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ABSTRACT

We show that time variation in risk premia leads to time-varying idiosyncratic income risk for 
workers. Using US administrative data on worker earnings, we show that increases in risk premia 
lead to lower earnings for low-wage workers; these declines are primarily driven by job 
separations. By contrast, productivity shocks affect the earnings mainly of highly paid workers. 
We build an equilibrium model of labor market search that quantitatively replicates these facts. 
The model generates endogenous time-varying income risk in response to changes in risk premia 
and matches several stylized features of the data regarding unemployment and income risk over 
the business cycle.
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Recent studies in macroeconomics and finance have emphasized the importance of time-varying
risk premia for generating significant fluctuations in aggregate quantities and prices.1 In particular,
risk premia tend to rise sharply in recessions, which coincide with increases in unemployment, in
workers’ idiosyncratic income risk (Storesletten, Telmer, and Yaron, 2004; Guvenen, Ozkan, and Song,
2014) and in inequality at the bottom of the earnings distribution (Heathcote, Perri, and Violante,
2020). Using a combination of micro data and a structural model, we show that these facts are
strongly related: an increase in risk premia increases the likelihood of job destruction and therefore
leads to higher income risk, particularly for workers at the lower end of the pay distribution. We feed
realizations of risk premium shocks in the data into our model and find that it can quantitatively
replicate the realized path of unemployment, income risk, and inequality over the last few decades.

We begin by documenting a new stylized fact: an increase in risk premia is followed by a decline
in worker earnings and an increase in the likelihood of job loss (defined as a worker’s experiencing a
nonemployment spell or leaving her current employer and simultaneously experiencing a significant
decline in earnings). We show this pattern in administrative data on workers’ wage earnings in the
United States combined with a composite index of existing measures of risk premium shocks. The
decline in earnings is significantly larger for job movers rather than job stayers and is both larger
and more persistent for workers with low prior earnings relative to those of other workers in the
same firm. Using a shift-share design, we show that the effect of risk premia on worker earnings is
distinct from the effect of recessions on earnings of low-income workers: when risk premia rise, lower-
paid workers in firms that are highly exposed to risk premium shocks experience larger earnings
declines relative to lower-paid workers in less exposed firms. This new pattern is in sharp contrast
to the exposure of worker earnings to productivity shocks, which is higher for higher-paid workers
(a pattern consistent with the evidence in Friedrich, Laun, Meghir, and Pistaferri, 2019).

We interpret this fact through the lens of a structural model that features heterogeneous workers,
directed labor market search, and shocks to risk premia. Workers are heterogeneous in their (general)
skill, which determines their productivity across different matches. The key mechanism in the model
operates through job destruction: an increase in risk premia leads to a reduction in the value of
existing matches, in particular for lower-skill workers. Increases in risk premia disproportionately
affect the value of low-skill matches because the benefits of employment for these workers are
significantly more backloaded than the benefits of nonemployment, partly because workers’ human
capital grows faster in employment and partly because the benefits of nonemployment (leisure and
benefits) do not scale with workers’ skill. Some of these marginal matches are subsequently destroyed
because they are inefficient: the present value of the benefits of employment is lower than the present

1A partial list includes Campbell and Cochrane (1999); Smets and Wouters (2003, 2007); Barro (2009); Wachter
(2013); Christiano, Motto, and Rostagno (2014); Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2018);
Auclert, Rognlie, and Straub (2020); Itskhoki and Mukhin (2021); Basu, Candian, Chahrour, and Valchev (2021) and
Kehoe, Lopez, Midrigan, and Pastorino (2022).
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value of nonemployment. This increase in the rate of job destruction leads to higher unemployment
in response to increases in risk premia. The increase in unemployment is also amplified by the fact
that firms are less likely to post new vacancies (a mechanism similar to that highlighted in Kehoe
et al., 2022), which in turn increases the duration of nonemployment and, combined with the loss of
human capital when workers are out of a job, magnifies the impact of job loss on worker earnings.
In sum, transitory increases in risk premia lead to highly persistent losses in worker earnings.

Our model also has implications for the exposure of wages for continuing workers to aggregate
productivity and risk premium shocks. To derive these predictions, we introduce a number of
assumptions on how per-period wages are determined. First, whenever possible, firms choose to
smooth worker wages. Second, both workers and firms have limited ability to commit: workers cannot
commit to remaining in existing matches when they can obtain a higher surplus by walking away,
and firms cannot commit to not terminating workers when their share of the surplus is negative. We
calibrate the degree of limited commitment by introducing a symmetric reputational cost of either the
worker or the firm inefficiently terminating the existing match. Though no matches are inefficiently
terminated in equilibrium, whenever these constraints are binding, worker wages adjust to aggregate
and idiosyncratic shocks, similarly to what emerges from models with limited commitment (Thomas
and Worrall, 1988). These limited commitment constraints—especially on the firm side—are more
likely to bind for highly paid workers, especially when their current level of productivity is low.
As a result, conditional on workers’ staying employed, the wages of highly paid workers are more
sensitive to productivity (and risk premium) shocks than are those of lower-paid workers.

Overall, our model implies that the pass-through of idiosyncratic productivity shocks to worker
earnings is highly nonlinear and state dependent. A negative worker productivity shock increases the
likelihood of job loss and therefore has a larger effect on worker earnings than a positive productivity
shock of the same magnitude. The level of risk premia determines the likelihood of job destruction;
hence, this asymmetry becomes starker as risk premia rise. Further, firms aim to smooth wages but
are limited in their ability to do so because of the two-sided lack of commitment. Therefore, smaller
shocks to productivity have a (proportionally) smaller pass-through than larger shocks since these
shocks are more likely to lead to binding commitment constraints. Last, changes in worker earnings
are significantly more persistent than changes in worker productivity because of a combination of
wage smoothing and labor market frictions.

The fact that the pass-through of worker productivity shocks to worker earnings is both
asymmetric and state dependent implies that our model can match a number of stylized features of
labor income risk. Specifically, the distribution of workers’ labor income is significantly more skewed
and fat-tailed than the underlying productivity shocks, consistent with the findings of Guvenen,
Karahan, Ozkan, and Song (2021). Further, the distribution of earnings growth becomes more
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negatively skewed as risk premia rise, particularly for low-income workers, which in turn leads to an
increase in both income risk and income inequality at the bottom of the distribution.

We calibrate the model to match the dynamics of asset prices and the earnings responses to risk
premium and productivity shocks, as well as average separation rates and job finding rates across
the income distribution, using panel data from the Survey of Income and Program Participation
(SIPP). The model is able to deliver a realistic volatility of unemployment while at the same time
quantitatively reproducing the moments from micro data that we target: the exposure of workers
to risk premium and productivity shocks as a function of their prior income as well as the strong
heterogeneity in job separation rates across workers with different income levels. Last, even though
these are not explicit calibration targets, the model delivers a procyclical job-finding rate and
countercyclical flows into unemployment that are consistent with the data.

The model generates testable predictions that are validated by our analysis of administrative
income data and our measure of risk premium shocks. First, our model implies that the surplus value
of employment should be more sensitive to risk premium shocks for workers with longer employment
horizons. We find support for this prediction in the data: an increase in risk premia implies a larger
decline in worker earnings for younger workers than for older workers; this pattern is distinct from
the income pattern that we focus on in most of the paper. Second, our model implies that the
earnings of low-tenure workers should be more sensitive to risk premium shocks than the earnings
of high-tenure workers. In the model, worker tenure is strongly related to worker productivity since
more productive workers are more likely to retain their job. Our empirical findings confirm this
pattern: the relationship between tenure and exposure to risk premium closely aligns with the
quantitative predictions of our model.

In addition, the calibrated model quantitatively replicates several aspects of the data that are
not explicit calibration targets. The job destruction margin in the model is quantitatively plausible:
the model can quantitatively replicate the increase in the probability of job loss in response to a risk
premium shock across the income distribution that we see in the data. Further, in both the model and
the data, the earnings of movers, especially low-income movers, are more exposed to risk premium
shocks than the earnings of stayers. By contrast, the exposure of workers to productivity shocks is
similar between stayers and movers. The model can quantitatively replicate these facts through the
combination of endogenous job destruction and our assumptions on the wage contract that allow for
partial wage adjustments, in the spirit of Balke and Lamadon (2022) and Ai and Bhandari (2021).

Importantly, our model is able to quantitatively replicate the realized fluctuations in unemploy-
ment, labor force participation, labor income risk, and left-tail income inequality. In particular, we
feed into the calibrated model our empirical measures of risk premium and productivity shocks and
compare the model-implied series to their empirical equivalents. Even though the model is missing
several other factors that could potentially drive these variables in the data, the correlation between
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these model-implied series and their (detrended) empirical counterparts ranges from 50% to 70%.
Realized fluctuations in risk premia drive most of the time-series behavior of these quantities. An
increase in risk premia in our model implies an increase in the probability of job loss, while it lowers
output and employment, thereby generating countercyclical skewness in labor earnings and quanti-
tatively replicating the fluctuations in income risk in the data (Guvenen et al., 2014). In addition
to earnings risk, our model can replicate the persistent rise in income inequality in the left tail fol-
lowing recessions (Heathcote et al., 2020). In the model, an increase in risk premia leads to a higher
rate of job destruction, which has highly persistent effects on low-income workers because of the
lack of human capital accumulation while they are unemployed. Since searching for a job involves a
cost, workers can remain out of the labor force for a long time if they are sufficiently unproductive.

The mechanism in our model that generates job destruction and income risk in response to
changes in risk premia can also apply more broadly to other shocks that affect the present value of
employment matches, such as changes in interest rates or shocks to the availability of credit that
can increase the marginal value of a dollar today relative to in the future. In this sense, our work
is related to that of Caggese, Cuñat, and Metzger (2019), who use employer–employee matched
data from Sweden and show that exporting firms with worse credit ratings facing an adverse terms-
of-trade shock are more likely to lose workers with shorter tenures than firms with better ratings.
Caggese et al. (2019) argue that, from the perspective of the firm, these workers are high-duration
investments. Mitra and Xu (2020) propose a model based on learning about match quality through
which increases in discount rates lead to larger employment losses for young workers and provide
empirical support using aggregate data.

A large literature on labor market search has focused on resolving the unemployment volatility
puzzle noted by Shimer (2005): namely, that the textbook search model (Diamond, 1982; Mortensen,
1982; Pissarides, 1985) is unable to generate a realistic level of volatility in the unemployment rate.
In this respect, Hall (2017), Kilic and Wachter (2018) and Kehoe et al. (2022) are closest to our
work. Hall (2017) proposes a resolution of the puzzle: an increase in discount rates lowers firms’
willingness to search for workers (post vacancies) and therefore leads to higher unemployment. Kilic
and Wachter (2018) focus on time-varying disaster risk. Kehoe et al. (2022) model countercyclical
variation in the market price of risk in the spirit of Campbell and Cochrane (1999) and show how
doing so can overcome the challenges proposed by existing explanations which have counterfactual
implications for the cyclicality of the opportunity cost of labor, the cyclicality of the user cost of
labor, or the volatility of risk-free rates.

We contribute to this discussion along two key dimensions. First and foremost, we provide direct
empirical evidence using administrative micro data from the United States that risk premium shocks
affect worker earnings, primarily through the job separation margin. Second, we use these micro
data estimates to calibrate a quantitative model of labor market search that generates realistic
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fluctuations in unemployment and thus resolves the Shimer puzzle. Our model proposes a new
mechanism through which risk premia increase unemployment—endogenous destruction of inefficient
matches—rather than relying only on lower search effort on the part of workers and firms as in
Hall (2017); Kilic and Wachter (2018) and Kehoe et al. (2022). This new margin through which
risk premia lead to unemployment is directly disciplined with our micro data, and it implies that
job separations are countercyclical, therefore addressing the concerns of Martellini, Menzio, and
Visschers (2021). The fact that the model is calibrated to micro data and is able to generate realistic
unemployment fluctuations addresses the concerns raised by Boroviča and Borovičková (2018), who
argue that a stochastic discount factor that is consistent with observed properties of asset returns
can only partially explain the Shimer puzzle.

Using both theory and data, our paper identifies a new mechanism through which changes in
risk premia affect the likelihood of job destruction and income risk. However, we recognize that
risk premia are endogenous to the state of the economy and are only proximate causes of these
fluctuations. Nevertheless, our findings imply that whatever economic forces generate time variation
in risk premia will also affect unemployment, labor income risk, and inequality at the bottom of the
distribution. For example, the literature has identified a number of mechanisms that generate time-
varying risk premia: risk shocks that propagate through the economy via a financial accelerator
mechanism (Christiano et al., 2014); fluctuations in the level of uncertainty that feed into firms’
cost of capital through changes in the equity risk premium (see, e.g. Wachter, 2013; Bloom, 2014);
nonhomothetic preferences (Campbell and Cochrane, 1999); temporary financial market dislocations
due to a reduction in the net worth of the suppliers of capital (He and Krishnamurthy, 2013); and
monetary policy (Moreira and Savov, 2017; Campbell, Pflueger, and Viceira, 2020; Caballero and
Simsek, 2020, 2022).2 For our purposes, we do not need to take a stance on the economic drivers
behind fluctuations in risk premia but instead focus on their role as proximate causes, or sources of
amplification, for fluctuations in unemployment, labor income risk, and inequality.

That fluctuations in risk premia are an important determinant of idiosyncratic labor income
risk implies that they can affect aggregate demand—in addition to aggregate supply, which has
been the main focus of the literature thus far (Christiano et al., 2014; Bloom et al., 2018). In
particular, fluctuations in the level of idiosyncratic income risk can be an important determinant of
aggregate demand in a heterogeneous agent neo-Keynesian (HANK) framework (Kaplan, Moll, and
Violante, 2018; Bayer, Luetticke, Pham-Dao, and Tjaden, 2019). Our central thesis that increases in
risk premia lead to higher idiosyncratic income risk implies that fluctuations in risk premia should
also affect aggregate demand by disproportionately affecting the wage income of households with

2In this respect, our empirical findings complement the findings of Bergman, Matsa, and Weber (2022) and
Coglianese, Olsson, and Patterson (2022). Bergman et al. (2022) use group-level employment data and document that
employment of lower-income workers is more sensitive to monetary policy shocks in the United States than employment
of high-income workers. Coglianese et al. (2022) use employer–employee administrative data from Sweden and document
that monetary policy shocks have a disproportionately larger impact on the employment of lower-income workers.
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a high marginal propensity to consume (MPC). To the extent that low-wage workers have larger
MPCs than high-wage workers (Patterson, 2022), our model mechanism implies that changes in risk
premia can have a significant impact on aggregate demand by affecting the earnings of low-income
workers. Last, to the extent that monetary policy also affects risk premia, our findings provide a
novel channel through which monetary policy can affect aggregate demand, by disproportionately
affecting the earnings dynamics of lower-paid workers.

1 Worker Exposure to Risk Premium and Productivity Shocks
We begin by documenting a new stylized fact: low-income workers are significantly more exposed to
shocks to risk premia than workers in the middle or the top of the earnings distribution, and this
increased exposure manifests primarily through changes in the likelihood of job loss. This pattern is
in sharp contrast to that observed for earnings exposure to productivity shocks.

1.1 Data Description

Worker Earnings. We use a 20% random sample of worker earnings data from the Longitudinal
Employer–Household Dynamics (LEHD) database matched to firm-level data from Compustat. The
resulting dataset is a panel of earnings and employer information for U.S. workers covering years
between 1990 and 2019. Appendix A.1 contains further details on the sample construction.

Our main outcome variable is the growth rate in worker earnings. We follow Autor, Dorn,
Hanson, and Song (2014) and Guvenen et al. (2014) and focus on cumulative age-adjusted earnings
growth rates:

gi,t:t+h ≡ wi,t+1,t+h − wi,t−2,t, wi,τ1,τ2 ≡ log
(∑τ2

τ=τ1 real wage earningsi,τ∑τ2
τ=τ1 D(agei,τ )

)
. (1)

The term D(agei,τ ) is an adjustment for the average life-cycle path in worker earnings. Focusing on
growth in average income over multiple horizons in (1) emphasizes persistent changes in earnings. To
be included in the sample in base year t, a worker has to be employed by a public firm in Compustat
in that year. However, given that we can track individuals over time regardless of employment
status, a worker’s income growth in (1) may include earnings from different employers, public or
private, and periods of nonemployment (with zero reported W2 earnings). We winsorize all worker
income growth rates gi,t:t+h at the 1st and 99th percentiles.

Table A.1 summarizes our key variables of interest in our main sample of public firm employees
between base years 1992 and 2018. Worker heterogeneity plays an important role in our analysis;
therefore, we report moments separately across the income distribution. We rank workers by their
last three years of total age-adjusted wage earnings, wi,t−2,t, and compute the income rank of
workers relative to other workers in the same firm and over the same period. We report real earnings
growth gi,t:t+h over various horizons as well as the probability of some nonemployment (at least
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one zero-earnings quarter) and the probability of a move coinciding with a tail loss (income growth
below the 10th percentile) between the end of year t and the end of year t+ h. An individual is
characterized as a stayer if the main employer in year t+ h is the same as the main employer in
year t and is characterized as a mover in all other cases.

Risk Premium Shocks. Our goal is to create an index capturing fluctuations in risk premia due to
either fluctuations in the level of risk or fluctuations in the risk-bearing capacity of investors. To
this end, we rely on existing series from the literature.3 To extract our risk premium shocks, we first
estimate residuals from an AR(1) process for each series separately since they have different levels
of persistence, and then we extract the first principal component of these residuals, denoting the
resulting risk premium shocks by ϵrp

t . To construct the level of risk premia from the shock series, we
compute the exponentially weighted moving average of ϵrp

t , assuming a decay parameter of 0.0063
per month (consistent with our model calibration in Section 2 that targets the persistence of the log
price–dividend ratio). Appendix A.2 contains more details.

We plot the resulting time series of risk premia in Figure 1a along with each individual series. All
series are strongly countercyclical, but there are also fluctuations in risk premia outside recessions.
Our risk premium shocks are strongly related to stock market fluctuations: the contemporaneous
correlation between stock market returns and risk premium shocks is significantly negative at −77%.
Most importantly, our risk premium measure predicts higher stock market returns over the medium
run (Figure 1b)—consistent with our interpretation of these shocks as shocks to the required rate of
return for risky investments. Given the strong link between our risk premium shocks and the stock
market, to interpret the magnitudes of the risk premium shocks, we scale ϵrp

t so that a 1% increase
in our index corresponds to a 1% contemporaneous decline in the stock market.

Productivity Shocks. We measure productivity shocks using estimates of annual firm revenue-based
total factor productivity (TFPR) growth, aggregated to the 4-digit NAICS level. We build on
the approach from İmrohoroğlu and Tüzel (2014), which is based on Olley and Pakes (1996), to
estimate firm-level TFPR and modify their approach to facilitate aggregation; see Appendix A.3 for
more details. The advantage of this series relative to Bureau of Labor Statistics (BLS) measures
of productivity is that it takes into account changes in prices and has broader and more granular
coverage across industries. We denote the resulting series for industry-level productivity shocks by
ϵtfp
I,t . Aggregated over all firms, TFP growth has a correlation of −47% with the risk premium shock.

3These include the excess bond premium from Gilchrist and Zakrajšek (2012); Robert Shiller’s CAPE Ratio; the
Chicago Fed’s National Financial Conditions Index (NFCI); the financial uncertainty index of Jurado, Ludvigson,
and Ng (2015); the risk appetite index of Bauer, Bernanke, and Milstein (2023); the risk aversion index of Bekaert,
Engstrom, and Xu (2022); the variance risk premium from Bekaert and Hoerova (2014); the CBOE VIX; and the
SVIX of Martin (2016). These series are at the monthly level, and we sign the indicators such that high values indicate
elevated risk premia.
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1.2 Income Exposure to Risk Premium and Productivity Shocks

We estimate the following specification at the worker level:

gi,t:t+h = β ϵrp
t+1 + γ ϵtfp

I,t+1 + c′Zi,t + ηi,t+h. (2)

Our main coefficients of interest are β and γ, which capture workers’ exposure to risk premium and
productivity shocks, respectively. The vector of controls Zi,t includes a third-order polynomial in
the log of average income over the past three years, a complete set of age dummies, the lagged risk
premium index interacted with income group dummies, and fixed effects for the worker’s industry I,
defined at the 4-digit NAICS level, interacted with her income bin. Given that the underlying data
on risk premium shocks is at monthly frequency while worker earnings are at annual frequency, we
accumulate our risk premium shocks from the midpoint of the year; thus, for example, the earnings
growth of workers from calendar year 2000 to 2001 and later is aligned with the cumulative risk
premium shock from July 2000 until June 2021.

On average, increases in risk premia are associated with lower worker earnings. Panel A of
Table 1 shows that the earnings of the average worker are negatively exposed to risk premium shocks:
a 10% increase in the risk premium shock ϵrp, which is close to its unconditional standard deviation,
is associated with a decline of approximately 1.2 to 1.5 percentage points in worker earnings over the
next two to five years. By contrast, worker earnings and productivity are positively related: a 10%
increase in the industry productivity shock ϵtfp, also close to its unconditional standard deviation,
is associated with a 0.7- to 0.8-percentage-point increase in worker earnings over the same period.

Our main empirical finding is that the two shocks ϵrp and ϵtfp have markedly different implications
for income growth across the worker earnings distribution (relative to the earnings of other workers in
the same firm). In Panel B of Table 1, we allow β and γ to vary with the worker’s prior income level
relative to that of other workers in the same firm. We see that low-wage workers are significantly
more exposed to risk premium shocks than other workers in the same firm, especially at longer
horizons: a 10% increase in ϵrp leads to an approximately 2-percentage-point decline in earnings for
workers at the bottom of the earnings distribution at horizons of two to five years. By contrast,
earnings at the middle of the earnings distribution (between the median and the 75th percentile)
experience a 1.2-percentage-point decline in the short run (two to three years), and the magnitude
falls to a decline of 0.8 percentage points at the five-year horizon. There are no significant differences
in risk premium exposure between middle and top earners. This pattern is sharply different when
we examine the response of earnings to productivity shocks. All workers have similar exposure to
productivity shocks, with the exception of the workers at the very top of the earnings distribution,
who have significantly larger exposure to industry TFP growth.

In sum, we see that low-income workers experience larger and more persistent declines in earnings
in response to the same risk premium shock as workers in the middle or the top of the earnings
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distribution within the firm. Importantly, the fact that we compare workers within the same firm
implies that we implicitly difference out common sources of exposure to risk premium shocks that
vary across firms. Our removing this firm-level component of worker exposure to risk premia helps
alleviate concerns that our results reflect unobservable time-varying differences across firms such as
differences in average worker or firm quality.

