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1 Introduction

The value of commercial real estate is roughly $16 trillion (NAREIT, 2019), account-
ing for roughly 20% of the U.S. fixed asset stock. Similar to residential real estate,
commercial real estate is highly regulated. However, the quantitative impact of
commercial real estate regulations on economic activity and consumer welfare re-
mains an open question.

This paper develops a theory to measure the effects of commercial real estate
regulations on welfare, productivity, and the spatial allocation of workers and
business activity across the U.S. We use our theory to estimate address-level regu-
latory distortions from the near-universe of commercial property tax records, and
construct quantitative indexes of these distortions across metro locations. We val-
idate the estimates by hand-collecting zoning code attributes in some cities and
show that the model’s indices are correlated with statutory floor area ratios (which
restrict the ratio of building square footage to land square footage) and height
limits (which restrict the physical height of the building). We find that there are
quantitatively large commercial land-use distortions in many cities, and that mod-
erately relaxing these distortions across metro locations yields welfare gains worth
1.3% to 2.8% of lifetime consumption, which are similar in size to the welfare gains
found in the literature studying residential land use regulations.

This paper makes three contributions. One is the development of a general
equilibrium model, with a commercial building sector, that yields a simple method
for identifying how much commercial real estate investment decisions are dis-
torted by zoning codes and other regulations that restrict commercial building.1

We develop a parsimonious and flexible specification of land-use regulations,
which combined with a profit-maximizing commercial building sector, generates
an intuitive formula for quantifying land-use regulation at the parcel (address)
level. Specifically, properties whose total value is largely accounted for by raw
land value are identified as being subject to more stringent land-use regulations
(e.g., small buildings on very valuable land). An important benefit of this formula

1Regulations that restrict building are not limited to zoning codes. Other factors include var-
ious review boards that can reject a proposed development, actual and/or threatened litigation
against large developments, and political and community pressures that negatively affect the per-
mitting process for large developments. These factors, as well as zoning regulations, will be cap-
tured in our framework.
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is that it relies on statistics available in a number of datasets, and thus the approach
can be applied more broadly. Crucially, the model’s regulatory distortions do not
directly enter factor prices, which means they are not commingled with variables
that affect property rents, such as a desirable location, or the cost of construction,
which is affected by many factors, including the physical difficulty of building (e.g.
building on a steeply sloped lot versus a flat lot), to the use of high-end versus low-
end finishes and amenities.

The second contribution is the application of the regulation formula to the near-
universe of address-level commercial property tax records from CoreLogic. These
property records include the raw land value of an address, the value of the struc-
ture at the address (improvement value), and the combined (parcel) value of both
land and structures, as well as the amount of building square footage and some
alphanumeric zoning codes. Despite CoreLogic’s comprehensive coverage of the
commercial real estate market, the analysis faces a number of measurement chal-
lenges: (1) many regulations are unmeasured and/or unobserved in the dataset, as
zoning codes are only observed in roughly half of the properties, (2) zoning codes
can be ambiguous, subject to legal challenges, have different meanings in differ-
ent locations, and may not be up-to-date in code handbooks, (3) some properties
receive one or more zoning exemptions, which means that the effective impact of
zoning can differ from its legal (statutory) specification, and (4) most regulatory
restrictions are highly multidimensional, with zoning codes alone taking on many
attributes (including height limits, property setbacks2, maximum floor-area-ratios,
parking requirements, and time-of-day operation limitations, etc.). Our theory is
tailored to exploit tax record data on land, improvement, and total property values
to distill the multidimensional heterogeneity of effective – as opposed to statutory
– zoning and other regulations into a single, model-consistent metric.

The third contribution is to evaluate the effect of both national and local
changes to commercial land use regulations by analyzing the model’s distortions
within a dynamic, spatial, general equilibrium model with congestion externali-
ties and amenities. Building on Diamond (2016) and Rossi-Hansberg, Sarte, and
Schwartzman (2019), we endogenize amenities (which dictate the cost of sending
workers to a particular region) in our model and allow them to depend negatively

2Setbacks limit the amount of a lot that can be used by requiring a developer to “set back" the
building from the perimeter of the property line.
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on congestion. The model’s specification also provides a novel identification of the
congestion costs of density.3

The model-based identification of land use distortions, and the ability to con-
duct policy experiments using these distortions within a model economy, com-
plements approaches that measure the stringency of local real estate regulations
using survey evidence, such as the Wharton Land Use Regulatory Index of Gy-
ourko, Saiz, and Summers (2008). Our approach also allows us to express zoning
and other regulatory distortions into time series measures that make it straight-
forward to incorporate them in quantitative models, providing future researchers
with the opportunity to evaluate the impact of commercial land use regulations in
a variety of environments and settings.

Our baseline counterfactual evaluates the positive and normative effects of a
national deregulation such that the average level of regulation in all metro areas
is equal to that of the least-regulated metro in the dataset (Midland, Texas). We
thus compare the steady state of the model with the identified distortions to that
of the economy with the Midland, Texas average distortion, while leaving the dis-
persion of parcel-level regulations unaltered. National output increases by 3.0% as
commercial investment booms. Notably, the commercial building stock increases
by 18%. The higher wealth arising from this deregulation reduces labor supply,
which promotes higher welfare. Labor is modestly reallocated from the Midwest
to Florida and California, but this reallocation is not large enough to contribute
significantly to the output gain, because higher congestion in areas attracting more
workers limits this reallocation. Our results also suggest that rent-seeking may be
a factor in the regulatory process: building developer profits decline in the dereg-
ulated counterfactual as building supply expands and rental rates of commercial
real estate decline.

We also conduct local deregulations. Since the regulatory distortions are identi-
fied at the parcel-level, we are able to project these distortions onto hand-collected
zoning code features, including floor area ratios, and we analyze what happens
when those specific policies are changed. We examine the impact of increasing the
floor-area ratio limit in all New York City buildings to the highest observed floor-

3The identification of amenities relies on the model’s ability to generate instruments, building
on Anderson and van Wincoop (2003), Allen, Arkolakis, and Takahashi (2020), Walsh (2019) and
Rossi-Hansberg, Sarte, and Schwartzman (2019).
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area ratio level in the city, and find that doing so raises MSA-level output by 1.8
percent. The MSA building stock increases by 6% and business activity relocates
from Midtown to the tightly-zoned Upper East- and West- sides of Manhattan.

We conduct several robustness exercises. The counterfactual analyses con-
tinue to yield large output gains from commercial deregulation if we (1) recali-
brate the economy so that 40% of the workforce is in a remote-work sector4, (2)
restrict attention to recently developed buildings and thereby address concerns
over old/outdated regulations, (3) double the negative congestion externality, (4)
assume exogenous amenities, or (5) use alternate property valuations within tax
assessor records.

Literature This paper contributes to the structural literature on land regulations
and economic activity. The majority of studies focus on residential land regulations
(for a review of early work, see Turner, Haughwout, and Van Der Klaauw (2014),
and for more recent work see Herkenhoff, Ohanian, and Prescott (2018), Hsieh
and Moretti (2019), Martellini (2019), Colas and Morehouse (2020), Cun and Pe-
sharan (2020), Tanure Veloso (2020), Delventhal, Kwon, and Parkhomenko (2021),
Favilukis, Mabille, and Van Nieuwerburgh (2023), Greaney (2023)). Hsieh and
Moretti (2019) study residential land use regulations in a Rosen-Rosback model,
whereas Herkenhoff, Ohanian, and Prescott (2018) conduct their analysis in an op-
timal growth model. In particular, Herkenhoff, Ohanian, and Prescott (2018) use
state-level residential housing data to estimate land distortions, and then they im-
pose the same land distortions in the construction sector and final goods sector.
They ease land restrictions in both sectors and find significant gains to reverting
to 1980s levels of land regulation. Ahlfeldt, Redding, Sturm, and Wolf (2015) and
Delventhal, Kwon, and Parkhomenko (2021) study models featuring commercial
land use regulations within specific cities, respectively Berlin and Los Angeles.
Relative to existing structural work, we make three contributions: (1) we incorpo-
rate parcel-specific commercial real-estate developers in a spatial, optimal growth
model of the U.S., (2) we show how the model’s structure yields a formula for
regulatory distortions, and (3) we estimate parcel-level commercial distortions by
combining our model’s structure with the universe of commercial tax records in
the U.S.

4Importantly, remote work primarily affects office buildings, and only 30% of the commercial
building stock is office buildings.
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We contribute to an extensive empirical literature that relies on a variety of ap-
proaches to measure residential land use regulations (Glaeser, Gyourko, and Saks
(2005a), Davis and Heathcote (2007), Tan, Wang, and Zhang (2020), Furth (2021),
Rivera-Padilla (2021), Zhang (2023)). Glaeser, Gyourko, and Saks (2005a) use con-
struction cost data for residential structures, and they find a significant and posi-
tive gap between price and cost. They argue that the difference is due to zoning
restrictions. An important precedent for our work is Davis and Heathcote (2007).
They find that the value of land, and the land share of housing prices, has been
rising. They speculate that part of the reason for the trends in land values may
be due to cities that “implemented policies to slow further development." Tokman
(2023) uses a related model-based approach to infer regulations from the returns
to building an additional unit of housing. Zhang (2023) treats land use regulations
as a Lagrange multiplier, which is conceptually similar to our approach, and Tan,
Wang, and Zhang (2020) argue that the land share of residential building values is
informative about regulatory strictness in China. Recent empirical work valuing
the commercial building stock post-Covid (e.g. Gupta, Mittal, and Van Nieuwer-
burgh (2022) and Gupta, Martinez, and Van Nieuwerburgh (2023)) provides an
informative discussion of regulations in the sector. Relative to existing empirical
work, our contributions are to (1) derive a formula that links commercial land’s
share of total property value to regulatory distortions, (2) measure the regulatory
distortions using tax records, (3) validate the distortions against observed com-
mercial building height limits and floor-area-ratios, and (4) estimate welfare gains
from both national and local commercial deregulations.

Our model also relates to the growing literature on place-based policies (e.g.,
Fajgelbaum and Gaubert (2020), Fajgelbaum, Morales, Suarez, and Zidar (2019),
Rossi-Hansberg, Sarte, and Schwartzman (2019), Davis and Gregory (2021) among
others) and to the field of leximetrics, or the quantification of the "strength" of reg-
ulations, in the vein of La Porta, Lopez de Silanes, Shleifer, and Vishny (1998). An
important antecedent to our work is the Wharton Land Use Regulation Index of
Gyourko, Saiz, and Summers (2008), which focuses on residential buildings (and
more recently, Gyourko, Hartley, and Krimmel (2021)). However, the Wharton
Index measures the strength of local land use regulations in a fundamentally dif-
ferent way, by itemizing qualitative responses into categories and then taking the
principal component of those categories. We provide a complementary approach
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that infers the strength of regulations from a model of optimizing commercial real-
estate firms.

Outline Section 2 describes the developer problem and identification of regula-
tory distortions. Section 3 validates our measures. Section 4 embeds our regula-
tions into general equilibrium model. Section 5 conducts counterfactuals. Section
6 concludes.

2 Modeling Commercial Building

Before describing the full economic environment, we begin by presenting the com-
mercial building supply “block” of the model to show how we model commercial
land use regulations and how we then use the model to empirically identify land
use regulations. We later embed this within the full general equilibrium structure.

2.1 Individual Developers

There are j cities (which we will later map into MSAs), and within each city j there
are a large, finite number of differentiated parcels of land endowed to developers.5

We index land parcels by i, where i maps into a street address in the CoreLogic
dataset.

Parcel characteristics. Parcel i in city j is described by its fixed land square
footage xi, parcel productivity zi, the physical building cost qi, and its time-varying
building square footage BSFi,t. The parcel productivity term zi captures the fact
that building square footage may not be equally useful in all parts of the city (con-
sider a warehouse on the outskirts of a metro area compared to one in the center of
the city), and it allows us to model the variation in price-per-building square foot
observed in the data. The time-invariant building cost qi differs across parcels. For
example, these cost differences include variation in the difficulty of building (e.g.
building on a flat lot versus a sloped lot, building on bedrock versus loamy soil),
differences in the quality of building amenities and finishes, and cost differences
such as unionization rates or prevailing wage requirements of local construction

5Since the number of land parcels is large and each one comprises a small share of total value,
we assume that developers are price takers and that the law of large numbers holds within a city.
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workers. Note the lack of time subscripts on xi, zi, and qi, as these are all constant
over time.

We refer to the sum of productivity-weighted building square feet on parcel i
simply as the building Bi placed on parcel i. That is, Bi,t = zi · BSFi,t. We denote the
stock of buildings in city j as Bj,t. Depreciation is of the “One-hoss-shay” variety,
which facilitates tractability, in which a building depreciates fully with probability
δb (e.g., Luttmer (2011)).

Building technology. Consider a building that has depreciated at the end of pe-
riod t. A developer creates a new building BN

i,t by combining the land parcel with
improvements mi,t (building a new structure). This new building is rented for
commercial use in subsequent periods.6 The new building is produced with a
Cobb-Douglas technology with improvement share γ:

BN
i,t = zi mγ

i,tx
1−γ
i︸ ︷︷ ︸

BSFi,t

(1)

This yields a law of motion for the aggregate city-level building stock Bj,t:

Bj,t+1 = (1 − δb)Bj,t + ∑
i∈j

BN
i,t, (2)

where i ∈ j denotes the set of parcels i in city j.

Prices. Developers rent their buildings at the start of each period, earning rb,j,tBi,t

on parcel i in city j. We assume that there is a city-level rental rate rb,j,t and that
parcel-level differences in rent are captured by building efficiency zi. We denote the
discounted stream of rental payments to each efficiency-weighted building square
foot as pj,t:

pj,t =
∞

∑
s=t

(β(1 − δb))
s−trb,j,t (3)

Commercial Building Without Regulations. A developer with an unregulated
parcel chooses improvements to maximize profits over the expected life of the

6The building fully depreciates with probability δb after its use in production but before the
start of the next period.
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building:7
max
mi,t

βpj,t+1zim
γ
i,tx

1−γ
i − qimi,t (4)

The first order condition for developing an unregulated parcel is: qi = γ
pj,t+1BN

i,t
mi,t

.
Developers choose improvements to equalize the marginal benefit of building

(γ
pj,t+1BN

i,t
mi,t

) to its marginal cost (qi). When we turn to the data, we observe that the
marginal benefit of building exceeds the marginal cost for almost all commercial
parcels. As we discuss in more detail below, we interpret the difference between
the marginal benefit and marginal cost as arising from land-use regulations.

Commercial Building with Regulations. Commercial land may be subject to lit-
erally hundreds of zoning and other land use regulations that can take many forms
(e.g. building height restrictions that limit the number of floors, floor-area ratio re-
strictions that limit the amount of building square footage relative to the size of the
parcel, and building setbacks from the property line are all common zoning restric-
tions, while other regulations include receiving approvals from environmental and
community review boards). It is infeasible to model all of these regulations, not
only because of their number but also because some are de facto unmeasured (e.g.,
environmental reviews or actual or threatened lawsuits by community groups to
limit development). Therefore, we need a framework that can (i) capture the many
potential regulations facing a developer that limits building size, (ii) be tractably
incorporated into a profit maximizing model of commercial development, (iii) be
mapped into tax assessor data to quantify the stringency of parcel-level regula-
tions, and (iv) be aggregated from the parcel-level to the city (MSA) level.

