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1 Introduction

In 1950, Isaac Asimov published I, Robot, a collection of short stories about the dilem-

mas of a world where robots powered by artificial intelligence (AI) interact with hu-

mans. Recent advances in AI have brought these dilemmas from the realm of science

fiction to the pages of newspapers and the halls of parliaments.

AI algorithms promise great benefits but also pose substantial risks. Some risks

stem from the alignment problem (Wiener, 1960), where AI systems optimize nar-

rowly defined objectives while neglecting broader human values. For example, so-

cial media algorithms may maximize user engagement at the cost of user well-being

(Russell, Dewey, and Tegmark, 2015, Amodei, Olah, Steinhardt, Christiano, Schul-

man, and Mané, 2016). Other dangers arise from AI’s potential to facilitate harmful

activities, such as generating deepfakes for fraud, automating cyberattacks, manip-

ulating users through hyper-personalization, and aiding the design of biological or

chemical weapons.

There is substantial uncertainty about these risks. In a recent interview (Tyrang-

iel, 2025), Sam Altman, the CEO of OpenAI says ”I still expect that on cybersecurity

and bio stuff we’ll see serious, or potentially serious, short-term issues that need

mitigation. Long term, as you think about a system that really just has incredible

capability, there’s risks that are probably hard to precisely imagine and model. But I can

simultaneously think that these risks are real and also believe that the only way to

appropriately address them is to ship product and learn.”

There is also considerable disagreement about AI’s societal risks, even among

AI pioneers. Geoffrey Hinton resigned from Google to openly discuss the potential

threats AI poses to humanity (Heaven, 2023). In contrast, Yann LeCun, Meta’s Chief

AI Scientist from 2013 to 2025, and Richard Sutton, a professor at the University of

Alberta and, like Hinton and LeCun, a Turing Award recipient, have both dismissed

these concerns as overblown (Hart, 2024, Scott, 2025).
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Uncertainty and disagreement about AI risks are reflected in recent efforts by

major insurers to exclude AI-related liabilities from corporate insurance policies (see,

e.g., Harris and Criddle, 2025).

This paper studies the optimal AI regulatory policy under uncertainty and dis-

agreement about its societal costs. We classify these costs into two categories. The

first is negative externalities, such as fueling political polarization, facilitating fraud,

disseminating false information, jeopardizing financial stability, and weakening democ-

racies (see, e.g., Acemoglu, 2021, and Beraja, Kao, Yang, and Yuchtman, 2023). The

second is “internalities,” where individuals make harmful choices due to cognitive

biases or misinformation (Herrnstein, Loewenstein, Prelec, and Vaughan Jr, 1993).

Beta testing and red-teaming can help identify AI risks before deployment. Beta

testing exposes the AI algorithm to a limited group of users to assess societal costs.

Red-teaming involves hiring experts to actively probe for vulnerabilities.1 To sim-

plify, we use the expression beta testing to encompass both approaches. In our

model, beta testing emerges endogenously as a response to uncertainty. Under cer-

tain circumstances and government policies, developers are willing to forego short-

term profits to gain information that informs their decision on whether to release the

algorithm to the broader population.

Pigouvian taxes are commonly used to align private and social incentives. These

taxes can be levied ex-ante, based on expected external costs, or ex-post, determined

by actual social damages. Applying these taxes to AI faces a key challenge: develop-

ers and regulators may have different expectations about AI’s risks. When developer

expectations are private information, Pigouvian taxes fail to implement the first-best

allocation. We show that charging developers for the realized external damages (ex-

post taxes) is insufficient to align incentives both in the short run (beta testing) and in

1The term “red teaming” originated in Cold War military strategy, where red teams simulated ad-
versarial attacks to test defenses. It has since been adopted in cybersecurity and AI safety to describe
efforts to uncover vulnerabilities.
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the long run (deployment). When beliefs are private information, ex-ante taxes can

be used to align incentives in the long run but may induce excessive experimentation

in the short run.

The social optimum can be achieved through a two-stage regulatory policy. In

the first stage, the regulator either approves the AI algorithm for release or requires

beta testing, specifying the sample size used in the test. In the second stage, based on

the information obtained in the first stage, the regulator decides whether to permit

full deployment or withdraw the algorithm.

Even though our paper focuses on AI regulation, our findings offer broader in-

sights applicable to any industry marked by significant uncertainty and heteroge-

neous expectations about externalities. The regulation policy that emerges as op-

timal from our analysis has been used in two prominent domains that share these

attributes.

The first domain is financial regulation. Since the UK Financial Conduct Author-

ity introduced regulatory sandboxes in 2015, more than 50 regulators, including the

U.S. Consumer Financial Protection Bureau, have adopted this approach (Cornelli,

Doerr, Gambacorta, and Merrouche, 2024). By allowing firms to test products with

limited users in controlled environments, sandboxes reveal consumer protection, cy-

bersecurity, regulatory, and systemic risks before broader market introduction.

The second domain is autonomous vehicle regulation. The U.S. National High-

way Traffic Safety Administration (Burd, 2021) and Germany’s Federal Ministry of

Transport run sandbox programs that test autonomous vehicles in controlled envi-

ronments to generate data, reduce uncertainty, and guide deployment decisions.

Our paper is organized as follows. Section 2 reviews the related literature. Sec-

tion 3 introduces our benchmark model and 4 discusses optimal policy. In Section

5, we analyze scenarios where AI algorithms create internalities. In Section 6, we

discuss other frictions which might be relevant for the design of AI regulation and

how our results relate to current regulatory approaches in the U.S. and the European
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Union. Finally, we summarize our results and discuss additional considerations rel-

evant to the design of AI regulation.

2 Related literature

Our paper relates to four important strands of research. The first is a nascent eco-

nomics literature on AI regulation. Acemoglu and Lensman (2024) analyze optimal

AI adoption when uncertainty about potential disasters arrives exogenously over

time, creating incentives for delayed adoption. Gans (2024) studies a model in which

information arrives endogenously through adoption and shows that learning about

AI’s social costs may justify accelerating adoption, provided it is reversible. Both

papers abstract from heterogeneous and unobservable beliefs held by AI developers

and from the endogenous design of beta-testing and conditional-approval mecha-

nisms, which are central to our analysis. In work subsequent to ours, Gans (2025)

studies the regulation of innovation direction across technological paths with un-

certain externalities, showing that unrestricted ex-ante Pigouvian taxation achieves

the first-best, while ex-post liability can dominate when policy instruments are con-

strained to respond only to proven damages. In our setting, which features hetero-

geneous and privately held beliefs, Pigouvian taxation, whether ex-ante or ex-post,

is generally insufficient to achieve the first-best.e show that, when beliefs are hetero-

geneous and private information, Pigouvian taxation, ex-ante and ex-post, cannot

achieve the first-best.

Our emphasis on beta testing as a means of resolving uncertainty about potential

societal harms is related to work that highlights the use of random audits to evaluate

algorithmic decision-making. For example, Kleinberg, Ludwig, Mullainathan, and

Sunstein (2018) discuss audit studies that assign otherwise equivalent applicants dif-

ferent race or gender attributes to detect discriminatory hiring and lending patterns.

Relatedly, Rambachan, Kleinberg, Mullainathan, and Ludwig (2020) develop a reg-
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ulatory framework that emphasizes algorithmic disclosure and auditability as tools

for detecting and limiting discrimination ex-post.

Callander and Li (2024) study a setting in which firms have superior information

about a technology’s potential harms and regulators attempt to extract this informa-

tion, showing that greater competition weakens information extraction and reduces

the approval of beneficial innovations. Blattner, Nelson, and Spiess (2021) analyze a

delegation game in which an agent designs a prediction algorithm under regulatory

constraints, showing that mandating fully transparent, simple algorithms is ineffi-

cient when the divergence with the regulator is limited, and complex models deliver

superior performance. Chen and Hua (2024) discuss conditions under which, in the

presence of limited liability for catastrophic harms, setting liability above realized

damages in non-catastrophic cases can increase social welfare.

Our work makes three key contributions to this literature. First, we examine how

uncertainty about AI’s internal and external effects, and disagreement about their

likelihood, shape optimal regulation. Second, we highlight the role of beta testing

in mitigating AI’s downside risk. Third, we use our model to shed light on the

regulatory approaches pursued by the United States and the European Union.

A second related literature examines the impact of AI and automation on the

labor market (e.g., Burstein, Morales, and Vogel, 2019, Martinez, 2021, Acemoglu

and Restrepo, 2022, Guerreiro, Rebelo, and Teles, 2022, Costinot and Werning, 2023,

Thuemmel, 2023, and Ide and Talamàs, 2025), the critical role of data in AI algo-

rithms (e.g., Jones and Tonetti, 2020, and Farboodi and Veldkamp, 2021), and the

potential existential risks associated with AI (Jones, 2024). Our contribution relative

to this literature is to characterize optimal policy responses to AI’s externalities and

internalities.

A third strand of research investigates the value of experimentation (e.g., Callan-

der, 2011). We contribute to this literature by studying an environment in which

pre-launch experimentation emerges endogenously as a distinct stage of product
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development. Firms choose both whether to experiment and the scale of the experi-

mental trial.

Finally, a fourth related area is clinical trial design, often modeled as a multi-

armed bandit problem (e.g., Thompson, 1933 and Gittins, 1974). Our emphasis on

optimal beta testing relates to work on conservative or safe exploration that con-

strains experimentation relative to a baseline policy to limit downside risk during

learning (e.g., Wu, Shariff, Lattimore, and Szepesvári, 2016; Kazerouni, Ghavamzadeh,

Abbasi-Yadkori, and Van Roy, 2017; Jagerman, Roijers, Hennes, and de Rijke, 2020).

We contribute to this literature by considering settings where private and social in-

centives diverge and offering policies that equate these incentives in settings with

heterogeneous expectations about external social costs.

In addition to these four strands of research, our results on the dominance of

mandatory beta testing and regulatory approval over Pigouvian taxation relate to

the literature on instrument choice. Weitzman (1974, 1978) studies whether a plan-

ner should regulate through prices or quantities under uncertainty when firms ob-

serve cost shocks that the planner does not. He shows that quantity regulation is

preferred when marginal costs are relatively flat, because price errors then generate

large and inefficient quantity responses. In our model, price-based instruments fail

for a different reason: firms’ beliefs about external harms are unobservable, so the

planner can only set taxes based on its own expectations of firms’ beliefs.

In related work, Farhi and Gabaix (2020) show that quantity regulation can dom-

inate Pigouvian taxes when agents differ in their attention to taxes. In our setting,

heterogeneity arises from disagreement about risks rather than behavioral biases,

making optimal Pigouvian taxation informationally demanding. Our key contribu-

tion is to endogenize information generation through beta testing, which informs

regulatory approval and yields implementable policies.