Shift-Share Design. Risk premia are strongly countercyclical (Figure 1a). Thus, a key question
when we interpret the results in Table 1 is whether we are identifying the effects of risk premium
shocks or merely the effects of recessions and the fluctuations in risk premia are just a sideshow. To
isolate the effects of risk premium shocks from the effects of a recession, we estimate a modified
version of equation (2):

gi,t:t+h = β
(
χf,t ϵ

rp
t+1
)

+ c′Zi,t + aI,s,t + ηi,t+h. (3)

We introduce three modifications to our previous empirical design in (2). First, we interact the
risk premium shocks with different characteristics χf that capture the exposure of the firm f (that
employs worker i) to risk premium shocks ϵrp

t+1. The interaction of these exposure measures with our
proxy for risk premium shocks can be viewed as a shift-share design (Bartik, 1991; Blanchard and
Katz, 1992). Second, we include income group×industry and income group×year fixed effects; doing
so fully absorbs the variation in productivity at the industry level, and thus, the coefficient γ in (2)
is no longer identified. The coefficient β is now identified by comparing the wage earnings response
for two workers at the same point in time who are in the same part of the earnings distribution and
are employed in the same industry but work for firms with different exposure χf to risk premium
shocks. Third, since some of our exposure proxies χf may also capture differential exposure to
aggregate productivity shocks, we also interact χf with shocks to the aggregate level of productivity
and include those in the vector of controls.

We consider several types of proxies for firms’ exposure χf to risk premium shocks. The first
is the firm’s stock market beta since it measures the sensitivity of its cost of capital to aggregate
shocks (Sharpe, 1964). Second, we directly estimate the sensitivity of firm valuations to risk premia
by regressing firm equity returns on our proxy of risk premium shocks. Third, we follow Almeida,
Campello, Laranjeira, and Weisbenner (2011) and focus on firms that need to refinance a significant
amount of debt at years t+ 1 and t+ 2 (as of year t− 1). We expect that changes in risk premia
are more salient for these firms that need to access financial markets. Last, we consider various
proxies for firms’ exposure to aggregate financial conditions that are commonly used in the literature:
(minus) the level of cash holdings relative to assets (Jeenas, 2019), since it is related to firm needs
to access financial markets; firm size (Gertler and Gilchrist, 1994), since smaller firms are riskier;
the distance to default (Ottonello and Winberry, 2020), since these firms are riskier and therefore
more exposed to fluctuations in risk premia; and the Whited and Wu (2006) index of financial
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constraints, since these firms are more sensitive to conditions in financial markets. Appendix A.4
contains additional details on these proxies. To help interpret magnitudes, we scale the exposure
measures χf so that the cross-sectional standard deviation is equal to one.

As we see in Table 2, this alternative empirical design leads to similar conclusions as our baseline
analysis: an increase in risk premia leads to larger earnings declines for low-income workers in more
exposed firms than for low-income workers in less exposed firms and high-income workers in more
exposed firms. In terms of magnitudes, following a 10% increase in the risk premium shock ϵrp

t+1,
low-income workers experience a 0.26- to 0.48-percentage-point greater decline in earnings if they
are employed in firms that are one standard deviation more exposed than the average firm; these
differences are strongly statistically significant across all of our empirical measures of exposure χf .
The differences between the wage responses of low-income workers in highly exposed firms and those
of high-income workers in the same firms are of comparable magnitude (0.23 to 0.46 percentage
points), though not always precisely estimated.

We conclude that the differential exposure of low-income workers to risk premium shocks is not
merely reflecting these workers’ differential exposure to recessions and the countercyclical nature of
these shocks; rather, shocks to risk premia appear to affect the earnings of low-income workers directly.

Intensive versus Extensive Margin. Worker earnings can decline because the worker remains employed
with the same firm but receives a pay cut in hourly wages or works fewer hours, because she becomes
unemployed and receives no wage income, or because she moves to a new job that pays a lower
wage. We next focus on the role of job transitions in generating the patterns in Table 1. First, in
Table 3, we report estimates of β and γ from a modified version of equation (2) where we replace the
dependent variable with indicators for job loss over the next h years: whether the worker experiences
at least one full quarter with zero wage earnings or whether the worker separates from her initial
employer and simultaneously experiences a decline in earnings growth below the 10th percentile.
Second, in Table 4, we report estimates of β and γ from separately estimating equation (2) for job
stayers versus movers over the next h years.

Overall, we see that the negative effects of risk premium shocks on wage earnings operate largely
through the extensive margin—the increased probability of job loss. Focusing on the workers at the
bottom of the pay distribution, we observe that a 10% risk premium shock ϵrp is associated with an
approximately 1- to 1.1-percentage-point increase in the likelihood of a nonemployment spell (at
least one quarter of zero wage earnings). Similarly, a 10% risk premium shock ϵrp leads to a 0.8- to
0.9-percentage-point increase in the likelihood of the worker separating from her initial employer and
experiencing a significant drop in income. For workers who fall under this definition of job loss, the
conditional mean of earnings growth over the next 3 years is equal to −144 log points. Thus, these
estimates imply that the increased likelihood of job loss accounts for more than half of the total
effect of risk premium increases on wage earnings. Reinforcing the importance of the job destruction

10



channel, the negative effects of risk premium shocks on low-income workers are significantly larger
(by a factor of more than five) for those workers who end up leaving the firm than for workers who
remain with the firm. Importantly, the corresponding magnitudes for workers at the middle or the
top of the income distribution are significantly smaller, in both economic and statistical terms.

These patterns stand in sharp contrast to those of the impact of productivity shocks. Though
adverse productivity shocks are associated with a modest degree of job destruction, the magnitudes
are smaller than those of the effects of risk premium shocks, and the estimated coefficients γ do not
vary significantly by income. Likewise, the response of earnings to productivity shocks are somewhat
larger for movers than for stayers, but the differences are significantly smaller than in the case of
risk premium shocks—and there is no clear pattern as a function of worker income.

1.3 Robustness Checks

We briefly discuss a number of robustness checks of our main findings; all details are relegated to the
appendix (A.5). Table A.2 shows that extending our analysis to all workers (as opposed to workers
employed in public firms in Compustat) leads to quantitatively similar results. Table A.3 shows that
differentiating between workers on the basis of their income relative to that of their industry peers (as
opposed to that of other workers in the same firm) leads to similar conclusions. Table A.4 examines
the extent to which our results are sensitive to the exact measurement of risk premium or productivity
shocks; our results are largely insensitive to these choices. Table A.5 shows that alternative
assumptions on time aggregation, specifically whether worker earnings are paid at the end of the
year or the beginning of the year—as in Campbell (2003)—lead to quantitatively similar outcomes.
Table A.6 shows that, using our shift-share design in equation (3), we obtain qualitatively similar
results on the likelihood of job loss to those in Table 3; that is, a 10% increase in the risk premium
leads to a 0.1- to 0.2-percentage-point increase in the likelihood of job loss (a large income drop
combined with separation from the initial employer) for those low-income workers who are employed
in highly exposed firms relative to the likelihood of low-income workers employed in less exposed firms.

2 Model
Thus far, we have documented a number of new stylized facts that help guide the model we develop.
First, risk premium shocks have a significantly more negative impact on the earnings of low-income
workers than on the average worker. Second, this pattern is in sharp contrast to that observed for
low-income workers exposed to productivity shocks, which is similar to the pattern for the average
worker and less pronounced than the pattern for higher-paid workers. Third, job destruction is an
important driver of the impact of risk premium shocks on the earnings of low-income workers; while
productivity drops also lead to some instances of job destruction, the magnitudes are smaller, and
the effects do not vary significantly by income.
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What type of model would quantitatively rationalize these facts? Given that job destruction
is an important driver of these patterns in the data, a model that will fit these facts needs labor
market frictions; search frictions are a natural starting point (Diamond, 1982; Mortensen, 1982;
Pissarides, 1985). We model a directed search process (Montgomery, 1991; Moen, 1997). The next
question concerns the structural interpretation of risk premium shocks in such a framework; we
model these shocks as shocks to the effective discount rate that agents use to discount future risky
cashflow streams, in the spirit of Kehoe et al. (2022). A positive risk premium shock indicates a
lower valuation of a stream of risky future cashflows—or equivalently, agents value present cashflows
relatively more than future cashflows. Since the decision to maintain an existing worker–firm match
involves calculating the present value of the relative benefits of keeping the worker in the job or not
and these benefits are uncertain, fluctuations in the discount rate for future cashflows directly affect
firms’ willingness to keep specific workers.

2.1 Environment

The model is set in discrete time. There is a unit measure of ex ante identical workers who can be
employed by a large number of firms. The workers are indexed by i, have heterogeneous productivity,
and are employed by a firm, are unemployed and searching for a job, or are nonparticipants in labor
markets. Firms employ workers to produce output and can post vacancies to attract new workers,
targeting workers with a specific productivity level.

Timing

Each period in the model consists of three subperiods. First, a fraction ν of workers die and are
replaced by new (nonemployed) workers, and shocks to aggregate productivity, discount rates, and
idiosyncratic productivity are realized. In the second subperiod, firms post vacancies to attract new
workers, workers in the unemployment pool search for new jobs, and new matches are formed. In
addition, some of the existing matches are destroyed either because the surplus generated by the
match is now negative or for exogenous reasons. The rate of endogenous job destruction depends on
the aggregate state of the economy, while the rate of exogenous job destruction is s. In the third
subperiod, for continuing and new matches, production is realized, and wages are paid. Workers
out of a job receive their nonemployment benefits and decide whether to pay the cost to enter the
search pool for the subsequent period.

Production

Employed workers produce output at a rate that depends on the aggregate productivity level A and
their individual productivity z:

yi,t = At zi,t. (4)
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Idiosyncratic worker productivity evolves according to the following mean-reverting process:

log zi,t+1 = ψz log zi,t + (1 − ψz) log z̄i,t + σz εz,i,t+1, (5)

where εz,i,t+1 is an i.i.d. standard normal random variable. Importantly, the long-run mean level of
productivity depends on the worker’s current employment status, z̄i,t ∈ {z̄E , z̄O}. As in Ljungqvist
and Sargent (1998), human capital grows with work experience, and workers experience long-term
costs from being out of a job; therefore, z̄E > z̄O. Newly born workers at time t0(i) enter the
economy without a job and with initial idiosyncratic productivity equal to

zi,t0(i) = z̄O exp(σz0 εz,i,t0(i)). (6)

Aggregate productivity At follows a random walk:

∆ logAt+1 = µA + σA εA,t+1, (7)

where εA,t+1 ∼ N(0, 1). We note that, given (7), output has a stochastic trend, however the
economy is stationary in growth rates.

Financial Markets

Financial markets are complete: households have access to a complete set of state-contingent
securities spanning the aggregate shocks εA,t and εx,t, and there is a unique stochastic discount
factor. The present value of a claim to a stream of future cashflows X is

Pt = Et


∞∑

τ=t+1

 τ∏
k=t+1

Λk

Xτ

 , (8)

where Λτ is the one-period stochastic discount factor (SDF) between periods τ and τ + 1. Our
assumption of complete markets implies that all agents in the economy, both firms and workers,
use (8) to value future cashflows.4

Our goal is to understand the implications of fluctuations in risk premia for worker outcomes,
which does not require us to take a strong stance on the underlying economic drivers of these
fluctuations. Thus, we directly specify the stochastic discount factor following Lettau and Wachter
(2007), assuming that the market price of risk (the level of risk premia) evolves according to

xt+1 = ψxxt + (1 − ψx)x̄+ σx εx,t+1, (9)

with εx,t ∼ N(0, 1) corresponding to the risk premium shock in the model. The correlation between
shocks to productivity εA,t and risk premia εx,t is ρA,x. The one-period stochastic discount factor is

4This assumption can be motivated if each worker is part of a large family, each of which features a continuum
of ex ante workers who experience i.i.d. shocks and have identical preferences. All families pool their resources to
smooth consumption across members and are therefore able to diversify away idiosyncratic shocks to the income of a
single worker. Newborn workers are born into each family in proportion to its size, implying that each family has a
constant size and a constant share of aggregate resources.
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given by

Λt+1 = exp
{

−rf − 1
2x

2
t

(
1 + δ2 + 2 δ ρA,x

)
− xt εA,t+1 − δ xt εx,t+1

}
. (10)

The stochastic discount factor (10) follows Lettau and Wachter (2007), except for two modifications:
first, we allow for a correlation between shocks to risk premia and productivity shocks, and second,
we allow the risk premium shocks to be priced directly, captured by the parameter δ. Equation (10)
implies that the risk-free rate is constant and equal to rf .

Directed Search and Matching

Unemployed workers search for jobs in the labor market for their productivity type z. Firms post
vacancies that are directed at workers of a particular type. Labor markets are competitive—all
firms can freely enter any submarket for type-z workers in each period. The per-period cost to post
a vacancy directed at a worker of productivity z is

κt(z) = κ̄ At z. (11)

The cost of posting a vacancy targeting a specific type of worker is proportional to the worker’s
productivity. The assumption that search costs are proportional to A ensures that the limiting
employment distribution is not degenerate, while the assumption that they scale with z ensures
that job-finding rates are fairly similar across workers with different prior earnings levels, as is the
case in the data.

The likelihood of a vacancy being filled is a function of the current tightness of the market
θt(z) ≡ vt(z)/ut(z), where ut(z) is the unemployment rate and vt(z) is the number of vacancies
posted by firms for each type of worker. Following den Haan, Ramey, and Watson (2000), the
number of matches in a labor market with unemployment rate u and vacancies v is given by

m(u, v) ≡ u v

(uα + vα)
1
α

. (12)

Equation (12) implies that the probability that a vacancy is filled in a market with tightness θ is
q(θ) = (1+θα)− 1

α and the probability that a job searcher obtains a new match is p(θ) = θ(1+θα)− 1
α .

Worker Labor Supply

All workers who are out of a job receive a flow benefit from being nonemployed:

bt = b̄ At. (13)

The flow benefits of being out of employment include not only unemployment benefits but also the
value of leisure and the value of home production. Following Hall (2017) and Kehoe et al. (2022), the
opportunity cost of employment has a unit elasticity to aggregate productivity, which is consistent
with Chodorow-Reich and Karabarbounis (2016).
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Newly born workers and workers who have just separated from a previous job enter the pool
of nonemployed workers. Searching for a job is costly: each nonemployed worker can decide each
period whether to participate in the labor market by entering the unemployment pool at a cost and
actively looking for a job or to stay out of the workforce. To be in the search pool for that month, a
worker needs to pay an upfront search cost ct, which is a stand-in for the costs of updating a resume
and finding and applying for new jobs. This simplifying assumption implies that all workers will
make labor supply decisions to maximize the net present value (NPV) of labor earnings plus the
value of unemployment, net of search costs.

We allow the cost of search to depend on the average level of labor market tightness:

ct = c̄ At (θt(z̄O))λ . (14)

As in Mukoyama, Patterson, and Şahin (2018), we assume that the cost of search increases with
aggregate tightness in the labor market.5 This assumption implies that search intensity increases
during times when the labor market is weak, which is consistent with the data (Mukoyama et al.,
2018; Faberman and Kudlyak, 2019).

2.2 Competitive Labor Market Search

In this section, we outline the conditions that determine the equilibrium labor market allocations:
job finding rates, job destruction rates, and the present value of compensation promised to a worker
by her firm at the initiation of a match. We construct a competitive search equilibrium in the spirit
of Montgomery (1991) and Moen (1997). Firms decide how many vacancies to post for each type
of worker, posting the associated value of employment. Workers choose the type of vacancy to
which they will direct their search effort, leading to a block-recursive equilibrium in which only the
aggregate state variables xt and At matter for firm and worker decision rules, similar to the setting
in Menzio and Shi (2011).

Worker Search

Labor markets are characterized by a worker type z and a corresponding value of employment that
is offered to a worker of this type when the match is created. We consider a symmetric equilibrium
where each worker of type z searching for a job at time t is offered the same contract with a total
continuation value of employment equal to Wt(z).

Consider first the problem of a worker who begins the third subperiod in the nonemployment
pool with continuation value JO

t (z). She has a choice of whether to enter the next period as a
nonparticipant (which yields a continuation value JN

t (z)) or to pay the cost ct now to enter the search
5Our indexing the search cost to the tightness of the labor market corresponding to type z̄O workers, rather than a

cross-sectional average, helps keep the model tractable since otherwise we would need to keep track of the evolution of
the cross-sectional distribution of z, an endogenous object that depends on the history of aggregate shocks.
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pool for the next period (obtaining a continuation value JU
t (z)). Thus, her continuation value equals

JO
t (z) = max{JN

t (z), JU
t (z)}. (15)

A nonparticipating worker simply collects the nonemployment benefit specified in (13) at time t and,
conditional on surviving to t+ 1, begins the next period as a nonemployed worker. Her continuation
value

JN
t (z) = bt + (1 − ν)Et,z

[
Λt+1J

O
t+1(z′)

]
. (16)

Next, consider a worker of type z who is unemployed in period t and thus actively searches for a
job. Her continuation value is

JU
t (z) = bt − ct + (1 − ν)Et,z

[
Λt+1

{
JO

t+1(z′) + p(θt+1(z′))
(
Wt+1(z′) − JO

t+1(z′)
)}]

, (17)

which combines the flow nonemployment benefit net of the search cost with the discounted value of
the outside option in nonemployment JO

t+1(z′) plus the job-finding rate p(θt+1(z′)) times the surplus
the worker gains above her outside option from entering a new match.

Firm Search

Consider a firm and a worker who are in a match that is continued in the current period t. The sum
JMC

t (z) of the worker’s lifetime value and the present value of the firm’s profits from this match
satisfies

JMC
t (z) = At z + (1 − ν)Et,z

[
Λt+1

{
sJO

t+1(z′) + (1 − s)JM
t+1(z′)

}]
, (18)

where

JM
t (z) = max

{
JMC

t (z), JO
t (z)

}
(19)

is the current total value of a match.
A match is continued at time t if the continuation value of the match exceeds the value at

nonemployment:

1C
t (z) = 1 ⇔ JMC

t (z) ≥ JO
t (z). (20)

When a match is terminated, the firm has no more future profits from this match, while the worker’s
continuation value is equal to the value of nonemployment from (15). As a result, the present value of
a continuing match specified in (18) consists of the current output that is produced, the present value
of output in future times when it is optimal to keep the current match intact, and the present value
of the outside option to the worker that comes from the value of nonemployment after separation.

Firms post vacancies and wage values to target specific workers. Specifically, firms can target a
specific type of worker z by posting a vacancy and offering a continuation value to the worker equal
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to Wt(z) at the moment the worker is hired. The equilibrium value of Wt(z) is pinned down by the
firm’s first-order conditions in its vacancy posting problem together with the free-entry condition:

q(θt(z))
(
JMC

t (z) −Wt(z)
)

≤ κt, (21)

which says that the expected value of a vacancy—the probability that the vacancy is filled times
the present value to the firm upon filling the vacancy—is not greater than the cost of creating a
vacancy. When the labor market for type z is active, θt(z) > 0, and (21) holds with equality.

In equilibrium, the continuation value offered to a worker of type z is

Wt(z) = JO
t (z) + η(θt(z))

(
JMC

t (z) − JO
t (z)

)
. (22)

Equation (22) states that the continuation value Wt(z) when the worker is hired is equal to the
unemployed worker’s outside option plus a share of the surplus created by a continuing match.
The share of the surplus upon hiring depends on the elasticity of the vacancy-filling rate, η(θ) ≡
−θ q′(θ)/q(θ), which is a function of current labor market conditions. Appendix B.1 contains further
details.

Equation (22) determines the present value of wages when the worker is hired. However, it is
not sufficient to determine the full path of realized worker wages. When workers can commit to
not leaving their employer (prematurely) and firms can commit to not firing workers (inefficiently),
many paths of wages are consistent with (22): firm owners could make a one-time payment of Wt(z)
to the worker at time t or pay a constant (or constantly growing) wage over the life of the match.
Absent full commitment, these compensation schemes can be problematic ex post. In the first
instance, a worker would have a very strong incentive to quit immediately. In the second, positive
shocks to productivity can incentivize the worker to quit to earn higher wages elsewhere (as in
Harris and Holmstrom, 1982), and negative shocks could incentivize the firm to terminate the match
early and discontinue wage payments. Therefore, limited commitment places some restrictions on
admissible wages (Thomas and Worrall, 1988). In the next section, we present a model of limited
commitment that pins down per-period wages.

2.3 Worker Wages

To derive explicit predictions for wages, we make an additional assumption: firms aim to smooth
workers’ wages throughout the match, subject to limited commitment on the part of the firm and
the worker. The solution to this smoothing problem ensures that neither party has an incentive to
inefficiently terminate the match and pins down a unique set of state-contingent wages for the worker.
Matches are only efficiently terminated according to the equilibrium termination policy specified
in (20). All that is required for the contract to be consistent with the equilibrium above is that it
delivers, in present value terms, the ex ante contracted value in (22) to the worker when she is hired.
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Consider the continuation value at time t of worker i who is in an existing match m with the
firm; this value can be decomposed as

Ŵ (Ωi,m,t) ≡ ŴM (Ωi,m,t) +WS
t (zi,t). (23)

Here, Ωi,m,t represents the set of variables that summarize the current state of the promised contract,
which in principle include the full history of aggregate and idiosyncratic shocks.

The first component in (23) corresponds to the present value to the worker of the flow wages
paid by the employer in the current match. This value, which is also equal to the cost to the firm of
retaining the worker, can be represented as

ŴM (Ωi,m,t) = w(Ωi,m,t) + (1 − ν)Et,z

[
Λt+1(1 − s)1C

t+1(z′) ŴM (Ωi,m,t+1)
]
, (24)

where the indicator 1C
t is equal to one if the match is preserved at time t.

The second component of (23) equals the present value of payoffs to the worker after the current
match is terminated—nonemployment benefits plus the expected benefits of her new job. This value
WS is a function only of the worker’s current productivity z and the aggregate state (At, xt) and solves

WS
t (z) = (1 − ν)Et,z

{
Λt+1

[
JO

t+1(z′) + (1 − s)1C
t+1(z′)

(
WS

t+1(z′) − JO
t+1(z′)

)]}
. (25)

The worker’s total continuation value (23) will fluctuate as idiosyncratic and aggregate shocks are
realized. The only restriction imposed by the equilibrium is that the continuation value of the wage
contract for a new hire at time τ is equal to the promised continuation value in (22) offered to the
worker when she is hired:

ŴM (Ωi,m,τ ) = Wτ (zi,τ ) −WS
τ (zi,τ ). (26)

In subsequent periods, the worker’s continuation value is a function of the contract state Ωi,m,t

according to (24).
With limited commitment on the part of both worker and firm, there are bounds on how the

present value of wages from the current match as specified in (24) can evolve over time:

ΓL
t (zi,t) ≤ ŴM (Ωi,m,t) ≤ ΓH

t (zi,t). (27)

The bounds in (27) ensure that no party wishes to inefficiently terminate the contract. The bounds
must hold state by state over the life of the contract and depend only on the aggregate variables
(At, xt) and worker productivity zi,t. We next discuss how these bounds are determined.