Given these requirements, we model parcel-specific regulations as what we call
a virtual distortion τi ∈ [0, 1]. We refer to τi as a virtual distortion because it looks
like a tax in the developer’s optimization problem below, but unlike a tax, it does
not transfer any resources. Our approach captures policies and impediments that
cause developers to construct fewer building square feet than they would opti-
mally choose in the absence of regulations, given factor prices. At the two ex-
tremes, τi = 1 nests the unregulated developer’s problem, whereas τi = 0 effec-
tively forbids construction.

The problem of a developer facing regulations with a depreciated parcel is
7Note that the developer discounts these flow payments because the new building does not

begin earning rents until next period.
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max
mi,t

βτi pj,t+1zim
γ
i,tx

1−γ
i − qimi,t. (5)

This yields the following first order condition for choosing improvements:

γτi =
qimi,t

pj,t+1BN
i,t

. (6)

For a given building technology (γ), equation (6) shows that regulatory distor-
tions are weaker when the value of improvements (qimi,t) comprises a larger share
of building value (pj,t+1BN

i,t). Let m∗
i,t denote the optimal choice of improvements.

Notably, the virtual distortion τi affects the choice of m∗
i,t, but does not directly

enter developer profits:

βpj,t+1zi(m∗
i,t)

γx1−γ
i − qim∗

i,t

Only via affecting m∗
i,t does τi indirectly enter profits. We provide more discus-

sion of τi in Section 2.1.1.
To illustrate how τi can capture a broad variety of regulations, we consider

as an example the case of a floor-area-ratio restriction on a building. This is
a commonly used regulation that limits the amount of building square footage
(BSFi,t = mγ

i,tx
1−γ
i ) that can be placed on the parcel of land xi. First, we show an

explicit model of development subject to a binding floor-area-restriction, and then
show how it can be captured by the virtual distortion τi.

Let BSF
x denote the maximal floor-area-ratio. The developer’s problem with this

explicit constraint becomes

max
mi,t

βpj,t+1zim
γ
i,tx

1−γ
i − qimi,t

subject to:
BSFi,t

xi
≤ BSF

x
(7)

The floor-area-ratio restriction in equation (7) distorts the choice of mi,t but
does not generate any transfer of resources. It also maps into the Lagrange/Kuhn-
Tucker multiplier that alters the optimal choice of mi,t.

Note that this floor-area-ratio restriction example, which involves a binding
constraint, is captured in our formulation with τi, but without any additional
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constraints. We simply find the appropriate value of τi such that the developer
"chooses" the same level of improvements in the formulation with τi as in the
problem with the binding floor-area-ratio constraint above. See Appendix H for
a discussion of when this constant τi yields the same implications for counterfac-
tuals as a non-constant distortion.

Accounting for Property Value. Our model decomposes a property’s total value
into an amount due to improvements (the physical building) and an amount due
to land. We denote total value as TVi,t, improvement (structure) value as MVi,t, and
land value as LVi,t. We define the identity:

TVi,t ≡ MVi,t + LVi,t (8)

The total value of a parcel of land consists of two terms: the first is the discounted
value of rents, and the second is the discounted cost of redeveloping the property
when the structure depreciates.8 Suppressing time subscripts, Appendix B derives
the corresponding two-term steady-state expression for total value, TVi:

TVi =
rb,jBi

1 − β
−

δbqim∗
i

1 − β

We define the improvement value MVi,t as the cost of improvements MVi,t =

qimi,t. We define the land value LVi,t as the difference between total value and
improvement value: LVi,t = TVi,t − MVi,t. We later show how we map this into tax
assessor data on total value, land value, and improvements value.

2.1.1 The Regulatory Distortion τi

Broadly speaking, τi captures policies/regulations that prevent developers from
constructing their desired building size, given factor prices. As noted above, these
can include height restrictions, floor area ratios, and setbacks. None of these reg-
ulations raise building costs or lower the rents that owners can earn per building
square foot, however.

This formulation captures regulations that limit size. It is not intended to cap-
ture regulations that enter factor prices and productivities, thus avoiding some

8Note that the value of the current building (pjBi) differs from total value, as total value can
alternatively be written as the sum of the rents from the current building (pjBi) plus the future
option value of rebuilding. Appendix B.2 contains this alternative formulation.
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potential pitfalls that arise in measuring regulations. For example, taxes, and
demand-side factors such as location desirability, will be capitalized into the
parcel-level price per building square foot pj,tzi, and thus will not be captured in
τi. Similarly, restrictions on building use (e.g. the type of activity that can be con-
ducted at a location, or time-of-day operation restrictions at a location) will also
be capitalized into pj,tzi. Moreover, if different locations are inherently harder or
easier to build on (due to differences in soil quality, for example), then this will
be reflected in qi, the construction cost, and not τi. Restrictions on building tech-
niques will also not be captured by τi. Schmitz (2020) studies bans on the use of
prefabricated construction for residential buildings, which would be capitalized
into pj,tzi. As our identification strategy does not pick up on such regulations, our
results will be a lower bound on the distortions imposed by land use regulations.
Notably, we do not model τi as a binding constraint. This is important since lo-
cal governments grant variances and exemptions that allow developers to avoid
statutory restrictions. If variances are easy to obtain, τi should move closer to 1,
correctly reflecting that regulations are not as tight as the statutes might suggest.

2.2 Aggregation of Individual Parcels

We now aggregate the parcel-level optimization problem up to the city-level.9 The
aggregation allows us to analyze MSA-level policy reforms. It also can address
potential parcel-level measurement error and potential model misspecification,
which we describe below.

In what follows, it is convenient to define productivity-weighted land (i.e. land
adjusted for its productivity and cost of building), which is time invariant, as:

Ci = z
1

1−γ

i xiq
−γ

1−γ

i (9)

Note also that Ci is directly related to improvement value. Using the definition
of improvement value, MVi,t = qimi,t, the first order condition for equation (5) can
be written:

(τi pj,tβγ)
1

1−γ Ci = MVi,t (10)

9Appendix B.1 contains more details on the aggregation results outlined in this section. Our ag-
gregation is closely related to Hsieh and Klenow (2009), Edmond, Midrigan, and Xu (2021), Berger,
Herkenhoff, and Mongey (2019), and Peters and Walsh (2021).
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We use the following notation for the aggregation. Let mj,t denote MSA-level
improvements. Let Tj denote the average MSA-level regulatory distortion, let Dj

denote dispersion in regulatory distortions, and let Cj denote the MSA-level effi-
ciency units of land (which is immutable and thus does not feature a time sub-
script). We define and interpret these terms below.

Appendix B.1 shows that the first order conditions of the following city-level
developer problem yields the same allocations as the individual developer prob-
lems:

max
mj,t

βTj pj,t Djm
γ
j,t(δbCj)

1−γ︸ ︷︷ ︸
BN

j,t

−mj,t. (11)

The solution to this developer’s problem coincides with the aggregated solu-
tions of all the individual developers’ problems in region j when Cj, Dj, and Tj

take the following, time-invariant values:

Cj = ∑
i∈j

Ci (12)

Dj =

∑i∈j τ
γ

1−γ

i Ci

∑i∈j Ci

/
∑i∈j τ

1
1−γ

i Ci

∑i∈j Ci


γ

(13)

Tj =
∑i∈j τ

1
1−γ

i Ci

∑i∈j τ
γ

1−γ

i Ci

(14)

The term Cj is a measure of land productivity, and does not depend on regula-
tions. It is policy-invariant, and we do not focus on it below.

The term Dj captures the allocative efficiency losses arising from dispersion in
regulatory distortions across an MSA, under the assumption that τi are measured
correctly. Applying Jensen’s inequality shows that this term is weakly less than 1,
and is only equal to 1 if all τi are equal. Dj also does not change if we scale each τi

up or down by a constant. Hence, eliminating dispersion in τi while keeping the
aggregate Tj fixed will lead to productivity gains (note that Dj enters directly into
the output quantity BN

j,t, and therefore affects total factor productivity, whereas
Tj does not.) As in models of misallocation like Hsieh and Klenow (2009), these
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gains may be overstated if there is measurement error or misspecification in our
parcel-level measures of regulatory distortions. Note that Dj can be estimated if
improvement values MVi,t and regulatory distortions τi are known, by substituting
equation (10) into equation (13):

Dj =

(
∑i∈j MVi,t/τi

∑i∈j MVi,t/τ
1

1−γ

i

)/( ∑i∈j MVi,t

∑i∈j MVi,t/τ
1

1−γ

i

)γ

(15)

The term Tj is a measure of the average regulatory distortion in MSA j. It takes
on value 1 only if all τi are equal to 1. We can substitute equation (10) into equa-
tion (14) to show that Tj can be expressed as a weighted average of improvement
values:10

Tj =
∑i∈j MVi,t

∑i∈j MVi,t/τi
(16)

Measurement error and model misspecification. Our counterfactuals primarily
focus on reforms to the common, MSA-wide component of regulations, Tj, rather
than the dispersion of regulations within a city, Dj. Tj reflects systematic differ-
ences in regulatory distortions across cities, and is thus unlikely to be impacted by
idiosyncratic measurement error in parcel-level distortions, τi.

On the other hand, the dispersion of regulations within a city, Dj, may reflect
regulations as well as a variety of unmodeled factors, such as credit constraints.
The terms of loans — and thus the degree of credit constraints — in the commer-
cial mortgage market reflect default and prepayment risk and are highly individ-
ualized, just as residential mortgage rates are (see Vandell (1984), Ambrose and
Sanders (2003)).

Focusing on the city-wide component of regulations, Tj, reduces concerns about
the impact of measurement error and misspecification and provides conservative
estimates of the effects of regulations on economic activity.

10This is mathematically and conceptually similar to a cost-weighted average markup, which
Edmond, Midrigan, and Xu (2021) show is the correct way to aggregate markups. To see the sim-
ilarity, define M ≡ 1/T and µ ≡ 1/τ and compare to the definitions of M and µ in that paper.
Here, improvements correspond to costs.
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MSA-level building supply. It is convenient to write the building supply curve
in terms of a supply shifter Ψj, which we derive in Appendix B.1. It incorporates
both productivity through Cj and regulations through Tj and Dj. Changes in Tj

and Dj in our counterfactuals are captured by changes in Ψj (although note that Tj

shows up separately in the demand curve for improvements).

BN
j,t = p

γ
1−γ

j,t δb · D
1

1−γ

j T
γ

1−γ

j Cj(βγ)
γ

1−γ︸ ︷︷ ︸
Ψj

(17)

Note that γ alone controls the price elasticity of supply. We discuss the impli-
cations of this in Appendix H.

2.3 Quantifying Commercial Land Use Regulations

This section recovers parcel-level regulatory distortions τi using the model in con-
junction with CoreLogic data. We also address factors that may affect this quan-
tification, including heterogeneous building technologies, differences in valuation
methods used by tax assessors, and the possibility that older buildings were sub-
ject to outdated regulations, and thus may not be informative for analyzing current
regulations. We will show that our regulatory measures are robust to these issues.

Parcel, Land, and Improvement Value Data. We use data from CoreLogic, a
large commercial provider of real estate data. They obtained data from county
tax assessors on the near-universe of commercial parcels in the United States, in-
cluding the total value of the parcel TVi,t, derived from either tax assessments,
market transactions, or CoreLogic’s own calculations. This value is divided into
land value LVi,t and improvement value MVi,t according to identity (8). We dis-
cuss valuation methods in more detail at the end of this section. The data covers
the period 2009 to 2018.

For a subset of buildings, the data also includes building square footage BSFi,t,
the alphanumeric zoning code Zi,t to which the building is subject (example names
include “C8” and “OR1”), and building age ai,t. Crucially, our identification does
not require knowing BSFi,t or Zi,t. We remove parcels in which there appear to be
obvious measurement errors, including parcels where improvement value exceeds
total value, or improvement value takes a value of one dollar or less. We describe
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our data in more detail in Appendix A.1. In the remainder of this paper, we focus
on the continental U.S.

Identification. To identify τi, we proceed in two steps. In the first step, we iden-
tify the production technology scale parameter γ using the aggregate developer’s
problem. In the second step, we use the value of γ obtained in the first step to
identify τi at the parcel level developer’s problem.

Step 1: As shown in Appendix B.2, the first order condition of the aggregate
builder’s problem allows us to recover the product of our aggregate measure of
regulatory distortion Tj and the scale parameter γ as follows:

γ · Tj =

(1−β(1−δb)
1−β

)∑i∈j MVi,t
∑i∈j TVi,t

β
(
1 + δb

1−β
∑i∈j MVi,t
∑i∈j TVi,t

) . (18)

The variables on the right-hand side of equation (18) are easily obtained. We
have CoreLogic’s calculated values of TVi and MVi. Under our one-hoss shay
depreciation assumption, δb = .02 is the inverse of the average building age in our
sample.11 We assume a standard annual discount value of β = 0.96.

The left-hand side of equation (18) reveals that Tj and γ are not separately iden-
tified without additional assumptions or information. Our approach treats the city
with the highest value of γ · Tj as a “deregulated benchmark" in which Tj is to
equal 1. In practice, we find that the least-regulated (benchmark) city is Midland,
Texas, a metropolitan area of about 130,000 population which is known as “the Tall
City” because of its very tall commercial buildings (Midland (2023)).

Our assumption that TMidland = 1 yields an implied γ of 0.92. Note that if
Midland has any regulation—that is, if the true TMidland is less than 1—we will
underestimate γ. If this was the case, then we would also understate the gains
from commercial land-use deregulation.12 This suggests that our evaluations of
the gains from deregulation will produce conservative estimates.

Step 2: After having estimated γ, we can recover Tj at the MSA level, and through

11Our calibrated value of 0.02 is fairly close to what Davis and Palumbo (2008) find under stan-
dard geometric depreciation.

12Moreover, under the assumption that Tj ≤ 1 for all j (i.e. that no city has “negative" regula-
tions), every city-level observation of the left-hand term in equation (18) provides a lower bound
for γ.
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Figure 1: Distribution of MVi,t/TVi,t
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Figure 2: Distribution of τi
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Notes: Figure 1 displays the ratio of the improvement value of each parcel to its total value. We exclude values above
0.99 and below 0.01, treating them as measurement error. We also drop the parcels designated by CoreLogic as public
property. Figure 2 displays τi as calculated in equation 19. Both figures use unweighted counts of parcels.

simple manipulation of equation (6) (see Appendix B.2), we can recover τi at the
parcel level as well:

τi =

(1−β(1−δb)
1−β

)MVi,t
TVi,t

γβ
(
1 + δb

1−β
MVi,t
TVi,t

) . (19)

After having recovered τi, it is straightforward to use equations (9) and (13) to
obtain Dj.

There is significant variation in the data that we use us to estimate τi, Tj and
Dj. We plot MVi,t/TVi,t, the key moment that identifies regulatory distortions in
equation (19), across all parcels in our sample in Figure 1. For most parcels, this
measure is considerably lower than what we would observe with no regulatory
distortions.

Along with the distribution of the data object MVi,t/TVi,t, we also plot the dis-
tribution of the model-inferred τi and show that—as one might expect from equa-
tion (19)—the shape of two distributions is similar.

2.4 The Distribution of Tj and Dj

Figures 3 and 4 plot the distribution of the “average" regulatory distortion Tj and
the dispersion in distortions Dj at the MSA level. Most cities are far from the
deregulated benchmark, and in most cities τi is quite dispersed across parcels. Dj

takes on a maximum value of 1.0 if all parcels have the same regulatory distortion,
and in this case, is isomorphic to productivity in the construction sector. Hence,

16



Figure 3: Distribution of Tj
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Figure 4: Distribution of Dj
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Notes: Figure 3 displays the distribution of Tj across cities, with Tj calculated as in equation 14. Figure 4 uses the same
data and displays M as calculated in equation 13. See the caption of Figure 1 for details on sample selection.

these plots suggest that both the level and the dispersion of τi may be creating
significant inefficiencies.