In Section 6, we further relate our results to the literature on regulation policy,

drawing in particular on the analyses of regulation under limited liability and im-
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perfect verifiability developed by Tirole (2010) and Kolstad and Ulen (1983).

3 Benchmark model

We consider a two-period model with a continuum of identical households and a

single AI developer. We interpret the first period as the short run and the second

as the long run.2 In our model, using AI carries inherent risks, as it can create mis-

alignments or facilitate activities that generate significant social costs. When the

algorithm is deemed too risky for full initial release, the developer may choose to

conduct beta testing by distributing the algorithm to a limited subset of the pop-

ulation. Based on the outcome of this beta testing, the developer can then decide

whether to release the algorithm in the second period.

We allow for disagreement between society and AI developers about the likeli-

hood of societal risks. This disagreement can arise because developers may be overly

optimistic, expecting negative external effects to be small.

We now discuss the household problem, the AI developer’s problem, and the

unregulated equilibrium. Then, we characterize the social optimum and compare it

with the unregulated equilibrium.

3.1 Unregulated equilibrium

Household problem The economy has a continuum of households indexed by j ∈
[0, N], where N denotes the total number of households in the population. Each

household lives for two periods.

Household j’s momentary utility in period t, vj,t, has a quasi-linear form:

vj,t = yt + [u − Es
t(i

2
t )− pt]× Ij,t − Es

t(e
2
t ), (1)

2We omit time subscripts throughout the text whenever doing so does not compromise clarity.
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where yt is the exogenous income earned in period t, u is the utility of using the

algorithm and pt is the price of the algorithm in period t. The indicator function Ij,t

takes the value one if household j buys the AI license and zero otherwise. The mass

of AI users at time t is µt ≡
� N

0 Ij,tdj. We now discuss the variables it and et.

Alignment and other problems In the introduction, we classify AI risks and mis-

alignments into two types: internal and external. Internal risks and misalignments

arise when AI algorithms manipulate households into making decisions that reduce

their welfare. This effect, it, decreases momentary utility by i2
t , which is measured in

units of output.

External risks and misalignments occur when an AI algorithm affects a house-

hold indirectly through the use of the AI algorithm by other households. For ex-

ample, AI-driven social media may polarize public opinion and distort election out-

comes. This effect, et, reduces momentary utility by e2
t , which is measured in units

of output. This reduction is increasing in the number of users, µt.

Households can control internal risks and misalignments by choosing not to pur-

chase the algorithm. In this section, we assume they account for the expected welfare

reduction from the internal effect
(

Es(i2
t ) in equation (1)

)
when making their pur-

chase decision. In Section 5, we examine a scenario where behavioral biases lead

households to overlook these internal effects when deciding whether to adopt the

algorithm.

In contrast, households have no control over external misalignments and risks,

as these depend on the adoption decisions made by other households.

Expectations of short- and long-run risks and misalignments We assume that

the short-run impact of internal and external risks and misalignments on utility is

equal to the long-run impact, ϕ2
x, plus a mean-zero random variable, ξx for x ∈ {i, e}:
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i2
1 = ϕ2

i + ξi, i2
2 = ϕ2

i ,

e2
1 = (ϕ2

e + ξe)µ1, e2
2 = ϕ2

e µ2.

Positive and negative values of the random variable ϕx represent undesirable

risks and misalignments. The random variables ξx capture the idea that the full

consequences of AI usage may not be fully realized in the short run but emerge over

the long run.

We allow developers to have different beliefs over the likelihood of misalign-

ments than the rest of society. We assume that developers and society hold these dif-

ferent beliefs dogmatically. The superscript d denotes the developer’s beliefs, Ed
t (·),

and the superscript s denotes societal beliefs, Es
t(·). For each k = d, s, we assume

that the expected value of ϕx is zero for x ∈ {i, e}:

Ek
1(ϕx) = 0.

Let σ2
k,x denote uncertainty at time one about the algorithm’s potential misalignment:

σ2
k,x = Ek

1(ϕ
2
x).

The perceived distributions of ϕx can include very large realizations, corresponding

to catastrophic events.

To assess internal and external risks and misalignments, the developer can re-

lease the algorithm to a sample of µ1 users in period one. The outcomes from this

partial release inform the developer’s decision about a full-scale release in the sec-

ond period.

We assume the probability of generating information from the initial release, de-

noted by π(µ1), depends on the number of licenses µ1,

π(µ1) =

{
(µ1/κ)α if µ1 < κ,
1 if µ1 ≥ κ.
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Here, κ denotes the minimal number of participants required to obtain informa-

tion with certainty. If κ = N, information is generated with probability one only

when the algorithm is released to the whole population. The parameter α < 1 deter-

mines the effectiveness of information generation. As α → 0, π(µ1) → 1 if µ1 > 0

and π(µ1) = 0 if µ1 = 0. In this limiting case, testing on an infinitesimally small

sample generates information with certainty.

We define an indicator function B such that B = 1 if information is generated and

B = 0 otherwise. If information is generated, a public signal about the algorithm’s

risks and misalignments becomes available. Rather than detailing the distributions

of the random variables ξx, we model the effect of this information directly on poste-

rior beliefs. In particular, the posterior beliefs about ϕx at the beginning of the second

period become:

Ek
2(ϕx) = ϕ̂k,x, VARk

2(ϕx) = σ̂2
k,x < σ2

k,x.

Thus, while uncertainty is reduced, some residual uncertainty (σ̂2
k,x > 0) persists,

requiring decisions to be made under incomplete information. Posterior beliefs sat-

isfy the consistency conditions:

Ek
1[ϕ̂k,x] = 0, Ek

1[ϕ̂
2
k,x + σ̂2

k,x] = σ2
k,x.

If no information is generated (B = 0), initial priors remain unchanged for both

the developer and society.

Developer optimism We make the natural assumption that developers are more

optimistic than society about the both the internal (x = i) and external (x = e)

effects of the AI algorithm:

Ed
t (ϕ

2
x) ≤ Es

t(ϕ
2
x), (2)

and

Ed
1[E

s
2(ϕ

2
x)] ≤ Es

1[ϕ
2
x]. (3)
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Household decisions Household j chooses whether to purchase an algorithm li-

cense in each period to maximize their expected lifetime utility, given by

Uj = (1 − β)vj,1 + βEs
1(vj,2). (4)

The household buys an AI license in period t if the expected private benefits, net

of the expected internal effects from the algorithm, exceed the algorithm’s price. In

period one, this condition is

u − σ2
s,i ≥ p1.

A similar condition applies in period two:

u − Es
2(ϕ

2
i ) ≥ p2.

The expected negative welfare consequences of internal misalignments (σ2
s,i in

period one and Es
2(ϕ

2
i ) in period two) reduce the price households are willing to pay

for the algorithm in both periods.

The AI developer’s problem There is a single AI developer who has designed an

algorithm. In period one, the developer releases the algorithm to a fraction µ1 ∈
[0, N] of the population. We assume that the decision to deploy the algorithm in

period one can be reversed in period two. If this reversal occurs, the algorithm does

not impact period two utility.

The developer’s problem in period two At the beginning of period two, the

developer decides whether to release the algorithm to the population, choosing the

number of AI licenses to offer for sale (µ2) and the price of each license (p2). At the

end of period two, uncertainty about internal and external misalignments is realized.

The developer’s utility in the second period is,

V2 =


p2µ2 − Ed

2(ϕ
2
e )µ2, if p2 ≤ u − Es

2(ϕ
2
i ) and B = 1,

p2µ2 − σ2
d,eµ2, if p2 ≤ u − σ2

s,i and B = 0,
0, otherwise.
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where p2µ2 is the developer’s revenue when p2 is sufficiently low for sales to be

positive, that is, when p2 is weakly below the household’s utility net of the expected

internality effect.

We assume that the developer is immune to the algorithm’s internal effect but

experiences disutility from the externality in the same way households do. The vari-

ables Ed
2(ϕ

2
e )µ2 and σ2

d,eµ2 represent the expected externality borne by the developer

with and without testing in period one, respectively.

The developer, acting as a monopolist, sets the price to extract the expected

household surplus.3 Whenever the developer markets the algorithm, it charges the

highest price the household is willing to pay, that is, the utility of the algorithm net

of the expected internality effect,

p2 =

{
u − Es

2(ϕ
2
i ), if B = 1,

u − σ2
s,i, if B = 0.

In period two, the developer releases the algorithm if the maximum price the house-

hold is willing to pay is greater than the reduction in the developer’s utility caused

by the externality associated with the algorithm, i.e., if p2 ≥ Ed
2(ϕ

2
e ).

If new information is generated in period one (B = 1) the posterior means of ϕ2
x,

for x ∈ {i, e}, are given by Ed
2(ϕ

2
x) = ϕ̂2

d,x + σ̂2
d,x. The developer releases the algorithm

in the second period if the maximum price it can charge exceeds the reduction in

utility caused by the external effect on the developer,

u − (ϕ̂2
s,i + σ̂2

s,i) ≥ ϕ̂2
d,e + σ̂2

d,e.

Otherwise, the algorithm is not released (µ2 = 0).

In the unregulated equilibrium, household expectations regarding internal risks

and misalignments matter because they determine their willingness to pay for the

3This pricing strategy generates no deadweight losses. It simply redistributes resources from the
households to the monopolist.
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algorithm, while the developer’s expectations regarding internal risks are inconse-

quential.

Conversely, household expectations about external risks and misalignments have

no impact. Instead, the developer’s expectations about external effects matter be-

cause they determine the release decision.

If no information is generated in period one (B = 0), the algorithm is released in

period two to the whole population (µ2 = N) if

u − σ2
s,i ≥ σ2

d,e,

and not released otherwise (µ2 = 0).

The optimized developer utility in period two is,

V∗
2 =

{
max{u − (ϕ̂2

s,i + σ̂2
s,i)− (ϕ̂2

d,e + σ̂2
d,e), 0}N, if B = 1,

max{u − σ2
s,i − σ2

d,e, 0}N, if B = 0.

The asterisk indicates that the value function is evaluated using the developer’s op-

timal pricing and implementation strategy in period two.

To make the problem interesting, we assume that the distributions of ϕx are such

that there is a strictly positive probability that both u − (ϕ̂2
s,i + σ̂2

s,i) > ϕ̂2
d,e + σ̂2

d,e, in

which case the developer releases the algorithm, and u − (ϕ̂2
s,i + σ̂2

s,i) < ϕ̂2
d,e + σ̂2

d,e in

which case the algorithm is not released. This assumption means that the probability

of the algorithm being implemented in period two is strictly positive but less than

one.

