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ABSTRACT

We study the relationships between corporate R&D and three components of public science:
knowledge, human capital, and invention. We identify the relationships through firm-specific
exposure to changes in federal agency R\&D budgets that are driven by the political composition
of congressional appropriations subcommittees. Our results indicate that R&D by established
firms, which account for more than three-quarters of business R&D, is affected by scientific
knowledge produced by universities only when the latter is embodied in inventions or PhD
scientists. Human capital trained by universities fosters innovation in firms. However, inventions
from universities and public research institutes substitute for corporate inventions and reduce the
demand for internal research by corporations, perhaps reflecting downstream competition from
startups that commercialize university inventions. Moreover, abstract knowledge advances per se
elicit little or no response. Our findings question the belief that public science represents a non-
rival public good that feeds into corporate R&D through knowledge spillovers.
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1 Introduction

The American innovation ecosystem features a division of labor between universities that
perform the bulk of basic research, startups that identify commercial applications for dis-
coveries, and large firms that develop and scale up the applications. Fueled by federal
support, university research has grown steadily since World War II. Since the passage of the
Bayh-Dole Act in 1980, American universities have also increasingly turned to patenting and
commercializing their discoveries (Aldridge & Audretsch, 2017). Figure 1 shows that uni-
versity publications, university patents, and PhD dissertations have increased considerably
since 1981. Whereas publications have grown by about 75% and PhD production by over
100%, university patents have increased twenty-five-fold, albeit from a small base.

Over the same period, startups have also grown in importance as sources of new tech-
nology, while many large firms have withdrawn from upstream research (Arora, Belenzon,
& Patacconi, 2018; Arora, Belenzon, & Sheer, 2021a; Mowery, 2009).! Though corporate
laboratories such as Bell Labs, Xerox PARC, IBM, and DuPont are in decline, even today
firms with more than 1,000 employees account for about 80% of business R&D investment
(National Center for Science and Engineering Statistics, 2023b, table RD-12). Therefore, it
is essential to understand how the growth of university research has affected innovation by
established firms.

Doing so requires considering the different ways in which universities affect corporate
R&D. In addition to producing scientific knowledge, universities also produce trained re-
searchers (Schartinger, Rammer, Fischer, & Frohlich, 2002), as well as inventions that can
be used by startups or licensed to established firms. The impact of the different compo-
nents of public science on corporate innovation can be complex (Cohen, Nelson, & Walsh,
2002). Moreover, corporate R&D itself has an upstream research component and a down-
stream development component, and these may respond differently to increases in public
knowledge or increases in public invention. Our goal is to estimate how public science—
scientific knowledge, human capital, and inventions from universities and other public re-
search organizations—affects corporate R&D.

We develop a simple analytical framework to explore the relationships between corporate

!There are some notable exceptions to these broad trends. In several emerging technology fields, in-
cluding artificial intelligence (AI) and quantum computing, leading companies such as IBM, Microsoft, and
Google, continue to invest in upstream research. Some of the best-known Al researchers and quantum com-
puting experts today work for corporations rather than universities (Hernandez & King, 2016). Corporate
publications represented 10% of all publications at the International Conference on Machine Learning in
2004 and 30% in 2016 (Hartmann & Henkel, 2020). Based on data from Microsoft Academic Graph (Sinha
et al., 2015; Wang et al., 2019), IBM and Microsoft produced more quantum computing publications than
MIT during 2013-2020.



Figure 1: TRENDS IN UNIVERSITY SCIENCE, 1981-2016
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Notes: This figure presents trends in university science over time, including U.S. science and engineering
journal publications authored by university researchers (left axis), U.S. hard science PhD dissertations (left
axis), and USPTO patents assigned to universities (right axis). All measures are normalized by their 1981
values. Publication data for 1981-1995 are from Appendix Table 5-44 of Science and Engineering Indicators
1998 (National Science Board, 1998). Publication data for 1995-2003 are from Appendix Table 5-42 of
Science and Engineering Indicators 2010 (National Science Board, 2010). Publication data for 2003-2016 are
from Appendix Table 5-41 of the Science and Engineering Indicators 2018 (National Science Board, 2018).
Dissertation data are from ProQuest Dissertations & Theses Global, while patent data are from PatentsView.

R&D and three dimensions of public science: knowledge, human capital, and inventions.
Corporate innovations can arise from inventions generated internally or acquired externally,
particularly from universities. Scientific knowledge, both from internal research and public
knowledge from universities, lowers the cost of internal invention.? Human capital is an input
into both internal research and invention.

A firm’s response to increased public science depends on three main factors. First, public
knowledge can complement or substitute for internal research in reducing the marginal cost
of internal inventions. Second, an increase in the supply of human capital reduces the cost
of internal research and invention. Third, public inventions can substitute for internal inven-
tions as inputs into the firm’s innovations, thereby reducing the effective cost of innovation

to the firm. Public inventions can also fuel market entry by startups, reducing the payoff to

2Tn a recent example of harnessing public knowledge to lower the cost of internal invention, Swiss pharma-
ceutical company Roche set up the Institute of Human Biology in May 2023 to enable its internal researchers
to collaborate with academic researchers on exploratory research, bioengineering, and translational projects
using organoids (Roche, 2023, May 4). This foundational research will not lead directly to the invention of
new drugs, but will instead provide useful scientific knowledge that reduces the cost of invention (replacing
animal models with organoids may better predict human responses to candidate drugs).



the focal firm’s innovations. The effect of public science on the marginal returns to internal
research and invention depends on the nature of these relationships, as noted in Section 3.

Our empirical analysis includes all publicly traded companies headquartered in the United
States that had at least one year of reported R&D expenditures, at least one granted patent,
and at least three years of consecutive financial records in Compustat between 1980 and
2015. We measure corporate R&D using company patents, scientific publications by cor-
porate scientists, the employment of scientists profiled in the American Men & Women of
Science (hereafter, “AMWS scientists”), and R&D expenditures. Measuring the relevance of
public science to a focal firm’s innovative activity is crucial to our analysis. We use a firm’s
previous publishing across OECD natural science subfields to identify relevant public knowl-
edge. To identify relevant human capital, we use the SPECTER deep learning algorithm
to measure the textual similarity between PhD dissertations and the focal firm’s patents
(Cohan, Feldman, Beltagy, Downey, & Weld, 2020).> We use a firm’s previous patenting
across technology subclasses to identify public inventions relevant to the firm.*

Estimating the effect of public science on corporate R&D suffers from a classical endo-
geneity problem: technological shocks that affect public science can also affect corporate
R&D, leading to biased OLS estimates. Federal funding may offer a source of exogenous
variation in the public science relevant to a firm. We exploit changes in federal funding that
are driven by political rather than technological forces. Specifically, we use the federal agency
R&D budgets that are predicted by the political composition of the relevant congressional
appropriations subcommittees. Firms differ in the share of their publications published in
various subfields. Subfields differ in the extent to which their publications are funded by
different federal agencies. The combination reflects the extent to which firms are exposed
to R&D funding shocks from different agencies. To arrive at a firm-specific instrumental
variable for relevant public knowledge, we create a many-to-many crosswalk from OECD
natural science subfields to publications, and from publications to R&D funding by federal
agencies. We use a similar approach to develop firm-specific exogenous variation in human
capital and public inventions.

We present three main results. First, we find that abstract public knowledge per se—
publications in scientific journals—has little effect on the various components of corporate

R&D. This means that corporate innovation is largely unresponsive to “pure” knowledge

3Recent work has used machine learning to establish connections between patents (e.g., Kelly, Papaniko-
laou, Seru, & Taddy, 2021), between patents and research grants (e.g., Myers & Lanahan, 2022), and to
classify publications into fields (e.g., Angrist, Azoulay, Ellison, Hill, & Lu, 2020).

4We get similar results if dissertations are matched to firms using OECD natural science subfields, or
if we use non-corporate publications cited by patents and a firm’s previous patenting across technology
subclasses to measure relevant public inventions. See subsection 6.8 for details.



spillovers.

Second, public invention reduces corporate R&D. An increase in relevant university
patents of one standard deviation reduces corporate patents by about 51%, corporate pub-
lications by approximately 33%, and the employment of AMWS scientists by about 8%.
Further, we find that an increase in public invention reduces the firm’s profits, suggesting
that, on balance, public inventions compete with corporate inventions more than they serve
as inputs into corporate innovation.

Third, we find a positive effect of human capital on corporate R&D. An increase of
one standard deviation in PhD dissertations that are textually similar to a focal firm’s
patents increases firm patents by approximately 53%, publications by approximately 22%,
and the employment of AMWS scientists by approximately 9%. Higher human capital from
universities also increases firm profits, consistent with a reduction in the cost of invention
when relevant human capital becomes more abundant.

These effects vary across firms and industries. In particular, firms on the technology
frontier appear to respond less to public invention as compared to followers and to benefit
more from human capital. Similarly, public science appears to stimulate corporate research
in life sciences to a greater extent than in other industries.

Taken together, our findings indicate that the public science that matters for corporate
innovation—the science developed into patented inventions and embodied in the human cap-
ital of people—is both excludable and rivalrous. Thus, the expansion of public science may
not lead to the sustained productivity growth that standard models of economic growth
would predict. Our results also point to the importance of the growing technology com-
mercialization activities of universities. Indeed, between 1980 and 2021, the share of basic
research in the R&D performed by U.S. universities declined from 67% to 62%, while the
share of applied research and development correspondingly grew from 33% to 38%, even as
their R&D expenditures grew more than ten fold (in nominal terms) from around $6 billion
to nearly $90 billion (National Center for Science and Engineering Statistics, 2023a).

We make two main contributions. First, we contribute to the literature that examines
the effect of public science on corporate R&D, as briefly discussed in Section 2. We fo-
cus on established firms, rather than individual researchers, industries, regions, or national
economies, the focus of prior studies. Our simple framework delineates how different compo-
nents of public science, namely publications, patents, and people, affect upstream scientific
research and downstream technology development in corporations. Our findings suggest that
university research is most relevant for corporate innovation not as abstract, non-rivalrous
ideas, but rather as embodied, market-supplied inputs. Incumbent corporations appear to

have a limited ability to absorb and use abstract ideas produced by universities. It is only



when those ideas are developed into inventions that they become relevant to firms, reducing
the demand for internal invention by incumbent corporations and hence also reducing the
demand for internal research. In clarifying the relationship between university research and
corporate R&D, our findings also point to an important implication of university technol-
ogy commercialization activities for R&D in incumbent firms. In particular, the expansion
of university research, particularly more applied research, may spur additional competition
from startups, with corresponding changes in corporate R&D.

