratio, the mortgage interest rate, and indicator variables for
adjustable-rate mortgages, cash-out refinance mortgages, mortgages with an interest-only period,
balloon mortgages, and mortgages accompanied by additional second liens. Columns 2 and 4 in-
stead control for indicators of each borrower type, with 144 types defined as unique combinations of
20-point FICO bins, 10-point DTI bins, 10-point CLTV bins, and indicators for full-documentation
status, adjustable-rate mortgages, mortgages with an interest-only period, balloon mortgages, and
mortgages accompanied by additional second liens. The change in log(HPI) is the 12-month differ-
ence in the log of the CBSA-level CoreLogic HPI. All specifications include indicator variables for
each value of loan age as a nonparametric baseline hazard function estimate. Standard errors in
parentheses are clustered at the CBSA level.
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Table A2: Delinquency Hazard Model Estimates

(1) (2) (3) (4) (5)

2004 Cohort 0.23*** 0.24*** 0.19*** 0.18*** 0.18***
(0.05) (0.05) (0.05) (0.05) (0.04)

2005 Cohort 0.70*** 0.55*** 0.51*** 0.33*** 0.35***
(0.06) (0.05) (0.05) (0.04) (0.04)

2006 Cohort 1.11*** 0.80*** 0.79*** 0.43*** 0.45***
(0.09) (0.08) (0.06) (0.06) (0.05)

2007 Cohort 1.17*** 0.92*** 0.80*** 0.50*** 0.52***
(0.09) (0.09) (0.07) (0.06) (0.05)

Δlog(HPI) -2.89*** -3.09*** -2.94***
(0.09) (0.11) (0.19)

∆log(HPI) Fitted Residuals -0.21
(0.23)

CBSA Fixed Effects X X X X
Origination Characteristics X X X
Observations 941,275 941,275 941,275 941,275 940,956
Log likelihood -67,867 -65,516 -66,799 -65,009 -64,981

Notes: Table reports maximum-likelihood estimates of a delinquency hazard model replacing the
default dependent variable in equation (2) with an indicator equal to one the first month a loan
is marked as at least 90 days past due. The first-stage partial F -statistic in column (5) is 26.
All specifications include indicator variables for each value of loan age as a nonparametric baseline
hazard. Standard errors in parentheses are clustered at the CBSA level. See notes to Table 2.
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Table A3: Effect of Current Combined Loan-to-Value Ratio on Control-Function Default Hazard

(1) (2) (3) (4) (5) (6)

2004 Cohort 0.202*** 0.188*** 0.127** 0.111* 0.107* 0.092
(0.066) (0.064) (0.063) (0.060) (0.061) (0.063)

2005 Cohort 0.424*** 0.348*** 0.138** 0.099* 0.035 0.095
(0.075) (0.068) (0.063) (0.059) (0.059) (0.063)

2006 Cohort 0.317*** 0.159* -0.185** -0.213*** -0.338*** -0.146*
(0.096) (0.083) (0.076) (0.065) (0.065) (0.077)

2007 Cohort 0.143 -0.055 -0.417*** -0.433*** -0.588*** -0.279***
(0.096) (0.084) (0.078) (0.077) (0.076) (0.085)

Underwater 0.683*** 0.296***
(0.060) (0.035)

12-month Δlog(HPI) -3.221*** -5.080*** -5.509*** -4.814***
(0.237) (0.281) (1.071) (0.371)

CLTV Fitted Residuals 0.007*** 0.025*** 0.011***
(0.000) (0.002) (0.001)

Δlog(HPI) Fitted Residuals 2.199*** 2.514*** 2.170***
(0.344) (0.352) (0.495)

Unemployment Rate -0.050***
(0.013)

CBSA Fixed Effects X X X X X X
Origination Characteristics X X X X X X
CLTV Linear Spline X X X X
Observations 1,037,634 1,037,634 1,037,634 1,037,581 1,037,581 1,036,611
Log likelihood -35,935 -35,723 -35,477 -35,479 -35,366 -35,329

Notes: Table reports maximum-likelihood estimates of the default hazard model given in equations
(2) and (D.1) in the text. Current combined loan-to-value ratios (CLTVs) are calculated by Loan-
Performance as the total outstanding principal on a loan divided by an automated assessing model’s
estimate of the market value of each home. Underwater is an indicator for CLTV>1. The linear
spline is defined by equation (D.2) in the text. All specifications include individual-level controls
for origination characteristics, CBSA fixed effects, and indicator variables for each value of loan age
as a nonparametric baseline hazard function estimate. Sample size decreases in column 6 because
not all sample CBSAs have BLS unemployment rates available. Standard errors in parentheses are
clustered at the CBSA level.
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Table A4: Nonparametric Control-Function Estimates of Default Hazard