The following proposition states that, from the perspective of period two, a higher

µ1 has a strictly positive value. The intuition for this result is that the developer is

better off because it can make decisions based on the acquired information.

Lemma 1 (Private benefits of releasing in period one). The developer’s expected utility

in the second period increases with the number of licenses sold in period 1 if µ1 < κ.

dEd
1(V∗

2 )

dµ1
> 0.
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This lemma will be useful in characterizing the developer’s optimal release policy

in period one, to which we turn next.

The developer’s problem in period one In period one, the developer chooses

the number of licenses, µ1, and the price per license, p1. The developer’s objective

function is given by:

V = (1 − β)

({
p1µ1 − σ2

d,eµ1, if p1 ≤ u − σ2
s,i

0, if p1 > u − σ2
s,i

)
+ βEd

1(V∗
2 ).

The optimal price for the developer is the maximum price the household is willing

to pay: p = u − σ2
s,i.

If u − σ2
s,i ≥ σ2

d,e, it is optimal to release the algorithm to the entire population,

µ1 = N. Instead, if u − σ2
s,i < σ2

d,e, the expected benefit of releasing the algorithm

in period one is negative. Still, it might be optimal to release the algorithm to at

least part of the population to obtain information that can be used in period two

(see Lemma 1). We call this type of experimentation beta testing. Since α < 1, the

developer’s utility is increasing around µ1 = 0, so the optimal solution features

positive beta testing: µ1 > 0. The intuition for this result is that the benefits from

learning increase sufficiently fast with µ1 to offset the costs of testing, which are

given by (u − σ2
s,i − σ2

d,e)µ1.

Learning through beta testing is costly because it sacrifices the period-one rev-

enue that could be collected from a population-wide release to generate information

through a limited rollout.

Proposition 1 summarizes the developer’s optimal release policy. To describe this

policy, it is useful to define the developer’s information benefit-cost ratio, Λd:

Λd ≡ β

1 − β

Ed
1
[
max

{
u − Es

2(ϕ
2
i )− Ed

2(ϕ
2
e ), 0

}]
σ2

s,i + σ2
d,e − u

. (5)

This ratio compares the expected benefits of increasing the probability of learning

the external effects of the AI algorithm, βEd
1
[
max

{
u − Es

2(ϕ
2
i )− Ed

2(ϕ
2
e ), 0

}]
, to the
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immediate cost to the developer of selling the AI algorithm to an additional person

today. This cost is the external effect on the developer minus the sale price of the

algorithm, (1 − β)[σ2
d,e − (u − σ2

s,i)].

Proposition 1 (Uncertainty, beta testing, and algorithm release). In an unregulated

equilibrium, the number of user licenses offered by the developer in the first period depends

on the level of uncertainty, the effectiveness of beta testing, and the information benefit-cost

ratio. The equilibrium has the following properties:

1. If uncertainty about external effects is low, σ2
d,e ≤ u − σ2

s,i, the developer foregoes

beta testing and releases the AI algorithm to the entire population in the first period

(µ1 = N).

2. If uncertainty about external effects is relatively high. σ2
d,e > u − σ2

s,i, then the devel-

oper beta tests the algorithm on a sample of size,

µ1 = min

{[
αΛd N

κ

] 1
1−α

, 1

}
κ. (6)

The developer may opt to withdraw the product from the market even when the

expected misalignment, ϕ̂k,x, is relatively small in absolute value, provided that the

residual uncertainty, σ̂2
k,x, remains substantial. This outcome highlights the role of

uncertainty in decision-making, as the long-term negative consequences are not im-

mediately apparent, prompting both households and developers to exercise caution

regarding the algorithm’s future impact.

3.2 The first-best solution (planner’s problem)

We consider a central planner who, in the first period, chooses the number of house-

holds that can use the algorithm. The planner may obtain information about its

internal and external effects when this number is positive. In the second period, the
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planner decides whether to make the algorithm available and how many licenses to

issue.

We define social welfare as the sum of the households’ and developer’s utilities,� N
0 Ujdj + V . With quasi-linear utility, maximizing this social welfare function is

equivalent to maximizing efficiency. Any distribution of utilities can be achieved

using lump-sum transfers.

To compute the socially optimal allocations, we describe the solution to the second-

period problem, contingent upon the choices made in the first period about µ1.

The planner’s problem in period two The expected social welfare in the second

period, considering the available information, is given by:

W2 =

Ny2 +
[
u − (ϕ̂2

s,i + σ̂2
s,i)− (N + 1) (ϕ̂2

s,e + σ̂2
s,e)
]

µ2, if B = 1,

Ny2 +
[
u − σ2

s,i − (N + 1) σ2
s,e

]
µ2, if B = 0.

We now determine the optimal value of µ2. If B = 1, the posterior expectation is

given by Es
2(ϕ

2
x) = ϕ̂2

s,x + σ̂2
s,x. In this case, releasing the algorithm is optimal if

u − (ϕ̂2
s,i + σ̂2

s,i)

N + 1
≥ ϕ̂2

s,e + σ̂2
s,e,

ensuring that the household’s utility from using the algorithm, net of expected inter-

nal effects, exceeds the external effect. If this condition is not satisfied, then µ2 = 0.

If B = 0, then µ2 = N if
u − σ2

s,i

N + 1
≥ σ2

s,e,

and otherwise µ2 = 0 .

In period two, the planner only releases AI algorithms that are expected to be

socially beneficial, taking into account the expected external effects on the entire

population, (N + 1)Es
2(ϕ

2
e ). In contrast, the developer considers only its own ex-

pected loss of utility due to the externality, Ed
2(ϕ

2
e ). This difference implies that the

developer is willing to commercialize AI algorithms that are detrimental to society.
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The social welfare in period two is given by:

W∗
2 = Ny2 +

{
max{u − (ϕ̂2

s,i + σ̂2
s,i)− (N + 1)(ϕ̂2

s,e + σ̂2
s,e), 0}N, if B = 1

max{u − σ2
s,i − (N + 1)σ2

s,e, 0}N, if B = 0,

where the asterisk indicates that the value function has been maximized with respect

to the choice of implementation in period two.

We assume that there is a strictly positive probability that u − (ϕ̂2
s,i + σ̂2

s,i) > (N +

1)(ϕ̂2
s,e + σ̂2

s,e), in which case it is optimal to release the algorithm, and u − (ϕ̂2
s,i +

σ̂2
s,i) < (N + 1)(ϕ̂2

s,e + σ̂2
s,e), in which case it is not. This assumption means that the

probability that the planner releases the algorithm in the second period, given the

information obtained in the first period, is strictly positive but less than one.

The equivalent of Lemma 1 for the planner is as follows.

Lemma 2 (Social benefits of beta testing in period one). Expected social welfare in the

second period increases with the size of the sample used for beta testing in the first period for

µ1 < κ:
Es

1(dW∗
2 )

dµ1
> 0.

This lemma will be useful in characterizing the planner’s optimal release policy

in period one, to which we turn next.

The planner’s problem in period one Expected social welfare is given by

W = (1 − β)
[

Ny1 +
{

u − σ2
s,i − (N + 1)σ2

s,e

}
µ1

]
+ βEs

1[W∗
2 ].

From a static perspective, it is optimal to set µ1 = 0 if u− σ2
s,i − (N + 1)σ2

s,e < 0. How-

ever, beta testing in the first period (µ1 > 0) creates value by generating information

that the planner can use in the second period (see Lemma 2).

Proposition 2 summarizes the planner’s optimal release policy. To describe this

solution, it is useful to define the planner’s information benefit-cost ratio, Λs:

Λs ≡ β

1 − β

Es
1
[
max

{
u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e ), 0

}]
σ2

s,i + (N + 1)σ2
s,e − u

. (7)
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With homogeneous beliefs Λs < Λd because the developer does not take into ac-

count external effects on the population. Because of differences in beliefs and weights

assigned to external damages, the planner’s information benefit-cost ratio is lower

than the developer’s, Λs < Λd.

Proposition 2 (Uncertainty, beta testing, and algorithm release). In the first best, the

number of user licenses offered in the first period depends on the level of uncertainty, the

effectiveness of beta testing, and the information benefit-cost ratio. The solution is as follows:

1. If uncertainty is low, σ2
s,e ≤

u−σ2
s,i

N+1 , the planner always foregoes beta testing and releases

the AI algorithm to the entire population in the first period (µ1 = N)

2. If uncertainty is relatively high σ2
s,e >

u−σ2
s,i

N+1 , the planner beta tests the algorithm on a

sample of size

µ1 = min

{[
αΛs N

κ

] 1
1−α

, 1

}
κ. (8)

Figure 1 depicts the optimal values of µ1 (Panel A) and µ2 (Panel B) chosen by the

planner and the developer for various levels of uncertainty. In the first period, both

the developer and the planner agree to release the algorithm to the entire population

when uncertainty about the external effect is low
(

σ2
s,e ≤

u−σ2
s,i

N+1

)
. At higher levels of

uncertainty, the planner is more cautious than the developer, releasing the algorithm

to fewer users. The reason is that the planner takes into account the impact of the

externalities generated by the algorithm on the entire population.

In the second period, the developer and planner make the same release decisions

when external effects are low or high. However, when external effects are in an inter-

mediate range, they disagree: the developer opts to release the algorithm, whereas

the planner chooses not to. This disparity occurs because the developer disregards

the algorithm’s external effects on the population.
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4 Regulating AI

Social welfare in the unregulated equilibrium falls short of the social optimum be-

cause developers overlook AI’s external impact on households. Aligning private

and social incentives through Pigouvian taxes is challenging because of uncertainty

and disagreement over AI’s external effects.

We consider two types of Pigouvian taxes: ex-post, which hold developers fully

liable for realized damages, and ex-ante, which charge them based on expected ex-

ternal effects. Ex-post taxes work when expectations are homogeneous but fail when

expectations are heterogeneous. Ex-ante taxes remain effective with heterogeneous

expectations but must account for differing expectations between regulators and de-

velopers. Eliciting developers’ true expectations is inherently difficult because they

have incentives to feign pessimism about external effects to reduce ex-ante Pigou-

vian taxes. So, when the developer’s expectations are unobservable to the planner,

ex-ante Pigouvian taxes fail to implement the first best.

In this model, the optimal policy includes a prescription about the release in pe-

riod one, which is the extent of beta testing, as well as conditional approval in pe-

riod two. In particular, the regulator determines whether to release the algorithm or

subject it to beta testing to assess societal risks. Second, based on the information

obtained, the regulator either approves or withdraws the algorithm.
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Figure 1: Release decisions in the first and second periods
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4.1 Pigouvian taxes

We first consider ex-post Pigouvian taxes in an economy with homogeneous beliefs.