Firm Participation Constraint (Upper Bound). The upper bound for the present value of the wage
contract is determined by the threat of the firm to terminate the match. The firm would like to
terminate the match when its share of the surplus—the present value of future output minus wages—
is negative. In contrast to the endogenous separations that occur on the equilibrium path—in which
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both workers and firms agree that separation is mutually beneficial—these off-equilibrium threats to
terminate the match early are inefficient because the total surplus of the match may still be positive.
We parameterize the degree of limited commitment by assuming that firms (and workers) incur
some reputational cost when terminating a match unilaterally. On the firm side, these costs are a
stand-in for potential difficulties that the firm may have in retaining current incumbent workers and
attracting additional workers in the future if it inefficiently terminates some workers. Specifically,
when a worker is fired, the firm needs to pay the flow reputation cost ft = ξAt for the remaining
lifetime of the worker. The present value Ft of these costs satisfies

Ft = ξAt + (1 − ν)Et [Λt+1Ft+1] . (28)

Given these costs, the firm is tempted to terminate the match only when its share of the surplus
becomes sufficiently negative:

JMC
t (z) −WS

t (z) − ŴM (Ωi,m,t) < −Ft. (29)

Whenever (29) binds, the firm and the worker agree to lower the worker’s continuation value to
prevent inefficient termination. Therefore, the firm-side limited commitment constraint implies the
following upper bound on wages:

ŴM (Ωi,m,t) ≤ ΓH
t (z) ≡ JMC

t (z) + Ft −WS
t (z). (30)

Worker Participation Constraint (Lower Bound). The lower bound for the wage contract is de-
termined by a worker’s off-equilibrium threat to walk away from the match and enter the pool of
nonemployed workers. In direct analogy with the firm problem, workers who quit their job ineffi-
ciently incur the same reputation cost (28) that firms do whenever they inefficiently terminate a
match. On the worker side, these costs are a stand-in for the loss of unemployment benefits or for
adverse perceptions of the worker’s productivity going forward. Whenever the worker is tempted
to quit her job while the value of the match is positive, the firm increases the worker’s continua-
tion value to prevent the inefficient dissolution of the match when the total surplus is still positive.
Thus, the lower bound on the worker’s continuation value equals

ŴM (Ωi,m,t) ≥ ΓL
t (z) ≡ JO

t (z) −WS
t (z) − Ft. (31)

Even though (30) and (31) place restrictions on the path of future worker wages, they are not
sufficient to fully determine them. The last step in determining wages requires us to assume that
workers have a preference for smooth wages, subject to the two limited commitment constraints
in (30) and (31). Specifically, firms offer workers a wage contract with state-contingent worker
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compensation w that solves the following dynamic smoothing problem:

V̂t(z, ŴM ) = max
w,{Ŵ M′ }

{
(1 − χ)w1−γ + χEt,z

[
Λt+1 1

C
t+1(z′) V̂t+1(z′, ŴM ′)1−γ

]} 1
1−γ , (32)

subject to the constraint that these wages deliver the promised continuation value ŴM in all states
of the world,

ŴM (Ωi,m,t) = w(Ωi,m,t) + (1 − ν)(1 − s)Et,z

[
Λt+1 1

C
t+1(z′) ŴM (Ωi,m,t+1)

]
, (33)

and the limited commitment constraints in (27). Here, χ is a time discount factor, and γ > 0 is a
preference parameter that captures the intensity of the desire to smooth wages. We further impose
the restriction that logχ = log(1 − ν) + log(1 − s) + γ µA so that worker wages optimally grow at
the same rate as aggregate productivity under full commitment.

Examining equations (30) to (33), we note several points worth discussing. First, the value of
the reputation cost ξ allows us to parameterize the severity of the limited commitment problem and
thus the scope for insurance within the firm. As long as ξ ≥ 0, there is always a feasible value for
ŴM that ensures the firm can retain the worker as long as the surplus created by the match as
specified in (20) is positive. As ξ goes to infinity, none of the two limited commitment constraints
ever bind, and we are at the full commitment case. When ξ = 0, commitment is severely limited,
and wages tend to adjust quickly in response to shocks because it is common for either the firm’s
or the worker’s outside option to become binding. Thus, our model nests two extreme cases: fully
rigid wages and wages that are renegotiated at high frequency. Our assumption of wage smoothing
under limited commitment is in line with the view that firms partially insure (continuing) workers
against fluctuations in profitability (Guiso, Pistaferri, and Schivardi, 2005, 2013).6

Appendix Figure A.1 illustrates how the two bounds vary as a function of ξ and in response
to shocks. In the case of ξ = 0, the bounds are relatively close to each other, which implies that
wages adjust rapidly to changes in aggregate or worker productivity. Put differently, there is more
scope for insurance when ξ is larger. In addition, the risk premium shock xt can also affect wages
for continuing matches. An increase in risk premia lowers the value of employment and the value of
the worker’s outside option and therefore lowers both bounds relatively more than the value of a
given stream of wages—because the wages are smoother (and thus less risky) than the profits from

6A common assumption in the literature on optimal contracting with limited commitment is that workers are
more risk averse than firms, which leads to a motive for wage smoothing (Thomas and Worrall, 1988; Kocherlakota,
1996; Berk, Stanton, and Zechner, 2010; Ai and Bhandari, 2021; Balke and Lamadon, 2022). In our model, both
workers and firms are assumed to be risk neutral over idiosyncratic shocks, but this choice is simply for tractability.
Strictly speaking, workers in our model are indifferent between all wage paths that satisfy the initial condition and the
limited commitment bounds. Nonetheless, our assumption that the contract seeks to smooth wages is in line with the
standard setup in the optimal contracting literature and the conventional view that firms insure (continuing) workers
against aggregate and idiosyncratic fluctuations in profitability to the extent that it is incentive compatible (Guiso
et al., 2005, 2013). Parameterizing the degree of commitment with ξ, which determines the speed of adjustment of
wages to labor productivity, allows the model to match the response of worker earnings to productivity shocks across
different horizons in Table 1.
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the match. This valuation effect creates downward pressure on wages for workers who are close to
the bounds. A secondary effect occurs because the reputation costs have a dynamic component and
thus the degree of commitment power declines with discount rates as both workers and firms assign
lower valuations to future reputational costs. This implies that workers close to the upper bound
are particularly likely to experience wage decreases following a positive risk premium shock.

In sum, we develop a parsimonious model which determines the evolution of wages over the life of
a match. Our formulation resolves the issue of indeterminacy of wages in search models in a manner
that can deliver realistic dynamics for worker earnings. That said, we emphasize that our assumptions
on the wage contract do not affect the allocation of workers to jobs and are therefore less relevant
for the response of worker earnings to discount rates at the bottom of the income distribution since
these are driven by job separations. The fact that negative productivity shocks do not lead to job
destruction (with risk premia held constant) stems from the model’s scale invariance with respect to
A. This assumption is made for simplicity: wage rigidity can definitely lead to inefficient separations
in response to negative productivity, but our model does not need this mechanism to generate a
realistic level of job destruction in response to discount rate news. Allowing the wage contract to lead
to inefficient separations would only amplify the fluctuations in income risk implied by the model.

2.4 Equilibrium

An equilibrium in this model consists of a market tightness function θt(z), an employment offer
function Wt(z), value functions Jg

t (z) with g ∈ {O,N,U} for workers without a job, value functions
JMC

t (z) and JM
t (z) for (continuing) matches with a corresponding policy rule for terminating

existing matches, a wage policy function wt(z, ŴM ), and value function V̂t(z, ŴM ) for the wage
smoothing problem, such that (i) the offered employment value and corresponding market tightness
satisfy the firm optimality in (22); (ii) the value functions satisfy equations (15), (16), (17), (18),
and (19); (iii) the free-entry condition (21) holds; and (iv) the wage contract solves the constrained
dynamic smoothing problem in (32).

The competitive search equilibrium in our model is both efficient and unique. The efficiency of
the equilibrium can be seen directly from equation (22), which is equivalent to a Nash bargaining
solution where the Hosios condition holds. Last, the fact that our assumptions on the wage contract
in Section 2.3 do not affect the equilibrium allocations allows us to solve for the equilibrium in a
block-recursive manner: we first solve for labor allocations and then for the path of realized wages.
Appendix B.2 contains further details.

2.5 Calibration

Parameters Calibrated a Priori. Some of the parameters in the model can be calibrated from a priori
information (Panel A of Table A.7). We set the mean of the productivity process µA equal to the
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average growth rate of labor productivity between 1947 and 2019 (equal to 2.2% per year) based on
BLS data. We select σA to match the volatility of TFP growth at the aggregate level (3.8% per year)
that we obtain by aggregating our measure of firm-level TFP growth over all public firms in the sample.
We choose ρ = −0.47 to match the correlation between our measures of aggregate productivity and
risk premium shocks. The real risk-free rate is 1.93% per year. We calibrate the model at monthly
frequency and convert these parameters to their monthly equivalents when applicable.

We normalize the long-run mean of z in employment to z̄E = 1. We calibrate the worker
productivity process to have a persistence of ψz = 0.991 at monthly frequency, following Menzio,
Telyukova, and Visschers (2016). Our choice implies that the half-life of an idiosyncratic productivity
shock is approximately 6 years. We choose the dispersion in initial human capital levels σz0 = 0.666 to
match the interquartile range of initial earnings at age 25 over the period 1957–2011 based on Guvenen,
Kaplan, Song, and Weidner (2022). We choose the mortality rate ν so that the life span of a worker in
the model is 30 years on average. Following Hagedorn and Manovskii (2008), we set the curvature α
of the matching function to 0.407. We set b̄ = 0.6 so that the flow value during nonemployment is 0.6
times the long-run average labor productivity of employed workers, consistent with the value of leisure
of 0.6 in Ljungqvist and Sargent (2017). Our choice of b̄ is within the set [0.4, 0.96] usually considered
in the literature (Shimer, 2005; Hagedorn and Manovskii, 2008). Finally, we pick the wage smoothing
parameter γ = 1/2, consistent with agents having a fairly modest smoothing motive (i.e., an elasticity
of intertemporal substitution equal to 2), though in practice the results are insensitive to this choice.

Parameters Calibrated to Asset Pricing Moments. We calibrate the parameters of the stochastic
discount factor to match moments of asset prices (Panel B of Table A.7). Given that the model’s
mechanism operates through changes in valuations of employment matches of relatively long
maturities, we choose x̄, ψx, σx, and δ to target both the moments of the stock market as a whole
and the moments of a risky portfolio of long-duration stocks based on Gormsen and Lazarus (2023).
Our calibration of the stochastic discount factor (x̄ = 0.384, ψx = 0.994, σx = 0.032, δ = 0.431) is
consistent with the moments of the stock market and the stylized fact that the Sharpe ratios of
risky assets decline with the duration of their cashflows (van Binsbergen, Brandt, and Koijen, 2012;
Gormsen and Lazarus, 2023). See Table A.8 and Appendix B.3 for further details.

Parameters Calibrated to Worker Moments. The remaining model parameters s, c̄, λ, κ̄, z̄O, σz,
and ξ are chosen to minimize the distance between the model-implied worker moments and their
direct empirical counterparts (Panel C of Table A.7). We choose the monthly exogenous separation
rate s = 0.0030 and idiosyncratic volatility σz = 0.128 to target the average monthly separation
rates into unemployment and nonparticipation by income group for incumbent workers, estimated
with public data from the SIPP of the U.S. Census Bureau (see Appendix A.6 for details). We
parameterize c̄ by setting the monthly search cost of a worker of type z = z̄O when xt is at its long-
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run mean to 0.0060. This parameter drives mainly the division between average separations into
unemployment and nonparticipation as a function of prior earnings. We set the elasticity of the
search cost to the level of market tightness equal to λ = 2.28, which primarily affects the volatility
of the unemployment rate. We choose the vacancy cost parameter κ̄ = 0.094 to target average
monthly job finding rates by prior income for unemployed workers and the mean unemployment
rate. In addition, we target the response of worker earnings growth to productivity shocks and risk
premium shocks: we estimate our exact same baseline specification (2) in a large panel of simulated
worker data from the model, replacing ϵrp

t and ϵtfp
I,t by εx,t and εA,t, scaled to have the same standard

deviation. We target income growth exposure by prior earnings bin at horizons of two, three, and
five years. The responses of worker earnings to aggregate risk premium and productivity shocks
across horizons help identify the parameter governing the loss of human capital in nonemployment,
z̄O = 0.446, and the parameter that disciplines the degree of commitment power in wage contracting
(and therefore the speed at which worker wages during a match respond to aggregate shocks),
ξ = 0.171. In total, we target 47 moments in our calibration of the seven model parameters.

Model Fit. Overall, the model does a good job fitting the worker-level moments that we target in
our calibration. The top panel of Figure A.2 shows that in both the model and the data, average
separation rates are strongly declining in income levels. The bottom panel shows that the model
can also match the average job-finding rate for workers at the bottom of the distribution; however,
in the model, job-finding rates are increasing in income, whereas in the SIPP data, they are mostly
flat. That said, the implications of our model are in line with the empirical findings based on the
LEHD from Gregory, Menzio, and Wiczer (2021), who document significant heterogeneity by worker
type: high-income workers find jobs faster and are more likely to remain employed than low-income
workers. The model delivers a realistic average unemployment rate (6.1 versus 5.7 in the data)
and volatility of unemployment (1.3 versus 1.2 in the data), thus providing a resolution to the
Shimer (2005) puzzle. In Figure 2, we see that the model can largely replicate the exposure to risk
premium and productivity shocks, especially at horizons of three to five years. In both the model
and the data, low-income workers are more exposed to risk premium shocks, and less exposed to
productivity shocks, than high-income workers. Figure A.3 shows that these exposure measures in
the model have significant long-run implications for worker earnings.

2.6 Model Mechanisms

In our model, idiosyncratic income risk fluctuates in response to changes in risk premia. Here,
we discuss the model mechanisms that give rise to this result, together with their quantitative
importance in our main calibration.

Sources of Worker Heterogeneity. There are two sources of worker heterogeneity in the model that
determine how worker earnings respond to risk premium and productivity shocks. The first is the
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worker’s current level of productivity z, which determines her unemployment risk, as we discuss
below. In the model, the worker’s current productivity z is positively correlated with her current
flow wage w, as we see in Figure A.4a. The second source of relevant worker heterogeneity is the
worker’s current continuation value ŴM relative to the wage bounds defined by (30) and (31),

ω(Ωi,m,t) ≡ ŴM (Ωi,m,t) − ΓL
t (z)

ΓH
t (z) − ΓL

t (z)
. (34)

A worker’s current promised continuation value ŴM depends on the entire history of shocks that
are reflected in the contract state Ωi,m,t of the current match.

The worker’s value of ω summarizes the present value of the future wages promised to the worker,
evaluated relative to the firm’s and worker’s outside option, which depend on z and the aggregate
state. The relation between ω and either the worker’s current productivity zt or wage wt is rather
complex and nonmonotone, as we see in Figures A.4b and A.4c. Instead, ω is most closely related
to the ratio of the worker’s current wage relative to her current productivity (Figure A.4d).

Job Separations. A key component of the model mechanism is the endogenous job destruction in
response to changes in risk premia. Job destruction depends on a simple threshold rule: existing
matches in which worker productivity is below a threshold z < z∗(xt) are terminated. The separation
threshold z∗(xt) is defined implicitly through the indifference condition:

JMC
t (z∗(xt)) = JO

t (z∗(xt)). (35)

At z∗(xt), the worker and the firm are indifferent between their continuing the match, on the one
hand, and the worker’s joining the nonemployed pool and the job’s being destroyed, on the other.
Given that the model is scale invariant with respect to A, the threshold depends only on the current
level of risk premia xt.

An increase in risk premia increases the likelihood of job destruction, especially for low-
productivity workers (Figure 3a). This result rests on two features of the model: first, nonemployment
benefits are not indexed to current worker productivity z; second, worker productivity grows relatively
faster, on average, during employment than during nonemployment. These features have two impor-
tant implications. First, low-productivity workers are low-surplus workers—that is, JMC

t (z) − JO
t (z)

is strictly increasing in z because the worker’s outside option is less sensitive to the current value of z
than to the value of employment. Second, the payoffs to employment are relatively more backloaded
than the payoffs to nonemployment (the worker’s outside option), as we can see in Figure A.5a.

This difference in the timing of payoffs to employment versus nonemployment implies that an
increase in the risk premium xt leads to a greater decline in the value of employment relative to
the outside option for the marginal worker, which in turn implies that the separation threshold
z∗(xt) is increasing in xt. To see this, recall that the risk premia xt determine the discount rate for
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risky cashflow streams; the model is scale invariant with respect to A, and thus the only reason why
the left- and right-hand sides of (35) have different elasticities with respect to changes in xt is the
differences in the timing of their cashflows. Appendix B.4 discusses this difference in timing and the
implications for the separation threshold in detail.

Duration of Nonemployment Spells. The duration of nonemployment spells also depends on risk
premia: for any given worker, both the expected duration of nonemployment and uncertainty about
its length increase when risk premia rise (Figure 3b). This result obtains because of two forces in
the model. First, the job-finding rate falls as the risk premium xt increases since firms post fewer
vacancies and the rate of job destruction increases. Second, workers are less likely to search for a
job when risk premia increase. Specifically, when deciding to search for a job, workers trade off
the benefits of finding a job against the cost of search and the benefits of nonemployment. The
productivity threshold z(xt) above which workers choose to enter the search pool solves

JU
t (z(xt)) = JN

t (z(xt)). (36)

Workers with sufficiently low levels of productivity z < z(xt) choose not to search for a job. The
search threshold z(xt) depends on risk premia for three reasons. First, echoing the discussion above,
the benefits of finding a job are more backloaded than the benefits of nonemployment plus the
search cost. Second, labor market tightness, and therefore the job-finding rate, declines with xt.
Both forces imply a lower benefit of entering the search pool when risk premia xt are high. However,
there is also an offsetting force that mutes the increase in the threshold: the cost of searching for a
job declines as the job market becomes weaker—recall equation (14). In our calibration, the search
threshold z(xt) increases with risk premia, though relatively less than the separation threshold
z∗(xt), as we see in Figure A.6.

Wage Risk Exposure for Continuing Workers. The worker’s current value of ω (the worker’s current
promised value relative to the limited commitment bounds) determines the exposure of wages to
risk premium and productivity shocks, conditional on the match not being destroyed (Figures 3c
and 3d). In the long run, an increase in aggregate productivity leads to an increase in wages, while
an increase in risk premia leads to a decline in wages, as the value of all existing matches declines.
However, the short-run responses can be different, as firms also aim to smooth wages when possible;
their ability to do so is constrained by the two limited commitment bounds in (30) and (31). Wages
become increasingly sensitive to productivity and risk premium shocks as the worker’s current
promised value in (24) approaches the bounds.

In the short run, wages are essentially insensitive to risk premium or productivity shocks unless
the worker is already close to the low or the high end of the feasible wage contract values (ω is close
to 0 or 1). An increase in risk premia lowers the value of all employment matches while at the same
time tightening the bounds—as the present value of the termination cost falls. Therefore, continuing
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workers near the lower bound (ω = 0) experience an increase in wage earnings, while workers at
the upper bound (ω = 1) experience wage declines. An increase in aggregate productivity increases
wages for workers near either of the limited commitment bounds since firms cannot perfectly smooth
wages for these workers. Workers near the edge of the bounds are more likely to be high-income
workers (Figure A.4c), and thus, their earnings exhibit greater sensitivity to productivity shocks. In
the medium run, a worker’s position can shift closer to the bounds, and thus, exposure increases
with the horizon. However, the full pass-through of productivity shocks to wage earnings can be
very slow, as we discuss below.

2.7 Pass-Through of Shocks and Worker Earnings Risk

A direct consequence of the mechanisms discussed in the previous section is that the distribution of
worker earnings growth is highly left skewed and leptokurtotic (fat-tailed) even though the underlying
productivity shocks are log-normally distributed (Figure 4a); in addition, the distribution is more
negatively skewed for workers who leave the firm. These patterns are driven by the interaction of
two model mechanisms: the possibility of job destruction, which leads to negative skewness, and
the increasing sensitivity of wages to shocks as the likelihood of the limited commitment constraints
in (30) and (31) binding increases. We next illustrate these economic mechanisms in the model,
emphasizing how time variation in risk premia xt leads to endogenous time variation in idiosyncratic
income risk for workers.

Pass-Through of Worker Productivity Shocks to Earnings Is Nonlinear and Asymmetric. The fact
that the distribution of worker earnings is left skewed (Figure 4a) is the result of the nonlinear
pass-through of worker productivity (z) shocks to worker earnings. This pass-through is highly
asymmetric, especially for workers at the bottom of the earnings distribution (Figure 4b). Part of the
asymmetry is driven by the possibility of job destruction: negative shocks are more likely to lead to
job separations and therefore lead to proportionally greater wage losses than the wage gains associated
with positive shocks. Since low-productivity workers are closer to the separation threshold z∗(xt), the
pass-through is more asymmetric for these workers. A second reason for the nonlinear pass-through
is that it is easier for the firm to insure the worker against small shocks to z than against larger
shocks since larger shocks are more likely to lead to the limited commitment constraints binding.

Pass-Through of Worker Productivity Shocks to Earnings Is State Dependent. The pass-through of
idiosyncratic worker productivity shocks to worker wages is also state dependent—it varies with the
level of risk premia for all workers (Figure 4c). Increases in risk premia imply that the risk of job
loss rises (z∗(xt) increases), and hence, the pass-through of idiosyncratic z shocks to earnings is
amplified when the risk premium xt is high. As a result, a positive shock to xt implies that the
distribution of earnings growth becomes more left skewed (recall Figure 4a), which allows the model
to generate countercyclical idiosyncratic risk for workers (Guvenen et al., 2014).
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Pass-Through of Worker Productivity Shocks to Earnings Is Persistent. Figure 4d shows that, even
though shocks to workers are transitory, they have a persistent effect on worker earnings. In the
short run, firms try to smooth wages, so earnings respond less than productivity to a negative z
shock. However, in the long run, the response of earnings increases for two reasons: first, a negative
z shock increases the likelihood of job loss, which can have a persistent effect on earnings as human
capital depreciates; second, a shock to z may lead the worker to be closer to the wage bounds in (27)
and therefore may increase the likelihood of wage adjustment. The end result is that worker earnings
responses are significantly more persistent than productivity responses: the long-run response of
earnings is higher than the short-run response, even as productivity is mean reverting.

Response to Aggregate Shocks. Figure 5 shows the response of key model variables to shocks to risk
premia. An increase in the risk premium leads to a decline in employment and output (Figures 5a
to 5c).7 From the perspective of an individual worker, this leads to an increase in the likelihood of
job loss (Figure 5d), which implies an increase in the left-skewness of her income growth (Figures 5e
and 5f). The patterns are particularly pronounced for low-income workers—workers whose current
earnings are below the 25th percentile. Overall, an increase in risk premia leads to lower earnings
growth for workers, primarily for workers who end up leaving the firm (Figures 5g and 5h).