(1) (2) (3) (4) (5) (6)

2004 Cohort 0.127** 0.121** 0.121** 0.083 0.077 0.078
(0.057) (0.057) (0.057) (0.058) (0.058) (0.058)

2005 Cohort 0.362*** 0.336*** 0.339*** 0.142*** 0.117** 0.120**
(0.053) (0.054) (0.054) (0.055) (0.056) (0.056)

2006 Cohort 0.392*** 0.358*** 0.359*** -0.034 -0.066 -0.064
(0.057) (0.058) (0.058) (0.060) (0.061) (0.061)

2007 Cohort 0.146** 0.121* 0.120* -0.196*** -0.219*** -0.219***
(0.066) (0.067) (0.068) (0.070) (0.070) (0.071)

12-month Δlog(HPI) -4.381*** -4.753*** -4.672*** -4.597*** -4.957*** -4.889***
(0.255) (0.262) (0.280) (0.260) (0.267) (0.275)

Δlog(HPI) Fitted Residuals 0.977*** 0.310 0.671 1.033*** 0.453 0.746*
(0.315) (0.353) (0.432) (0.319) (0.356) (0.423)

(Δlog(HPI) Fitted Residuals)2 -4.516*** -1.198 -4.855*** -1.799
(1.552) (3.542) (1.601) (3.474)

(Δlog(HPI) Fitted Residuals)3 22.778*** -8.895 18.849** -6.003
(7.342) (26.892) (7.485) (25.219)

(Δlog(HPI) Fitted Residuals)4 -75.179 -70.659
(67.389) (65.476)

(Δlog(HPI) Fitted Residuals)5 291.839 204.388
(355.441) (335.377)

CBSA FE X X X X X X
Origination Characteristics X X X
Observations 1,224,716 1,224,716 1,224,716 1,224,716 1,224,716 1,224,716
Log likelihood -43,137 -43,114 -43,112 -42,028 -42,008 -42,006

Notes: Table reports maximum-likelihood control-function estimates of the default hazard model
given in equations (2) and (19) in the text with the first stage given by (17). The change in log(HPI)
is the 12-month difference in the log of the CBSA-level CoreLogic HPI. Fitted residuals are estimated
from a linear first stage regression of the 12-month change in the log price index on the instruments
and remaining controls. Origination characteristics include FICO score, debt-to-income (DTI) ratio,
a full documentation of income indicator, an owner-occupied indicator, the combined loan-to-value
ratio, the mortgage interest rate, and indicator variables for adjustable-rate mortgages, cash-out
refinance mortgages, mortgages with an interest-only period, balloon mortgages, and mortgages
accompanied by additional second liens. All specifications include indicator variables for each value
of loan age as a nonparametric baseline hazard. Standard errors in parentheses are adjusted for
two-stage estimation by GMM and clustered at the CBSA level.
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Table A5: Default Hazard Model Estimates Accounting for Misrepresented Mortgage Characteristics

(1) (2) (3) (4)

2004 Cohort 0.223*** 0.188*** 0.167**
(0.071) (0.069) (0.076)

2005 Cohort 0.709*** 0.519*** 0.541***
(0.097) (0.087) (0.097)

2006 Cohort 0.984*** 0.579*** 0.619***
(0.129) (0.121) (0.134)

2007 Cohort 0.800*** 0.466*** 0.494***
(0.116) (0.116) (0.129)

Share Misreporting Owner Occupancy 0.054
(0.712)

Share Overstating Value by 20%+ -0.948***
(0.349)

Share Unreported Second Lien 2.1689**
(1.032)

Owner Occupied -0.509*** -0.486***
(0.053) (0.084)

Owner Occupied × Share Misreporting Occupancy 0.186
(1.012)

CLTV Ratio 2.203*** 3.673***
(0.180) (0.646)

CLTV × Share Overvalued by 20%+ -5.375***
(1.314)

Has Second Lien 0.153*** 0.195
(0.037) (0.136)

Has Second Lien × Share Misreporting Second Lien -0.605
(1.267)

CLTV × Share Misreporting Second Lien -2.251
(4.617)

CBSA Fixed Effects X X X
Other Origination Characteristics X X
Observations 1,025,174 1,224,716 1,224,716 1,025,174
p-value for fraud effects jointly equal zero 0.008 0.002