Throughout, we assume that any tax revenue is redistributed to households as lump-

sum transfers.

4.1.1 Ex-post Pigouvian taxes

Suppose that regulators levy liability taxes on developers equal to the welfare cost

of the realized external effects imposed on the households:

Tt = N × e2
t . (9)

The developer understands that selling the AI to a larger population (higher µt)

makes them more likely to face higher taxes: Ed
t (Tt) = NEd

t (ϕ
2
e )µt. The welfare

properties of these taxes are summarized by the following proposition.

Proposition 3 (Ex-Post Pigouvian Taxes under Homogeneous Beliefs). Suppose that

developers and society have the same beliefs. Then, ex-post Pigouvian taxes in equation (9)

align private and social incentives. As a result, the developer’s decisions regarding testing,

implementation, and innovation are socially optimal.

Proof. If beliefs are homogeneous, then Ed
t (ϕ

2
e ) = Es

t(ϕ
2
e ), and for notational con-

venience we drop the indices s and d. It is still optimal for the developer to set

pt = u − Es
t(ϕ

2
i ). Replacing this price and the expected taxes into the utility of the

developer we find that V = (1 − β)V1 + βE1(V2), where

V1 = [u − σ2
i − (N + 1)σ2

e ]µ1

V2 =

{
[u − (ϕ̂2

i + σ̂2
i )− (N + 1)(ϕ̂2

e + σ̂2
e )]µ2, if B = 1,

[u − σ2
i − (N + 1)σ2

e ]µ2, if B = 0.

It follows that Vt = Wt − Nyt. Private and social incentives are aligned, so privately

optimal decisions coincide with the social optimum.
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Heterogeneous beliefs When the developer and society hold different beliefs about

the algorithm’s potential risks, ex-post Pigouvian taxes fail to align the developer’s

incentives with those of society. This divergence in incentives arises because the

developer, being more optimistic, assigns a lower probability to negative external

effects and is therefore more inclined to release the algorithm than the planner.

To see this result formally, note that in period t, the developer’s expectation of

their tax liability is lower than the planner’s Ed
t (Tt) = NEd

t (ϕ
2
e )µt < NEs

t(ϕ
2
e )µt. It

follows that

Vt = Wt − Nyt + (N + 1)
{

Es
t(ϕ

2
e )− Ed

t (ϕ
2
e )
}

µt

This expression shows that the developer is willing to release the algorithm in cases

where the planner would not. In the extreme case where Ed
t (ϕ

2
e ) = 0, the developer

is always willing to release the algorithm, while the planner is more cautious.

4.1.2 Ex-ante Pigouvian taxes

We now show that ex-ante Pigouvian taxes can achieve the efficient outcome when

beliefs are heterogeneous, but only if beliefs are publicly known and contractible.

Suppose the regulator sets taxes at the beginning of each period based on the ex-

pected external damages caused by the algorithm:

Tex−ante
t = Es

t(Ne2
t ) = NEs

t(ϕ
2
e )µt. (10)

When beliefs are heterogeneous, the ex-ante taxes in equation (10) do not imple-

ment the social optimum because we need to correct for differences in beliefs. For

instance, the taxes in period two need to be corrected as follows:

Tex−ante
2 =

{
NEs

2(ϕ
2
e )µ2 +

[
Es

2(ϕ
2
e )− Ed

2(ϕ
2
e )
]

µ2 if B = 1,

Nσ2
s,eµ2 +

(
σ2

s,e − σ2
d,e

)
µ2 if B = 0.

(11)

The first term internalizes the externality according to the regulator’s expecta-

tions. The second term corrects for the difference in expectations between the devel-

oper and the regulator.
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Note that the developer pays a higher tax when they are relatively optimistic

(lower Ed
t (ϕ

2
e )), and a lower tax when they are relatively pessimistic (higher Ed

t (ϕ
2
e )).4

However, the analog of taxes (11) applied to period one fail to implement the

socially optimal level of µ1. The reason is that the developer’s information benefit-

cost ratio is higher than that of the regulator,

Λd = Λs ×
Ed

1
[
max{u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e ), 0}

]
Es

1

[
max{u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e ), 0}

] > Λs. (12)

To implement the first-best outcome, the period-one taxes must correct not only

for differences in expectations about the externality in that period but also for differ-

ences in expectations regarding the externality in period two. The latter correction

is necessary because the developer’s decision to beta test in period one has informa-

tional value in period two. The period-one taxes that achieve the first-best are given

by:

Tex−ante
1 = NEs

1(ϕ
2
e )µ1 +

[
Es

1(ϕ
2
e )− Ed

1(ϕ
2
e )
]

µ1

+
β

1 − β
π(µ1)N

(
Ed

1

[
max{u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e ), 0}

]
− Es

1

[
max{u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e ), 0}

] )
, (13)

Proposition 4 (Ex-Ante Pigouvian Taxes under Heterogeneous Beliefs). Suppose the

developer and society have different beliefs about the algorithm’s potential external effects. If

the regulator imposes the ex-ante Pigouvian taxes specified in equations (11) and (13), the

developer’s decisions regarding release, withdrawal, and the sample size used in beta testing

align with the socially optimal outcomes.

4Laffont (1977) explores a similar result in a version of Weitzman (1974)’s model in which the firm
and the planner have different expectations about fundamentals. When prices are used as incentives,
they must correct for belief differences. As we discuss below, in our model, there is a dynamic element
to the belief correction because information generated by beta testing or releasing at time one has
value at time two.
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Unfortunately, this policy is impractical because the developer’s expectations re-

quired to construct the taxes (11) and (13) are generally unobservable. What is the

optimal policy when the developer’s beliefs are private information? If the regula-

tor applies the taxes (11) and (13) to the developer’s self-reported beliefs, then the

developers have an incentive to pretend to be more pessimistic than they are to pay

lower taxes.

4.2 Optimal policy when beliefs are private information

In this subsection, we study the optimal policy in a setting where developer beliefs

are private information. Our main result is that, under these informational con-

straints, Pigouvian taxes fail to implement the social optimum. We show that the

first best can be implemented by combining mandatory beta testing with regulatory

approval.

The developer draws their belief type θ from a set Θ = [θ, θ], with cumulative

density function F. We denote by θ and θ the most pessimistic and optimistic beliefs

in the set Θ. We assume that the most optimistic developer assigns zero probability

to non-zero external effects, so Eθ
1(ϕ

2
e ) = 0. The most pessimistic developer has the

same expectations as society E
θ
1(ϕ

2
e ) = Es

1(ϕ
2
e ). Under these conditions, developers

are weakly more optimistic than society.

We consider two sets of policies without commitment: (i) linear tax on the num-

ber of licenses sold and (ii) regulation that controls release and beta testing decisions.

Timing is as follows. First, nature draws the developer’s belief type θ, which is pri-

vate information. Next, the regulator designs the optimal policy for period one.

Given this policy, the developer decides their optimal price and release strategy. In

the second period, all individuals observe the beta test results from period one, and

beliefs are updated. The regulator then chooses the optimal policy for period two,

after which the developer decides their optimal release strategy.

As is standard in the Pigouvian taxation literature, we model taxes as linear func-
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tions of the number of licenses sold, µt. Given that developer type is private informa-

tion, taxes cannot depend directly on developers’ beliefs. Consequently, a tax policy

is defined as a set of state-contingent tax rates per unit sold τ ≡ {τt}, for t = 1, 2. So

total taxes are Tt = τtµt.

The second policy framework we consider consists of mandatory beta testing and

regulatory approval. These policies set limits on the maximum number of licenses

that can be sold in each period.

In period one, the regulator can either mandate a beta test involving up to µ1

users or permit full release, in which case µ1 = N. In period two, the regulator

can approve full commercialization by setting µ2 = N, require the developer to

withdraw the algorithm by setting µ2 = 0, or approve a number of users, µ2, strictly

between 0 and N.

A mandatory beta-testing and regulatory approval policy is a set of state-contingent

restrictions on license sales, denoted by µ ≡ {µt} for t = 1, 2. These restrictions im-

pose an upper limit on number of licenses that can be sold in each period such that

µt ≤ µt.
5

Optimal tax policy For any tax policy τ, the developer’s beta testing and release

strategies follow the same policy as before. Lemma 3 characterizes the developer’s

behavior for an arbitrary tax policy.

Lemma 3 (Optimal Developer Behavior Under Tax Policy). For any tax policy τ, the

developer’s release, beta-testing and withdrawal policies are as follows.

At time t = 2:

1. If Eθ
2(ϕ

2
e ) < u − Es

2(ϕ
2
i )− τ2, the developer releases the algorithm to the entire popu-

lation, µθ
2 = N.

5In the appendix, we discuss the case of non-linear taxes. We show that there is a non-linear,
discontinuous tax schedule that replicates the outcomes obtained under the optimal mandatory beta-
testing and regulatory approval policy. This tax schedule confiscates the developer’s revenues when
their choices deviate from the efficient allocations.
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2. If Eθ
2(ϕ

2
e ) ≥ u − Es

2(ϕ
2
i )− τ2, the developer withdraws the algorithm, µθ

2 = 0.

At time t = 1:

1. If σ2
θ,e < u − σ2

s,i − τ1, the developer foregoes beta testing and releases the algorithm to

the entire population, µθ
1 = N.

2. If σ2
θ,e ≥ u − σ2

s,i − τ1, the developer beta tests the algorithm on

µθ
1(τ1, τ2) = min

{[
αΛθ(τ1, τ2)

N
κ

] 1
1−α

, 1

}
κ, (14)

where Λθ(τ1, τ2) is the developer’s information benefit-to-cost ratio defined in equation

(A.9).

Taxes affect the release decision at time two and the sample size used for beta

testing at time one.

Proposition 5 characterizes the optimal tax policy when beliefs are private infor-

mation.

Proposition 5 (Optimal Tax Policy When Beliefs Are Private Information). The opti-

mal tax policy is as follows.

At time t = 2:

1. If uncertainty is small, Es
2(ϕ

2
e ) ≤

u−Es
2(ϕ

2
i )

N+1 , the regulator sets the tax to zero τ2 = 0

and the developer releases the algorithm to the entire population, µθ
2 = N.

2. If uncertainty is large, Es
2(ϕ

2
e ) >

u−Es
2(ϕ

2
i )

N+1 , the regulator sets the tax τ2 = p2 and the

developer withdraws the algorithm, µθ
2 = 0.

