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ABSTRACT

Using U.S. administrative data on worker earnings, we show that increases in risk premia lead to 
lower labor earnings, particularly for lower-paid workers. These declines are primarily driven by 
job separations. We build an equilibrium model of labor market search that quantitatively replicates 
the observed heterogeneity in labor market dynamics across worker earnings levels. Our findings 
underscore the role of time-varying risk premia as a key driver of labor market fluctuations and 
highlight the importance of both the job creation and the job destruction margins in understanding 
the heterogeneity in worker outcomes over the business cycle.
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Why does unemployment rise in recessions? The textbook answer, rooted in the Diamond,
Mortensen, and Pissarides (DMP) search-and-matching paradigm, is that labor productivity is lower
in recessions and therefore firms reduce their demand for workers. However, recent attempts to
accurately measure productivity shocks find that they are, if anything, negatively related to hours and
employment (Basu, Fernald, and Kimball, 2006). In addition, in realistic calibrations of the canonical
DMP model, even large productivity shocks have small effects on unemployment (Shimer, 2005).
An emerging literature, starting from the seminal work of Hall (2017), argues that countercyclical
increases in discount rates (risk premia) can generate rises in unemployment and declines in output.1

The key idea in Hall (2017) is that firms’ hiring decisions have upfront costs but long-term benefits—
they are an investment decision—and therefore firms hire fewer workers when discount rates rise.
Subsequent work has proposed quantitative equilibrium labor market models that incorporate
this idea and deliver realistic unemployment fluctuations (see, e.g. Kehoe, Lopez, Midrigan, and
Pastorino, 2023). However, direct empirical support for this mechanism has been scarce.

In this paper, we provide empirical evidence that fluctuations in risk premia are a significant driver
of both employment fluctuations and worker earnings. To do so, we employ administrative data on
workers’ wage earnings in the United States combined with a composite index of existing measures
of risk premium shocks. We then interpret the resulting estimates through the lens of a structural
model of labor market search. A key insight that emerges from our analysis is that heterogeneity
in the dynamics of the separation rate is crucial for understanding the observed heterogeneity in
earnings exposures across workers, even though the time-series variation in the separation rate plays
a secondary role in driving fluctuations in the unemployment rate (Shimer, 2012).

We begin by documenting a new stylized fact: an increase in risk premia is followed by a decline
in worker earnings that is heterogeneous across workers. The decline in earnings is significantly
larger and more persistent for workers with lower earnings relative to those of other workers in
the same firm. Importantly, increases in risk premia are associated with both an increase in the
likelihood of job loss for lower-paid workers and larger earnings losses conditional on separation.2

These patterns are in sharp contrast to the exposure of worker earnings to firm productivity shocks,
which is higher for higher-paid workers (a pattern consistent with the evidence in Friedrich, Laun,
Meghir, and Pistaferri, 2019) and primarily affects worker earnings through the intensive margin.

A natural concern is that fluctuations in risk premia are countercyclical (Campbell and Cochrane,
1999), hence it is not obvious that we are isolating the effect of risk premia from the business cycle

1In addition to Hall (2017), there is a long list of studies in macroeconomics and finance that have emphasized the
importance of time-varying risk premia for generating significant fluctuations in aggregate quantities and prices (e.g.
Campbell and Cochrane, 1999; Smets and Wouters, 2003, 2007; Barro, 2009; Wachter, 2013; Christiano, Motto, and
Rostagno, 2014; Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry, 2018; Kilic and Wachter, 2018; Auclert,
Rognlie, and Straub, 2020; Itskhoki and Mukhin, 2021; Basu, Candian, Chahrour, and Valchev, 2021).

2We proxy for involuntary job loss by a worker experiencing a nonemployment spell or leaving her current employer
and simultaneously experiencing a significant decline in earnings.
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itself. One potential concern, for instance, is that lower-paid workers are employed in weaker firms
that fare worse in recessions than the average firm. However, our definition of lower-paid workers
is based on the within-firm distribution of pay, and therefore these differences in worker earnings
responses are unlikely to reflect firm heterogeneity. Indeed, when we focus purely on within-firm
fluctuations, we find that increases in risk premia lead to a decline in earnings for the lowest-paid
workers relative to other workers in the same firm and calendar year.

More generally, however, there are other alternative explanations that could be harder to rule
out. For instance, recessions may coincide with certain types of shocks that lead firms to lay off their
lower-paid workers. These shocks could either be common across firms (for example, fluctuations in
aggregate demand) or could be firm-specific and their intensity can be correlated with the business
cycle. Using several empirical strategies, we argue that fluctuations in risk premia likely represent
a driver of employment and earnings dynamics that is distinct from other economic forces that
occur during recessions. First, we show that controlling for different measures of firm performance
(revenue or productivity growth) interacted with worker earnings does not materially affect our
estimated sensitivity of worker earnings to risk premium shocks. Second, we include various controls
for the business cycle (aggregate productivity, output, or recession indicators) interacted with worker
earnings, which again has a minimal impact on our estimates. Last, we use a shift-share design
that exploits firms’ heterogeneous exposure to risk premium shocks—but not the business cycle
itself. We find that when risk premia rise, workers in highly exposed firms experience larger earnings
declines relative to workers in less exposed firms. Importantly, these differences are significantly
larger for lower-paid workers than the average worker.

To understand the mechanisms through which risk premia affect worker earnings, we interpret
our estimates through a model with heterogeneous workers, directed labor market search, and
shocks to risk premia that builds on Kehoe, Midrigan, and Pastorino (2019); Kehoe et al. (2023).
Workers are heterogeneous in their general productivity, which is stochastic and persistent over time.
Importantly, nonemployment generates long-lived consequences: worker productivity grows faster
when the worker is employed than when nonemployed. Nonemployed workers endogenously choose
whether to search for a job or remain outside the labor force. Workers’ payoff in nonemployment is
less sensitive to worker productivity than output on the job.

In our model, increases in risk premia lead to lower job creation and higher job destruction—and
both of these channels interact in generating earnings losses for workers when risk premia rise. Since
worker productivity rises faster during employment than nonemployment, the value of employment
has a higher (Macaulay) duration than the value of nonemployment and is therefore more sensitive
to risk premia. An increase in risk premia thus lowers the value of existing matches relative to the
value of nonemployment. This relative decline has the largest impact on lower-skill workers, whose
productivity is expected to grow faster and whose value of employment is closer to their outside
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option than the average worker. Some of the marginal matches are subsequently destroyed, leading
to nonemployment for the affected workers and earnings declines. At the same time, an increase
in risk premia reduces the rate at which firms hire new workers, since the value of new jobs has
declined. As a consequence, job-finding rates decline across the worker skill distribution, and wages
for new matches decline, which further exacerbates earnings losses for affected workers.

We calibrate the model to match the dynamics of asset prices and labor markets. The parameters
governing the dynamics of risk premia are calibrated to match key asset pricing moments, following
Lettau and Wachter (2007). The remaining parameters are calibrated to labor market moments. In
particular, we focus on matching the cross-sectional and time-series variation in separation and job-
finding rates in the data. Using panel data from the Survey of Income and Program Participation
(SIPP), we document that job-finding rates are largely similar across workers with different prior
earnings, not only on average but also in terms of their fluctuations over the business cycle. By
contrast, separations are highly heterogeneous across workers: lower-paid workers face higher average
rates of separation, and these rates increase disproportionately more in recessions relative to higher-
paid workers. These patterns are consistent with existing evidence on separation and finding rates
by age, education, and wealth (Menzio, Telyukova, and Visschers, 2016; Cairó and Cajner, 2018;
Krusell, Mukoyama, Rogerson, and Sahin, 2017). Importantly, our model also generates realistic
responses of job creation and job destruction to risk premium shocks, even though these are not
explicit targets in our calibration. Specifically, the model quantitatively matches both the observed
decline in firm hiring and the increased rate of separations, particularly for lower-paid workers, in
response to increases in risk premia.

Using the calibrated model as a guide, we then revisit the importance of the job finding and
separation margins for labor market fluctuations. Consistent with the stylized facts in Shimer (2012),
in our calibration the job-finding rate is more important than the separation rate for generating
fluctuations in the unemployment rate—a key reason for the existing literature’s focus on the job
creation margin (Hall, 2017; Kehoe et al., 2023). However, the endogenous separation margin is a
crucial driver of heterogeneity in the dynamics of worker earnings. Our calibrated model assigns
approximately two-thirds of the overall decline in worker earnings of lower-paid workers in response
to risk premia to the increased risk of termination. Absent endogenous separations, the model
cannot quantitatively reproduce the observed differences in earnings responses to risk premium
shocks across workers. These results indicate that both channels are quantitatively important for
labor market dynamics, but their relative importance depends on the exact object of focus.

A key advantage of our data is that it allows us to directly test the predictions of our model
that are specific to the mechanisms through which risk premia affect worker earnings. The model
predicts that worker exposure to risk premium shocks is driven by the interaction of distance to the
separation threshold and duration of the match surplus. Holding current worker earnings constant,
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workers with higher expected earnings growth should be more adversely affected by risk premia—
because their employment surplus has a longer duration—than workers with lower expected earnings
growth. Consistent with this prediction, we find that workers with higher expected earnings growth
experience larger earnings declines when risk premia rise than workers with lower expected growth,
and that this difference in exposure is concentrated among low-earning workers.3 This empirical
fact is harder to rationalize under an alternative where our results are driven by unobserved time-
varying firm heterogeneity: in response to a negative firm shock, firms would need to fire workers
that have higher expected earnings growth but keep workers with lower earnings growth even when
both groups are paid similarly today.

Importantly, our model is also able to quantitatively replicate the realized paths of key labor
market variables over the business cycle. Specifically, we feed into the calibrated model our empirical
measure of risk premium shocks and compare the model-implied series to their empirical equivalents.
We find that fluctuations in risk premia account for a significant fraction of labor market dynamics:
the correlation between these model-implied series and their empirical counterparts ranges from
approximately 50% to 80% and the two sets of series have comparable volatility. Notably, our
model can also replicate the slow recovery of employment after the Great Recession. This slow
recovery is driven by elevated risk premia post financial crisis leading to depressed firm labor demand
(job creation), as well as a decline in human capital among nonemployed workers resulting from
protracted nonemployment spells. Last, our model can also replicate the realized path of labor
income inequality. Since increases in risk premia are associated with earnings declines for lower-paid
workers, our model can replicate the persistent rise in left-tail (and not right-tail) income inequality
following recessions (Heathcote, Perri, and Violante, 2020).

Our work contributes to a voluminous literature that focuses on resolving the unemployment
volatility puzzle noted by Shimer (2005): the canonical DMP model (Mortensen and Pissarides, 1994)
is unable to generate a realistic level of volatility in the unemployment rate. Hall (2017) proposes a
resolution of the puzzle: an increase in discount rates during recessions lowers firms’ willingness to
search for workers (post vacancies) and therefore leads to higher unemployment. Kehoe et al. (2023)
model countercyclical variation in the market price of risk in the spirit of Campbell and Cochrane
(1999) and show how doing so can overcome the challenges posed by existing models, which have
implications that conflict with the high cyclicality of the opportunity cost of labor (Chodorow-Reich
and Karabarbounis, 2016), the high cyclicality of the user cost of labor (Kudlyak, 2014), or the low

3A similar logic implies that the net value of employment should be more sensitive to risk premium shocks for
workers with longer employment horizons. Consistent with this prediction, we find that exposure to risk premium
shocks declines with age, again controlling for current earnings.
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volatility of risk-free rates in the data.4 We contribute to this literature by providing direct evidence
using administrative micro data and a new measure of risk premium shocks that fluctuations in
discount rates are a significant driver of employment fluctuations and worker earnings, thereby
providing direct support for the work of Hall (2017); Kehoe et al. (2019, 2023).

Last, our work also connects to a burgeoning literature that examines employment outcomes in
response to firm-level financial shocks (Chodorow-Reich, 2014; Giroud and Mueller, 2017; Berton,
Mocetti, Presbitero, and Richiardi, 2018; Caggese, Cuñat, and Metzger, 2019; Benmelech, Frydman,
and Papanikolaou, 2019; Benmelech, Bergman, and Seru, 2021). Closest to our work is Caggese
et al. (2019), who show that exporting firms with worse credit ratings facing an adverse terms-of-
trade shock are more likely to fire workers with shorter tenures. Caggese et al. (2019) interpret their
finding as evidence for inefficiencies arising from financial frictions, since shorter-tenured workers also
have higher future expected productivity. This prediction is consistent with our model since higher
future productivity leads to a match surplus that is more sensitive to fluctuations in risk premia.

1 Risk Premium Shocks and Worker Earnings
We begin by documenting a new stylized fact: low-earning workers are significantly more exposed
to shocks to risk premia than workers in the middle or the top of the earnings distribution. This
heterogeneity in worker exposures is in sharp contrast to that of earnings exposure to productivity
shocks, which is increasing in the worker’s relative earnings compared to other workers in the same
firm.

1.1 Data and Methodology

We begin by describing the data that we rely on for our empirical analysis.

Worker Earnings

Our baseline analysis focuses on workers employed in public firms. We use a 20% random sample
of worker earnings data from the Longitudinal Employer–Household Dynamics (LEHD) database
matched to firm-level data from Compustat. The resulting dataset is a panel of earnings and
employer information for U.S. workers covering years between 1990 and 2019. Appendix A.1 contains
further details on the sample construction.

Our main outcome variable is the growth rate in worker earnings. We follow Autor, Dorn,
Hanson, and Song (2014) and Guvenen, Ozkan, and Song (2014) and focus on cumulative age-

4In related work, Kilic and Wachter (2018) focus on time-varying disaster risk as a source of unemployment
fluctuations. As in Hall (2017), the model relies on wage rigidities leading to inefficient allocations and a low cyclicality
of the user cost of labor. Mitra and Xu (2020) propose a model based on learning about match quality through
which increases in discount rates lead to larger employment losses for young workers and provide empirical support
using aggregate data. Boroviča and Borovičková (2018) argue that a stochastic discount factor that is consistent with
observed properties of asset returns can only partially explain the Shimer puzzle. The fact that our model not only
matches labor market moments but also financial market moments addresses their concern.
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adjusted earnings growth rates:

gi,t:t+h ≡ wi,t+1,t+h − wi,t−2,t, wi,τ1,τ2 ≡ log
(∑τ2

τ=τ1 real wage earningsi,τ∑τ2
τ=τ1 D(agei,τ )

)
. (1)

The term D(agei,τ ) is an adjustment for the average life-cycle path in worker earnings. Focusing on
growth in average earnings over multiple horizons in (1) emphasizes persistent changes in earnings.
To be included in the sample in base year t, a worker has to be employed by a public firm in
Compustat in that year. However, given that we can track individuals over time regardless of
employment status, a worker’s labor income growth in (1) will include any earnings from different
employers, public or private, and any periods of nonemployment (with zero reported wage earnings).
We winsorize all worker earnings growth rates gi,t:t+h at the 1st and 99th percentiles by year.

The top two panels of Appendix Table A.1 summarize our key variables of interest. Panel A
shows that the average worker in our sample is 42 years old and 58 percent of our observations
correspond to male workers. In Panel B, we summarize the distribution of our measure of real
earnings growth gi,t:t+h over various horizons. We see that the earnings growth of individual workers
is substantially volatile and negatively skewed.

Worker heterogeneity plays an important role in our analysis. Therefore, in Panel B we also
report moments separately across the earnings distribution. To do so, we rank workers by their last
three years of total age-adjusted wage earnings, wi,t−2,t, relative to other workers in the same firm.
Examining Panel B, we see that the volatility and negative skewness of worker earnings growth
varies by workers’ labor income level, consistent with Guvenen, Karahan, Ozkan, and Song (2021).

Risk Premium Shocks

We create an index capturing fluctuations in risk premia due to either fluctuations in the level of
risk or fluctuations in the risk-bearing capacity of investors. To do so, we rely on existing series
from the literature. These include the excess bond premium from Gilchrist and Zakrajšek (2012);
Robert Shiller’s CAPE Ratio; the Chicago Fed’s National Financial Conditions Index (NFCI); the
financial uncertainty index of Jurado, Ludvigson, and Ng (2015); the risk appetite index of Bauer,
Bernanke, and Milstein (2023); the risk aversion index of Bekaert, Engstrom, and Xu (2022); the
variance risk premium from Bekaert and Hoerova (2014); the CBOE VIX index; and the SVIX of
Martin (2016). These series are at the monthly level, and we sign the indicators such that high
values indicate elevated risk premia. Appendix A.2 contains additional details.

Since each one of these series is likely a noisy proxy for fluctuations in risk premia, we focus on
their common source of variation. To extract our risk premium shocks from these series, we first
estimate the residuals from an AR(1) process for each series separately (since they have different
levels of persistence), and then we extract the first principal component of these residuals. We
denote the resulting risk premium shocks by ϵrp

t . This series effectively summarizes the information
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in the nine components: the first principal component explains 60% of the overall variation, and the
average (minimum) correlation between ϵrp

t and the residuals of each of these series is 75% (51%).
We plot the resulting time series of risk premium shocks in Figure 1. Our risk premium shocks are

strongly related to fluctuations in financial markets: the contemporaneous correlation between stock
market returns and risk premium shocks is significantly negative at −77%. Most importantly, our
risk premium measure predicts higher excess stock market returns over the medium run (Figure 2)—
consistent with our interpretation of these shocks as shocks to the required rate of return for risky
investments.5 Given the strong link between our risk premium shocks and the stock market, to
interpret the magnitude of risk premium shocks, we scale ϵrp

t so that a 1% shock corresponds to a
1% contemporaneous decline in the stock market.

Not surprisingly, the risk premium shocks are countercyclical: the correlation at an annual
frequency between our risk premium shocks and output growth is −39%. However, examining
Figure 1, we see that there are several periods outside recessions during which risk premia rise.
Some of these events include the Black Monday crash of 1987, the Asian financial crisis of 1997–98,
the WorldCom bankruptcy in 2002, the Greek default and the European sovereign debt crisis of
2010–12, the U.S. credit rating downgrade by S&P in 2011, and the imposition of tariffs on China in
2018. Thus, our risk premium shock series picks up time variation in either (perceived) uncertainty
or risk aversion. Some, though not all, of these events appear to originate in financial markets.

1.2 Worker Earnings Exposure to Risk Premium Shocks

We begin by estimating the following specification:

gi,t:t+h = b ϵrp
t+1 + c ϵtfp

f(i,t),t+1 + d′Zi,t + ηi,t+h. (2)

Here, i indexes workers, while f(i, t) indexes the employer of worker i. The vector of controls Zi,t

includes a third-order polynomial in the log of average earnings over the past three years, the lagged
risk premium index interacted with labor income group dummies, fixed effects for the worker’s
industry, defined at the 2-digit NAICS level, interacted with her labor income bin, and worker
industry × age × gender fixed effects. We cluster standard errors by worker and year.

Our main coefficient of interest is b, which captures a worker’s exposure to risk premium shocks
ϵrp
t constructed in the previous section. Given that (2) is estimated at an annual frequency, and

earnings correspond to a flow variable over a year, we accumulate our risk premium shocks from the
midpoint of the year. Thus, for example, the earnings growth of workers from calendar year 2000 to
2001 is aligned with the cumulative risk premium shock from July 2000 until June 2021.

In our baseline specifications, we control for firm productivity growth, ϵtfp
f,t . To do so, we build

5To construct the level of risk premia from our measured shock series, we compute the exponentially weighted
moving average of ϵrp

t , assuming a decay parameter of 0.0068 per month (consistent with our model calibration in
Section 2 that targets the persistence of the log price-earnings ratio).
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on Olley and Pakes (1996) and İmrohoroğlu and Tüzel (2014) to obtain estimates of annual revenue-
based total factor productivity (TFPR)—Appendix A.3 contains further details. Importantly, we
allow b and c to vary across workers, by interacting the shocks with indicators for the worker’s prior
earnings rank relative to that of other workers in the same firm. Doing so allows us to primarily
focus on worker heterogeneity, rather than firm heterogeneity arising from some firms employing
higher- or lower-paid workers compared to others.

Panel A of Table 1 reports the estimated coefficients b and c from equation (2) over horizons h
of two to five years. Examining how the estimates of b vary across workers with different (relative)
earnings levels reveals our main empirical finding: risk premium shocks ϵrp have a significantly
larger negative impact on the earnings of lower-paid workers, relative to the earnings of more highly
paid workers. These differences are quantitatively significant: over the next two to five years, a
10% increase in ϵrp leads to an approximately 1.8 to 2.2 percentage point decline in earnings for
workers at the bottom of the earnings distribution. Here, recall that we have scaled risk premium
shocks ϵrp

t so that a 1% shock corresponds to a 1% contemporaneous decline in the stock market.
By contrast, earnings at the middle of the earnings distribution (between the median and the 75th
percentile) experience a 0.7 to 1.1 percentage point decline over the same horizon. Contrasting the
estimated coefficients b and c, we see that the patterns of these coefficients as a function of the
worker’s prior relative earnings are sharply different: top workers have somewhat higher exposure to
firm productivity shocks ϵtfp than lower-paid workers—a pattern that is consistent with the existing
literature (Friedrich et al., 2019).

In our baseline analysis, we have restricted the sample to workers employed in publicly traded
firms. Panel B of Table 1 reveals that this restriction does not drive our key empirical finding.
Specifically, in Panel B we analyze a different (5%) sample of workers employed in all public and
private firms. Since our measure of firm productivity is only available for publicly traded firms
in Compustat, when extending the analysis to workers employed in all firms we measure firm
productivity as revenue per worker from the revenue-enhanced Longitudinal Business Database
(LBD) (Haltiwanger, Jarmin, Kulick, and Miranda, 2017). Comparing the estimates in Panel B
with Panel A, we see that the corresponding estimates of b are quantitatively similar, and slightly
larger, when we expand the analysis to all workers.

1.3 Controlling for the Business Cycle

Given that fluctuations in risk premia are countercyclical, a key concern is whether the main driving
force behind our findings is the business cycle and fluctuations in risk premia are a sideshow. One
possibility is that lower-paid workers are employed in firms that are systematically distinct from
the firms that employ higher-paid workers—and those firms are differentially exposed to business
cycle fluctuations. However, recall that we are ranking workers by their earnings relative to other
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workers in the same firm, which strongly ameliorates this concern. That said, to further remove
the impact of firm-specific heterogeneity in business cycle exposure, we next modify our estimating
equation (2) by including firm × year fixed effects as controls. Including firm–year dummies absorbs
a common source of firm heterogeneity in business cycle exposure that affects all workers in the firm.
The downside of doing so is that we can now only identify relative differences in worker earnings
exposure within the same firm. As we see in Columns (1) and (2) of Table 2, controlling for firm–
year effects has essentially no impact on our empirical results: lower-paid workers are significantly
more exposed to risk premium shocks than other workers in the same firm. In particular, a 10%
increase in our risk premium shock is followed by a 1.1 percentage point decline in the earnings of
the lowest-paid workers relative to workers in the middle bin (the omitted category).

Including firm–year effects in our specification ameliorates, but does not fully eliminate, the
main concern. That is, including firm–year fixed effects in our specification still cannot rule out the
possibility that there is variation in firm labor demand over the business cycle that is not captured
by firm TFP and is more relevant for the lowest-paid workers in that firm. This variation can
arise either in response to a common shock (for example, fluctuations in aggregate demand) or in
response to idiosyncratic firm shocks whose volatility is correlated with the business cycle and which
may affect worker earnings asymmetrically.

We address these challenges in several ways. First, we replace firm TFP with growth in the firm’s
total revenue that year. A firm’s total revenue is likely to be more responsive to fluctuations in demand
for a firm’s product than its measured productivity. As we see in Columns (3) and (4) of Table 2, doing
so has no material impact on our estimates. Second, we include direct controls for the business cycle
itself, interacted with the worker’s prior earnings levels relative to her peers: aggregate productivity
growth (Columns (5) and (6)); aggregate output growth (Columns (7) and (8)); and the fraction of the
year spent in a recession according to NBER dates (Columns (9) and (10)). Contrasting the estimates
of b across these columns reveals that including these controls does not materially affect our estimates.