Discussion of building technology γ. Although the value of γ may be slightly
underestimated, it is still very close to 1 and thus suggests that the building pro-
duction function is nearly linear in improvements. This is similar to findings in
other studies: Epple, Gordon, and Sieg (2010) estimate an improvement share of
0.84 for residential buildings in Allegheny County, Pennsylvania, and they do not
take into account regulatory distortions. Combes, Duranton, and Gobillon (2021)
finds a lower share of 0.64 for single-family homes in France, although they also do
not directly measure regulation and only try to infer it from observed (not statu-
tory) floor area ratios.13 Glaeser, Gyourko, and Saks (2005b) find that construc-
tion costs per building square foot are relatively flat across dramatically different
residential building sizes, which is consistent with a high improvement share in
production. Murphy (2018) also finds evidence that any nonlinearity in the cost of
construction must be very small. Moreover, a near-linear production function is
intuitively reasonable: roughly speaking, it suggests that a developer can double
the number of floors on a building for only slightly more than double the cost. We
provide additional discussion of the level of γ and its relation to building supply

13Both of these papers also argue that the production function for buildings is reasonably well-
approximated by a Cobb-Douglas function in land and other inputs, which lends further support
to our modeling choices. Ahlfeldt and McMillen (2014) also argue that a Cobb-Douglas production
function is a good approximation, and that some earlier estimates of a less-than-unitary elasticity
of substitution were biased downwards.
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elasticities in Appendix H.14

We next address the possible impact of differences in the type of economic ac-
tivity on construction techniques and building composition (e.g. building a man-
ufacturing plant versus building an office complex) as generating possible disper-
sion in γ. We therefore repeat our baseline estimation of γ · Tj at the MSA-level
by the type of economic activity conducted: commercial, industrial, agricultural,
and all other types. For each land use type, we report the inferred γ by treating
the city with the highest value of γ · Tj as the deregulated benchmark, as we do
in our benchmark specification. Since some of these types have a small number
of observations at the MSA-level, we omit those with less than 1000 observations
from the estimation.

Table 1 reports the estimates by these four types of economic activity. We find
that the implied values of γ are above 0.92. Crucially, the two largest land use
categories – commercial and industrial – yield similar values of γ. These results
suggest that possible differences in construction techniques/building type across
these categories of economic activity do not have quantitatively important affects,
and that our choice of a common γ is supported empirically. In Appendix E, we
also show that our results are robust to different measures of improvement and
total value.

Table 1: Estimated improvement share, γ, by land use type

Land use γ Benchmark City Share of Total Value

Commercial 0.925 Midland, TX 0.697
Industrial 0.951 Odessa, TX 0.203
Agricultural 0.972 Fort Collins, CO 0.054
Other 0.938 Syracuse, NY 0.046

Notes: In this table, we recalculate equation 18 at the land use-by-MSA level and report the highest value of Tγ for each
land use code along with the corresponding MSA. We only include MSA-by-land use pairs with more than 1000 parcels,
and we report the share of total value in each MSA accounted for by that land use. We aggregate non-commercial, non-
industrial, and non-agricultural land types into “other.”

14It is important to remember that our building supply elasticity is conceptually different from
the city-specific elasticities in Saiz (2010): that paper is concerned with the extensive margin of con-
struction into currently-undeveloped lots, whereas we focus on the intensive margin of construction
on already-developed land. The former is clearly affected by city-specific factors like geography,
but the latter measures the curvature of costs with respect to building height, which is not obviously
city-specific.
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Discussion of older buildings and outdated regulations. One possible issue
with our approach is that it may overestimate regulatory severity for older build-
ings.15 Specifically, if improvement value MVi,t is declining as the building ages,
but the option to rebuild becomes more valuable as the economy grows, then older
buildings may have a downward-biased τi. Additionally, older buildings may
have been subject to outdated regulations.

We address these concerns in three ways, and find that potential issues regard-
ing older buildings do not appear to be quantitatively important. First, we recom-
pute distortions using only young buildings, and we denote the corresponding
city-level distortion Tyoung

j . We define young buildings to be less than 10 years
old.16 Figure 5 shows that the baseline Tj and young building Tyoung

j are quite
similar. There are a handful of outliers, but the majority of observations are clus-
tered near the 45 degree line. We formalize these statements in Appendix C with
regression analysis.

Second, in Appendix C, we investigate whether the size of parcel-level distor-
tions are systematically related to age by regressing these distortions on building
age together with a number of controls. We find that building age has little ex-
planatory power for the model inferred distortions, with regression R2’s of only
0.06 or lower.

Third, we conduct our benchmark counterfactual using Tyoung
j in Appendix E.

Our deregulation exercises yield output, employment, and welfare effects that are
only moderately smaller than our baseline specification.

3 Validation

In this section we perform validation analyses to evaluate how the improvement
share of total parcel value is informative about the severity of commercial land
use regulations. We do this by comparing our measure of regulations to statutory
measures of regulations. We also compare our regulatory measures across regions
where we expect a priori to find systematic differences in regulations. We find that
our measures of regulation align well with both of these comparisons.

15We thank Salim Furth for a very helpful conversation on this topic.
16As described in Appendix A.1, 57 percent of the buildings in our filtered sample have a

recorded age.
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Figure 5: T Calculated From New Buildings
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Notes: This table compares our city-level distortions Tj as calculated with all parcels on the horizontal axis with an
alternative measure of Tj calculated using only buildings from the last 10 years. We only have 233 matched MSAs in this
sample, as no buildings in 6 MSAs have a recorded age.

3.1 Hand-Collected Zoning Code Features

This section compares our measure of regulatory distortion with two widely-used
statutory zoning codes:

1. Floor-area-ratios: restrictions on the ratio of building square footage to land
square footage.

2. Height limits: restrictions on the height of buildings.

Since our CoreLogic dataset does not include zoning features (just the alphanu-
meric codes), we hand-collected floor-area-ratios and height limits from public,
city-level zoning code manuals. Two factors limit our analysis. One is that many
cities do not provide their zoning code manuals in a format that allows us to easily
merge in with CoreLogic’s data. Second, our county-level CoreLogic data lacks
zoning code information in 39% of cases.

We therefore focus this comparison on New York City (NYC) and Washing-
ton, DC, two cities that post their zoning code data online in a particularly user-
friendly format. NYC provides their floor-area-ratio restrictions in a usable format,
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and they do not impose height limits. DC provides their height restrictions in a
usable format, and they do not impose floor-area-ratios.17 We then hand-match
the alphanumeric zoning code in our CoreLogic data (for example “C1”) to the
alphanumeric zoning code in City of New York (2021) and then we record the cor-
responding floor-area-ratio. We repeat the same exercise in DC using DC Office of
Zoning (2021a).

Since our regulatory distortions are measured at the parcel-level (τi), we first
aggregate parcels by zoning code coverage (τZ). Denoting i ∈ Z as the set of
parcels subject to zoning code Z, we write:

τZ =
∑i∈Z MVi,t

∑i∈Z MVi,t/τi
(20)

We plot a binscatter of zoning-code level τZ against NYC floor-area-ratios and
DC height limits in Figures 6 and 7, respectively. We find a positive but imperfect
relationship in both cases.18 The R2 in a building-value weighted regression of
log distortions on log FARs is 0.089 and on log height limits is 0.22. We expect an
imperfect fit because our τi are capturing many land use regulations, and because
some properties that form this analysis will almost certainly have exemptions or
variances to these particular regulations. Our regulatory distortion τi takes these
factors into account and thus produces a positive, yet imperfect relationship with
each of these single, statutory regulations.

Appendix A.3 provides additional validation of our distortions against statu-
tory regulations in San Francisco.

3.2 Cities in California and Texas

Much of the literature on land use regulation has concluded that Texas is lightly
regulated and that California is heavily regulated (see for instance Gyourko, Saiz,
and Summers (2008), Figure 1). This section shows that our results for Texan and
Californian cities are consistent with this view.

Figure 8 plots our measure of regulation Tj for each of the ten years in our
sample (2009-2018) in the largest MSAs in those two states (Dallas and Houston in

17The original data is available at City of New York (2021) and DC Office of Zoning (2021a),
respectively. We provide greater detail in Appendix A.2.

18To construct the red best-fit line, we weight each zoning code by the sum of building value
subject to that code.
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Figure 6: FAR in NYC
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Figure 7: Height Limits in DC
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Notes: In Figures 6 and 7, the horizontal axis is the logarithm of the zoning code-level distortion τZ , as calculated in
equation 20. The vertical axes are the logarithm of the regulation associated with each zoning code, namely floor area ratios
in Figure 6 and height limits in 7. Floor-area ratios are the maximum building floor area per ground area and are expressed
as a ratio; height limits are expressed in feet. Both Figures 6 and 7 are binscatters where the constituent zoning codes of each
bin are weighted by the sum of the value of the buildings (see Appendix equation 28) in each code.

Texas; San Francisco and Los Angeles in California). We find that the major cities
in California are more regulated than those in Texas. Indeed, Los Angeles is one
of the most heavily regulated major cities. Figure 8 also demonstrates that our
measure of regulation is stable across years, which is consistent with the view that
land use regulations change slowly over time.

4 General Equilibrium Model

This section presents the general equilibrium model, including the commercial de-
velopment sector outlined above, to analyze the positive and normative effects of
commercial land use regulations. The structure builds on Herkenhoff, Ohanian,
and Prescott (2018), and the new model is tailored to incorporate our regulation
measure for quantitative analyses.

In what follows, t ∈ {0, 1, ..., ∞} indexes time and j ∈ {1, 2, ..., N} indexes
regions, corresponding to 241 major metropolitan statistical areas, plus a remote
work sector (denoted j = r) and a rest-of-country aggregate. Locations (“cities")
are differentiated by exogenous TFP Aj and endogenous amenities aj(·). A stand-
in household allocates its workers to the j cities, it allocates capital, and it receives
profits from developers and final goods producing firms. The final goods firms
hire workers and rent capital from the representative household, rent buildings
from developers, and combine these production factors to produce a numeraire
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Figure 8: Cities in Texas and California
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Notes: This plot shows Tj for a set of 4 cities, two in California and two in Texas. In each year, we recalculate Tj using
all tax assessments from that year, rather than using buildings first assessed in that year.

final good. As described above, developers combine a fixed factor (“land") with
the final good to produce buildings, and they rebate their profits to the stand-in
household.

4.1 Households

The stand-in household has preferences over consumption ct and city labor supply
Lj,t. These preferences feature city-specific disutilities of labor.19 Amenities aj(·)
decrease the marginal disutility of sending workers to a given city. We parame-
terize amenities as a function of “congestion,” which we define as the quantity of
workers per unit of commercial land, Lj,t/Xj. This gives rise to one possible ratio-
nale for zoning regulations: the representative household takes these amenities as
given when choosing locations for their workers, but this affects congestion and
thus generates an unpriced externality. The household invests it in capital and al-
locates capital Kj,t across regions. The wage rate in region j is given by wj,t, and

19Similar to Herkenhoff, Ohanian, and Prescott (2018), these preferences stand-in for idiosyn-
cratic preferences for a given city and other forces that limit interregional mobility. As η → 0, it
becomes more costly to send all workers to a given region. See Berger, Herkenhoff, and Mongey
(2019) for discrete choice micro-foundations of related firm-specific preferences.
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we assume that capital is perfectly mobile, which gives rise to a national capital
market and a single rental rate of capital rk,t. The household also receives profits
from developers πj,b,t and from final goods firms πj, f ,t. The household solves the
following optimization problem:

max
ct,it,Kj,t,Lj,t

∞

∑
t=0

βt

 c1−σ
t

1 − σ
− 1

1 + 1
η

N

∑
j=1

(
Lj,t

aj(Lj,t/Xj)

)1+ 1
η

 (21)

subject to: ct + it =
N

∑
j=1

(
πj,b,t + πj, f ,t + wj,tLj,t + rk,tKj,t

)
Kt+1 = ik,t + (1 − δk)Kt,

N

∑
j=1

Kj,t = Kt

4.2 Final Goods

Final goods firms combine labor Lj,t, buildings Bj,t, capital Kj,t at the city level
to produce the numeraire final good.20 We assume they operate constant returns
to scale Cobb-Douglas production technologies with city-specific total factor pro-
ductivity Aj. The building share χj is assumed to be zero in the remote work
sector (χr = 0) and both constant and positive across all other non-remote regions
(χj > 0 ∀j ̸= r). Firms pay a national rental rate for capital rk,t. They pay city-
specific wages wj,t and building rents rb,j,t. They maximize the following static
profit function:

πj, f ,t = max
Kj,t,Lj,t,Bj,t

AjLα
j,tB

χj
j,tK

1−α−χj
j,t︸ ︷︷ ︸

Yj,t

−wj,tLj,t − rk,tKj,t − rb,j,tBj,t (22)

4.3 Representative Developer

As described in Section 2.2, our model features a representative city-level devel-
oper. The developer purchases the final good mj,t and combines it with newly-
depreciated land to create new buildings BN

j,t, as in equation 11, which we rewrite

20As we will explain in more detail later, Bj,t maps into productivity-weighted building square
feet supplied by the developers.
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below:

max
mj,t

βTj pj,t Djm
γ
j,t(δbCj)

1−γ︸ ︷︷ ︸
BN

j,t

− mj,t︸︷︷︸
MVj,t

The price pj,t is given by the net present value of rents, pj,t = ∑∞
s=t(β(1 −

δb))
s−trb,j,t. Lastly, the stock of buildings in each city grows according to a stan-

dard law of motion, as in equation 2:

Bj,t+1 = (1 − δb)Bj,t + BN
j,t

4.4 Equilibrium

An equilibrium in this economy consists of prices {{rb,j,t, wj,t}∀j, rk,t}∞
t=0, quanti-

ties {{Yj,t, Kj,t, Lj,t, Bj,t}∀j, {mi,t}∀i, it, ct}∞
t=0, and decision rules for investment, con-

sumption, and labor supply, such that, given prices, the stand-in household max-
imizes utility, firms maximize profits, markets clear, and the resource constraint
holds:

ct + ik,t + ∑
j

(
∑
i∈j

qimi,t

)
= ∑

j
Yj,t

4.5 Calibration

We calibrate an annual version of the model by treating 2018 as the steady state
that exists prior to any deregulations that we consider. We therefore drop time
subscripts from the variables in this section. We assume an annual discount factor
of β = 0.96 and CRRA utility with curvature of σ = 2 (Herkenhoff, Ohanian, and
Prescott, 2018). We assume a Frisch elasticity of η = 2 (Keane and Rogerson, 2012),
a depreciation rate of δk = 0.032 (McGrattan, 2020), and a labor share of α = 0.594
based on the Penn World Table (Feenstra, Inklaar, and Timmer, 2015).