Second, we make a data contribution by using funding acknowledgments and other bib-
liometric and textual linkages to connect federal agency funding to publications, PhD disser-
tations, and patents. We build on Babina, He, Howell, Perlman, and Staudt (2023), Myers
and Lanahan (2022), and Azoulay, Ding, and Stuart (2009) by linking university publica-
tions, PhD dissertations, and patents with federal funding, and using exogenous changes in
agency R&D funding to estimate their impact on corporate R&D. To our knowledge, we are
the first to indirectly link federal funding to public knowledge, human capital, and public
invention that is relevant to a given firm’s R&D, even if not directly used by the firm. We
exploit differences in the political composition of congressional appropriations subcommit-
tees as a source of exogenous variation in agency R&D funding. This enables us to analyze
the joint effect of the three components of public science on both upstream and downstream
corporate R&D without the potential bias induced by how firms select the public science to
use in innovation.

The paper proceeds as follows. Section 2 places this study in the related literature.
Section 3 presents the conceptual framework that guides our empirical investigation. Section
4 discusses and summarizes the data, Section 5 outlines the econometric specifications, and

Section 6 presents the results. Section 7 concludes and suggests directions for future work.

2 Related Literature

A voluminous literature has explored how public science affects corporate R&D through
knowledge and training spillovers or the acquisition of university inventions. Early influen-
tial studies have surveyed industrial research managers on the perceived importance of public
science to corporate innovation. These include the Yale survey on appropriability and tech-
nological opportunity (Klevorick, Levin, Nelson, & Winter, 1995; Nelson, 1986; Rosenberg &
Nelson, 1994), the pioneering surveys by Mansfield (1991, 1995, 1998), the Carnegie Mellon
survey on industrial R&D (Cohen et al., 2002), and the EU Community Innovation Survey
(Beise & Stahl, 1999; Laursen & Salter, 2004; Tether & Tajar, 2008). These studies suggest

that scientific research from universities is of limited direct value for corporate R&D. How-



ever, because these studies lack firm-specific measures of the stock of relevant public science,
they do not directly address how public science affects corporate R&D.?

Other studies use citations to the non-patent literature (NPL) to measure the use of
science in corporate invention (e.g., Fleming, Greene, Li, Marx, & Yao, 2019; McMillan,
Narin, & Deeds, 2000; Narin, Hamilton, & Olivastro, 1997). These studies show that patent
citations to scientific papers have increased over time, particularly for patents in the life-
sciences, and for patents by startups. Most of the science cited is government-funded and
produced by universities, federal laboratories, and other public research institutions, though
AT&T, IBM, DuPont, and Merck also figure prominently. However, though these studies
show that inventions have become closer to science, how public science affects corporate
R&D remains unclear. We find that public science affects corporate R&D only when the
knowledge is developed by universities into patents or embodied in people (PhD graduates).

Several recent studies estimate the effect of public funding for research on patented inven-
tion (Azoulay, Graff Zivin, Li, & Sampat, 2019; Myers & Lanahan, 2022), on the composition
and intensity of corporate R&D (Mulligan, Lenihan, Doran, & Roper, 2022; Scandura, 2016),
and on academic entrepreneurship (Babina et al., 2023). Myers and Lanahan (2022) exploit
windfall grant funding resulting from non-competitive grant matching policies that vary
across states and over time. They find that for every patent produced by grant recipients of
the Department of Energy, three additional patents are produced by non-recipients. Babina
et al. (2023) use windfall changes in agency funding to estimate the effect on university en-
trepreneurship, publishing, and patenting. We map agency R&D to public science relevant
to a given firm to estimate how the different components of public science affect corporate
R&D. We exploit differences in the political composition of congressional appropriations
subcommittees as a source of exogenous variation in agency R&D funding, and in turn, as a
source of exogenous variation in public science.

Our results also add to Azoulay et al. (2019), who analyze the effect of National Institutes
of Health (NIH) grant funding for research and trace the impact on patenting by pharma-
ceutical and biotechnology firms during 1980-2012. They find that an increase of $10 million
in NIH grant funding for a research area leads to 2.3 additional private patents, suggesting

that public research encourages private innovation in the life sciences.® Our heterogeneity

50ver the past several decades, researchers have also investigated “additionality’—whether government
spending crowds out or stimulates additional private R&D investments—at various levels of aggregation,
including industries (e.g., Mamuneas & Nadiri, 1996), firms (e.g., Eini6, 2014; Lichtenberg, 1984; Moretti,
Steinwender, & Van Reenen, 2021; Wallsten, 2000) and individuals (e.g., Goolsbee, 1998). Perhaps not sur-
prisingly, given the diversity of approaches and levels of analysis, these studies have produced conflicting
results (see reviews by David, Hall, & Toole, 2000; Dimos & Pugh, 2016). Previous studies have also docu-
mented substantial heterogeneity in response to government subsidies by firm size (Gonzalez, Jaumandreu,
& Pazo, 2005) and R&D intensity (Sziics, 2020).

6More than half of the patents resulting from NIH research grants are for diseases different from those



analysis similarly reveals that public knowledge provides some encouragement for corporate
innovation in the life sciences, but that outside this unique setting, public knowledge appears
to have little effect on patenting and publishing by incumbent firms. Our findings therefore
caution against generalizing from the life sciences to other sectors.

Another strand of the literature focuses on the localization of spillovers from universities
(e.g., Belenzon & Schankerman, 2013; Hausman, 2022; Tartari & Stern, 2021; Valero &
Van Reenen, 2019). Tartari and Stern (2021) examine the effect of university funding on
local startups at the zip code level. Consistent with our findings, they document a positive
effect on local entrepreneurship from increases in funding for universities, but not for national
laboratories. A possible explanation is that, unlike national laboratories, universities also
embody knowledge in human capital used by new ventures. In other words, it is likely
that human capital from universities is the source of new startups. Similarly, Hausman
(2022) studies the effect of university innovation on local industrial agglomeration at the
county-by-industry level. She documents higher growth in employment, wages, and corporate
patenting after the passage of the Bayh-Dole Act in industries more closely related to the
local university’s technological strengths. Consistent with Tartari and Stern (2021), she
finds that this growth is primarily driven by new ventures in university-linked industries.
However, neither study analyzes the effect on incumbent firms. Indeed, incumbent R&D and
profitability depend on whether startups commercializing university discoveries supply their
innovations to incumbents or compete with them. Our results suggest that the competition
effect is the dominant effect.

Overall, our paper differs from prior literature in a couple of important ways. First, we
study the effects of three distinct components of public science—knowledge, human capital,
and invention—on both upstream corporate R&D (scientific research or “R”) and downstream
corporate R&D (technology development or “D”). Second, we make progress on data and
identification at the firm level rather than at the industry, zip code, or individual researcher
level. For each firm, we measure the potentially relevant public knowledge, human capital,
and public invention based on: (i) the textual similarity between publications, dissertations,
and patents; (ii) the classification of patents and publications in various CPC subclasses
and OECD subfields, respectively; and (iii) non-patent literature citations from patents to
publications. We also match renowned scientists profiled in the American Men & Women
of Science directories to thousands of R&D-performing, publicly traded, American firms

and their subsidiaries over three-and-a-half decades. This allows us to measure corporate

initially funded, indicating the presence of knowledge spillovers. This highlights the importance of linking
science to innovation without assuming that science affects innovation only in a narrowly defined intended
area. We implement this approach when we measure the public science that is potentially relevant to the
firm, and not just that which is actually used by the firm.



investment in research for firms that do not publish scientific publications.

3 Conceptual Framework

We adapt the framework from Arora et al. (2021a) to focus on the effect of public science on
internal research and invention. Public science has at least three components: knowledge dis-
closed in scientific publications, trained human capital (Pavitt, 1991), and inventions based
on public knowledge (Fabrizio & Di Minin, 2008). These potentially differ in how they affect
internal research and invention by incumbent corporations. For instance, public knowledge
may complement internal research or substitute for it. Inventions based on public knowl-
edge substitute for internal inventions, and may even compete with the firm’s innovations.

Human capital, on the other hand, tends to increase internal research and invention.

3.1 Setup

A firm’s product market profit, II(d), depends on its innovations—the number of inventions
it introduces into the market—d. These inventions may be acquired from outside the firm
or internally generated. Internal inventions are produced at a unit cost w(k)¢p(r, u), where r
is internal research and w is the stock of public knowledge that is relevant to the firm. The
term w(k) represents the wage of inventors and is assumed to fall as more human capital, k,
is available to the firm. The term ¢ represents the inverse of invention productivity and is
assumed to decrease with 7 at a diminishing rate. We also assume that ¢ decreases with u.”

The relationship between public knowledge and internal research in reducing the unit cost
of internal invention is important for how the stock of public knowledge relates to invest-
ments in internal research.® Public knowledge may complement internal research because
performing internal research provides the absorptive capacity to use the knowledge.”

We assume that the cost of internal research is given by v(k)ir?, which also depends on
k, the supply of relevant human capital. In other words, increasing the number of trained
PhD scientists produced by universities reduces the firm’s cost of both internal research and

internal invention.

"The cost function reflects a simple linear production function d = A(r,u)n, where n is the number
of inventors the firm employs and A(r,u) is the productivity of the inventors. Thus, the cost of internal
inventions is simply w(k)n so that ¢ = ﬁ

8Complementarity exists if _% > (0 and substitutability exists if — 88:8‘1: <0.

9There is a large literature on absorptive capacity that argues firms must invest in internal research
to benefit from public knowledge (e.g., Cohen & Levinthal, 1990; Rosenberg, 1990). Baruffaldi and Poege
(2020) show that firms are more likely to cite papers presented at conferences where the firm’s scientists also

participated.




Inventions by university researchers (henceforth, “public inventions”) can either be inputs
to the firm’s own innovation or compete with the firm’s innovations in the marketplace. For
example, university spinoffs and startups could be acquired by the firm or instead compete
with it in the marketplace, either directly or after being acquired by rivals (OECD, 2003).