At time t = 1:

1. If uncertainty is small, σ2
s,e ≤

u−σ2
s,i

N+1 , the regulator sets the tax to zero τ1 = 0 and the

developer releases the algorithm to the entire population, µθ
1 = N for all θ ∈ Θ.
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2. If uncertainty is large, σ2
s,e >

u−σ2
s,i

N+1 , the regulator sets the tax so that

� θ

θ

dµθ
1/dτ1� θ

θ dµθ
1/dτ1dF(θ)

π′(µθ
1)Λ

sNdF(θ) = 1, (15)

and the developer sells µθ
1 licenses as given in equation (14).

In the second period, the tax is set to zero if the algorithm is socially beneficial. If

the algorithm is socially harmful, all revenue is taxed away, ensuring that developers

of all types choose not to release the algorithm. This tax policy ensures that the

release of the algorithm in period two is optimal.

In the first period, the planner chooses a tax rate that equates the expected value

of beta testing across developer types with the welfare cost of conducting beta test-

ing. Because this tax policy adjusts developer incentives based on average values

across different belief types rather than individual beliefs, it generally falls short of

achieving the efficient outcome.

Next, we describe the implementation of the efficient outcome using mandatory

beta testing and regulatory approval of the algorithm, conditional on the results of

the beta test.

Optimal regulation policy Lemma 4 characterizes the developer’s behavior for an

arbitrary policy regulating beta testing and release.

Lemma 4 (Optimal Developer Behavior Under Regulation Policy). For any regulation

policy µ, the developer’s release, beta-testing and withdrawal policies are as follows.

At time t = 2:

1. If Eθ
2(ϕ

2
e ) < u−Es

2(ϕ
2
i ), the developer releases the algorithm to the maximum number

of people allowed, µθ
2 = µ2.

2. If Eθ
2(ϕ

2
e ) ≥ u − Es

2(ϕ
2
i ), the developer withdraws the algorithm, µθ

2 = 0.
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At time t = 1:

1. If σ2
θ,e < u − σ2

s,i, the developer sells the maximum number of licenses allowed, µθ
1 =

µ1.

2. If σ2
θ,e ≥ u − σ2

s,i, the developer beta tests the algorithm on

µθ
1 = min

{
min

{[
αΛθ N

κ

] 1
1−α

, 1

}
κ, µ1

}
, (16)

where Λθ is the developer’s information benefit-to-cost ratio, θ, given by equation

(A.17).

Proposition 6 characterizes the optimal regulation policy when beliefs are private

information.

Proposition 6 (Optimal regulation policy under private information). The optimal

regulation policy is as follows. At time t = 2:

1. If uncertainty is low, Es
2(ϕ

2
e ) ≤ u−Es

2(ϕ
2
i )

N+1 , the regulator sets a non-binding limit on

the number of licenses µ2 = N and the developer releases the algorithm to the entire

population, µθ
2 = N for all θ.

2. If uncertainty is high, Es
2(ϕ

2
e ) >

u−Es
2(ϕ

2
i )

N+1 , the regulator mandates the withdrawal of

the algorithm, setting µ2 = 0 and so µθ
2 = 0 for all θ.

At time t = 1:

1. If uncertainty is low, σ2
s,e ≤

u−σ2
s,i

N+1 , the regulator sets a non-binding limit on the num-

ber of licenses µ1 = N and the developer releases the algorithm to the entire population,

µθ
1 = N for all θ.

2. If uncertainty is high, σ2
s,e >

u−σ2
s,i

N+1 , the regulator sets the following upper bound

µ1 = min

{[
αΛs N

κ

] 1
1−α

, 1

}
κ. (17)
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The developer sells µθ
1 = µ1 licenses for all θ.

This regulation policy implements the socially optimal allocation in this econ-

omy, so it is superior to the best tax policy.6 Overall, the optimal regulatory policy

follows a simple threshold rule: intervention occurs only when uncertainty is high.

This approach prevents the premature deployment of risky algorithms while allow-

ing efficient learning through beta testing, ensuring that release decisions are made

with adequate information. At time one, if uncertainty is low, the regulator does not

restrict the algorithm’s release. When uncertainty is high, the regulator limits the

number of beta licenses issued, balancing the benefits of acquiring more informa-

tion with the risk of significant negative external effects. At time two, the developer

decides whether to release or withdraw the algorithm. If uncertainty about exter-

nalities is low, the regulator imposes no restrictions, allowing full deployment. If

uncertainty is high, the regulator mandates withdrawal to prevent potential harm.

We now briefly discuss the impact of limited liability on our results.

4.3 Limited liability

In practice, limited liability protects developers from bearing the full cost of large

social damages. The model analyzed here abstracts from this consideration. In the

Appendix, we analyze how this constraint affects our results, focusing, for simplicity,

on the case of homogeneous beliefs. We model limited liability by assuming that

taxes in period t cannot exceed the sales revenue generated in that period. Under

this constraint, ex-post taxes do not achieve the first-best allocation in either period

one or two because the developer does not take into account damages that exceed

their limited liability. In contrast, ex-ante taxes succeed in implementing the first-

6It is possible to formulate a discontinuous tax policy that replicates the effects of the optimal
regulatory framework. This policy involves granting a subsidy to developers who select the socially
optimal value of µ1. The subsidy can be set at a sufficiently high level to ensure that all types of
developers opt for the socially optimal µ1.
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best allocation in period two but fail to do so in period one. The regulatory policy

described in Proposition 6 remains effective in that model.

5 A model with internalities

This section considers a model that incorporates deviations from rational behavior,

known as internalities. These deviations lead households to make decisions that are

not in their self-interest because of misinformation, self-control issues, cognitive bi-

ases, or time inconsistency problems, all of which can be exploited by AI algorithms.

For example, recent experimental evidence suggests that reliance on Large Lan-

guage Models may generate cognitive internalities. Users are drawn to interfaces

that minimize immediate effort and maximize short-run output quality, but system-

atically neglect the delayed costs for memory formation, cognitive engagement, and

autonomy induced by repeated reliance on the tool (Kosmyna, Hauptmann, Yuan,

Situ, Liao, Beresnitzky, Braunstein, and Maes, 2025).

5.1 Unregulated equilibrium

Household’s problem In Section 3, we assume that households take the expected

welfare reduction caused by internal effects, Es
t(i

2
t ), into account when deciding

whether to use the algorithm. Here, we consider the case in which, due to behav-

ioral biases, households disregard these internal effects when making their purchase

decisions.

We formalize this idea by assuming that Uj, defined in equation (4), is the house-

hold’s “experienced utility,” but that households base their choices on a different,

misspecified, objective function that we refer to as the “decision utility.”7 Lifetime

7This terminology is common in behavioral price theory (e.g., Farhi and Gabaix, 2020).
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decision utility takes the form:

U b
j = (1 − β)vb

j,1 + βEs
1(v

b
j,2),

where momentary decision utility is

vb
j,t = yt + [u − pt]× Ij,t − Es

t(e
2
t ). (18)

The household decides whether to purchase the AI algorithm to maximize U b
j .

The resulting decision rule is to buy the algorithm whenever pt ≤ u. Recall that

without behavioral biases, the decision rule is to buy the algorithm when pt ≤ u −
Et(ϕ2

i ).

We assume that the developer is immune to the algorithm’s internal effects, either

because it does not use the algorithm or is more sophisticated than the households.8

What are the key differences between this model and our benchmark model? Be-

cause households ignore expected negative internal effects on utility, the developer

can charge them a higher price: pt = u instead of pt = u − Es
t(ϕ

2
i ).

Internalities widen the gap between the unregulated equilibrium and the social

optimum. In period one, the developer beta tests the algorithm when σ2
d,e > u and

releases the algorithm otherwise. In contrast, the planner has a lower threshold for

the level of uncertainty required for beta testing. It is socially optimal to beta test

whenever σ2
s,e > (u − σ2

s,i)/(N + 1).

In period two, the developer withdraws the algorithm only when ϕ̂2
d,e + σ2

d,e > u.

The planner uses a lower uncertainty threshold for withdrawal. It is socially optimal

to withdraw the algorithm whenever ϕ̂2
s,e + σ2

s,e > (u − ϕ̂2
s,i − σ2

s,i)/(N + 1).

The developer overlooks the external impacts on the broader population but per-

sonally experiences these effects, just like any household. These external effects in-

crease with the number of algorithm users. Consequently, when externalities are

8Extending our analysis to the case where the algorithm’s internal effects also affect the developer
is straightforward. Such an extension would not significantly alter our findings.
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high, the developer is dissuaded from releasing the algorithm. This restraining fac-

tor is absent with respect to internalities because the developer is not personally af-

fected by internalities and the price does not reflect the internal effects experienced

by households.

Figure 2 shows that the developer and the planner select the same value of µ1

only when uncertainty is low (σ2
s,e < (u − σ2

s,i)/(N + 1)). Under higher uncertainty,

the developer opts for a larger µ1 than the planner, as it does not account for the

algorithm’s external effects on the population. The choice of µ2 coincides under

both low and high uncertainty but diverges at moderate levels of uncertainty. This

divergence is more pronounced than when households consider internal effects in

deciding to purchase the algorithm.

The policy outcomes in the presence of internalities resemble those without in-

ternalities. Pigouvian taxes fail to implement the first-best allocation. Achieving the

first-best instead requires a policy combining mandatory beta testing with regulatory

approval contingent on the beta-test results.

6 AI Regulation in Practice

Our analysis focuses on a specific friction that we view as central to AI regulation:

systematic differences in beliefs about societal risks between developers and regu-

lators. Neither ex-ante nor ex-post Pigouvian taxes generally implement the social

optimum when beliefs diverge and are private information. In this setting, manda-

tory beta testing combined with regulatory approval, i.e., quantity regulation, can

implement the social optimum.

Ex-post Pigouvian taxes perform poorly if the perception of damages by develop-

ers differs widely from that of society. In this case, ex-ante policies based on society’s

perceived damages are superior to ex-post taxes. Within ex-ante policies, quantity

regulation is still superior to ex-ante taxes, since the latter would have to correct for
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differences in beliefs, which are private information.

Of course, belief heterogeneity is not the only friction that matters in practice.

One potentially important consideration is information asymmetry. Developers may

possess superior information about risks, for example, due to proprietary data, in-

ternal testing, or privileged access to system architectures. When developers have

superior information, ex-post Pigouvian taxes become relatively more effective than

ex-ante policies, since developers are better able to internalize the expected damages

they may ultimately face.

Another relevant friction is limited liability, which we analyze in Appendix B.