1.4 Exploiting Heterogeneity in Firm Exposure to Risk Premia

So far, we have shown that the earnings of workers with different levels of labor income respond
differently to our measure of risk premium shocks—both in absolute terms and also relative to other
workers in the same firm at the same point in time. However, it is hard to rule out an alternative
interpretation in which lower-paid workers in a firm are differentially exposed to economic conditions
over the business cycle—and this exposure is neither fully captured by their employer’s productivity
or revenue growth nor by aggregate business cycle indicators. Next, we exploit an alternative
empirical strategy that exploits differences in exposure to risk premium shocks at the firm level.
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Firm Exposure to Risk Premium Shocks

We construct a shift-share empirical design that aims to isolate the impact of risk premium shocks
on workers by exploiting heterogeneity in firms’ exposure to these shocks. Given the challenge
in measuring ex-ante heterogeneity in firms’ exposure to risk premium shocks, we use several
proxies. Our first measure of firm exposure to risk premia uses stock returns to directly estimate
the sensitivity of firm valuations to risk premia. We use the CRSP/Compustat merged database
to link historical firm equity returns to the employers in our sample and compute firm-level risk
premium betas at the end of each year by regressing monthly firm equity returns on our measure of
risk premium shocks using a ten-year rolling window. The advantage of this measure is that it gets
at our object of interest directly. The disadvantage is that firm-level betas are typically measured
with significant measurement error (Cochrane, 2009).

Constructing additional measures of firms’ exposure to risk premium shocks requires us to take
a broader view of what these shocks represent. For instance, risk premium shocks can also capture
fluctuations in financial conditions or in the cost of external finance. Indeed, Whited (1992) shows
how models with financial frictions can be isomorphic to one in which firms face a higher effective
discount rate in their investment decisions. With this interpretation in mind, we consider several
additional proxies for firms’ exposure to aggregate financial conditions that are commonly used in
the literature: (minus) the logarithm of firm size (Gertler and Gilchrist, 1994), since smaller firms are
riskier; (minus) the level of cash holdings relative to assets (Jeenas, 2019), since it is related to firms’
dependence on financial markets; and (minus) the distance to default (Ottonello and Winberry, 2020),
since firms closer to default are riskier and therefore more exposed to fluctuations in risk premia.
Last, we follow Almeida, Campello, Laranjeira, and Weisbenner (2011) and compute the amount of
long-term debt that is maturing at years t+1 and t+2 (as of year t−1) relative to total assets, since
firms that need to refinance a significant amount of debt are more sensitive to financial conditions.

Individually, all of these variables are likely noisy proxies for firms’ exposure to risk premium
shocks. To reduce the impact of this measurement error, we again focus on the common source
of variation by extracting the first principal component of these proxies. We denote this principal
component by χf,t and scale it so that its cross-sectional standard deviation is equal to one. Averaged
across years, the first principal component explains 31% of the total cross-sectional variation in the
five exposure measures. Appendix A.4 contains additional details.

To validate whether χf,t indeed captures meaningful heterogeneity in firms’ exposure to risk
premium shocks, we next explore its link with cross-sectional differences in firm employment growth
as risk premia rise by estimating the following specification,

∆ logNf,t:t+1 = (b0 + b1 χf,t) ϵrp
t+1 + c ϵtfp

f,t+1 + d′Zf,t + ηf,t+1. (3)

Here, the outcome variable is employment growth of firm f between years t and t+ 1. Importantly,

10



we now interact our risk premium shocks with the firm-level exposure measure χf,t. The vector of
controls Z includes lagged employment; the lagged risk premium index; and industry fixed effects
(at the two-digit NAICS level) or firm fixed effects and industry × year fixed effects. Since different
states enter the LEHD at different years, we estimate (3) at the firm by state level, with standard
errors clustered by firm and year.

Panel A of Table 3 shows the corresponding estimates from equation (3). Column (1) first
confirms that our risk premium shocks are negatively related to firm employment in the time series:
a 10 percentage point increase in discount rates is associated with a 1.2 percentage point decline in
employment growth. Column (2) verifies that extending the sample to all firms yields quantitatively
similar estimates on firm employment growth in the time series. More importantly, Column (3)
shows that our firm-level exposure measure χf,t captures meaningful heterogeneity in firm responses
to risk premia shocks: a 10% increase in discount rates is associated with a 0.35 percentage point
greater decline in employment for firms that are one standard deviation more exposed to risk premia
than the average firm.

To address the concern that our exposure measure χf,t may also capture firms’ heterogeneous
exposure to economic conditions over the business cycle, we also interact χf,t with aggregate
productivity growth, output growth, or the fraction of the year spent in a recession. As we see in
Columns (6), (9), and (12) of Table 3, doing so does not materially affect our estimates of b1, and
the interaction of χf,t with these business cycle indicators is not statistically significantly related to
firm employment. We conclude that χf,t indeed primarily captures firms’ exposure to risk premium
shocks rather than the cycle itself.

In labor search models of employment fluctuations, the job creation margin plays an important
role. Thus, in Panel B of Table 3, we re-estimate equation (3), but now the main outcome variable is
the firm’s hiring rate. We measure a firm’s hiring intensity as the number of new employees in a year
scaled by lagged total employment. Consistent with Hall (2017), we expect to see that an increase in
discount rates leads to a decline in job creation. The estimated coefficients in Columns (1) and (2) are
consistent with this prediction: a 10% increase in risk premia is associated with a 1.5 to 1.6 percentage
point reduction in firm hiring. Column (3) shows that our firm exposure measure χf,t is also significant
in predicting cross-sectional differences across firms in the hiring rate response to risk premia. That is,
a firm that is one standard deviation more exposed to risk premia than the average firm reduces hiring
by 0.27 percentage point more than the average firm as risk premia increase by 10%. The remaining
columns of Panel B show that these results are also robust to including controls for the business cycle.
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Worker Earnings Response by Firm Exposure

Armed with a measure χf,t of heterogeneous firm exposure to risk premium shocks, we next revisit
our worker-level regressions. We estimate the following specification,

gi,t:t+h = b
(
χf(i,t),t ϵ

rp
t+1

)
+ c ϵtfp

f(i,t),t+1 + d′Zi,t + ηi,t+h. (4)

Equation (4) introduces two key modifications to our previous empirical design in (2). First, we
interact the risk premium shocks with χf,t, capturing the exposure of firm f (that employs worker i) to
risk premium shocks ϵrp

t+1. Second, we include industry × earnings group × year fixed effects. Doing
so fully absorbs industry-level shocks that may affect workers of different earnings levels over time.
Therefore, our main coefficient of interest b is now identified by comparing the risk premium exposure
of two workers at the same point in time who are in the same part of the earnings distribution and are
employed in the same industry but work for firms with different exposure χf,t to risk premium shocks.

The interaction of these exposure measures with our proxy for risk premium shocks can be
viewed as a shift-share design (Bartik, 1991). Under the assumption that the exposure measure χf,t

is orthogonal to unobserved worker heterogeneity, this design allows us to infer the causal impact
of an increase in risk premia on worker outcomes (Goldsmith-Pinkham, Sorkin, and Swift, 2020).
One reason why this assumption may fail is if low-skill workers, who are paid less than their peers,
match to weak firms that are more exposed to changes in financial conditions. The fact that we
are defining low-paid workers based on their pay relative to other workers in the same firm should
partially alleviate this concern.

Table 4 reports the corresponding estimates of equation (4). Column (1) shows that lower-paid
workers that are employed in firms that are highly exposed to risk premia experience larger declines
in earnings compared to lower-paid workers employed in less exposed firms. The magnitudes are
quantitatively significant: following a 10% percentage point increase in risk premia, lower-paid
workers employed in firms that are one standard deviation more exposed experience a 0.8 percentage
point greater decline in earnings compared to lower-paid workers employed in the average firm.
Column (2) of the same table shows that including firm–year effects does not alter this conclusion—
except that now we can only identify relative earnings changes of the lower-paid workers compared
to the average worker in a given firm. Columns (3) and (4) show that replacing firm productivity
with total revenue leads to similar estimates.

Next, we include the interaction of our firm exposure measure χf,t with business cycle controls—
aggregate productivity or output growth, or a recession indicator. Doing so helps alleviate the
concern that χf,t is correlated with some other source of firm heterogeneity that results in differences
in earnings growth rates over the business cycle. However, as we see in Columns (5) through (10),
doing so has no material impact on our key findings—if anything, the point estimates of b are
somewhat larger than before. This is not particularly surprising given our prior evidence in Table 3
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that the interaction of χf with business cycle dummies is not a statistically significant predictor
of employment growth, which strongly suggest that χf,t primarily captures firms’ exposure to risk
premium shocks rather than the cycle itself.

1.5 Drivers of Earnings Losses

Worker earnings can decline because the worker remains employed with the same firm but receives
lower earnings, because she becomes unemployed and receives no wage income, or because she moves
to a new job that pays a lower wage. In this section, we aim to disentangle the drivers of earnings
declines in response to rising risk premia.

Probability of Job Destruction

First, we focus on the role of job loss in generating the patterns in Table 1. Since we cannot observe
whether job transitions are voluntary or involuntary in the data, we use two empirical proxies for
job destruction. Our first proxy is a dummy variable that takes the value of one if the worker
experiences at least one full quarter with zero wage earnings (a nonemployment spell) over the next
h years. Our second proxy is also an indicator variable, which takes the value of one if over the next
h years the worker separates from her initial employer and simultaneously experiences a decline in
earnings growth below the 10th percentile of the unconditional distribution. Panel C of Appendix
Table A.1 reports the summary statistics on these two measures; we note that, for both measures,
the probability of job destruction is sharply decreasing in the worker’s prior earnings, a pattern
that is consistent with documented heterogeneity by age, education, and wealth (Menzio et al.,
2016; Cairó and Cajner, 2018; Krusell et al., 2017). Panels A and B of Table 5 report the estimated
coefficients b from modified versions of equation (2), in which the outcome variable is the first and
second measure of job destruction, respectively. We consider horizons of one to three years.

Panel A of Table 5 shows that increases in risk premia are associated with an increased probability
of job destruction for lower-paid workers relative to other workers in the same firm. The magnitudes
are economically sizeable: focusing on the workers at the bottom of the pay distribution, we see that
over the next one to three years, a 10% risk premium shock ϵrp is associated with an approximately
0.6 to 1 percentage point increase in the likelihood of a nonemployment spell (at least one quarter
of zero wage earnings). This pattern represents a significant increase relative to the base rate for
these workers of approximately 30%.

Panel B of the same table shows that the results are similar using our second measure of job
displacement. A 10% risk premium shock ϵrp leads to a 0.5 to 0.8 percentage point increase in the
likelihood of a lower-paid worker separating from her initial employer and experiencing a significant
drop in labor income—a large increase compared to a baseline probability of 12%. For workers who
fall under this definition of job loss, the conditional mean of earnings growth over the next three
years is equal to −143 log points. Thus, these estimates imply that the increased likelihood of job
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loss accounts for a significant fraction of the total effect of risk premium increases on wage earnings.
Appendix Table A.3 confirms that the estimated effects of risk premia on job loss are robust to
controlling for total firm revenue growth and aggregate business cycle indicators.

Table 6 shows that, using our shift-share design in equation (4), we obtain qualitatively similar
results on the likelihood of job loss to those in Table 5; that is, a 10% increase in the risk premium
leads to a 0.2 to 0.4 percentage point increase in the likelihood of job destruction for those low-paid
workers who are employed in highly exposed firms relative to the likelihood of low-paid workers
employed at the average firm.

Variation in Earnings Growth Conditional on Job Transition Status

Next, we examine whether fluctuations in risk premia are associated with fluctuations in worker
earnings conditional on job transition status. In particular, we re-estimate equation (2) separately
for workers who leave their original employer (movers) or not (stayers). Workers are characterized
as a stayer at horizon h if they continue to receive a positive amount of labor income from their
initial time-t employer in year t+ h+ 1, and as a mover in all other cases.

Panels A and B of Table 7 report the estimated coefficients b for movers and stayers, respectively.
Examining Panel A, we see that increases in risk premia are associated with significant earnings
declines for lower-paid workers that separate from their employer. Here, keep in mind that we are
focusing on variation in earnings among movers, so our estimates imply that low-earning workers
experience larger average earnings losses conditional on moving when risk premia are high relative to
low-earning workers that move when risk premia are low. To some extent the same pattern is present
for all movers, though as before, the magnitude of these earnings losses are decreasing in the worker’s
relative earnings within the firm. Panel B shows that there is some relation between fluctuations
in risk premia and the earnings growth of stayers, though the magnitudes are significantly smaller
and do not vary strongly with the worker’s relative prior earnings. In other words, the earnings
losses due to rising risk premia are concentrated on workers that end up separating from their initial
employer. These results again point to the importance of the extensive margin as a driver of the
overall earnings exposures in Table 1.

1.6 Robustness to Alternative Assumptions

Our results are robust to various changes in the empirical design.
First, Appendix Table A.4 examines the extent to which our results are sensitive to the exact

measurement of risk premium shocks. Columns (1) and (2) report estimates of b from equation (2)
without controls for the lagged level of the risk premium index. Columns (3) to (6) explore alternative
timing assumptions: contemporaneous shocks, when worker earnings are paid at the end of the year;
and one-year lagged shocks, with beginning-of-the-year earnings—as in Campbell (2003). Columns
(7) to (10) explore alternative versions of the risk premium shock. In Columns (7) and (8), we
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construct our risk premium shock only based on the four indicators for risk appetite considered in
Bauer et al. (2023). In Columns (9) and (10), we construct our risk premium shocks only based on
the five remaining measures of risk in financial markets. Overall, we see that our main empirical
finding is largely invariant to these choices.

Second, Appendix Table A.5 examines the robustness of our findings to different measurement
of firm-level exposure to risk premium shocks. In Columns (1) and (2), we replace the stock return
beta with respect to risk premium shocks with the firm’s beta with the aggregate stock market
index—since it measures the sensitivity of its cost of capital to aggregate shocks in the Capital
Asset Pricing Model (CAPM) of Sharpe (1964). We then take the first principal component of this
beta and the other exposure measures. Since the two stock betas are highly correlated, given that
our risk premium shock is itself highly correlated with the market portfolio, this leads to a similar
exposure measure. In Columns (3) and (4), we construct an exposure index as the first principal
component of only the two firm equity betas. Focusing on these two measures of firm exposure to
risk premium shocks implicitly takes a narrow view of what these shocks represent—that is, that
they capture fluctuations in either the market price of risk or on the quantity of systematic risk
that firms are exposed to. Columns (5) and (6) use firm size alone as the measure of firm exposure,
and Columns (7) and (8) use the Whited and Wu (2006) index of financial constraints, since more
constrained firms are more sensitive to conditions in financial markets. Examining the table, we
again note that our results are largely comparable across these choices.

Last, Appendix Table A.6 shows that differentiating between workers on the basis of their
earnings relative to those of their industry peers (as opposed to those of other workers in the same
firm) leads to similar conclusions.

1.7 Summary

Overall, the results in this section show that low-paid workers experience larger and more persistent
declines in earnings in response to the same risk premium shock than workers in the middle or the
top of the (within-firm) earnings distribution. These patterns are in sharp contrast to the exposure
of worker earnings to productivity shocks, where higher-paid workers are significantly more exposed
than the average worker. Importantly, job loss plays a significant role in driving the earnings declines
following risk premium increases. Lower-paid workers are significantly more likely to lose their job
than higher-paid workers, and conditional on separating from their initial employer they experience
larger earnings declines than higher-paid workers who separated at the same point in time.

These patterns remain quantitatively similar after controlling for common proxies for the business
cycle—fluctuations in aggregate productivity or output or recession indicators—as well as absorbing
time-varying variation in firm performance such as firm productivity or revenue growth. Our shift-
share design in Section 1.4 lends further support to the idea that fluctuations in risk premia are the
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main driving force behind our estimates, by leveraging cross-sectional variation in firm exposures to
risk premia that does not translate into heterogeneous exposures to the business cycle. In particular,
in our baseline specification, the effect of risk premium shocks is identified by comparing the earnings
growth of two workers in the same firm with different levels of earnings at times when risk premia
rise or fall. In our shift-share design, we instead compare the earnings growth of lower-paid workers
in firms more exposed to risk premia with that of lower-paid workers in less exposed firms.

Can we conclude that fluctuations in risk premia are the cause of heterogeneous earnings
responses rather than the cycle itself? Likely, though there are some alternatives that cannot be
entirely ruled out. Specifically, we cannot rule out the possibility that fluctuations in risk premia
are indeed a side-show, but they are correlated with an unobserved aggregate shock that leads firms
to fire their lower-paid workers.6 Examples of such a shock that would lead firms to terminate
their lower-paid workers could be fluctuations in the opportunity cost of working or a shock that
induces the systematic adoption of automation technologies. However, for these shocks to be the
main driver of our findings, they would not only need to be related to increases in risk premia,
but firms would also need to be differentially exposed to these shocks in a way that lines up with
our exposure measure χf,t. For instance, if automation were the main driver of these earnings
losses in recession, it would have to be that smaller (i.e. high χf,t) firms are more likely to adopt
automation technologies than larger firms in recessions. Given that the adoption decision likely
entails significant fixed costs, we think this alternative is less plausible.

2 Model
What type of model could quantitatively rationalize the facts we have documented so far? A
natural starting point is a model with search frictions (Diamond, 1982; Mortensen, 1982; Pissarides,
1985). We model a directed search process in which firms search for workers with different levels of
productivity (Montgomery, 1991; Moen, 1997). Worker productivity is stochastic and persistent.
Similar to Kehoe et al. (2019, 2023), worker productivity grows faster, on average, during employment
than during nonemployment. Importantly, the model features endogenous worker separations.

We model risk premium shocks as shocks to the effective discount rate that agents use to value
risky future cashflows, in the spirit of Lettau and Wachter (2007). A positive risk premium shock
leads to a lower valuation of a stream of risky future cashflows. Since the decisions to hire a worker
and to maintain an existing worker–firm match involve calculating the present value of the relative
benefits of keeping the worker in the job or not and these benefits are uncertain, fluctuations in
discount rates directly affect labor allocations.

6Fluctuations in firms’ ability to access external finance is not such an alternative, but rather part of the mechanism
we are trying to capture, since a model with financial frictions is often isomorphic to one in which firms face a higher
effective discount rate in their investment decisions (Whited, 1992; Kehoe et al., 2019).
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2.1 Environment

The model is set in discrete time. There is a unit measure of ex-ante identical workers who can be
employed by a large number of firms. The workers are indexed by i, have heterogeneous productivity,
and can be employed by a firm, be unemployed and searching for a job, or be nonparticipants in
labor markets. Firms employ workers to produce output and post vacancies to attract new workers,
targeting workers with a specific productivity level. Firms are competitive and make zero profits
net of vacancy posting costs.

Each period in the model consists of three subperiods. First, a fraction ζ of workers die and are
replaced by new (nonemployed) workers, and shocks to aggregate productivity, discount rates, and
idiosyncratic productivity are realized. In the second subperiod, firms post vacancies to attract new
workers, workers in the unemployment pool search for new jobs, and new matches are formed. In
addition, some of the existing matches are destroyed either because the surplus generated by the
match is now negative or for exogenous reasons. The rate of endogenous job destruction depends on
the aggregate state of the economy, while the rate of exogenous job destruction is s. In the third
subperiod, for continuing and new matches, production is realized, and wages are paid. Workers
that are out of a job receive their nonemployment benefits and decide whether to pay the cost to
enter the search pool for the subsequent period.

Production

Employed workers produce output at a rate that depends on the aggregate productivity level A and
their individual productivity z:

yi,t = At zi,t. (5)

Idiosyncratic worker productivity evolves according to the following mean-reverting process:

log zi,t+1 = ψz log zi,t + (1 − ψz) log z̄i,t + σz εz,i,t+1, (6)

where εz,i,t+1 is an i.i.d. standard normal random variable. Following Kehoe et al. (2019), the long-
run mean level of productivity depends on the worker’s current employment status, z̄i,t ∈ {z̄E , z̄O}.
As in Ljungqvist and Sargent (1998), human capital grows with work experience, and workers
experience long-term costs from being out of a job; therefore, z̄E > z̄O. Newly born workers at time
t0(i) enter the economy without a job and with initial idiosyncratic productivity equal to

log zi,t0(i) = log z̄O + σz0 εz,i,t0(i). (7)

Aggregate productivity At follows a random walk:

∆ logAt+1 = µA + σA εA,t+1, (8)
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where εA,t+1 ∼ N(0, 1). We note that, given (8), output has a stochastic trend, however the economy
is stationary in growth rates.

Financial Markets

Financial markets are complete: households have access to a complete set of state-contingent
securities and there is a unique stochastic discount factor. The time t value of a claim to a stream
of future cashflows Xτ is

Pt = Et


∞∑

τ=t+1

 τ∏
k=t+1

Λk

Xτ

 , (9)

where Λk is the one-period stochastic discount factor (SDF) between periods k and k + 1. Our
assumption of complete markets implies that all agents in the economy, both firms and workers,
use (9) to value future cashflows.

Our goal is to understand the implications of fluctuations in risk premia for worker outcomes,
which does not require us to take a strong stance on the underlying economic drivers of these
fluctuations. Thus, we directly specify the stochastic discount factor as in Lettau and Wachter
(2007), assuming that the market price of risk (the level of risk premia) evolves according to

xt+1 = ψxxt + (1 − ψx)x̄+ σx εx,t+1, (10)

with εx,t ∼ N(0, 1) corresponding to the risk premium shock in the model. The correlation between
shocks to productivity εA,t and risk premia εx,t is ρA,x. The one-period stochastic discount factor is
given by

Λt+1 = exp
{

−rf − 1
2x

2
t

(
1 + δ2 + 2 δ ρA,x

)
− xt εA,t+1 − δ xt εx,t+1

}
. (11)

The stochastic discount factor (11) follows Lettau and Wachter (2007), except for two modifications:
first, we allow for a correlation between shocks to risk premia and productivity shocks, and second,
we allow the risk premium shocks to be priced directly, captured by the parameter δ. Equation (11)
implies that the risk-free rate is constant and equal to rf .

Directed Search and Matching

Unemployed workers search for jobs in the labor market for their productivity type z. Firms post
vacancies that are directed at workers of a particular type. Labor markets are competitive—all
firms can freely enter any submarket for type-z workers in each period. The per-period cost to post
a vacancy directed at a worker of productivity z is

κt(z) = κ̄0At z
κ̄1 . (12)
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The cost of posting a vacancy targeting a specific type of worker is increasing in the worker’s pro-
ductivity z, with the parameter κ̄1 > 0 determining the elasticity with respect to z. The assumption
that vacancy costs are proportional to A ensures that the limiting employment distribution is not
degenerate, while the assumption that they increase with z ensures that job-finding rates are fairly
similar across workers with different prior earnings levels, as is the case in the data.

The likelihood of a vacancy being filled is a function of the current tightness θt(z) ≡ vt(z)/ut(z)
of the labor market, where ut(z) is the unemployment rate and vt(z) is the number of vacancies
posted by firms for worker type z. Following den Haan, Ramey, and Watson (2000), the number of
matches in a labor market with unemployment rate u and vacancies v is given by

m(u, v) ≡ u v

(uα + vα)
1
α

. (13)

Equation (13) implies that the probability that a vacancy is filled in a market with tightness θ is
q(θ) = (1+θα)− 1

α and the probability that a job searcher obtains a new match is p(θ) = θ(1+θα)− 1
α .

Worker Labor Supply

All workers who are out of a job receive a flow benefit from being nonemployed:

bt(z) =
(
b̄0 + b̄1 z

)
At. (14)

The flow benefits of being out of employment include not only unemployment benefits but also the
value of leisure and the value of home production. Following Hall (2017) and Kehoe et al. (2023), the
opportunity cost of employment has a unit elasticity to aggregate productivity, which is consistent
with Chodorow-Reich and Karabarbounis (2016). As in Kehoe et al. (2019), we also allow for the
worker opportunity cost to depend on the current level of worker productivity z.

Newly born workers and workers who have just separated from a previous job enter the pool
of nonemployed workers. Searching for a job is costly: nonemployed workers decide each period
whether to participate in the labor market by entering the unemployment pool at a cost and actively
looking for a job, or to stay out of the workforce. To be in the search pool for that period, a worker
needs to pay an upfront search cost ct, which is a stand-in for the costs of updating a resume and
finding and applying for new jobs. This simplifying assumption implies that all workers make labor
supply decisions that maximize the net present value (NPV) of labor earnings net of the NPV of
nonemployment benefits and search costs.

We allow the cost of search to depend on the aggregate level of labor market tightness:

ct = At f(θt(z̄O)). (15)

As in Mukoyama, Patterson, and Şahin (2018), we assume that f(·) is an increasing function: the
cost of search increases with aggregate tightness in the labor market. We index the search cost to the
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tightness of the labor market corresponding to workers with a particular level of productivity (z̄O),
rather than a cross-sectional average of z, in order to keep the model tractable. This assumption
implies that search intensity increases during times when the labor market is weak, which is consistent
with the data (Mukoyama et al., 2018; Faberman and Kudlyak, 2019).