To model public inventions as inputs to the firm’s own innovation, we assume that the
firm’s innovation, d, is the sum of those derived from internal inventions, d;, and those
derived from public inventions, d;. We assume that the firm can acquire public inventions
at an increasing marginal cost represented by agds + %aldQQ.lo

To model public inventions that compete with the firm’s innovations, we allow the focal
firm’s product market profits to also depend on public inventions. Specifically, we assume
I1(d, cz) = by + bid — %bud2 — byd — %b22J2 + byadd, where d stands for public inventions that
compete with the firm’s innovation. We assume that I1(d, CZ) increases with d, decreases with
d, and is concave. Importantly, we assume that the firm takes the number of competing
public inventions as given. Note that the marginal return to innovation (gross of the costs)
is simply by — by d + blgcz, which increases with d if bio > 0 and decreases with d otherwise.
We say that public inventions and internal inventions are strategic complements if b1 > 0

and strategic substitutes otherwise.

3.2 Implications for Firm Value and Innovation

The value of the firm is v(dy, dy) = max {TL(dy +dy, d) — dyw (k) — v(k)3r? — apds — Laidy”}.
We assume that v is concave in its ar7gu’ments. Panel A in Figure 2 summarizes the elements

of our basic conceptual framework.

3.2.1 Public Knowledge

An increase in relevant public knowledge increases the value of the firm, v, by reducing the

cost of internal invention. Formally, applying the envelope theorem, % = —dl% > 0. If

internal research complements public knowledge (i.e., —% > (), then an increase in public
knowledge will also increase internal research. If they are substitutes, then there are two
opposing effects. Substitutability reduces the marginal return to internal research. However,
a reduction in the cost of internal invention due to public knowledge increases the scale of

internal invention, thereby increasing the marginal return on internal research.

10For simplicity, the total cost of public inventions acquired by the firm is assumed to be agds + %aldgz.
The assumption of a rising marginal cost of public invention implies that the firm has market power, perhaps
due to its location or the specific inventions it can commercialize. The results are similar if the firm is a price
taker and has an increasing cost of internal invention, except that an increase in demand for invention would
leave internal invention and research unchanged but decrease invention sourced from the public sector.



Figure 2: CONCEPTUAL FRAMEWORK
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Notes: This figure presents our basic conceptual framework (Panel A). The firm’s innovation, d, is the
sum of internal inventions, d;, and external inventions, ds. The “demand” for innovation is represented by
I’ (dy + do, J) The “supply” of public inventions is represented by ag + a1ds, while the “supply” of internal
inventions is represented by w(k)¢(r, u), where w(k) is the wage of inventors, k is human capital, r is internal
research, u is public knowledge, and 7(16)%7"2 is the cost of r. Comparative statics for increases in public

knowledge (Panel B), human capital (Panel C), and public invention (Panels D, E, and F) are also included.
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The effect on internal invention follows a similar logic. The direct effect of an increase
in public knowledge is to reduce ¢ in the cost of internal invention, as shown in Panel B. As
long as the marginal cost of internal invention decreases, overall innovation increases because

the increase in internal invention is only partly at the expense of external invention.

3.2.2 Human Capital

As with public knowledge, an increase in human capital supply increases firm value. Formally,
g—z = —d; 88—’;} — %TQ‘;—Z > (0. An increase in the supply of human capital reduces the cost of
internal invention and research, as shown in Panel C. Since external invention substitutes

for internal invention, the former will fall.

3.2.3 Public Invention

Insofar as public inventions are inputs to the firm’s own innovation, they increase firm value
but decrease internal invention and research. An increase in public invention can be modeled
as a reduction in ag, as shown in Panel D, in which case —g—;’o = dy > 0. However, a reduction
in the marginal cost of external invention will decrease internal invention, which will, in turn,
decrease internal research. Intuitively, an increase in the supply of an input increases the
firm’s value. However, it will decrease the demand for substitute inputs.

Conversely, an increase in public sector inventions that compete with the firm’s inno-
vations, J, will decrease firm value. Formally, % = —by — bggcz + b1ad < 0 because II was
assumed to fall with d, as shown in Panel E. Indeed, by < 0 is sufficient for this result (if
by and byy are both positive). If by < 0, then an increase in d will reduce d; and hence also
will reduce r. Conversely, if bjs > 0, an increase in d will increase d; and hence also will
increase r. In other words, one has to examine the pattern of relationships with value as

well as internal invention and research to assess how public inventions relate to corporate

innovation. Table 1 summarizes the predictions of our basic conceptual framework.

3.2.4 Leaders and Followers

Even if the fruits of public science are available to all, they may not benefit all firms equally.
It is plausible that for leading firms, which require “frontier” innovations, sourcing public
inventions that match their needs is more difficult. By contrast, for follower firms trying
to “catch up” to the technology frontier, public inventions may be more plentiful. If so,

frontier firms would rely to a greater extent on internal inventions and also invest more
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Table 1: The Predicted Effect of Public Science on Firm Value and Innovation

(1) (2) (3)

Equation Comparative statics Effect on firm

A. Higher public knowledge

Publications or/ou 1 if r complements « in lowering ¢; | or 1 otherwise
Patents ady/0u 1 if r complements u in lowering ¢; | or 1 otherwise
Firm value Ov/ou T

B. Higher human capital

Publications or ok 0

Patents ad, |0k 0

Firm value ov/0k 0

C. Higher public invention (input)

Publications —0r/0ag 1

Patents —0d; /Oayg 1

Firm value —0v/0ay T

D. Higher public invention (competition)

Publications or/ od 1 if d; and d are strategic complements; | otherwise
Patents ady/ od 1 if d; and d are strategic complements; | otherwise
Firm value dv/dd {

Notes: This table summarizes the theoretical predictions regarding the effect of higher public knowledge,
human capital, and public invention on the publications, patents, and value of the focal firm.

! This suggests that frontier firms may

in internal research compared to follower firms.!
also respond differently to public science than followers. Public knowledge may substitute
for internal research for followers but may complement internal research in frontier firms.
Insofar as human capital reduces the cost of internal research, frontier firms would be more
responsive to increases in human capital. On the other hand, followers may respond more

to an expansion in the supply of public inventions.

4 Data

We combine data from several sources: (i) scientific publications by corporations, univer-
sities, federal laboratories, and other public research institutions, acknowledgments of fed-
eral grants by these publications, and citations by patents to publications from Dimensions

(Digital Science, 2022); (ii) scientists profiled in the American Men & Women of Science

UFrontier firms may have a higher demand for inventions, may face a lower effective supply of public
inventions, or internal research and public science may be strategic complements. These issues are explored
in our empirical analysis.
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directories; (iii) PhD dissertations from ProQuest Dissertations & Theses Global; and (iv)
firm financial information from S&P’s Compustat North America. We complement these
data with scientific publication information from Clarivate’s Web of Science, patent data
from U.S. Patent and Trademark Office’s PatentsView and the FEuropean Patent Office’s
PATSTAT, federal procurement contract data from the Federal Procurement Data System,
and federal grant data from the Treasury DATA Act Broker (see Arora et al., 2021a; Arora,
Belenzon, & Sheer, 2021b; Belenzon & Cioaca, 2021).

Corporate innovation and public science are multi-dimensional. Our measures capture
both corporate innovation inputs (R&D expenditures and AMWS scientists) and outputs
(publications and patents). Moreover, they capture upstream corporate science (publications
and AMWS scientists) and downstream corporate invention (patents). As well, we measure
three components of relevant public science: knowledge, human capital, and invention. The
construction of the main variables used in our econometric analyses is summarized below

and detailed in Online Appendix A.

4.1 Upstream Corporate Research: Publications and AMWS Sci-

entists

We measure upstream corporate research using (i) the number of publications authored by
scientists affiliated with the firm (from Arora et al., 2021a) and (ii) the number of scientists
employed by the firm and profiled in the American Men & Women of Science (AMWS),
a directory of accomplished North American scientists in science and engineering (similar
to Kim & Moser, 2021). Using the digital editions of AMWS between 2005 and 2021, we
identified 20,097 AMWS scientists who worked for 1,727 different firms in our panel between
1980 and 2015.

Both publications and AMWS scientists are noisy measures of corporate investment in
research. In our estimation sample, the pairwise correlation between the annual flow of
corporate publications and the number of AMWS scientists employed per firm is 0.68, sug-
gesting that there is a strong shared component. Employing AMWS scientists is much more
likely for firms that publish (54%) than firms that do not publish (11%). However, as Table
2 shows, 46% of the firms that publish do not employ AMWS scientists. Hence, we use both

measures to capture upstream corporate R&D activity.
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Table 2: Cross Tabulation of Measures of Upstream Corporate Research

(1) (2) (3)

Do not employ AMWS scientists Employ AMWS scientists Total

Count % Count % Count %
Do not publish 1,046 89% 132 11% 1,178 100%
Publish 1,005 46% 1,189 54% 2,194 100%
Total 2,051 61% 1,321 39% 3,372 100%

Notes: This table provides a cross-tabulation of measures of upstream corporate research for the 3,372 firms
included in our estimation sample. The unit of analysis is a firm.

4.2 Public Knowledge: Non-corporate Publications

We source scientific publications from Dimensions. This dataset provides information on
which federal agencies (if any) provided the grants that funded each publication, enabling
us to implement an identification strategy that uses exogenous variation in federal agency
R&D funding.’® The dataset also links university (and other non-corporate) publications to
the patents that cite them, which we use to construct alternative measures of relevant public
invention and human capital.

We use the OECD research classification system to determine the public knowledge that
is potentially relevant to a firm’s innovation. The 25 OECD natural science subfields (listed in
Appendix Table A2) provide a standardized way of categorizing scientific publications into
such scientific disciplines as mathematics, chemical sciences, and biological sciences. We
assume that new publications in a particular subfield are most relevant to firms that have
recently published in that subfield.

Our firm-year measure of relevant Public knowledge is the weighted sum of non-corporate
publications. The weights are the focal firm’s shares of publications across OECD subfields

during the previous 5-year time cohort, as follows:

Public knowledge,; , = Z Publications,; x Precohort share of publications;, (1)
(IS0,

The index o denotes OECD subfields. Publications,; is the number of non-corporate publi-
cations published in year ¢ in subfield o. Precohort share of publications;, is firm i’s share
of publications in subfield o during the previous (lagged) 5-year time cohort, obtained by
dividing the number of firm publications published in subfield o by the total number of firm
publications in the time cohort. We generate a stock measure of Public knowledge using a

perpetual inventory method with a 15% depreciation rate.