The remaining parameters, regional productivities Aj, and regional amenities
aj are obtained via the model and data on output, investment, and employment
{Yj, ik, Lj}. We observe regional employment Lj in the 2018 American Community
Survey (ACS) (Ruggles, Flood, Goeken, Grover, Meyer, Pacas, and Sobek, 2020)
as well as aggregate investment ik and regional output Yj from the Bureau of Eco-
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Table 2: Parameters

Parameter Description Value Source

β Discounting 0.96 Herkenhoff, Ohanian, and Prescott (2018)
σ CRRA 2 Herkenhoff, Ohanian, and Prescott (2018)
η Labor Curvature 2 Keane and Rogerson (2012)
δk Non-Structures Depreciation 0.032 McGrattan (2020)
α Labor Share 0.594 Penn World Table, 2018
ρL Remote Labor Supply Share 0.052 American Community Survey, 2018
ρW Remote Wage Bill Share 0.056 American Community Survey, 2018
χn Non-remote Sector Building Share 0.149 Model structure & Bureau of Economic Analysis, 2018
χr Remote Sector Building Share 0 By assumption
δb Depreciation Rate of Buildings 0.02 Section 2.3 & CoreLogic, 2018
γ Improvement Share of Buildings 0.92 Section 2.3 & CoreLogic, 2018

Aj Regional TFP Model structure & data in Table 3
aj Regional Amenity Model structure & data in Table 3

Notes: This Table reports the calibrated parameters. We obtain metro-level employment and wage-bill shares of remote
workers from the American Community Survey. We define a remote worker as anyone who lists their primary commuting
mode as “worked from home" in response to the questions in variable TRANWORK.

Table 3: Data Sources

Variable Description Source

Yj MSA GDP US Bureau of Economic Analysis (2021a), 2018
ik Equipment+IP Investment US Bureau of Economic Analysis (2021b), 2018
Lj MSA Labor Supply American Community Survey, 2018

Notes: This Table reports key sources of data (other than CoreLogic). We obtain data on national output, metro-level
output, and investment from the Bureau of Economic Analysis; and we obtain metro-level labor supplies from the American
Community Survey.

nomic Analysis (BEA).21 The parameters are summarized in Table 2 and the data
sources are summarized in Table 3.

Remote work. We use the ACS to compute regional labor supply Lj, the re-
mote work share of labor supply ρL, and the remote work share of wages ρW .
The variable TRANWORK asks “How did this person usually get to work LAST
WEEK?” (emphasis original), and we define a remote worker as someone who
answers “worked from home.” We find that about 5.2% of the workforce was

21Note that we model a rest-of-the-country region in which output is inferred so that the sum of
regional output is equal to national output as reported by the BEA. Similarly, we infer the rest-of-
the-country region employment to match aggregate employment in the ACS.

26



remote in 2018, implying ρL = 0.052. The remote share of the wages is 5.6%,
implying ρW = 0.056. Labor supply in the remote work region is then given by
Lremote =

ρL

1−ρL ∑j ̸=remote Lj.
We assume a common labor share in every region, including the remote work

region. This means that remote workers’ share of GDP will be proportional to their
share of the wage bill. We measure Yj using MSA-level GDP from the BEA which

allows us to compute remote sector output Yremote =
ρW

1−ρW ∑j ̸=remote Yj.

Regional capital. We next turn to non-structures capital. The rate of return rk is
determined by the household’s Euler equation, rk = 1−β(1−δk)

β . Using aggregate
investment ik from the BEA in conjunction with the steady state law of motion for
capital, we recover aggregate capital K = ik/δk.

We can recover χn, commercial buildings’ factor share in non-remote regions,
by noting that factor payments to non-structures capital are equal to (1− α− χn)Yj

in non-remote regions j ̸= r, and (1 − α)Yr in the remote region r. This yields:
χn =

(
(1 − α)∑j Yj − rk ∑j Kj

)
/
(

∑j ̸=r Yj

)
. We recover a non-remote sector build-

ing share of χn = 0.149. With the factor share in hand, we calculate regional capital
stocks as:

Kj = (1 − α − χj)Yj/rk. (23)

Regional buildings and improvements. As described in Section 2.2, we estimate
δb = 0.02 using building ages in our CoreLogic commercial data. This implies the
commercial building rental rate rb,j = pj(1 − β(1 − δb)) using equation (3). We
estimate the city-level price-per-efficiency weighted building square foot pj from
the subset of buildings jb with a recorded value for building square footage BSFi:

pj =
∑i∈jb BVi

∑i∈jb BSFi
.

We then recover regional building stocks Bj and the building supply shifters Ψj

(as defined in equation (17)) from the region-j final goods firm’s first-order condi-
tion:

Bj = χjYj/rb,j, Ψj = Bj/p
γ

1−γ

j .
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We recover the total amount of resources expended on improvements from the
first-order condition of the aggregate developer (see equation (11)) and the steady-
state condition for the law of motion of buildings, BN

j = δbBj (see equation (2)).
This yields the demand curve for materials which allows us to recover regional
improvements:

mj = γβTjδb pjBj. (24)

Regional productivity. With data on regional output Yj, regional employment Lj,
and recovered series for regional capital and buildings, we can recover total factor
productivity:

Aj =
Yj

Lα
j B

χj
j K

1−α−χj
j

.

Regional Amenities. We recover amenities and the functional form for conges-
tion in two steps. First, we use the household’s labor-leisure condition to infer
amenities aj in steady state. Since congestion is not internalized by the household,
our inference of amenities is independent of the functional form for congestion.
Second, we use internal instruments to infer the functional form for congestion.

To recover steady-state amenities, we use ACS data on Lj and BEA data on
Yj to recover wages from the first-order condition of the final goods firms, giving
us wj = αYj/Lj. Next we recover consumption by subtracting investment in im-

provements and capital from output, giving us c = ∑j

(
Yj − δkKj − mj

)
. We then

recover amenities from the household’s first order condition for labor, which holds
regardless of the function form of amenities:

aj = exp
(σ log c + 1

η log Lj − log wj

1 + 1
η

)
. (25)

Next, we identify the relationship between amenities and congestion using in-
ternal instruments. In the absence of an instrument, the correlation between con-
gestion and amenities is positive, thus a regression would suffer from endogeneity.
To address endogeneity, we use the model itself to generate instrumental variables,
in an approach that builds on Anderson and van Wincoop (2003), Allen, Arkolakis,
and Takahashi (2020), Walsh (2019), and Rossi-Hansberg, Sarte, and Schwartzman
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(2019). We proceed by re-solving the model in which TFP and amenities in all jare
set to their average values, and regulatory distortions are all set to zero. This means
that the only reason why populations would differ across regions is the building
supply shifter Ψj. We denote this counterfactual allocation L′

j/Xj and use it as an
instrument for Lj/Xj in equation (26):

Second stage: log aj = µ log

(
Lj

Xj

)
+ ej, (26)

First stage: log

(
Lj

Xj

)
= γ

(
L′

j

Xj

)
+ uj. (27)

We find µ = −0.542 with a tightly estimated standard error of 0.073.22 This
result implies that a doubling of density (doubling the number of workers per unit
of commercial land) reduces amenities by 50 percent.

In Appendix D, we explore several alternative approaches to estimating con-
gestion. Equation (26) yields the largest estimate of the negative effects of con-
gestion, so we use it as our baseline, which yields more conservative results in
analyzing the impact of regulatory reform. We additionally analyze the impact of
doubling the congestion externality in Section 5.1.5.

5 Counterfactuals

This section presents counterfactual experiments that analyze the positive and nor-
mative effects of commercial land-use regulatory changes at the aggregate level
and at the local level. Appendix F explains the details of how we compute these
counterfactuals, and Appendix F.1 describes how we incorporate endogenous
amenities in these experiments. Three of the counterfactuals are designed to eval-
uate the implications of plausible regulatory changes, and the other two evaluate
the sensitivity of the effects to changes in the size of the remote work sector and in
the size of the congestion externality.

22We drop the remote work sector and the rest-of-country aggregator from this regression. There
are 241 MSAs in this analysis, some of which are very small, so we weight the regression by the
labor force of each MSA. We also report robust standard errors. The first-stage F-statistic is 191.
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5.1 Aggregate Counterfactuals

This subsection shows the results of five aggregate counterfactuals, in which we
change regulations in all MSAs. Aggregate output changes significantly across all
five experiments, and there are also significant changes in the allocation of eco-
nomic activity across MSAs.

The first experiment, which we refer to as the baseline counterfactual, evaluates
what happens if the average regulatory distortion in every MSA was equal to that
of Midland, Texas, which is the least-regulated MSA. We therefore set Tj = 1 in
each MSA. The dispersion is held fixed in the first experiment.

The second experiment evaluates the impact of making regulations more uni-
form (reducing dispersion in regulations across commercial parcels) within MSAs,
but leaving the average level in each MSA, Tj, fixed. We therefore set Dj for every
MSA to the level of the second highest Dj observed in the dataset, which is a value
of about .07 in Figure 5, compared to a median value of about .05. We choose the
second highest Dj, rather than the highest (Yuma, AZ), since it is an outlier with a
value of about 0.13 (see Figure 5).

The third experiment repeats the first experiment, but starting from a new base-
line in which 40 percent of jobs are remote. Gupta, Mittal, and Van Nieuwerburgh
(2022) argue that remote work has substantially impacted commercial sector valu-
ations and cash flows, and so we use an upper-bound estimate of the remote work
share from Dingel and Neiman (2020).

The fourth experiment focuses on neighborhood reforms at the zoning code
level within each MSA. We therefore collect all parcel-level distortions, τi, within
each neighborhood in each MSA, where neighborhoods are defined as the geo-
graphic location operating under a specific zoning code. We then aggregate them
up to the zoning code level, construct the distribution of those zoning code aggre-
gated distortions, and set all of those that are below the median distortion within
that distribution to the median level.

The fifth experiment repeats the first experiment, but doubles the size of the
congestion externality, µ in equation (26), to assess the sensitivity of deregulations
to stronger congestion effects.

We summarize the counterfactuals in Table 4 and explain them in greater detail
in the following sections. In Appendix E, we test how the results of these counter-
factuals vary as we change our data sample and parameterization.
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Table 4: Aggregate Counterfactuals: Description

Counterfactual Tj Dj Amenities

Baseline 1.0 Unchanged Unchanged
Less Dispersion Unchanged Move up to 2nd highest sample value Unchanged
More Remote 1.0 Unchanged Set so 40% Remote
Local Deregulation Move up to MSA median Move up to MSA median Unchanged
Double Congestion 1.0 Unchanged µ′ = 2 × µ

Notes: This Table provides a guide to each of our five aggregate counterfactuals. The first column explains how
we change the aggregate distortion Tj, the second explains how we change the dispersion term Dj, and the third ex-
plains how we alter amenities. For the “Less dispersion” counterfactual, one small MSA (Yuma, AZ) is an outlier, and
so move up all lower values of Dj to the second-highest value Dj in our sample. For the “Local Deregulation" coun-
terfactual, we do not change Tj and Dj directly but rather change zoning code level τZ to τ′

Z according to the formula

τ′
Z = max[τZ , min[τp50

Z , 2τZ ]], and then we re-aggregate. We move up all distortions to the median in the FIPS code τ
p50
Z ,

but we cap the change at a doubling of the τZ and we cap Tj and Dj at 1.0.

Table 5 summarizes the positive effects of the counterfactuals, including the
percent changes in aggregate output Y, in the efficiency-weighted building stock
B, in employment L, in the capital stock K, in developer profits (given by the rental
payments made to buildings ∑j χYj less the cost ∑j mj needed to offset deprecia-
tion), and in consumption c.

We also compute the percentage change in consumption from the original
steady state needed to make the representative household equally well-off as in
the new steady state. We derive this analytically in F.2.

5.1.1 Baseline

The first counterfactual (baseline) exercise sets Tj = 1 in all regions and leaves
all other parameters unchanged. This is a conservative reform as it leaves the
dispersion in τi within an MSA (Dj) unchanged. We report the results in the first
column of Table 5. Panel A shows that this leads to a 3 percent increase in steady
output and a 17.6% increase in the building stock. The wealth effect resulting from
this deregulation reduces labor supply by about one percent. Consumption rises
by 2.2 percent, and the capital stock other than commercial building increases by
2.6%. In terms of welfare, we find that a 2.9 percent increase in consumption such
that the stand-in household is indifferent between the original steady state and the
steady state under the counterfactual.

Perhaps the most striking quantitative finding is that lower regulation reduces
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Table 5: Aggregate counterfactual results

Baseline Less Dispersion More Remote Local Deregulation Double Congestion

Panel A.
%∆Y 3.0% 6.1% 1.5% 3.1% 3.0%
%∆B 17.6% 59.9% 19.4% 26.0% 17.8%
%∆L -0.8% -2.8% -0.8% -2.3% -0.7%
%∆K 2.6% 5.2% 0.4% 2.6% 2.7%
%∆c 2.2% 6.1% 1.0% 4.0% 2.2%
%∆ Cons. Equiv. 2.9% 9.2% 1.3% 6.4% 3.0%
%∆ Developer Profit -2.8% 7.7% -1.1% 11.0% -2.7%

Panel B.
%∆Y, Fix B at baseline 0.2% -0.5% -0.4% -0.8% 0.3%
%∆Y, Fix K at baseline 2.2% 4.6% 1.3% 2.4% 2.3%
%∆Y, Fix L at baseline 3.4% 7.9% 2.0% 4.5% 3.4%

Notes: This table includes the results of our five counterfactuals detailed in Table 4. %∆X is the percent change in
variable X relative to the baseline, where X stands for output Y, building stock B, aggregate labor supply L, capital K,
consumption c, and developer profits. The final row of Panel A is the percent change in consumption relative to the baseline
needed to make the stand-in household indifferent between moving to the counterfactual steady state or not. Panel B
reruns the same counterfactuals holding the allocations of buildings, capital, and labor fixed at their 2018 steady state
values, respectively.

developer profits, reflecting a larger quantity of commercial space and a lower
price per square foot in the new steady state. This finding suggests that regulations
that limit commercial space are not only adopted to address the congestion exter-
nality, but also reflect rent-seeking on the part of those who benefit from higher
commercial building prices, and who promote regulations that restrict building
supply.

Panel B illustrates the importance of the three factors of production by calculat-
ing the change in output holding B, K, and L fixed, respectively. The first column
of Panel B shows that the commercial construction expansion is by far the most
important. Labor and capital account for moderate output gains derived from our
baseline deregulation.

Table 6 describes the reallocation of workers that occurs across MSAs. We re-
port the regulatory distortion Tj, along with the change in GDP per capita and
the change in labor supply after the deregulation. We find that the least regu-
lated cities are generally in the South, and that many of the most regulated cities
are beach towns. We speculate that certain cities with desirable natural amenities
might use these restrictions to avoid over-developing and lowering the value of
those amenities.
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Table 6: Most and Least Regulated Cities for Baseline Counterfactual

Distortion Tj Change in Yj/Lj Change in Lj

Midland, TX 1.000 0.1% -3.2%
Shreveport-Bossier City, LA 0.998 0.1% -3.2%
Monroe, LA 0.987 0.4% -3.0%
Tuscaloosa, AL 0.985 0.4% -3.0%
Baton Rouge, LA 0.983 0.4% -2.9%

Naples-Marco Island, FL 0.715 7.9% 2.5%
Lebanon, PA 0.701 8.3% 2.8%
Myrtle Beach-Conway-North Myrtle Beach, SC-NC 0.693 8.6% 3.1%
Ocean City, NJ 0.598 12.3% 5.7%
El Centro, CA 0.597 12.3% 5.7%

Notes: This table shows the five cities with the highest and lowest values of Tj, corresponding to the lowest and highest
degrees of regulation. The first column reports the city-wide distortion Tj, the second column represents the change in GDP
per worker in our baseline counterfactual where we set Tj = 1 ∀j, and the third column reports the change in city-level labor
supplies in that same counterfactual.