2.2 Model Solution

In this section, we outline the conditions that determine the equilibrium labor market allocations:
job-finding rates, job destruction rates, and the present value of compensation promised to a worker
by her firm at the initiation of a match. We construct a competitive search equilibrium in the spirit
of Montgomery (1991) and Moen (1997). Firms decide on the number of vacancies to post for each
type of worker, and on the associated value of employment that is offered to the worker in each
vacancy. Workers choose the type of vacancy to which they will direct their search effort, leading to
a block recursive equilibrium in which only the aggregate state variables At and xt matter for firm
and worker decision rules, similar to the setting in Menzio and Shi (2011).

Worker Search

Labor markets are characterized by a worker type z and a corresponding value of employment that
is offered to a worker of this type when the match is created. Due to symmetry of the equilibrium
(see Kehoe et al., 2023), each worker of type z searching for a job at time t is offered the same
continuation value, which we denote by Wt(z).

Consider first the problem of a worker who begins the third subperiod in the nonemployment
pool with continuation value JO

t (z). She has a choice of whether to enter the next period as a
nonparticipant (which yields a continuation value JN

t (z)) or to pay the cost ct now to enter the search
pool for the next period (obtaining a continuation value JU

t (z)). Thus, her continuation value equals

JO
t (z) = max{JN

t (z), JU
t (z)}. (16)

A nonparticipating worker simply collects the nonemployment benefit specified in (14) at time t and,
conditional on surviving to t+ 1, begins the next period as a nonemployed worker. Her continuation
value is equal to

JN
t (z) = bt + (1 − ζ)Et,z

[
Λt+1J

O
t+1(z′)

]
. (17)

Next, consider a worker of type z who is unemployed in period t and thus actively searches for a
job in the beginning of the next period. Her continuation value is

JU
t (z) = bt − ct + (1 − ζ)Et,z

[
Λt+1

{
JO

t+1(z′) + p(θt+1(z′))
(
Wt+1(z′) − JO

t+1(z′)
)}]

, (18)

which combines the flow nonemployment benefit net of the search cost with the discounted value of
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the outside option in nonemployment JO
t+1(z′) plus the job-finding rate p(θt+1(z′)) times the surplus

the worker gains above her outside option from entering a new match.

Firm Search

Consider a firm and a worker who are in a match that is continued in the current period t. The sum
JMC

t (z) of the worker’s lifetime value and the present value of the firm’s profits from this match
satisfies

JMC
t (z) = At z + (1 − ζ)Et,z

[
Λt+1

{
sJO

t+1(z′) + (1 − s)JM
t+1(z′)

}]
, (19)

where

JM
t (z) = max

{
JMC

t (z), JO
t (z)

}
(20)

is the current total value of a match. The match value (20) reflects that a match is continued at
time t if the continuation value of the match exceeds the value at nonemployment:

1C
t (z) = 1 ⇔ JMC

t (z) ≥ JO
t (z). (21)

When a match is terminated, the firm has no more future profits from this match, while the worker’s
continuation value is equal to the value of nonemployment from (16). As a result, the present value of
a continuing match specified in (19) consists of the current output that is produced, the present value
of output in future times when it is optimal to keep the current match intact, and the present value
of the outside option to the worker that comes from the value of nonemployment after separation.

Firms post vacancies with wage offers to attract workers of a given type. Specifically, firms
target a worker with productivity z by posting a vacancy and offering a continuation value to the
worker equal to Wt(z) at the moment the worker is hired. The equilibrium values of θt(z) and Wt(z)
are pinned down by the firm’s first-order conditions in its vacancy posting problem together with
the free-entry condition,

q(θt(z))
(
JMC

t (z) −Wt(z)
)

≤ κt(z), (22)

which says that the expected value of a vacancy—the probability that the vacancy is filled times
the present value to the firm upon filling the vacancy—is not greater than the cost of creating a
vacancy. When the labor market for type z is active, θt(z) > 0, and (22) holds with equality.

In equilibrium, the continuation value offered to a newly-employed worker of type z is

Wt(z) = JO
t (z) + η(θt(z))

(
JMC

t (z) − JO
t (z)

)
. (23)

Equation (23) states that the continuation value Wt(z) when the worker is hired is equal to the
unemployed worker’s outside option plus a share of the surplus created by a continuing match.
The endogenous share of the surplus that goes to the worker depends on the elasticity of the
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vacancy-filling rate, η(θ) ≡ −θ q′(θ)/q(θ), which is a function of current labor market conditions.
Appendix B.1 provides a derivation of this result.

Equilibrium

An equilibrium in this model consists of value functions JO
t (z), JN

t (z), and JU
t (z) for nonemployed

workers, with a corresponding policy rule for job search, value functions JMC
t (z) and JM

t (z)
for (continuing) matches, with a corresponding policy rule for terminating existing matches, a
market tightness function θt(z), and an employment offer function Wt(z), such that (i) the value
functions satisfy equations (16), (17), (18), (19), and (20); (ii) the offered employment value and
corresponding market tightness satisfy the firm optimality in (23); and (iii) the free-entry condition
(22) holds. The competitive search equilibrium in our model is efficient, as can be seen directly
from equation (23), which is equivalent to a Nash bargaining solution where the Hosios condition
holds. In the equilibrium, all value functions are proportional to At, and θt(z) does not depend on
At. Appendix B.2 contains further details.

Per-Period Wages

Equation (23) determines the present value of wages when the worker is hired. However, it is not
sufficient to determine the full path of realized worker wages. To derive explicit predictions for wage
earnings—and map model quantities (worker productivity z) to observables (worker earnings)—we
need to make an additional assumption for how per-period wages are set. Under full commitment,
this assumption plays no role for equilibrium labor market allocations; all that is required for flow
wages to be consistent with the equilibrium above is that their present value delivers the ex-ante
contracted value in (23) to the worker when she is hired.

Specifically, consider the continuation value at time t of worker i who is in an existing match m
with the firm; this value can be decomposed as

Ŵ (Ωi,m,t) ≡ ŴM (Ωi,m,t) +WS
t (zi,t). (24)

Here, Ωi,m,t represents the set of variables that summarize the current state of the promised
continuation value, which in principle could include the full history of aggregate and idiosyncratic
shocks.

The first component in (24) corresponds to the present value to the worker of the flow wages
paid by the employer in the current match. This value, which is also equal to the cost to the firm of
retaining the worker, can be represented as

ŴM (Ωi,m,t) = w(Ωi,m,t) + (1 − ζ)Et,z

[
Λt+1(1 − s)1C

t+1(zi,t+1) ŴM (Ωi,m,t+1)
]
, (25)

where the indicator 1C
t is equal to one if the match is preserved at time t. The second component

of (24) equals the present value of payoffs to the worker after the current match is terminated—
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nonemployment benefits plus the expected benefits of her new job. This value WS is a function
only of the worker’s current productivity z and the aggregate state (At, xt) and solves

WS
t (z) = (1 − ζ)Et,z

{
Λt+1

[
JO

t+1(z′) + (1 − s)1C
t+1(z′)

(
WS

t+1(z′) − JO
t+1(z′)

)]}
. (26)

The only restriction imposed by the equilibrium is that the continuation value of the wage
contract for a new hire at time τ is equal to the promised continuation value in (23) offered to the
worker when she is hired:

ŴM (Ωi,m,τ ) = Wτ (zi,τ ) −WS
τ (zi,τ ). (27)

The conventional view is that firms partially insure (continuing) workers against fluctuations in
productivity (Guiso, Pistaferri, and Schivardi, 2005). Given the above, we assume that per-period
wages are set according to

logw(Ωi,m,t) = logwτ (zi,τ ) + (1 − ϕ) µA(t− τ) + ϕ

(
log At

Aτ
+ log zi,t

zi,τ

)
. (28)

The level of the initial wage wτ (zi,τ ) is determined at the time of hiring to satisfy (27). Subsequently,
per-period wage growth is a weighted average of a deterministic component equal to the rate of
aggregate productivity growth µA, and a stochastic component directly tied to the worker’s current
productivity growth. The degree of wage smoothing is captured by ϕ.

2.3 Calibration

We next discuss the calibration of the model.

Parameters Calibrated a Priori

We calibrate some of the parameters in the model based on a priori information. We summarize
these parameters in Panel A of Table 8. We set the mean of the productivity process µA equal to the
average growth rate of BLS labor productivity between 1947 and 2019 (equal to 2.2% per year). We
select σA to match the volatility of TFP growth at the aggregate level (3.5% per year) that we obtain
by aggregating our measure of firm-level TFP growth over all public firms in the sample. We choose
ρ = −0.39 to match the correlation between our measures of aggregate TFP growth and risk premium
shocks. The real risk-free rate is 1.91% per year (Lettau and Wachter, 2007). We calibrate the model
at a monthly frequency and convert the above values to their monthly equivalents where applicable.

We normalize the long-run mean of z in employment to z̄E = 1. We calibrate the worker
productivity process to have a persistence of ψz = 0.991 at monthly frequency, following Menzio et al.
(2016). Our choice implies that the half-life of an idiosyncratic productivity shock is approximately 6
years. We choose the dispersion in initial human capital levels σz0 = 0.666 to match the interquartile
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range of initial earnings at age 25 over the period 1957–2011 based on Guvenen, Kaplan, Song, and
Weidner (2022).

We choose the mortality rate ζ so that the average life span of a worker in the model is 30 years.
Following Hagedorn and Manovskii (2008), we set the curvature α of the matching function to
0.407. To calibrate the wage smoothing parameter ϕ, we note that both aggregate and idiosyncratic
productivity shocks in the model not only affect the current match but also the outside option
of a worker. Therefore, we choose ϕ = 0.149 to match the average pass-through of industry-level
productivity shocks to wages estimated by Carlsson, Messina, and Skans (2015).

Parameters Calibrated to Asset Markets

Fluctuations in risk premia are the main driving force in our model. Accordingly, we calibrate the
parameters driving the dynamics of risk premia to match key moments of asset prices. Since the
model’s main mechanism operates through valuation changes in employment surplus that accrues
over relatively long horizons, we choose x̄, ψx, σx, and δ to target not only the moments of the stock
market as a whole, but also the moments of a risky portfolio of long-duration stocks based on Gormsen
and Lazarus (2023). Our calibration of the stochastic discount factor (x̄ = 0.386, ψx = 0.993, σx =
0.037, δ = 0.364) is consistent with the moments of the aggregate stock market, the predictability of
excess market returns across horizons by our composite risk premium proxy, and the stylized fact that
the Sharpe ratios of risky assets decline with the duration of their cashflows (van Binsbergen, Brandt,
and Koijen, 2012; Gormsen and Lazarus, 2023). Panel B of Table 8 lists our parameter choices and
the model fit. See Appendix B.3 and Figures A.2–A.3 for further details on these calculations.7

Parameters Calibrated to Labor Markets

We choose the remaining parameters governing the dynamics of worker productivity z, vacancy
cost κt(z), nonemployment benefits bt(z), search cost ct, and exogenous separation s to match
aggregate and cross-sectional labor market moments. Appendix B.4 contains additional details on
the calibration approach. We target five sets of moments.

First, we target the mean (6.5%) and volatility (1.4%) of the unemployment rate.8 Second, we
target the cyclicality of the labor force participation rate, defined by its unemployment beta—the
slope coefficient on the unemployment rate. Third, we target the mean and cyclicality (unemployment
beta) of the aggregate job-finding rate and separation rate into unemployment. We measure these
series using microdata from the Current Population Survey (CPS) from 1978 to 2019, following

7The persistence of the risk premium shocks is higher than the persistence of most of our empirical risk premium
proxies, likely due to measurement error in these individual series. If we were to calibrate the stochastic discount
factor to the average persistence of these series, it would lead to counterfactually high levels of predictability in excess
market returns at shorter horizons (see Appendix Figure A.3).

8Both in the data and in the model, we average all monthly labor market stocks and flows at the quarterly frequency.
Following Shimer (2005), we apply a low-frequency HP filter with smoothing parameter 105 to these series to capture
business-cycle fluctuations.
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the approach of Elsby, Hobijn, and Şahin (2015); Krusell et al. (2017) to compute Abowd-Zellner
corrected estimates of aggregate transition rates between employment states (see Appendix A.5) .

Fourth, we also target the mean and cyclicality (unemployment beta) of relative job-finding
and separation rates by prior earnings level using data from the Survey of Income and Program
Participation (SIPP) between 1990 and 2019. Details on the data construction are in Appendix A.6.
As we discuss below, our empirical estimates imply a job-finding rate that is similar across workers
with different levels of earnings, both on average and in terms of cyclicality. By contrast, separation
rates are significantly higher, and more cyclical, for lower-paid workers than the average worker.
Last, we also target the average growth rate of earnings of continuing incumbent workers across
different earnings levels. As we see in Appendix Figure A.5, lower-paid workers experience higher
earnings growth rates, conditional on staying with their employer, than higher-paid workers.

Panel C of Table 8 lists our calibrated parameters together with the targeted moments. We
choose the exogenous separation rate s = 0.82% to match the average separation rate of higher-
wage workers into unemployment. The nonemployment benefit parameters b̄0 = 0.41 and b̄1 = 0.58
drive the level of employment surplus across worker types z. Among others, this level determines
the separation threshold z∗(x) and therefore the rate of endogenous separations. The calibrated
benefits function bt(z) implies that the ratio of average nonemployment benefits to the average wage
in the economy is 0.56, which is within the range [0.4, 0.96] of values considered in the literature
(Shimer, 2005; Hagedorn and Manovskii, 2008; Chodorow-Reich and Karabarbounis, 2016).

The vacancy cost parameters κ̄0 = 0.036 and κ̄1 = 1.48 are pinned down by the average job-
finding rates for higher-wage workers. The search cost parameters c̄0 = 0.0036 and c̄1 = 6.05 are
selected to target the job-finding rate for low-wage workers, the level of the unemployment rate,
and the cyclicality of the labor force participation rate. Since the nonemployment pool is adversely
selected, our calibration implies modest values for both the vacancy cost and the search cost: the
vacancy cost is 2.5% of monthly output for a worker with z = z̄O and 3.6% for a worker with z = z̄E ,
and the search cost is 0.8% of monthly output for a worker with z = z̄O and 0.4% for a worker with
z = z̄E when xt = x̄.

Given the normalization z̄E = 1, the parameter z̄O captures the difference in human capital
accumulation between employment and nonemployment. The larger this difference is, the more
sensitive the surplus of employment is to discount rates. We choose z̄O to match the cyclicality of job-
finding and separation rates. The calibrated value z̄O = 0.47 implies a relative productivity decline
in nonemployment of 8.0% at an annual rate. This value is in line with the values in Kehoe et al.
(2019, 2023) and estimates of human capital depreciation in nonemployment.9 Last, given the level of

9Using a matching estimator that compares displaced workers to other workers with similar ex-ante likelihood of
termination, Couch and Placzek (2010) report earnings losses for displaced workers after mass layoffs of 12 percent over
the next six years. Since the median nonemployment spell in our model is approximately 3.4 months, the resulting
decrease in worker productivity for displaced workers in our calibration is 2.3 percent.
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mean reversion in z and the passthrough parameter ϕ, the volatility σz of idiosyncratic productivity
shocks is pinned down by the heterogeneity in average earnings growth rates of continuing workers
as a function of their prior earnings. The value σz = 10.9% is consistent with typical values in the
literature (Krusell et al., 2017). Combined with a pass-through parameter of ϕ = 0.149, this choice
implies a monthly standard deviation of wage growth of approximately 1.6% for continuing workers.

2.4 Model Fit

Overall, the model does a good job in matching the data, both in terms of the moments that we
target in our calibration and in terms of untargeted moments.

Labor Market Dynamics

Panel A of Table 9 compares the dynamics of labor market indicators in the model and in the
data. The table reports the volatility, persistence, and cyclicality of key series in the model and
in the data, where cyclicality is measured as the slope coefficient (beta) of a regression of each
series on the unemployment rate. We see that the model matches the empirical volatility of the
unemployment rate. The tightness of the labor market (the ratio of vacancies to unemployment) is
substantially volatile and strongly procyclical (it has a correlation of -0.80 with the unemployment
rate in the model compared to -0.97 in the data). As in the data, the employment-to-population
ratio is also strongly procyclical and the labor force participation rate is weakly procyclical, whereas
the long-term unemployment rate—the percent of total unemployed that are jobless for more than
six months— is countercyclical. The volatility and persistence of these series is largely consistent
with the data. One dimension in which the model calibration overshoots is the volatility of the
labor participation rate, even though we match its cyclicality, which is not surprising given that the
model lacks reasons for nonparticipation other than (temporarily) low worker productivity.

Unemployment Flows

Panel C of Table 8 and Panel B of Table 9 show that the mean and dynamics of the aggregate
job-finding and separation rates in the calibrated model line up well with the data. In addition to
these moments, the model also matches how these series vary with worker earnings. In particular,
the top row of Figure 3 compares the patterns of average job-finding and separation rates across
the labor income distribution between the model and the data. In Figure 3a, we see that the
empirical job-finding rate is essentially flat as a function of prior earnings, a pattern that the model
approximates reasonably well.10 By contrast, Figure 3b shows that both in the model and in the
data, average separation rates are strongly declining in wage earnings levels. The bottom row of the
same figure demonstrates that the model can replicate the degree to which the cyclical behavior

10The model still delivers a weak positive relation between (prior) worker earnings and the job-finding rate; this fact
is in line with the empirical findings from Gregory, Menzio, and Wiczer (2021), who document based on the LEHD
that worker types with higher job-finding rates have higher earnings than worker types with lower job-finding rates.
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of these series varies across workers. Specifically, Figure 3c shows that the cyclicality of the job-
finding rate (measured by the beta with respect to the unemployment rate) is largely similar across
high- and low-earning workers, in both the data and the model. In contrast, Figure 3d shows that
the separation rate for low-earning workers is significantly more cyclical than the separation rate
for high-earning workers. The similarity in job-finding rates and the heterogeneity in separation
rates across worker earnings levels are consistent with the evidence in Cairó and Cajner (2018) on
more-educated versus less-educated workers.

Drivers of the Unemployment Rate

Shimer (2005, 2012) argues that the volatility of the unemployment rate is primarily driven by the
cyclicality of the job-finding rate. Our model is able to match the relative contributions of the
separation and job-finding rates to fluctuations in the unemployment rate. To illustrate this, we
follow Shimer (2012); Kehoe et al. (2019, 2023) and construct two counterfactual series for the
unemployment rate.11 As we see in Panel C of Table 9, in both the model and the data, a larger
share of the volatility of the unemployment rate can be attributed to fluctuations in the job-finding
rate than to fluctuations in the separation rate. In this regard, our model is consistent with the
view in Shimer (2005, 2012) that fluctuations in the job-finding rate due to vacancy creation are
crucial in understanding the dynamics of unemployment.12

Firm Labor Demand

As another test of the importance of the job-creation and job-destruction margins in the model, we
next examine the extent to which the model can quantitatively replicate the estimates in Table 3
on the link between risk premia and firm employment growth and hiring rates. One caveat is that
firm hiring in the data includes job-to-job transitions, which are outside the model. Thus, to ensure
the empirical measurement is consistent with the model, we consider a modified measure of firms’
hiring intensity that excludes job-to-job transitions and proceed to estimate equation (3) in both the
data and in simulated data from the model.13 Figure 4 compares the estimated coefficients b0 from
equation (3) between the data and the model for total employment growth and for new job creation.
We see that the model and the data line up well—even though these are not explicit targets in

11The first series assumes that the separation rate is constant: u1
t+1 = p̄EU (1 − u1

t ) + pUE
t+1 u1

t , where pij
t is the

probability of transitioning from state i to state j and p̄ij is the average flow rate. The second series assumes that the
job-finding rate is constant: u2

t+1 = pEU
t+1 (1 − u2

t ) + p̄UE u2
t .

12These counterfactual series do not account for dynamic interactions of the flows and ignore the nonparticipation
margin. As an additional test of the model’s implications for the dynamics of labor market flows, Appendix B.5
implements the approach from Elsby et al. (2015), which addresses these concerns, to evaluate the contributions of
individual flows to unemployment rate fluctuations. Our model matches the quantitative importance of transitions
between employment and unemployment and the cyclicality of flows into and out of nonparticipation (see Appendix
Table A.8).

13Specifically, we estimate the intensity of new job creation for a firm in year t + 1 as the number of new hires at
time t + 1 that went through a nonemployment spell: workers who are employed by the firm at year t + 1 but not at t,
and who had at lease one quarter with zero wage earnings in the last quarter of t or the first three quarters of t + 1.
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our calibration—implying that the strengths of the job-creation and job-destruction channels are
quantitatively similar between the model and the data both in absolute and in relative terms.

Heterogeneous Worker Earnings Exposures

Next, we briefly examine the ability of the model to match the risk premium exposure of incumbent
workers that we document in Section 1, even though they are not explicit calibration targets.
Specifically, we plot the model-implied coefficients b from estimates of equation (2) in simulated
data and compare them to their direct empirical counterparts. In Figure 5a, we see that the model
can largely replicate the exposure of worker earnings to risk premium shocks, especially at horizons
of three to five years. In both the model and the data, low-paid workers are significantly more
exposed to risk premium shocks than high-paid workers.

In the model, wages for incumbent workers are, by assumption, not directly affected by discount
rates. Thus, worker earnings exposures to risk premium shocks are driven by the extensive margin.
Figure 5b shows that the model is able to generate realistic rates of job destruction as a function of risk
premium shocks. Here, the dependent variable is an indicator for having at least one zero-earnings
quarter in the next year. We see that the model coefficients are close to their empirical counterparts.

As shown in Figure 5c, the model can also largely replicate the differential earnings responses to
risk premium shocks for stayers versus movers over a three-year horizon. The earnings losses for
movers reflect the length of nonemployment spells as well as the wages received in future matches.
Importantly, the model is able to quantitatively replicate the magnitude of earnings losses for movers
in response to risk premium shocks in the data.

2.5 Model Mechanisms

Here, we discuss the key model mechanism that lead to heterogeneous labor market dynamics in
response to risk premium shocks.

Response to Aggregate Shocks

Figure 6 shows the response of key model variables to an increase in risk premia. An increase
in risk premia (Figure 6a) leads to a decline in employment (Figure 6b) and an increase in the
unemployment rate (Figure 6c). Part of this increase in unemployment is driven by the increase in
the separation rate, especially for low-wage workers (Figure 6d). Figure 6e shows that the job-finding
rate also falls, though this decline is largely homogenous across workers. The rise in unemployment
in response to discount rates is associated with a decline in labor market tightness (Figure 6f) and
a decline in output (Figure 6g). The increase in the separation rate, combined with the decline
in the job-finding rate, implies that worker earnings decline, particularly for low-earning workers
(Figure 6h). Since the model is scale-independent with respect to aggregate productivity A, these
shocks do not have an impact on labor market allocations. Instead, they only affect output and

28



wages (see Appendix Figure A.6). The rest of this section focuses on understanding the economic
drivers behind these impulse responses to risk premium shocks.

Worker Heterogeneity

The key source of worker heterogeneity in the model is worker productivity z. Worker productivity
maps directly into worker earnings—recall our wage protocol in equation (28) above; the parameter
ϕ controls the strength of the pass-through. Appendix Figure A.7a shows that this relation is fairly
strong, though not perfect, since worker productivity and labor market conditions at the time that
the worker is hired determine the total value that accrues to the worker during a match, thus
directly affecting earnings beyond the current level of z.

Overall, to understand why the model delivers heterogeneous worker outcomes, it is sufficient to
understand how the key drivers of worker earning declines in response to risk premium shocks vary
across workers with different current skills z. These key drivers include the probability of separation,
the duration of nonemployment, and wages in future jobs. We discuss these next, together with a
quantitative assessment of their importance in generating the results in Figure 5a.

Job Separations

A key model mechanism is endogenous job destruction in response to changes in risk premia. Since
worker productivity z is persistent, the risk of future termination is strongly related to the current
level of z. As Appendix Figure A.7b shows, low-productivity workers face a higher probability of
termination compared to high-productivity workers. Rising risk premia increase the likelihood of
termination, especially for low-productivity workers. Therefore, the separation rate of low-z workers
is not only higher on average, but also substantially more countercyclical than that of high-z workers.

Why are less-productive workers more exposed to risk premium shocks? This result rests on two
features of the model. First, for a given level of risk premia xt, the surplus from employment is
increasing in z. As we see in Appendix Figure A.8a, the surplus is negative for low values of z and
positive for higher values of z. This pattern is due to the assumption that nonemployment benefits
do not fully scale with worker productivity—equation (14). As a consequence, low-productivity
workers are low-surplus workers, and job destruction depends on a simple threshold rule: existing
matches in which worker productivity is below a threshold z < z∗(xt) are terminated. The separation
threshold z∗(xt) is defined implicitly through the indifference condition:

JMC
t (z∗(xt)) = JO

t (z∗(xt)). (29)

At z∗(xt), the worker and the firm are indifferent between continuing the match on one hand, and the
worker joining the nonemployed pool with the job being destroyed on the other. Given that the model
is scale-invariant with respect to A, the threshold depends solely on the current level of risk premia, xt.