12As of 2022, the Dimensions dataset combined 131.5 million cited and citing publications, 6.3 million
research grants with related funding organizations, as well as 149.7 million cited and citing patents.
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4.3 Human Capital: PhD Dissertations

We measure human capital using PhD dissertations sourced from ProQuest Dissertations &
Theses Global (hereafter, PQDT), recognized by the U.S. Library of Congress as the official
repository for dissertations, and containing more than 5 million dissertations and theses
from universities around the world between 1900 and 2021. We exclude “soft science” PhD
dissertations from our data.'® We also discard PhD dissertations from non-U.S. universities
and all master’s degree theses. We end up with 771,023 U.S. PhD dissertations awarded
between 1985 and 2016 in 394 “hard science” research fields.

PhD dissertations are not typically cited by publications or patents. Therefore, we as-
sess the relevance of trained human capital to corporate innovation based on the textual
similarity between the abstracts of dissertations and the abstracts of company patents. We
calculate that similarity using SPECTER, a deep learning algorithm that considers both
the content and the context of scientific tests. In brief, SPECTER uses a transformer-based
neural network to process natural language texts. Online Appendix A provides a detailed
description of how we implement SPECTER in our variable construction.

Our firm-time cohort measure of relevant Human capital is the weighted sum of PhD

dissertations, using the textual similarity to patents as weights:

Human capital;, = Z Maximum textual similarityq;, (2)
deD

D is the set of PhD dissertations in the top 1,000 most similar dissertations for one or more of
the patents granted to firm ¢ during the 5-year time cohort t. Mazimum textual similarityq;
is the maximum textual similarity score between the abstract of dissertation d and the ab-
stracts of all patents granted to firm ¢ during the 5-year time cohort ¢.'4

A subset of PhD dissertations are published in scientific journals and (subsequently) cited

by patents. We construct a complementary firm-year measure, Human capital, cited, as the

3Doing so is not straightforward because the variable that describes dissertations’ research fields,
“classterms,” lists 308,862 different combinations of terms. We manually create a list of 1,027 disambiguated
terms, then drop dissertations in such research fields as “literature,” “history,” and “social sciences.”

MQur text-based measure captures the human capital that is potentially relevant to a firm’s inventions
without requiring “actual use” (e.g., NPL citations or employment history). For example, Arifur Rahman
earned his PhD in Electrical Engineering from MIT in December 2000. His dissertation on interconnect
technologies for integrated circuits was published in early 2001 in ProQuest Dissertations & Theses Global
(document ID 304757014). SPECTER ranked Rahman’s dissertation in the top 1,000 most similar disser-
tations for five of Lattice’s patents granted in 2000, five granted in 2001, and another five granted in 2002.
While none of these contemporaneous patents cited the dissertation, our measure nevertheless identified a
link between Arifur and Lattice. Indeed, Rahman was subsequently hired by Lattice as a technical staff
member in 2001. He went on to produce a number of semiconductor patents for Lattice (with filing dates
starting in 2002) and subsequent corporate employers, including Intel, Altera, and Xilinx.
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weighted sum of published PhD dissertations cited by patents in various patent subclasses,
as detailed in Appendix A.'® The weights are the focal firm’s shares of patents across patent
subclasses during the previous bH-year time cohort. We construct a third measure, Human
capital, OECD, by first classifying PhD dissertations into OECD natural science subfields.
We then use the focal firm’s previous patenting across technology subclasses that rely on
science from various OECD subfields to identify relevant human capital. We validate the
logic behind our measures of firm-relevant human capital with three case examples included
in Appendix C. We report results using the alternative measures in Section 6.8. Our findings

are not sensitive to the specific approach used for measuring firm-relevant human capital.

4.4 Public Invention: University Patents

We measure public invention using patents granted to American universities. This measure
reflects the extent to which universities directly develop inventions. We assume that uni-
versity patents represent public inventions that firms can acquire (either by licensing or by
acquiring the relevant startup) or have to compete against.

Our firm-year measure of Public invention is the weighted sum of university patents. The
weights are the focal firm’s shares of patents across patent subclasses during the previous

5-year time cohort, as follows:

Public invention; ; = Z University patents,; X Precohort share of patents; s (3)
seS

The index s denotes patent subclasses, identified using the first four digits of the current CPC
classification from the U.S. Patent & Trademark Office (USPTO). University patents,; is
the count of patents granted to universities in subclass s in year t. Precohort share of
patents; s is firm ¢’s share of patents in subclass s during the previous 5-year time cohort,
obtained by dividing the number of firm patents granted in subclass s by the total number
of firm patents in that time period.

In robustness checks, we use a broader measure of the supply of relevant public invention
using publications that lead to inventions, as detailed in Appendix A. We construct Public
inmwvention, broad as the stock of non-corporate publications that are cited by patents in

various patent subclasses, weighted by the share of the focal firm’s patents across patent

15Continuing with the previous example, Arifur Rahman’s dissertation was published under the title
Interconnect Limits on Gigascale Integration (GSI) in the 21st Century (DOI 10.1109/5.915376) in 2001.
This publication was subsequently cited by more than one hundred patents granted between 2004 and 2021,
including patents assigned to IBM, Seagate Technologies, and Texas Instruments. Similar to our primary
measure, our alternative measure captures the relevance of Rahman’s human capital, at graduation, not only
to his eventual employer, Lattice, but also to other firms that innovate in semiconductors.
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subclasses during the previous 5-year time cohort. Because some publications are not directly
cited by patents, yet still reflect external inventions that are potentially relevant to firms,
we also construct another measure Public invention, SPECTER using the textual similarity
between the abstracts of non-corporate publications and the abstracts of corporate patents.
Textual similarity is assessed using the SPECTER algorithm. We report results using these
alternative measures in Section 6.8. Our findings are not sensitive to the specific approach
used for measuring firm-relevant public invention. Table 3 summarizes the main variables

used in the econometric analyses.

4.5 Descriptive Statistics

Our estimation sample consists of an unbalanced panel of 3,372 U.S.-headquartered publicly
traded firms over 1986-2015, totaling 41,698 firm-year observations.!® Table 4 presents sum-
mary statistics for the main independent, dependent, and control variables.!” Our sample
contains a wide distribution of R&D expenditures, ranging from $0.6 million at the 10th
percentile to $202.6 million at the 90th percentile, partly reflecting a wide distribution of
firm sizes. On average, firms produce 28 patents and 16 publications per year and employ
5 AMWS scientists. Approximately 86% of firms have at least one patent and 65% have at
least one publication between 1986 and 2015.

Firms vary substantially in their exposure to public science. The average stock of firm-
relevant public knowledge (62,550 publications) represents a small fraction of the 2,714,527
publications added, on average, to Dimensions each year between 1986 and 2015. However,
the average flow of firm-relevant human capital in a 5-year period (6,413 PhD dissertations)
represents a larger fraction of the 28,537 PhD degrees in the hard sciences awarded by U.S.
universities each year between 1986 and 2015.

Our measures of the three components of public science are strongly positively correlated,
as shown in Appendix Table C15. In general, firms that face abundant relevant public

knowledge also tend to face abundant relevant human capital (whether measured by PhD

16We begin with the sample of 4,520 firms over 1980-2015 from Arora et al. (2021b), totaling 60,885 firm-
year observations. These are U.S.-headquartered publicly traded firms with at least one year of reported
R&D expenditures, at least one granted patent, and at least three years of consecutive financial records from
the first patent. We split this sample into 5-year time cohorts (e.g., 1980-1984, 1985-1989, etc.) to determine
a firm’s exposure to public science. Because observations from the first 5-year time cohort for each firm
are used to calculate the firm’s (i) lagged shares of patents across CPC subclasses and (ii) lagged shares of
publications in each OECD subfield, they are subsequently excluded from the analysis sample. Similarly,
because we lag independent and control variables by one year, additional observations are excluded, arriving
at 41,698 firm-year observations.

1"Summary statistics by main industry, for the instrumental variables, and for the alternative measures
of public science are reported in Appendix Tables C16, A8, and C17, respectively.
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Table 3: Main Variables

Variable name

Variable description

A. Dependent variables
Patents

Publications

AMWS scientists

R&D expenditures

Tobin’s Q

B. Independent variables

Public knowledge

Human capital

Public invention

C. Alternative independent

Human capital, cited

Human capital, OECD

Public invention, broad

Public invention, SPECTER

Patents granted by the USPTO to the focal firm

Scientific publications that have at least one author affiliated with the focal
firm

Scientists profiled in AMWS that are employed by the focal firm
R&D expenditures reported by the focal firm

Market value divided by assets

Stock of non-corporate publications published in various OECD natural sci-
ences subfields

PhD dissertations, based on the textual similarity between abstracts of dis-
sertations and abstracts of firm patents

Stock of university patents granted by the USPTO in various CPC subclasses
variables
Published PhD dissertations cited by patents in various CPC subclasses

PhD dissertations mapped to various OECD subfields, based on the impor-
tance of the OECD subfields to patenting in various CPC subclasses

Stock of non-corporate publications cited by patents in various CPC sub-
classes

Stock of non-corporate publications, based on the textual similarity between
non-corporate publications and firm patents

Notes:

This table summarizes the main variables used in the econometric analyses.
sures are constructed using a perpetual inventory method with a 15% depreciation rate.

Stock mea-
For example,

(Public knowledge, stock); = (Public knowledge): + (1 — 0)(Public knowledge, stock);_1, where § = 0.15.
We omit the term “stock” from variable names to simplify notation.

dissertations or the published versions of PhD dissertations) and public invention (whether

measured by university patents or non-corporate publications cited by patents). Large firms,

in particular, face more abundant relevant public science than small firms. Consistent with

the idea that trained human capital and public invention are co-produced in universities,

62% of firms with above median human capital also have above median public invention, as
shown in Appendix Table C18.
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Table 4: Summary Statistics for Main Variables

(1) (2) (3) RN ) (6)

Distribution

Observations Mean Standard deviation 10th  50th 90th
Public knowledge; 1 41,698 62,550 85,302 0.0 0.0 178,684.6
Human capital;_; 41,698 6,413 9,709 0.0 2,761.9 17,124.0
Public invention;_1 41,698 266 512 0.0 56.0 780.7
Patents; 41,698 28 157 0.0 1.0 44.0
Publications; 41,698 16 94 0.0 0.0 16.5
AMWS scientists; 41,698 5 32 0.0 0.0 5.0
R&D expenditures ($ mm); 36,712 142 656 0.6 11.8 202.6
Tobin’s Q; 36,800 34 688 0.4 1.7 16.2
R&D stock ($ mm), 41,698 603 3,134 1.0 38.6 773.3
Sales ($ mm);_ 41,439 3,101 14,336 4.0 192.5 5,420.4
R&D stock;_; / Assets; 41,035 2 3 0.0 0.4 6.3

Notes: This table provides summary statistics for the main variables used in the econometric analyses.
The analysis sample is at the firm-year level and includes an unbalanced panel of 3,372 U.S.-headquartered
publicly traded firms from 1986 to 2015.