By contrast, productivity shocks have no impact on either unemployment or labor force
participation—since the model is scale invariant with respect to A. Appendix Figure A.7 shows
that a negative aggregate productivity shock leads to a decline in worker earnings, with the largest
effects for high-wage workers. Because firms aim to smooth wages, there is considerable delay in the
full pass-through of the productivity shock to wages; even at horizons of five years, less than half of
the original decline in productivity is passed on to worker earnings. Workers who are further away
from the limited commitment constraints are better insured than workers closer to the bounds.

3 Model Implications
Here, we revisit the links between the model and the data.

3.1 Nontargeted Stylized Facts

First, we examine the ability of the model to match empirical facts that are not explicit calibration
targets.

Labor Market Dynamics. Table 5 compares the dynamics of key labor market indicators in the
model and in the data. Recall that, out of these moments, only the volatility of the unemployment

7The overall sensitivity of employment to risk premia depends not only on how the thresholds z∗(xt) and z∗(xt)
vary with risk premia x but also on the distribution of worker types around the thresholds. Figure A.6 plots the
joint distribution of employment status and worker productivity z along the balanced growth path, together with the
separation and job searching thresholds at different levels of xt.
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rate is an explicit calibration target. However, we see that the model delivers realistic labor market
dynamics. As in the data, the employment–population ratio, labor force participation rate, vacancy–
unemployment ratio, separation into nonparticipation, and job-finding rate are procyclical, and the
long-term unemployment rate and separation into unemployment are countercyclical. Compared
with the data, the model somewhat overstates the volatility of the participation margin. The
persistence of most variables is comparable in the model and the data. Importantly, the model
matches both the volatility and the cyclicality of separation and job-finding rates.

Risk Premium Shocks and Job Destruction. The model generates time-varying skewness in worker
earnings risk through job destruction. However, is the magnitude of job destruction implied by
the model in response to risk premium shocks empirically realistic? Figure 6 shows that it is.
Specifically, we plot the estimated coefficients β and γ when estimating equation (2) in simulated
data, with the dependent variable being one of our two indicators for job loss over the next three
years—a zero-earnings quarter or a job separation combined with a tail loss. Even though these
parameters are not explicit calibration targets, the model coefficients are close to their empirical
counterparts shown in Table 3.

Earnings Exposure for Stayers versus Movers. The model can also largely replicate the differential
exposure of stayers versus movers in response to risk premium shocks (Table 4). When we estimate
the same specification in simulated data, movers are significantly more adversely exposed to the risk
premium shock than stayers, with the difference being particularly salient for low-income workers
(Figure 7). By contrast, both stayers and movers have comparable exposure to productivity shocks.
One difference between the model and the data is that stayers’ earnings exposure to risk premium
shocks is somewhat more negative in the data. This difference likely reflects that workers who stay
are more positively selected in the model than in the data.

3.2 Testable Predictions

Next, we outline the testable predictions of our model and provide supporting evidence in the data.

Heterogeneity by Worker Tenure. In our model, a worker’s tenure at her current job is positively
correlated with her productivity (Figure A.8a). The reason for this correlation is selection: high-
productivity workers are more likely to remain in their current matches. As a result, our model implies
that low-tenure (and therefore low-productivity) workers should be more exposed to risk premium
shocks than high-tenure workers. To test this prediction in the data, we re-estimate our baseline
empirical specification in (2) but now allow the estimated measures of exposure to risk premium and
productivity shocks β and γ to vary with the worker’s tenure at her current firm. We then repeat the
same exercise in simulated data from the model. Figure 8 compares the estimated exposure measures
β and γ between the data and the model. We see that low-tenure workers have higher exposure to risk
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premium shocks both in the data and in the model: a 10-percentage-point increase in x leads to 2 to
3 percentage points lower earnings growth for low-tenure workers and 0.5 to 1 percentage point lower
earnings growth for high-tenure workers. The empirical difference in exposure is significant (Panel A
of Table A.9) and is distinct from the differences by prior earnings (Panel B of Table A.9). By contrast,
the exposure to productivity shocks is similar for workers with different tenure in both the data
and the model. In the model, there is essentially no correlation between a worker’s tenure and her
position ω in the wage bounds, which determines her exposure to productivity shocks (Figure A.8b).

Heterogeneity by Worker Age. Age plays no explicit role in our model since all workers have the
same expected remaining lifetime. However, if it were the case that the model had variation in
a worker’s expected lifetime, our model mechanism would imply that an increase in risk premia
would be significantly more likely to induce separations for younger than for older workers. The
reason is that the value of continued employment in (18) for a younger worker would be significantly
more backloaded—and hence more sensitive to changes in risk premia xt—than the employment
value of an older worker. To test this implication in the data, we re-estimate our baseline empirical
specification from (2), but we now allow the estimated measures of exposure to risk premium
and productivity shocks β and γ to vary with the worker’s age. Panel A of Table 6 shows that
younger workers are significantly more exposed to risk premium shocks than older workers: a 10-
percentage-point increase in the risk premium leads to a 2.2-percentage-point decline in the earnings
of younger workers and a 1.3-percentage-point decline for older workers. By contrast, the exposure
to productivity shocks is similar between younger and older workers. Moreover, this age pattern is
distinct from the income pattern that we documented in Section 1, as we see in Panel B.

3.3 Replicating Realized Fluctuations of Unemployment and Income Risk

Thus far, we have focused on evaluating the model based on its unconditional correlations between
different variables. However, armed with empirical measures of the two structural shocks εx and
εA, we next explore whether the model can also replicate the realized path of key variables in the
data. Specifically, we take the two empirical shocks ϵrp and ϵtfp that we constructed in Section 1.1,
normalize them to zero mean and unit standard deviation, and accumulate these shocks into levels
for A and x using equations (7) and (9). Given these realizations of A and x, we then compute
several model-implied variables and compare them to their empirical counterparts. We de-mean the
stationary series and remove the long-run trends from the nonstationary series using a band-pass filter.

Labor Market. Figure 9a plots the realized path of unemployment in the data versus the model-
implied series. Recall that unemployment in the model is driven only by fluctuations in risk
premia and our risk premium index is constructed primarily using data from financial markets.
Examining the figure, we see that the model does fairly well in replicating the realized path of
unemployment (the correlation between the data and the model-implied series is 55%). Further, the
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correlation is significantly higher for the period of the financial crisis of 2008/09 and the subsequent
recovery; given that this was a period of strong fluctuations in risk premia (Figure 1a), we view
this pattern as supportive of our model mechanism. In addition, the model can capture reasonably
well the fluctuations in long-term unemployment (Figure 9b) and the employment–population ratio
(Figure 9c). Last, Figure 9d shows that the model can also largely match the realized ratio of labor
market tightness (vacancies to unemployment) and therefore provides a quantitative resolution to
the Shimer (2005) puzzle.

Labor Income Risk. The top panel of Figure 10 compares the model-implied realization of labor
income risk with the time series of income risk from Guvenen et al. (2014). The top left panel
(Figure 10a) plots the left tail of earnings growth—the difference between the median and the 10th
percentile of earnings growth over the next year. The data and the model-implied series are highly
correlated (72%). The right panel (Figure 10b) plots the right tail of income risk—the difference
between the 90th percentile and the median of earnings growth rates. Overall, we see that, in both
the model and the data, periods of depressed economic activity are times when the left tail of the
distribution becomes fatter and the right tail of the distribution becomes thinner. By contrast,
expansions are periods when income risk falls: the left tail of the distribution becomes thinner while
the right tail increases. The model does a better job replicating the fluctuations in the left tail,
which are largely driven by the job destruction margin, than those in the right tail of income growth.

Income Inequality. Last, the bottom two panels of Figure 10 compare the model-implied path of
income inequality to the data, using the series from Heathcote et al. (2020).8 Figure 10c focuses on
the level of income inequality at the bottom of the distribution (the ratio of the median to the 20th
percentile of earnings), while Figure 10d examines inequality at the right tail (the ratio of the 90th
percentile to the median). We see that, in both the data and the model, there is a strong cyclical
component in the level of inequality at the bottom; the correlation between the two series is 48%.
In the model, left-tail inequality rises when risk premia rise because the workers at the bottom of
the earnings distribution suffer larger and more persistent declines in earnings than workers at the
middle of the distribution; our findings in Section 1 show that this is also true in the data. By
contrast, inequality at the top is essentially acyclical in the model—consistent with the findings of
Heathcote et al. (2020).

3.4 Evaluating the Role of Specific Modeling Assumptions

We conclude our analysis by evaluating the role of specific modeling assumptions in generating our
key findings. We do so by recalibrating restricted versions of the model to the same target moments.

8Heathcote et al. (2020) focus on prime-age men between ages 25 and 55. We impose a similar (weak) attachment
restriction in the simulated data by computing income quantiles for workers who have been employed for at least one
month in the last 5 years.
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Tables A.10 and A.11 summarize the parameters and model fit for these restricted versions of the
model.

First, we evaluate the role of the reputation cost ξ incurred when a match is inefficiently
terminated. This cost, which is never incurred along the equilibrium path, allows us to calibrate the
degree of wage smoothing that firms can credibly provide to workers. We consider two extreme
cases, one in which the cost is zero (ξ = 0) and another in which the cost is infinite, which
corresponds to the full commitment case. When ξ = 0, worker wages become highly correlated with
worker productivity z A, as wages adjust quickly to productivity shocks. As a result, the version
of the model with ξ = 0 cannot match the response of worker earnings to aggregate productivity
shocks (Figure A.9b). By contrast, the model with full commitment (ξ is infinite) has the opposite
limitation: worker earnings become too rigid and very weakly correlated with productivity, implying
that this version also has difficulty generating the observed level of pass-through to worker earnings.
In addition, we evaluate the role of our assumption that this reputation cost represents a flow cost,
as opposed to a fixed, one-time cost. This assumption has only a minor impact on the model’s
predictions: the assumption of a flow versus a one-time cost serves mainly to make the earnings of
high-income stayers more sensitive to risk premium shocks (Figure A.9a).

Second, we evaluate the role of endogenous separations. Eliminating endogenous separations
requires us to assume full commitment since firms and workers now need to commit ex ante to
continue matches whose ex post total surplus is negative. Since the model now features only
exogenous separations, it can no longer match the patterns of separation by income (Figures A.9c).
More importantly, this version of the model generates paths for labor income risk and unemployment
that are significantly disconnected from the data (Figures A.10a and A.10c).

Third, we assume that there is no skill loss in nonemployment (z̄O = z̄E). Doing so mutes the
response of the termination threshold z∗(xt) to the level of risk premia xt, implying that the effect
of changes in risk premia on separations becomes negligible (Figure A.9d) and significantly dampens
the time variation in unemployment implied by the model (Figure A.10b). The volatility of the
unemployment rate is now 0.3%, compared to 1.2% in the data.

Last, we modify our assumptions on the search cost of entering the unemployment pool. We
consider two alternatives: we set the cost to zero or to a constant that is proportional to aggregate
productivity. The version of the model without the search cost cannot match the patterns of
separation by income (Figure A.9c) and generates a somewhat less volatile unemployment rate
(0.9%). The version of the model with a constant search cost performs comparably to our baseline
calibration, except that it also generates a less volatile unemployment rate (0.9%).
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Conclusion
Overall, we provide theory and evidence that fluctuations in risk premia lead to fluctuations in
unemployment, idiosyncratic risk for workers, and increases in income inequality—primarily at the
bottom of the distribution. These patterns lie in sharp contrast to the effect of productivity shocks,
which primarily affect the earnings of continuing workers, especially those at the top of the income
distribution.

Our work opens up several avenues for future work. First, our work speaks to the redistributive
effects of risk premia. We find that these shocks disproportionately affect the earnings of low-
income workers, and to the extent that these workers have larger MPCs than high-income workers
(Patterson, 2022), our model mechanism implies that fluctuations in risk premia should have a
significant impact on aggregate demand. Further, to the extent that monetary policy affects risk
premia (Moreira and Savov, 2017; Caballero and Simsek, 2020; Campbell et al., 2020; Caballero
and Simsek, 2022), our work suggests a novel channel through which monetary policy can affect
aggregate demand. Second, the same model mechanism that leads to fluctuations in job destruction,
and therefore idiosyncratic income risk, in response to risk premium shocks is also likely to lead to
similar fluctuations in response to other forces that potentially drive asset returns. One promising
example is deviations from rational expectations (Bordalo, Gennaioli, LaPorta, and Shleifer, 2019)
that could lead to amplified responses of unemployment and income risk to productivity shocks.
Third, in a model of firm heterogeneity and on-the-job search (Menzio and Shi, 2011; Moscarini
and Postel-Vinay, 2018; Acabbi, Alati, and Mazzone, 2023; Moscarini and Postel-Vinay, 2023), our
mechanism would imply that fluctuations in risk premia also affect the allocation of workers to
firms, leading to greater misallocation when risk premia rise. Last, an increase in risk premia in our
model lead to an increase in average wages, as marginal matches are destroyed, while at the same
time employment falls, which speaks to the weak cyclicality of the average wage (Solon, Barsky,
and Parker, 1994). We will explore these aspects in future work.
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Figures and Tables

Figure 1: Time-Varying Risk Premia in the Data

(a) Risk Premium Measures
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(b) Risk Premium and Future Stock Market Returns

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

Horizon in Years

C
oe

ffi
ci

en
to

n
R

P
In

de
x

The top panel of this figure plots our risk premium index and the nine series that we use as inputs from the literature:
the excess bond premium from Gilchrist and Zakrajšek (2012); Robert Shiller’s CAPE Ratio; the Chicago Fed’s
National Financial Conditions Index (NFCI); the financial uncertainty index of Jurado et al. (2015); the risk appetite
index of Bauer et al. (2023); the risk aversion index of Bekaert et al. (2022); the variance risk premium from Bekaert
and Hoerova (2014); the CBOE VIX; and the SVIX of Martin (2016). We measure risk premium shocks as the PC(1)
of the AR(1) residuals from each series. The risk premium index is the EWMA(0.0063) of the risk premium shock. All
series are standardized. The bottom panel reports estimates of predictive regressions where we project continuously
compounded future excess stock market returns

∑H

s=1 re
t+s on our risk premium index at different horizons H. The

shaded area shows pointwise 95% confidence bands, calculated with Hansen–Hodrick standard errors.
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Figure 2: Model versus Data: Worker Risk Exposures (Targeted)

(a) Exposure to Risk Premium Shocks
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This figure reports the regression coefficients β and γ from estimates of equation (2) in the model and in the data,
with cumulative income growth over various horizons h as the dependent variable. Panel (a) reports exposure to
risk premium shocks, and Panel (b) reports exposure to productivity shocks. We estimate exposures across the
worker earnings distribution by interacting the two shocks with indicators for the worker’s prior earnings bin. Model
coefficients are indicated by the bars; empirical coefficients are indicated by the black dots, with 95% confidence
intervals. Coefficients are scaled so that they correspond to a 10% shock.
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Figure 3: Model: Determinants of Worker Risk

(a) Probability of Job Loss
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(c) Sensitivity of Stayers’ Wages to Risk Premium Shock
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(d) Sensitivity of Stayers’ Wages to Productivity Shock
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Panel (a) of this figure plots the probability of match termination over the next three years by z for incumbent workers.
Panel (b) plots the expected nonemployment duration (in months) by z for nonemployed workers. Panels (c) and
(d) plot the average change in stayers’ wages following a risk premium shock and productivity shock of one annual
standard deviation, respectively, as a function of the wage continuation value relative to the bounds, for incumbent
workers with z ∼ N(z̄E , σz).
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Figure 4: Model: Pass-Through of Worker Productivity to Earnings

(a) Unconditional Distribution of Productivity and Earnings Growth
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(b) Pass-Through of Worker Productivity Shock by Shock Size and Income Level
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(c) Pass-Through of Worker Productivity Shock by Shock Size and Aggregate State
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(d) Response to Negative Worker Productivity Shock by Horizon
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Panel (a) of this figure plots the unconditional distributions of annual productivity growth, earnings growth, and stayers’
earnings growth, for workers with full-year employment in the prior year. Panels (b)–(d) illustrate heterogeneity in
the response of incumbent worker earnings to a worker productivity shock z, as a function of the size of the shock, the
worker’s current income, the current level of discount rates xt, and the horizon, starting from the ergodic distribution.
The pass-through coefficient is defined as the average change in log (cumulative) income relative to the change in log
(cumulative) worker productivity z after one year, for everyone or by income group.
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Figure 5: Model: Impulse Responses to Risk Premium Shocks

(a) Risk Premium
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(e) Income Risk, Left Tail (p50–p10)
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(f) Income Risk, Right Tail (p90–p50)
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(g) Earnings, All Workers
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(h) Earnings, Stayers
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This figure shows the impulse responses of key model quantities following a risk premium shock of one annual standard
deviation.
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Figure 6: Model versus Data: Risk of Job Loss (Nontargeted)

(a) Exposure to Risk Premium Shocks
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This figure reports the regression coefficients β and γ from estimates of modified versions of equation (2) in the model and
in the data, where we replace the dependent variable with two indicators for job loss over the next three years: whether
the worker experiences at least one full quarter with zero wage earnings (some nonemployment) or whether the worker
separates from her initial employer and simultaneously experiences a decline in earnings growth below the 10th percentile
(move + tail loss). Panel (a) reports exposure to risk premium shocks, and Panel (b) reports exposure to productivity
shocks. We estimate exposure across the worker earnings distribution by interacting the two shocks with indicators for
the worker’s prior earnings bin. Model coefficients are indicated by the bars, and empirical coefficients are indicated
by the black dots, with 95% confidence intervals. Coefficients are scaled so that they correspond to a 10% shock.
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Figure 7: Model versus Data: Worker Risk Exposure for Stayers and Movers (Nontargeted)

(a) Exposure to Risk Premium Shocks
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This table reports the regression coefficients β and γ from estimates of equation (2) in the model and in the data, with
cumulative income growth over the next three years as the dependent variable, separately estimated for job movers
and job stayers. Panel (a) reports exposure to risk premium shocks, and Panel (b) reports exposure to productivity
shocks. We estimate exposure across the worker earnings distribution by interacting the two shocks with indicators for
the worker’s prior earnings bin. Model coefficients are indicated by the bars, and empirical coefficients are indicated
by the black dots, with 95% confidence intervals. Coefficients are scaled so that they correspond to a 10% shock.
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Figure 8: Model versus Data: Worker Risk Exposure by Worker Tenure (Nontargeted)

(a) Exposure to Risk Premium Shocks
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This table reports the regression coefficients β and γ from estimates of equation (2) in the model and in the data,
with cumulative income growth over various horizons h as the dependent variable. Panel (a) reports exposure to risk
premium shocks, and Panel (b) reports exposure to productivity shocks. We estimate exposure by worker tenure by
interacting the two shocks with indicators for the worker’s current employment tenure. Model coefficients are indicated
by the bars, and empirical coefficients are indicated by the black dots, with 95% confidence intervals. Coefficients are
scaled so that they correspond to a 10% shock.
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Figure 9: Model versus Data: Labor Market Dynamics

(a) Unemployment Rate (ρ = 55%)

1990 1995 2000 2005 2010 2015

−2

0

2

4

D
ev

ia
tio

ns
fr

om
Tr

en
d

(p
pt

)
(b) Long-Term Unemployment Rate (ρ = 52%)
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(c) Employment–Population Ratio (ρ = 60%)
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(d) Vacancies–Unemployment Ratio (ρ = 56%)
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Model Data

This figure compares the unemployment rate, employment–population ratio, labor market tightness (ratio of aggregate vacancies to unemployed workers), and long-
term unemployment rate (ratio of workers unemployed for more than 6 months to the labor force) between the data and the model. We directly feed into the model
our measures of risk premium and productivity shocks ϵrp and ϵtfp from Section 1.1, normalized to have zero mean and unit standard deviation, and accumulate these
shocks into levels for A and x using equations (7) and (9). We remove the means from the stationary series and detrend the nonstationary series using a band-pass
filter with quarterly smoothing parameter 105.
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Figure 10: Model versus Data: Dynamics of Income Risk and Inequality

(a) Income Risk, Left Tail: p50–p10 (ρ = 72%)
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(b) Income Risk, Right Tail: p90–p50 (ρ = 25%)
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(c) Income Inequality, Left Tail: p50/p20 (ρ = 58%)
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(d) Income Inequality, Right Tail: p90/p50 (ρ = −19%)
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Model Data

This figure compares the realized paths of income risk and income inequality between the data and the model. In the first two panels, we plot the difference between the
median and the 10th percentile (p50–p10) of income growth and the difference between the 90th percentile and the median (p90–p50). The empirical series are from
Guvenen et al. (2014). In the last two panels, we plot the log ratio of the median to the 20th percentile of labor income (p50/p20), and the log ratio of the 90th percentile
to the median (p90/p50). The empirical series are from Heathcote et al. (2020). We directly feed into the model our measures of risk premium and productivity shocks
ϵrp and ϵtfp from Section 1.1, normalized to have zero mean and unit standard deviation, and accumulate these shocks into levels for A and x using equations (7)
and (9). We remove the means from the stationary series and detrend the nonstationary series using a band-pass filter with quarterly smoothing parameter 105.
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Table 1: Worker Exposure to Risk Premium and Productivity Shocks

A. Average Exposure

2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP

All Workers -1.48 0.71 -1.54 0.77 -1.18 0.80
(-4.98) (2.30) (-4.12) (2.24) (-2.72) (2.00)

Observations 60.2m 57.3m 51.3m
Fixed Effects NAICS4 NAICS4 NAICS4
Clustering N4, Year N4, Year N4, Year

B. By Worker Earnings (Within Firm)

2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP

Prior Earnings, 0–25th Percentile -2.02 0.76 -2.23 0.80 -1.92 0.76
(-5.65) (2.11) (-4.75) (2.00) (-3.30) (1.68)

Prior Earnings, 25–50th Percentile -1.44 0.70 -1.52 0.74 -1.17 0.74
(-4.79) (2.26) (-4.02) (2.20) (-2.63) (1.92)

Prior Earnings, 50–75th Percentile -1.20 0.64 -1.23 0.71 -0.88 0.74
(-4.40) (2.28) (-3.62) (2.28) (-2.28) (2.04)

Prior Earnings, 75–95th Percentile -1.10 0.62 -1.08 0.71 -0.74 0.79
(-4.22) (2.13) (-3.42) (2.09) (-2.08) (1.98)

Prior Earnings, 95–100th Percentile -1.70 1.23 -1.43 1.37 -0.81 1.57
(-4.17) (3.04) (-3.36) (2.85) (-2.03) (2.74)

Bottom (1) – Middle (3) Earners -0.81 0.12 -1.00 0.08 -1.03 0.01
(-7.87) (1.11) (-6.71) (0.64) (-4.74) (0.09)