Second, the surplus from employment falls with x around z = z∗. From (29), it follows that an
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increase in x raises the termination threshold z∗, leading to higher job destruction. This effect is
driven by the assumptions that worker productivity is mean-reverting and grows relatively faster
when employed than when nonemployed. Both of these properties imply that, for the marginal
worker (with z = z∗), the payoffs to employment are relatively more backloaded than the payoffs to
nonemployment—which directly causes JMC

t (z) to fall relatively more than JO
t (z) as risk premia

rise.14

Duration of Nonemployment Spells

Firms’ and workers’ endogenous search decisions jointly determine the likelihood that a nonemployed
worker finds a new job and therefore the duration of nonemployment spells. The first determinant
of the length of nonemployment spells is the firms’ vacancy posting policy, which is pinned down
by the free-entry condition (22). Recall that the job-finding rate p(θ) is strictly increasing in the
level of labor market tightness θ. In equilibrium, for worker productivity types z that are actively
searching for a job, the tightness of the labor market is equal to

θt(z) =

(JMC
t (z) − JO

t (z)
κt(z)

) α
1+α

− 1

 1
α

. (30)

Thus, how job-finding rates for workers in the unemployment pool vary over time and across worker
types depends on how the ratio of the match surplus JMC

t (z) − JO
t (z) to the vacancy posting cost

κt(z) changes with z and xt.
First, recall from the discussion above that the match surplus is increasing in z. This pattern

is offset by the fact that the vacancy posting cost is also increasing in z, which allows the job-
finding rate p(θ) to be relatively insensitive to z, and therefore helping the model match the data
by generating similar average job-finding rates across unemployed workers (Figure 3a). Second, an
increase in risk premia xt lowers the surplus value of all matches and therefore lowers job-finding
rates. This decline is, with the exception of very low-productivity workers, largely homogeneous
across values of z (Figure A.7c), which helps the model generate job-finding rates with similar levels
of cyclicality across high- and low-paid workers to match the data (Figure 3c).

The second determinant of the length of a nonemployment spell is the endogenous decision of
nonemployed workers to search for a job. When deciding whether to do so, workers trade off the
benefits of finding a job against the cost of search and the benefits of staying nonemployed. The

14To see this, recall that the level of risk premia xt determines the discount rate for risky cashflow streams; the
model is scale invariant with respect to A, and thus the only reason why the left- and right-hand sides of (29) have
different elasticities with respect to changes in xt is differences in the timing of their cashflows. Appendix Figure A.8c
plots these differences in the timing of cashflows between the value of employment and nonemployment. Since discount
rates have a larger impact on the valuation of longer-term claims (Appendix Figure A.8d), the positive difference in
the timing of payoffs between employment and nonemployment implies that an increase in the risk premium xt results
in a greater decline in the value of employment JMC relative to the outside option JO for the marginal worker, and
thus to a decline in the surplus of the match. Appendix B.6 discusses these duration differences and the implications
for the separation threshold in more detail.
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productivity threshold z(xt) above which workers choose to enter the search pool solves

JU
t (z(xt)) = JN

t (z(xt)). (31)

Workers with sufficiently low levels of productivity z < z(xt) choose not to search for a job. The
search threshold z(xt) depends on risk premia for three reasons. First, echoing the discussion above,
the benefits of finding a job for a marginal worker (those with relatively low z) are more backloaded
than the benefits of nonemployment plus the search cost. Second, labor market tightness, and
therefore the job-finding rate, declines with xt. Both forces imply a lower benefit of entering the
search pool when risk premia xt are high. However, there is also an offsetting third force that mutes
the increase in the threshold: the cost of searching for a job declines as the job market becomes
weaker—recall equation (15).

In our calibration, the search threshold z(xt) increases with risk premia, though relatively less than
the separation threshold z∗(xt), as we see in Appendix Figure A.8b. Combined with the endogenous
distributions of z conditional on employment and nonemployment, this fact implies that when x rises,
outflows from the unemployment pool (workers finding a new job or switching into nonparticipation)
are smaller than inflows (previously employed or nonparticipating workers entering unemployment),
so that the unemployment rate increases in response to a risk premium shock (Figure 6c).

The fact that rising risk premia lead to a fall in job-finding rates and increased nonparticipation
implies that the average duration of nonemployment spells increases, particularly for low-z workers
(Appendix Figure A.7d). The increase in nonemployment duration in response to elevated risk
premia directly affects the magnitude of earnings declines for displaced workers: workers face a
lower probability of finding a new job than when risk premia are low, and therefore have longer
zero-earnings spells.

Wages of New Hires

The wages of new hires are subject to market conditions—equation (23)—and therefore respond to
changes in risk premia. Appendix Figure A.9 plots the effects of risk premia on both the NPV and
flow value of wages for newly hired workers. For a given level of z, the wages of new hires are lower
when risk premia are high for several reasons. First, the total surplus of a match is lower. Second,
workers face a slacker labor market, implying that they get a smaller share of the match surplus.
Third, they have to pay a larger cost of receiving (partial) insurance against aggregate shocks.15

In addition to wage declines conditional on z, workers are expected to start new jobs with lower
productivity levels due to skill depreciation as a result of prolonged nonemployment spells. Thus,
moving workers face larger earnings losses in response to rising risk premia (recall Figure 5c) relative

15Because of wage smoothing (ϕ < 1), if wages were to remain the same, the ratio of the present value of wages to
the employment surplus would rise. Holding the tightness of the labor market constant, this would imply that the level
of wages would have to fall to satisfy equation (23). A slacker labor market puts further downward pressure on wages.
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to workers that move when risk premia are low, not only because they face longer unemployment
spells, but also because they earn less in their subsequent job.

Decomposition of Earnings Losses

Summarizing the discussion above, an increase in risk premia affects worker earnings through changes
in the probability of job loss, the expected duration of nonemployment spells, and expected wages
in future jobs. In Figure 7, we quantify the importance of these separate channels, respectively, in
determining worker exposures to risk premium shocks in the model (see Appendix B.7 for further
details). Figure 7 shows that the main determinant of the heterogeneity in worker earnings exposure
to risk premium shocks is the elevated probability of endogenous separations, which accounts for
roughly two-thirds of the overall earnings decline for lower-paid workers in response to risk premium
shocks. These workers are also most affected by the increased duration of nonemployment in
response to higher risk premium shocks, though the effect of this channel is quantitatively smaller.
Last, the decline in the wages of new hires affects workers similarly across the earnings distribution,
and therefore does not account for the heterogeneity in earnings responses.

2.6 Role of Specific Assumptions

Relative to Kehoe et al. (2023), our model features two additional mechanisms: endogenous
separations and worker search decisions. Here, we illustrate the role of these mechanisms.

First, endogenous separations are a key feature of our model that is necessary to match the
heterogeneity in labor market dynamics and in earnings responses to risk premia across workers.
Absent endogenous separations, the only reason why lower-paid workers would experience larger
declines in earnings when risk premia rise than higher-paid workers is if their job-finding rates fell
disproportionately. However, the cyclicality of job-finding rates in the data is largely comparable
across workers with different levels of prior earnings (recall Figure 3), so this mechanism cannot
explain heterogeneity in outcomes across workers.

To illustrate this key role of endogenous separations for the dynamics of earnings of incumbent
workers, we consider a restricted version of the model that eliminates endogenous separations. This
version requires that firms and workers commit ex ante to continuing matches whose ex-post total
surplus is negative. As in Kehoe et al. (2023), we calibrate this model to match the volatility of the
constant-separation unemployment rate series. Even though this model does reasonably well in terms
of aggregate moments (see column (4) in Appendix Table A.7), it cannot replicate the heterogeneity
in earnings responses as a function of worker earnings (Appendix Figure A.10a). We conclude that,
even though endogenous separations may play a secondary role in driving unemployment fluctuations
(recall Section 2.4), they are necessary to understand the heterogeneity in worker earnings responses.

Second, the endogenous participation margin helps the model generate a relatively flat job-
finding rate as a function of prior earnings, both in terms of levels and in terms of cyclicality. Given

32



that productivity z is a persistent feature of the worker, the model needs a mechanism such that
lower-paid workers have a similar likelihood of finding a job as higher-paid workers at different
points in the business cycle, even as they may have been recently terminated. The existence of
the search cost implies that some of the low-z workers opt out of looking for a job, which helps in
generating homogeneity in job-finding rates across workers with different levels of z.

To quantify the importance of the endogenous worker search decisions, we recalibrate a version of
the model without worker search costs. As column (5) of Appendix Table A.7 shows, this calibration
has a worse fit to the data in terms of heterogeneity in labor market flows by worker earnings, but the
effects on the overall fit are quantitatively modest. The worker earnings responses to risk premium
shocks across the prior earnings distribution are also virtually unaffected (Appendix Figure A.10b).

3 Model Implications
Here, we further evaluate the connection between the model and the data.

3.1 Testable Predictions of the Risk Premium Channel

In the model, workers’ exposure to risk premium shocks is determined by two key factors: how
close the worker is to the separation threshold for individual productivity, and how much the match
surplus value responds to changes in risk premia, with the latter depending on the duration of the
surplus. Importantly, this mechanism generates testable predictions regarding the types of workers
who are likely to show greater sensitivity of earnings to risk premium shocks. We next explore these
predictions in the data.

A direct implication of the model is that an increase in risk premia is more likely to induce
separations for workers with high expected productivity growth compared to workers with low
expected productivity growth—since the surplus for high-growth workers has a longer duration
and is therefore more sensitive to changes in risk premia xt. To explore this prediction in the data,
we estimate the expected longer-term earnings growth of continuing workers as a function of their
observable characteristics. Specifically, we regress the cumulative earnings of stayers over the next
three years on a set of worker characteristics: dummies for industry (2-digit NAICS) × age × gender
bins and industry × prior earnings × tenure bins. We use the estimated coefficients to compute
expected earnings growth (conditional on staying) as a proxy for expected productivity growth for
all incumbent workers. We perform the direct analogue in model-simulated data using worker age
and the interaction of job tenure and earnings group bins as explanatory variables. We sort workers
based on their expected earnings growth, and report the estimated exposure to risk premium shocks
across these groups in Figure 8.

The first panel of Figure 8 shows that the earnings of high-growth workers are significantly more
exposed to risk premium shocks than the earnings of low-growth workers. Appendix Table A.9
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shows that these differences in risk premium exposure persist across horizons, while the exposure to
firm productivity shocks does not materially vary across these workers. In addition, we also see in
Figure 8 that the model is able to quantitatively replicate these differences in earnings exposure to
risk premium shocks between high- and low-growth workers.

The remaining panels of Figure 8 examine whether differences in worker earnings growth are
predictive of earnings responses to risk premium shocks after conditioning on worker earnings.16

Examining the figure, we see that workers’ exposure to risk premium shocks is strongly related to
the interaction of prior earnings levels and expected growth. Workers with low current earnings and
high expected growth rates have by far the largest exposure. A 10 percentage point increase in risk
premia leads to a 3.4 percentage point decline in earnings for workers both in the bottom quartile
of prior earnings and the top quartile of expected growth, compared to a 1 to 1.5 percentage point
decline in earnings for the workers either in the top half of the prior earnings distribution or in the
bottom half of the expected growth distribution. Overall, differences in workers’ earnings responses
to risk premium shocks as a function of expected growth are significant for low-earning workers but
not for high-earning workers—which is consistent with the model since the former group is much
closer to the endogenous separation threshold than the latter group.

A potential shortcoming of our measure of expected earnings growth is that it is somewhat
opaque: it is not obvious which worker characteristics are its main drivers. To this end, we also
explore heterogeneity along two directly observable dimensions that should correlate with the
duration of the employment surplus: worker age and tenure. Specifically, the value of continued
employment in (19) would be significantly more backloaded—and hence more sensitive to changes
in risk premia xt—for a younger worker than for an older worker if the model had a life-cycle
component. Similarly, Caplin, Lee, Leth-Petersen, Sæverud, and Shapiro (2024) document that
worker productivity grows faster for low-tenure workers compared to high-tenure workers, which
again would translate into differences in the duration of the employment surplus.

Next, we re-estimate our baseline empirical specification (2), but we now allow the exposure
to risk premium and productivity shocks to vary with the worker’s age or tenure. Appendix
Table A.10 shows that younger workers are significantly more exposed to risk premium shocks than
older workers: a 10% risk premium shock leads to a 2.1 percentage point decline in the earnings
of younger workers, compared to a 1.1 percentage point decline for older workers over the next
three years. Similarly, in Appendix Table A.11 we see that low-tenure workers are indeed more
exposed to risk premium shocks than high-tenure workers: at a horizon of three years, a 10% risk
premium shock leads to 3 percentage points lower earnings growth for low-tenure workers compared

16In the model, workers’ exposure to risk premium shocks is driven by the interaction of distance to the separation
threshold and duration of the match surplus. Cross-sectional differences along these two dimensions go hand in hand
in the model, as heterogeneity in current productivity z simultaneously reflects worker differences in distance to the
separation threshold and in expected productivity growth due to mean reversion of z. However, in the data, there is
significant heterogeneity in earnings growth rates after conditioning on earnings.
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to 0.9 percentage point lower earnings growth for high-tenure workers. In contrast, exposure to
productivity shocks is similar across age or tenure groups. Last, we see in the bottom panel of these
tables that these patterns are distinct from the earnings pattern documented in Section 1.

In sum, these empirical facts are consistent with the key mechanism in our model: risk premium
shocks have heterogeneous effects on workers that differ not only in their current earnings but also
in the duration of the surplus value of employment. Importantly, this prediction is somewhat unique
to the risk premium channel that we emphasize in this paper and is harder to rationalize under the
alternative where our results are driven by unobserved time-varying firm heterogeneity. Under that
alternative, firms would have to lay off workers with higher expected growth rates in response to a
negative firm-specific shock, but keep workers with lower expected growth, even when both groups
of workers earn a similar amount today.

3.2 Can the Model Replicate Realized Fluctuations?

Thus far, we have focused on evaluating the model based on unconditional moments of various
variables. However, armed with our empirical measure of risk premium shocks, we next explore
whether the model can also replicate the realized path of key series in the data. Specifically, we
use our empirical measure of risk premium shocks ϵrp

t+1 from Section 1.1 as direct proxies for εx,t+1,
the risk premium shocks in the model. We then accumulate these shocks into levels of x using
equation (10). See Appendix B.3 for further details. Given these realizations of x, we then compute
several model-implied variables and compare them to their empirical counterparts. Importantly,
none of these labor market variables depend on A because the model is scale invariant.

Figure 9a plots the realized path of unemployment in the data versus the model-implied series.
Recall that unemployment in the model is driven only by fluctuations in risk premia and that our
risk premium index is constructed using data from financial markets. Examining the figure, we see
that the model performs quite well in replicating the realized path of unemployment: not only is the
volatility of the data and the model-implied series comparable, the correlation between them is 67%.
Notably, the relationship is significantly stronger during the Global Financial Crisis of 2008/09 and
the subsequent slow recovery; given that this was a period of strong fluctuations in risk premia
(Figure 1), we view this pattern as supportive of our model mechanism.

Figure 9b shows that the model also captures fluctuations in the length of nonemployment spells
reasonably well, as measured by the fraction of unemployed workers that have been without a job for
at least six months. In addition, the calibrated model can replicate the realized paths for transition
rates between employment and unemployment. In Figures 9c and 9d, we see that the trajectories of
the job-finding and separation rates in the model are comparable to the data (the correlations are 62%
and 53%, respectively. Figure 9e shows that the model can also largely match the dynamics of labor
market tightness (vacancies V to unemployment U) to provide a quantitative resolution to the Shimer
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(2005) puzzle. Figure 9f shows that the model generates empirically plausible paths for aggregate
employment, though the employment-to-population ratio is somewhat more volatile than in the data.

In sum, these figures show that fluctuations in risk premia account for a significant fraction of labor
market fluctuations in the data. That is, feeding in our empirical measure of risk premium shocks
into the calibrated model allows us to quantitatively replicate the paths of key labor market variables
in the data. Importantly, the model is able to account for the slow recovery in employment after the
Great Recession. This slow recovery is driven by persistently elevated risk premia after the Global
Financial Crisis, leading to a protracted period of depressed labor demand—the V/U ratio takes more
than a decade to recover—and a decline in human capital due to protracted nonemployment spells.

Last, the model can also replicate the observed dynamics of labor income inequality over the
business cycle. To do so, we now need to feed in a proxy for the TFP (A) shock since it affects
the level of wages; we feed in our measure of aggregate TFP shocks constructed in Section 1.2. To
measure income inequality in the data, we use the series from Heathcote et al. (2020).17 Figure 9g
focuses on the level of income inequality at the bottom of the distribution (the ratio of the median
to the 20th percentile of earnings), while Figure 9h examines inequality at the right tail (the ratio
of the 90th percentile to the median). We see that, in both the data and the model, there is a
strong cyclical component to the level of inequality at the bottom; the correlation between the data
and the model-implied series is 81%. Left-tail inequality rises when risk premia rise because the
workers at the bottom of the earnings distribution experience larger and more persistent declines
in earnings than workers at the middle of the distribution. By contrast, inequality at the top is
essentially acyclical in the model—consistent with the findings of Heathcote et al. (2020).

Conclusion
We provide direct empirical evidence that fluctuations in risk premia give rise to heterogeneous labor
market dynamics across workers. Increases in risk premia are followed by decreases in firm labor
demand and increases in separation rates for incumbent workers—particularly for lower-paid workers.
As a consequence, lower-paid workers experience larger earnings declines compared to higher-
paid workers, which implies an increase in labor income inequality at the bottom of the earnings
distribution. These patterns lie in sharp contrast to the effect of productivity shocks, which primarily
affect the earnings of continuing workers, especially those at the top of the income distribution.

Our work opens up several avenues for future work. First, our work speaks to the redistributive
effects of risk premia and their role in generating aggregate fluctuations in demand. Given that lower-
paid workers have larger marginal propensities to consume than higher-paid workers (Patterson,

17Heathcote et al. (2020) focus on prime-age men between ages 25 and 55. We impose a similar (weak) attachment
restriction in the simulated data by computing earnings quantiles for workers who have been employed for at least one
month in the last 5 years.

36



2022), our model mechanism implies that fluctuations in risk premia could have a significant impact
on aggregate demand. Second, to the extent that monetary policy affects risk premia (Moreira and
Savov, 2017; Caballero and Simsek, 2020; Campbell, Pflueger, and Viceira, 2020; Caballero and
Simsek, 2022), our work suggests a novel channel through which monetary policy can affect aggregate
demand. Third, in a model of firm heterogeneity and on-the-job search (Menzio and Shi, 2011;
Moscarini and Postel-Vinay, 2018; Acabbi, Alati, and Mazzone, 2023; Moscarini and Postel-Vinay,
2023), our mechanism would imply that fluctuations in risk premia also affect the allocation of
workers to firms, leading to greater misallocation when risk premia rise. Fourth, given their impact on
separations, fluctuations in risk premia can likely generate the countercyclical patterns of labor income
risk documented by Guvenen et al. (2014). Last, an increase in risk premia in our model leads to an
increase in the average wage, as low-skill matches are destroyed, while at the same time employment
falls, which speaks to the weak cyclicality of the average wage (Solon, Barsky, and Parker, 1994).
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Figure 1: Risk Premium Shocks
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This figure plots our monthly risk premium shocks, measured as the PC1 of the AR(1) residuals of nine series from the
literature (see text for details). The shocks are scaled so that a 1% positive shock corresponds to a 1% contemporaneous
decline in the stock market.

Figure 2: Risk Premia and Future Stock Market Returns
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This figure reports estimates of predictive regressions where we project continuously compounded future excess
stock market returns

∑h

s=1 re
t+s at different horizons h on our risk premium index. The risk premium index is the

exponentially weighted moving average of the risk premium shock, assuming a decay parameter of 0.0068 per month.
The shaded area shows pointwise 95% confidence bands, calculated with Hansen–Hodrick standard errors.
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Figure 3: Separation and Job-Finding Rates by Worker Income: Model vs. Data (Targeted)
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(b) Separation Rate, Average by Wage
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(c) Job-Finding Rate, Unemployment Beta by Last Wage
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(d) Separation Rate, Unemployment Beta by Wage
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This figure compares the average and cyclicality (unemployment beta) of the job-finding rate (U→E) and the separation rate into unemployment (E→U) by income
group in the model and in the data. The empirical counterparts are computed from the SIPP, adjusted for flow level differences from the CPS. Unemployed workers in
Panels (a) and (c) are binned into groups based on their earnings the last time they were employed in the prior twelve months (if any). Incumbent workers in Panels
(b) and (d) are binned into groups based on their current wage earnings.
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Figure 4: Firm Employment and Risk Premium Shocks: Model vs. Data (Non-Targeted)
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This figure reports the regression coefficients b0 from estimates of equation (3) in the model and in the data. The
outcome variables are one-year firm employment growth (left) and firm hiring of workers out of unemployment (right),
defined as the ratio of new employees in year t + 1 with at least one zero-earnings quarter in the last quarter of t or
the first three quarters of t + 1 relative to total employment in t. Model coefficients are indicated by the bars, and
empirical coefficients are indicated by the black dots, with 95% confidence intervals. Coefficients are scaled so that
they correspond to a 10% shock.
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Figure 5: Worker Exposure to Risk Premium Shocks: Model vs. Data (Non-Targeted)

(a) Earnings Growth
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(c) Earnings Growth Conditional on Job Transition Status
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This figure reports the regression coefficients b from estimates of equation (2) by prior worker earnings. Panel (a)
reports cumulative earnings exposure over different horizons h. Panel (b) reports effects on the probability of having at
least one zero-earnings quarter over the next year. Panel (c) reports cumulative three-year earnings exposure separately
for stayers versus movers. Model coefficients are indicated by the bars, and empirical coefficients are indicated by the
black dots, with 95% confidence intervals. Coefficients are scaled so that they correspond to a 10% shock.
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Figure 6: Impulse Responses to Risk Premium Shocks in Model
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(d) Separation Rate (E→U)
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(e) Job-Finding Rate (U→E)
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(f) Aggregate Labor Market Tightness (V/U)
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(h) Cumulative Worker Earnings Growth
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This figure shows the impulse responses of key model quantities following a risk premium shock of one annual standard
deviation.
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Figure 7: Worker Exposure to Risk Premium Shocks in Baseline Model: Decomposition
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This figure presents a decomposition of the regression coefficient b from estimates of equation (2) for cumulative
three-year earnings growth in the model. We decompose cumulative earnings growth as follows:

gi,t:t+h = wstay
i,t+1,t+h − wi,t−2,t︸ ︷︷ ︸

g
stay
i,t:t+h

+ wsep
i,t+1,t+h − wstay

i,t+1,t+h︸ ︷︷ ︸
g

sep
i,t:t+h

+ wext
i,t+1,t+h − wsep

i,t+1,t+h︸ ︷︷ ︸
gsrc

i,t:t+h

+ wi,t+1,t+h − wext
i,t+1,t+h︸ ︷︷ ︸

grehire
i,t:t+h

. (32)

Here, wstay
i,t+1,t+h represents cumulative wage earnings assuming the worker remains in her current job for the full h

periods, wsep
i,t+1,t+h represents cumulative wage earnings assuming the worker earns the same wage she would have

received had she stayed in her initial job for all periods in which she is employed according to êi,τ and zero otherwise,
and wext

i,t+1,t+h represents cumulative wage earnings assuming the worker earns the same wage she would have received
had she stayed in her initial job for all periods in which she is actually employed. The employment indicator êi,τ is
defined as the counterfactual employment outcome for a worker when worker search and firm vacancy posting are
based on decision rules at xτ = x̄ for all τ > t. See Appendix B.7 for details.