5 Econometric Framework

We turn to the empirical investigation of the theoretical predictions from Table 1.

5.1 Patents, Publications, AMWS Scientists, and R&D Expendi-

tures Equations

We estimate the following specification for the relationship between corporate innovation

and public science (bold indicates vector representation):
111(1/;,15) =g + 1 ln(Xm_l) + Zlﬂtilw + n; + T+ €it (4)

We use multiple dependent and independent variables (see Appendix A for details on variable
construction). Y;, represents corporate innovation inputs (R&D expenditures and AMWS
scientists) and outputs (Publications and Patents), for firm i in year t. X;;_; represents the
Public knowledge (stock), Human capital, and Public invention (stock) relevant to firm i’s
innovation in the lagged year or time cohort. The vector Z includes time-varying controls,
such as In(Sales);—; for the R&D expenditures equation and In(R&D stock);—; for the
patents, publications, and AMWS scientists equations (where we also add an unreported
indicator variable equal to 1 for firms without R&D expenditures prior to the focal year).
In all specifications, we account for a possible direct federal funding effect by including

In(Awards to focal firm),_q, the lagged stock of federal grant and procurement dollars
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awarded to the focal firm and its subsidiaries. In the 2SLS specifications, we also include
indicator variables equal to 1 for firms with zero-valued instruments in the prior year and a
control for lagged Agency exposure.® The vectors  and 7 are firm and year fixed effects,
respectively, and € is an iid error term. When calculating natural logarithms, we add $1
to variables measured in millions of dollars (e.g., Sales, RE&D stock) and one unit to count
variables (e.g., patents, publications, AMWS scientists). Standard errors are clustered at
the firm level.

Our coefficient of interest is a;. We expect the effect of public science on corporate
innovation to vary by upstream and downstream R&D and by the specific component of
public science. We also examine heterogeneity in effects by firm proximity to the technology
frontier and by main industry.

One concern with our econometric framework pertains to our In(1+4x) transformation,
which we implement to handle positively skewed count data with zeros (e.g., firms have zero
publication flows in some years). We address this concern using the two-stage control function
Poisson regression approach described in Lin and Wooldridge (2019) and implemented in
Bellet, De Neve, and Ward (2023). We bootstrapped to estimate standard errors for the

coefficient estimates. We obtain similar results to our main specifications.

5.2 Firm Value Equation

As noted in Section 3, public inventions may represent inputs to the firm’s own innovation,
in which case they would increase firm value. Public inventions may also compete with
the firm’s innovations, in which case they would decrease firm value. To assess how public
inventions relate to corporate innovation on average, we estimate the following Tobin’s Q

specification:

R&D stock; i1
Assets; 1

In(Tobin's Q)i+ =Po + B1 In (Public knowledge)

it—1

+ P In (Human capital)i’t_l + B3 1n (Public mvention)i’t_l (5)

+ Zz{,t—lw + M+ T+ €

Tobin’s () is market value divided by book value of assets. The other elements of the
specification are as previously described. Our coefficients of interest are (i, (B2, and f3
on the lagged firm-relevant public knowledge (stock), human capital, and public invention

(stock), respectively.

18 Agency erposure; ; = ZSES ZaeA Reliance on public knowledge, , x Precohort share of patents; s
captures the weights used to calculate the instrument for public invention at the firm-year level.
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5.3 Identification

A key econometric challenge is how to deal with the endogeneity of public science. We address
it in an instrumental variable framework that uses the R&D budgets of federal agencies to
predict firm-relevant public science. We construct a Bartik-style shift-share instrument for
each component of public science. The “shift” represents federal financial support across
OECD subfields (in the case of public knowledge), dissertation advisors (in the case of
human capital), and patent subclasses (in the case of public invention). As multiple agencies
provide such financial support, the shift for each subfield, advisor, and subclass is calculated
as the weighted sum of financial support from each federal agency, where the weights capture
how much of that agency’s R&D budget is directed to that subfield, advisor, and subclass,
respectively. The firm-specific “exposure share” is based on the firm’s publishing across
OECD subfields (public knowledge), the textual similarity of PhD dissertations to the firm’s
patents (human capital), and the distribution of the firm’s patents across subclasses (public
invention) in the pre-period.

A key identifying assumption is that federal agency funding for R&D is unrelated to
technology and demand-side factors that also drive corporate innovation. To ensure that
our results are not affected by potential violations of this assumption, we use two different
approaches when building our instruments for public knowledge, human capital, and public
invention. The first approach uses agency R&D budgets to construct the “shift.” The
second (and preferred) approach adds another step: we use two measures of the political
composition of congressional appropriations subcommittees to predict agency R&D budgets,
then use these predicted agency R&D budgets to construct the “shift.” This second approach
leverages the powerful and persistent roles of congressional appropriations subcommittees in
federal budgeting (Davis, Dempster, & Wildavsky, 1966).

Another important identifying assumption is that firm “exposure shares” are unrelated to
the same underlying factors that drive federal agency R&D budgets. For instance, if larger
firms are more exposed to federal agencies that receive more R&D funding, instrumenting
for public science with agency R&D funding may still lead to biased results. We examine the
severity of this concern by estimating the relationship between firm size and federal R&D
funding. We find a positive correlation between firm R&D stock and agency R&D funding,
so we control for the lagged firm R&D stock or annual sales in all relevant specifications.

Our results are qualitatively similar when we do not include the control for size.
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5.3.1 Federal Funding for Public Science

The U.S. government is a substantial funder of public science. As shown in Appendix table
A5, federal agencies’ R&D budgets have increased from $104.6 billion per year in the 1980s
to $156.1 billion per year in the 2010s (American Association for the Advancement of Sci-
ence, 2021). The Dimensions dataset connects more than 4.6 million publications to their
funding organizations, including federal agencies. These linkages are based on funding ac-
knowledgments provided by the authors at publication and on administrative data collected
from major funders, such as the National Science Foundation and the National Institutes
of Health. We use the publications-to-grants and grants-to-federal agencies crosswalks from
Dimensions, the hierarchical structure of federal agencies from the Global Research Iden-
tifier Database (GRID), and the PhD students-advisors crosswalk from PQDT to create
instrumental variables for our various measures of public science.

In the simplest approach, we link federal funding for R&D with each of the three com-
ponents of public science, then calculate Bartik-style shift-share instruments using firms’
differential exposure to the common federal funding shocks. We report results using these
instrumental variables in our robustness checks.

In our preferred approach, we address the concern that federal funding for R&D may
reflect technological or demand shocks that also affect the R&D decisions of firms. Prior
research suggests that political partisanship can influence federal budgets (Davis et al., 1966;
Epp, Lovett, & Baumgartner, 2014). Because we need a source of agency-level variation in
R&D funding, we focus on the political composition of congressional appropriations sub-
committees. For each of the 12 main federal agencies (plus an “Other” category for smaller
agencies), we identify which U.S. House and U.S. Senate subcommittees are responsible for
reviewing their budget request to Congress, hearing testimony from government officials and
other witnesses, and drafting the spending plan for each fiscal year. Appendix Table A6
summarizes the mapping between agencies and subcommittees.

For each subcommittee, we collect two pieces of information. The first measures how
dominant the majority party is in the subcommittee. The variable Majority party share is
the ratio of the number of members from the majority political party in the chamber over
the total number of members in the subcommittee. The second measures the ideological
orientation of the subcommittee. The variable Democratness is the ratio of the number of
Democrats over the total number of members in the subcommittee. We use these variables to
predict the R&D budget, then use the predicted R&D budget in constructing our Bartik-style
shift-share instruments at the firm-year level.

The ideas behind this approach are as follows. When committees are more balanced, the

majority party may have to engage in more give-and-take with the minority party. One way

22



is to fund more of the minority party’s priorities, which would result in bigger budgets. In
addition, each member of the majority party may also have more bargaining power when the
majority is small, leading to additional spending to benefit their constituents. In either case,
we would expect agency R&D budgets to decrease when the majority party shares in the
relevant subcommittees increase. Moreover, the ideological bent of the majority party may
matter as well. Insofar as in the U.S. Republicans promote spending cuts while Democrats
favor a larger federal government (Epp et al., 2014; Tavares, 2004), we would expect agency
R&D budgets to increase when the share of subcommittee members who are Democrats
increases. Appendix Table A7 shows that the political composition of congressional appro-
priations subcommittees predicts the R&D budgets of federal agencies in the anticipated
directions. However, the political composition should be orthogonal to technological or de-
mand shocks that also affect the R&D decisions of firms. If so, it is a source of exogenous

variation in agency R&D budgets.

5.3.2 Instrument for Public Knowledge

Our preferred instrument for Public knowledge is the predicted federal funding for public
knowledge published in each OECD subfield, weighted by the focal firm’s shares of publica-

tions in each OECD subfield during the previous 5-year time cohort, as follows:

Predicted R&D budget - public knowledge, , = Z Precohort share of publications;,
0€e0

acA

(6)
O denotes OECD subfields. Precohort share of publications;, is firm i’s share of publica-
tions in subfield o during the previous 5-year time cohort, obtained by dividing the number of
firm publications published in subfield o by the total number of firm publications. A is the set
of 12 main federal agencies, plus an “Other” category for smaller agencies. R&D/bﬁgeta,t is
the R&D budget predicted by Majority party share and Democratness for agency a in year t.
Reliance on agency,, is a share obtained by dividing the number of publications published
in subfield o over 1980-2015 and funded by agency a by the total number of publications
published in subfield o over 1980-2015.