When liability is capped, ex-post damages lose much of their deterrent power, since

harms beyond the cap are not borne by the developer. In this case, the ranking of

policies is again tilted towards ex-ante policies. Ex-ante instruments, such as manda-

tory insurance, ex-ante taxes, or testing and regulatory approval, are more effective

and can come closer to implementing the social optimum. This point has been em-

phasized in the literature on liability and regulation under imperfect financial mar-

kets. In particular, Tirole, 2010 shows that limited liability fundamentally alters the

optimal design of Pigouvian taxation and can justify regulatory interventions that

extend beyond standard ex-post liability.

Ex-post verifiability is another potentially important friction. Damages may be

difficult to measure and attribute to a specific model or developer, weakening the ef-

fectiveness of regulatory regimes that rely primarily on ex-post enforcement. These

informational constraints reduce deterrence and tilt the balance toward ex-ante in-

terventions, including precautionary requirements imposed before deployment (see

Kolstad and Ulen, 1983).

The optimal regulatory framework depends on which frictions dominate. When

developers have substantially superior information, there is limited disagreement

in beliefs with regulators, and enforcement of ex-post damage liability is effective,

price-based instruments such as ex-post Pigouvian taxes perform well. By contrast,
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when differences in beliefs between regulators and industry are large and beliefs

are private information, and limits to liability or verifiability are particularly severe,

quantity-based regulation, particularly when combined with beta testing and regu-

latory approval, becomes more attractive.

This distinction helps interpret the divergent regulatory paths currently being

pursued in practice. Europe has moved toward quantity regulation, adopting a risk-

based framework that includes outright bans on certain high-risk applications, test-

ing both using regulatory sandboxes as well as real world conditions prior to full

deployment (see articles 57 and 60 of the European Union Artificial Intelligence Act,

European Union, 2024).

By contrast, the United States has leaned toward an ex-post, liability-based ap-

proach, relying on existing tort law, consumer protection, and sector-specific en-

forcement after damages materialize. This regulatory stance is consistent with an

environment in which developers are presumed to have superior information about

risks, making ex-post Pigouvian taxes a relatively effective tool.

7 Conclusion

In this paper, we study optimal regulation in environments characterized by two

salient features of artificial intelligence: substantial uncertainty about potential social

harms and persistent disagreement between developers and regulators about their

likelihood and magnitude. We show that these features fundamentally shape the

relative performance of regulatory instruments.

Our main result is that optimal regulation in this environment takes the form

of a two-stage process. In the first stage, regulators decide whether an algorithm

should undergo beta testing or be approved for full deployment. The information

generated during this experimental phase then informs the second-stage decision on

whether to permit broad release or withdraw the algorithm to prevent anticipated
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social harm. When belief disagreement is significant and beliefs are private informa-

tion, this combination of mandatory experimentation and regulatory approval can

strictly dominate both ex-ante and ex-post Pigouvian tax regimes.

While our analysis emphasizes belief heterogeneity, real-world regulation is shaped

by multiple frictions, including information asymmetries, limited liability, and con-

straints on verifiability. These frictions help explain cross-jurisdictional differences

in regulatory approaches.

Europe’s reliance on banning high-risk applications and regulatory sandboxes

closely mirrors the quantity-based regulation that is optimal in our model when

belief disagreement is central. By contrast, the U.S. emphasis on ex-post liability

enforced by existing legal frameworks is consistent with environments in which de-

velopers are presumed to have superior information about risks.

AI regulation faces broader challenges that are common to other industries. Reg-

ulatory capture, where dominant firms shape policies to serve their interests (Stigler,

1971 and Peltzman, 1976), is a significant risk. Additionally, measuring externalities

and internalities is complex, and high compliance costs could stifle innovation.

While our analysis focuses on the regulatory framework in a single country, inter-

national cooperation is essential when AI systems generate cross-border externalities

(see Choi, Jeon, and Menicucci, 2026) for a recent analysis.

Isaac Asimov wrote, “The saddest aspect of life right now is that science gathers

knowledge faster than society gathers wisdom.” Continued work on AI regulation is

essential to build the wisdom required to harness the benefits of this new technology

while managing its risks.
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Figure 2: Release decisions in the first and second periods
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Online Appendix
Regulating Artificial Intelligence

A Proofs

A.1 Proof of Lemma 1

First, note that

Ed
1[V∗

2 ] =π(µ1)E
d
1

[
max{u − (ϕ̂2

s,i + σ̂2
s,i)− (ϕ̂2

d,e + σ̂2
d,e), 0}N

]
+ (1 − π(µ1))max{u − σ2

s,i − σ2
d,e, 0}N

So, assuming µ1 < κ,

dEd
1[V∗

2 ]

dµ1
= π′(µ1)

{
Ed

1
[
max{u − (ϕ̂2

s,i + σ̂2
s,i)− (ϕ̂2

d,e + σ̂2
d,e), 0}N

]
− max{u − σ2

s,i − σ2
d,e, 0}N

}
> π′(µ1)

{
max{u − Ed

1
[
(ϕ̂2

s,i + σ̂2
s,i)
]
− Ed

1
[
ϕ̂2

d,e + σ̂2
d,e
]

, 0}N − max{u − σ2
s,i − σ2

d,e, 0}N
}

≥ π′(µ1)
{

max{u − σ2
s,i − σ2

d,e, 0}N − max{u − σ2
s,i − σ2

d,e, 0}N
}
= 0.

The inequality holds because the expected value of the maxima is higher than the

maximum of the expected value. The inequality is strict because the probability

that the algorithm is implemented in period two, given the information obtained in

period one, is strictly positive but less than one.

A.2 Proof of Proposition 1

The developer chooses µ1 to maximize

V ≡ (1 − β){u − σ2
s,i − σ2

d,e}µ1 + βEd
1(V∗

2 ). (A.1)

From Lemma 1, we know that Ed
1(V∗

2 ) is increasing in µ1. So, if σ2
d,e ≤ u − σ2

s,i, then

the developer chooses µ1 = N since V is always increasing in µ1.
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Suppose instead that σ2
d,e > u − σ2

s,i. In this case, if B = 0, the developer does not

release the algorithm at time two. Since α ∈ (0, 1), then π′(µ1) → ∞ as µ1 → 0. It

follows that the optimal µ1 > 0.

dEd
1(V∗

2 )

dµ1
= π′(µ1)E

d
1

[
max{u − (ϕ̂2

s,i + σ̂2
s,i)− (ϕ̂2

d,e + σ̂2
d,e), 0}N

]
, (A.2)

so, the first order condition is given by

(1 − β){u − σ2
s,i − σ2

d,e}+ βπ′(µ1)E
d
1

[
max{u − (ϕ̂2

s,i + σ̂2
s,i)− (ϕ̂2

d,e + σ̂2
d,e), 0}N

]
= 0

⇔ π′(µ1)ΛdN = 1 ⇔ αΛd N
κ

=
(µ1

κ

)1−α
⇔ µ1 =

[
αΛd N

κ

] 1
1−α

κ,

or µ1 = κ if
[
αΛd N

κ

] 1
1−α > 1.

A.3 Proof of Lemma 2

As before, assuming µ1 < κ,

dEs
1(dW∗

2 )

dµ1
= π′(µ1)

{
Es

1

(
max

{
u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e ), 0

}
N

)

− max

{
u − σ2

s,i − (N + 1)σ2
s,e, 0

}
N

}

> π′(µ1)

{
max

{
u − Es

1(ϕ
2
i )− (N + 1)Es

1(ϕ
2
e ), 0

}
N

− max

{
u − σ2

s,i − (N + 1)σ2
s,e, 0

}
N

}
= 0.

A.4 Proof of Proposition 2

The planner chooses µ1 to maximize

W ≡ (1 − β){u − σ2
s,i − (N + 1)σ2

s,e}µ1 + βEs
1(W∗

2 ). (A.3)
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From Lemma 2, we know that Es
1(W∗

2 ) is increasing in µ1. So, if σ2
s,e ≤ u−σ2

s,i
N+1 , then

the planner chooses µ1 = N since W is always increasing in µ1.

Suppose instead that σ2
s,e >

u−σ2
s,i

N+1 . In this case, if B = 0, then the planner does not

release the algorithm at time two. Since π′(µ1) → ∞ as µ1 → 0, then µ1 > 0.

dEs
1[W∗

2 ]

dµ1
= π′(µ1)E

s
1

[
max{u − (ϕ̂2

s,i + σ̂2
s,i)− (N + 1)(ϕ̂2

s,e + σ̂2
s,e), 0}N

]
. (A.4)

So, the first order condition is given by

(1− β){u−σ2
s,i − (N + 1)σ2

s,e}+ βπ′(µ1)E
s
1

[
max{u − (ϕ̂2

s,i + σ̂2
s,i)− (N + 1)(ϕ̂2

s,e + σ̂2
s,e), 0}N

]
= 0

⇔ π′(µ1)ΛsN = 1 ⇔ αΛs N
κ

=
(µ1

κ

)1−α
⇔ µ1 =

[
αΛs N

κ

] 1
1−α

κ,

or µ1 = κ if
[
αΛs N

κ

] 1
1−α > 1.

A.5 Ex-ante Pigouvian Taxes with Heterogeneous Beliefs and Proof
of Proposition 4

Assume that the regulator enforces the ex-ante taxes specified in equation (11). Con-

sider the problem of period two. Substituting the optimal license price, the devel-

oper’s utility is given by{
[u − Es

2(ϕ
2
i )− Ed

2(ϕ
2
e )]µ2 − Tex−ante

2 = [u − Es
2(ϕ

2
i )− (N + 1)Es

2(ϕ
2
e )]µ2, if B = 1

[u − σ2
s,i − σ2

d,e]µ2 − Tex−ante
2 = [u − σ2

s,i − (N + 1)σ2
s,e]µ2, if B = 0.

It follows that private and social incentives are always aligned in period two.

Turning to the problem of the first period, with the taxes given by equation (11),

the problem becomes:

max
µ1

{
(1 − β)

{
u − σ2

s,i − (N + 1)σ2
s,e

}
µ1 + βEd

1[W∗
2 ]
}

. (A.5)
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We immediately see that if the risk is not very large, σ2
s,e ≤

u−σ2
s,i

N+1 , then the developer

chooses µ1 = N. If the risk is large, σ2
s,e >

u−σ2
s,i

N+1 , then the developer’s choice satisfies

π′(µ1)NΛs Ed
1[max{u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e ), 0}]

Es
1[max{u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e ), 0}]

= 1

⇔µ1 =

[
αΛs Ed

1[max{u − Es
2(ϕ

2
i )− (N + 1)Es

2(ϕ
2
e ), 0}]

Es
1[max{u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e ), 0}]

N
κ

] 1
1−α

κ.