46



Figure 8: Worker Exposure to Risk Premium Shocks: Heterogeneity by Worker Expected Earnings Growth
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This table reports the regression coefficients b from estimates of equation (2) with cumulative three-year earnings
growth as the dependent variable, along with 95% confidence intervals. We report worker exposure by prior earnings
bin and by quartile of expected earnings growth, estimated as the average three-year earnings growth of continuing
workers by industry × age × gender bin and industry × prior earnings × tenure bin. Model coefficients are indicated
by the bars, and empirical coefficients are indicated by the black dots, with 95% confidence intervals. Coefficients are
scaled so that they correspond to a 10% shock.
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Figure 9: Realized Labor Market Fluctuations: Model vs. Data
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(b) Long-Term Unemployment Share (ρ = 47%)
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(c) Job-Finding Rate, U→E (ρ = 62%)
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(d) Separation Rate, E→U (ρ = 53%)
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(e) Vacancies-to-Unemployment Ratio (ρ = 68%)
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(f) Employment-to-Population Ratio (ρ = 70%)
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(g) Income Inequality: p50/p20 (ρ = 81%)
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(h) Income Inequality: p90/p50 (ρ = −40%)
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This figure compares the realized paths of key variables between the model and the data. We directly feed into the
model our (scaled) empirical measures of risk premium and productivity shocks ϵrp and ϵtfp. We detrend all series
using an HP filter with quarterly smoothing parameter 105.
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Table 1: Worker Earnings Exposure to Risk Premium Shocks: By Worker Earnings Rank Within Firm

A. Public Firms B. All Firms

2 Years 3 Years 5 Years 2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP RP TFP RP TFP RP TFP

Worker Earnings, 0–25th Percentile -2.09 0.63 -2.21 0.69 -1.77 0.75 -2.34 0.05 -2.46 0.04 -1.98 0.04
(-5.36) (2.71) (-4.47) (2.79) (-2.96) (2.81) (-5.88) (1.61) (-4.69) (1.32) (-3.07) (1.35)

Worker Earnings, 25–50th Percentile -1.38 0.57 -1.40 0.63 -0.97 0.73 -1.68 0.07 -1.72 0.06 -1.26 0.06
(-4.54) (3.52) (-3.75) (3.54) (-2.32) (3.64) (-5.07) (2.69) (-4.08) (2.27) (-2.54) (2.06)

Worker Earnings, 50–75th Percentile -1.11 0.53 -1.10 0.59 -0.70 0.67 -1.38 0.08 -1.40 0.07 -0.96 0.08
(-3.96) (3.82) (-3.24) (3.88) (-1.88) (3.96) (-4.63) (4.13) (-3.73) (3.54) (-2.24) (3.46)

Worker Earnings, 75–95th Percentile -0.98 0.61 -0.92 0.66 -0.53 0.75 -1.17 0.10 -1.15 0.11 -0.76 0.13
(-3.69) (4.23) (-2.96) (4.02) (-1.55) (4.16) (-4.41) (4.92) (-3.53) (4.67) (-2.06) (5.72)

Worker Earnings, 95–100th Percentile -1.39 1.25 -1.14 1.28 -0.54 1.36 -1.37 0.21 -1.25 0.24 -0.73 0.29
(-3.94) (5.45) (-3.18) (4.93) (-1.56) (4.72) (-5.18) (7.85) (-4.19) (8.45) (-2.54) (12.39)

Bottom (1) – Middle (3) Earners -0.98 0.10 -1.12 0.11 -1.08 0.08 -0.96 -0.03 -1.06 -0.03 -1.01 -0.03
(-7.19) (0.90) (-6.08) (0.92) (-4.02) (0.66) (-7.92) (-1.86) (-6.28) (-1.77) (-4.39) (-1.43)

Middle (3) – Top (5) Earners 0.28 -0.72 0.04 -0.70 -0.15 -0.69 -0.01 -0.13 -0.15 -0.16 -0.23 -0.21
(0.94) (-4.52) (0.14) (-3.96) (-0.48) (-3.45) (-0.05) (-6.44) (-0.74) (-7.85) (-1.00) (-9.54)

Bottom (1) – Top (5) Earners -0.70 -0.62 -1.08 -0.59 -1.23 -0.61 -0.97 -0.16 -1.21 -0.20 -1.24 -0.24
(-1.91) (-3.36) (-2.68) (-2.93) (-2.31) (-2.58) (-4.03) (-6.81) (-3.98) (-8.27) (-2.97) (-7.88)

Fixed Effects
NAICS2 × Age × Gender ✓ ✓ ✓ ✓ ✓ ✓
NAICS2 × Earn Grp ✓ ✓ ✓ ✓ ✓ ✓

Observations 47.6m 45.2m 40.4m 28.1m 26.4m 23.1m

This table reports the regression coefficients b and c from estimates of equation (2) with cumulative earnings growth over various horizons h as the dependent variable.
We report exposure across the worker earnings distribution, which we estimate by interacting the two shocks with indicators for the worker’s prior earnings level
relative to other workers in the same firm. Panel A reports results for our main sample of workers employed by public firms in Compustat (using a 20% random
subsample). Panel B reports results for workers in all firms in the revenue-enhanced LBD (using a 5% random subsample), with revenue per worker as the productivity
measure. The controls include a third-order polynomial in the log of average income over the past three years, the lagged risk premium index interacted with income
group dummies, and the listed fixed effects. The sample period is 1990–2019. We report t-statistics based on standard errors double clustered by worker and year in
parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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Table 2: Worker Earnings Exposure to Risk Premium Shocks: Additional Controls

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Worker Earnings, 0–25th Percentile -2.21 -1.12 -2.11 -1.09 -2.27 -1.11 -1.79 -0.88 -1.52 -0.78
(-4.47) (-6.05) (-4.06) (-5.87) (-3.51) (-5.42) (-2.63) (-3.69) (-2.39) (-3.59)

Worker Earnings, 25–50th Percentile -1.40 -0.31 -1.34 -0.32 -1.46 -0.30 -1.15 -0.24 -0.97 -0.23
(-3.75) (-6.56) (-3.33) (-6.09) (-2.91) (-5.60) (-2.23) (-4.11) (-2.00) (-4.98)

Worker Earnings, 50–75th Percentile -1.10 — -1.03 — -1.16 — -0.91 — -0.73 —(-3.24) (-2.83) (-2.53) (-1.93) (-1.62)
Worker Earnings, 75–95th Percentile -0.92 0.19 -0.82 0.22 -0.99 0.18 -0.74 0.15 -0.57 0.17

(-2.96) (3.58) (-2.47) (3.82) (-2.30) (2.90) (-1.70) (2.17) (-1.28) (2.39)
Worker Earnings, 95–100th Percentile -1.14 0.01 -1.01 0.08 -1.24 -0.05 -0.95 -0.06 -0.71 0.03

(-3.18) (0.02) (-2.45) (0.27) (-2.65) (-0.15) (-1.76) (-0.16) (-1.16) (0.06)

Bottom (1) – Middle (3) Earners -1.12 -1.08 -1.11 -0.89 -0.79
(-6.08) (-5.90) (-5.34) (-3.74) (-3.58)

Middle (3) – Top (5) Earners 0.04 -0.02 0.07 0.04 -0.02
(0.14) (-0.08) (0.20) (0.11) (-0.05)

Bottom (1) – Top (5) Earners -1.08 -1.10 -1.03 -0.85 -0.81
(-2.68) (-2.75) (-2.06) (-1.64) (-1.49)

Firm Controls:
Earn Grp × ∆FirmTFP ∆Revenue ∆FirmTFP ∆FirmTFP ∆FirmTFP

Business Cycle Controls:
Earn Grp × ∆AggTFP ∆GDP USREC

Fixed Effects
NAICS2 × Age × Gender ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NAICS2 × Earn Grp ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Firm × Year - ✓ - ✓ - ✓ - ✓ - ✓

Observations 45.2m 45.2m 50.0m 50.0m 45.2m 45.2m 45.2m 45.2m 45.2m 45.2m

This table reports the regression coefficients b and c from estimates of equation (2) with cumulative three-year earnings growth as the dependent variable. We report
exposure across the worker earnings distribution, which we estimate by interacting the two shocks with indicators for the worker’s prior earnings level relative to
other workers in the same firm. The controls include a third-order polynomial in the log of average income over the past three years, the lagged risk premium index
interacted with income group dummies, and the listed fixed effects. The sample is a 20% subsample of all U.S. workers in the LEHD who are employed by public
companies. The sample period is 1990–2019. We report t-statistics based on standard errors double clustered by worker and year in parentheses. Coefficients are
scaled so that they correspond to a 10% shock.
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Table 3: Firm Employment Response to Risk Premium Shocks

A. Employment Growth (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Firm Productivity 0.63 0.38 0.48 0.61 0.38 0.48 0.62 0.38 0.48 0.62 0.38 0.48
(8.73) (23.71) (7.16) (9.03) (24.58) (7.17) (8.75) (24.06) (7.15) (8.86) (23.39) (7.15)

Risk Premium -1.21 -1.09 -1.12 -1.02 -1.11 -0.90 -1.05 -0.79
(-9.90) (-7.42) (-8.16) (-6.98) (-6.47) (-5.11) (-5.36) (-4.09)

Firm RP Exposure × Risk Premium -0.35 -0.36 -0.36 -0.33
(-7.36) (-7.38) (-6.31) (-5.15)

Business Cycle 0.74 0.57 1.67 3.10 -0.15 -0.26
(1.34) (0.92) (1.07) (3.15) (-1.29) (-4.44)

Firm RP Exposure × Business Cycle -0.09 -0.16 -0.02
(-0.35) (-0.27) (-0.39)

B. Hiring Rate (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Firm Productivity 0.32 0.06 0.31 0.29 0.06 0.31 0.29 0.06 0.31 0.31 0.06 0.31
(6.86) (3.41) (6.57) (6.43) (3.42) (6.56) (6.34) (3.37) (6.55) (6.81) (3.34) (6.57)

Risk Premium -1.60 -1.47 -1.39 -1.35 -1.24 -1.13 -1.28 -1.11
(-6.61) (-5.61) (-5.66) (-5.26) (-4.00) (-3.68) (-3.89) (-3.32)

Firm RP Exposure × Risk Premium -0.27 -0.27 -0.25 -0.23
(-6.52) (-5.27) (-4.82) (-3.43)

Business Cycle 1.78 1.01 5.68 5.43 -0.29 -0.31
(1.97) (0.98) (3.14) (3.66) (-2.04) (-2.14)

Firm RP Exposure × Business Cycle -0.01 0.19 -0.04
(-0.03) (0.30) (-0.86)

Business Cycle Controls: ∆AggTFP ∆GDP USREC
Sample Public All Public Public All Public Public All Public Public All Public
Fixed Effects
NAICS2 ✓ ✓ - ✓ ✓ - ✓ ✓ - ✓ ✓ -
NAICS2 × Year - - ✓ - - ✓ - - ✓ - - ✓
Firm - - ✓ - - ✓ - - ✓ - - ✓

Observations 486,000 8,898,000 290,000 486,000 8,898,000 290,000 486,000 8,898,000 290,000 486,000 8,898,000 290,000

The table reports the estimated coefficients from equation (3). In Panel A the dependent variable is the change in log employment. In Panel B the dependent variable
is the firm’s hiring intensity, defined as the number of new employees scaled by lagged total employment. Observations are at the firm by state level. The sample is
either all matched firms in Compustat (public) or all matched firms in the revenue-enhanced LBD (all). The sample period is 1990–2019. We report t-statistics based
on standard errors double clustered by firm and year in parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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Table 4: Worker Earnings Exposure to Risk Premium Shocks: Shift-Share Design

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Worker Earn. (0–25) × Firm RP Exp. -0.82 -0.37 -0.72 -0.31 -0.88 -0.37 -0.83 -0.34 -0.73 -0.32
(-6.47) (-4.58) (-6.96) (-3.91) (-7.67) (-4.03) (-5.62) (-3.72) (-4.03) (-3.10)

Worker Earn. (25–50) × Firm RP Exp. -0.56 -0.10 -0.48 -0.06 -0.60 -0.09 -0.54 -0.05 -0.45 -0.04
(-4.57) (-2.72) (-4.57) (-1.81) (-5.43) (-2.42) (-3.66) (-1.35) (-2.85) (-0.85)

Worker Earn. (50–75) × Firm RP Exp. -0.46 — -0.42 — -0.51 — -0.49 — -0.41 —(-4.03) (-3.99) (-4.46) (-3.23) (-2.77)
Worker Earn. (75–95) × Firm RP Exp. -0.31 0.15 -0.28 0.14 -0.37 0.14 -0.35 0.14 -0.29 0.13

(-3.25) (3.34) (-3.05) (3.44) (-3.84) (3.08) (-2.77) (2.49) (-2.17) (2.03)
Worker Earn. (95–100) × Firm RP Exp. -0.18 0.29 -0.14 0.28 -0.28 0.23 -0.21 0.28 -0.28 0.12

(-0.90) (1.74) (-0.71) (1.77) (-1.51) (1.34) (-0.87) (1.40) (-0.94) (0.45)

[Bottom (1) – Middle (3)] × Firm RP Exp. -0.36 -0.31 -0.36 -0.34 -0.32
(-4.48) (-3.91) (-3.93) (-3.65) (-3.02)

[Middle (3) – Top (5)] × Firm RP Exp. -0.28 -0.27 -0.24 -0.28 -0.13
(-1.71) (-1.66) (-1.34) (-1.41) (-0.47)

[Bottom (1) – Top (5)] × Firm RP Exp. -0.65 -0.58 -0.60 -0.62 -0.45
(-3.23) (-3.06) (-3.16) (-2.56) (-1.59)

Firm Controls:
Earn Grp × ∆FirmTFP ∆Revenue ∆FirmTFP ∆FirmTFP ∆FirmTFP

Business Cycle Controls:
Earn Grp × Firm RP Exp. × ∆AggTFP ∆GDP USREC

Fixed Effects
NAICS2 × Age × Gender ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NAICS2 × Earn Grp × Year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Firm ✓ - ✓ - ✓ - ✓ - ✓ -
Firm × Year - ✓ - ✓ - ✓ - ✓ - ✓

Observations 32.5m 32.5m 34.8m 34.8m 32.5m 32.5m 32.5m 32.5m 32.5m 32.5m

This table reports the regression coefficient b from estimates of equation (4) with cumulative three-year earnings growth as the dependent variable. We report exposure
across the worker earnings distribution within firms. The sample is a 20% subsample of all U.S. workers in the LEHD who are employed by public companies. The
sample period is 1990–2019. We report t-statistics based on standard errors double clustered by worker and year in parentheses. Firm risk premium exposure is
standardized to have unit cross-sectional standard deviation, and coefficients are scaled so that they correspond to a 10% shock.
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Table 5: Worker Exposure to Risk Premium Shocks: Extensive Margin

A. Pr(Nonemployment Spell) B. Pr(Move + Tail Loss)

1 Years 2 Years 3 Years 1 Years 2 Years 3 Years

Worker Earnings, 0–25th Percentile 0.63 0.35 0.98 0.51 0.82 0.48 0.49 0.23 0.77 0.36 0.77 0.39
(3.85) (4.43) (4.25) (5.18) (2.73) (3.74) (5.20) (5.54) (6.84) (6.57) (5.85) (5.74)

Worker Earnings, 25–50th Percentile 0.39 0.12 0.67 0.19 0.50 0.17 0.33 0.07 0.54 0.13 0.52 0.15
(3.43) (4.56) (3.58) (5.34) (2.03) (3.40) (5.12) (6.45) (6.61) (8.71) (5.80) (6.67)

Worker Earnings, 50–75th Percentile 0.27 — 0.48 — 0.33 — 0.26 — 0.41 — 0.38 —(2.89) (2.95) (1.53) (4.77) (5.81) (5.10)
Worker Earnings, 75–95th Percentile 0.13 -0.15 0.23 -0.25 0.10 -0.23 0.17 -0.09 0.27 -0.14 0.23 -0.15

(1.61) (-3.61) (1.54) (-4.49) (0.50) (-3.08) (3.98) (-5.89) (4.60) (-7.29) (3.54) (-5.25)
Worker Earnings, 95–100th Percentile -0.03 -0.31 -0.10 -0.57 -0.30 -0.63 0.10 -0.16 0.15 -0.27 0.11 -0.28

(-0.30) (-3.44) (-0.48) (-4.81) (-1.09) (-3.37) (1.89) (-2.78) (1.70) (-4.14) (1.05) (-3.14)

Bottom (1) – Middle (3) Earners 0.35 0.51 0.48 0.23 0.36 0.39
(4.43) (5.14) (3.71) (5.45) (6.50) (5.70)

Middle (3) – Top (5) Earners 0.31 0.57 0.63 0.16 0.26 0.27
(3.42) (4.77) (3.35) (2.73) (4.11) (3.09)

Bottom (1) – Top (5) Earners 0.66 1.08 1.12 0.39 0.62 0.67
(4.17) (5.30) (3.62) (4.07) (5.49) (4.47)

Fixed Effects
NAICS2 × Age × Gender ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NAICS2 × Earn Grp ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Firm × Year - ✓ - ✓ - ✓ - ✓ - ✓ - ✓

Observations 50.0m 50.0m 47.6m 47.6m 45.2m 45.2m 47.6m 47.6m 45.2m 45.2m 42.8m 42.8m

This table reports the regression coefficient b from estimates of modified versions of equation (2), where we replace the dependent variable with two indicators for job
loss over the next h years: whether the worker experiences at least one full quarter with zero wage earnings (nonemployment spell) or whether the worker separates from
her initial employer and simultaneously experiences a decline in earnings growth below the 10th percentile (move + tail loss). We report exposure across the worker
earnings distribution within firms. The sample is a 20% subsample of all U.S. workers in the LEHD who are employed by public companies. The sample period is 1990–
2019. We report t-statistics based on standard errors double clustered by worker and year in parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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Table 6: Worker Exposure to Risk Premium Shocks: Extensive Margin (Shift-Share Design)

A. Pr(Nonemployment Spell) B. Pr(Move + Tail Loss)

1 Years 2 Years 3 Years 1 Years 2 Years 3 Years

Worker Earn. (0–25) × Firm RP Exp. 0.33 0.35 0.23 0.30 0.35 0.31
(3.95) (5.79) (3.53) (4.75) (8.38) (6.93)

Worker Earn. (25-50) × Firm RP Exp. 0.27 0.31 0.19 0.24 0.26 0.21
(4.19) (4.18) (1.90) (4.99) (7.78) (4.94)

Worker Earn. (50-75) × Firm RP Exp. 0.20 0.24 0.12 0.21 0.24 0.18
(3.52) (4.09) (1.59) (4.86) (8.35) (5.52)

Worker Earn. (75-95) × Firm RP Exp. 0.14 0.15 0.09 0.16 0.18 0.13
(3.33) (3.02) (1.39) (4.97) (6.36) (4.65)

Worker Earn. (95-100) × Firm RP Exp. 0.05 0.02 -0.06 0.07 0.11 0.08
(1.43) (0.55) (-0.98) (1.79) (2.57) (1.71)

[Bottom (1) – Middle (3)] × Firm RP Exp. 0.13 0.11 0.11 0.10 0.11 0.13
(3.50) (3.48) (2.71) (3.02) (3.16) (3.02)

[Middle (3) – Top (5)] × Firm RP Exp. 0.15 0.21 0.18 0.14 0.13 0.10
(3.26) (5.36) (3.74) (8.90) (4.80) (2.87)

[Bottom (1) – Top (5)] × Firm RP Exp. 0.28 0.33 0.29 0.23 0.24 0.22
(3.94) (6.60) (5.81) (6.71) (4.94) (3.51)

Fixed Effects
NAICS2 × Age × Gender ✓ ✓ ✓ ✓ ✓ ✓
NAICS2 × Earn Grp × Year ✓ ✓ ✓ ✓ ✓ ✓
Firm ✓ ✓ ✓ ✓ ✓ ✓

Observations 36.3m 34.4m 32.5m 34.4m 32.5m 30.6m

This table reports the regression coefficient b from estimates of modified versions of equation (4), where we replace the
dependent variable with two indicators for job loss over the next h years: whether the worker experiences at least one
full quarter with zero wage earnings (nonemployment spell) or whether the worker separates from her initial employer
and simultaneously experiences a decline in earnings growth below the 10th percentile (move + tail loss). We report
exposure across the worker earnings distribution within firms. The sample is a 20% subsample of all U.S. workers in
the LEHD who are employed by public companies. The sample period is 1990–2019. We report t-statistics based on
standard errors double clustered by worker and year in parentheses. Firm risk premium exposure is standardized to
have unit cross-sectional standard deviation, and coefficients are scaled so that they correspond to a 10% shock.

54



Table 7: Worker Earnings Exposure to Risk Premium Shocks: Movers vs. Stayers

A. Movers B. Stayers

2 Years 3 Years 5 Years 2 Years 3 Years 5 Years

Worker Earnings, 0–25th Percentile -4.91 -1.35 -4.46 -1.46 -3.37 -1.38 -0.80 -0.31 -0.74 -0.36 -0.58 -0.30
(-6.69) (-5.54) (-5.26) (-4.98) (-3.84) (-4.12) (-3.00) (-3.72) (-2.19) (-3.45) (-1.60) (-2.46)

Worker Earnings, 25–50th Percentile -4.16 -0.57 -3.63 -0.59 -2.48 -0.49 -0.55 -0.05 -0.44 -0.06 -0.33 -0.05
(-6.95) (-5.67) (-5.41) (-5.79) (-3.69) (-4.17) (-2.38) (-1.98) (-1.59) (-1.64) (-1.13) (-1.01)

Worker Earnings, 50–75th Percentile -3.55 — -3.01 — -1.98 — -0.50 — -0.40 — -0.30 —(-6.41) (-4.99) (-3.29) (-2.28) (-1.54) (-1.13)
Worker Earnings, 75–95th Percentile -2.87 0.59 -2.41 0.58 -1.52 0.47 -0.61 -0.08 -0.49 -0.07 -0.35 -0.03

(-5.98) (4.11) (-4.70) (3.80) (-2.94) (3.23) (-2.70) (-1.70) (-1.90) (-1.51) (-1.30) (-0.74)
Worker Earnings, 95–100th Percentile -2.74 0.74 -2.44 0.60 -1.56 0.46 -1.28 -0.71 -1.03 -0.55 -0.58 -0.18

(-5.53) (1.68) (-4.31) (1.32) (-3.13) (1.21) (-4.21) (-2.48) (-3.54) (-1.99) (-2.24) (-0.86)

Bottom (1) – Middle (3) Earners -1.37 -1.45 -1.39 -0.29 -0.35 -0.28
(-6.04) (-5.36) (-4.37) (-3.72) (-3.41) (-2.49)

Middle (3) – Top (5) Earners -0.81 -0.57 -0.41 0.77 0.63 0.28
(-1.70) (-1.16) (-1.07) (2.66) (2.25) (1.33)

Bottom (1) – Top (5) Earners -2.17 -2.02 -1.81 0.48 0.29 0.01
(-3.37) (-2.89) (-2.76) (1.55) (0.87) (0.02)

Fixed Effects
NAICS2 × Age × Gender ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NAICS2 × Earn Grp ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Firm × Year - ✓ - ✓ - ✓ - ✓ - ✓ - ✓

Observations 11.8m 11.8m 14.8m 14.8m 18.1m 18.1m 33.4m 33.4m 28.0m 28.0m 19.9m 19.9m

This table reports the regression coefficient b from estimates of equation (2) with cumulative earnings growth over various horizons h as the dependent variable,
separately estimated for job movers and job stayers. Individuals are characterized as a stayer at horizon h if they continue to receive a positive income from their
initial time-t employer in year t + h + 1, and as a mover in all other cases. We report exposure across the worker earnings distribution within firms. The sample is a
20% subsample of all U.S. workers in the LEHD who are employed by public companies. The sample period is 1990–2019. We report t-statistics based on standard
errors double clustered by worker and year in parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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Table 8: Calibrated Parameters

A. Parameters Calibrated a Priori Symbol Value Source

Average TFP growth (%) µA 0.18 Bureau of Labor Statistics (BLS)
Volatility of TFP growth (%) σA 1.02 Section A.3
Correlation between TFP and RP shock ρA,x -0.39 Sections 1.1 and A.3
Interest rate (%) r 0.16 Lettau and Wachter (2007)
Mortality rate (%) ζ 0.28 Average working life span of 30 years
Matching function elasticity α 0.41 Hagedorn and Manovskii (2008)
Wage pass-through (%) ϕ 14.9 Carlsson et al. (2015)
Persistence of z ψz 0.99 Menzio et al. (2016)
Long-run mean of z in employment z̄E 1 Normalization
Volatility of initial z (%) σz0 66.6 Guvenen et al. (2022)

B. Parameters Calibrated to Asset Returns Symbol Value Moment Model Data

Persistence of price of risk ψx 0.99 Autocorrelation of logP/E 0.90 0.90
Average price of risk x̄ 0.39 Average excess market return (%) 6.80 7.93
Volatility of price of risk (%) σx 3.72 Volatility of excess market return (%) 20.2 20.0
Price of risk premium shock δ 0.36 Average excess long-run strip return (%) 7.27 6.60

Volatility of excess long-run strip return (%) 32.9 34.7
Duration of market portfolio (years) 20.0 20.0
Average P/E 18.1 18.2

C. Parameters Calibrated to Job Flows Symbol Value Moment Model Data

Vacancy posting cost, scale (× 100) κ̄0 3.61 Job-finding rate, mean (%) 26.5 22.5
Vacancy posting cost, elasticity to z κ̄1 1.48 Job-finding rate, mean by last wage (Figure 3a)
Exogenous separation rate (%) s 0.82 Separation rate, mean (%) 1.09 1.34
Nonemployment flow, intercept b̄0 0.41 Separation rate, mean by wage (Figure 3b)
Job search cost at x = x̄ (× 100) c̄0 0.36 Unemployment rate, mean (%) 6.89 6.53
Long-run mean of z in nonemployment z̄O 0.47 Unemployment rate, volatility (%) 1.49 1.44
Volatility of z (%) σz 10.9 Earnings growth for continuing workers, mean by prior earnings (Figure A.5)
Job search cost, dependence on x c̄1 6.05 Labor force participation rate, unemployment beta -0.13 -0.07
Nonemployment flow, dependence on z b̄1 0.58 Job-finding rate, unemployment beta -2.04 -1.91

Job-finding rate, unemployment beta by last wage (Figure 3c)
Separation rate, unemployment beta 0.07 0.10
Separation rate, unemployment beta by wage (Figure 3d)

This table reports the parameter values in our baseline calibration of the model. We report all parameters at the monthly frequency. See Section 2.3 for details.
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Table 9: Labor Market Dynamics: Model vs. Data

Volatility Autocorrelation Cyclicality

A. Labor Market Indicators Model Data Model Data Model Data

Unemployment rate (%) 1.49 1.44 0.93 0.97 1.00 1.00
Long-term unemployment share (%) 5.41 5.78 0.83 0.97 2.11 3.45
Employment-to-population ratio (%) 1.92 1.08 0.95 0.97 -1.04 -0.72
Labor force participation rate (%) 1.34 0.35 0.93 0.91 -0.13 -0.07
Labor market tightness (log V/U ratio, %) 25.22 37.71 0.92 0.97 -13.48 -25.32

B. Job Flows

Job-finding rate (%) 4.30 2.93 0.85 0.92 -2.04 -1.91
Separation rate into unemployment (%) 0.17 0.17 0.62 0.83 0.07 0.10

C. Decomposition of Unemployment Rate

Unemployment rate assuming constant separations (%) 0.87 0.79 0.96 0.97 0.55 0.51
Unemployment rate assuming constant job finding (%) 0.56 0.61 0.88 0.94 0.27 0.40

This table reports key labor market moments in the model and in the data. We report the volatility and persistence (autocorrelation) of these series, together with
their cyclicality—the slope coefficient (beta) of a regression of each series on the unemployment rate. Panel C reports the moments of counterfactual unemployment
rate series that hold either the separation rate or the job-finding rate constant.
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A Additional Details on the Empirical Analysis
Here, we provide further details on the data construction and empirical analysis.