Middle (3) – Top (5) Earners 0.49 -0.59 0.20 -0.66 -0.08 -0.83
(1.55) (-2.63) (0.66) (-2.56) (-0.27) (-2.76)

Bottom (1) – Top (5) Earners -0.32 -0.46 -0.80 -0.58 -1.11 -0.82
(-1.01) (-1.75) (-2.37) (-1.82) (-2.68) (-2.09)

Observations 60.2m 57.3m 51.3m
Fixed Effects N4 × Inc Grp N4 × Inc Grp N4 × Inc Grp
Clustering N4, Year N4, Year N4, Year

This table reports the regression coefficients β and γ from estimates of equation (2) with cumulative income growth over
various horizons h as the dependent variable. In Panel A, we report average worker exposure. In Panel B, we report
exposure across the worker earnings distribution, which we estimate by interacting the two shocks with indicators for
the worker’s prior income level relative to the levels of other workers in the same firm. The controls include a third-
order polynomial in the log of average income over the past three years, a complete set of age dummies, the lagged risk
premium index interacted with income group dummies, and fixed effects for the worker’s industry I, defined at the 4-
digit NAICS level, interacted with her income bin. The sample is a 20% subsample of all U.S. workers in the LEHD who
are employed by public companies. The sample period is 1990–2019. We report t-statistics based on standard errors
double clustered by industry and year in parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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Table 2: Worker Exposure to Risk Premium Shocks, Shift-Share Design

Measure of Firm Exposure to Risk Premium Shocks

Stock Stock Maturing
Return Return Debt Cash Distance Whited–

Exposure Exposure Next to Firm to Wu
to Market to RP 2 Years Assets Size Default Index

RP RP RP RP RP RP RP

Prior Earnings, 0–25th Percentile ×χf -0.26 -0.41 -0.42 -0.48 -0.27 -0.41 -0.34
(-2.37) (-3.84) (-4.12) (-2.38) (-2.60) (-4.07) (-2.98)

Prior Earnings, 25–50th Percentile ×χf -0.13 -0.25 -0.21 -0.38 -0.21 -0.40 -0.31
(-1.37) (-2.73) (-2.59) (-2.01) (-2.25) (-4.37) (-3.19)

Prior Earnings, 50–75th Percentile ×χf -0.11 -0.22 -0.20 -0.34 -0.21 -0.38 -0.31
(-1.27) (-2.59) (-2.61) (-1.99) (-2.42) (-4.36) (-3.16)

Prior Earnings, 75–95th Percentile ×χf -0.10 -0.13 -0.23 -0.34 -0.03 -0.28 -0.12
(-0.98) (-1.36) (-2.94) (-1.69) (-0.33) (-3.36) (-1.27)

Prior Earnings, 95–100th Percentile ×χf -0.04 -0.14 -0.17 -0.06 0.19 -0.14 0.06
(-0.24) (-0.79) (-1.43) (-0.22) (1.10) (-1.09) (0.36)

Bottom (1) – Middle (3) Earners -0.15 -0.19 -0.22 -0.13 -0.06 -0.03 -0.03
(-1.96) (-2.25) (-2.73) (-1.05) (-0.83) (-0.43) (-0.46)

Middle (3) – Top (5) Earners -0.08 -0.08 -0.03 -0.29 -0.40 -0.24 -0.37
(-0.53) (-0.52) (-0.25) (-1.15) (-2.46) (-2.15) (-2.24)

Bottom (1) – Top (5) Earners -0.23 -0.27 -0.24 -0.42 -0.46 -0.26 -0.40
(-1.29) (-1.40) (-1.72) (-1.33) (-2.57) (-2.13) (-2.28)

Observations 49.7m 49.1m 47.8m 56.4m 56.4m 52.4m 55.9m
Fixed Effects N4 × Y × Inc N4 × Y × Inc N4 × Y × Inc N4 × Y × Inc N4 × Y × Inc N4 × Y × Inc N4 × Y × Inc
Clustering Firm Firm Firm Firm Firm Firm Firm

This table reports the regression coefficient β from estimates of equation (3) with cumulative three-year income growth as the dependent variable, for various measures
of firm-level exposure χf,t. We report exposure across the worker earnings distribution that we estimate by interacting χf,t × ϵrp

t+1 with indicators for the worker’s prior
income level relative to the levels of other workers in the same firm. The controls include a third-order polynomial in the log of average income over the past three years,
a complete set of age dummies, and fixed effects for the worker’s industry I (4-digit NAICS) by year t, interacted with her income bin. The sample is a 20% subsample
of all U.S. workers in the LEHD who are employed by public companies. The sample period is 1990–2019. We report t-statistics based on standard errors clustered by
firm in parentheses. Exposures χf are standardized to have unit cross-sectional standard deviation, and coefficients are scaled so that they correspond to a 10% shock.
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Table 3: Worker Exposure to Risk Premium and Productivity Shocks, Likelihood of Job Loss

Pr(Some Nonemployment) Pr(Move + Tail Loss)

2 Years 3 Years 2 Years 3 Years

RP TFP RP TFP RP TFP RP TFP

Prior Earnings, 0–25th Percentile 1.11 -0.44 1.01 -0.47 0.75 -0.32 0.90 -0.34
(4.33) (-2.07) (3.14) (-1.94) (6.95) (-2.24) (5.72) (-2.24)

Prior Earnings, 25–50th Percentile 0.79 -0.36 0.69 -0.43 0.54 -0.30 0.65 -0.32
(3.94) (-2.08) (2.62) (-2.10) (6.36) (-2.36) (5.26) (-2.30)

Prior Earnings, 50–75th Percentile 0.58 -0.29 0.48 -0.39 0.43 -0.26 0.48 -0.30
(3.50) (-1.97) (2.16) (-2.21) (5.94) (-2.32) (4.75) (-2.30)

Prior Earnings, 75–95th Percentile 0.35 -0.21 0.25 -0.29 0.30 -0.21 0.33 -0.23
(2.38) (-1.61) (1.33) (-1.93) (4.82) (-2.13) (3.92) (-1.87)

Prior Earnings, 95–100th Percentile 0.02 -0.20 -0.17 -0.31 0.23 -0.24 0.22 -0.30
(0.11) (-1.52) (-0.72) (-2.07) (2.72) (-2.27) (1.94) (-1.96)

Bottom (1) – Middle (3) Earners 0.53 -0.15 0.53 -0.08 0.32 -0.06 0.42 -0.05
(5.09) (-1.60) (4.51) (-0.80) (7.46) (-1.19) (6.85) (-0.88)

Middle (3) – Top (5) Earners 0.56 -0.09 0.64 -0.08 0.20 -0.02 0.27 0.00
(-1.56) (-0.97) (-1.50) (-0.89) (-0.67) (-0.36) (-0.82) (0.06)

Bottom (1) – Top (5) Earners 1.09 -0.24 1.18 -0.16 0.52 -0.08 0.68 -0.04
(5.70) (-1.66) (4.23) (-1.04) (6.72) (-0.91) (5.66) (-0.40)

Observations 60.2m 57.3m 60.2m 57.3m
Fixed Effects N4 × Inc Grp N4 × Inc Grp N4 × Inc Grp N4 × Inc Grp
Clustering N4, Year N4, Year N4, Year N4, Year

This table reports the regression coefficients β and γ from estimates of modified versions of equation (2), where we replace the dependent variable with two indicators
for job loss over the next h years: whether the worker experiences at least one full quarter with zero wage earnings (some nonemployment) or whether the worker
separates from her initial employer and simultaneously experiences a decline in earnings growth below the 10th percentile (move + tail loss). We report exposure
across the worker earnings distribution that we estimate by interacting the two shocks with indicators for the worker’s prior income level relative to the levels of other
workers in the same firm. The controls include a third-order polynomial in the log of average income over the past three years, a complete set of age dummies, the
lagged risk premium index interacted by income group dummies, and fixed effects for the worker’s industry I, defined at the 4-digit NAICS level, interacted with her
income bin. The sample is a 20% subsample of all U.S. workers in the LEHD who are employed by public companies. The sample period is 1990–2019. We report
t-statistics based on standard errors double clustered by industry and year in parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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Table 4: Worker Exposure to Risk Premium and Productivity Shocks, Stayers versus Movers

Risk Premium Shocks Productivity Shocks

2 Years 3 Years 5 Years 2 Years 3 Years 5 Years

Move Stay Move Stay Move Stay Move Stay Move Stay Move Stay

Prior Earnings, 0–25th Percentile -5.84 -0.79 -5.11 -0.69 -3.59 -0.62 0.50 0.43 0.63 0.38 0.77 0.25
(-7.47) (-3.19) (-5.84) (-2.53) (-3.86) (-1.99) (0.94) (2.27) (1.29) (1.94) (1.48) (1.13)

Prior Earnings, 25–50th Percentile -4.71 -0.65 -4.07 -0.55 -2.66 -0.43 0.75 0.41 0.78 0.37 0.92 0.28
(-7.08) (-2.78) (-5.57) (-2.21) (-3.64) (-1.61) (1.37) (2.43) (1.59) (2.19) (1.89) (1.52)

Prior Earnings, 50–75th Percentile -3.96 -0.62 -3.35 -0.54 -2.12 -0.39 0.84 0.41 0.85 0.39 0.94 0.36
(-6.67) (-2.78) (-5.20) (-2.23) (-3.42) (-1.52) (1.52) (2.43) (1.66) (2.31) (1.89) (1.86)

Prior Earnings, 75–95th Percentile -3.25 -0.73 -2.68 -0.66 -1.71 -0.47 0.71 0.48 0.89 0.49 1.04 0.50
(-6.20) (-3.30) (-4.77) (-2.72) (-3.17) (-1.80) (1.19) (2.38) (1.54) (2.28) (1.92) (1.97)

Prior Earnings, 95–100th Percentile -2.85 -1.56 -2.50 -1.28 -1.71 -0.77 0.98 1.16 1.38 1.23 1.71 1.30
(-5.07) (-4.30) (-4.15) (-3.60) (-2.91) (-2.58) (1.51) (3.44) (2.02) (3.44) (2.41) (3.21)

Bottom (1) – Middle (3) Earners -1.87 -0.17 -1.76 -0.15 -1.47 -0.23 -0.34 0.03 -0.23 -0.00 -0.17 -0.11
(-7.19) (-2.86) (-6.23) (-2.24) (-4.26) (-2.76) (-1.08) (0.42) (-0.75) (-0.05) (-0.58) (-1.01)

Middle (3) – Top (5) Earners -1.12 0.94 -0.85 0.74 -0.41 0.38 -0.13 -0.75 -0.53 -0.85 -0.77 -0.95
(-2.19) (3.25) (-1.75) (2.57) (-0.89) (1.80) (-0.36) (-3.57) (-1.49) (-3.53) (-2.26) (-3.32)

Bottom (1) – Top (5) Earners -2.99 0.77 -2.61 0.59 -1.88 0.15 -0.48 -0.72 -0.75 -0.85 -0.94 -1.05
(-4.55) (2.71) (-3.94) (1.96) (-2.60) (0.66) (-0.87) (-3.02) (-1.45) (-2.99) (-1.74) (-3.09)

Observations 13.0m 47.1m 18.5m 38.8m 24.2m 27.1m 13.0m 47.1m 18.5m 38.8m 24.2m 27.1m
Fixed Effects N4 × Inc Grp N4 × Inc Grp N4 × Inc Grp N4 × Inc Grp N4 × Inc Grp N4 × Inc Grp
Clustering N4, Year N4, Year N4, Year N4, Year N4, Year N4, Year

This table reports the regression coefficients β and γ from estimates of equation (2) with cumulative income growth over various horizons h as the dependent variable,
separately estimated for job movers and job stayers. Individuals are characterized as stayers if the main employer in year t + h is the same as the main employer in
year t and as movers in all other cases. We report exposure across the worker earnings distribution that we estimate by interacting the two shocks with indicators for
the worker’s prior income level relative to the levels of other workers in the same firm. The controls include a third-order polynomial in the log of average income over
the past three years, a complete set of age dummies, the lagged risk premium index interacted by income group dummies, and fixed effects for the worker’s industry I,
defined at the 4-digit NAICS level, interacted with her income bin. The sample is a 20% subsample of all U.S. workers in the LEHD who are employed by public
companies. The sample period is 1990–2019. We report t-statistics based on standard errors double clustered by industry and year in parentheses. Coefficients are
scaled so that they correspond to a 10% shock.
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Table 5: Macro Moments in the Model and Data

Correlation w/

Volatility Autocorrelation Unemployment

Variable Model Data Model Data Model Data

Unemployment rate 1.280 1.238 0.974 0.986 1.000 1.000

Long-term unemployment rate 0.886 0.572 0.970 0.993 0.964 0.863

Employment–population ratio 2.753 0.959 0.997 0.977 -0.950 -0.921

Labor force participation rate 1.858 0.403 0.987 0.883 -0.869 -0.273

Log V/U ratio 0.224 0.395 0.953 0.988 -0.881 -0.955

Separation rate into U 0.173 0.149 0.741 0.723 0.782 0.517

Separation rate into N 0.122 0.216 0.521 0.562 -0.596 -0.336

Job-finding rate 3.377 4.767 0.671 0.588 -0.776 -0.683

This table reports moments of the monthly unemployment rate, long-term unemployment rate (ratio of workers
unemployed for more than 6 months to the labor force), employment–population ratio, log aggregate vacancy–
unemployment rate, separation rates into unemployment (U) and nonparticipation (N), and job-finding rate, in the
data and in the baseline calibration of our model. The empirical series are from the CPS (first four series, 1948–2019);
Barnichon (2010) (vacancies, 1951–2019); and SIPP (last three series, 1996–2013). We remove the means from the
stationary series and detrend the nonstationary series using a band-pass filter with quarterly smoothing parameter 105.
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Table 6: Worker Exposure to Risk Premium and Productivity Shocks, by Age and Income

A. Age

2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP

Younger (25–30 Years) -2.01 0.54 -2.17 0.59 -1.77 0.52
(-4.88) (1.50) (-4.19) (1.47) (-2.86) (1.09)

Age, 30–40 Years -1.47 0.69 -1.55 0.73 -1.26 0.74
(-4.79) (2.27) (-4.02) (2.20) (-2.72) (1.94)

Age, 40–50 Years -1.35 0.76 -1.39 0.81 -1.08 0.85
(-5.31) (2.73) (-4.31) (2.63) (-2.80) (2.44)

Older (50–60 Years) -1.30 0.76 -1.30 0.87 -0.81 0.94
(-4.44) (2.05) (-3.56) (2.01) (-2.09) (1.85)

Younger – Older -0.71 -0.22 -0.87 -0.28 -0.97 -0.42
(-3.36) (-1.10) (-3.23) (-1.27) (-2.47) (-1.60)

Observations 60.2m 57.3m 51.3m

B. Age and Relative Income

2 years 3 years 5 years

RP TFP RP TFP RP TFP

Younger (25–30 Years) Omitted Category

Age, 30–40 Years 0.62 0.13 0.72 0.14 0.61 0.23
(1.41) (0.36) (1.29) (0.35) (0.91) (0.48)

Age, 40–50 Years 0.82 0.19 0.98 0.21 0.89 0.33
(2.05) (0.55) (1.95) (0.56) (1.51) (0.73)

Older (50–60 Years) 0.93 0.19 1.15 0.27 1.25 0.44
(2.50) (0.55) (2.50) (0.67) (2.33) (0.92)

Prior Earnings, 0–25th Percentile -2.75 0.60 -3.11 0.60 -2.77 0.44
(-5.46) (1.41) (-4.72) (1.32) (-3.31) (0.82)

Prior Earnings, 25–50th Percentile -2.12 0.55 -2.34 0.57 -1.95 0.45
(-4.86) (1.47) (-4.22) (1.42) (-2.90) (0.96)

Prior Earnings, 50–75th Percentile -1.83 0.50 -1.97 0.55 -1.59 0.47
(-4.56) (1.44) (-3.94) (1.45) (-2.67) (1.04)

Prior Earnings, 75–95th Percentile -1.68 0.48 -1.76 0.55 -1.38 0.54
(-4.49) (1.37) (-3.84) (1.38) (-2.56) (1.13)

Prior Earnings, 95–100th Percentile -2.36 1.06 -2.21 1.18 -1.54 1.26
(-5.00) (2.32) (-4.21) (2.24) (-2.84) (2.01)

Bottom (1) – Middle (3) Earners -0.92 0.10 -1.13 0.05 -1.19 -0.03
(-7.50) (0.93) (-6.37) (0.40) (-4.44) (-0.21)

Middle (3) – Top (5) Earners 0.53 -0.56 0.24 -0.62 -0.04 -0.78
(1.67) (-2.51) (0.80) (-2.43) (-0.16) (-2.63)

Bottom (1) – Top (5) Earners -0.40 -0.46 -0.90 -0.58 -1.23 -0.82
(-1.18) (-1.75) (-2.49) (-1.84) (-2.74) (-2.11)

Observations 60.2m 57.3m 51.3m

This table reports the regression coefficients β and γ from estimates of equation (2) with cumulative income growth
over various horizons h as the dependent variable. In Panel A, we report worker exposure by age bin. In Panel B,
we report worker exposure by age and prior earnings bin. The sample and controls are the same as in our baseline
specification. We report t-statistics based on standard errors double clustered by industry and year in parentheses.
Coefficients are scaled so that they correspond to a 10% shock.
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A Additional Details on the Empirical Analysis
Here, we provide further details on the empirical analysis, along with additional results and robustness
checks.

A.1 Worker Earnings Data

Our main data are employer–employee linked data from the Longitudinal Employer–Household
Dynamics (LEHD) database. The LEHD contains earnings and employer information for U.S.
workers, collected from state unemployment insurance filings. The LEHD data start in 1990, although
many states joined the sample in later years as coverage became more complete. By the mid- to late-
1990s, the LEHD covered the majority of jobs. We use data for years until 2019; only a few states
drop out of the sample for years before then. The LEHD data are based on firms’ unemployment
insurance filings to the state and contain total gross wages and other taxable forms of compensation
as measure of earnings. For the state–quarters in the LEHD, coverage of private sector jobs is nearly
100%. We link worker earnings to demographic information such as age and gender and convert all
nominal earnings measures to real figures by deflating with the consumer price index (CPI).

The data allow us to track the incomes of individual workers over time and across employers. Our
sample in year t covers individuals between ages 25 and 60 who live in a state in year t that is in the
LEHD between years t−2 and t+5 and who have labor earnings in years t, t−1, and t−2 that exceed
a minimum annual threshold as in Guvenen et al. (2014): the federal minimum wage times 20 hours
times 13 weeks (1885 dollars in 2019). We merge leads and lags of individual annual labor earnings to
the base year, where individuals without any earnings are assigned zero wage earnings for that year.

In addition to total earnings, we separately observe earnings and employer identity for the top
three jobs (by income) of an individual in that year. We use the Employer Identification Number
(EIN) of the employer associated with the highest annual earnings for the individual to assign
workers to firms. In selecting the sample for year t, we require individuals to have strictly positive
earnings from this employer in year t+1 to make sure that the employment relationship is still active
by the end of year t. For workers for whom we observe a complete earnings history between years
t− 5 and t, we construct indicators for employment tenure by counting the number of consecutive
years that the worker has received income from the current main employer.

A key focus of our analysis is on heterogeneity in the effects of risk premium and productivity
shocks across the income distribution. We rank workers by their pretreatment earnings relative
to their peers. In particular, we sort workers by their last three years of total age-adjusted wage
earnings, wi,t−2,t, and compute the income rank of workers within their own firm. To compute these
earnings ranks, we require observing at least 50 workers in the sample for a firm–year. We focus on
quartiles of the initial earnings distribution, where we further separate out the top 5% from the
remainder of the top quartile.

We use an internal Census table for mapping EIN to GVKEY identifiers to link firm information
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from Compustat to the worker earnings data. For most of our analysis, we focus on employees of
publicly traded companies, for whom we have better measures of productivity and risk premium
shocks. We build our sample by first collecting data for all U.S. workers in the LEHD who are
linked to Compustat firms in the base year t and constructing the yearly income ranks for this full
sample. Then, after constructing all relevant variables, we randomly sample 20% of all workers in
each year for inclusion in our final dataset to keep the analysis computationally feasible. We exclude
workers employed by firms with missing industry codes or who work in the utilities sector (NAICS
codes starting with 22) or financial sector (NAICS codes starting with 52 or 53) from the sample.
An additional benefit of the LEHD is that it contains total earnings for each quarter in addition to
the annual information. We use this information to construct a nonemployment indicator that takes
the value of one if an individual has a quarter of zero earnings over a particular period.

A.2 Risk Premium Shocks

Table A.12 summarizes the nine existing series in the literature that capture fluctuations in risk or
the risk-bearing capacity of investors and that we use to construct our measure of risk premium
shocks. Since the majority of the series are available for years from the 1980s and for the purposes
of linking these to our worker data starting from 1990, we collect data from December 1984. All
series are signed so that an increase is an indication of elevated risk premia. As a consequence,
innovations to all series are negatively correlated with stock market returns in the same month.

We construct the risk premium shock as the first principal component of the AR(1) residuals of
each individual series. We follow Bauer et al. (2023) in dealing with missing observations to obtain
a complete time series. The resulting series is highly positively correlated with each component,
with a minimum correlation above 0.5. Table A.13 lists the five monthly observations with the
largest risk premium shocks and shows that these coincide with large negative stock returns and
large increases in the VIX and credit spreads.

A.3 Productivity Shocks

We use the approach from İmrohoroğlu and Tüzel (2014) to estimate a revenue-based measure of
total factor productivity (TFP) growth at the firm level based on the production function

yjt = β0 + βkkjt + βlljt + ωjt + ηjt, (A.1)

where yjt is the log of value added for firm j in year t, kjt and ljt are log capital and labor,
respectively, ωjt is log firm TFP, and ηjt is an error term. We estimate the parameters βk and βl by
implementing the semiparametric methodology of Olley and Pakes (1996). From these estimates,
we then compute firm-level TFP growth as

∆ωjt = ∆yjt − β̂k∆kjt − β̂l∆ljt. (A.2)

54



In their estimation of βk and βl, İmrohoroğlu and Tüzel (2014) use industry–time fixed effects to
separate firm productivity from industry or aggregate effects. To obtain estimates of firm-level TFP
growth that are suitable for aggregation, we re-estimate firm TFP growth based on their methodology
but replace the industry–year fixed effects with industry fixed effects at the 3-digit SIC level.

We apply this methodology using data from Compustat, complemented by output and invest-
ment deflators from the Bureau of Economic Analysis and wage data from the Social Security Ad-
ministration. We estimate the production function parameters for every year between 1964 and
2020 using all data up until that year to avoid using any forward-looking information. We winsorize
the resulting firm-level growth series at the 1% and 99% levels and aggregate TFP growth to the
4-digit NAICS level (starting from 1986) and over all firms to obtain measures of industry-level
TFP growth and aggregate TFP growth, respectively.