So, in general, the developer prefers to beta test on a larger population sample than

what would be socially optimal.

Suppose that the tax in period one is given by equation (13). Then, again, if

the uncertainty is small enough, σ2
s,e ≤ u−σ2

s,i
N+1 , then the developer chooses µ1 = N.

Instead, if the risk is large, σ2
s,e >

u−σ2
s,i

N+1 , the developer solves the same problem as

the planner:

max
µ1

{
(1 − β)

{
u − σ2

s,i − (N + 1)σ2
s,e

}
µ1 + βEs

1(W∗
2 )
}

. (A.6)

So private and social incentives are aligned.

A.6 Proof of Lemma 3

Given the tax policy, the developer’s problem at time two is:

V2 =


(p2 − τ2)µ2 − Eθ

2(ϕ
2
e )µ2, if p2 ≤ u − Es

2(ϕ
2
i ) and B = 1,

(p2 − τ2)µ2 − σ2
θ,eµ2, if p2 ≤ u − σ2

s,i and B = 0,
0, otherwise.

Then, the optimal price is

p2 =

{
u − Es

2(ϕ
2
i ), if B = 1,

u − σ2
s,i, if B = 0.

If B = 1, the developer releases the algorithm to the entire population if u−Es
2(ϕ

2
i )−

τ2 > Eθ
2(ϕ

2
e ) and sets µ2 = 0 otherwise. If B = 0, the developer releases the algo-

rithm to the entire population if u − σ2
s,i − τ2 > σ2

θ,e and sets µ2 = 0 otherwise.
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At time one, it is optimal to set p1 = u − σ2
s,i. The developer’s problem at time

one (replacing p1) is given by

max
µ1

(1 − β){u − σ2
s,i − σ2

θ,e − τ1}µ1 + βEθ
1[V∗

2,θ], (A.7)

where Eθ
1(V∗

2,θ) is increasing in µ1 as in Lemma 1.

So, if σ2
θ,e ≤ u − σ2

s,i − τ1, then the developer relases the algorithm to the entire

population µ1 = N.

If σ2
θ,e > u − σ2

s,i − τ1, it is optimal to beta test the algorithm. In this case, the

optimal µ1 solves

max
µ1

−µ1 +π(µ1)
β

1 − β

Eθ
1[max{u − Es

2(ϕ
2
i )− Eθ

2(ϕ
2
e )− τ2, 0}]− max{u − σ2

s,i − σ2
θ,e − τ2, 0}

σ2
s,i + σ2

θ,e + τ1 − u
N.

(A.8)

Let

Λθ(τ1, τ2) ≡
β

1 − β

Eθ
1[max{u − Es

2(ϕ
2
i )− Eθ

2(ϕ
2
e )− τ2, 0}]− max{u − σ2

s,i − σ2
θ,e − τ2, 0}

σ2
s,i + σ2

θ,e + τ1 − u
.

(A.9)

The first order condition is,

π′(µ1)Λθ(τ1, τ2)N = 1 ⇔ µ1 =

[
αΛθ(τ1, τ2)

N
κ

] 1
1−α

κ.

A.7 Proof of Proposition 5

We solve for the optimal tax policy without commitment. At time two, the regulator

chooses τ2 to maximize{
{u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e )}Es

2(µ
θ
2), if B = 1,

{u − σ2
s,i − (N + 1)σ2

s,e}Es
2(µ

θ
2), if B = 0,

where Es
2(µ

θ
2) denotes the regulator’s expectations of the developer’s choice of µ2

given the regulator’s beliefs over the developer’s type at time two. These beliefs are

influenced by the developer’s decisions observed at time one.
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If given the regulator’s beliefs the algorithm should be released, then it is optimal
to set τ2 = 0, since under this tax µθ

2 = N for all θ:{
0 ≤ u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e ) < u − Es

2(ϕ
2
i )− Es

2(ϕ
2
e ) ≤ u − Es

2(ϕ
2
i )− Eθ

2(ϕ
2
e ), ∀θ ∈ Θ

0 ≤ u − σ2
s,i − (N + 1)σ2

s,e < u − σ2
s,i − σ2

s,e ≤ u − σ2
s,i − σ2

θ,e, ∀θ ∈ Θ.

If the regulator’s beliefs are such that the algorithm should be withdrawn, then

by setting τ2 = p2 the regulator ensures that all developer types withdraw the algo-

rithm.9 Welfare at time two coincides with the social optimum.

At time one, the regulator chooses τ1 to maximize

(1 − β){u − σ2
s,i − (N + 1)σ2

s,e}
� θ

θ
µθ

1dF(θ) + βEs
1(W∗

2 ). (A.10)

First, suppose that uncertainty about the externality is small σs,e ≤
u−σ2

s,i
N+1 . In this case,

it is efficient to release the algorithm to the entire population. So, the regulator sets

τ1 = 0 and µθ
1 = N for all θ, since

0 ≤ u − σ2
s,i − (N + 1)σ2

s,e < u − σ2
s,i − σ2

s,e ≤ u − σ2
s,i − σ2

θ,e, ∀θ ∈ Θ.

Suppose that uncertainty is large σs,e >
u−σ2

s,i
N+1 . Then, the regulator chooses τ1 to

maximize

(1 − β){u − σ2
s,i − (N + 1)σ2

s,e}
� θ

θ
µθ

1dF(θ) + β

� θ

θ
π(µθ

1)dF(θ)

× Es
1[max{u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e ), 0}]N. (A.11)

Equivalently, τ1 solves

max
τ1

(
−
� θ

θ
µθ

1dF(θ) +
� θ

θ
π(µθ

1)dF(θ)ΛsN

)
. (A.12)

The first order condition with respect to τ1 is given by
� θ

θ

dµθ
1/dτ1� θ

θ dµθ
1/dτ1dF(θ)

π′(µθ
1)Λ

sNdF(θ) = 1, (A.13)

9We assume that, in indifference, developers decide in favor of the planner.
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where µθ
1 is given by

µθ
1 = min

{[
αΛθ N

κ

] 1
1−α

, 1

}
κ (A.14)

and

Λθ ≡ β

1 − β

Eθ
1

[
{u − Eθ

2(ϕ
2
i )− Eθ

2(ϕ
2
e )}1{u−Es

2(ϕ
2
i )−(N+1)Es

2(ϕ
2
e )≥0}

]
σ2

s,i + σ2
θ,e + τ1 − u

.

Since Λθ is increasing in θ, the developer’s optimal beta test sample size is also

increasing in θ.

A.8 Proof of Lemma 4

For any regulation policy, the problem of the developer at time two is given by:

V2 =


p2µ2 − Eθ

2(ϕ
2
e )µ2, if p2 ≤ u − Es

2(ϕ
2
i ) and B = 1,

p2µ2 − σ2
θ,eµ2, if p2 ≤ u − σ2

s,i and B = 0,
0, otherwise.

Then, the optimal price is

p2 =

{
u − Es

2(ϕ
2
i ), if B = 1,

u − σ2
s,i, if B = 0.

So, if B = 1, the developer releases the algorithm to the maximum µ2 = µ2 if u −
Es

2(ϕ
2
i ) > Eθ

2(ϕ
2
e ) and sets µ2 = 0 otherwise. Analogously, if B = 0, the developer

releases the algorithm to to the maximum µ2 = µ2 if u − σ2
s,i > σ2

θ,e and sets µ2 = 0

otherwise.

At time one, it is optimal to set p1 = u − σ2
s,i. The developer’s problem at time

one (replacing p1) is given by

max
µ1

(1 − β){u − σ2
s,i − σ2

θ,e}µ1 + βEθ
1[V∗

2,θ]. (A.15)

Where Eθ
1(V∗

2,θ) is increasing in µ1 as in Lemma 1.
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If σ2
θ,e ≤ u − σ2

s,i, then the developer releases the algorithm to the maximum num-

ber of people µ1 = µ1.

If σ2
θ,e > u − σ2

s,i, it is optimal to beta test the algorithm. In this case, the optimal

µ1 solves

max
µ1

−µ1 +π(µ1)
β

1 − β

Eθ
1[max{u − Es

2(ϕ
2
i )− Eθ

2(ϕ
2
e ), 0}µ2]− Eθ

1[max{u − σ2
s,i − σ2

θ,e, 0}µ2]

σ2
s,i + σ2

θ,e − u
.

(A.16)

Let

Λθ ≡ β

1 − β

Eθ
1[max{u − Es

2(ϕ
2
i )− Eθ

2(ϕ
2
e ), 0}µ2]− Eθ

1[max{u − σ2
s,i − σ2

θ,e, 0}µ2]

σ2
s,i + σ2

θ,e − u
.

(A.17)

Then, the first order condition is given by

π′(µ1)Λθ = 1 ⇔ µ1 =

[
αΛθ 1

κ

] 1
1−α

κ.

In this case, the developer sells to this number of people if
[
αΛθ 1

κ

] 1
1−α

κ ≤ µ1 and

µ1 = µ1 otherwise.

A.9 Proof of Proposition 6

We solve for the optimal regulation policy without commitment. At time two, the

regulator chooses µ2 to maximize{
{u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e )}Es

2[µ
θ
2], if B = 1,

{u − σ2
s,i − (N + 1)σ2

s,e}Es
2[µ

θ
2], if B = 0,

where Es
2[µ

θ
2] denotes the regulator’s expectations over the developer’s behavior

given the regulator’s beliefs over the developer’s type at time two (which are in-

fluenced by the observed decisions at time-one).
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If given the regulator’s beliefs the algorithm should be released, it is optimal to
set µ2 = N, since under this cap µθ

2 = N for all θ:{
0 ≤ u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e ) < u − Es

2(ϕ
2
i )− Es

2(ϕ
2
e ) ≤ u − Es

2(ϕ
2
i )− Eθ

2(ϕ
2
e ), ∀θ ∈ Θ

0 ≤ u − σ2
s,i − (N + 1)σ2

s,e < u − σ2
s,i − σ2

s,e ≤ u − σ2
s,i − σ2

θ,e, ∀θ ∈ Θ.

Instead, if the regulator’s beliefs are such that the algorithm should be withdrawn,

then by setting µ2 = 0 the regulator ensures that no developer type releases the

algorithm. Note that welfare at time two coincides with the efficient level.

Turning to the problem at time one, the regulator chooses µ1 to maximize

(1 − β){u − σ2
s,i − (N + 1)σ2

s,e}
� θ

θ
µθ

1dF(θ) + βEs
1[W∗

2 ]. (A.18)

First, suppose that uncertainty about the externality is small σs,e ≤
u−σ2

s,i
N+1 . In this case,

it is efficient to release the algorithm to the entire population. So, the regulator sets

µ1 = N, which imples that µθ
1 = N for all θ, since

0 ≤ u − σ2
s,i − (N + 1)σ2

s,e < u − σ2
s,i − σ2

s,e ≤ u − σ2
s,i − σ2

θ,e, ∀θ ∈ Θ.