A.1 Worker Earnings Data

Our main data are employer–employee linked data from the Longitudinal Employer–Household
Dynamics (LEHD) database. The LEHD contains earnings and employer information for U.S.
workers, collected from state unemployment insurance filings. The LEHD data start in 1990, although
many states joined the sample in later years as coverage became more complete. By the mid- to late-
1990s, the LEHD covers the majority of jobs. We use data for years until 2019; only a few states drop
out of the sample for years before then. The LEHD data are based on firms’ unemployment insurance
filings to the state and contain total gross wages and other taxable forms of compensation as a
measure of earnings. For the state–quarters in the LEHD, coverage of private sector jobs is nearly
100%. We link worker earnings to demographic information such as age and gender and convert all
nominal earnings measures to real figures by deflating with the consumer price index (CPI).

The data allow us to track the incomes of individual workers over time and across employers. Our
sample in year t covers individuals between ages 25 and 60 who live in a state in year t that is in the
LEHD between years t−2 and t+5 and who have labor earnings in years t, t−1, and t−2 that exceed
a minimum annual threshold as in Guvenen et al. (2014): the federal minimum wage times 20 hours
times 13 weeks (1885 dollars in 2019). We merge leads and lags of individual annual labor earnings to
the base year, where individuals without any earnings are assigned zero wage earnings for that year.

In addition to total earnings, we separately observe earnings and employer identity for the top
three jobs (by income) of an individual in that year. We use the Employer Identification Number
(EIN) of the employer associated with the highest annual earnings for the individual to assign
workers to firms. In selecting the sample for year t, we require individuals to have strictly positive
earnings from this employer in year t+1 to make sure that the employment relationship is still active
by the end of year t. For workers for whom we observe a complete earnings history between years
t− 5 and t, we construct indicators for employment tenure by counting the number of consecutive
years that the worker has received income from the current main employer.

A key focus of our analysis is on heterogeneity in the effects of risk premium and productivity
shocks across the income distribution. We rank workers by their prior earnings relative to their peers.
In particular, we sort workers by their last three years of total age-adjusted wage earnings, wi,t−2,t,
and compute the income rank of workers within their own firm. To compute these earnings ranks, we
require observing at least 50 workers in the sample for a firm–year. We focus on quartiles of the initial
earnings distribution, where we further separate out the top 5% from the remainder of the top quartile.

We use an internal Census table for mapping EIN to GVKEY identifiers to link firm information
from Compustat to the worker earnings data. For most of our analysis, we focus on employees
of publicly traded companies, for whom we have better measures of risk premium exposures and
productivity shocks. We build our sample by first collecting data for all U.S. workers in the LEHD
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who are linked to Compustat firms in the base year t and constructing the yearly income ranks for
this full sample. Then, after constructing all relevant variables, we randomly sample 20% of all
workers in each year for inclusion in our final dataset to keep the analysis computationally feasible.
We exclude workers employed by firms with missing industry codes or who work in the utilities
sector (NAICS codes starting with 22) or financial sector (NAICS codes starting with 52 or 53) from
the sample. We also build an alternative 5% sample of all employees of both public and private
companies, linked to firm information from the Longitudinal Business Database (LBD).

An additional benefit of the LEHD is that it contains total earnings for each quarter in addition
to the annual information. We use this information to construct a nonemployment indicator that
takes the value of one if an individual has a quarter of zero earnings over a particular period. We
also use worker earnings data split out per employer in future years to classify workers as stayers
versus movers with respect to their initial job.

A.2 Risk Premium Shocks

Table A.2 summarizes the nine existing series in the literature that capture fluctuations in risk or the
risk-bearing capacity of investors and that we use to construct our measure of risk premium shocks.
Since the majority of the series are available from the 1980s and for the purposes of linking these to
our worker data starting from 1990, we collect data from December 1984. All series are signed so that
an increase is an indication of elevated risk premia. As a consequence, innovations to all series are
negatively correlated with stock market returns in the same month. Figure A.1 plots these nine series.

We construct the risk premium shock as the first principal component of the AR(1) residuals of
each individual series. We follow Bauer et al. (2023) in dealing with missing observations to obtain
a complete time series. The resulting series is highly positively correlated with each component,
with a minimum correlation of 51% and an average correlation of 75%.

A.3 Productivity Shocks

We use the approach from İmrohoroğlu and Tüzel (2014) to estimate a revenue-based measure of
total factor productivity (TFP) growth at the firm level based on the production function

yjt = β0 + βkkjt + βlljt + ωjt + ηjt, (A.1)

where yjt is the log of value added for firm j in year t, kjt and ljt are log capital and labor,
respectively, ωjt is log firm TFP, and ηjt is an error term. We estimate the parameters βk and βl by
implementing the semiparametric methodology of Olley and Pakes (1996). From these estimates,
we then compute firm-level TFP growth as

∆ωjt = ∆yjt − β̂k∆kjt − β̂l∆ljt. (A.2)

In their estimation of βk and βl, İmrohoroğlu and Tüzel (2014) use industry–time fixed effects to
separate firm productivity from industry or aggregate effects. To obtain estimates of firm-level TFP
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growth that are suitable for aggregation, we re-estimate firm TFP growth based on their methodology
but replace the industry–year fixed effects with industry fixed effects at the 3-digit SIC level.

We apply this methodology using data from Compustat, complemented by output and invest-
ment deflators from the Bureau of Economic Analysis and wage data from the Social Security Ad-
ministration. We estimate the production function parameters for every year between 1964 and
2020 using all data up until that year to avoid using any forward-looking information. We winsorize
the resulting firm-level growth series at the 1% and 99% levels. To obtain measures of industry-level
or aggregate TFP growth, we compute the weighted average of firm TFP growth where we weight
firms by their lagged number of employees.

We use this series rather than the TFP series from the Bureau of Labor Statistics (BLS) for
several reasons. First, the İmrohoroğlu and Tüzel (2014) series is a direct estimate of revenue-based
total factor productivity (TFPR) at the firm level, which Guiso et al. (2005) show has some pass-
through to worker wages. By contrast, the TFP series from the BLS are defined as the difference
between real output and a shares-weighted combination of factor inputs at the sector or industry
level. Second, the BLS series are available only at a granular level for manufacturing industries.
Third, for some industries, there are some salient differences between private and public firms; our
analysis is based on public firms, and the İmrohoroğlu and Tüzel (2014) measure of productivity
directly applies to these firms.

A.4 Measures of Firm Exposure to Risk Premium Shocks

To construct the firm-level risk premium exposure measure χf,t in (4), we use various proxies for
firms’ sensitivity to aggregate financial conditions as described below.

Equity Betas

We use the CRSP/Compustat merged database to link historical firm equity returns to the employers
in our sample. We compute firm-level risk premium betas at the end of each year by regressing
monthly firm equity returns on the risk premium shock over the past ten years, requiring at least
60 monthly observations. We also compute firm betas with respect to the aggregate stock market
using the same approach. As measures of firm exposure as of year t, we use the respective beta that
is computed at the end of calendar year t− 1.

Company-Level Financial Variables

We also compute company-level exposure measures from Compustat. For measuring exposure in
year t, we use annual data from fiscal year t− 1. The amount of debt that matures in years t+ 1
and t+ 2 (as of t− 1) relative to total assets is given by dd2/at + dd3/at. Cash to assets is defined
as che/at. Firm size is measured as the log of total assets (at) in real terms. Finally, we construct
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the Whited–Wu index following Whited and Wu (2006) as

− 0.091 ib + dp
at

− 0.062 × 1(dvc + dvp > 0) + 0.021 × dltt
at

− 0.044 × log(real assets)+

0.102 × average SIC 3-digit industry sales growth in year − 0.035 × sales growth.
(A.3)

See Farre-Mensa and Ljungqvist (2016) for further details. All Compustat variables (except for size)
are winsorized at the 1% and 99% levels.

Distance to Default

The one-year distance to default (Merton, 1974) is defined as

DD = log(V/D) + µV − 0.5σ2
V

σV
, (A.4)

where V is the total value of the firm, D is the face value of debt, µV is the expected return on
assets, and σV is the volatility of the return on assets. We measure firm distance to default following
the iterative procedure from Gilchrist and Zakrajšek (2012). The value of equity is measured as the
firm’s market capitalization in CRSP. The face value of debt is computed from quarterly Compustat
data as D = dlc + 0.5 dltt. The value V and the mean µV and volatility σV of its return are
estimated using the Black–Scholes–Merton option pricing framework and daily equity return data
over the past year from CRSP. See Ottonello and Winberry (2020) for further details. As a measure
of firm exposure in year t, we use the firm’s distance to default as of the end of calendar year t− 1.

Principal Component

As our main measure of firm exposure χf,t to risk premium shocks, we take the first principal
component of the risk premium beta, firm size, cash relative to assets, distance to default, and
maturing debt in the next two years relative to total assets. On average across years, the first
principal component explains 31% of the total cross-sectional variation in these measures. The
average cross-sectional correlation of the exposure measure χf,t is 38% with the risk premium beta,
60% with negative size, -5% with negative cash to assets, 73% with negative distance to default,
and 39% with maturing debt to assets.

A.5 CPS Data on Worker Flows

We measure gross flows between worker employment states using microdata from the Current
Population Survey (CPS) between January 1978 and December 2019. The flows are calculated by
making use of the rotating-panel sampling procedure, where households are included in the sample
for four months, rotated out for eight months, and then rotated back in for another four months.
We follow the algorithm of Elsby et al. (2015); Krusell et al. (2017) in estimating worker flows
for all respondents and the associated monthly transition flow probabilities between employment,
unemployment, and nonparticipation.

It is well known that survey-based measures of gross flows between recorded employment
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states are sensitive to classification errors, especially between the states of unemployment and
nonparticipation. We implement the Abowd-Zellner correction for classification errors that adjusts
transition probabilities for the estimates of misclassification probabilities from Abowd and Zellner
(1985), which are based on resolved labor force status from follow-up CPS interviews. The literature
has found that all labor market states become more persistent after correction than what is implied
by the unadjusted flows. Following the prior literature, we also implement a margin-error adjustment
that restricts the estimates of worker flows to be consistent with the published aggregate labor
market stocks of workers in employment, unemployment, and nonparticipation.

A.6 SIPP Data on Worker Flows

Given our focus on heterogeneity in labor market dynamics across workers with different income
levels, we also want to measure worker flows conditional on wage earnings in the data. Since it is
not possible to compute a time series of transition rates by income in the CPS, we turn to data
from the Survey of Income and Program Participation (SIPP) of the U.S. Census Bureau to assess
the relation between gross worker flows and earnings.

The SIPP is a longitudinal national household survey where participants are repeatedly inter-
viewed on their labor market participation, income, demographic characteristics, and other economi-
cally relevant dynamics over a multiyear period. The SIPP consists of multiple panels that each last
for several years. The SIPP had major redesigns in 1996 and 2014. Respondents are interviewed
every four months (before 2014) or year (from 2014) about monthly outcomes over the past months.

We use data from the 1990–2019 panels of the SIPP, which cover the period from November 1989
to December 2019 with some gaps. We measure monthly employment status from reports in the
last week of each month. Analogous to the CPS, we classify individuals as employed if they have a
job and are working, absent without pay, or on paid leave. Individuals are classified as unemployed
if they have no job and are either looking for work or on layoff. We also track workers who are not
participating in the labor market.

In our calibration, we separately target the dynamics of separation and job-finding rates by
worker earnings levels. For separation rates, we restrict attention to incumbent workers with positive
wage earnings who report having a job in all weeks of the initial month. We sort these employed
workers into income groups based on their wage earnings in the current month and compute the
share of workers that become unemployed in the next month by earnings quartile bin. For job-
finding rates, we sort unemployed workers into income groups based on their last reported (full-
month) monthly wage income during the prior 12 months, if any. We then compute the share of
workers that report having a job in the next month by prior earnings quartile bin.

It is well established that there is a significant level difference in flow rates computed using
the CPS versus the SIPP (Fujita, Nekarda, and Ramey, 2007). Since we calibrate the model to
conventional moments of aggregate flows based on the CPS, we adjust the flow rates from the SIPP
by removing the level effect. Specifically, we scale the monthly transition probabilities for each
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earnings group by the respective unconditional average flow rate. That is, we only use the SIPP to
estimate relative differences in flows across the earnings distribution.

B Model Appendix
Here, we include additional details on the solution, calibration, and mechanisms of the model.

B.1 Derivation of Labor Search Equilibrium Conditions

To pin down how the match surplus is shared between workers and firms, we need to consider how a
worker’s search strategy would change if a firm were to deviate by offering an employment contract
with worker value W̃t(z). Let θ̃t(z) be the tightness in the market for this offer. If the alternative
contract has a sufficiently high value, unemployed workers of this type will flow between the two
markets until the value from searching in either market is equalized, i.e., when

p(θ̃t(z))(W̃t(z) − JO
t (z)) = p(θt(z))(Wt(z) − JO

t (z)). (A.5)

Note that when the offer is so bad that even when the probability of getting the job is equal to
one, the offer is still dominated by the existing labor market, the market for this alternative offer is
inactive with θ̃ = 0.

Firms target a specific type of worker z by posting a vacancy and offering a continuation value to
the worker equal to Wt(z) at the moment the worker is hired (recall the symmetry of the equilibrium).
By the one-shot deviation principle, we only need to consider a one-time deviation for a firm in
period t while workers are being offered the symmetric offer Wt(z) by all other firms and in all other
time periods.

First, consider an active labor market where workers are being offered the symmetric value
Wt(z). The value JV

t (z) of a posted vacancy to a firm is given by

JV
t (z) = −κt(z) + q(θt(z))

(
JMC

t (z) −Wt(z)
)

+ (1 − q(θt(z))) × Et

[
Λt+1 max

z̃

{
JV

t+1(z̃)
}]
.

(A.6)

Since there is free entry of firms into labor markets, the equilibrium number of vacancies is pinned
down by the zero-profit condition in (22).

Second, in equilibrium, no firm can gain by deviating. Consider a firm that deviates by offering
worker value W̃t(z). The firm solves the following problem:

max
θ̃t(z),W̃t(z)

− κt(z) + q(θ̃t(z))(JMC
t (z) − W̃t(z))

s.t. p(θ̃t(z))(W̃t(z) − JO
t (z)) = p(θt(z))(Wt(z) − JO

t (z)).
(A.7)

It is without loss of generality to consider only serious offers, those for which W̃t(z) − JO
t (z) ≥

p(θt(z))(Wt(z) − JO
t (z)), because there is no point for the firm to offer a wage contract that will be
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ignored by all workers. The first-order conditions for the firm’s problem are

−q(θ̃t(z)) = ζt(z) · p(θ̃t(z)) (A.8)

q′(θ̃t(z))(JMC
t (z) − W̃t(z)) = ζt(z) · p′(θ̃t(z))(W̃t(z) − JO

t (z)), (A.9)

with Lagrange multiplier ζt(z). By combining these two conditions and imposing symmetry of the
equilibrium, we obtain the equilibrium condition

−q′(θt(z))
q(θt(z))

(JMC
t (z) −Wt(z)) = p′(θt(z))

p(θt(z))
(Wt(z) − JO

t (z)). (A.10)

Defining the elasticity of the vacancy filling rate by η(θ) ≡ −θq′(θ)/q(θ) and noting that 1 − η(θ) =
θp′(θ)/p(θ), we can rearrange to solve for the worker value in a new match that is given by
equation (23).

B.2 Model Solution

Our model is solved in two steps. First, we solve for the labor search equilibrium in the model.
We define the normalized values JN

t (z) = JN
t (z)/At, J

U
t (z) = JU

t (z)/At, J
O
t (z) = JO

t (z)/At,
J

MC
t (z) = JMC

t (z)/At, J
M
t (z) = JM

t (z)/At, and W t(z) = Wt(z)/At. Rewriting the equilibrium
conditions, labor market allocations in this model are pinned down by the solution to the following
system of equations:

J
N
t (z) = b̄0 + b̄1 z + (1 − ζ)Et,z

[
Λt+1e

µA+σAεA,t+1J
O
t+1(z′)

]
(A.11)

J
U
t (z) = b̄0 + b̄1 z − f(θt(z̄O)) + (1 − ζ)Et,z

[
Λt+1e

µA+σAεA,t+1
{
J

O
t+1(z′) (A.12)

+p(θt+1(z′))
(
W t+1(z′) − J

O
t+1(z′)

)}]
J

O
t (z) = max{JN

t (z), JU
t (z)} (A.13)

J
MC
t (z) = z + (1 − ζ)Et,z

[
Λt+1e

µA+σAεA,t+1
{
sJ

O
t+1(z′) + (1 − s)JM

t+1(z′)
}]

(A.14)

J
M
t (z) = max{JMC

t (z), JO
t (z)} (A.15)

κ̄0 z
κ̄1 ≥ q(θt(z))

(
J

MC
t (z) −W t(z)

)
(A.16)

= if θt(z) > 0

W t(z) = J
O
t (z) + η(θt(z))

(
J

MC
t (z) − J

O
t (z)

)
. (A.17)

From these equations, it follows that the functions θt(z), J
N
t (z), JU

t (z), JO
t (z), JMC

t (z), JM
t (z),

and W t(z) depend only on the aggregate state through the stationary price-of-risk process xt. Thus,
in the competitive search equilibrium, labor market tightness θt(z) does not depend on At, and the
value functions JN

t (z), JU
t (z), JO

t (z), JMC
t (z), JM

t (z), and Wt(z) are linear in At. The equilibrium
continuation policy in (21) is given by

1C
t (z) = 1 ⇔ J

MC
t (z) ≥ J

O
t (z). (A.18)
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After solving for the equilibrium allocations, the second step is to find per-period wages based
on the imposed wage contract. Similar to above, the normalized value WS

t (z) = WS
t (z)/At derived

from payoffs after the current match ends is given by

W
S
t (z) = (1 − ζ)Et,z

{
Λt+1 e

µA+σAεA,t+1
[
J

O
t+1(z′) + (1 − s)1C

t+1(z′)
(
W

S
t+1(z′) − J

O
t+1(z′)

)]}
.

(A.19)
Under the wage protocol (28), the present value of wages is

ŴM (Ωi,m,t) = wi,τ e
µA(t−τ)(1−ϕ)

(
At zi,t

Aτ zi,τ

)ϕ

+ (1 − ζ)Et,z

[
Λt+1 (1 − s)1C

t+1(zi,t+1) ŴM (Ωi,m,t+1)
]
.

(A.20)
Let W̃M (Ωi,m,t) = Ŵ M (Ωi,m,t)

Aτ eµA(t−τ)(1−ϕ)
(

At
Aτ

)ϕ and w̃i,τ = wi,τ

Aτ zϕ
i,τ

. We obtain the following recursive

expression for the normalized wage contract value:

W̃M
t (w̃, z) = w̃ zϕ + (1 − ζ)Et,z

[
Λt+1 e

µA+ϕ σAεA,t+1 (1 − s)1C
t+1(z′) W̃M

t+1(w̃, z′)
]
. (A.21)

Finally, the wages of new hires can be pinned down by solving (27) in terms of normalized values:

W̃M
τ (w̃τ (z), z) = W τ (z) −W

S
τ (z). (A.22)

B.3 Calibration of the Stochastic Discount Factor

We calibrate the parameters of the stochastic discount factor (SDF) to match moments of asset
prices. To do so, we make the common assumption that corporate earnings Et represent a levered
claim on aggregate productivity,

∆Et+1 = µE + λσA εA,t+1, (A.23)

where µE is expected earnings growth and λ is the leverage parameter. Based on the average value
of nonfinancial corporate business debt as a percentage of the market value of corporate equity
between 1952 and 2019 from the Flow of Funds, which is 49%, we assume a leverage parameter
λ equal to 1.49. The total value of the stock market is given by the present value of aggregate
earnings as specified in (9).

To calibrate the price of risk process xt in (10), we follow a strategy similar to that of Lettau
and Wachter (2007), with one important distinction: we allow for a negative correlation between
productivity shocks and risk premium shocks. In particular, we set ρA,x to −0.39 to match the
correlation between our measures of annual aggregate TFP growth and risk premium shocks. To
accommodate this negative correlation in a model with realistic asset pricing implications, we also
allow risk premium shocks to be priced (i.e., δ ̸= 0).

Given that the model’s mechanism operates through changes in employment values at relatively
long maturities, we target both the moments of the stock market as a whole and the moments of a
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risky long-duration claim. Specifically, we consider the returns on the long-duration portfolio from
Gormsen and Lazarus (2023), who sort stocks into decile portfolios based on ex ante duration. The
realized duration of the long-duration portfolio is 59 years. We mimic this long-duration portfolio
in our model by computing the returns on a long-run dividend strip (zero-coupon equity) with an
equivalent maturity of 59 years. We assume that the duration of the market is 20 years, which is
the realized duration of the median portfolio.

We simulate the model at a monthly frequency and aggregate all financial variables to an annual
frequency to compute annual moments. We choose µE , x̄, ψx, σx, and δ to target the average price–
earnings ratio, the autocorrelation of the log price–earnings ratio, the duration of the market, the
mean and volatility of aggregate stock market returns, and the mean and volatility of the return on
the long-duration claim. Panel B of Table 8 shows that our calibration (with µE = 0.16% per year)
matches the average and persistence of the price–earnings ratio and the distribution of aggregate
stock market returns. The volatility of the log price–earnings ratio is 0.39, which is close to the
empirical value of 0.41. In addition, as Figure A.2 illustrates, the calibrated SDF captures the
stylized fact that the Sharpe ratios of risky assets decline with the duration of their cashflows
(Lettau and Wachter, 2007; van Binsbergen et al., 2012; Gormsen and Lazarus, 2023). The value
of δ > 0 implies that shocks to risk premia that are orthogonal to productivity are viewed as low-
marginal-utility states by households, potentially because of improved investment opportunities.
The maximum monthly Sharpe ratio that can be attained in financial markets is√

Vart[Λt+1]
Et[Λt+1] =

√
exp

{
x2

t (1 + δ2 + 2 δ ρA,x)
}

− 1. (A.24)

When xt is at its long-run mean x̄, the maximum Sharpe ratio is 0.37.
We assume that our empirical measure of risk premium shocks ϵrp

t+1 corresponds to the price-of-
risk shock εx,t+1 in the model. Therefore, in quantitative comparisons of the model with the data, we
assume that the model-equivalent risk premium shock ϵrp

t+1 is proportional to εx,t+1. Given that the
empirical distribution of ϵrp

t+1 is positively skewed and leptokurtic, we calibrate the proportionality
coefficient such that the interpercentile range (p99–p1) of monthly risk premium shocks matches
between the model and the data: ϵrp

t+1 = 0.045 × εx,t+1. Under this assumption, the sample
moments of model-implied quantities given the realized risk premium shock series are similar to the
unconditional moments. We maintain the timing assumption from Section 1.2 in linking financial
shocks to labor market outcomes.