We use this series rather than the TFP series from the Bureau of Labor Statistics (BLS) for
several reasons. First, the İmrohoroğlu and Tüzel (2014) series is a direct estimate of firms’ revenue-
based total factor productivity (TFPR), which Guiso et al. (2005) show has some pass-through to
worker wages. By contrast, the TFP series from the BLS are defined as the difference between real
output and a shares-weighted combination of factor inputs. Second, the BLS series are available
only at a granular level for manufacturing industries. Third, for some industries, there are some
salient differences between private and public firms; our analysis is based on public firms, and the
İmrohoroğlu and Tüzel (2014) measure of productivity directly applies to these firms.

A.4 Measures of Firm Exposure to Risk Premium Shocks

We construct our various measures of firm exposure to risk premium shocks as described below.

Equity Betas. We use the CRSP/Compustat merged database to link historical firm equity returns
to the employers in our sample. We compute firm-level stock market betas at the end of each year
by regressing monthly firm equity returns on the market return over the past ten years, requiring
at least 60 monthly observations. We also compute firm betas with respect to our measure of risk
premium shocks using the same approach. As measures of firm exposure χf,t in (3), we use the
respective beta that is computed at the end of calendar year t− 1.

Company-Level Financial Variables. We also compute company-level exposure measures from
Compustat. For measuring exposure χf,t in year t, we use annual data from fiscal year t− 1. The
amount of debt that matures in years t+ 1 and t+ 2 (as of t− 1) relative to total assets is given by
dd2/at+dd3/at. Cash to assets is defined as che/at. Firm size is measured as the log of total assets
(at) in real terms. Finally, we construct the Whited–Wu index following Whited and Wu (2006) as

− 0.091 ib + dp
at

− 0.062 × 1(dvc + dvp > 0) + 0.021 × dltt
at

− 0.044 × log(real assets)+

0.102 × average SIC 3-digit industry sales growth in year − 0.035 × sales growth.
(A.3)
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See Farre-Mensa and Ljungqvist (2016) for further details. All Compustat variables (except for size)
are winsorized at the 1% and 99% levels.

Distance to Default. The one-year distance to default (Merton, 1974) is defined as

DD = log(V/D) + µV − 0.5σ2
V

σV
, (A.4)

where V is the total value of the firm, D is the face value of debt, µV is the expected return on
assets, and σV is the volatility of the return on assets. We measure firm distance to default following
the iterative procedure from Gilchrist and Zakrajšek (2012). The value of equity is measured as the
firm’s market capitalization in CRSP. The face value of debt is computed from quarterly Compustat
data as D = dlc + 0.5 dltt. The value V and the mean µV and volatility σV of its return are
estimated using the Black–Scholes–Merton option pricing framework and daily equity return data
over the past year from CRSP. See Ottonello and Winberry (2020) for further details. As a measure
of firm exposure χf,t in (3), we use the firm’s distance to default as of the end of calendar year t− 1.

A.5 Robustness of Earnings Exposures to Aggregate Shocks

Here, we provide additional details and discussions of the robustness checks in Section 1.3. We
show that our main findings are robust to our use of various alternative definitions of the treatment
variables and different empirical specifications.

First, one may wonder to what extent our findings are specific to employees of public companies
observed in Compustat. In Table A.2, we show that our main findings extend to all workers.
Specifically, we estimate our main aggregate specification in (2) in an alternative sample of all
workers. To do so, we construct a 5% subsample of all U.S. workers in the LEHD who are employed
by any firm, private or public, as of base year t; the data construction is otherwise identical. We
find that the exposure to risk premia is approximately the same as in our main sample, again with a
significant gradient in income. Exposure to TFP growth is lower, in particular for top earners, likely
because our measure of TFP growth does not capture the productivity news of nonpublic firms well.

Second, in Table A.3, we consider an alternative sort of workers, where we construct income
bins based on the rank of the worker’s prior earnings within her industry rather than her own firm.
Again, the exposure to risk premium shocks is nearly identical, and the spread between low-wage
workers and middle or top earners is highly significant. The spread in exposure to TFP growth
between top workers and other workers becomes weaker, suggesting that only the top earners within
their own firm are significantly more exposed to productivity shocks.

Third, Table A.4 shows that our findings are robust to alternative measurement of the two types
of shocks. In the top panel, we consider two variations to our measure of risk premium shocks. In
the first alternative, we define the risk premium shock as the first principal component of innovations
to the four indicators for risk appetite considered in Bauer et al. (2023): their own risk appetite
index, the excess bond premium from Gilchrist and Zakrajšek (2012), the Chicago Fed’s National
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Financial Conditions Index (NFCI), and the risk aversion index of Bekaert et al. (2022). In the
second alternative, we consider the same approach applied to the remaining five measures of time-
varying risk premia: Robert Shiller’s CAPE Ratio, the Jurado et al. (2015) financial uncertainty
index, the variance risk premium from Bekaert and Hoerova (2014), the CBOE VIX, and the Martin
(2016) SVIX. We find similar effects across the three different measures of risk premium shocks,
suggesting that the results are insensitive to the specific series included in the estimation. The point
estimates by income group are somewhat larger for the second alternative, but the spread across
different workers is consistent across specifications.

In the bottom panel of Table A.4, we consider variations to the measurement of productivity
shocks. Specifically, we use TFP shocks aggregated to the 3-digit NAICS level (first four columns)
and firm-level TFP shocks (last four columns) as alternatives. Reassuringly, the point estimates
are very similar across the different levels of aggregation. The more granular the variation is,
the more precisely these exposures are estimated. As a result, exposure to productivity shocks is
highly significant when TFP growth is measured at the firm level, while exposure is only marginally
statistically significant at the 3-digit NAICS level.

Fourth, Table A.5 shows that our making alternative assumptions on time aggregation leads to
quantitatively similar outcomes. Specifically, in the first six columns, we line up income growth from
t to t+ h with risk premium shocks over calendar year t+ 1, which assumes that worker earnings
are paid at the end of the year. In the last six columns, we line up income growth from t to t+ h

with risk premium shocks over calendar year t, which assumes that worker earnings are paid at the
beginning of the year as in Campbell (2003). While annual income growth in year t+ 1 has a much
higher correlation with financial shocks in year t than in year t+ 1, we find that the timing does
not affect our long-run estimates in a material way.

Fifth, we repeat the analysis of extensive-margin effects using our shift-share design based on
firm-level exposure to risk premium shocks. That is, we estimate a modified version of equation (3)
where we replace the dependent variable by an indicator for job loss over the next h years: whether
the worker separates from her initial employer and simultaneously experiences a decline in earnings
growth below the 10th percentile. Table A.6 shows that we obtain qualitatively similar results on
the likelihood of job loss to those in Table 3; that is, a 10% increase in the risk premium leads to a
0.1- to 0.2-percentage-point increase in the likelihood of job loss for those low-income workers who
are employed in highly exposed firms compared to the likelihood of low-income workers employed in
less exposed firms. There are no such effects for higher-paid workers.

A.6 Worker Flows from SIPP

To match the transition rates of workers between employment and nonemployment in the data, we
rely on public data from the Survey of Income and Program Participation (SIPP) of the U.S. Census
Bureau. The SIPP is a longitudinal household survey where participants are repeatedly interviewed
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on their labor market participation, income, demographic characteristics, and other economically
relevant dynamics over a multiyear period. The SIPP had major redesigns in 1996 and 2014.

We use data from the 1996, 2001, 2004, and 2008 panels of the SIPP, collectively covering nearly
all months in the period from 1996 to 2013. We restrict attention to household members between
ages 25 and 60 who do not own a business. We measure monthly employment status from reports
in the last week of each month. Individuals are classified as employed if they have a job and are
working, absent without pay, or on paid leave. Individuals are classified as unemployed if they have
no job and are either looking for work or on layoff. We also track workers who are not participating
in the labor market.

In our calibration, we separately target the separation and job-finding rates by worker income.
To this end, we restrict attention to workers with positive wage earnings who report having a job in
all weeks of the month. We sort employed workers into income groups based on wage earnings in
the current month. We sort unemployed workers into income groups based on their last reported
(full-month) monthly wage income during the prior 12 months, if any. We then compute transition
rates across these different income groups. We measure two types of monthly job separation rates:
the employment-to-unemployment rate and the employment-to-nonparticipation rate, defined as the
fraction of employed workers who transition to unemployment and nonparticipation in the next
month, respectively. Monthly job-finding rates are measured as the fraction of unemployed workers
who transition to employment in the next month. To compute standard errors for these moments,
we cluster by SIPP panel.

B Model Appendix
Here, we include additional details on the solution, calibration, and mechanisms of the model.

B.1 Derivation of Labor Search Equilibrium Conditions

To pin down how the match surplus is shared between workers and firms, we need to consider how a
worker’s search strategy would change if a firm were to deviate by offering an employment contract
with worker value W̃t(z). Let θ̃t(z) be the tightness in the market for this offer. If the alternative
contract has a sufficiently high value, unemployed workers of this type will flow between the two
markets until the value from searching in either market is equalized, i.e., when

p(θ̃t(z))(W̃t(z) − JO
t (z)) = p(θt(z))(Wt(z) − JO

t (z)). (A.5)

Note that when the offer is so bad that, even when the probability of getting the job is equal to
one, the offer is still dominated by the existing labor market, the market for this alternative offer is
inactive with θ̃ = 0.

Firms target a specific type of worker z by posting a vacancy and offering a continuation value to
the worker equal to Wt(z) at the moment the worker is hired. Recall that we focus on a symmetric
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equilibrium. By the one-shot deviation principle, we need only to consider a one-time deviation
from a firm in period t while workers are being offered the symmetric offer Wt(z) by all other firms
and in all other time periods.

First, consider an active labor market where workers are being offered the symmetric value
Wt(z). The value JV

t (z) of a posted vacancy to a firm is given by

JV
t (z) = −κt(z) + q(θt(z))

(
JMC

t (z) −Wt(z)
)

+ (1 − q(θt(z))) × Et

[
Λt+1 max

z̃

{
JV

t+1(z̃)
}]
.

(A.6)

Since there is free entry of firms into labor markets, the equilibrium number of vacancies is pinned
down by the zero-profit condition in (21).

Second, in equilibrium, no firm can gain by deviating. Consider a firm that deviates by offering
worker value W̃t(t). The firm solves the following problem:

max
θ̃,W̃

− κt(z) + q(θ̃t(z))(JMC
t (z) − W̃t(z))

s.t. p(θ̃t(z))(W̃t(z) − JO
t (z)) = p(θt(z))(Wt(z) − JO

t (z)).
(A.7)

It is without loss of generality to consider only serious offers, those for which W̃t(z) − JO
t (z) ≥

p(θt(z))(Wt(z) − JO
t (z)), because there is no point for the firm to offer a wage contract that will be

ignored by all workers. The first-order conditions for the firm’s problem are

−q(θ̃t(z)) = ζt(z) · p(θ̃t(z)) (A.8)

q′(θ̃t(z))(JMC
t (z) − W̃t(z)) = ζt(z) · p′(θ̃t(z))(W̃t(z) − JO

t (z)), (A.9)

with Lagrange multiplier ζt(z). By combining these two conditions and imposing symmetry of the
equilibrium, we obtain the equilibrium condition

−q′(θt(z))
q(θt(z))

(JMC
t (z) −Wt(z)) = p′(θt(z))

p(θt(z))
(Wt(z) − JO

t (z)). (A.10)

Defining the elasticity of the vacancy filling rate by η(θ) ≡ −θq′(θ)/q(θ) and noting that 1 − η(θ) =
θp′(θ)/p(θ), we can rearrange to solve for the worker value in a new match that is given by
equation (22).

B.2 Model Equilibrium

Our model is solved in two steps. First, we solve for equilibrium labor market allocations. Second,
we solve for the optimal wage contract by finding the path of flow wages that implements the
equilibrium allocations by optimally smoothing wages subject to the limited commitment constraints.

We start by defining the normalized values JN
t (z) = JN

t (z)/At, J
U
t (z) = JU

t (z)/At, J
O
t (z) =
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JO
t (z)/At, J

MC
t (z) = JMC

t (z)/At, J
M
t (z) = JM

t (z)/At, and W t(z) = Wt(z)/At. Equilibrium labor
market allocations in this model are given by the solution to the following system of equations:

J
N
t (z) = b̄+ (1 − ν) × Et,z

[
Λt+1e

µA+σAεA,t+1J
O
t+1(z′)

]
(A.11)

J
U
t (z) = b̄− c̄ (θt(z̄O))λ + (1 − ν) × Et,z

[
Λt+1e

µA+σAεA,t+1
{
J

O
t+1(z′) (A.12)

+p(θt+1(z′))
(
W t+1(z′) − J

O
t+1(z′)

)}]
J

O
t (z) = max{JN

t (z), JU
t (z)} (A.13)

J
MC
t (z) = z + (1 − ν) × Et,z

[
Λt+1e

µA+σAεA,t+1
{
sJ

O
t+1(z′) + (1 − s)JM

t+1(z′)
}]

(A.14)

J
M
t (z) = max{JMC

t (z), JO
t (z)} (A.15)

κ̄ z = q(θt(z))
(
J

MC
t (z) −W t(z)

)
(A.16)

W t(z) = (1 − η(θt(z)))J
O
t (z) + η(θt(z))J

MC
t (z). (A.17)

From these equations, it follows that the functions θt(z), J
N
t (z), JU

t (z), JO
t (z), JMC

t (z), JM
t (z),

and W t(z) depend only on the aggregate state through the stationary price of risk process xt. Thus,
in the competitive search equilibrium, labor market tightness θt(z) does not depend on At, and the
value functions JN

t (z), JU
t (z), JO

t (z), JMC
t (z), JM

t (z), and Wt(z) are linear in At. The equilibrium
continuation policy in (20) is given by

1C
t (z) = 1 ⇔ J

MC
t (z) ≥ J

O
t (z). (A.18)

After we solve for the equilibrium allocations, the second step is to solve for the optimal wage contract.
We again normalize the relevant objects: w(Ωi,m,t) = w(Ωi,m,t)/At, W

M (Ωi,m,t) = ŴM (Ωi,m,t)/At,
V t(z,W

M ) = V̂t(z, ŴM )/At, ΓL
t (z) = ΓL

t (z)/At, and ΓH
t (z) = ΓH

t (z)/At; these depend only on
the aggregate state through the stationary price of risk process xt. We find the path of wages by
numerically solving the following dynamic optimization problem:

V t(z,W
M ) = max

w,{W
M′}

{
(1 − χ)w1−γ + χEt,z

[
Λt+1e

(1−γ)(µA+σAεA,t+1) 1C
t+1(z′)V t+1(z′,W

M ′)1−γ
]} 1

1−γ

(A.19)

s.t. W
M = w + (1 − ν)(1 − s)Et,z

[
Λt+1e

µA+σAεA,t+1 1C
t+1(z′)WM ′] (A.20)

ΓL
t+1(z′) ≤ W

M ′ ≤ ΓH
t+1(z′). (A.21)

If the limited commitment bounds are never binding, the first-order condition of this problem
reduces to

w−γ = χ

(1 − ν)(1 − s)

{
At+1
At

w′
}−γ

. (A.22)
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In this case, under our assumption that logχ = log(1 − ν) + log(1 − s) + µAγ, we obtain that wages
grow deterministically at the growth rate µA of the economy during a match.

B.3 Calibration of the Stochastic Discount Factor

We calibrate the parameters of the stochastic discount factor to match moments of asset prices. To
do so, we make the common assumption that aggregate dividends Dt represent a levered claim on
aggregate productivity,

∆Dt+1 = µd + ϕσA εA,t+1, (A.23)

where µd is expected dividend growth and ϕ is the leverage parameter. Based on the average value
of nonfinancial corporate business debt as a percentage of the market value of corporate equity
between 1952 and 2019 from the Flow of Funds, which is 49%, we assume a leverage parameter
ϕ equal to 1.49. The total value of the stock market is given by the present value of aggregate
dividends as specified in (8).

To calibrate the price of risk process xt in (9), we follow a strategy similar to that of Lettau
and Wachter (2007), with one important distinction: we allow for a negative correlation between
productivity shocks and risk premium shocks. In particular, we set ρA,x to −0.47 to match the
correlation between our measures of annual aggregate TFP growth and risk premium shocks. To
accommodate this negative correlation in a model with realistic asset pricing implications, we also
allow risk premium shocks to be priced (i.e., δ ̸= 0).

Given that the model’s mechanism operates through changes in valuations of employment
matches of relatively long maturities, we target both the moments of the stock market as a whole
and the moments of a risky long-duration claim. Specifically, we consider the returns on the long-
duration portfolio from Gormsen and Lazarus (2023), who sort stocks into decile portfolios based
on ex ante duration. The realized duration of the long-duration portfolio is 59 years. We mimic
this long-duration portfolio in our model by computing the returns on a long-run dividend strip
(zero-coupon equity) with an equivalent maturity of 59 years. We assume that the duration of the
market is 20 years, which is the realized duration of the median portfolio.

We simulate the model at monthly frequency and aggregate all financial variables to annual
frequency to compute annual moments. We choose µd, x̄, ψx, σx, and δ to target the average price–
dividend ratio, the autocorrelation of the log price–dividend ratio, the duration of the market, the
mean and volatility of aggregate stock market returns, and the mean and volatility of the return on
the long-duration claim. Table A.8 compares the resulting moments in simulated data from our
calibrated model (µd = 0.001, x̄ = 0.384, ψx = 0.994, σx = 0.032, δ = 0.431) to the corresponding
empirical statistics. The model produces an average price–dividend ratio of 20.3 that is lower than
that in the data but similar to the ratios from other models of this type (Campbell and Cochrane,
1999; Lettau and Wachter, 2007). Our calibration matches the persistence of the price–dividend
ratio, the distribution of aggregate stock market returns, and the stylized fact that the Sharpe ratios
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of risky assets are declining with the duration of their cashflows (Lettau and Wachter, 2007; van
Binsbergen et al., 2012; Gormsen and Lazarus, 2023). The value of δ > 0 implies that shocks to risk
premia that are orthogonal to productivity are viewed as low-marginal-utility states by households,
potentially because of improved investment opportunities. The maximum monthly Sharpe ratio
that can be attained in financial markets is√

Vart[Λt+1]
Et[Λt+1] =

√
exp

{
x2

t (1 + δ2 + 2 δ ρA,x)
}

− 1. (A.24)

When xt is at its long-run mean x̄, the maximum Sharpe ratio is 0.35.
Figure A.11 shows that our model has realistic implications for return predictability. First,

in A.11a, we run a predictive regression of future stock market returns on the level of risk premia
analogous to Figure 1b, comparing the results in the model-simulated data to the empirical results.
A high value of xt predicts positive future stock market returns, with a magnitude close to the
empirical estimates. Second, Figure A.11b shows that the model also has realistic implications for
the predictability of long-horizon returns by the level of the price–dividend ratio.

B.4 Worker Employment Dynamics

Figure A.6 plots the stationary joint distribution of individual worker productivity and employment
status along the balanced growth path (xt = x̄). The top panel illustrates that endogenous job
destruction is driven by a threshold rule defined in (35): matches in which worker productivity
falls below the threshold z∗(xt) are terminated. When risk premia increase, the threshold increases;
there are some workers for whom the total surplus that was positive before now becomes negative.
The middle panel shows that the decision to enter the unemployment pool and search for a job is
similarly driven by a threshold rule defined in (36): a nonemployment worker decides to search
if and only if productivity z is above z(xt). To match average separation rates in the data, the
thresholds z∗(x̄) and z(x̄) are fairly close to each other so that workers endogenously separate into
both unemployment and nonparticipation. In our calibration, the search threshold also increases
with risk premia, though less than the separation threshold.

To elaborate on why the separation threshold moves with risk premia, which is an important
driver of time-varying income risk in our model, we start by rewriting equation (35) as

log JMC(x, z∗(x)) = log JO(x, z∗(x)). (A.25)

Taking the derivative with respect to x on both sides of this equation, we can write the change in
the threshold as

z∗′(x) = −
∂

∂x log JMC(x, z∗(x)) − ∂
∂x log JO(x, z∗(x))

∂
∂z log JMC(x, z∗(x)) − ∂

∂z log JO(x, z∗(x))
. (A.26)

Figure A.12 plots the partial derivatives in the numerator and denominator as a function of z and
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evaluated at x = x̄. We see that, around the threshold, the derivative of the continuation value
with respect to x is more negative than the derivative of the outside option. Combined with the
fact that the continuation value always has a more positive derivative with respect to z than the
outside option, we obtain the result that the separation threshold increases in x.

It is fairly straightforward to see why the denominator of (A.26) is positive: the output produced
in a match is linear in z, while nonemployment benefits do not depend on z. Where, however, does
the negative numerator for the marginal worker come from? To see why this is the case, we break
down the present values of continuation and the outside option by horizon. That is, we write the
present values as the sum of values of individual strips, where a strip is a claim to the total net payoff
generated by the worker at a single horizon. The strip that matures at time t has the following payoff:

δt(z, e) =


At z if e = E

bt − ct − kt(z) if e = U

bt if e = N.

(A.27)

The strip payoffs in (A.27) are a function of worker productivity z and employment status e ∈
{E,U,N}. A worker who is matched with a firm produces output At z. A worker who does not
participate in labor markets collects the nonemployment benefit bt. A worker who is unemployed
collects the benefit bt and pays the search cost ct. In the labor market at time t+ 1, she is targeted
by firms that post θt+1(z′) vacancies per unemployed worker of type z′ at a unit cost of κt+1(z′).
Due to perfect competition, these firms are fairly compensated for the costs of posting vacancies
by receiving a share of the surplus value of a match upon finding a worker. These costs of giving
up a share of total surplus are reflected in the net payoff generated by an unemployed worker by
subtracting the expected discounted hiring cost kt(z) per worker:

kt(z) = Et,z
[
Λt+1κt+1(z′)θt+1(z′)

]
. (A.28)

The net present value at time t of a strip with maturity T can be computed with the standard
valuation equation (8), given current aggregate information Ft and current worker status (z, e):

Jδ
t (z, e;T ) = (1 − ν)T E

[(
T∏

τ=t+1
Λτ

)
δT (zT , eT )

∣∣∣Ft, z, e

]
. (A.29)

When we combine the payoffs of the strips with the law of iterated expectations, it follows that the
main worker value functions can be decomposed into the sum of values of individual strips given
the current worker state:

JMC
t (z) =

∞∑
τ=0

Jδ
t (z, E; t+ τ) (A.30)
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JU
t (z) =

∞∑
τ=0

Jδ
t (z, U ; t+ τ) (A.31)

JN
t (z) =

∞∑
τ=0

Jδ
t (z,N ; t+ τ). (A.32)

Figure ?? plots the valuation weight that the strip with payoff at horizon τ has in the total
continuation value JMC

t (z) (i.e., Jδ
t (z, E; t + τ)/JMC

t (z)) and in the outside option JO
t (z) (i.e.,

Jδ
t (z, U ; τ)/JU

t (z) when z ≥ z(xt)). The figure shows the weights by horizon for the marginal worker
who is at the separation threshold when x = x̄: z = z∗(x̄). We see that, for this marginal worker,
the value of employment is more backloaded than the value of nonemployment.