5.3.3 Instrument for Public Invention

Our preferred instrument for Public invention is the predicted federal funding for publications

that are relevant to university patents in each patent subclass, weighted by the focal firm’s
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shares of patents across CPC subclasses during the previous 5-year time cohort, as follows:

Predicted R&D budget - public invention, , = Z Precohort share of patents;
ses

(Z R&D/b_ﬂgeta,t X Reliance on agencysya>

acA
o (7
S, Precohort share of patents; s, A, and R&D budget,; are as previously defined. Reliance
on agencys, is a share obtained by dividing the number of citations from university patents
granted in subclass s over 1980-2020 to non-corporate publications published over 1980-2015
and funded by agency a by the total number of citations from university patents granted in

subclass s over 1980-2020 to all non-corporate publications published over 1980-2015.

5.3.4 Instrument for Human Capital

We construct an analogous instrument for Human capital. Differently from the previous
two instruments, we link each dissertation to a federal agency through the funding the PhD
dissertation advisors received from each agency over the six-year period prior to the grant
of the degree, and link each dissertation to a firm using the textual similarity to the firm’s
patents. Specifically, we match advisors to researchers in the Dimensions dataset using
each dissertation advisor’s name, school affiliation, and years of publishing activity and
retrieve from Dimensions (i) the scientific publications authored by the advisors during the
6-year period preceding the PhD dissertation defense and (ii) the grant amounts and funding
organizations for these publications. In our PhD dissertation dataset, 1,310,774 dissertations
have advisor information, producing 1,472,326 dissertation-advisor pairs (some dissertations
have more than one advisor). We assume that federal funding received by the advisor(s)
of a PhD student during the 6-year duration of the PhD program affects the direction and
content of the dissertation.

Our preferred instrument for Human capital is the predicted federal funding for each
dissertation’s advisors, weighted by the maximum textual similarity between the dissertation

and a focal firm’s patents granted in a 5-year time cohort, as follows:

Predicted R&D budget - human capital,;, = Z Mazimum textual similarityg;,

deD
(Z R&D/biﬁgetdya x Share of agencyd’a>
acA

(8)

D is the set of PhD dissertations in the top 1,000 most similar dissertations for one or more
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of the patents granted to firm i during time cohort t. Mazimum textual similarityq;,
and A are as previously defined. R&D/bqﬁgetd@ is the R&D budget predicted by Majority
party share and Democratness for agency a at the beginning of the PhD program (i.e., five
years prior to dissertation d’s defense year). Share of agencyy, is obtained by dividing the
funding amount (in $) from agency a to the publications of the advisor(s) of dissertation d
during the 6-year period ending in dissertation d’s defense year by the total funding amount

(in $) from agency a to any publication published over the same period.

6 Estimation Results

6.1 Patents Equation

Table 5 presents the results using patents—our measure of corporate invention—as the de-
pendent variable. Columns 1, 3, and 5 present OLS estimates for Public invention, Human
capital, and Public knowledge, respectively. The coefficients are positive and statistically
different from zero (p-values < 0.001). However, common shocks can affect both public sci-
ence and corporate R&D, leading to biased OLS estimates. We address this concern in a
2SLS framework by instrumenting for Public invention using Predicted RED budget - public
invention, for Human capital using Predicted RED budget - human capital, and for Public
knowledge using Predicted RED budget - public knowledge. The first stage results reported
in Appendix Table A10 confirm that all components of public science are positively related
to their respective instrumental variables (p-values < 0.001, F statistics > 104.7, see Lee,
McCrary, Moreira, and Porter (2022)).

The 2SLS coefficient estimate on public invention becomes negative (Column 2, p-value
< 0.001), while the estimate on human capital becomes even larger (Column 4, p-value
< 0.001). Importantly, the negative effect of public invention and the positive effect of
human capital persist when they are jointly estimated on the entire sample (Column 7) or a
subsample of publishing firms (Column 8).!% At the sample means, a one standard deviation
increase in relevant public invention decreases company patents by 51%, while a one standard
deviation increase in relevant human capital increases patents by 53% (Column 7).

Conversely, the 2SLS estimate on public knowledge is small when estimated alone (Col-

9 These results are robust to dropping the controls for Agency exposure; and In(Awards to focal
firm);—1. They are also robust to using an inverse hyperbolic sine transformation of the dependent variable.

20 Average values for patent flow, public invention stock, and human capital are 28.30, 266.11, and 6,412.67,
respectively. The standard deviation for public invention is 511.89 and for human capital is 9,708.77. The
marginal effect of a one standard deviation increase in public invention is a decrease in firm patents of
511.89 x 0.256(28.30 4+ 1)/(266.11 + 1) = 14.37. The marginal effect of a one standard deviation increase in
relevant human capital is an increase in firm patents of 9, 708.77 x 0.338(28.30 + 1)/(6,412.67 + 1) = 14.99.
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umn 6, p-value < 0.05) and becomes statistically indistinguishable from zero when estimated
jointly (Columns 7 and 8). In light of our theoretical predictions from Table 1, finding no ef-
fect of public knowledge on corporate patents suggests that public knowledge does not lower
the cost of invention. In turn, this also implies that public knowledge does not complement
internal research in lowering the cost of invention.

To address concerns with our In(1+x) transformation of the dependent variable, we im-
plement the two-stage control function (CF) instrumental variable (IV) Poisson regression
approach of Lin and Wooldridge (2019). We correct the standard errors in the second stage
using panel bootstrapping with 100 replications and report results in Column 9. Our results

are not sensitive to our preferred data transformation.

Table 5: Main Effect of Relevant Public Science on Company Patents

(1) (2) 3) (4) (®) (6) (7) (®) 9)

Dependent variable: In(1+Patents); Patents;

2SLS 2-Stage CF
OLS 2SLS OLS 2SLS OLS 2SLS 2SLS  (Pub. firms) IV Poisson

In(1+Public invention);_;  0.018*** -0.139*** -0.256™H%  -0.347FFF  -0.698%**
(0.005)  (0.029) (0.035) (0.053) (0.187)
In(14+Human capital);_, 0.024%%* (.215%** 0.338%#%  (.451%*F  1.062%**
(0.003) (0.023) (0.033) (0.048) (0.158)
In(1+Public knowledge)—; 0.008*** 0.033* 0.021 -0.005 -0.055
(0.002) (0.013) (0.012) (0.012) (0.036)
In($1+R&D stock);_; 0.2947F* (0.323%** (0.285%** (.23 7*** (.204*** (0.288%** (0.230***  (.270*** 0.337%*
(0.020)  (0.023) (0.020) (0.018) (0.020) (0.020) (0.019) (0.025) (0.101)
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mean DV 28.30 28.30 28.30 28.30 28.30 28.30 28.30 37.83 31.02
Weak id. (Kleibergen-Paap) 454.39 743.52 440.16  116.09 65.87
Firms 3,372 3,372 3,372 3,372 3,372 3,372 3,372 2,194 2,900
Observations 41,698 41,698 41,698 41,698 41,698 41,698 41,698 30,708 38,036
Adjusted R-squared 0.86 0.03 0.86 0.11 0.86 0.09 -0.04 -0.07

Notes: This table presents the estimation results using corporate patents as the dependent variable. The
sample in Column 8 is restricted to publishing firms. Standard errors (in parentheses) are robust to arbitrary
heteroskedasticity and allow for serial correlation through clustering by firms. Column 9 reports estimates
from a two-stage control function (CF) instrumental variable (IV) Poisson regression (Lin & Wooldridge,
2019). Standard errors are estimated by panel bootstrapping with 100 replications.

6.2 Publications Equation

Table 6 presents the results using corporate publications—our first measure of corporate
internal research—as the dependent variable. Similar to the results for patents, after in-
strumenting, we estimate a negative and significant effect for public invention (Column 2,

p-value < 0.001) and a positive and significant effect for human capital (Column 4, p-value <
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0.001). These results persist when we jointly estimate them (Column 7), restrict the sample
to publishing firms (Column 8), or use Poisson estimation (Column 9).*! At the sample
means, a one standard deviation increase in university invention decreases company publi-
cations by 33%, while a one standard deviation increase in relevant human capital increases
publications by 22% (Column 7).??

Similar to the results for patents, the estimated effect of public knowledge on publications
is not statistically different from zero (Columns 6-9), suggesting that knowledge that is not

embodied in either people or inventions has little effect on corporate research as well.??

Table 6: Main Effect of Relevant Public Science on Company Publications

(1) 2) ®3) (4) () (6) (7) (8) (9)

Dependent variable: In(1+Publications), Publications;

2SLS 2-Stage CF
OLS 28LS OLS 2SLS OLS 2SLS 2SLS  (Pub. firms) IV Poisson

In(1+4Public invention);_; 0.004 -0.108*** -0.162%F%  -0.252%**  _(.705%**
(0.004)  (0.020) (0.025) (0.040) (0.184)
In(1+Human capital);_; 0.004 0.056%** 0.139%**  (0.192%** 0.561***
(0.002) (0.015) (0.021) (0.032) (0.105)
In(1+Public knowledge); 1 0.006*** -0.011  -0.008 -0.019 -0.087
(0.002) (0.010) (0.010) (0.010) (0.062)
In($1+R&D stock);—; 0.179%%% 0.199%** (0.178%** 0.165*** 0.176*** 0.180*** 0.163***  (.218*** 0.608***
(0.016)  (0.017) (0.016) (0.016) (0.016) (0.016) (0.016) (0.022) (0.077)
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mean DV 15.72 15.72 15.72 15.72 15.72 15.72 15.72 21.35 21.35
Weak id. (Kleibergen-Paap) 454.39 743.52 440.16  116.09 65.87
Firms 3,372 3,372 3,372 3,372 3,372 3,372 3,372 2,194 2,194
Observations 41,698 41,698 41,698 41,698 41,698 41,698 41,698 30,708 30,708
Adjusted R-squared 0.88 0.01 0.88 0.06 0.88 0.05 -0.04 -0.09 .

Notes: This table presents estimation results for corporate publications. The sample in Column 8 is restricted
to publishing firms. Standard errors (in parentheses) are robust to arbitrary heteroskedasticity and allow for
serial correlation through clustering by firms. Column 9 reports estimates from a two-stage control function
(CF) instrumental variable (IV) Poisson regression (Lin & Wooldridge, 2019). Standard errors are estimated
by panel bootstrapping with 100 replications.