Figure A.3 shows that our model has realistic implications for return predictability. First, in
Figure A.3a, we run a predictive regression of future stock market returns on the level of risk premia
analogous to Figure 2, comparing the results in model-simulated data to the empirical results.
A high value of xt predicts positive future stock market returns, with a magnitude close to the
empirical counterpart. Second, Figure A.3b shows that the model also has realistic implications for
the predictability of long-horizon returns by the level of the price–earnings ratio.

In our calibration, x is highly persistent (ψx = 0.993 monthly) to match the empirical persistence
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of market prices. Notably, as Figure A.1 shows, some of the empirical series we use as proxies for
time-varying financial conditions are less persistent. We therefore consider an alternative calibration
where we do not target the persistence of the price–earnings ratio, but instead set ψx = 0.883 as
the average monthly persistence of the nine series. While this calibration can match the remaining
target financial moments reasonably well, this model has counterfactual implications for valuations.
Figure A.3 shows that there is way too much predictability of market returns at short horizons.
The resulting autocorrelation of monthly returns is −0.35, while this autocorrelation is close to zero
both in the data and in the baseline model.

B.4 Calibration of the Labor Search Model

After calibrating a subset of the parameters based on ex-ante information and to match asset pricing
moments, the other parameters are chosen so that the labor search model equilibrium matches key
labor market target moments. These remaining parameters include the exogenous separation rate (s),
the long-run mean of z in nonemployment (z̄O), the volatility of z (σz), and the parameters governing
the vacancy cost function, the nonemployment benefit function, and the worker search cost function.

Equations (12) and (14) make functional form assumptions on vacancy costs and nonemployment
benefits as a function of the aggregate state and worker productivity. It remains to parameterize the
worker search cost function (15). In any reasonable calibration of our model, labor market tightness
θt(z̄O) is a monotonically decreasing function of xt (see Figure A.4a). To simplify the calibration,
we directly parameterize search costs as a function of x:

ct = At c̄0 e
−c̄1 (xt−x̄). (A.25)

This reduced-form assumption is consistent with the model of Krusell et al. (2017), which features a
wealth effect that increases the desire to participate in bad times, nearly offsetting the substitution
effect caused by worsened labor market opportunities. Figure A.4b plots the resulting search cost
function f(θ) implied by our model calibration.

After solving the model, we simulate a monthly panel of 10,000 workers over 75 years, starting from
the steady-state distribution of worker states along the balanced growth path. Based on this model-
simulated data, we compute the moments of the unemployment rate, job-finding and separation rates
(overall and by income), and earnings growth for continuing workers by prior earnings, constructed
directly analogously to their empirical counterparts. We repeat this simulation 20 times and average
the results to obtain the model moments. We select the parameters (s, z̄O, σz, κ̄0, κ̄1, b̄0, b̄1, c̄0, c̄1) to
minimize the distance between the 28 model moments and the empirical targets.

B.5 Decomposition of Unemployment Rate Fluctuations

Section 2.4 considers two counterfactual unemployment rates, a constant-separation unemployment
rate and a constant-job-finding unemployment rate, to assess the relative importance of these two
margins. Here, we implement the approach from Elsby et al. (2015) to conduct a more formal
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decomposition of unemployment fluctuations into the individual contributions of flows between
labor market states. This decomposition also accounts for the participation margin.

Define Et, Ut, Nt as the current stock of workers that are employed, unemployed, and nonpar-
ticipating, respectively, and denote the transition rate between states i, j ∈ {E,U,N} by pij

t . The
dynamics of the stocks in terms of the flows are given by the Markov chain


E

U

N


t

=


1 − pEU − pEN pUE pNE

pEU 1 − pUE − pUN pNU

pEN pUN 1 − pNE − pNU


t


E

U

N


t−1

. (A.26)

By normalizing the stocks by the size of the population so that they represent population shares,
the accounting identity Et + Ut +Nt = 1 holds, which means that labor market dynamics can be
represented by the two-dimensional systemE

U


t︸ ︷︷ ︸

St

=

1 − pEU − pEN − pNE pUE − pNE

pEU − pNU 1 − pUE − pUN − pNU


t︸ ︷︷ ︸

Pt

E
U


t−1︸ ︷︷ ︸

St−1

+

pNE

pNU


t︸ ︷︷ ︸

Qt

. (A.27)

Let S̄t = (I − Pt)−1Qt be the steady state that the Markov chain is currently converging to. Elsby
et al. (2015) show that the dynamics of St can be written as

∆St = At ∆S̄t +Bt ∆St−1, (A.28)

where At = I − Pt and Bt = (I − Pt)Pt−1(I − Pt−1)−1. Note that the first term in (A.28) captures
the effect of contemporaneous changes in flow rates on long-run labor market stocks, while the
second term captures the effect of past flows on the current state. Iterating this equation backwards
over all periods in the sample (starting from t = 0) gives an expression for changes in St as a
function of current and past changes in steady-state values S̄t,

∆St =
t−2∑
k=0

Ck,t ∆S̄t−k +Dt ∆S1, (A.29)

where Ck,t = (
∏k−1

n=0Bt−n)At−k and Dt =
∏t−2

n=0Bt−n.
Next, to link changes in labor market stocks to underlying changes in flows, consider a first-order

approximation to changes in S̄t:

∆S̄t ≈
∑
i ̸=j

∂S̄t

∂pij
t

∆pij
t . (A.30)

Combining the above ingredients leads to the following decomposition of the variance of changes in
labor stocks:

Var(∆St) ≈
∑
i ̸=j

Cov(∆St,∆Sij
t ), (A.31)
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where

∆Sij
t =

t−2∑
k=0

Ck,t
∂S̄t−k

∂pij
t−k

∆pij
t−k. (A.32)

Note that this decomposition does not directly apply to the unemployment rate ut = Ut
Et+Ut

, which
is a nonlinear function of the stocks. However, we can derive a decomposition for unemployment
rate fluctuations by using a linear approximation,

∆ut ≈ (1 − ut−1) ∆Ut

Et−1 + Ut−1
− ut−1

∆Et

Et−1 + Ut−1
. (A.33)

Plugging in the above expressions for ∆St, it is now straightforward to arrive at a similar decompo-
sition for changes in ut,

Var(∆ut) ≈
∑
i ̸=j

Cov(∆ut,∆uij
t ). (A.34)

To assess the contribution of each flow component to fluctuations in the unemployment rate, we
compute

ρij = Cov(∆ut,∆uij
t )∑

i ̸=j Cov(∆ut,∆uij
t )
. (A.35)

Table A.8 compares the results of this decomposition between the data and the model. Consistent
with Elsby et al. (2015), we find that unemployment outflows account for approximately 60 percent
of unemployment fluctuations in the data and unemployment inflows account for 40 percent, with
the participation margin contributing around 30 percent of the overall variation despite the labor
market participation rate being nearly acyclical. We see that the model matches the contributions
of the individual components quite well, with prominent roles for both countercyclical job-loss
rates and procyclical job-finding rates and a negligible impact of flows between employment
and nonparticipation. The model understates the importance of procyclical movements from
unemployment to nonparticipation, likely because of the absence of labor supply motives other than
current productivity, and therefore has a more modest—but still substantial—total contribution by
the participation margin of around 20 percent.

B.6 Worker Employment Dynamics in Model

Figure A.8a illustrates that endogenous job destruction in the model is driven by a threshold rule
defined in (29): matches in which worker productivity falls below the threshold z∗(xt) are terminated.
When risk premia increase, the threshold increases; there are some workers for whom the total
surplus that was positive before now becomes negative. Figure A.8b shows that the decision to enter
the unemployment pool and search for a job is similarly driven by a threshold rule defined in (31):
a nonemployment worker decides to search if and only if productivity z is above z(xt). To match
the separation rate into unemployment in the data, the thresholds z∗(x̄) and z(x̄) are fairly close to
each other so that workers endogenously separate into both unemployment and nonparticipation. In
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our calibration, the search threshold also increases with risk premia, though less than the separation
threshold.

To elaborate on why the separation threshold moves with risk premia, which is an important
driver of time-varying labor market dynamics in our model, we start by rewriting equation (29) as

J
MC(x, z∗(x)) = J

O(x, z∗(x)). (A.36)

Taking the derivative with respect to x on both sides of this equation, we can write the change in
the threshold as

z∗′(x) = −
∂

∂xJ
MC(x, z∗(x)) − ∂

∂xJ
O(x, z∗(x))

∂
∂zJ

MC(x, z∗(x)) − ∂
∂zJ

O(x, z∗(x))
. (A.37)

Figure A.8a shows that, around the threshold, the continuation value of a match declines more in
value when x rises than the outside option: the match surplus value is decreasing in x. Combined
with the fact that the surplus is increasing in worker productivity z, we obtain the result that the
separation threshold increases in x.

It is fairly straightforward to see why the denominator of (A.37) is positive: the difference
between the output that is produced in a match and the nonemployment benefit is increasing in
z. Where, however, does the negative numerator for the marginal worker come from? To see why
this is the case, we break down the present values of continued employment and the outside option
by horizon. That is, we write the present values as the sum of values of individual strips, where a
strip is a claim to the total net payoff generated by the worker at a single horizon. The strip that
matures at time t has the following payoff:

dt(z, e) =


At z if e = E

bt(z) − ct − kt(z) if e = U

bt(z) if e = N.

(A.38)

The strip payoffs in (A.38) are a function of worker productivity z and employment status e ∈
{E,U,N}. A worker who is matched with a firm produces output At z. A worker who does not
participate in labor markets collects the nonemployment benefit bt(z). A worker who is unemployed
collects the benefit bt(z) and pays the search cost ct. In the labor market at time t + 1, she is
targeted by firms that post θt+1(z′) vacancies per unemployed worker of type z′ at a unit cost of
κt+1(z′). Due to perfect competition, these firms are fairly compensated for the costs of posting
vacancies by receiving a share of the surplus value of a match upon finding a worker. These costs of
giving up a share of total surplus are reflected in the net payoff generated by an unemployed worker
by subtracting the expected discounted hiring cost kt(z) per worker:

kt(z) = Et,z
[
Λt+1κt+1(z′)θt+1(z′)

]
. (A.39)

The net present value at time t of a strip with maturity T can be computed with the standard
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valuation equation (9), given current aggregate information Ft and current worker status (z, e):

Jd
t (z, e;T ) = (1 − ζ)T −t E

[(
T∏

τ=t+1
Λτ

)
dT (zT , eT )

∣∣∣Ft, z, e

]
. (A.40)

When we combine the payoffs of the strips with the law of iterated expectations, it follows that the
main worker value functions can be decomposed into the sum of values of individual strips given
the current worker state:

JMC
t (z) =

∞∑
τ=0

Jd
t (z, E; t+ τ) (A.41)

JU
t (z) =

∞∑
τ=0

Jd
t (z, U ; t+ τ) (A.42)

JN
t (z) =

∞∑
τ=0

Jd
t (z,N ; t+ τ). (A.43)

Figure A.8c plots the valuation weight that the strip with payoff at horizon τ has in the total
continuation value JMC

t (z) (i.e., Jd
t (z, E; t + τ)/JMC

t (z)) and in the outside option JO
t (z) (i.e.,

Jd
t (z, U ; τ)/JU

t (z) when z ≥ z(xt)). The figure shows the weights by horizon for the marginal worker
who is at the separation threshold when x = x̄: z = z∗(x̄). We see that, for this marginal worker,
the value of employment is more backloaded than the value of nonemployment. This effect is driven
by the assumptions that worker productivity is mean-reverting and grows relatively faster when
employed than when nonemployed.

Finally, we note that the payoffs in (A.38) are linear in At. The semi-elasticity with respect to
xt of the present value of a claim to payoff g(zi,t+τ , ei,t+τ )At+τ at horizon τ is the same for each
function g and is plotted in Figure A.8d. Since the values of longer-duration payoffs are more
sensitive to risk premium shocks than the values of shorter-duration payoffs, it now follows that the
continuation value of the marginal worker has a larger exposure to risk premium shocks than the
outside option and therefore that the separation threshold is increasing in x.

B.7 Decomposition of Worker Earnings Exposures

We decompose worker earnings outcomes in the model into three components: wages earned while
remaining in the current match, zero earnings during nonemployment spells, and wages earned in
future jobs after rehiring. Analogous to (1), cumulative worker earnings growth in the model is
defined as

gi,t:t+h ≡ wi,t+1,t+h − wi,t−2,t, wi,τ1,τ2 ≡ log
{ τ2∑

τ=τ1

wi,τ/(τ2 − τ1 + 1)
}
. (A.44)

For future periods τ > t, we compute two counterfactual outcome variables. First, we define ŵc
i,τ

as the counterfactual wage that the worker would earn if she remained in her current job until
time τ , given the law of motion for z (6) and the wage protocol (28). Second, we define êi,τ as the
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counterfactual employment outcome for a worker when worker search and firm vacancy posting are
based on decision rules at xτ = x̄ for all τ > t. Armed with these variables, we then compute the
following counterfactual cumulative earnings measures:

wstay
i,t+1,t+h ≡ log

{ t+h∑
τ=t+1

ŵc
i,τ/h

}

wsep
i,t+1,t+h ≡ log

{ t+h∑
τ=t+1

ŵc
i,τ1(êi,τ = E)/h

}

wext
i,t+1,t+h ≡ log

{ t+h∑
τ=t+1

ŵc
i,τ1(ei,τ = E)/h

}
.

(A.45)

Here, wstay
i,t+1,t+h represents cumulative wage earnings assuming the worker remains in her current

job for the full h periods, wsep
i,t+1,t+h represents cumulative wage earnings assuming the worker earns

the same wage she would have received had she stayed in her initial job for all periods in which she
is employed according to êi,τ and zero otherwise, and wext

i,t+1,t+h represents cumulative wage earnings
assuming the worker earns the same wage she would have received had she stayed in her initial job
for all periods in which she is actually employed.

We decompose cumulative earnings growth as follows:

gi,t:t+h = wstay
i,t+1,t+h − wi,t−2,t︸ ︷︷ ︸

gstay
i,t:t+h

+ wsep
i,t+1,t+h − wstay

i,t+1,t+h︸ ︷︷ ︸
gsep

i,t:t+h

+ wext
i,t+1,t+h − wsep

i,t+1,t+h︸ ︷︷ ︸
gsrc

i,t:t+h

+ wi,t+1,t+h − wext
i,t+1,t+h︸ ︷︷ ︸

grehire
i,t:t+h

.

(A.46)
We separately estimate equation (2) with each of these components as the dependent variable.
Figure 7 presents the results of this decomposition of worker earnings exposures to risk premium
shocks. The first component (gstay

i,t:t+h) captures the effect on earnings in the current job; since
wages are not directly affected by discount rates, this effect is zero. The second component (gsep

i,t:t+h)
captures earnings losses as a result of time-varying job-separation rates. We see that this component
is the main driver of heterogeneity in worker earnings exposures. The third component (gsrc

i,t:t+h)
captures earnings losses as a result of reduced exit out of nonemployment. This component shows a
similar pattern as the effect due to transitions into nonemployment but is less than half as large.
The fourth component (grehire

i,t:t+h) captures earnings losses as a result of lower wages after rehiring,
driven by worsened labor market conditions and human capital losses during nonemployment. This
component is nearly homogeneous across workers; it has a modest impact on total earnings losses
for low-wage workers but drives the majority of earnings losses for high-wage workers.
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Figure A.1: Time-Varying Risk Premia in the Data
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This figure plots nine series from the literature that capture fluctuations in risk premia: the excess bond premium
from Gilchrist and Zakrajšek (2012); Robert Shiller’s CAPE Ratio; the Chicago Fed’s National Financial Conditions
Index (NFCI); the financial uncertainty index of Jurado et al. (2015); the risk appetite index of Bauer et al. (2023);
the risk aversion index of Bekaert et al. (2022); the variance risk premium from Bekaert and Hoerova (2014); the
CBOE VIX; and the SVIX of Martin (2016). All series are standardized.
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Figure A.2: Term Structure of Risk Premia in Financial Markets: Model vs. Data

(a) Mean Return, by Cashflow Duration
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(b) Return Volatility, by Cashflow Duration
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(c) Risk-Return Tradeoff (Sharpe Ratio), by Cashflow Duration
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This figure plots the annualized mean (Panel (a)), volatility (Panel (b)), and Sharpe ratio (Panel (c)) of returns on
a claim to firm cashflows at a fixed horizon. The data are from the ten duration-sorted portfolios of Gormsen and
Lazarus (2023).
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Figure A.3: Predictability of Future Stock Market Returns: Model vs. Data

(a) Predictability by the Risk Premium Index
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(b) Predictability by the Price-Earnings Ratio
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This figure reports estimates of predictive regressions where we project continuously compounded future excess stock
market returns

∑H

s=1 re
t+s on our risk premium index (Panel (a)) and on the log price-earnings ratio (Panel (b)) at

different horizons H, in the model and in the data. The shaded area shows pointwise 95% confidence bands for the
empirical estimates, calculated using Hansen-Hodrick standard errors.
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Figure A.4: Market Tightness and Worker Search Cost

(a) Labor Market Tightness
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Panel (a) of this figure plots the relation between risk premia x and the labor market tightness θ for a worker with
z = z̄O in our calibrated model. Panel (b) plots the normalized worker search cost ct/At as a function of θt(z̄O).

Figure A.5: Worker Expected Earnings Growth by Prior Earnings: Model vs. Data (Targeted)
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This figure reports average three-year cumulative worker earnings growth for continuing workers in the model and in
the data. We report the regression coefficient of earnings growth on a dummy for a worker’s relative earnings rank,
restricting the sample to workers who remain employed by their initial employer over this period. We normalize the
coefficients so that the average across groups is zero. We report estimates with and without worker controls. In the data,
worker controls are the interaction of industry (2-digit NAICS code) with worker age and gender, and the interaction
between industry and worker tenure. In the model, the analogous controls are age and tenure bins. Model coefficients
are indicated by the bars, and empirical coefficients are indicated by the black dots, with 95% confidence intervals.
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Figure A.6: Impulse Responses to TFP Shocks in Model

(a) Aggregate Productivity
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(c) Output
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(d) Average Worker Earnings
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This figure shows the impulse responses of key model quantities following an aggregate TFP shock of one annual
standard deviation.
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Figure A.7: Model Mechanism (I)

(a) Worker Productivity and Wages
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(b) One-Year Termination Probability, by Worker Productivity z

(c) Job-Finding Probability, by Worker Productivity z (d) Average Duration of Nonemployment, by Worker Productivity z

x = x̄ x = x̄+ σunc
x

Panel (a) plots the distribution of z for incumbent workers as a function of current wage percentile. Panel (b) plots the probability of match termination over the next
year by z for incumbent workers. Panel (c) plots the monthly probability of job finding by z for workers in the unemployment pool. Panel (d) plots the expected
nonemployment duration (in months) by z for nonemployed workers. The shaded area represents the stationary distribution of z along the balanced growth path
conditional on employment (b), unemployment (c), and nonparticipation (d).
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Figure A.8: Model Mechanism (II)

(a) Determination of Separation Threshold z∗(x)
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(b) Determination of Search Threshold z(x)
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(c) Duration of Employment Continuation Value vs. Outside Option
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(d) Valuation Effects of Risk Premium Increase by Horizon
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Panel (a) plots the match surplus value JMC
t (z) − JO

t (z) (relative to At) by z and xt. Panel (b) plots the surplus from worker search JU
t (z) − JN

t (z) (relative to At)
by z and xt. Panel (c) plots the valuation weight that the strip with payoff at horizon τ has in the employment continuation value JMC and in the outside option JO

for the marginal worker who is at the separation threshold z∗(x̄) when xt = x̄. Panel (d) shows the semi-elasticity with respect to xt of the present value of a claim to
a payoff proportional to At+τ at horizon τ .
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Figure A.9: Model Mechanism (III)
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(b) Worker Share of Surplus
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(c) Present Value of Wages
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(d) Initial Monthly Wage
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This figure plots values for newly hired workers in the model as a function of current risk premia x, for different values of z. Panel (a) plots the total surplus of the
match. Panel (b) plots the share of the total surplus that goes to the worker. Panel (c) plots the value that the worker derives from wages in the current match.
Panel (d) plots the initial wage of the worker under the assumed wage protocol (28).
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Figure A.10: Worker Exposure to Risk Premium Shocks: Role of Model Assumptions

(a) Endogenous Separations
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This figure reports the regression coefficient b from estimates of equation (2) with cumulative three-year earnings
growth as the dependent variable, in the data and in different versions of the model. In the top panel, we compare
the baseline to an alternative that shuts down the endogenous separation margin. In the bottom panel, we compare
the baseline to an alternative that shuts down the endogenous worker search decision. We estimate exposure across
the worker earnings distribution by interacting the shocks with indicators for the worker’s prior earnings bin. Model
coefficients are indicated by the bars, and empirical coefficients are indicated by the black dots, with 95% confidence
intervals. Coefficients are scaled so that they correspond to a 10% shock.
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Table A.1: Summary Statistics for Workers in the Baseline Sample

A. Worker Characteristics Observations Mean SD p10 p50 p90

Age 50.1m 42.15 9.87 28 42 56
Female 50.1m 0.42
Tenure, < 1 Year 40.0m 0.08
Tenure, 1–3 Years 40.0m 0.19
Tenure, 3–5 Years 40.0m 0.15
Tenure, > 5 Years 40.0m 0.58
Log Earnings (Cum. Over Last Three Years) 50.1m 10.08 0.74 9.16 10.10 10.96

B. Worker Earnings Dynamics

Earnings Growth gi,t:t+1 50.1m -0.04 0.41 -0.33 0.00 0.30
Earnings Growth gi,t:t+2 47.7m -0.07 0.46 -0.45 0.00 0.30
Earnings Growth gi,t:t+3 45.2m -0.10 0.51 -0.57 -0.01 0.30

Prior Earnings, 0–25th Percentile 11.3m -0.09 0.65 -0.81 0.03 0.51
Prior Earnings, 25–50th Percentile 11.3m -0.11 0.49 -0.57 -0.01 0.26
Prior Earnings, 50–75th Percentile 11.3m -0.11 0.44 -0.48 -0.03 0.21
Prior Earnings, 75–95th Percentile 9.0m -0.10 0.41 -0.45 -0.03 0.21
Prior Earnings, 95–100th Percentile 2.3m -0.10 0.49 -0.56 -0.03 0.33

Earnings Growth gi,t:t+5 40.4m -0.17 0.59 -0.78 -0.04 0.30

C. Measures of Job Destruction

Nonemployment Spelli,t:t+1 50.1m 0.07
Nonemployment Spelli,t:t+2 47.7m 0.14
Nonemployment Spelli,t:t+3 45.2m 0.20

Prior Earnings, 0–25th Percentile 11.3m 0.29
Prior Earnings, 25–50th Percentile 11.3m 0.20
Prior Earnings, 50–75th Percentile 11.3m 0.16
Prior Earnings, 75–95th Percentile 9.0m 0.14
Prior Earnings, 95–100th Percentile 2.3m 0.15

Move and Tail Lossi,t:t+1 47.7m 0.06
Move and Tail Lossi,t:t+2 45.2m 0.08
Move and Tail Lossi,t:t+3 42.8m 0.09

Prior Earnings, 0–25th Percentile 10.7m 0.12
Prior Earnings, 25–50th Percentile 10.7m 0.09
Prior Earnings, 50–75th Percentile 10.7m 0.08
Prior Earnings, 75–95th Percentile 8.6m 0.07
Prior Earnings, 95–100th Percentile 2.1m 0.07

This table summarizes the variables that characterize the earnings dynamics of the workers in our main sample.
Earnings growth is defined in equation (1). A worker is characterized as having a nonemployment spell between t and
t + h if she has at least one quarter of zero earnings between the end of year t and the end of year t + h. Individuals are
characterized as a stayer at horizon h if they continue to receive a positive income from their initial time-t employer in
year t + h + 1, and as a mover in all other cases. A tail loss is defined by having earnings growth in the bottom 10%
of the unconditional distribution. The sample is a 20% subsample of all U.S. workers in the LEHD that are employed
by public companies. The sample period is 1990–2019.
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Table A.2: Risk Premium Series