Finally, we note that the payoffs in (A.27) are linear in At. The semi-elasticity with respect to
xt of the present value of a claim to payoff f(zi,t+τ , ei,t+τ )At+τ at horizon τ is the same for each
function f and is plotted in Figure A.5b. Since the values of longer-duration payoffs are more
sensitive to risk premium shocks than the values of shorter-duration payoffs, it now follows that the
continuation value of the marginal worker has a larger exposure to risk premium shocks than the
outside option and therefore that the separation threshold is increasing in x.
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C Additional Figures and Tables

Figure A.1: Model: Wage NPV Bounds by Worker Productivity

(a) Bounds in Baseline Model versus Alternative Without Reputational Costs (ξ = 0)
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(b) Changes in Bounds Due to Aggregate Productivity Shocks
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(c) Changes in Bounds Due to Risk Premium Shocks
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This figure plots the limited commitment bounds on the net present value (NPV) of wages in (27). The solid lines in
all three panels characterize the bounds as a function of z in our baseline calibration, for At = 1 and xt = x̄. Panel
(a) shows how the bounds change if we set ξ = 0 (no termination cost). Panel (b) shows how the bounds change in
response to a shock of two annual standard deviations to A. Panel (c) shows how the bounds change in response to a
shock of two annual standard deviations to x.
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Figure A.2: Model versus Data: Worker Flows (Targeted)

(a) Average Separation Rate into Unemployment and Nonparticipation by Income Group
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(b) Average Job-Finding Rate by Income Group
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■ Employment → Unemployment ■ Employment → Nonparticipation
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This figure compares average job separation rates into unemployment and nonparticipation (Panel (a)) and the average
job-finding rate (Panel (b)) by income group in the model and in the data. The empirical counterparts are computed
from public Survey of Income and Program Participation (SIPP) panel data, with standard errors clustered by panel.
Incumbent workers in Panel (a) are binned into groups based on their current wage earnings. Unemployed workers in
Panel (b) are binned into groups based on their earnings the last time they were employed in the prior twelve months
(if applicable).

66



Figure A.3: Model: Risk Exposure by Horizon

(a) Exposure to Risk Premium Shocks
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(b) Exposure to Productivity Shocks
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This figure plots the regression coefficients β and γ from estimates of equation (2) in the model, with cumulative
income growth over various horizons h as the dependent variable. Panel (a) reports exposure to risk premium shocks
by horizon, and Panel (b) reports exposure to productivity shocks by horizon. We estimate exposure across the worker
earnings distribution by interacting the two shocks with indicators for the worker’s prior earnings bin. Coefficients are
scaled so that they correspond to a 10% shock.
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Figure A.4: Model: Determinants of Worker Heterogeneity

(a) Worker Productivity Conditional on Worker Wage

0 10 20 30 40 50 60 70 80 90 100

−1

0

1

2

Wage Percentile

lo
gz

p10
p25
p50
p75
p90

(b) Distance from Bounds Conditional on Worker Productivity
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(c) Distance from Bounds Conditional on Worker Wage
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(d) Distance from Bounds Conditional on Worker Wage Relative to Productivity
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This figure plots quantiles of idiosyncratic productivity z and the position of the wage continuation value relative to
the bounds ω ≡ Ŵ M −ΓL

ΓH −ΓL as a function of current worker variables in the model.
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Figure A.5: Model: Duration of Surplus for Marginal Worker

(a) Differences in Cashflow Duration between Employment and Nonemployment
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(b) Valuation Effects of Risk Premium Shock by Horizon
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Panel (a) of this figure plots the valuation weight that the strip with payoff at horizon τ has in the total continuation
value JMC

t (z) (i.e., Jδ
t (z, E; t+τ)/JMC

t (z)) and in the outside option JO
t (z) (i.e., Jδ

t (z, U ; t+τ)/JU
t (z) when z ≥ z(xt)).

The weights are for the marginal worker who is at the separation threshold when xt = x̄: z = z∗(x̄). Panel (b) shows
the semi-elasticity with respect to xt of the present value of a claim to a payoff proportional to At+τ at horizon τ .
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Figure A.6: Model: Joint Distribution of Employment Status and Productivity along Balanced Growth Path

(a) Employed Workers
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(b) Unemployed Workers
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(c) Nonparticipating Workers
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This figure plots the stationary joint distribution of employment status and z along the balanced growth path. We also
plot the long-run mean of z in employment, z̄E , and nonemployment, z̄O, as well as the separation threshold z∗(xt) and
the job search threshold z(xt) for xt = x and xt = x + σunc

x , where σunc
x is the unconditional standard deviation of x.
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Figure A.7: Model: Impulse Responses to Productivity Shocks

(a) Productivity
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(c) Income Risk, Left Tail (p50–p10)
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(d) Income Risk, Right Tail (p90–p50)
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(e) Earnings, All Workers
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(f) Earnings, Stayers
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This figure shows the impulse responses of key model quantities following a negative productivity shock of one annual
standard deviation.
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Figure A.8: Model: Worker Characteristics by Employment Tenure

(a) Worker Productivity Conditional on Worker Tenure
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(b) Distance from Bounds Conditional on Worker Tenure
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This figure plots quantiles of idiosyncratic productivity z and the position of the wage continuation value relative to
the bounds ω ≡ Ŵ M −ΓL

ΓH −ΓL as a function of worker tenure in the model.
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Figure A.9: Model versus Data: Alternative Calibrations

(a) Exposure to Risk Premium Shocks
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(b) Exposure to Productivity Shocks
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(c) Separation Rate into Unemployment
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(d) Nonemployment and Risk Premium Shocks
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• Data ♦ Baseline
• No Reputation Cost (ξ = 0) • Full Commitment (ξ = ∞) • Reputation Cost Has Constant NPV

• No Endogenous Separations • No Skill Loss in Nonemployment • No Search Cost

Panels (a) and (b) plot the regression coefficients β and γ from estimates of equation (2) by income group at a three-year horizon in the data, in the baseline model,
and in alternative calibrations of the model. Panel (c) shows the average separation rate into unemployment, and Panel (d) plots the coefficient on risk premium
shocks in a regression of the three-year probability of some nonemployment on the aggregate shocks by income group.
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Figure A.10: Model versus Data: Unemployment and Income Risk under Alternative Calibrations

(a) Unemployment (Data versus Baseline versus No Endogenous Sepa-
rations)
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(b) Unemployment (Data versus Baseline versus No Skill Loss)
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(c) Income Risk, Left Tail (Data versus Baseline versus No Endog.
Separations)
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(d) Income Risk, Left Tail (Data versus Baseline versus No Skill Loss)
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Panels (a) and (b) compare the unemployment rate between the data and model simulations for different calibrations. Panels (c) and (d) compare the realized paths
of income risk. The empirical series are from Guvenen et al. (2014). We directly feed into the model our measures of risk premium and productivity shocks ϵrp and
ϵtfp from Section 1.1, normalized to have zero mean and unit standard deviation, and accumulate these shocks into levels for A and x using equations (7) and (9). We
remove the means from the stationary series and detrend the nonstationary series using a band-pass filter with quarterly smoothing parameter 105.
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Figure A.11: Model versus Data: Predictability of Future Stock Market Returns

(a) Predictability by the Risk Premium Index
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(b) Predictability by the Price–Dividend Ratio
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This figure reports estimates of predictive regressions where we project continuously compounded future excess stock
market returns

∑H

s=1 re
t+s on our risk premium index (Panel (a)) and on the log price–dividend ratio (Panel (b)) at

different horizons H, in the model and in the data. The shaded area shows pointwise 95% confidence bands for the
empirical estimates, calculated with Hansen–Hodrick standard errors.
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Figure A.12: Model: Derivatives of Worker Value Functions

(a) Derivative with Respect to Risk Premia (∂/∂x)
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(b) Derivative with Respect to Worker Productivity (∂/∂z)
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Panel (a) of this figure shows the partial derivatives of the worker continuation value log J
MC(x, z) and the outside

option log J
O(x, z) with respect to x. Panel (b) plots the partial derivatives of log J

MC(x, z) and log J
O(x, z) with

respect to z. The derivatives are plotted as a function of z, evaluated at x = x̄.
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Table A.1: Summary Statistics for Workers in Main Sample

Variable Observations Mean SD p10 p50 p90

Income Growth gi,t:t+1 63.0m -0.039 0.412 -0.337 0.006 0.304
Income Growth gi,t:t+2 60.2m -0.073 0.465 -0.456 -0.002 0.302
Income Growth gi,t:t+3 57.3m -0.104 0.511 -0.578 -0.011 0.305

Prior Earnings, 0–25th Percentile 14.3m -0.087 0.642 -0.803 0.031 0.506
Prior Earnings, 25–50th Percentile 14.3m -0.114 0.498 -0.581 -0.011 0.264
Prior Earnings, 50–75th Percentile 14.3m -0.112 0.442 -0.492 -0.023 0.216
Prior Earnings, 75–95th Percentile 11.5m -0.104 0.418 -0.452 -0.029 0.221
Prior Earnings, 95–100th Percentile 2.9m -0.105 0.499 -0.582 -0.028 0.338

Income Growth gi,t:t+5 51.3m -0.165 0.586 -0.784 -0.035 0.310

Some Nonemploymenti,t:t+2 60.2m 0.139
Some Nonemploymenti,t:t+3 57.3m 0.201

Prior Earnings, 0–25th Percentile 14.3m 0.290
Prior Earnings, 25–50th Percentile 14.3m 0.202
Prior Earnings, 50–75th Percentile 14.3m 0.165
Prior Earnings, 75–95th Percentile 11.5m 0.143
Prior Earnings, 95–100th Percentile 2.9m 0.155

Some Nonemploymenti,t:t+5 51.3m 0.307

Move and Tail Lossi,t:t+2 60.2m 0.068
Move and Tail Lossi,t:t+3 57.3m 0.087

Prior Earnings, 0–25th Percentile 14.3m 0.119
Prior Earnings, 25–50th Percentile 14.3m 0.088
Prior Earnings, 50–75th Percentile 14.3m 0.074
Prior Earnings, 75–95th Percentile 11.5m 0.065
Prior Earnings, 95–100th Percentile 2.9m 0.072

Move and Tail Lossi,t:t+5 51.3m 0.096

Age 63.0m 42.020 9.854 28 42 56
Tenure, < 1 Year 50.1m 0.085
Tenure, 1–3 Years 50.1m 0.192
Tenure, 3–5 Years 50.1m 0.145
Tenure, > 5 Years 50.1m 0.578

This table summarizes the variables that characterize the earnings dynamics of the workers in our main sample.
Income growth is defined in equation (1). A worker is characterized as having some nonemployment between t and
t + h if she has at least one quarter of zero earnings between the end of year t and the end of year t + h. Individuals are
characterized as stayers if the main employer in year t + h is the same as the main employer in year t and as movers
in all other cases. A tail loss is defined by a worker’s having income growth in the bottom 10%. The sample is a 20%
subsample of all U.S. workers in the LEHD who are employed by public companies. The sample period is 1990–2019.

77



Table A.2: Worker Exposure to Risk Premium and Productivity Shocks, All Workers

A. Average Exposure

2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP

All Workers -1.51 0.56 -1.61 0.60 -1.27 0.61
(-4.54) (1.74) (-3.99) (1.66) (-2.77) (1.68)

B. By Worker Earnings (Within Firm)

2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP

Prior Earnings, 0–25th Percentile -2.14 0.67 -2.34 0.72 -2.00 0.73
(-5.07) (1.68) (-4.45) (1.68) (-3.21) (1.78)

Prior Earnings, 25–50th Percentile -1.53 0.59 -1.63 0.62 -1.29 0.64
(-4.44) (1.82) (-3.91) (1.76) (-2.68) (1.83)

Prior Earnings, 50–75th Percentile -1.24 0.52 -1.31 0.54 -0.98 0.55
(-4.12) (1.78) (-3.63) (1.66) (-2.41) (1.64)

Prior Earnings, 75–95th Percentile -1.05 0.49 -1.10 0.52 -0.82 0.52
(-3.88) (1.73) (-3.44) (1.59) (-2.26) (1.47)

Prior Earnings, 95–100th Percentile -1.27 0.60 -1.21 0.63 -0.83 0.64
(-4.57) (1.55) (-3.96) (1.44) (-2.66) (1.33)

Bottom (1) – Middle (3) Earners -0.90 0.15 -1.03 0.18 -1.02 0.19
(-6.35) (1.33) (-5.53) (1.63) (-4.25) (2.04)

Middle (3) – Top (5) Earners 0.02 -0.08 -0.10 -0.09 -0.15 -0.09
(0.14) (-0.58) (-0.61) (-0.61) (-0.78) (-0.53)

Bottom (1) – Top (5) Earners -0.88 0.07 -1.13 0.09 -1.17 0.09
(-4.10) (0.52) (-4.11) (0.65) (-3.14) (0.59)

Observations 36.8m 34.6m 30.2m
Fixed Effects N4 × Inc Grp N4 × Inc Grp N4 × Inc Grp
Clustering N4, Year N4, Year N4, Year

This table reports the regression coefficients β and γ from estimates of equation (2) with cumulative income growth over
various horizons h as the dependent variable. In Panel A, we report average worker exposure. In Panel B, we report
exposure across the worker earnings distribution that we estimate by interacting the two shocks with indicators for the
worker’s prior income level relative to the levels of other workers in the same firm. The controls include a third-order
polynomial in the log of average income over the past three years, a complete set of age dummies, the lagged risk premium
index interacted by income group dummies, and fixed effects for the worker’s industry I, defined at the 4-digit NAICS
level, interacted with her income bin. The sample is a 5% subsample of all U.S. workers in the LEHD who are employed
by any private or public company. The sample period is 1990–2019. We report t-statistics based on standard errors
double clustered by industry and year in parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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Table A.3: Worker Exposure to Risk Premium and Productivity Shocks, Income Ranks Within Industry

2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP

Prior Earnings, 0–25th Percentile -2.08 0.89 -2.34 0.95 -2.07 0.93
(-5.42) (2.26) (-4.79) (2.21) (-3.39) (2.00)

Prior Earnings, 25–50th Percentile -1.53 0.74 -1.64 0.80 -1.29 0.79
(-5.19) (2.46) (-4.42) (2.39) (-2.92) (2.08)

Prior Earnings, 50–75th Percentile -1.18 0.61 -1.21 0.69 -0.87 0.71
(-4.45) (2.19) (-3.65) (2.25) (-2.32) (2.01)

Prior Earnings, 75–95th Percentile -1.02 0.52 -0.96 0.60 -0.60 0.68
(-3.73) (1.82) (-2.88) (1.79) (-1.66) (1.70)

Prior Earnings, 95–100th Percentile -1.80 1.01 -1.46 1.15 -0.79 1.38
(-4.10) (2.00) (-3.07) (1.92) (-1.67) (2.01)

Bottom (1) – Middle (3) Earners -0.90 0.29 -1.13 0.26 -1.19 0.22
(-5.76) (1.56) (-5.92) (1.27) (-4.45) (0.91)

Middle (3) – Top (5) Earners 0.61 -0.41 0.26 -0.47 -0.09 -0.67
(1.79) (-1.10) (0.75) (-1.18) (-0.24) (-1.61)

Bottom (1) – Top (5) Earners -0.29 -0.12 -0.88 -0.21 -1.28 -0.45
(-0.77) (-0.27) (-2.14) (-0.42) (-2.46) (-0.82)

Observations 60.2m 57.3m 51.3m
Fixed Effects N4 × Inc Grp N4 × Inc Grp N4 × Inc Grp
Clustering N4, Year N4, Year N4, Year

This table reports the regression coefficients β and γ from estimates of equation (2) with cumulative income growth
over various horizons h as the dependent variable. We report exposure across the worker earnings distribution that we
estimate by interacting the two shocks with indicators for the worker’s prior income level relative to the levels of other
workers in the same industry (instead of the same firm). The controls include a third-order polynomial in the log of
average income over the past three years, a complete set of age dummies, the lagged risk premium index interacted by
income group dummies, and fixed effects for the worker’s industry I, defined at the 4-digit NAICS level, interacted
with her income bin. The sample is a 20% subsample of all U.S. workers in the LEHD who are employed by public
companies. The sample period is 1990–2019. We report t-statistics based on standard errors double clustered by
industry and year in parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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Table A.4: Worker Exposure to Risk Premium and Productivity Shocks, Alternative Measures

A. Alternative Risk Premium Shocks

3 Years 5 Years 3 Years 5 Years

RP TFP RP TFP RP TFP RP TFP

Prior Earnings, 0–25th Percentile -1.96 0.73 -1.76 0.68 -2.87 0.91 -2.64 0.91
(-4.29) (1.79) (-3.25) (1.51) (-5.57) (2.42) (-3.39) (2.09)

Prior Earnings, 25–50th Percentile -1.29 0.70 -1.02 0.70 -2.06 0.83 -1.72 0.84
(-3.62) (2.05) (-2.48) (1.84) (-4.69) (2.54) (-2.74) (2.21)

Prior Earnings, 50–75th Percentile -1.01 0.68 -0.74 0.72 -1.70 0.79 -1.36 0.83
(-3.15) (2.14) (-2.03) (1.98) (-4.23) (2.59) (-2.43) (2.29)

Prior Earnings, 75–95th Percentile -0.88 0.68 -0.60 0.77 -1.48 0.77 -1.15 0.86
(-3.01) (1.98) (-1.84) (1.93) (-3.95) (2.34) (-2.26) (2.18)

Prior Earnings, 95–100th Percentile -1.25 1.36 -0.65 1.58 -1.97 1.45 -1.31 1.65
(-3.71) (2.83) (-2.15) (2.77) (-3.77) (3.01) (-2.22) (2.83)

Bottom (1) – Middle (3) Earners -0.95 0.05 -1.02 -0.04 -1.17 0.12 -1.28 0.08
(-6.20) (0.38) (-4.82) (-0.25) (-7.01) (1.00) (-4.79) (0.49)

Middle (3) – Top (5) Earners 0.24 -0.68 -0.09 -0.86 0.27 -0.66 -0.05 -0.82
(0.79) (-2.66) (-0.32) (-2.89) (0.75) (-2.54) (-0.14) (-2.70)

Bottom (1) – Top (5) Earners -0.71 -0.63 -1.11 -0.90 -0.90 -0.54 -1.34 -0.74
(-2.01) (-1.98) (-2.79) (-2.37) (-2.12) (-1.68) (-2.40) (-1.86)

Observations 57.3m 51.3m 57.3m 51.3m
Risk Premium Shock Alt 1 Alt 1 Alt 2 Alt 2

B. Alternative TFP Growth Measures

3 Years 5 Years 3 Years 5 Years

RP TFP RP TFP RP TFP RP TFP

Prior Earnings, 0–25th Percentile -2.26 0.51 -1.96 0.41 -2.14 0.59 -1.80 0.63
(-4.75) (1.07) (-3.34) (0.72) (-4.69) (3.89) (-3.20) (3.71)

Prior Earnings, 25–50th Percentile -1.55 0.49 -1.20 0.43 -1.43 0.61 -1.05 0.69
(-4.04) (1.23) (-2.68) (0.90) (-3.91) (4.03) (-2.47) (4.13)

Prior Earnings, 50–75th Percentile -1.26 0.49 -0.91 0.47 -1.14 0.61 -0.78 0.69
(-3.66) (1.31) (-2.33) (1.04) (-3.45) (4.43) (-2.07) (4.52)

Prior Earnings, 75–95th Percentile -1.10 0.49 -0.76 0.58 -0.98 0.63 -0.63 0.73
(-3.43) (1.23) (-2.10) (1.21) (-3.30) (4.06) (-1.89) (4.20)

Prior Earnings, 95–100th Percentile -1.46 1.09 -0.83 1.38 -1.31 1.23 -0.69 1.34
(-3.24) (1.90) (-1.97) (2.04) (-3.48) (5.55) (-2.01) (5.27)

Bottom (1) – Middle (3) Earners -1.01 0.02 -1.04 -0.06 -1.00 -0.02 -1.02 -0.06
(-6.70) (0.11) (-4.74) (-0.30) (-7.02) (-0.39) (-4.86) (-1.45)

Middle (3) – Top (5) Earners 0.21 -0.60 -0.09 -0.91 0.17 -0.62 -0.08 -0.66
(0.63) (-2.10) (-0.28) (-2.78) (0.60) (-4.09) (-0.31) (-3.82)

Bottom (1) – Top (5) Earners -0.80 -0.59 -1.13 -0.97 -0.83 -0.64 -1.10 -0.71
(-2.23) (-1.70) (-2.58) (-2.28) (-2.56) (-4.28) (-2.72) (-4.34)

Observations 57.3m 51.3m 50.5m 45.1m
TFP Growth NAICS3 TFP NAICS3 TFP Firm TFP Firm TFP

This table reports the regression coefficients β and γ from estimates of equation (2) with cumulative income growth
over various horizons h as the dependent variable, using alternative measures of risk premium shocks (Panel A) and
productivity shocks (Panel B). See Section A.5 for details. The sample and controls are the same as in our baseline
specification. We report t-statistics based on standard errors double clustered by industry and year in parentheses.
Coefficients are scaled so that they correspond to a 10% shock.
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Table A.5: Worker Exposure to Risk Premium and Productivity Shocks, Alternative Timing Assumptions

Worker Earnings Timing

End of Period Beginning of Period

2 Years 3 Years 5 Years 2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP RP TFP RP TFP RP TFP

Prior Earnings, 0–25th Percentile -1.15 0.83 -1.57 0.92 -1.37 1.07 -1.62 0.79 -1.62 0.86 -1.22 0.78
(-4.20) (1.99) (-5.13) (2.04) (-3.27) (2.17) (-6.32) (2.02) (-4.51) (1.99) (-2.74) (1.68)

Prior Earnings, 25–50th Percentile -0.86 0.78 -1.14 0.88 -0.83 1.05 -1.14 0.71 -1.06 0.78 -0.67 0.74
(-3.74) (2.22) (-4.43) (2.34) (-2.58) (2.55) (-5.34) (2.17) (-3.73) (2.21) (-2.00) (1.97)

Prior Earnings, 50–75th Percentile -0.74 0.72 -0.95 0.83 -0.63 1.01 -0.94 0.65 -0.84 0.74 -0.49 0.74
(-3.41) (2.30) (-4.01) (2.50) (-2.15) (2.75) (-4.80) (2.20) (-3.26) (2.29) (-1.63) (2.08)

