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1 Introduction

At least since Herbert Simon’s 1960 prediction that artificial intelligence
would soon be able to replace all human labor, many economists have under-
stood that sufficiently advanced artificial intelligence (AI) could transform
the structure of the global economy. So far, of course, this has not occurred,
but recent accelerations in the pace of AI development have renewed interest
in AI’s transformative potential. This review evaluates the channels through
which sufficient advances in AI may affect economic growth by placing several
strands of the literature on AI and growth within a common framework. We
pay particular attention to implications for output growth, wage growth, and
the labor share. For focus, we do not survey the other ways in which AI may
have large economic impacts, such as by changing the income distribution.

Figure 1: US gross domestic product per capita on a log scale since 1820,
based on Maddison Project Database (Bolt and van Zanden, 2020) and US
Bureau of Economic Analysis

For the past two centuries, economic growth in industrialized countries has
largely conformed to two stylized facts first identified by Kaldor (1957). First,
growth rates in output per capita have been approximately constant when
averaged over long periods of time. Figure 1 illustrates this pattern in the
context of the United States. Second, the fraction of output paid as wages—
the labor share—has been approximately constant. Although Kaldor derived
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his stylized facts only by looking at time series from the United States and the
United Kingdom from the mid-19th to the mid-20th century, they were soon
shown to hold for other industrial countries and have held for the decades that
followed. Much of the research on economic growth has since operated within
frameworks that satisfy these stylized facts, which came to be cornerstones of
economic growth theory for the Industrial Age. For a comprehensive overview
of this body of research see, e.g., Acemoglu (2009).

Figure 2: Gross world product per capita on a log scale since 1500. Data
taken from Roodman (2020), Table 2

A different picture emerges when zooming out. The labor share in the
distant past is difficult to estimate, and it does not appear have exhibited a
clear long-run trend (Federico et al., 2020). But the economic growth rate
has unambiguously increased over time when looking at sufficiently long time
horizons and considering the world as a whole. Figure 2 depicts gross world
output per capita on a log scale for the past five centuries. The phenomenon
of constant growth since the Industrial Revolution now looks like a much
more recent and gradual phenomenon, with the growth rate increasing as
different countries transition to industrial growth at different times.1

We do not want to suggest that either of these figures is a reliable guide
for predicting the exact path of economic growth in coming decades and

1Growiec (2022a) offers a complementary view of accelerating economic growth based
on our growing capacity to process energy and information.
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centuries. Instead, our objective in presenting Figures 1 and 2 is to highlight
that near-constant exponential growth in output per capita is not a fact of
nature. It has applied to specific countries over a specific period of history
and may be a misleading guide to forecasting the future. In particular, if
advances in AI prove equally or more transformative than the Industrial
Revolution, the patterns of the Industrial Age that Kaldor described more
than half a century ago may no longer hold.

Over the past decade, deep learning has made significant strides in perform-
ing individual cognitive tasks at human or super-human levels, from image
and voice recognition to strategic games such as Go and scientific tools like
AlphaFold. These systems are sometimes referred to as cases of “artificial
narrow intelligence”. While they have facilitated productivity growth, so far
they have not fundamentally shifted economic growth patterns.

Current progress in the field of AI is driven by foundation models: large
neural networks that are trained on vast amounts of data and then fine-tuned
to perform an increasingly broad range of tasks (Bommasani et al., 2021).
During the training process, these models develop what can be described as
their own internal world models, on the basis of which they can generate
outputs across a wide range of domains. The complexity of leading deep
learning and foundation models has roughly quadrupled every year for the
past decade (Sevilla et al., 2022) and has recently reached levels that are
comparable to human brains (Carlsmith, 2020). Moreover, the capabilities
of these models improve according to fairly predictable scaling laws: see
Villalobos (2023) for a recent review.