21These results are also robust to dropping the controls for Agency exposure; and In(Awards to focal
firm);_1, and to using an inverse hyperbolic sine transformation of the dependent variable.

22 Average values for publication flow, public invention stock, and human capital are 15.72, 266.11, and
6,412.67, respectively. The standard deviations for public invention and human capital are 511.89 and
9,708.77, respectively. The marginal effect of a one standard deviation increase in public invention is a
decrease in firm publications of 511.89 x 0.162(15.72 + 1)/(266.11 4+ 1) = 5.19. The marginal effect of a one
standard deviation increase in human capital is an increase in firm publications of 9,708.77 x 0.139(15.72 +
1)/(6,412.67 + 1) = 3.52.

23The consistency with the zero effect on patenting is gratifying. Even if public knowledge did not directly
affect the marginal return to corporate research, if it increased patenting by the firm, it would indirectly
increase the marginal return to research.
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6.3 AMWS Scientists Equation

Table 7 presents the estimation results using firm employment of AMWS scientists—our
second measure of corporate internal research—as the dependent variable. The patterns are
very similar to those obtained using publications. Taken together, the results in Columns
5-9 indicate that relevant public knowledge has very little effect on company employment
of renowned scientists. We find a negative effect for public invention (Column 7, p-value <
0.05) and a positive effect for human capital (Column 7, p-value < 0.001).

Evaluated at the sample means, the 2SLS estimates in Column 7 indicate that a one
standard deviation increase in relevant public invention decreases employment of AMWS
scientists by 8%, while a one standard deviation increase in relevant human capital increases
employment of AMWS scientists by 9%.%*

Table 7: Main Effect of Relevant Public Science on Company Employment of AMWS Sci-
entists

(1) (2) 3) (4) () (6) (7) ®) 9)

Dependent variable: In(1+AMWS scientists); AMWS scientists;
2SLS 2-Stage CF
OLS 285LS OLS 2SLS OLS 2SLS  2SLS (Pub. firms) IV Poisson
In(14-Public invention), 4 0.005*  -0.022 -0.033*  -0.069** -0.384
(0.003) (0.012) (0.015) (0.024) (0.214)
In(1+Human capital);_; 0.006*** 0.034*** 0.047*%*%  0.067*** 0.292*
(0.002) (0.010) (0.013) (0.019) (0.137)
In(1+Public knowledge);—1 0.001  0.018** 0.015* 0.005 -0.020
(0.001) (0.007) (0.006) (0.006) (0.039)
In($1+R&D stock);—q 0.046*** 0.051%** 0.044*** 0.036*** 0.047F*F* 0.044*** 0.035%**  0.044%** 0.175%*
(0.009) (0.010) (0.009) (0.009) (0.009) (0.009) (0.009) (0.012) (0.063)
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mean DV 4.80 4.80 4.80 4.80 4.80 4.80 4.80 6.48 10.15
Weak id. (Kleibergen-Paap) 454.39 743.52 440.16  116.09 65.87
Firms 3,372 3,372 3,372 3372 3372 3372 3,372 2,194 1,321
Observations 41,698 41,698 41,698 41,698 41,698 41,698 41,698 30,708 19,710
Adjusted R-squared 0.93 0.01 0.93 0.02 0.93 0.01 0.00 -0.01 .

Notes: This table presents estimation results for corporate employment of AMWS scientists. The sample
in Column 8 is restricted to publishing firms. Standard errors (in parentheses) are robust to arbitrary
heteroskedasticity and allow for serial correlation through clustering by firms. Column 9 reports estimates
from a two-stage control function (CF) instrumental variable (IV) Poisson regression (Lin & Wooldridge,
2019). Standard errors are estimated by panel bootstrapping with 100 replications.

24 Average values for the number of AMWS scientists employed, public invention stock, and human capital
are 4.80, 266.11, and 6,412.67, respectively. The standard deviations for public invention and human capital
are 511.89 and 9,708.77, respectively. The marginal effect of a one standard deviation increase in public
invention is a decrease in AMWS scientists employed of 511.89 x 0.033(4.80 + 1)/(266.11 + 1) = 0.37. The
marginal effect of a one standard deviation increase in human capital is an increase in AMWS scientists
employed of 9,708.77 x 0.047(4.80 + 1)/(6,412.67 + 1) = 0.41.
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6.4 R&D Expenditures Equation

Table 8 presents the estimation results for company R&D expenditures. Consistent with the
previous three tables, the 2SLS estimates show a negative, though only marginally significant,
effect of public invention (Column 7, p-value = 0.066), a positive and significant effect of
human capital (Column 7, p-value < 0.01), and no effect of public knowledge (Columns 6-8).
Evaluated at the sample means, the 2SLS estimates in Column 7 indicate that a one standard
deviation increase in relevant public invention decreases company R&D expenditures by 38%,

while a one standard deviation increase in relevant human capital increases them by 33%.2°

Table 8: Main Effect of Relevant Public Science on Company R&D Expenditures

1) (2) 3) (4) (5) (6) (7) ®)

Dependent variable: In($1+R&D expenditures),
2SLS
OLS 2SLS OLS 2SLS OLS 2SLS 2SLS (Pub. firms)
In(1+Public invention);_; 0.039 -0.078 -0.203 -0.141
(0.020) (0.085) (0.111) (0.117)
In(1+Human capital);_; 0.042%*  0.137** 0.225%* 0.195%
(0.014) (0.052) (0.078) (0.080)
In(1+Public knowledge);_; 0.015** 0.025 0.014 -0.017
(0.005) (0.031) (0.031) (0.031)
In($1-+Sales); 1 0.192%**  0.193%**F  (.191%F*  (.189*%**  0.191***  (.191***  (.187*** 0.169***
(0.021)  (0.021)  (0.021)  (0.021)  (0.021)  (0.021)  (0.021) (0.023)
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Mean DV 142.59 142.59 142.59 142.59 142.59 142.59 142.59 184.41
Weak id. (Kleibergen-Paap) 443.09 723.10 401.23 81.87 48.71
Firms 3,162 3,162 3,162 3,162 3,162 3,162 3,162 2,120
Observations 36,584 36,584 36,584 36,584 36,584 36,584 36,584 27,919
Adjusted R-squared 0.79 0.04 0.79 0.05 0.79 0.04 0.03 0.05

Notes: This table presents estimation results for corporate R&D expenditures. The sample in Column 8 is
restricted to publishing firms. Standard errors (in parentheses) are robust to arbitrary heteroskedasticity
and allow for serial correlation through clustering by firms.

In summary, our key findings thus far are that (1) public invention, as measured by the
stock of university patents, has a negative effect on corporate innovation, whereas (2) human
capital, as measured by trained PhD scientists, has a positive effect, and (3) abstract public

knowledge, not embodied in either people or inventions, has no effect.

25 Average values for R&D expenditures, public invention stock, and human capital are 142.59, 287.74,
and 6,931.84, respectively. The standard deviations for public invention and human capital are 527.80 and
10,118.23, respectively. The marginal effect of a one standard deviation increase in public invention is a
decrease in R&D expenditures of 527.80 x 0.203(142.59 + 0.000001)/(287.74 + 1) = 54.02. The marginal
effect of a one standard deviation increase in human capital is an increase in AMWS scientists employed of
10,118.23 x 0.225(142.59 + 0.000001)/(6,931.84 4+ 1) = 46.82.
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6.5 Heterogeneous Effects: Frontier Firms vs. Follower Firms

Frontier firms may differ from followers in the type of inventions they produce, the value they
derive from inventions, or both. To capture a firm’s proximity to the technology frontier,
we first count its annual flow of novel patents, where patent novelty is based on unique IPC
combinations. Then, we create Tech frontier as an indicator variable equal to 1 for firm
years with novel patents in the top decile compared to other sample firms in that year, and
0 otherwise.?® We interact this indicator variable with our measures of Public invention and
Human capital, respectively, and report second-stage 2SLS results in Table 9.7

The coefficient estimates on the interaction terms show substantial heterogeneity in the
effect of public science on internal research and invention based on firm proximity to the
technology frontier. While Tables 5, 6, and 7 show that, on average, firms respond to an
increase in relevant public invention by withdrawing from patenting, publishing, and hiring
of AMWS scientists, firms operating on the technology frontier do so to a lesser extent.
Similarly, though both frontier firms and followers increase their patenting, publishing, and
hiring in response to an increase in the supply of relevant human capital, frontier firms do
so to a greater extent. We find similar results when we measure proximity to the technology
frontier using patents that are first to be granted in a new CPC main group or subgroup
(see Appendix Table B14).

To further explore these results, we capture a firm’s ability to derive value from inven-
tions using the average patent value from Kogan, Papanikolaou, Seru, and Stoffman (2017)
normalized by market value. The indicator variable High ability equals 1 for firm years with
average patent values in the top decile compared to other sample firms in that year and
0 otherwise. Table 10 reports the second stage of 2SLS estimation using the same instru-
mental variables as before. Unlike the results for firm proximity to the technology frontier,
the coefficient estimates on the interaction terms are no longer significantly different from
zero across specifications. A firm’s ability to derive private value from inventions does not
condition its response to relevant public science. In other words, the impact of public science
on corporate innovation is more likely to be influenced by technological leadership than by
an advantage in product markets.

Our results are consistent with the view that firms on the technology frontier may have

more productive internal research or that these firms operate in technologies where public

26 Appendix Table C19 shows the results of a mean comparison test of frontier firms versus followers.
Frontier firms appear to have higher stocks of public knowledge and human capital than followers, but lower
stocks of public invention.