Suppose that uncertainty is large σ2
s,e >

u−σ2
s,i

N+1 . Then, the regulator chooses τ1 to

maximize

(1 − β){u − σ2
s,i − (N + 1)σ2

s,e}
� θ

θ
µθ

1dF(θ) + β

� θ

θ
π(µθ

1)dF(θ)

× Es
1[max{u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e ), 0}]N. (A.19)

Let µ∗
1 denote the efficient size of the beta-test in this case. We have already

established that unconstrained

µθ
1 > µ∗

1 .

It follows that setting µ1 = µ∗
1 implies that µθ

1 = µ∗
1 for all θ. This policy implements

the efficient outcome and is therefore optimal.
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A.10 Optimal Non-Linear Taxes on Developer with Private Infor-
mation

In the main text, we restrict attention to linear Pigouvian taxes. In this appendix,

we generalize the analysis to considering non-linear taxes on license sales. Let the

total tax payment as a function of µt be tt(µt). The case of linear taxes obtains when

tt(µt) = τtµt.

Definition 1. A tax policy is a set of (state-contingent) tax functions t ≡ {tt(µt)} for

t = 1, 2 that determine the taxes imposed on the developer as a function of their release

strategy µt.

We allow the tax functions to be arbitrarily non-linear, so solving the developer’s

general problem becomes more complex. However, it is possible to show that there

is a non-linear tax policy that implements efficient allocation.

It is easy to construct tax functions that implement the efficient allocation. For

example, consider the following tax policy. At time 2, set the tax function

t2(µ2) =

{
p2µ2, if µ2 ̸= µ∗

2 ,
0, if µ2 = µ∗

2 ,

where µ∗
2 is the efficient level of release. At time 1, if the AI is sufficiently risky so

that beta testing is socially optimal, the regulator announces the taxes

t1(µ1) =

{
p1µ1 +

β
1−β π(µ1)E

θ
1[max{u − Es

2[ϕ
2
i ], 0}N], if µ1 ̸= µ∗

1 ,

0, if µ1 = µ∗
1 ,

where µ∗
1 is the efficient level of beta testing. If the AI is not risky enough to warrant

beta testing, the regulator sets t1(µ1) = 0.

This tax policy implements the efficient allocation. Effectively, this non-linear tax

policy implements the same allocation as the MBR policy.
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B Limited Liability

B.1 The Impact of Limited liability on Ex-post Pigouvian Taxes

To study the consequences of limited liability for ex-post Pigouvian taxes, we con-

sider the simple case in which the taxes paid by the developer in each period cannot

exceed their revenue (ptµt):

Tt = min{Ne2
t , ptµt}.

This limited liability constraint is a cash-flow constraint that limits the developer’s

ability to pay taxes.

Under limited liability, the developer’s optimal algorithm release policy differs

from the social optimum even if beliefs are homogeneous. This divergence arises

because the developer’s potential losses are capped, encouraging it to release mod-

erately risky algorithms relying on limited liability to protect itself if significant ad-

verse external effects occur.

In this case, we can show that

Vt = Wt − Nyt + Et[max{N(ϕ2
e + ξe,t)− pt, 0}]µt, (B.20)

where ξe,1 = ξe and ξe,2 = 0. To see this, note that if beliefs are homogeneous,

then Ed
t (ϕ

2
e ) = Es

t(ϕ
2
e ). It is still optimal for the developer to set pt = u − Es

t(ϕ
2
i ).

Replacing this price and the expected taxes into the utility of the developer we find

that V = (1 − β)V1 + βE1(V2), where

Vt = Wt − Nyt − Et

[
min{Ne2

t , ptµt}
]
+ NEt

[
e2

t

]
= Wt − Nyt + Et

[
Ne2

t + max{−Ne2
t ,−ptµt}

]
= Wt − Nyt + Et

[
max{0, Ne2

t − ptµt}
]

= Wt − Nyt + Et

[
max{0, N(ϕ2

e + ξe,t)− pt}µt

]
.
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The expected value of the taxes on the developer is lower than the expected social

welfare cost of the externality. It follows that the developer is more likely to release

the algorithm in period two than the planner, being protected by limited liability

should very negative external effects materialize. The same logic implies that the

developer may forgo beta testing in period one and release the algorithm immedi-

ately, knowing it is protected by limited liability if dire external effects materialize.

As a result, the developer may act with less caution than would be socially optimal.

Figure 3 illustrates the release decisions under ex-post Pigouvian taxes with limited

liability.
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Figure 3: Release decisions in the first and second periods under Ex-post Pigouvian
Taxes with Limited Liability
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B.2 The Impact of Limited liability on Ex-ante Pigouvian Taxes

We now show that ex-ante Pigouvian taxes fail to implement the social optimum

when limited liability is present, even under homogeneous beliefs. While they en-

sure that the release policy in period 2 remains optimal, they lead to beta test sample

sizes in period one that exceed the optimal level.

Imposing limited liability means that

Tex−ante
t = min

{
NEt(ϕ

2
e )µt, ptµt

}
. (B.21)

Consider the problem at time two, after a successful beta test (B = 1). If limited

liability is not binding, then private and social incentives coincide. What happens

when limited liability does bind? Given that p2 = u − Es
2(ϕ

2
i ), limited liability binds

whenever u − Es
2(ϕ

2
i ) < NEs

2
(
ϕ2

e
)
. In this scenario, the developer makes no profit

from selling the algorithm but still experiences the consequences of the negative ex-

ternality the algorithm creates. Consequently, the developer has a strict preference

not to release the algorithm when limited liability is binding. Limited liability binds

only in cases where the regulator would also strictly prefer not to release the al-

gorithm, since NEs
t(ϕ

2
e ) < (N + 1)Es

t(ϕ
2
e ). In other words, the developer and the

regulator agree not to release the algorithm whenever limited liability binds.

If the beta test is unsuccessful (B = 0), limited liability binds in period two

whenever u − σ2
s,i < Nσ2

s,e. In this case, the developer strictly prefers not to release

the algorithm. The regulator strictly prefers not to release the algorithm whenever

NEs
t(ϕ

2
e ) < (N + 1)σ2

s,e. Therefore, whenever limited liability is binding, both the

developer and the regulator agree that the algorithm should not be released.

With ex-ante Pigouvian taxes Es
1(V∗

2 ) = Es
1(W∗

2 )− Ny2, even in the presence of

limited liability, so private and social incentives are aligned.

Turning to the problem at time one, private and social incentives coincide if lim-

ited liability does not bind. when limited liability binds, both the developer and the

planner choose strictly positive values for µ1, but they select different values. To see
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this result, consider the developer’s information benefit-cost ratio

Λd = Λs ×
σ2

s,i + (N + 1)σ2
s,e − u

Tex−ante
t

µt
+ σ2

s,i + σ2
s,e − u

= Λs ×
σ2

s,i + (N + 1)σ2
s,e − u

σ2
s,e

, (B.22)

where Λs is given by (7). Since limited liability binds, we have σ2
s,i + Nσ2

s,e − u > 0,

which implies
σ2

s,i + (N + 1)σ2
s,e − u

σ2
s,e

>
σ2

s,e

σ2
s,e

= 1.

Thus, under limited liability, the developer’s information benefit-cost ratio exceeds

that of the regulator. Consequently, the developer adopts a more aggressive ap-

proach, choosing to beta test the algorithm on a larger sample than the regulator

would.

When limited liability binds, the developer’s after-tax sales revenue is zero. How-

ever, since the tax does not fully internalize the externality, the developer still has an

incentive to conduct beta testing on a larger sample to increase the likelihood of ob-

taining valuable information for period two (see Figure 4).

We summarize these results in the following proposition.

Proposition 7 (Ex-Ante Pigouvian Taxes with Homogeneous Beliefs and Limited

Liability). Suppose developers and society share the same beliefs. If the regulator implements

ex-ante Pigouvian taxes subject to the limited liability constraints in equation (B.21), then:

• In the first period, the developer’s choices align with the socially optimal outcomes only

if limited liability does not bind. When it binds, the developer has an incentive to beta

test the algorithm on a sample that is larger than socially optimal.

• In the second period, the developer’s decisions regarding release and withdrawal are

socially optimal.

Figure 4 illustrates the release decisions under ex-ante Pigouvian taxes with lim-

ited liability for the first period. We ommit the case of the second period, since they

coincide.
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Figure 4: Time 1 testing decisions with Ex-Ante Taxes and Limited Liability
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B.2.1 Proof of Proposition 7

Consider first the problem in the second period. If limited liability does not bind,

then release and withdrawal incentives are aligned. Instead, suppose that limited

liability binds. Then, the developer makes zero profits from releasing the algorithm,

but still suffers from the externality. It follows that, if limited liability binds, the

developer withdraws the algorithm. Limited liability binds when{
u − Es

2(ϕ
2
i ) = NEs

2(ϕ
2
e ) < (N + 1)Es

2(ϕ
2
e ), if B = 1

u − σ2
s,i = Nσ2

s,e < (N + 1)σ2
s,e, if B = 0.

So, when limited liability binds, the regulator also wants the algorithm to be with-

drawn.

Turning to the problem of the first period, if limited liability does not bind, then

incentives are aligned as before. If limited liability binds, then the developer’s prob-
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lem is

max
µ1

{
(1 − β)

{
u − σ2

s,i − σ2
s,e −

Tex−ante
1

µ1

}
µ1 + βπ(µ1)E

s
1[max{u − Es

2(ϕ
2
i )− (N + 1)Es

2(ϕ
2
e ), 0}]N

}
.

(B.23)

The first order condition is given by

(1 − β)

{
u − σ2

s,i − σ2
s,e −

Tex−ante
1

µ1

}
+ (1 − β)π′(µ1)ΛsN

{
σ2

s,i + (N + 1)σ2
s,e − u

}
= 0

⇔π′(µ1)NΛs σ2
s,i + (N + 1)σ2

s,e − u
Tex−ante

1
µ1

+ σ2
s,i + σ2

s,e − u
= 1 ⇔ π′(µ1)NΛs σ2

s,i + (N + 1)σ2
s,e − u

σ2
s,e

= 1

⇔µ1 =

[
αΛs σ2

s,i + (N + 1)σ2
s,e − u

σ2
s,e

N
κ

] 1
1−α

κ.

So, when limited liability binds, the developer generally beta tests the algorithm

in a larger pool than the social optimal size.
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