The foundation models that have perhaps gained the most attention re-
cently are large language models such as OpenAI’s GPT-4, conveniently ac-
cessible in the form of the chatbot ChatGPT, or Google DeepMind’s Gem-
ini. These models can generate output that not only synthesizes existing
knowledge but also develops new ideas based on the system’s internal world
model—in a manner similar to how humans create new ideas. Early analyses
of the economic effects of even the current wave of generative AI suggest that
it is likely to have a significant impact on growth, perhaps even doubling pro-
ductivity growth over the next decade or more (Goldman Sachs, 2023; Baily
et al., 2023).

Future models are likely to be capable of performing an even broader
range of tasks and may eventually reach the level of Artificial General
Intelligence (AGI), defined as the ability of AI systems to perform all
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cognitive tasks at least as well as a skilled human. In the process, unlike any
other technology yet developed, such models could automate the process of
research and development.

If AI capabilities cross certain thresholds, such as that of AGI, it is con-
ceivable that a change in growth regimes as transformative as the Industrial
Revolution would occur. Economic growth under the new regime would
likely proceed more quickly than growth today. By changing the mechanics
of growth, furthermore, such a transformation could also break the long-run
constancy of the labor share: likely lowering it, and perhaps driving it to
zero.

These effects are perhaps the intuitive ones. Hopes (and fears) of an
AI-driven age of abundance without human work can be found throughout
the popular imagination. Nevertheless, we consider it valuable to consider
precisely whether and how such effects might unfold.

In recent years, economists have begun to engage earnestly in theoretical
explorations of a wide array of the transformative possibilities of AI. We
aim to synthesize the findings of these explorations.2 In the process, we
cover both the insights of different categories of models and the underlying
mathematical intuition. We have simplified some of the models we cover and
changed notation to fit them in a common framework and crystallize the
mechanisms at work.3

The rest of this document proceeds as follows. Our basic setup and no-
tation are introduced in the ensuing section, in the context of a minimal
introduction to the economics of production, factor shares, and growth. Sec-
tion 3 then discusses models in which AI is added to a standard production
function. Section 4 discusses models in which AI is added to a “task-based”
production function. Whereas both Sections 3 and 4 implicitly take place
in settings of exogenous productivity growth, Section 5 discusses models in

2Sandberg (2013) presented an “overview of models of technological singularity” a
decade ago, before mainstream economists started to analyze the transformative potential
of AI. Most of the models he summarizes therefore do not attempt to spell out how AI or
other transformative technologies would fit into standard economic models to produce the
results in question. The models summarized here fill this gap.

3We do not offer all-things-considered assessments of the probabilities of particular AI-
driven transformative scenarios. For one such assessment, see Erdil and Besiroglu (2023),
who assign an approximately 50% chance to the event that, if AGI is developed this
century, the economic growth rate will increase by at least a factor of ten.
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which productivity growth is endogenous, with AI featuring in its develop-
ment; and Section 6 places AI in final good production and technological
development simultaneously. Section 7 compares the results found in Sec-
tions 3 to 6. Section 8 concludes.

2 Baseline model

2.1 Production and factor shares

Suppose that output depends on the input quantities of available production
factors, and that we can categorize all production factors as either capital K
or labor L and all output as a single good Y . Then we can capture production
in the economy by a function F (·) that converts inputs into outputs as follows:

Y = F (K,L). (1)

A production function F (·) will always be assumed to be continuously
differentiable, increasing, and concave in each argument. It will also be
assumed to exhibit constant returns to scale (CRS): doubling all the inputs
to production would presumably double output.

The marginal product of a factor is the derivative of output with re-
spect to that factor. In competitive markets, inputs are paid their marginal
products. That is, the wage rate is FL(K,L), and the capital rental rate is
FK(K,L), with the subscripts denoting partial derivatives. Intuitively, this
reflects that in a competitive market with many firms facing a common pro-
duction function, any factor that is being paid less than its marginal product
will receive a higher offer by a competing firm, and any factor that is being
paid more than its marginal product will be laid off.4 The marginal pro-
ductivity of each input is typically assumed to be increasing in the other
input, i.e., FLK > 0. Economically speaking, this captures that the inputs
are complements.