Notes: Table reports maximum-likelihood estimates of the default hazard model given in equations
(2) and (14) in the text. Share misreporting owner occupancy, share overstating value by at least
20%, and share with an unreported second lien are measured at the CBSA level by Griffin and
Maturana (2016). Reported p-values for fraud effects test the null hypothesis that all of the fraud
effects in the given column are jointly equal to zero. Other origination characteristics include FICO
score, debt-to-income (DTI) ratio, a full documentation of income indicator, the mortgage interest
rate, and indicator variables for adjustable-rate mortgages, cash-out refinance mortgages, mortgages
with an interest-only period, and balloon mortgages. All specifications include indicator variables
for each value of loan age as a nonparametric baseline hazard. Standard errors in parentheses are
clustered at the CBSA level.
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Table A6: Default Hazard Model Estimates Allowing Cohort-Specific Fraud Effects

(1) (2) (3) (4)

2004 Cohort 0.188*** 0.153* 0.198** 0.332***
(0.069) (0.085) (0.081) (0.084)

2005 Cohort 0.519*** 0.544*** 0.496*** 0.849***
(0.087) (0.103) (0.095) (0.115)

2006 Cohort 0.579*** 0.591*** 0.531*** 0.984***
(0.121) (0.140) (0.115) (0.166)

2007 Cohort 0.466*** 0.462*** 0.400*** 0.839***
(0.116) (0.133) (0.116) (0.153)

Fraud Measure
Owner Occ 2nd Lien Overvalued

2004 Cohort × Fraud Measure 0.668 -0.782 -1.461***
(1.504) (2.072) (0.548)

2005 Cohort × Fraud Measure -0.371 2.326 -3.226***
(1.505) (2.610) (0.723)

2006 Cohort × Fraud Measure 0.800 3.882 -4.188***
(1.877) (3.679) (1.057)

2007 Cohort × Fraud Measure 0.994 3.811 -3.940***
(1.840) (3.416) (0.940)

CBSA Fixed Effects X X X X
Origination Characteristics X X X X
Observations 1,224,716 1,028,846 1,112,903 1,109,112
p-value for fraud effects jointly equal zero 0.40 0.26 0.001

Notes: Table reports maximum-likelihood estimates of the default hazard model given in equations
(2) and (14) in the text. Fraud measures in interaction terms in columns 2-4 indicated by headers
are share misreporting owner occupancy, share overstating value by at least 20%, and share with
an unreported second lien, respectively, and each measured at the CBSA level by Griffin and Mat-
urana (2016). Reported p-values for fraud effects test the null hypothesis that all of the cohort
× fraud measure effects in the given column are jointly equal to zero. Origination characteris-
tics include FICO score, debt-to-income (DTI) ratio, a full documentation of income indicator,
an owner-occupied indicator, the combined loan-to-value ratio, the mortgage interest rate, and in-
dicator variables for adjustable-rate mortgages, cash-out refinance mortgages, mortgages with an
interest-only period, balloon mortgages, and mortgages accompanied by additional second liens.
All specifications include indicator variables for each value of loan age as a nonparametric baseline
hazard. Standard errors in parentheses are clustered at the CBSA level.
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Table A7: Counterfactual 5-Year Default Rates by Cohort

Counterfactual Scenario Predicted 5-Year Cumulative Default Rate
Prices Loan Composition 2003 2004 2005 2006 2007 Overall

(1) Actual Actual 23.1% 31.5% 40.5% 44.1% 36.4% 36.7%
(2) Actual 2003 21.0% 28.7% 35.2% 33.3% 28.2% 30.7%
(3) Actual 2006 28.0% 37.3% 44.8% 42.6% 36.7% 39.5%
(4) 2003 Actual 21.5% 23.1% 26.2% 26.3% 21.3% 24.5%
(5) 2006 Actual 35.7% 38.0% 41.8% 41.7% 34.6% 39.5%
(6) 2003 2003 19.5% 20.4% 21.2% 17.8% 15.1% 19.4%
(7) 2006 2006 43.2% 44.9% 46.0% 39.4% 34.3% 42.7%
(8) Attenuated Actual 23.2% 30.7% 38.9% 42.0% 34.5% 35.3%
(9) Attenuated 2003 21.1% 27.9% 33.5% 31.4% 26.6% 29.4%
(10) Attenuated 2006 28.2% 36.4% 43.0% 40.3% 34.7% 38.1%
(11) 2003 Attenuated 2003 19.7% 20.7% 21.5% 18.0% 15.2% 19.6%
(12) 2006 Attenuated 2006 40.9% 42.5% 43.6% 37.2% 32.3% 40.4%