While row three of Table 5B shows that labor reallocation contributes negligibly
to output gains, deregulation generally shifts labor from MSAs in initially less-
regulated states like Texas to MSAs on the more-regulated coasts. In Figure 9, we
show which states gain and lose labor relative to our baseline counterfactual.23

The states that gain the largest amount are California (+0.9%) and Florida (+0.5%).

5.1.2 Less Regulatory Dispersion Within MSAs

The second counterfactual reduces regulatory dispersion within each MSA, while
holding the average level of regulation in each MSA (Tj) fixed. We interpret “re-
duced dispersion” as each MSA implementing regulations with similar severity
but more uniformity. This parallels the reduced misallocation experiments in
Hsieh and Klenow (2009).

Dj is tightly concentrated in a range of 0.04-0.07, with a single outlier observa-
tion (namely Yuma, AZ) at roughly 0.13 (see Figure 4). Hence, we move Dj in all
regions up to the maximum of their pre-reform Dj or the second highest Dj in our
sample (Youngstown-Warren-Boardman, OH-PA), so that the one outlier does not
skew our results.

23But note that we do not include the rest-of-country aggregator or remote work sector in this
figure.
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Figure 9: Labor Supply Changes Across States in Baseline Counterfactual

% Change

−0.0 to 1.0

−1.0 to −0.0

−1.6 to −1.0

−2.7 to −1.6

NA

Notes: This figure reports the change in labor supply Lj across the 241 cities in our baseline counterfactual, with the
cities combined into their constituent states. Cities and towns in the rest-of-country aggregator are not included.

We find that the gains from this exercise are very large: output goes up by 6%,
and consumption-equivalent welfare rises by 9%. The building stock increases
by 60% and wealth effects reduce labor supply by 3%. The consumption equiv-
alent welfare gain from this reform is 9.2%. Unlike Tj, which is a virtual wedge,
raising Dj is isomorphic to increasing the productivity of the building sector. The
efficiency gains are so large that despite the increased building stock, developer
profits increase by 7.7%. This suggests that reforms in which uniform but equally
stringent zoning laws are adopted (i.e. identical Tj, higher Dj) may have a greater
degree of political feasibility than simply reducing the average stringency level of
the zoning laws (i.e. higher Tj, identical Dj). We leave exploration of the political
economy of zoning laws and regulatory dispersion within cities to future research.

5.1.3 40 Percent Remote Work Counterfactual

The third counterfactual repeats the first (baseline), but with a 40 percent remote
work sector, following Dingel and Neiman (2020), who argue that nearly 40 per-
cent of future jobs may ultimately be performed from home. As noted in Table 9,
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office buildings account for less than one-fifth of the value of the buildings in the
dataset, which suggests that 40 percent may be an upper bound on remote work.

We first use the counterfactual algorithm detailed in Appendix F to compute a
new initial steady state where remote work comprises 40% of the labor force. Our
approach in generating a large remote sector is to reduce regional amenities, aj, in
all the in-person work regions by a common factor υ so that 40% of jobs are opti-
mally allocated by the household to the remote work sector. We then deregulate
this economy as in the first (baseline) counterfactual. The second column of Table
5 shows the results. The gains from deregulation are attenuated, but are still con-
siderable, with a 1.5 % output increase and a 1.3% consumption equivalent welfare
gain. The output gains from deregulation scale nearly one-for-one with the frac-
tion of workers who are remote (i.e., a 40% remote work share reduces the gains
from deregulation by about 50%). These results suggest that commercial land-use
deregulation yields significant positive and normative gains even with 40 percent
of work being performed remotely.

5.1.4 The Aggregate Consequences of Local Reforms

We next analyze the national consequences of local deregulation. This counterfac-
tual recognizes that many land-use regulations are adopted at the county or city
level. This experiment evaluates the impact of reducing regulations at the MSA
level for those properties with τZ distortions that are worse than those at the me-
dian commercial property in the MSA. The reform moves regulations for all prop-
erties worse-than-the median up to the median τZ in their respective MSA. Our
goal is to understand how reforming the most tightly regulated commercial prop-
erties matters when we tailor the size of the reform to be consistent with that of the
average within the MSA. This counterfactual also demonstrates how this method
can be used to perform detailed, specific policy proposals and inform local policy-
makers.

We proceed in three steps: (1) we aggregate distortions at the zoning code level
to obtain the pre-reform τZ, Tj, and Dj;24 (2) we change τZ to the median τ

p50
Z in

24τZ is given by equation (20). We then aggregate τZ’s as follows:

MVZ,t ≡ ∑
i∈Z

MVi,t, Dj =

(
∑Z∈j MVZ,t/τZ

∑Z∈j MVZ,t/τ
1

1−γ

Z

)/( ∑Z∈j MVZ,t

∑Z∈j MVZ,t/τ
1

1−γ

Z

)γ

, Tj =
∑Z∈j MVZ,t

∑i∈j MVZ,t/τZ
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the county, but we cap the change at a doubling of the τZ and we cap Tj and Dj

at 1.0; and then (3) we re-aggregate to obtain the counterfactual T′
j and D′

j (where
primes denote post-reform values, henceforth).

Column three of Table 5 reports these results. Table 5A shows that this rel-
atively modest reform (reforming only those properties that are more regulated
than the median at the MSA level) increases output by roughly 3.1%. Since both
Tj and Dj improve, the local deregulation produces a larger output gain than our
baseline deregulation in which Tj is set to 1.0 and Dj is held fixed. The first row of
Table 5B shows that the 26% increase in the building stock drives the output gains.
The consumption equivalent welfare gain from local deregulation is 6.4%.

5.1.5 Doubling Congestion

This counterfactual repeats the first (baseline), but with the size of the congestion
externality doubled. The fourth column of Table 5 reports the results. Perhaps the
most striking finding is that aggregate effects are almost the same as in the base-
line counterfactual, despite less worker reallocation to previously highly regulated
MSAs when the congestion externality doubles. Figure 10 shows the difference in
reallocation between the two cases. One reason why doubling the congestion ex-
ternality is very similar to the baseline counterfactual is because there is little corre-
lation between amenities and productivity and between TFP and amenities across
MSAs. The (unweighted) correlation between MSA TFP and Tj is -0.2, and is -0.12
between MSA TFP and amenities. Figure 11 demonstrates that there is no strong
correlation between TFP and the change in population, illustrating more directly
that the benefits of deregulation are not driven by reallocation to more productive
cities.

5.2 Increasing Floor-Area Ratio Limits in New York City

This section shows how the model can be used to evaluate regulatory reforms at
the city level. We conduct a counterfactual that analyzes the impact of relaxing
floor-area ratio limits (FAR) within New York City at the level of individual parcels.
We report the distribution of FARs in A.2. We focus on New York given the quality
and accessibility of its zoning code information and the broad interest within the
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Figure 10: Labor reallocation from Tj = 1 for baseline congestion v. 2× congestion
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Notes: Each point is an MSA. This figure compares the change in labor across MSAs in the baseline counterfactual to
doubling the size of the congestion externality. The horizontal axis corresponds to an MSA’s distortion Tj in the baseline,
and the vertical axis corresponds to the percentage change in Lj relative to the baseline in a counterfactual steady state
where Tj = 1 in all cities.

spatial literature regarding New York’s land-use regulations. The counterfactual
increases the floor-area ratio limit in all commercial buildings in New York to the
highest one that we observe in the dataset.

This analysis first requires estimating the contribution of floor-area ratio limits
to our overall measure of regulation at the parcel level, and then using that esti-
mate to change each parcel’s τZ to reflect the change of increasing each parcel’s
floor-area ratio up to the maximum observed. We therefore begin with our base-
line 2018 steady state distortions, and regress τZ on FARZ at the parcel/zoning
code level, weighting zoning codes by their total building value:

log τZ = α︸︷︷︸
0.0343∗∗∗
[0.00433]

log FARZ

The regression projects our measure of overall regulatory distortions onto the
observed floor-area ratio to capture its individual impact. The regression estimate
is then used to construct τ′

Z, which modifies τZ (the baseline distortion) based on
the difference between its baseline FAR and the highest observed in the dataset,
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Figure 11: Labor reallocation from Tj = 1 for baseline congestion v. 2× congestion
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Notes: Each point is an MSA. This figure compares the change in labor across MSAs in the baseline counterfactual to
doubling the size of the congestion externality. The horizontal axis corresponds to an MSA’s TFP Aj in the baseline, and the
vertical axis corresponds to the percentage change in Lj relative to the baseline in a counterfactual steady state where Tj = 1
in all cities.

which we denote as FARmax: 25

log τ′
Z = α log(FARmax) + ϵz

We then aggregate the τ′
Z to obtain counterfactual T′

j and D′
j.

26

The results are reported in Table 7. To preserve consistency with the rest of
our analysis, we report MSA-level counterfactual changes even though the reform
is just within New York City. We find that MSA output increases by 1.8%, the
MSA building stock increases by 6%, the number of workers in the MSA remains
unchanged, and commercial real-estate prices drop by 4% within the MSA.

Figure 12 illustrates the counterfactual changes for Manhattan, the most well-
known of New York City’s five boroughs. We plot the buildings in the most- and
least-regulated deciles of zoning codes in Manhattan, alongside the change in their
building square footage in the new steady state following the floor-area ratio reg-

25We “cap" the zoning codes at 1, preventing us from having negative regulations, in the follow-
ing sense: If τZ > 1, we do not change it in the counterfactual. If τZ < 1 but τ′

Z would be greater
than 1, we set τ′

Z = 1.
26The aggregation is identical to Section 5.1.4. Note, we only use the subsample of buildings

where we can find a floor-area ratio for this exercise. See Appendix A.2 for details.
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Figure 12: Zoning and counterfactual NYC
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Notes: The left panel plots the Manhattan buildings which are subject to the most- and least- regulated ten percent
of zoning codes. The right panel plots the change in their square footages in the new steady state after counterfactually
moving all FAR up to the highest that we observe.

Table 7: MSA-level gains from maximal floor-area ratios in NYC

Outcome: YNYC BNYC LNYC PNYC

Change Rel. to Baseline +1.8% +6.0% +0.7% -4.0%

ulatory reform. Business activity moves from Midtown, which already has large
floor-area ratios, to the Upper East and West sides, which have much lower floor-
area ratios and which are known for opposing development. Note that the least
regulated buildings shrink in the new steady state due to decreases in the equilib-
rium price per building square foot in the NYC metro area.

6 Conclusion

Our paper makes three contributions. One is developing a model of the U.S. econ-
omy in which commercial real estate is a productive, regulated, and potentially
misallocated component of the capital stock. The model yields an intuitive for-
mula for identifying the extent to which commercial real estate investment deci-
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sions are distorted by land-use regulations. Second, we apply the theory to the
near-universe of commercial property tax records from CoreLogic to estimate a
model-consistent index of commercial land-use regulations. Our analysis uses
rich, address-level microdata from municipal property tax assessments compiled
by CoreLogic.

We validate the index of commercial regulations by hand-collecting zoning
code attributes and showing that our index of commercial regulations is correlated
with statutory floor-area ratios and height limits. We then examine how our com-
mercial regulations compare across cities. Our results confirm the common conclu-
sion within the literature that metro areas in Texas such as Dallas-Fort Worth and
Houston face significantly weaker commercial real estate regulation than metros
in California.

Third, we use our distortion measure and model to evaluate the effects of both
national and local changes to commercial regulations. In our primary exercise,
we raise average city-level regulations up to a deregulated benchmark MSA (Mid-
land, Texas) and solve for the new steady state, while leaving the dispersion of
parcel-level regulations unaltered. National output increases by 3.0% as commer-
cial investment booms and workers reallocate from the Midwest to the now-less-
regulated coastal states.

One benefit of our framework is that it allows for very granular counterfactuals
within narrowly defined geographies. Since we recover regulatory distortions at
the address-level, we can project our distortions onto specific features of zoning
codes such as floor-area ratios. We apply this counterfactual to New York City and
find that raising floor-area ratios to the maximum level in the city would reallocate
business activity toward the Upper West Side of Manhattan, and yield local output
gains of 1.8%.

Our framework opens a number of avenues for future research. The model
and empirical analyses can be extended to include residential land-use regulations,
heterogeneous workers, and transition dynamics. Our framework is also well-
suited for studying how regulations distort the allocation of resources and workers
not only across cities but within a given city and to study phenomena such as the
interaction between inequality, homelessness, and regulatory distortions.
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ONLINE APPENDIX

A Data

In this appendix, we provide more details on our data. Appendix A.1 describes
CoreLogic’s sample of commercial buildings in greater detail and Appendix A.2
describes our hand-collected zoning code data.

A.1 CoreLogic

CoreLogic’s dataset is the most comprehensive available source of commercial
parcel-level data. However, it is limited by the quality and quantity of the data
compiled by local assessors.27 Not all of these variables are available for all parcels
in all cities, particularly building square footage. We restrict our sample to build-
ings where total value, improvement and/or land value, and land square footage
are available. We also find that, for some parcels, MV/TV takes on values out-
side [0, 1], or in some cases either MV or LV are recorded as 1 dollar. As the im-
provement share of building value is an important object in our analysis, we drop
buildings where the ratio MV/TV is greater than .99 or less than .01. CoreLogic
has also harmonized county-level land use codes, which explain what a parcel is
primarily used for. Our sample excludes all buildings which CoreLogic has iden-
tified as primarily residential; hence, we treat the stock of commercial parcels as
fixed and do not explore the decision to build a residential or commercial build-
ing on a given plot of land. We also drop buildings identified as public land. The
buildings we keep after filtering account for roughly 23 percent of all non-public
parcels in CoreLogic’s sample, but their total values sum to 73 percent of the total
value of all non-public parcels in the unfiltered sample.

Table 8 shows the availability of different variables in the 2018 sample, in both
the raw version of the data and the filtered version we use for our analysis. N
and ∑ TV indicate the share of parcels, and the share weighted by total value,
preserved in the filtered sample. The variable a denotes the availability of the age

27To give one example of the limitations of using raw assessor data: we manually inspected parts
of the data and found that zoning codes “C-3" and “C3", with and without hyphens, coexisted in
one jurisdiction. We therefore drop hyphens when we analyze alphanumeric zoning codes.
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Table 8: Variable Availability

Full Sample Filtered

TV .97 1.0
MV .9 1.0

x .97 .98
BSF .17 .63

a .15 .57
Z .32 .39
N 1.0 .23

∑ TV 1.0 .74
ā 49 50

Notes: This table reports the availability of total value TV, market value MV, land square footage x, building square
footage BSF, age a, and zoning code z in the full and filtered sample; the share of buildings N and total building value ∑ TV
in the filtered sample; and the average age ā in the full and filtered sample.

variable in the filtered and unfiltered samples, whereas ā indicates its mean value.
Note that some parcels list only MV or only LV. In those cases, we impute the
missing value by subtracting the non-missing value from TV. We record value
availability after doing this imputation. We also record what share of parcels have
land square footage x, building square footage BSF, and an alphanumeric zoning
code Z.