4Most of our analysis assumes that markets clear, including that every worker is em-
ployed. This is an innocuous assumption if we are interested in a medium- or longer-term
perspective of a world similar to what the US experienced over the past century (Figure
1), since unemployment fluctuated around a small and relatively constant natural rate
of unemployment. However, if the world changes drastically and wages decline signifi-
cantly, it may become important to also consider scenarios in which there is widespread
unemployment (see e.g. Korinek and Juelfs, 2023).
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Since F (·) is CRS, Euler’s Homogeneous Function Theorem implies that
the factor payments equal total output:

KFK(K,L) + LFL(K,L) = F (K,L). (2)

This result implies that the output that is produced precisely covers what
capital and labor earn, such that we do not need to be concerned about how
to cover the factor payments or about what to do with any leftover output.

The fraction of output paid out as wages is termed the labor share:

sL = LFL(K,L)/F (K,L). (3)

Likewise, the capital share sK is the fraction of output that accrues to the
owners of capital. By (2), they sum to one: sK + sL = 1.

Throughout most of this review, we assume a production function that
exhibits constant elasticity of substitution (CES).5 Moreover, we assume that
there are two technology parameters that reflect “capital-augmenting” tech-
nology, denoted A, and “labor-augmenting” technology, denoted B, which
make the use of each respective factor more efficient, so that we can proceed
as if we had more of it. In combination with the CRS assumption, these
assumptions imply that, for some ρ ≤ 1, production is given by

Y = [(AK)ρ + (BL)ρ]1/ρ (4)

if ρ 6= 0 and
Y = (AK)a(BL)1−a. (5)

for some a ∈ (0, 1) for ρ = 0, i.e. the Cobb-Douglas case. The elasticity of
substitution for this production function is σ = 1/(1−ρ). (For readers unfa-
miliar with the concepts, Appendix A provides a formal definition of elasticity
of substitution and additional properties of CES production functions.)

5In practice, of course, the substitution parameter between labor and capital may not
be constant. It may be high when labor is more abundant than capital and low otherwise,
or vice-versa. It may also change over time, for reasons independent of factor quantities.
That said, it has been estimated in a variety of contexts and times to be substantially
negative (see e.g. Oberfield and Raval (2021) or Chirinko and Mallick (2017)). When
exploring preliminary hypotheses about growth, factor shares, and other macroeconomic
variables, therefore, it can be helpful to start with a model in which production is CES
(and CRS) with ρ < 0.
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2.2 Exogenous growth

Over the past two centuries, as noted in the introduction, output per per-
son and wages in the developed world have followed an exponential growth
trajectory. In a two-factor production function without technology growth,
the only possible explanation for growth in output per capita would be the
capital stock growing more quickly than the population.

Capital accumulation cannot be the primary force driving long-run
growth, however. This can most straightforwardly be seen in the context
of CES production. If capital and labor are (weakly) gross complements
(ρ ≤ 0), then growth in the stock of capital per unit of labor reduces cap-
ital’s marginal productivity to the point that growth in output per capita
slows to zero. Analytically, we can see from equation (4) that the capital
term tends to zero as the quantity of capital increases for ρ < 0. In the
limit, then, if capital is far more plentiful than labor, output tends to BL,
and output per person tends to B. Conversely, if capital and labor are gross
substitutes (ρ > 0), capital accumulation can in principle sustain a positive
growth rate.6 However, in that case, the share of output earned by capital
would converge to one, contradicting the Kaldor Fact of a roughly constant
labor share.

Capital-augmenting technology growth cannot produce long-run growth
in output and wages either—it just increases the effective capital stock AK,
leading to the same results discussed in the previous paragraph.7

Uzawa (1961) showed that long-run growth in per-capita output and wages in
this framework requires labor-augmenting technology growth. To illustrate
this, suppose for simplicity that capital-augmenting technology A and labor
L are fixed, that B grows at some constant exponential rate gB, and that a
constant proportion s > 0 of output is saved as capital each period.8 If the

6After accounting for capital depreciation, ρ may have to be strictly positive for capital
accumulation to allow long-run growth. We ignore capital depreciation throughout most
of this document for simplicity.