Prior Earnings, 75–95th Percentile -0.70 0.69 -0.84 0.82 -0.53 1.03 -0.84 0.63 -0.72 0.73 -0.38 0.79
(-3.29) (2.35) (-3.86) (2.50) (-1.91) (2.76) (-4.55) (2.07) (-2.98) (2.11) (-1.39) (2.03)

Prior Earnings, 95–100th Percentile -1.15 1.48 -1.14 1.66 -0.65 1.96 -1.12 1.27 -0.83 1.42 -0.26 1.60
(-3.79) (3.67) (-3.76) (3.62) (-2.07) (3.63) (-3.92) (3.03) (-2.62) (2.94) (-0.88) (2.88)

Bottom (1) – Middle (3) Earners -0.40 0.12 -0.62 0.09 -0.74 0.06 -0.68 0.15 -0.78 0.12 -0.74 0.04
(-5.63) (0.88) (-7.29) (0.57) (-5.51) (0.28) (-8.04) (1.15) (-6.62) (0.78) (-4.27) (0.23)

Middle (3) – Top (5) Earners 0.41 -0.76 0.19 -0.82 0.03 -0.95 0.18 -0.63 -0.01 -0.68 -0.23 -0.86
(1.67) (-3.75) (0.75) (-3.43) (0.11) (-3.26) (0.79) (-2.83) (-0.05) (-2.75) (-1.23) (-2.97)

Bottom (1) – Top (5) Earners 0.00 -0.65 -0.44 -0.73 -0.71 -0.89 -0.49 -0.48 -0.79 -0.56 -0.97 -0.82
(0.01) (-2.41) (-1.68) (-2.21) (-2.33) (-2.11) (-2.05) (-1.86) (-3.03) (-1.79) (-3.12) (-2.01)

Observations 60.2m 57.3m 51.3m 60.2m 57.3m 51.3m

This table reports the regression coefficients β and γ from estimates of equation (2) with cumulative income growth over various horizons h as the dependent variable,
using two variations to the timing of risk premium shocks: measured over calendar year t + 1 (first six columns) or over calendar year t (last six columns). We report
exposure across the worker earnings distribution that we estimate by interacting the two shocks with indicators for the worker’s prior income level relative to the levels
of other workers in the same firm. The controls include a third-order polynomial in the log of average income over the past three years, a complete set of age dummies,
the lagged risk premium index interacted by income group dummies, and fixed effects for the worker’s industry I, defined at the 4-digit NAICS level, interacted with
her income bin. The sample is a 20% subsample of all U.S. workers in the LEHD who are employed by public companies. The sample period is 1990–2019. We report
t-statistics based on standard errors double clustered by industry and year in parentheses. Coefficients are scaled so that they correspond to a 10% shock.
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Table A.6: Worker Probability of Job Loss, Shift-Share Design

Measure of Firm Exposure to Risk Premium Shocks

Stock Stock Maturing
Return Return Debt Cash Distance Whited–

Exposure Exposure Next to Firm to Wu
to Market to RP 2 Years Assets Size Default Index

RP RP RP RP RP RP RP

Prior Earnings, 0–25th Percentile ×χf 0.08 0.11 0.12 0.23 0.13 0.20 0.15
(1.78) (2.57) (2.63) (3.03) (2.46) (4.27) (2.65)

Prior Earnings, 25–50th Percentile ×χf 0.05 0.08 0.05 0.26 0.11 0.23 0.15
(1.16) (2.06) (0.90) (3.64) (2.22) (4.99) (2.97)

Prior Earnings, 50–75th Percentile ×χf 0.06 0.11 0.02 0.19 0.13 0.20 0.17
(1.88) (3.28) (0.34) (2.95) (2.83) (4.48) (3.40)

Prior Earnings, 75–95th Percentile ×χf 0.07 0.07 0.05 0.12 0.09 0.13 0.12
(2.37) (2.50) (1.32) (2.03) (2.11) (3.45) (2.71)

Prior Earnings, 95–100th Percentile ×χf 0.05 0.06 0.08 0.04 0.00 0.09 0.03
(1.06) (1.19) (1.70) (0.51) (0.01) (1.91) (0.62)

Bottom (1) – Middle (3) Earners 0.02 0.01 0.10 0.04 0.00 0.00 -0.01
(0.50) (0.23) (2.71) (0.80) (0.10) (0.11) (-0.40)

Middle (3) – Top (5) Earners 0.01 0.04 -0.06 0.15 0.13 0.11 0.14
(0.30) (0.84) (-1.41) (1.96) (2.39) (2.90) (2.46)

Bottom (1) – Top (5) Earners 0.03 0.05 0.04 0.19 0.13 0.11 0.12
(0.52) (0.80) (0.87) (2.08) (2.00) (2.74) (1.81)

Observations 49.7m 49.1m 47.8m 56.4m 56.4m 52.4m 55.9m
Fixed Effects N4 × Y × Inc N4 × Y × Inc N4 × Y × Inc N4 × Y × Inc N4 × Y × Inc N4 × Y × Inc N4 × Y × Inc
Clustering N4, Year N4, Year N4, Year N4, Year N4, Year N4, Year N4, Year

This table reports the regression coefficient β from estimates of equation (3) for various measures of firm-level exposure χf,t, where we replace the dependent variable
with an indicator for job loss over the next three years: whether the worker separates from her initial employer and simultaneously experiences a decline in earnings
growth below the 10th percentile (move + tail loss). We report exposure across the worker earnings distribution that we estimate by interacting χf,t × ϵrp

t+1 with
indicators for the worker’s prior income level relative to the levels of other workers in the same firm. The controls include a third-order polynomial in the log of
average income over the past three years, a complete set of age dummies, and fixed effects for the worker’s industry I (4-digit NAICS) by year t, interacted with her
income bin. The sample is a 20% subsample of all U.S. workers in the LEHD who are employed by public companies. The sample period is 1990–2019. We report
t-statistics based on standard errors clustered by firm in parentheses. The exposure measures χf are standardized to have unit cross-sectional standard deviation and
coefficients are scaled so that they correspond to a 10% shock.
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Table A.7: Model: Parameter Values

A. Fixed Parameters

µA Average TFP growth 0.0018

σA Volatility of TFP growth 0.011

ρA,x Correlation between TFP and RP shock -0.468

r Interest rate 0.0016

z̄E Long-run mean of z in employment 1

ψz Persistence of z 0.991

σz0 Volatility of initial z 0.666

ν Mortality rate 0.0028

α Matching function elasticity 0.407

b̄ Unemployment flow value 0.6

γ Wage smoothing parameter 0.5

B. Parameters Calibrated to Asset Prices

x̄ Average price of risk 0.384

ψx Persistence of price of risk 0.994

σx Volatility of price of risk 0.032

δ Relative price of RP shock 0.431

C. Parameters Calibrated to Worker Data

s Exogenous separation rate 0.0030

c̄(θ̄(z̄O))λ Level of job search cost at xt = x̄ 0.0060

λ Dependence of search cost on market tightness 2.28

κ̄ Vacancy posting cost 0.094

z̄O Long-run mean of z in nonemployment 0.446

σz Volatility of z 0.128

ξ Reputational cost of ending a match (off equilibrium) 0.171

This table reports the parameter values in our baseline calibration of the model. The parameters in Panel A are
fixed a priori, the parameters in Panel B are calibrated to asset pricing moments, and the parameters in Panel C are
chosen to fit worker employment and income growth moments to the data, as described in Section 2.5. We report all
parameters at monthly frequency.
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Table A.8: Model versus Data: Asset Pricing Moments

Model Data

Targeted:

Average P/D 20.3 33.4

Autocorrelation of logP/D 0.91 0.90

Duration of market 21.5 20

Average excess market return 7.1% 7.9%

Volatility of excess market return 19.7% 20.0%

Average excess long-run strip return 7.6% 6.6%

Volatility of excess long-run strip return 30.7% 34.7%

Nontargeted:

Volatility of logP/D 0.38 0.48

Sharpe ratio of market 0.36 0.40

Autocorrelation of excess market return -0.03 0.01

Sharpe ratio of long-run strip 0.25 0.19

This table reports annual moments of the price–dividend ratio (P/D), aggregate stock market, and long-run strip in
the data and in our model simulations. The empirical moments are over the sample period 1929–2019. For the long-
run strip, we use the long-duration portfolio from Gormsen and Lazarus (2023), who sort stocks into decile portfolios
based on ex ante duration. In the model, the stock market is a claim to the stream of aggregate dividends (A.23).
The long-run strip is a claim to the aggregate dividend in 59 years (the realized empirical duration).
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Table A.9: Worker Exposure to Risk Premium and Productivity Shocks, by Job Tenure and Income

A. Worker Tenure

2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP

Shorter Tenure (<1 Year) -2.96 0.82 -3.06 0.80 -2.45 0.65
(-6.80) (1.62) (-5.47) (1.47) (-3.79) (1.08)

Tenure, 1–3 Years -2.21 0.72 -2.30 0.74 -1.82 0.67
(-5.80) (1.96) (-4.65) (1.80) (-3.28) (1.39)

Tenure, 3–5 Years -1.51 0.96 -1.55 0.98 -1.10 0.91
(-5.18) (3.13) (-4.20) (2.92) (-2.67) (2.35)

Longer Tenure (>5 Years) -1.02 0.73 -1.00 0.78 -0.61 0.81
(-4.04) (2.65) (-3.24) (2.64) (-1.78) (2.35)

Shorter – Longer Tenure -1.94 0.09 -2.06 0.01 -1.83 -0.16
(-7.45) (0.25) (-6.79) (0.04) (-5.50) (-0.43)

Observations 47.6m 45.0m 39.5m

B. Worker Tenure and Relative Income

2 Years 3 Years 5 Years

RP TFP RP TFP RP TFP

Shorter Tenure (<1 Year) Omitted Category

Tenure, 1–3 Years 0.70 -0.09 0.70 -0.06 0.55 -0.00
(4.75) (-0.42) (4.85) (-0.28) (3.54) (-0.00)

Tenure, 3–5 Years 1.37 0.15 1.39 0.17 1.21 0.23
(5.81) (0.52) (5.37) (0.60) (4.84) (0.81)

Longer Tenure (>5 Years) 1.84 -0.09 1.92 -0.03 1.68 0.12
(7.18) (-0.25) (6.60) (-0.08) (5.51) (0.31)

Prior Earnings, 0–25th Percentile -3.24 0.87 -3.43 0.83 -2.84 0.64
(-6.95) (1.62) (-5.63) (1.45) (-3.91) (1.01)

Prior Earnings, 25–50th Percentile -2.87 0.82 -2.98 0.80 -2.36 0.64
(-6.63) (1.63) (-5.34) (1.48) (-3.68) (1.09)

Prior Earnings, 50–75th Percentile -2.68 0.74 -2.73 0.75 -2.12 0.62
(-6.49) (1.54) (-5.22) (1.42) (-3.57) (1.07)

Prior Earnings, 75–95th Percentile -2.61 0.71 -2.62 0.73 -2.00 0.66
(-6.48) (1.48) (-5.19) (1.33) (-3.58) (1.07)

Prior Earnings, 95–100th Percentile -3.22 1.30 -2.96 1.36 -2.04 1.43
(-6.22) (2.12) (-5.08) (1.92) (-3.68) (1.78)

Bottom (1) – Middle (3) Earners -0.55 0.14 -0.70 0.08 -0.71 0.01
(-7.29) (1.09) (-6.72) (0.55) (-4.79) (0.08)

Middle (3) – Top (5) Earners 0.54 -0.56 0.23 -0.62 -0.09 -0.81
(1.83) (-2.35) (0.86) (-2.23) (-0.36) (-2.51)

Bottom (1) – Top (5) Earners -0.02 -0.42 -0.47 -0.53 -0.80 -0.79
(-0.07) (-1.50) (-1.80) (-1.51) (-2.56) (-1.85)

Observations 47.6m 45.0m 39.5m

This table reports the regression coefficients β and γ from estimates of equation (2) with cumulative income growth
over various horizons h as the dependent variable. In Panel A, we report worker exposure by tenure bin. In Panel B,
we report worker exposure by tenure and prior earnings bin. The sample and controls are the same as in our baseline
specification. We report t-statistics based on standard errors double clustered by industry and year in parentheses.
Coefficients are scaled so that they correspond to a 10% shock.

85



Table A.10: Model: Parameter Values, Alternative Calibrations

Parameter Interpretation Base Alt1 Alt2 Alt3 Alt4 Alt5 Alt6 Alt7

s Exogenous separation rate 0.0030 0.0029 0.0036 0.0126 0.0015 0.0007 0.0033 0.0031

c̄(θ̄(z̄O))λ Job search cost at xt = x̄ 0.0060 0.0062 0.0103 10.37 0.0029 0 0.0065 0.0068

λ Dependence of search cost 2.28 2.30 3.99 0.26 5.01 0 0 2.40

on market tightness

κ̄ Vacancy posting cost 0.094 0.080 0.046 1.711 0.027 0.0001 0.099 0.069

z̄O Long-run mean of z 0.446 0.449 0.538 0.476 1 0.636 0.351 0.472

in nonemployment

σz Volatility of z 0.128 0.122 0.134 0.1 0.071 0.042 0.146 0.129

ξ Reputational cost of ending 0.171 0 ∞ ∞ 0.219 0.154 0.167 26.22

a match (off equilibrium) (once)

This table compares the parameter values in our baseline calibration and alternative calibrations of the model. Alt1:
no reputation cost (ξ = 0); Alt2: full commitment (ξ = ∞); Alt3: no endogenous separations; Alt4: no skill loss in
nonemployment; Alt5: no search cost; Alt6: search cost proportional to A; Alt7: reputation cost has constant NPV.
The parameters are chosen to fit the same set of worker employment and income growth moments (see Table A.11).
We report all parameters at monthly frequency. The parameters in gray are fixed.
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Table A.11: Model versus Data: Targeted Moments, Alternative Calibrations

Moment Data Base Alt1 Alt2 Alt3 Alt4 Alt5 Alt6 Alt7

Unemployment rate, mean 5.7 6.1 5.8 5.8 6.0 6.2 7.2 5.7 6.0
Unemployment rate, vol 1.2 1.3 1.2 1.3 1.3 0.3 0.9 0.9 1.2

E → U rate, 0–25th percentile 1.0 0.9 0.9 0.7 0.4 1.1 0.8 1.1 0.9
E → U rate, 25–50th percentile 0.5 0.4 0.3 0.5 0.4 0.4 0.1 0.4 0.4
E → U rate, 50–75th percentile 0.3 0.3 0.3 0.4 0.5 0.3 0.1 0.4 0.3
E → U rate, 75–95th percentile 0.3 0.3 0.3 0.4 0.6 0.3 0.1 0.4 0.4
E → U rate, 95–100th percentile 0.3 0.3 0.3 0.4 0.8 0.5 0.3 0.3 0.3

E → N rate, 0–25th percentile 1.3 1.3 1.1 0.9 0.9 0.8 0.0 1.1 1.3
E → N rate, 25–50th percentile 0.6 0.2 0.1 0.8 0.8 0.2 0.0 0.1 0.2
E → N rate, 50–75th percentile 0.4 0.1 0.1 0.5 0.8 0.1 0.0 0.0 0.1
E → N rate, 75–95th percentile 0.4 0.1 0.2 0.2 0.6 0.1 0.0 0.0 0.1
E → N rate, 95–100th percentile 0.4 0.1 0.6 0.1 0.4 0.3 0.0 0.0 0.1

U → E rate, 0–25th percentile 15.6 13.2 16.3 22.6 23.4 12.2 13.9 13.4 14.8
U → E rate, 25–50th percentile 15.6 14.8 16.6 21.2 23.0 12.6 14.8 14.7 16.5
U → E rate, 50–75th percentile 15.7 20.0 17.0 23.2 23.0 15.0 17.0 20.5 21.2
U → E rate, 75–95th percentile 15.9 28.4 28.6 28.6 22.9 19.1 30.2 30.8 29.1
U → E rate, 95–100th percentile 17.1 29.2 32.8 33.9 11.6 17.0 32.2 33.4 28.3

2-yr Exposure to TFP, 0–25th percentile 7.6 6.2 18.6 3.3 -0.3 5.1 6.2 7.1 8.2
2-yr Exposure to TFP, 25–50th percentile 7.0 3.6 16.3 1.8 1.2 3.8 4.6 4.3 3.7
2-yr Exposure to TFP, 50–75th percentile 6.4 5.9 15.5 1.6 -0.7 3.2 5.4 6.9 6.1
2-yr Exposure to TFP, 75–95th percentile 6.2 7.5 15.4 0.9 1.6 6.5 8.1 8.6 8.3
2-yr Exposure to TFP, 95–100th percentile 12.2 10.3 15.2 1.1 5.9 9.4 13.8 11.5 11.5

3-yr Exposure to TFP, 0–25th percentile 8.0 7.5 19.6 3.7 0.7 6.3 7.0 8.3 9.6
3-yr Exposure to TFP, 25–50th percentile 7.4 4.6 18.6 2.4 1.7 4.4 5.4 5.5 4.8
3-yr Exposure to TFP, 50–75th percentile 7.1 7.5 18.2 2.1 -0.4 4.1 6.2 8.8 8.0
3-yr Exposure to TFP, 75–95th percentile 7.1 9.6 18.8 1.3 1.9 7.6 9.0 11.1 10.9
3-yr Exposure to TFP, 95–100th percentile 13.7 13.4 18.5 1.6 9.2 11.0 14.9 14.8 14.7

5-yr Exposure to TFP, 0–25th percentile 7.5 9.4 18.9 4.6 1.7 8.1 8.1 9.2 11.2
5-yr Exposure to TFP, 25–50th percentile 7.4 6.1 19.9 3.3 1.3 5.4 6.3 7.6 6.6
5-yr Exposure to TFP, 50–75th percentile 7.4 9.5 19.9 2.8 0.0 5.5 7.0 11.0 10.4
5-yr Exposure to TFP, 75–95th percentile 7.9 12.3 21.4 2.0 1.7 8.4 9.5 13.9 14.0
5-yr Exposure to TFP, 95–100th percentile 15.7 16.6 21.3 2.4 11.2 12.7 15.8 18.1 18.1

2-yr Exposure to RP, 0–25th percentile -20.2 -15.7 -17.6 -12.9 -6.6 -8.4 -13.4 -14.7 -16.9
2-yr Exposure to RP, 25–50th percentile -14.4 -6.8 -7.7 -8.4 -4.3 -4.8 -4.9 -6.4 -8.4
2-yr Exposure to RP, 50–75th percentile -12.0 -4.3 -2.5 -6.3 -2.8 -2.4 -3.6 -5.0 -1.8
2-yr Exposure to RP, 75–95th percentile -11.0 -4.9 0.2 -5.2 -1.3 -2.2 -3.7 -4.3 -0.9
2-yr Exposure to RP, 95–100th percentile -17.0 -2.3 1.1 -3.0 -2.8 -3.6 -4.2 -2.0 1.1

3-yr Exposure to RP, 0–25th percentile -22.3 -19.6 -23.3 -16.8 -9.3 -12.5 -16.9 -18.5 -20.2
3-yr Exposure to RP, 25–50th percentile -15.2 -9.5 -11.2 -11.3 -6.9 -8.0 -7.4 -9.3 -11.2
3-yr Exposure to RP, 50–75th percentile -12.3 -6.6 -4.7 -9.0 -4.8 -4.0 -5.2 -7.5 -3.8
3-yr Exposure to RP, 75–95th percentile -10.8 -7.2 -0.8 -7.4 -4.3 -3.5 -4.6 -6.6 -2.3
3-yr Exposure to RP, 95–100th percentile -14.3 -3.9 0.3 -4.8 -3.2 -5.0 -4.8 -3.5 0.4

5-yr Exposure to RP, 0–25th percentile -19.1 -23.5 -27.7 -20.9 -13.3 -19.1 -22.9 -23.4 -23.3
5-yr Exposure to RP, 25–50th percentile -11.7 -13.2 -14.7 -15.4 -11.4 -13.6 -11.8 -13.2 -14.5
5-yr Exposure to RP, 50–75th percentile -8.8 -10.5 -7.7 -12.8 -7.4 -7.2 -8.4 -11.5 -7.0
5-yr Exposure to RP, 75–95th percentile -7.4 -11.0 -2.4 -11.1 -9.7 -6.5 -6.7 -10.4 -4.6
5-yr Exposure to RP, 95–100th percentile -8.1 -6.3 -0.9 -8.2 -7.6 -7.8 -6.0 -5.7 -0.8

This table compares targeted moments between the data and the model, comparing across the baseline and alternative
calibrations. Alt1: no reputation cost (ξ = 0); Alt2: full commitment (ξ = ∞); Alt3: no endogenous separations; Alt4:
no skill loss in nonemployment; Alt5: no search cost; Alt6: search cost proportional to A; Alt7: reputation cost has
constant NPV.
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Table A.12: Risk Premium Series

Correlation of AR(1)

Residual With

Series Start Date End Date Sign AR(1) RP Shock Market

Gilchrist–Zakrajsek EBP 1984:12 2021:12 + 0.916 0.51 -0.34

Shiller CAPE ratio 1984:12 2021:12 - 0.993 0.61 -0.64

Chicago Fed NFCI risk 1984:12 2021:12 + 0.965 0.69 -0.46

Jurado–Ludvigson–Ng financial uncertainty 1984:12 2021:12 + 0.980 0.58 -0.39

Bauer–Bernanke–Milstein index 1988:01 2021:12 - 0.959 0.92 -0.84

Bekaert–Engstrom–Xu risk aversion 1986:06 2021:12 + 0.794 0.85 -0.63

Variance risk premium 1990:01 2021:12 + 0.743 0.78 -0.55

VIX 1990:01 2021:12 + 0.815 0.91 -0.73

Martin SVIX bound 1996:01 2012:01 + 0.781 0.94 -0.72

This table summarizes the nine proxies for fluctuations in risk premia that we use as inputs from the literature: the
excess bond premium from Gilchrist and Zakrajšek (2012); Robert Shiller’s CAPE Ratio; the Chicago Fed’s National
Financial Conditions Index (NFCI); the financial uncertainty index of Jurado et al. (2015); the risk appetite index of
Bauer et al. (2023); the risk aversion index of Bekaert et al. (2022); the variance risk premium from Bekaert and
Hoerova (2014); the CBOE VIX; and the SVIX from Martin (2016). We measure risk premium shocks as the PC(1) of
the AR(1) residuals from each series.

Table A.13: Months with Largest Risk Premium Shocks

Month RP Shock Market ∆VIX ∆CS

2008:10 26.82 -17.23 20.50 2.39

2020:03 22.23 -13.38 13.43 1.86

1998:08 19.06 -16.08 19.48 0.64

2008:09 17.73 -9.24 18.74 1.00

1987:10 14.12 -23.24 0.13

This table lists the five months with the largest risk premium shocks and the realized excess stock market return, the
change in the VIX, and the change in credit spreads during these months. All numbers are in percentages.
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