In Table 9, we further break down the buildings in our filtered sample by Core-
Logic’s one-digit land use codes. "Commercial"28 includes things as diverse as
office buildings, parking lots, and funeral homes; "Industrial" includes factories
as expected but also things like warehouses and wineries; "Vacant Land" includes
empty lots but also golf courses; "Agriculture" includes things like farms and fish-
eries; "Recreational" includes things like stadiums and bowling alleys, "Transporta-
tion" includes things like harbors but also sweeps in utilities; and the final category
includes buildings denoted as "Real property (NEC)" or "Misc" by CoreLogic. Re-
call that our filtered sample excludes public buildings (encompassing things like
schools, military bases, and property owned by different levels of government),
which are listed under code 6. We break out office buildings from the rest of the
buildings labeled "Commercial"—this subset of buildings is likely to become less
important in the wake of the COVID-19 pandemic and the resulting shift to remote

28The notion of "commercial" buildings in our model encompasses all the categories in this list
and is broader than CoreLogic’s usage of the term "commercial."
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Table 9: Building Types

Code Type Share of TV

2 Commercial .663
244-247 Office Buildings .176

3 Industrial .193
4 Vacant .002
5 Agriculture .096
7 Recreational .027
8 Transportation .016
9 Misc .002

Notes: This table reports the share of total value TV in the filtered sample by category of building. The numbers do not
add up to 1 because of rounding. Office buildings are a subset of commercial buildings.

work.
CoreLogic offers multiple measurements of land and total value depending on

what information each county tax assessor offers. These include the assessor’s es-
timate of market value, the assessed value used for tax purposes, and estimated
values from third-party appraisers. Not all jurisdictions report all three values,
and the first two have much better coverage than the third, hence we do not use
appraised value. CoreLogic also provides a "calculated" value based on which
of these three they think is the closest to the true market value. The “valuation
approach” used by the assessor to divide the total value of the building into the
improvement value and the land value is not recorded in our dataset. However,
Wisconsin (2021) provides a useful description the most common land and im-
provement valuation approaches. To value land, “the sales comparison approach”
measures the value of land based on comparable vacant lot sales. The “abstraction
approach” measures the total value of the property and then deducts the cost of
improvements to arrive at the land value. To value improvements, the sales com-
parison approach can also be used (in conjunction with a land value) but often
times the “cost approach” is adopted. The cost approach values improvements at
their replacement cost by using proprietary cost manuals. Total value is then the
sum of the land value and improvement value. All of these methods are consistent
with our accounting framework in Equation (8), which values improvements at
their re- placement cost while treating land as the residual claimant to all remain-
ing profits generated by the property.
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We use CoreLogic’s preferred "calculated" value but find that this choice is not
very consequential—we recalculate our indices using market and assessed values
instead of CoreLogic’s preferred value, and find that over 90 percent of our ob-
servations of Tj and Mj change by less than 10 percent in either direction, and
that most do not change at all. We provide more proof that this choice is not very
important in Appendix E.

We also highlight one important decision here: we do not treat buildings with-
out an alphanumeric zoning code as unregulated. Several jurisdictions such as
Houston do not have any formal zoning codes, and yet they still have land use
restrictions such as parking minimums as documented by Schmitt (2019). Also,
some jurisdictions such as Chicago (but not all of Cook County, Illinois) do have
zoning codes but do not report them in the tax assessments used by CoreLogic. We
also do not treat missing zoning codes as an unregulated or minimally-distorting
benchmark in jurisdictions where they coexist with non-missing zoning codes.

A.1.1 Summary Statistics

In this section we provide some additional descriptive statistics to help understand
what drives the variance in building values. We define the net present value of
payments to a building as the building value, BVi,t:

BVi,t =
∞

∑
s=t

(β(1 − δb))
s−trb,j,tBi,t. (28)

We see that the log of land value per land square foot is more dispersed than
the log of building value per building square foot (a measure of revenue per square
foot) or the log of improvement value per building square foot (a measure of costs
per square foot.)

Mean Variance IQR

log(MVi/TVi) -.796 .817 0.8
log(LVi/TVi) -1.16 .873 3.01

log(BVi/BSFi) 4.12 1.33 1.28
log(LVi/xi) -.647 7.60 4.29

log(MVi/BSFi) 3.66 1.41 1.27
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Notes: In this table we plot the mean, variance, and interquartile range (p75-p25) of several logged ratios of our key
variables. MV means improvement value, LV means land value, TV means total value, BV is the model-implied building
value derived in equation 28, BSF is building square footage, and x is land square footage.

A.2 Zoning Code Parameters

We hand-collected zoning code data for New York City and Washington, DC from
City of New York (2021) and DC Office of Zoning (2021a), respectively. We also
needed to supplement DC Office of Zoning (2021a) with information from DC Of-
fice of Zoning (2021b) for zoning codes such as WR-3. We merged them into the
CoreLogic dataset, which has some errors in how individual zoning codes were
recorded. Hence, we did not get a match for all buildings.

Some zoning codes had a range of parameters associated with them—for ex-
ample, “C1" districts in New York City have a maximum permissible FAR of 1 or
2 depending on whether the residential buildings in their neighborhoods are in
R1-R5 districts or R6-R10 districts. As we do not observe all the different possi-
ble contingencies that may affect the FAR of a given building in a given zoning
code, whenever we see a New York City zoning code reported multiple possible
FARs, we simply use the midpoint of the highest and lowest values reported in
the zoning reference tables in City of New York (2021). We did not include attic
allowances.

In DC Office of Zoning (2021a), the set of contingencies was even more com-
plicated. Many zoning codes were associated with a list of height limits, rather
than one or two at most in NYC. If a zoning code provided a list of possible height
limits, we used either the median height limit or the average of the middle two.
STE-19 did not report a height limit, so we listed it as missing. Many codes listed
a height limit of 35 feet, or 40 feet if the building adjacent to them was already
over 40 feet. We counted these as 35 feet. If a zoning code could apply to residen-
tial or non-residential buildings, we only used the height limits associated with
non-residential buildings. We also do not count the additional floors allowed for
penthouses in STE-7.

We report some key summary statistics of our measures of regulation in Table
10.
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Table 10: Regulation Summary Statistics

Statistic NYC FAR DC Height Limit

Mean 4.2 66
Median 2.2 65
Standard Deviation 3.7 25
Min 0.5 20
Max 15.0 130

Notes: This table reports the distribution of floor-area ratios in New York City and height limits (in feet) in Washington,
DC.

A.3 Additional validation: San Francisco

We next provide another graphical illustration of our measure of regulatory dis-
tortion and how it maps onto the real world.

In Figures 13 and 14, we map the most and least distorting zoning codes in San
Francisco, and contrast this to statutory height restrictions provided in San Fran-
cisco Planning (2021). More specifically, we rank all parcels by their code-level reg-
ulatory distortion τZ and map the top decile (least-regulating, in red) and bottom
decile (most-regulating, in black.) We find that our model identifies downtown
San Francisco, the site of many of its most iconic skyscrapers, as relatively dereg-
ulated. We also find that our measure of regulatory distortion tracks reasonably
well with statutory measures of regulation, even within a single jurisdiction where
demand-side factors should be relatively similar. This suggests that our measure
is picking up underlying regulations rather than simple demand-side factors.
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Figure 13: Model regulatory distortion

● ●●●●

●
● ●●

●●●
● ●

●●
●

●●● ●
●●●●●●●●●●

●
●
●●

●●●●

●●●●●●●● ●●●●●●●●●●●● ●●
●

●●●●●●●●●●●●●●●●●●●
●●●●●●● ●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●
●●●● ●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●

●●●●●● ●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●● ●●● ●●
●●●● ●●●

●●●●●●●●●
●●●●●●

●●●●●● ●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●

●●●●●● ●●● ●● ●●●●●●●●
●

●●●● ●●●●● ●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●

●
●●●

●

●●●●●●●

●●●●
●●●

●●

●●●●●●●
●●●

●

●

●●●●●●●●●●●

●

●●●● ●●●●
●●●●●

●●●●●●●●●

●●
●●●● ●●●●●●

●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●
●●●●●●●●●●

●● ●●●
●

●●
●●●

● ●●●●●●● ●●●
●●●●●●●●●● ●●●●

●
●●●

●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●● ●●

●●●●●●
●
● ●●●●

●●●●●

●●●●●●

●

●●

●

●●

●●
●●● ●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●

●●●●●●● ●●
●

●

●

●●●●
●
●

●

●

●

●● ●●●●●● ●●●●●●● ●●●● ●●●● ●●●●●●●●●●

● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●
●

●

● ●

●●

●
●

●●●●●● ●

●

●

●

●

●

●

● ●●● ●

● ●●●●

● ●

●

●●
●

●●●●●●

●●●●
●●●●
●●●●

●●●●●●
●

●●
●●●

●
●

●

●●●●●
●●●●●●

●●●

● ●
●

●
●

●

●●●

●

●

●

●●

●
●●●●● ●●●●● ●●

●●●●
● ●●

● ●●
●●
●

●●

●●●●
●●●●●●●●●●●●●●●●●

●
●●●●

●●
●

●●● ●●
●●●●●

●● ●●●●●●●

●●●●●
●●●
●
●●
●●●●●

●
●●

●
● ●

●
● ●

●
●●●●
●●●

●●●
●●●●●●●●●

●●
●

●●●●
●

●●●●●●●
●●
● ●

●●
●●

●

●●●●

●●●
●

●
●
●

●
●

●●

●
●●●●●●

●

●●●

●●●●●●●●●●●
●●●●●●
●●

●
●

●●●
●
●●●
●●●
●●

● ●●
●●●

●
●●●●●●●●

●
●●●●

●●
●● ●●●●●●●●●●
●

●

●●●●
●●●●●

●●●●●●●●●●●
●●●
●●

●

●●●
●●●●●●●●●●
●●

●

●
●

●●●
●●● ●●●

●
●●●

●●●●
●

●●●
●●●●
●
●
●●●

●●●●●●

●●●

●

●●
●●

●●●●●
●●●●●

●●●●●
●●●

●
●●●

●●

●●
● ●●

●●●

●●●●●●●●●
●●●

●
●●
●●
● ●●●

●
●

●●
●

●●●●●●●●●●●●●●●●●●
●

●●

●●●

●
●●●●●●●●●●●●

●● ●
●●
●●●
●●●

●

●
●
●●

● ●●●

●
●●●●●●●●●●●●●●●

●●●
●

●●
●

●●●●

●●●●●
●●●●

●
●

●●●●● ●●●●

●

●●
●
●●●

●●●●●●
●●●●
●●●●

●
●●●●●●●●

●●●●●
●

●

●● ●●●
●

●●●●●●●●●●●●
●●

●

●●●●●●●●●
●●

●●●●●●●●
●
●●●●●●

●●●
●●●●●●●●●●●●●

●
●
●

●●●
●

●●
●
●

●●●●●●
●●

●●●●●

●
●

●●●
●
●●●●

●

●●●●●●●
●●

●●●●
●●
● ●

●
●●●

●●●●●●●●

●●●●●●

●
● ●● ●●●●●

●●●●●●●●●●●●

● ●●●●
● ●● ●

●●●
●●

●●●●●●●
●●

●●●
●●●
●

●●●
●●●●●

●●● ●●
●●●●●●

● ● ●
●●●●●●●

●●
●●●●●

●
●●●●●●

●
●●●●

●
●●
●

●●
●

●●●●

●●●●●●

●

●●
●

● ●●●●
●
●●●●●●●

●●●

●●●●●●●●

●●●
● ●

●●●
●
●

●●●●●

●●

●●
●

●●●●●

●

●

●
●●

●●●●
●●●●●●●●

●●●●●
●●

●●●●●●●●●
●●●●●●●●

●

●
●●●●●●●●

●●●●
●●●

●●●●
●

●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●

●●
●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●
●

●●●●●●
●●●

●●●

●●●●●
●●

●

●●●●
●

●
●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●

●
●●●
●●●●●●

●
●●●

●

●

●●●

●
●
●

●

●

●

●

●●
●

●

●●
●

●●●●
●●

●●●●●●●
●●●●

●●

●●

●●●●●●
●●●●●●● ●●●●●
●

●●
●●●

●
●●●●●●●
●●●

●●
●

●●

●

●●●
●●

●●

●

●●

●●●●●●●●●●●●
●●●●●●●●●
●
●●

●●
●●

●
●●
●●●

●
●●

●

●

●
●

●●●●●
●●

●●●
● ●●

●●●●●

●●
●
●

●
●●●●●●●

●

●●●

●● ●

●●
●

●●●●●

●●
●●●

●

●
●●

●

●●●●●●●●
●●●●●
●●●●●
●●●●●●●●●●●●
●

●

●
●

●

●●●

●
●●●

●●
●

●
●

●
●●●

●●
●

●●
●●●●

●

●

●●

●
● ●●●●●

●●●●●

●

●
●

●

●
●
● ● ●●

●

●

●●
●●

●

●●●
●

●●
●

●

●●

●●

●

●

●

●
●

●●

●● ● ●
●●●●

●●●

●
●

●
●
●●

●●
●●
●●

●

●

●
●

●●●
● ●●● ●

●
● ●

●

●

●

●
●

●

●

●
● ●

●

●

●

●●●

●

●
●

●
●

●

●

●●

●

●●
●
●

●

●

●

●

●●

●●●●●●●●●●●●●●●●

●

●

●●●

●

●

●
●
●

●●

●●●
●
●●

●

●

τz

●

●

Top 10%

Bottom 10%

Figure 14: SF Height Limit Zoning
Map, 2021

Notes: In Figure 13, we plot zoning code-level distortions τZ in San Francisco for the most- and least- distorted zoning
codes. We rank zoning codes by their τZ , take the most- and least- distorting 10 percent of zoning codes, and put in a dot
denoting each building subject to those codes. Red dots correspond to buildings with the highest (least regulating) τZ , and
black dots correspond to buildings with the lowest (most regulating) τZ . In Figure 13, we provide a map of height limits
taken from San Francisco Planning (2021) and highlight downtown San Francisco, noted for having the largest concentration
of high-rise office buildings in the city.

B Aggregation Results

B.1 Individual and Aggregate Developers

In this section we establish the connection between the problems of the individual
developer and the aggregate developer. In order to do so, we solve equations (5)
and (11), and show that they yield the same quantity of improvements demanded
and quantity of buildings supplied. We assume a steady state and drop time sub-
scripts.

First, we take the first-order condition of equation (5) and solve for the optimal
quantity of improvements, expressed in units of the final good.

qimi︸︷︷︸
MVi

= (pjτiβγ)
1

1−γ z
1

1−γ

i xiq
−γ

1−γ

i︸ ︷︷ ︸
Ci

Next, we divide both sides by qi and use the resulting expression for mi to solve
for the individual developer’s building production function in terms of prices and
exogenous parameters:

BN
i = (pjτiβγ)

γ
1−γ Ci (29)
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Only a random share δb of buildings depreciate and are rebuilt in each period,
hence we can recover the sum of individual developers’ improvement demand
and building supply curves in each period. Given the large number of parcels in
each region, we assume the law of large numbers holds and thus ∑i∈j BN

i = δbBj.
Note that the improvement demand curve is in units of the final good.

∑
i∈j

qimi = δb(pjβγ)
1

1−γ ∑
i∈j

τ
1

1−γ

i Ci

∑
i∈j

BN
i︸ ︷︷ ︸

BN
j

= δb(pjβγ)
γ

1−γ ∑
i∈j

τ
γ

1−γ

i Ci

Next we solve equation (11) for both quantity of improvements demanded and
quantity of new construction supplied, mirroring the derivation above. Note that
the technology that the representative developer uses to convert the final good to
the improvement good is one-for-one, as qi is swept into the parcel-level efficiency
terms. We define ∑i∈j qimi = mj.

mj = δb(pjβγ)
1

1−γ D
1

1−γ

j T
1

1−γ

j Cj

BN
j = δb p

γ
1−γ

j (βγ)
γ

1−γ D
1

1−γ

j T
γ

1−γ

j Cj︸ ︷︷ ︸
Ψj

It is straightforward to use equations (12), (13), and (14) to replace Cj, Dj, and
Tj in the above two equations and thereby establish that the improvement de-
mand and building supply curve of the representative developer are identical to
the summed-up demand and supply curves of the individual developers.