7More generally, when highly complementary production factors undergo different rates
of accumulation or factor-augmenting technology growth, the growth rate of output con-
verges to the growth rate of the slowest-growing factor, and the share of that factor in
output converges to 1. This is sometimes known as the “Baumol condition”, after Bau-
mol’s (e.g. Baumol (1967)) seminal analyses of the increasing share of output spent on
low-productivity-growth sectors, such as live entertainment.

8The saving rate is in fact historically (roughly) constant, at least in developed countries
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saving rate s is high enough that capital accumulation can keep up with the
growing effective labor force, the result is a growth path in which output Yt,
capital Kt, and “effective labor” BtL all grow at rate gB. By CRS, equal
proportional increases to Kt and BtL produce an equal proportional increase
to Y .

To observe the importance of the parameter s, notice that if s is too
small, output is constrained by capital accumulation. (This is clearest when
s = 0.) In this case, Yt eventually approximately equals AKt. Then (using
discrete-time notation for clarity),

Kt+1 = Kt + sYt ≈ Kt + sAKt, (6)

so capital and output both grow at asymptotic rate sA.9 The requirement
that capital accumulation keep up with the growing effective labor force can
be captured by the inequaliy sA ≥ gB. We call this the “sufficient saving”
condition. Note that given any fixed gA > 0 and gB, the sufficient saving
condition will eventually be met.

Letting the labor force grow at some positive rate gL makes no substantive
difference. In this case, so long as sA ≥ gB + gL, BL grows at rate gB + gL,
and Y and K do likewise. Regardless of population growth, factor shares are
constant over time,10 so wages and capital rents per person grow at rate gB.

The empirical causes of technology growth remain highly uncertain. An
exogenous growth model is one that does not attempt to model these causes,
but simply takes constant exponential growth in B as given.

3 AI in basic models of good production

3.1 AI and the productivity of capital

At face value, AI promises to make capital more productive. This would most
naturally be modeled in the standard framework as an increase to A, which

over the past century or so. Section 3.5 provides microfoundations. For most of this
document, we simply assume a constant saving rate.

9Models without labor, in which Yt = AKt, are termed “AK models”. An AK economy
is always constrained by capital accumulation and exhibits growth at rate sA.

10It follows from the identity sYt = Kt+1 −Kt that sYt/Kt = gK,t. Since in the long
run a constant saving rate maintains gY = gK , the long-run capital share (AK/Y )ρ equals
(sA/gY )ρ. If there is insufficient saving (so that gY = sA < gB), or in the edge case of
sA = gB = gY , the capital share tends to 1.
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would amount to effective capital accumulation. As Acemoglu and Restrepo
(2018a) point out, and as we have seen, this on its own would not be predicted
to have very significant economic effects. It would increase output and wages
somewhat. But given ρ < 0 and slow growth in labor supply, labor is the
primary bottleneck to output, and any increases to wages would come ever
more from an increase in the labor share rather than an increase in output.
Indeed, the only “transformative” effect of capital-augmenting technology is
that, as A → ∞, all else equal, the labor share should rise to 1. This is of
course the opposite of the intuitive trend, which is also the observed trend
in the labor share in recent decades, especially in the industries that have
undergone the most automation.11

The models below, therefore, are all designed to shed light on the conse-
quences of increasing the productivity of capital in combination with various
structural changes to the production function that AI might also precipitate.

3.2 Imperfect substitution

Nordhaus (2021) explores the transformative possibility of AI in the stan-
dard model of good production without adding anything explicit about AI.
Instead, he posits that AI changes some of the model’s parameters “behind
the scenes”, akin to an exogenous change in the parameters. This process
has two steps.

First, suppose that AI raises the substitutability of labor and capital (or
certain kinds of capital, such as computers) so that they become gross substi-
tutes (ρ is permanently bounded above 0). In this case, capital accumulation
is sufficient for exponential output growth, even without population growth
or technological development of any kind.