2"We use Predicted RE&D budget - public invention, Predicted RED budget - human capital, and their
interactions with Tech frontier as instrumental variables for Public invention, Human capital, and their
interactions with Tech frontier, respectively.
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Table 9: Variation by Firm Proximity to the Technology Frontier: Unique IPC Combinations

(1) (2) 3) (4) ) (6)

Dependent variable: In(1+4Pat.); In(1+Pub.); In(1+AMWS sci.); In(1+Pat.); In(1+Pub.), In(1+AMWS sci.),
In(1+Public invention);—; x Tech frontier, 0.236***  0.083%** 0.043%**
(0.010)  (0.009) (0.008)
In(1+Human capital),_1 x Tech frontier, 0.125%**  0.045*** 0.026***
(0.008)  (0.008) (0.006)
In(1+Public invention);; -0.216%F%  -0.141%** -0.033* -0.221%F% - (.143%** -0.033*
(0.031)  (0.023) (0.014) (0.030)  (0.023) (0.014)
In(1+Human capital);_; 0.250%** 0.100%** 0.037** 0.264%%%  0.105%** 0.038***
(0.028)  (0.019) (0.012) (0.028)  (0.019) (0.011)
In($1+R&D stock);—y 0.206*** 0.153%** 0.031%** 0.201%** 0.151 %% 0.029%*
(0.016)  (0.015) (0.009) (0.016)  (0.015) (0.009)
Year FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Mean DV 28.30 15.72 4.80 28.30 15.72 4.80
Weak id. (Kleibergen-Paap) 122.62 122.62 122.62 124.57 124.57 124.57
Firms 3,372 3,372 3,372 3,372 3,372 3,372
Observations 41,698 41,698 41,698 41,698 41,698 41,698

Notes: This table presents the second stage of 2SLS estimation for the effect of public invention and human
capital on corporate patents, publications, and AMWS scientists when considering firm proximity to the
technology frontier. To measure this proximity, we first count each firm’s annual flow of novel patents,
where patent novelty is based on unique IPC combinations. Then, we create the variable Tech frontier as an
indicator equal to 1 for firm years with a flow of novel patents in the top decile compared to other sample firms
in that year, and 0 otherwise. Standard errors (in parentheses) are robust to arbitrary heteroskedasticity
and allow for serial correlation through clustering by firms.

invention is less plentiful but with abundant supplies of human capital. In either case, it
would result in frontier firms having a larger scale of internal research and invention. In turn,
frontier firms would be more responsive to increases in human capital but less responsive to

public invention.

6.6 Variation by Industry

Our sample includes firms from a diverse set of industries. Appendix Table C16 provides
summary statistics by main industry, defined based on the firm’s primary SIC4 code. Annual
patent flows range from 14 for firms operating primarily in Machinery, equipment, and
systems to 55 for firms operating primarily in Computer, IT, and software. The average
number of AMWS scientists per firm ranges from 1 in Machinery, equipment, and systems
to 11 in Life sciences. The most striking differences in terms of relevant public science
appear in Life sciences, where firms have, on average, much higher stocks of relevant public
knowledge and university patents.

We examine variation in the effect of public science on corporate patents and publications
by main industry. Table 11 presents estimates from the second stage of 2SLS regressions using

our preferred instrumental variables and their interactions with industry indicator variables.
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Table 10: Variation by Firm Ability to Derive Value from Inventions: Patent Value

(1) (2) (3) (4) ) (6)

Dependent variable: In(1+Pat.); In(1+Pub.); In(1+AMWS sci.); In(1+Pat.); In(1+Pub.); In(1+AMWS sci.);
In(Public invention),—; x High ability, 0.040%** -0.003 -0.000
(0.003)  (0.002) (0.001)
In(Human capital);_; x High ability, 0.008 -0.007 -0.005**
(0.005)  (0.004) (0.002)
In(1+Public invention),_; -0.259%**  _0.157H** -0.041%* -0.261%**%  -0.158%** -0.042**
(0.035)  (0.025) (0.015) (0.035)  (0.025) (0.015)
In(1+Human capital),_; 0.349%*F*  (0.135%** 0.055%** 0.347%*¥*  (.135%** 0.055%**
0.033)  (0.021) (0.013) 0.033)  (0.021) (0.013)
In($1+R&D stock);—1 0.230%*F*  (0.163*** 0.036%** 0.233%**  (.163%** 0.036%**
(0.019)  (0.016) (0.009) (0.019)  (0.016) (0.009)
Year FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Mean DV 28.30 15.72 4.80 28.30 15.72 4.80
Weak id. (Kleibergen-Paap) 123.47 123.47 123.47 123.39 123.39 123.39
Firms 3,372 3,372 3,372 3,372 3,372 3,372
Observations 41,698 41,698 41,608 41,608 41,698 41,608

Notes: This table presents the second stage of 25LS estimation for the effect of public invention and human
capital on corporate patents, publications, and AMWS scientists when considering firm ability to derive value
from inventions. To measure this ability, we first calculate the average patent value from Kogan et al. (2017),
normalized by market value, for each firm year. Then, we create the variable High ability as an indicator
equal to 1 for firm years with an average patent value in the top decile compared to other sample firms in
that year, and 0 otherwise. Standard errors (in parentheses) are robust to arbitrary heteroskedasticity and
allow for serial correlation through clustering by firms.

Our analysis reveals that the positive effect of human capital on firm patents and publications
is robust across all industries. The negative effect of public invention is robust across all
industries except Life sciences. In Life sciences, public knowledge complements internal
research in reducing the cost of inventing, while external and internal inventions are strategic
complements. This is consistent with incumbent firms collaborating with universities and
investing in or acquiring startups to complete downstream development and commercialize
the resulting products (Arora, Fosfuri, & Gambardella, 2001; Azoulay et al., 2019).

6.7 Firm Value Equation

Table 12 presents the estimation results for Tobin’s ), our measure of firm value. Columns
1-3 focus on the main effect of public science on firm value. Public invention has a negative
and significant effect (p-values < 0.001), while human capital has a positive effect that is
imprecisely estimated.?® Interpreted in light of our theoretical predictions from Table 1,
the negative effect of public invention suggests that university patents compete with firm

inventions more than they serve as inputs into corporate innovation. When we consider

28We obtain a positive and significant estimate on human capital when using our alternative instrumental
variables.
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Table 11: Variation by Main Industry

, (1) (2) (3) (4) (5) (6)
Dependent variable: In(1+Pat.); In(1+Pub.); In(1+Pat.); In(1+Pub.); In(1+Pat.); In(1+Pub.),
In(1+Public invention), 4 -0.165%**  -0.145%**
(0.042) (0.031)
x Computer, IT, software, 0.032 0.010
(0.073) (0.040)
x Electronics, semicond., 0.152%* 0.058
(0.054) (0.040)
x Machinery, equipment, sys., -0.088* 0.050
(0.039) (0.035)
x Life sciences; 0.015 0.150%*
(0.059) (0.061)
x Telecommunication; 0.123 -0.006
(0.136) (0.048)
x Transportation, 0.114 -0.062
(0.096) (0.044)
In(1+Human capital);_; 0.189%*x 0.042*
(0.024) (0.017)
x Computer, IT, software, 0.030 0.005
(0.017) (0.013)
x Electronics, semicond.; 0.067** 0.008
(0.023) (0.016)
x Machinery, equipment, sys.; 0.017 0.044**
(0.020) (0.017)
x Life sciences, 0.021 0.046**
(0.014) (0.017)
x Telecommunication; 0.058 0.002
(0.034) (0.018)
x Transportation, 0.028 -0.018
(0.036) (0.034)
In(1+Public knowledge);—; 0.037* -0.018
(0.014) (0.012)
x Computer, IT, software, 0.025 0.015
(0.018) (0.012)
x FElectronics, semicond.; 0.030* -0.002
(0.013) (0.008)
X Machinery, equipment, sys.; 0.000 0.006
(0.011) (0.008)
x Life sciences; -0.030%** 0.024*
(0.009) (0.011)
x Telecommunication; 0.019 -0.000
(0.020) (0.011)
x Transportation, -0.013 -0.001
(0.013) (0.010)
In($1+R&D stock);—1 0.314%FF  0.199%**  (.239%FF  0.167***  0.286***  (.180***
(0.023) (0.017) (0.018) (0.016) (0.020) (0.016)
Year FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Mean DV 28.30 15.72 28.30 15.72 28.30 15.72
Weak id. (Kleibergen-Paap) 19.82 19.82 107.54 107.54 62.85 62.85
Firms 3,372 3,372 3,372 3,372 3,372 3,372
Observations 41,698 41,698 41,698 41,698 41,698 41,698

Notes: This table presents the second stage of 2SLS estimation for the effect of relevant public science on
corporate patents and publications by main industry. Industry classification is based on a firm’s primary
SIC4 code. Standard errors (in parentheses) are robust to arbitrary heteroskedasticity and allow for serial
correlation through clustering by firms.

33



heterogeneity in this effect by firm proximity to the technology frontier, we find that frontier
firms are better positioned to compete with university-backed startups in the product market
compared to followers (Columns 4 and 5).

Our results also indicate that increases in public knowledge reduce, not increase, value
for incumbent firms. While we leave for future work a careful examination of this negative
effect on market value, a potential direction would build on the idea that public knowledge is
available for all firms to exploit. If the average incumbent firm is poorly positioned to exploit
that knowledge relative to university-backed startups, the negative effect may be attributed
to rent-dissipating competition between incumbents and startups in the technology market.
That is, our results suggest that, insofar as public knowledge creates value, it is captured by

startups and other private firms, at the expense of incumbent public firms.

Table 12: Firm Value Equation

) @) ) @) %)
Dependent variable: In(Tobin’s Q),
Add
Add Add Baseline Public
Public Human with knowledge and
Baseline knowledge capital interaction =~ Human capital
In(1+4Public invention);_; -0.174%** -0.159%** -0.218%** -0.174%%* -0.216%**
(0.030) (0.030) (0.052) (0.030) (0.051)
In(1+Public knowledge);_1 -0.024 -0.037* -0.041*
(0.017) (0.018) (0.018)
In(1+Human capital);_; 0.017 0.010
(0.043) (0.042)
In(1+Public invention); ; * Tech frontier; 0.108** 0.099**
(0.038) (0.037)
Tech frontier; -0.574%* -0.530**
(0.177) (0.172)
R&D stock;_; / Assets, 0.218%** 0.218*** 0.220%%* 0.218*** 0.220***
(0.009) (0.009) (0.009) (0.009) (0.009)
Year FE Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Mean DV 33.80 33.80 33.80 33.80 33.80
Weak id. (Kleibergen-Paap) 634.98 195.90 100.40 315.91 74.86
Firms 3,230 3,230 3,230 3,230 3,230
Observations 36,718 36,718 36,718 36,718 36,718

Notes: This table presents the second stage of 2SLS estimation for the effect of public science on firm value,
measured using Tobin’s Q. Standard errors (in parentheses) are robust to arbitrary heteroskedasticity and
allow for serial correlation through clustering by firms.

6.8 Robustness Checks

To probe the robustness of our findings, we perform several checks. First, 