B.2 Estimating τi and Tj

In this section, we explain in more detail how we estimate the regulatory distor-
tions τi and Tj.

We first recover τi. Because we focus on a single parcel in the steady state, we
drop time and parcel subscripts.
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The total value of the parcel (TV) is the net present value of payments made
to the building stock Bi, plus the option to rebuild on the parcel after the building
depreciates. We denote the option to rebuild as Vf , and note that it is available
with probability δb. We may therefore write the total value of the parcel as:

TV ≡ V(B, τ, z, q, x) = rb,jB + (1 − δb)βV(B, τ, z, q, x) + δbVf (τ, z, q, x)

If the building falls, the parcel owner puts improvements on the building today
and starts earning rents tomorrow. We denote m∗ as the solution to the parcel-
owner’s problem and write:

Vf (τ, z, q, x) = βV(B, τ, z, q, x)− qm∗

In a steady state, qm∗ = MV, and therefore MV and B are constant every time
the building needs to be rebuilt. We can therefore take the infinite sum of payments
and get that:

TV =
rb,jB
1 − β

− δbqm∗

1 − β

Recall:

MV = qm∗ = βγτBVi

And by definition, BV is the flow value of payments made to the building:

BV =
rb,jB

1 − β(1 − δb)
Let us rewrite the first expression in TV in terms of BV:

rb,jB
1 − β

=
1 − β(1 − δb)

1 − β
BV

Hence, we can add up and rearrange some terms to relate the total value of the
parcel to the total value of the building :

TV =
(1 − β(1 − δb)− δbβγτ

1 − β

)
BV

And let us again substitute MV:

TV =
(1 − β(1 − δb)− δbβγτ

1 − β

)MV
τβγ

Let us rearrange this expression in order to get γ in terms of TV, MV, and τ:
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τβγ =
(1 − β(1 − δb)− δbβγτ

1 − β

)MV
TV

τ =

(1−β(1−δb)
1−β

)MV
TV

γβ
(
1 + δb

1−β
MV
TV
)

This yields equation (19).
We now turn to Tj and reintroduce the parcel-level index i. We can replace τi

on the left-hand side of equation (16) with equation (19) and recover equation (18):

Tj =
∑i∈j MVi

∑i∈j MViγ
(

β + δbβ
1−β

MVi
TVi

)
/
((1−β(1−δb)

1−β

)MVi
TVi

)
=

(1−β(1−δb)
1−β

)
∑i∈j MVi

βγ
(

∑i∈j TVi +
δb

1−β ∑i∈j MVi
)

We now multiply both the numerator and denominator by ∑i∈j TVi:

Tj = T1
j

∑i∈j TV

∑i∈j TV
=

(1−β(1−δb)
1−β

)
∑i∈j MV

βγ
(

∑i∈j TV + δb
1−β ∑i∈j MV

)∑i∈j TV

∑i∈j TV
=

(1−β(1−δb)
1−β

)∑i∈j MV
∑i∈j TV

βγ
(
1 + δb

1−β
∑i∈j MV
∑i∈j TV

)
We now recover equation (18):

γ · Tj =

(1−β(1−δb)
1−β

)∑i∈j MV
∑i∈j TV

β
(
1 + δb

1−β
∑i∈j MV
∑i∈j TV

)
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C Age Regressions

We regress parcel-level τ on age, as well as county fixed effects, for the subset of
parcels where we have building age, and report the results in Table 15. We weight
parcels by BV. Most notably, the regression R-squared is below 5%, suggesting
building age explains very little of our regulatory distortion. We also find that the
impact of age on measured τ is surprisingly small—a 50-year-old building would
on average have a τ less than 0.1 lower than a brand-new building. Hence, these
measured age effects in and of themselves cannot explain much of the variation in
τ seen in Figure 2.29

Figure 15: The role of building vintages: Regression of regulatory distortion (τ) on
age

(1) (2) (3) (4) (5) (6)
τ τ log τ log τ log τ log τ

Age -0.00189*** -0.00188*** -0.00350*** -0.00350***
(3.44e-06) (3.48e-06) (6.96e-06) (7.20e-06)

log(Age + 1) -0.105*** -0.0993***
(0.000225) (0.000227)

Constant 0.910*** 0.910*** -0.116*** -0.116*** 0.0995*** 0.0820***
(0.000162) (0.000158) (0.000328) (0.000327) (0.000765) (0.000768)

FIPS FE No Yes No Yes No Yes
Observations 4,650,804 4,650,787 4,650,804 4,650,787 4,649,281 4,649,264
R-squared 0.061 0.212 0.051 0.171 0.044 0.163

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

Notes: This table reports the results of regressions of distortions τ on age, either in levels or logs, with and without
controls for the county in which the parcel is located.

29Admittedly, this may understate the impact of aging on τ if old buildings were far less regu-
lated than new ones.
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D Alternative Amenity Specifications

In this section we consider several alternative specifications for amenities. We con-
sider regressions of amenities a on both L/X ("congestion") and L ("labor supply").

First, in Table 16, we report the results of naive regressions of amenities on
congestion and labor supply, with and without weighting by the labor supply of
each location. Columns (1) and (2) reveal a positive relationship between amenities
and labor supply, and columns (3) and (4) reveal a negative relationship between
amenities congestion (L/X).

Figure 16: Naive Regressions

Log Amenities

(1) (2) (3) (4)

(Intercept) 10.090*** 10.072*** 8.534*** 6.508***
(0.015) (0.013) (0.395) (0.884)

Log Labor Supply 0.288*** 0.265***
(0.008) (0.007)

Log Congestion -0.052** -0.166***
(0.019) (0.041)

Estimator OLS OLS OLS OLS

N 239 239 239 239
R2 0.829 0.884 0.025 0.147

Notes: This table reports the results of regressions of the log of amenities a on the log of labor supply L and the log of
congestion L/X, with and without weighting by the labor supply of each observation. The observations are metropolitan
statistical areas—we do not include the rest-of-country aggregator or remote work sector.

As explained in the text, the relationships in Table 16 are endogenous. We ad-
dress the endogeneity by using the model itself to generate instrumental variables
(e.g. Anderson and van Wincoop (2003), Allen, Arkolakis, and Takahashi (2020),
Walsh (2019), and Rossi-Hansberg, Sarte, and Schwartzman (2019)). The first in-
strument is the model-generated counterfactual congestion L′/X. We re-solve the
model setting TFP and amenities to their average value and turning off regulatory
distortions, so that populations only differ due to the building supply shifter Ψj.
This is a measure of the ease of construction in a city—it affects population in-
directly by making it cheaper to build, thereby increasing wages and attracting a
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larger workforce. The resulting L′/X is the instrument. The second is to directly
use the supply shifter in the regional building supply function Ψ, where the as-
sumption is that the ease of building and the availability of commercial land are
uncorrelated with exogenous amenities. The third is to directly use the supply of
commercial land X. The fourth is the supply shifter per unit of land, a rough mea-
sure of how easy it is to build on each unit of land. The fifth is a quadratic in the
model-generated counterfactual L′/X.

Table 17 reports the results. Columns (1) and (2) use L′/X as instruments for
congestion and they both yield negative point estimates, implying greater con-
gestion causes lower amenities. Column (2) is the most “pessimistic” estimate of
all (10) reported columns. To provide the most conservative estimates of the way
regulation can affect labor relocation, we adopt this specification in our baseline
model. We additionally explore exogenous amenities.

Figure 17: Instrumenting for Congestion L/X

Log Amenity

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(Intercept) 3.305*** -1.697 3.423*** -1.232 38.350 10.905 6.007*** 4.252* 72.834*** 54.975
(0.828) (1.573) (0.801) (1.456) (93.900) (7.140) (1.653) (2.061) (18.067) (32.063)

Log Congestion -0.296*** -0.542*** -0.290*** -0.521*** 1.340 0.036 -0.169* -0.269** 6.352*** 4.780
(0.039) (0.073) (0.037) (0.068) (4.383) (0.328) (0.077) (0.095) (1.752) (3.076)

Log Congestion Squared 0.158*** 0.125
(0.042) (0.074)

Weights No Yes No Yes No Yes No Yes No Yes
Instrument L′/X L′/X Ψ Ψ X X Ψ/X Ψ/X L′/X, (L′/X)2 L′/X, (L′/X)2

N 239 239 239 239 239 239 239 239 239 239
R2 -0.540 -0.611 -0.515 -0.528 -18.352 -0.071 -0.107 0.090 -1.757 -1.057
F 58.327 54.807 59.986 59.088 0.094 0.012 4.814 8.110 18.077 30.005
First-stage F statistic 214.130 87.263 243.108 98.712 0.108 6.344 15.482 42.733 14.219 4.556

Notes: This table reports the results of instrumental variables regressions of the log of amenities a on the log of conges-
tion L/X, with and without weighting by the labor supply of each observation. The observations are metropolitan statistical
areas—we do not include the rest-of-country aggregator or remote work sector.

Lastly, in Table 18, we instrument log labor supply (instead of congestion) with
the same five instruments. By and large, these coefficients are smaller than the ones
in the naive regression in Table 16. However, only one of these regressions has a
negative sign on the coefficient of interest, and that one is not significant. This
casts doubt on the strength of negative externalities from a growing population;
however, as discussed above, we use the most severe estimate of negative con-
gestion externalities on amenities in order to provide the most conservative labor
reallocation estimates in our baseline model.
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Figure 18: Instrumenting for Labor Supply L

Log Amenities

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(Intercept) 10.004*** 10.124*** 10.075*** 10.070*** 10.045*** 10.109*** 10.087*** 10.056*** 9.427*** 7.041
(0.162) (0.154) (0.016) (0.013) (0.156) (0.090) (0.086) (0.028) (2.809) (100.114)

Log Labor Supply 0.233* -0.019 0.278*** 0.275*** 0.259** 0.060 0.286*** 0.349*** 2.132 3.683
(0.103) (0.736) (0.009) (0.010) (0.099) (0.413) (0.055) (0.072) (9.669) (125.712)

Log Labor Supply Squared 0.936 1.349
(4.612) (43.533)

Instrument L′ L′ Ψ Ψ X X Ψ/X Ψ/X L′ , (L′)2 L′ , (L′)2

Weights No Yes No Yes No Yes No Yes No Yes

N 239 239 239 239 239 239 239 239 239 239
R2 0.799 -0.131 0.828 0.883 0.820 0.353 0.829 0.793 -16.382 -178.020
F 5.152 0.001 1011.586 768.938 6.832 0.021 27.128 23.610 0.040 0.001
First-stage F statistic 1.934 0.146 264.506 355.049 1.994 0.254 5.791 4.168 0.022 0.000

Notes: This table reports the results of instrumental variables regressions of the log of amenities a on the log of labor
supply L, with and without weighting by the labor supply of each observation. The observations are metropolitan statistical
areas—we do not include the rest-of-country aggregator or remote work sector.
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E Robustness Exercises

In this section, we test the robustness of our results to different data filtering
choices and calibrations. In particular, we re-estimate the baseline counterfactual
described in Section 5.1.1 and test how much the headline results change. We ex-
plain these exercises in more detail below and report their results in Tables 11 and
12.

Table 11: Robustness Exercises: Data Selection

(1) (2) (3) (4) (5) (6)
Baseline Mkt. Value Assd. Value No Agriculture No Industry Young Buildings

%∆Yj 3.0% 3.2% 2.9% 2.9% 2.6% 1.4%
%∆Lj -0.8% -0.8% -0.8% -0.8% -0.5% -0.4%
%∆Kj 2.6% 2.8% 2.6% 2.6% 2.3% 1.3%
%∆Bj 17.6% 23.1% 16.6% 16.9% 14.9% 8.4%

%∆ Landlord Profits -2.8% -3.0% -2.7% -2.7% -3.5% -1.5%
%∆c 2.2% 2.4% 2.2% 2.1% 1.8% 1.0%

%∆ Consumption Equiv. 2.9% 3.1% 2.8% 2.8% 2.3% 1.4%

Notes: This table re-runs our baseline counterfactual using several different cuts of the data to test the robustness of
our results. The different exercises are described in the text, and the outcome variables are the same as in 5.

In our first two robustness exercises, we test whether using CoreLogic’s pre-
ferred “calculated" values instead of the assessors’ “market" or “assessed" values
makes a significant difference (columns (2) and (3), respectively). We recalculate all
regional parameters (TFP Aj, amenities aj, regulatory distortions Tj, dispersion Dj,
etc.) and recompute the new steady state for each of our alternative data choices.
Note that some of these measures are missing in certain MSAs, hence we end up
with 193 regions for market value and 233 for assessed, compared to 243 with our
preferred measure. The missing MSAs are thrown into the rest-of-country aggre-
gator. We find that our headline results mostly change by less than 10 percent.

We next test whether agricultural parcels (which arguably use a different tech-
nology with a different γ) skew our results in column (4). We drop parcels whose
primary land use is listed as agriculture, golf, or wild lands, and we drop parcels
that are listed as empty space zoned for commercial or industrial uses. That is,
we drop all parcels with a CoreLogic land use code starting with “4." We then
re-calculate γ from this sample based on the least-distorted MSA and find that it
is basically unchanged. We recalculate all regional parameters using this slightly
smaller sample and recompute the new steady state. Using that as our starting
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point, we redo our baseline counterfactual. We find that this makes almost no
difference, as agricultural parcels are simply not very economically significant.

Column (5) repeats the same exercise except excluding industrial buildings,
alleviating concerns that certain structure types have tighter natural height limits.
We find that our baseline results are only mildly attenuated, as can be expected
given that industrial buildings comprise only one-fifth of the total value of our
sample.

Finally, in column (6), we follow Furth (2021) and restrict our sample to build-
ings less than 10 years old as of 2018. This costs us a large and presumably non-
random share of our sample, as not all buildings have their age recorded in CoreL-
ogic’s data—recall Table 8. The impact of deregulation falls by roughly half when
using this restricted sample.

Table 12: Robustness Exercises: Parameter Values

(1) (2) (3) (4)
χ = .13 χ = .10 γ = .89 γ = .97

%∆Yj 2.5% 1.9% 2.3% 4.1%
%∆Lj -0.6% -0.5% -0.6% -1.1%
%∆Kj 2.2% 1.8% 2.0% 3.6%
%∆Bj 17.1% 16.6% 16.1% 30.7%

%∆ Landlord Profits -3.3% -4.0% -2.2% -3.7%
%∆c 1.8% 1.4% 1.7% 3.1%

%∆ Consumption Equiv. 2.4% 1.9% 2.2% 4.1%

Notes: This table re-runs our baseline counterfactual under several different parameter values to test the robustness of
our results. The different exercises are described in the text, and the outcome variables are the same as in 5.

We next test the sensitivity of our results to alternate parameter values in Table
12. Columns (1) and (2) vary χ, the building share of production. A lower building
share implies smaller gains from deregulation, as increasing the stock of buildings
by a given amount leads to a lower increase in output.