For illustration, consider our CES production function (4) with ρ > 0 and
capital-augmenting technology A as well as the saving rate s held constant.
If the capital supply grows more quickly than than the labor supply, Yt will
come to approximately equal AKt, and capital and output will accumulate
exponentially at rate sA. More generally, if labor-augmenting technology
grows exogenously at some rate gB ≥ 0, the output growth rate following
the change in substitutability ρ shifts from min(sA, gB) to max(sA, gB). The
substitutability change thus increases the growth rate as long as sA > gB.

Second, suppose that At itself grows without bound. It does not matter

11See e.g. Acemoglu and Restrepo (2020, 2022) and Acemoglu et al. (2020).
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whether this technology growth is due to AI or to forces that predated (but
were less relevant before) the substitutability change. It also does not mat-
ter whether technology grows exogenously at some exponential rate gA > 0,
as Nordhaus (2021) assumes, or is the output of human research effort—in
which case, even under constant population, At rises without bound. In all
cases, the growth rate of output will tend to sAt, which, with At, will it-
self be growing indefinitely and without bound, delivering hyper-exponential
growth. Aghion et al. (2019) call this type of growth acceleration whereby
the growth rate itself increases without bound (but remains finite at any
finite time horizon) a Type I growth explosion.

Under both transformative scenarios—the one-time growth rate increase
that can occur without capital-augmenting technological development and
the growth explosion that occurs with it—capital per worker will grow to
infinity. However, since ρ > 0, the capital share will now tend to 1 rather
than 0. For any fixed value ρ < 1, however, the marginal product of labor is
still increasing in the supply of effective capital as FLK > 0. Absolute wages
will thus grow rapidly as the effective capital stock grows, as long as ρ is
bounded below 1. In fact, with gA > 0, wages will grow superexponentially
(though less quickly than output or effective capital). Absolute wages
will stagnate only in the limit case that capital and labor become perfect
substitutes (ρ→ 1), which we explore further in the ensuing section.

Nordhaus also discusses an analogous possibility: that AI may transform con-
sumption growth by increasing the substitutability of goods on the demand
side of the economy, rather than the substitutability of factors on the supply
side. To explore this scenario, instead of dividing the space of goods into two
production inputs and one output, let us divide it into one input (“capital”
K) and two outputs (which might be called “standard consumption” Y and
“computer-produced consumption” Z). Capital grows exogenously at rate
gK . Given capital stock Kt, the production of the two consumption goods
must satisfy

Yt + Zt/Dt = Kt. (7)

That is, each unit of capital can produce either 1 unit of standard consump-
tion or Dt units of computer-produced consumption per unit time (without
being used up). 1/Dt is the relative price of Z at t: it is the number of units
of Y that must be given up at t per unit of Z.

Consumers’ utility functions all equal U(·), defined over Y and Z. U(·) is
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homothetic, so consumers’ elasticity of substitution between goods is every-
where defined, though not necessarily constant (see Appendix A). In response
to consumer demand, production is allocated between Y and Z to maximize
utility.

Suppose Dt grows exponentially at rate gD. This might be thought of as
a direct implication of Moore’s Law: famously, the number of computations
that can be purchased with a given amount of capital seems to double ap-
proximately every eighteen to twenty-four months. The relative price of Z
then falls exponentially at rate gD.

With each proportional fall in this relative price, the relative quantity of
Z demanded by consumers will rise by σtgD, where σt denotes the elasticity
of substitution between the goods in the consumer utility function at t.

Now let St denote the proportion of capital allocated to computing. The
relative quantity of the computing good produced equals Zt/Yt = DtSt/(1−
St). Considering the growth rate of this term, by the reasoning above, we
have

gD + gS,t − g1−S,t = σtgD (8)

=⇒ gS,t − g1−S,t = (σt − 1)gD (9)

If the two consumer goods are gross complements (σ is bounded above by
σ̄ < 1), this is always negative. Over the long run, gS must be negative
and g1−S must be zero, since both terms are in the long run non-positive.
Thus we have, in the long run, gS ≤ (σ̄ − 1)gD < 0 and the fraction of
capital employed to produce computer goods is ever-diminishing. Finally,
since Z = DSK, we have

gZ ≤ σ̄gD + gK . (10)

In short, ever more computer goods are produced with an ever-declining
fraction of the economy’s capital.