Number of Loans 4,407 7,251 9,444 8,336 2,734 32,172

Notes: Table reports estimated cumulative default rates under the indicated counterfactual scenarios
of prices and loan characteristics. Cumulative default rates are defined as the predicted share of loans
that would have defaulted within 60 months of origination. Scenarios using actual characteristics
retain observed covariates. Scenarios using a given year’s prices replace all price changes with the
average price changes faced by the given year’s borrowers at each value of loan age. Scenarios using
a given year’s loan characteristics assign all loans the average characteristics from the indicated
cohort. Attenuated price scenarios in rows 8-10 replace actual 2003-2010 price changes with smaller
magnitude price changes that Griffin et al. (2021) estimate would have prevailed if the subprime
market share were zero. Attenuated scenarios in rows 11 and 12 replace all price changes with the
average price changes faced by the 2003 or 2006 cohorts, respectively, attenuated using Griffin et
al. (2021) estimates. See section 7 for more details.
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Table A8: Default Hazard Model Estimates Allowing for Unobserved Heterogeneity

(1) (2) (3) (4)

2004 Cohort 0.254*** 0.227*** 0.137** 0.108
(0.089) (0.085) (0.069) (0.072)

2005 Cohort 0.924*** 0.659*** 0.407*** 0.246***
(0.123) (0.112) (0.086) (0.074)

2006 Cohort 1.361*** 0.782*** 0.470*** 0.120
(0.175) (0.155) (0.132) (0.096)

2007 Cohort 1.079*** 0.670*** 0.235** -0.032
(0.162) (0.153) (0.114) (0.095)

Δlog(HPI) -3.685*** -4.025***
(0.140) (0.169)

CBSA FE X X X
Origination Characteristics X X
Observations 1,224,716 1,224,716 1,224,716 1,224,716
Log likelihood -44,295 -42,424 -43,142 -41,997

Notes: Table reports maximum-likelihood estimates of the default hazard model given in equations
(13), (B.1), and (B.2) in the text. The change in log(HPI) is the 12-month difference in the log of the
CBSA-level CoreLogic HPI. Origination characteristics include FICO score, debt-to-income (DTI)
ratio, a full documentation of income indicator, an owner-occupied indicator, the combined loan-to-
value ratio, the mortgage interest rate, and indicator variables for adjustable-rate mortgages, cash-
out refinance mortgages, mortgages with an interest-only period, balloon mortgages, and mortgages
accompanied by additional second liens. All specifications include indicator variables for each value
of loan age as a nonparametric baseline hazard. Standard errors in parentheses are clustered by
CBSA.
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Table A9: First-Stage Results for Combined Loan-to-Value Ratios

(1) (2) (3) (4) (5)

log(Origination Amount) -0.644*** -0.725*** -0.952*** -0.720*** -0.972***
(0.047) (0.042) (0.046) (0.042) (0.046)

log(Principal Balance) 0.791*** 0.918*** 1.065*** 0.914*** 1.079***
(0.044) (0.042) (0.047) (0.042) (0.046)

Predicted Appreciation -1.253*** -0.623*** -0.606*** -0.706*** -0.468***
(0.160) (0.136) (0.137) (0.122) (0.111)

2004 Cohort -0.001 0.003 0.029** 0.013
(0.008) (0.007) (0.012) (0.010)

2005 Cohort 0.030** 0.038*** 0.080*** 0.047**
(0.013) (0.013) (0.022) (0.019)

2006 Cohort 0.091*** 0.110*** 0.153*** 0.100***
(0.021) (0.022) (0.035) (0.030)

2007 Cohort 0.156*** 0.173*** 0.227*** 0.136***
(0.028) (0.028) (0.044) (0.036)

Unemployment Rate 0.071***
(0.008)

Baseline hazard X X X X
CBSA Fixed Effects X X X X
Origination characteristics X X X
Price instruments X X
Observations 1,045,146 1,045,146 1,045,146 1,045,146 1,036,611
R-squared 0.24 0.36 0.42 0.36 0.46
Partial F-stat 243.6 334.2 234.8 48.0 221.2

Notes: Table estimates first stage specifications detailed by equation (D.6) by OLS. Dependent
variable is current combined loan-to-value ratio, calculated by CoreLogic as the total outstanding
principal on a loan divided by an automated assessing model’s estimate of the market value of
each home. Origination characteristics include FICO score, debt-to-income (DTI) ratio, a full
documentation of income indicator, an owner-occupied indicator, the combined loan-to-value ratio,
the mortgage interest rate, and indicator variables for adjustable-rate mortgages, cash-out refinance
mortgages, mortgages with an interest-only period, balloon mortgages, and mortgages accompanied
by additional second liens. Sample size decreases in column 5 because not all sample CBSAs have
BLS unemployment rates available. Standard errors are clustered by CBSA.
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