Our baseline model infers χ ∼ .15 for non-remote regions. Our calibration is
based on getting the factor share for non-structures capital, using an off-the-shelf
value for the labor share, then assigning the residual factor share to structures.
First, let us go through a back-of-the-napkin alternative calibration showing that
this is not unreasonable.
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Investment in non-residential structures in 2018 was 550 billion dollars per
US Bureau of Economic Analysis (2021b). This corresponds to flow investment
MV = βγTδbBV in our model. Using the average value of .87 for T, we get
that 550b = 0.96 ∗ 0.923 ∗ 0.87 ∗ 0.0198 ∗ BV = 0.0152BV. This suggests a struc-
tures capital stock of around 36 trillion, or nearly 1.9 times GDP. Hence, we get:
BV = χY

1−β(1−δb)
∼ χY

0.059 . Using this and the fact that BV ∼ 1.9Y, we get:

1.9 ∗ 0.059 = χ ∼ 0.11

So this rough alternative calibration yields a building share only slightly lower
than our baseline, which in turn only applies to non-remote work (in remote work,
χ is 0.)

Even this is depressed by property taxes, which are around 2 of assessed build-
ing values in many major cities according to Lincoln Institute of Land Policy and
Minnesota Center for Fiscal Excellence (2021). These generate a second wedge,
between BV and the true factor share of structures. This may be exaggerated be-
cause assessments are lower than true values, so let us be conservative and instead
use 1 percent below. That would correspond to 360 billion in commercial property
tax, which is around 60 percent of the property tax bill reported in Urban Institute
(2018). We do not know what share of property tax revenue comes from com-
mercial properties. Note that 1 percent is not a random number: NAREIT (2019)
suggests a value of 16 trillion for the sum of commercial properties, roughly half
of what our calibration implies. Building values are depressed by these taxes, as
the payments to buildings now comprise factor payments χY less taxes, 0.01BV.
Hence, we can write:

BV =
χY − 0.01BV
1 − β(1 − δb)

∼ χY − 0.01BV
0.059

We can rearrange to get:

(1 + 0.01/0.059)BV ∗ 0.059 = χY

(1.17)BV ∗ 0.059 = χY

1.17 ∗ 1.9 ∗ 0.059 = χ ∼ 0.13

This is not far from the original calibrated value.
Nevertheless, columns (1) and (2) in Table 12 test how our results change at
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different values of χ, specifically at χ = 0.13 and χ = 0.1. It remains zero in remote
work. We assign the missing factor share to labor, i.e. we set α so that factor shares
sum to 1. Starting from equation (23), we redo our identification and recalculate
a new initial steady state. Starting from this steady state, we redo our baseline
counterfactual. Unsurprisingly, we find lower output gains at lower values of χ,
but even at χ = 0.1 the gains are significant.

Finally, columns (3) and (4) of Table 12 re-test our results for the highest30 and
lowest values of γ (0.97 and 0.89) taken from Table 1. We drop the assumption that
no city can have negative regulations and allow T > 1 in the case where we set
γ = 0.89. Unsurprisingly, the gains from deregulation increase with γ. Still, they
are substantial even at the lowest γ that we consider.

30In the case where we set γ to its highest value of 0.97, we set pj = 1 for all cities for the sake
of numerical stability and then allow building supply Bj, shifter Φj, and TFP Aj to rescale. Recall
that we recover the supply shifter as Bj/pγ

j 1 − γ, which becomes unstable for very high values of
γ. This changes the interpretation of B and A (one square foot of building no longer yields one
“efficiency unit” in all cities), but does not otherwise alter our results.
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F Computing Counterfactuals

For each counterfactual, we alter a subset of parameters and recompute a new
steady state. At a high level, our algorithm takes as an input a vector of Yj, feeds
it through all the equilibrium conditions of the model, and gives as output a new
guess for Yj.

All of our counterfactuals involve altering the τi terms in equations (13) and (14)
and recovering new values for Tj and Dj. When altering zoning codes, we alter
τz and then re-aggregate following the formulas in the text. Recall the building
supply curve from equation (17) and denote Ψp

j as the pre-counterfactual Ψj. If we
increase Dj by some factor Φ1 and Tj by some factor Φ2, we increase Ψj as follows:

Ψj = (Φ1)
1

1−γ (Φ2)
γ

1−γ Ψp
j

Having recovered the new Tj, Dj, and Ψj, we move on to the rest of the counter-
factual algorithm. We will proceed by substituting out endogenous variables until
we are left with a function that only takes as inputs the vector Yj and exogenous
parameters. We begin by rewriting the consumption equation:

c = ∑
j

Yj − δkKj − mj

In a steady state, Kj = (1 − α − χj)Yj/rk, hence we can replace Kj:

c = ∑
j

Yj − Yjδk(1 − α − χj)/rk − mj

Recall mj = TjγδbβpjBj, and pjBj = χjYj/(1 − β(1 − δb)), hence:

c = ∑
j

Yj − Yjδk(1 − α − χj)/rk − YjTjδbγβχj/(1 − β(1 − δb)) ≡ ∑
j

θjYj

Recall the labor supply equation:

Lj = (a
1+ 1

η

j c−σwj)
η

We can express wages in terms of labor supply, GDP, and factor shares and
rewrite this as:

L
1
η

j = (a
1+ 1

η

j c−σαYj/Lj)
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L
1
η +1
j

(a
1+ 1

η

j c−σα)

= Yj

We can also express Lj in terms of Yj, Bj, and Kj:

Lj =

 Yj

AjK
1−α−χj
j B

χj
j

 1
α

(30)

We can also use our supply function to recover Bj in terms of Yj:

BVj = pjBj =
χjYj

1 − β(1 − δb)

BVj = pjBj = p
1

1−γ

j Ψj

pj =

(
BVj

Ψj

)1−γ

Bj = BVj/pj = BVγ
j (Ψj)

1−γ

=

(
χjYj

1 − β(1 − δb)

)γ

(Ψj)
1−γ

Because we already solved for Kj in terms of Yj, we can now obtain labor en-
tirely in terms of a guess for Yj:

Lj =

 Yj

Aj

(
(1−α−χj)Yj

rk

)1−α−χj (( χjYj
1−β(1−δb)

)γ
(Ψj)1−γ

)χj


1
α

Now we replace Lj in equation (30) with the above expression to obtain:

 Yj

Aj

(
(1−α−χj)Yj

rk

)1−α−χj
((

χjYj
1−β(1−δb)

)γ

(Ψj)1−γ

)χj


1
η +1

α

(a
1+ 1

η

j (∑k θkYk)
−σ α)

= Yj

We rearrange this expression one last time to arrive at the equation upon which
our algorithm iterates:
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Yj =

(Aj
(
Kj
)1−α−χj

(
Bj
)χj
) 1

η +1
α

(
Yj(a

1+ 1
η

j

(
∑
k

θkYk

)−σ

α)

)
α

1
η +1

(31)

We proceed as follows: (1) guess the vector {Yj}, (2) this yields the right-hand-
side of equation (31), and (3) the left-hand-side of equation (31) yield the update
for {Yj}. In practice, we use a “damped" algorithm that slowly updates the guesses
for {Yj}.

F.1 Endogenous Amenities

In this appendix, we detail how we compute counterfactuals with endogenous
amenities. First, our guess for {Yj} also yields a guess for the counterfactual Lj,
which we now call Lc f

j in equation (30). Second, we have already computed the re-
lationship between amenities and labor supply in equation (26) and computed the
key coefficient µ in the process. We can combine these expressions, along with the
original amenity vector aj and labor supply vector Lj, to calculate how amenities
change if the current guess for Yj is correct. More specifically, we recover the ratio
rj between new and old amenities in equation (32):

rj =
ac f

j

aj
=

exp(µ log(Lc f
j /Xj)

exp(µ log(Lj/Xj)
=
(Lc f

j

Lj

)µ
(32)

We multiply amenities in equation (31) by rj, and keep the algorithm otherwise
unchanged. Note that we do not change amenities in the remote work region, and
note that Xj divides out of this equation.

F.2 Certainty Equivalent

Consider a move between steady states A and B. We calculate the consumption-
equivalent welfare increase caused by moving from A to B by scaling consumption
in A by some factor λ such that the consumer is indifferent between it and B. Be-
low we show how to use equation (21) to obtain λ. Note that, in the case where
amenities depend on congestion, we must combine this with the method described
above in Appendix F.1 to account for the change in amenities.

Online Appendix – p.21



We know consumption, amenities, and the labor supply in both the original
and final steady states. We can therefore write:

(λcA)1−σ

1 − σ
− 1

1 + 1
η

∑
j

(
LA

j

aA
j

)1+ 1
η

=
(cB)1−σ

1 − σ
− 1

1 + 1
η

∑
j

(
LB

j

aB
j

)1+ 1
η

Some algebra yields:

λ =

(1 − σ)

 (cB)1−σ

1 − σ
+

1
1 + 1

η
∑

j

(LA
j

aA
j

)1+ 1
η

−
(

LB
j

aB
j

)1+ 1
η


1

1−σ /
cA

We record λ − 1, i.e. the percentage change in consumption needed to equate
utility in the old steady state with the new, in Table 5.
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G Planner’s Problem

In the presence of congestion externalities, a social planner’s solution will gener-
ically differ from the undistorted decentralized equilibrium. In this section we
therefore compare the current equilibrium and the baseline deregulated equilib-
rium to the solution of the planner’s problem.

To obtain the planner’s solution, we use a modified version of the code that
calculates decentralized counterfactuals where the planner internalizes congestion
effects and where we set T = 1 for all cities. As there are no other externalities,
this version of the decentralized equilibrium where agents take congestion into
account coincides with the planner’s problem.

Currently, the disamenity from work in each city is:

1
1 + 1

η

(
Lj

aj

)1+ 1
η

Plugging in our specification for endogenous amenities from equation (25), we
obtain a new expression:

1
1 + 1

η

(
Lj

exp(ej)(Lj/Xj)µ

)1+ 1
η

We want a modified ã, η̃ that makes the decentralization coincide with the prob-
lem of a planner that internalizes congestion:

1
1 + 1

η̃

(
Lj

ãj

)1+ 1
η̃

=
1

1 + 1
η

(
Lj

exp(ej)(Lj/Xj)µ

)1+ 1
η

Some algebra yields:

η̃ =
1

(1 + 1
η )(1 − µ)− 1

ãj =

1 + 1
η̃

1 + 1
η

 1

exp(ej)X−µ
j

1+ 1
η


−1

1+ 1
η̃

Note that we keep η and a at their original level for remote work.
In Table 13, we compare aggregates in the deregulated economy and the

planned economy, as well as in a version of the planned economy where the plan-
ner is subject to the same distortions Tj. All variables are expressed as ratios to their

Online Appendix – p.23



level in the original equilibrium except for the consumption equivalent gain. The
deregulated and planned economy look extremely similar to each other. It may
seem surprising that the deregulated economy has a higher steady state welfare
than the planned economy, but note that the capital stock is much higher. Just as
the golden rule capital stock maximizes consumption but is not the steady state of
the neoclassical growth model, the planner does not find it optimal to stay at such
a high capital stock. The planner allocates more people to remote work, which is
unsurprising as remote work does not generate congestion externalities.

Table 13: Planner Problem

Deregulated Planner Constrained Planner

%∆Yj 3.0% -7.9% -10.4%
%∆Lj -0.8% -11.6% -10.9%
%∆Kj 2.6% -6.3% -8.3%
%∆Bj 17.6% 2.2% -13.3%
%∆Lr -8.3% 44.0% 56.0%

%∆ Consumption Equiv. 2.9% 2.1% -0.8%

Notes: This table reports the percentage change in outcome variables under three new equilibria. The “Deregulated"
equilibrium corresponds to our baseline exercise of setting T = 1 for all cities, the “Planner" equilibrium is the steady state
of an economy where all variables are set by a social planner, and the “Constrained Planner’ equilibrium is similar except
the planner faces the same wedges T as developers do in the data. The outcome variables are the same as in Table 5.

Interestingly, the labor forces in each city in the planned economy are exactly
85.6% as large as in the decentralized economy, whereas this ratio varies between
83% and 90% when comparing the planned economy to the original regulated
equilibrium. This is a consequence of our constant-elasticity externality: the plan-
ner wants to shift labor down uniformly relative to the deregulated benchmark,
but the variation in the regulations we see in the data leads workers to be misallo-
cated across cities. Hence, dispersion in the strictness of zoning regulations across
cities leads to inefficient misallocation.
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H Non-Constant τ and the Elasticity of Building Sup-

ply

We have assumed that τ is a fixed parcel-level constant, and that it does not get
smaller (more restrictive) as the developer tries to build more on the parcel. We
will show here with a simple example that relaxing this assumption changes the
price elasticity of building supply, but does not change the counterfactual increase
in building supply if all regulations are removed.31

First, notice that from equation 29, the price elasticity of supply is γ/(1 − γ),
which at our calibrated value of γ = 0.92 yields a seemingly very high elasticity of
11.5. This seems very high compared to the estimates in, for example, Baum-Snow
and Han (2021). However, this elasticity ends up being quite different from what
is usually calculated in the literature: we focus only on the quantity of construc-
tion on a given parcel. Indeed, when Baum-Snow and Han (2021) try to connect
their estimates to the literature on the housing production function, they estimate
a price elasticity of 3.5 for floorspace, which is conceptually closer to what we es-
timate. Their preferred value is still lower than ours, but the magnitudes are more
comparable than they first appear. Murphy (2018) shows that current-price elas-
ticities may also be driven down by forward-looking behavior: if higher current
prices predict even-higher future prices, they give developers a reason to wait be-
fore building. This forward-looking behavior means that relatively small current-
price elasticities are consistent with a very high improvement share in production.

Now we show how making τ a decreasing function of the level of construction
breaks the link between the improvement share and the price elasticity of building
supply. We specify τ as τ(m) = τ0m−ζ , where ζ > 0. That is, we assume that
regulations get more restrictive as the developer tries to increase the quantity of
improvements that they put on a parcel. For clarity, we drop subscripts and focus
on a parcel where τ0, x, and z are equal to 1.32 B is therefore directly equal to
building square footage, making our estimates easier to compare to Baum-Snow
and Han (2021). We can therefore write the problem of the developer as:

31We thank Giacomo Ponzetto and Jacob Adenbaum for their feedback on this topic. We com-
bined their suggestions for how a non-constant τ could work into the example in this Appendix.

32The model yields the same first-order conditions as one where q = q̃/(τ0zx1−γ), hence this
simplification is without loss of generality.
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max
m

m−ζ︸︷︷︸
τ(m)

·βpmγ − qm

Taking first-order conditions, we get the distorted optimal value of m, which
we denote m1:

m1 =

(
(γ − ζ)βpj

q

) 1
1+ζ−γ

Putting this in the building production function and rearranging we get:

B =

(
(γ − ζ)βp

q

) γ
1+ζ−γ

The price elasticity of supply is now γ/(1 + ζ − γ), which is smaller than our
baseline elasticity (and can indeed be arbitrarily close to zero) as long as γ > 1.

Now let us return to our original model, where τ is a constant:

max
m

τ · βpmγ − qm

The first-order condition now yields a new value for the distorted optimal m,
which we denote m2:

m2 =

(
τγβp

q

) 1
1−γ

With some algebra we can show that at following value of τ, the distorted op-
timal m2 will be identical to m1:

τ =
γ − ζ

γ

(
q

(γ − ζ)βp

) ζ
1−γ+ζ

The quantity of improvements demanded, and therefore also the building
square footage and building value, are exactly the same in the model with a con-
stant and non-constant τ. Hence, the two models are observationally equivalent
in the cross-section. Because the two models have the same underlying values for
q and p, they also have the same implications for how much B would change if all
regulations were dropped, which is what we do in our baseline counterfactual. We
believe that relaxing the assumption of a constant τ is a promising direction for
future work, but it would likely not change our baseline results.
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