Correlation of AR(1)
Residual With

Series Start Date End Date Sign AR(1) RP Shock Market

Gilchrist–Zakrajsek EBP 1984:12 2021:12 + 0.916 0.51 -0.34
Shiller CAPE ratio 1984:12 2021:12 - 0.993 0.61 -0.64
Chicago Fed NFCI risk 1984:12 2021:12 + 0.965 0.69 -0.46
Jurado–Ludvigson–Ng financial uncertainty 1984:12 2021:12 + 0.980 0.58 -0.39
Bauer–Bernanke–Milstein index 1988:01 2021:12 - 0.959 0.92 -0.84
Bekaert–Engstrom–Xu risk aversion 1986:06 2021:12 + 0.794 0.85 -0.63
Variance risk premium 1990:01 2021:12 + 0.743 0.78 -0.55
VIX 1990:01 2021:12 + 0.815 0.91 -0.73
Martin SVIX bound 1996:01 2012:01 + 0.781 0.94 -0.72

This table summarizes the nine proxies for fluctuations in risk premia that we use as inputs from the literature: the
excess bond premium from Gilchrist and Zakrajšek (2012); Robert Shiller’s CAPE Ratio; the Chicago Fed’s National
Financial Conditions Index (NFCI); the financial uncertainty index of Jurado et al. (2015); the risk appetite index of
Bauer et al. (2023); the risk aversion index of Bekaert et al. (2022); the variance risk premium from Bekaert and
Hoerova (2014); the CBOE VIX; and the SVIX from Martin (2016). We measure risk premium shocks as the PC(1) of
the AR(1) residuals from each series.
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Table A.3: Worker Exposure to Risk Premium Shocks: Extensive Margin (Additional Controls)

A. Pr(Nonemployment Spell) B. Pr(Move + Tail Loss)

Worker Earnings, 0–25th Percentile 0.62 0.86 0.87 0.72 0.46 0.57 0.58 0.50
(3.95) (4.94) (4.60) (3.48) (5.23) (5.19) (4.86) (3.74)

Worker Earnings, 25–50th Percentile 0.38 0.58 0.60 0.51 0.31 0.39 0.40 0.35
(3.35) (4.97) (4.86) (3.56) (4.77) (5.11) (4.77) (3.69)

Worker Earnings, 50–75th Percentile 0.27 0.43 0.47 0.39 0.24 0.32 0.32 0.28
(2.83) (4.66) (4.76) (3.29) (4.26) (4.93) (4.68) (3.54)

Worker Earnings, 75–95th Percentile 0.14 0.26 0.32 0.27 0.15 0.22 0.23 0.19
(1.59) (3.70) (4.08) (2.61) (3.35) (4.33) (4.09) (2.84)

Worker Earnings, 95–100th Percentile -0.04 0.10 0.20 0.13 0.07 0.14 0.17 0.12
(-0.33) (1.04) (1.67) (0.87) (1.02) (2.35) (2.40) (1.40)

Bottom (1) – Middle (3) Earners 0.35 0.43 0.40 0.34 0.22 0.25 0.26 0.22
(4.80) (4.53) (4.00) (3.26) (6.10) (5.22) (4.81) (3.76)

Middle (3) – Top (5) Earners 0.31 0.33 0.27 0.26 0.17 0.18 0.15 0.16
(3.51) (3.71) (2.37) (2.39) (2.73) (2.80) (2.17) (2.29)

Bottom (1) – Top (5) Earners 0.66 0.76 0.67 0.60 0.39 0.43 0.41 0.38
(4.44) (4.47) (3.36) (3.10) (4.24) (4.12) (3.50) (3.24)

Firm Controls:
Earn Grp × ∆Revenue ✓ - - - ✓ - - -
Earn Grp × ∆FirmTFP - ✓ ✓ ✓ - ✓ ✓ ✓

Business Cycle Controls:
Earn Grp × ∆AggTFP - ✓ - - - ✓ - -
Earn Grp × ∆GDP - - ✓ - - - ✓ -
Earn Grp × USREC - - - ✓ - - - ✓

Fixed Effects
NAICS2 × Age × Gender ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NAICS2 × Earn Grp ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 55.2m 50.0m 50.0m 50.0m 52.6m 47.6m 47.6m 47.6m

This table reports the regression coefficient b from estimates of modified versions of equation (2), where we replace the
dependent variable with two indicators for job loss over the next year: whether the worker experiences at least one full
quarter with zero wage earnings (nonemployment spell) or whether the worker separates from her initial employer and
simultaneously experiences a decline in earnings growth below the 10th percentile (move + tail loss). We report exposure
across the worker earnings distribution within firms. The sample is a 20% subsample of all U.S. workers in the LEHD
who are employed by public companies. The sample period is 1990–2019. We report t-statistics based on standard errors
double clustered by worker and year in parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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Table A.4: Worker Earnings Exposure to Risk Premium Shocks: Robustness to Alternative Assumptions

No Lagged

RP Index

Alternative Timing Alternative RP Shock

End of Period Begin of Period Risk Appetite Risk

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Worker Earnings, 0–25th Percentile -2.13 -0.96 -1.48 -0.68 -1.53 -0.86 -1.85 -1.06 -3.04 -1.34
(-4.89) (-5.83) (-4.06) (-6.38) (-3.89) (-5.10) (-3.70) (-5.32) (-5.43) (-6.38)

Worker Earnings, 25–50th Percentile -1.43 -0.26 -0.99 -0.20 -0.91 -0.25 -1.10 -0.31 -2.04 -0.36
(-4.09) (-5.94) (-3.40) (-8.50) (-3.30) (-6.22) (-3.15) (-6.79) (-4.45) (-6.44)

Worker Earnings, 50–75th Percentile -1.16 — -0.80 — -0.67 — -0.81 — -1.68 —(-3.55) (-2.92) (-2.72) (-2.54) (-3.88)
Worker Earnings, 75–95th Percentile -1.00 0.16 -0.67 0.13 -0.54 0.15 -0.64 0.18 -1.45 0.23

(-3.23) (3.11) (-2.55) (3.66) (-2.31) (3.38) (-2.18) (3.78) (-3.55) (3.54)
Worker Earnings, 95–100th Percentile -1.39 -0.22 -0.86 -0.03 -0.57 0.17 -0.89 -0.00 -1.74 -0.06

(-3.23) (-0.63) (-2.83) (-0.12) (-2.03) (0.69) (-3.52) (-0.00) (-3.53) (-0.17)

Bottom (1) – Middle (3) Earners -0.97 -0.68 -0.85 -1.05 -1.35
(-5.92) (-6.31) (-5.09) (-5.27) (-6.63)

Middle (3) – Top (5) Earners 0.22 0.06 -0.11 0.08 0.06
(0.66) (0.26) (-0.44) (0.28) (0.17)

Bottom (1) – Top (5) Earners -0.75 -0.62 -0.96 -0.96 -1.29
(-1.62) (-2.24) (-2.83) (-2.26) (-2.70)

Fixed Effects
NAICS2 × Age × Gender ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NAICS2 × Earn Grp ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Firm × Year - ✓ - ✓ - ✓ - ✓ - ✓

Observations 45.2m 45.2m 45.2m 45.2m 45.2m 45.2m 45.2m 45.2m 45.2m 45.2m

This table reports the regression coefficient b from estimates of equation (2) with cumulative three-year earnings growth as the dependent variable. In (1)–(2), we
remove the lagged risk premium index from the controls. In (3)–(6), we consider two variations to the timing of risk premium shocks: measured over calendar year t + 1
(end-of-period earnings) or over calendar year t (beginning-of-period earnings). In (7)–(10), we consider alternative measures of risk premium shocks: the PC1 of the
four indicators for risk appetite considered in Bauer et al. (2023), and the five remaining measures of risk in financial markets. We report exposure across the worker
earnings distribution within firms. The sample is a 20% subsample of all U.S. workers in the LEHD who are employed by public companies. The sample period is 1990–
2019. We report t-statistics based on standard errors double clustered by worker and year in parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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Table A.5: Worker Earnings Exposure to Risk Premium Shocks: Shift-Share Design (Alternative Exposure Measures)

Alternative Exposure Measure

PC1 Market Betas Firm Size Whited–Wu

(1) (2) (3) (4) (5) (6) (7) (8)

Worker Earn. (0–25) × Firm RP Exp. -0.75 -0.34 -0.35 -0.08 -0.59 -0.22 -0.67 -0.24
(-4.68) (-3.36) (-4.05) (-2.00) (-6.65) (-2.90) (-8.22) (-3.29)

Worker Earn. (25–50) × Firm RP Exp. -0.51 -0.10 -0.30 -0.03 -0.52 -0.15 -0.56 -0.13
(-3.57) (-2.22) (-3.43) (-1.38) (-9.19) (-5.13) (-9.67) (-4.19)

Worker Earn. (50–75) × Firm RP Exp. -0.41 — -0.28 — -0.37 — -0.43 —(-2.88) (-3.61) (-7.07) (-7.34)
Worker Earn. (75–95) × Firm RP Exp. -0.23 0.18 -0.27 0.01 -0.21 0.16 -0.28 0.15

(-1.78) (6.47) (-3.07) (0.15) (-4.26) (7.70) (-4.27) (5.51)
Worker Earn. (95–100) × Firm RP Exp. 0.10 0.51 -0.25 0.02 -0.02 0.36 -0.08 0.35

(0.34) (2.82) (-1.18) (0.12) (-0.18) (3.48) (-0.85) (3.50)

[Bottom (1) – Middle (3)] × Firm RP Exp. -0.34 -0.07 -0.22 -0.24
(-3.28) (-1.85) (-2.98) (-3.29)

[Middle (3) – Top (5)] × Firm RP Exp. -0.51 -0.02 -0.35 -0.35
(-2.81) (-0.13) (-3.45) (-3.45)

[Bottom (1) – Top (5)] × Firm RP Exp. -0.85 -0.10 -0.57 -0.58
(-3.64) (-0.54) (-4.42) (-4.83)

Fixed Effects
NAICS2 × Age × Gender ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NAICS2 × Earn Grp × Year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Firm ✓ - ✓ - ✓ - ✓ -
Firm × Year - ✓ - ✓ - ✓ - ✓

Observations 32.5m 32.5m 39.2m 39.2m 45.2m 45.2m 44.8m 44.8m

This table reports the regression coefficient b from estimates of equation (4) with cumulative three-year earnings growth as the dependent variable, for alternative
measures of firm-level risk premium exposure. In (1)–(2), we take the PC1 of the exposure measures after replacing the risk premium beta with the market beta. In
(3)–(4), we take the PC1 of just the two firm equity betas. In (5)–(6), we use firm size (negative log assets). In (7)–(8), we use the Whited-Wu (2006) index of financial
constraints. We report exposure across the worker earnings distribution within firms. The sample is a 20% subsample of all U.S. workers in the LEHD who are
employed by public companies. The sample period is 1990–2019. We report t-statistics based on standard errors double clustered by worker and year in parentheses.
Firm risk premium exposure is standardized to have unit cross-sectional standard deviation, and coefficients are scaled so that they correspond to a 10% shock.
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Table A.6: Worker Earnings Exposure to Risk Premium and Productivity Shocks: By Rank Within Industry

2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP

Worker Earnings, 0–25th Percentile -2.28 0.56 -2.43 0.60 -2.01 0.66
(-5.76) (3.02) (-4.74) (3.17) (-3.17) (3.47)

Worker Earnings, 25–50th Percentile -1.37 0.59 -1.40 0.65 -0.98 0.73
(-4.64) (2.87) (-3.88) (2.93) (-2.46) (2.99)

Worker Earnings, 50–75th Percentile -1.02 0.58 -0.99 0.65 -0.55 0.77
(-3.67) (3.27) (-2.96) (3.27) (-1.52) (3.26)

Worker Earnings, 75–95th Percentile -0.87 0.56 -0.78 0.60 -0.35 0.69
(-3.06) (4.23) (-2.40) (3.94) (-1.03) (3.90)

Worker Earnings, 95–100th Percentile -1.69 1.19 -1.40 1.24 -0.73 1.37
(-3.51) (4.62) (-2.84) (4.07) (-1.49) (4.10)

Bottom (1) – Middle (3) Earners -1.26 -0.03 -1.44 -0.06 -1.46 -0.11
(-7.49) (-0.31) (-6.01) (-0.60) (-4.21) (-0.78)

Middle (3) – Top (5) Earners 0.67 -0.61 0.41 -0.59 0.18 -0.60
(1.86) (-2.63) (1.21) (-2.29) (0.51) (-2.12)

Bottom (1) – Top (5) Earners -0.59 -0.63 -1.03 -0.65 -1.28 -0.71
(-1.42) (-2.74) (-2.33) (-2.48) (-2.15) (-2.55)

Fixed Effects
NAICS2 × Age × Gender ✓ ✓ ✓

NAICS2 × Earn Grp ✓ ✓ ✓

Observations 47.6m 45.2m 40.4m

This table reports the regression coefficients b and c from estimates of equation (2) with cumulative earnings growth
over various horizons h as the dependent variable. We report exposure across the worker earnings distribution that we
estimate by interacting the two shocks with indicators for the worker’s prior earnings level relative to the levels of other
workers in the same industry (instead of the same firm). The sample is a 20% subsample of all U.S. workers in the LEHD
who are employed by public companies. The sample period is 1990–2019. We report t-statistics based on standard errors
double clustered by worker and year in parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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Table A.7: Model Calibration: Baseline vs. Alternatives

Data Model

Overall
Constant

Baseline
No Endog. No Search

Separations Separations Cost

Unemployment rate, mean (%) 6.53 6.89 6.61 6.96

Unemployment rate, volatility (%) 1.44 0.79 1.49 0.74 1.52

Participation rate, unemployment beta -0.07 -0.07 -0.13 0.00 0.00

Separation rate, mean
Aggregate (%) 1.34 1.09 1.22 1.06
Q1 (relative to mean of aggregate rate) 1.69 1.55 0.94 2.09
Q2 (relative to mean of aggregate rate) 1.09 0.85 1.02 0.68
Q3 (relative to mean of aggregate rate) 0.72 0.81 1.02 0.62
Q4 (relative to mean of aggregate rate) 0.52 0.78 1.02 0.60

Separation rate, unemployment beta
Aggregate 0.10 0.07 0.02 0.07
Q1 0.23 0.21 0.04 0.22
Q2 0.15 0.03 0.03 0.03
Q3 0.11 0.02 0.02 0.01
Q4 0.07 0.01 0.02 0.01

Job-finding rate, mean
Aggregate (%) 22.5 26.5 22.7 21.8
Q1 (relative to mean of aggregate rate) 0.99 0.74 0.97 0.58
Q2 (relative to mean of aggregate rate) 0.99 0.88 0.99 0.90
Q3 (relative to mean of aggregate rate) 1.02 1.12 1.00 1.29
Q4 (relative to mean of aggregate rate) 1.01 1.26 1.03 1.23

Job-finding rate, unemployment beta
Aggregate -1.91 -3.42 -2.04 -2.53 -1.85
Q1 -1.51 -2.25 -2.11 -2.61 -1.12
Q2 -1.52 -1.81 -2.38 -2.31 -2.34
Q3 -2.03 -2.57 -2.04 -2.17 -2.78
Q4 -1.89 -2.17 -1.14 -1.85 -0.70

Earnings growth for stayers, mean (%)
Q1 8.54 8.51 6.27 8.18
Q2 -0.97 -0.85 1.56 0.02
Q3 -3.54 -2.34 -1.72 -2.25
P75-95 -4.29 -4.72 -5.32 -4.93
P95-100 -3.00 -7.77 -9.23 -10.10

This table compares targeted moments between the data and alternative calibrations of the model. In the first
alternative, we rule out endogenous separations (using the constant-separation unemployment rate for the empirical
targets). In the second alternative, we set the worker search cost to zero (ct = 0).
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Table A.8: Decomposition of Unemployment Fluctuations

Share of Variance (%) Total Share

E→U E→N U→E U→N N→E N→U →U U→

Data 33.1 -3.0 35.6 23.2 4.2 6.8 39.9 58.8
Model 35.3 -1.4 47.0 4.8 0 14.3 49.6 51.8

This table presents the results from a decomposition of quarterly unemployment rate fluctuations into the contribution
of each individual flow. See Section B.5 for details.

Table A.9: Worker Exposure to Risk Premium and Productivity Shocks: By Expected Earnings Growth

2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP

Low Expected Earnings Growth (Q1) -0.91 0.50 -0.92 0.57 -0.49 0.66
(-3.07) (2.41) (-2.60) (2.51) (-1.32) (2.64)

Q2 -1.13 0.69 -1.01 0.72 -0.52 0.77
(-4.27) (3.25) (-3.13) (3.07) (-1.50) (2.94)

Q3 -1.32 0.72 -1.25 0.78 -0.70 0.88
(-4.65) (3.65) (-3.61) (3.55) (-2.01) (3.59)

High Expected Earnings Growth (Q4) -2.40 0.52 -2.46 0.55 -1.90 0.59
(-6.41) (2.96) (-5.06) (2.91) (-3.45) (2.85)

High – Low Expected Earnings Growth -1.49 0.03 -1.53 -0.02 -1.42 -0.07
(-9.14) (0.23) (-7.06) (-0.16) (-5.43) (-0.49)

Observations 37.9m 35.6m 31.3m

This table reports the regression coefficients b and c from estimates of equation (2) with cumulative earnings growth
over various horizons h as the dependent variable. We report worker exposure by quartile of expected earnings growth,
which is estimated as the average three-year earnings growth of continuing workers by industry × age × gender bin
and industry × prior earnings × tenure bin. The sample is a 20% subsample of all U.S. workers in the LEHD who
are employed by public companies. The sample period is 1990–2019. We report t-statistics based on standard errors
double clustered by worker and year in parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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Table A.10: Worker Exposure to Risk Premium and Productivity Shocks: By Age and Income

A. Age

2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP

Younger (25–30 Years) -1.99 0.55 -2.10 0.59 -1.63 0.61
(-4.39) (3.84) (-3.78) (3.73) (-2.52) (3.63)

Age, 30–40 Years -1.42 0.57 -1.46 0.59 -1.12 0.63
(-4.49) (4.64) (-3.75) (4.51) (-2.41) (4.47)

Age, 40–50 Years -1.26 0.61 -1.27 0.65 -0.91 0.72
(-5.30) (4.24) (-4.20) (4.17) (-2.55) (4.13)

Older (50–60 Years) -1.20 0.70 -1.11 0.82 -0.48 1.03
(-3.84) (2.29) (-2.94) (2.39) (-1.25) (2.60)

Younger – Older -0.80 -0.15 -0.98 -0.24 -1.15 -0.42
(-3.26) (-0.64) (-2.98) (-0.90) (-2.32) (-1.34)

B. Age and Relative Earnings Level

2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP

Younger (25–30 Years) — — — — — —

Age, 30–40 Years 0.66 0.01 0.75 0.00 0.62 0.02
(1.38) (0.10) (1.26) (0.03) (0.88) (0.13)

Age, 40–50 Years 0.92 0.05 1.06 0.06 0.95 0.11
(2.10) (0.41) (1.98) (0.41) (1.53) (0.71)

Older (50–60 Years) 1.07 0.14 1.30 0.23 1.47 0.42
(2.61) (0.99) (2.67) (1.45) (2.67) (2.46)

Worker Earnings, 0–25th Percentile -2.91 0.56 -3.18 0.59 -2.72 0.57
(-5.03) (2.91) (-4.33) (2.90) (-2.94) (2.68)

Worker Earnings, 25–50th Percentile -2.15 0.50 -2.30 0.54 -1.83 0.57
(-4.48) (3.57) (-3.88) (3.53) (-2.60) (3.42)

Worker Earnings, 50–75th Percentile -1.81 0.48 -1.91 0.51 -1.46 0.54
(-4.11) (3.59) (-3.56) (3.54) (-2.36) (3.38)

Worker Earnings, 75–95th Percentile -1.62 0.57 -1.66 0.60 -1.21 0.63
(-3.95) (3.92) (-3.39) (3.73) (-2.20) (3.70)

Worker Earnings, 95–100th Percentile -2.12 1.18 -1.98 1.19 -1.35 1.20
(-4.77) (5.63) (-4.08) (5.19) (-2.68) (4.88)

Bottom (1) – Middle (3) Earners -1.11 0.08 -1.27 0.08 -1.26 0.03
(-6.75) (0.92) (-5.69) (0.84) (-3.78) (0.34)

Middle (3) – Top (5) Earners 0.31 -0.70 0.07 -0.68 -0.12 -0.66
(1.05) (-4.41) (0.26) (-3.84) (-0.39) (-3.31)

Bottom (1) – Top (5) Earners -0.80 -0.62 -1.20 -0.60 -1.38 -0.63
(-2.09) (-3.47) (-2.81) (-3.04) (-2.38) (-2.74)

Observations 47.6m 45.2m 40.4m

This table reports the regression coefficients b and c from estimates of equation (2) with cumulative earnings growth over
various horizons h as the dependent variable. In Panel A, we report worker exposure by age bin. In Panel B, we report
worker exposure by age and prior earnings bin. The sample is a 20% subsample of all U.S. workers in the LEHD who
are employed by public companies. The sample period is 1990–2019. We report t-statistics based on standard errors
double clustered by worker and year in parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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Table A.11: Worker Exposure to Risk Premium and Productivity Shocks: By Tenure and Income

A. Tenure

2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP

Shorter Tenure (< 1 Year) -2.90 0.56 -2.94 0.56 -2.28 0.61
(-6.37) (3.10) (-5.22) (2.84) (-3.52) (2.86)

Tenure, 1–3 Years -2.21 0.59 -2.24 0.61 -1.71 0.63
(-5.98) (3.70) (-4.71) (3.56) (-3.28) (3.33)

Tenure, 3–5 Years -1.42 0.74 -1.42 0.77 -0.91 0.81
(-4.81) (5.24) (-3.88) (5.19) (-2.36) (4.97)

Longer Tenure (> 5 Years) -0.96 0.63 -0.89 0.69 -0.43 0.78
(-3.69) (2.69) (-2.81) (2.68) (-1.27) (2.75)

Shorter – Longer Tenure -1.94 -0.07 -2.05 -0.14 -1.85 -0.18
(-7.49) (-0.39) (-6.47) (-0.68) (-4.91) (-0.76)

B. Tenure and Relative Earnings Level

2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP

Shorter Tenure (< 1 Year) — — — — — —

Tenure, 1–3 Years 0.61 0.03 0.61 0.06 0.48 0.02
(1.40) (0.16) (1.11) (0.31) (0.77) (0.10)

Tenure, 3–5 Years 1.35 0.18 1.36 0.22 1.22 0.20
(3.20) (1.18) (2.65) (1.28) (2.10) (1.06)

Longer Tenure (> 5 Years) 1.78 0.06 1.86 0.14 1.67 0.17
(4.36) (0.37) (3.83) (0.68) (3.11) (0.76)

Worker Earnings, 0–25th Percentile -3.29 0.58 -3.38 0.59 -2.69 0.62
(-6.52) (2.53) (-5.34) (2.42) (-3.60) (2.41)

Worker Earnings, 25–50th Percentile -2.78 0.51 -2.82 0.51 -2.16 0.57
(-6.33) (3.01) (-5.17) (2.72) (-3.49) (2.80)

Worker Earnings, 50–75th Percentile -2.55 0.47 -2.56 0.46 -1.94 0.51
(-6.05) (3.09) (-4.98) (2.72) (-3.34) (2.66)

Worker Earnings, 75–95th Percentile -2.45 0.56 -2.42 0.54 -1.79 0.61
(-6.00) (3.18) (-4.97) (2.69) (-3.34) (2.68)

Worker Earnings, 95–100th Percentile -2.87 1.17 -2.63 1.14 -1.80 1.20
(-5.94) (4.37) (-5.02) (3.74) (-3.68) (3.51)

Bottom (1) – Middle (3) Earners -0.74 0.11 -0.82 0.12 -0.75 0.11
(-7.50) (0.76) (-6.09) (0.76) (-3.92) (0.58)

Middle (3) – Top (5) Earners 0.32 -0.70 0.06 -0.67 -0.14 -0.68
(1.11) (-4.00) (0.23) (-3.49) (-0.51) (-3.16)

Bottom (1) – Top (5) Earners -0.41 -0.58 -0.75 -0.55 -0.89 -0.58
(-1.28) (-2.51) (-2.24) (-2.18) (-2.06) (-1.98)

Observations 37.9m 35.6m 31.3m

This table reports the regression coefficients b and c from estimates of equation (2) with cumulative earnings growth over
various horizons h as the dependent variable. In Panel A, we report worker exposure by tenure bin. In Panel B, we report
worker exposure by tenure and prior earnings bin. The sample is a 20% subsample of all U.S. workers in the LEHD who
are employed by public companies. The sample period is 1990–2019. We report t-statistics based on standard errors
double clustered by worker and year in parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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