On the other hand, if the two consumer goods are (weakly) gross substi-
tutes (σt is bounded strictly above 1), then the fraction of capital allocated
to computing converges to one, so ultimately gZ = gD + gK . (For σ = 1, the
share of capital allocated to computing will be interior.)

The AI-relevant implications are straightforward. If computer-produced
consumption is not currently very substitutable for other consumption (σ
bounded below 1), but developments in AI render it more substitutable (such
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that σ is above 1), then the consumption growth rate could rise from some-
thing perhaps not much higher than gK to fully gD + gK . This would not be
a growth explosion, as we are using the term. But given the speed of Moore’s
Law, it would have dramatic implications for consumer welfare.

Finally, Nordhaus constructs tests of the hypothesis that we are headed
for a growth increase via the channels discussed above. If we are in fact
headed for a supply-driven growth increase, we should expect to find a rising
growth rate and a rising capital share. If we are headed for a demand-driven
growth increase, we should expect to find a rising share of global income
spent on computer-produced goods. He concludes that on balance the
evidence does not support these hypotheses as of 2020.

Models in which labor and capital must be combined in more complex ways
tend to produce the same broad conclusions. If labor and capital are suf-
ficiently substitutable, then increasing capital-augmenting technology can
increase the capital share, but it will still increase the absolute wage rate.
Berg et al. (2018) detail a variety of such models.

3.3 Perfect substitution

We have seen that if labor and capital are the only two factors of production,
then whenever the elasticity of substitution between them is finite, increases
to the quantity of effective capital cause absolute wages to grow. Thus, if
the elasticity shifts from less than 1 to greater than 1—a shift which can
allow for faster capital accumulation—wage growth can accelerate, even as
the labor share falls.

As we will see, however, prospects for wages look worse in cases of
perfect substitutability. In this case, if there are only two production factors,
the returns to each must be linear. Increases to the quantity of effective
capital thus have no impact on the wage rate. If there are other production
factors than “capital plus labor” (which are perfect substitutes), and if some
become scarce relative to effective “capital plus labor”, increases to the
quantity of effective “capital plus labor”—driven by increases in effective
capital—drive wages down.

A model of the beginning of perfect substitution between labor and capital
can be presented most straightforwardly as one in which human-substitute
robots are simply at first expensive, and then cheap, in units of human labor
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hours. This is because, when goods are perfect substitutes toward some end,
they are only ever both purchased in positive quantities when their prices
are the same. Even if it were already feasible to produce robots fully sub-
stitutable for human labor, therefore, we would only see any produced, and
observe their effects, once their rental rate had fallen below what would oth-
erwise have been the wage rate. In other words, perhaps the substitutability
does not need to rise; perhaps it is perfect, and all that needs to change is a
relative price.

To illustrate this dynamic, consider the following simple model, inspired
by Hanson (2001). Equipment Q, labor L, and land W are employed in a
Cobb-Douglas production function,

Y = F (Q,L,W ) = QaLbW 1−a−b. (11)

Since the quantity of land is fixed, we can normalize it to 1 and drop it from
the expression, remembering that a+ b < 1.

The output good can be consumed or invested as capital K. Capital can
serve either as equipment or as robotics, which functions as labor, whereas
the human workforce H is fixed and can only serve as labor. The level
of capital-augmenting technology is denoted A. That is, if S denotes the
fraction of capital employed as robotics, output is

Y = ((1− S)AK)a(H + SAK)b. (12)

At rises exogenously without bound. For simplicity we will assume that a
constant and sufficient fraction s of output is saved as capital. Because the
substitution parameter between equipment and labor is not less than (in fact
is equal to) 0, the accumulation of effective equipment is enough to sustain
output growth.

Early in time, when effective capital is scarce, all capital is used as equip-
ment; S = 0. Indeed, at the rate at which capital can be converted from
equipment to robotics, it would be valuable instead to use some human labor
as equipment, if that were possible. Capital then grows (using discrete-time
notation for clarity) such that

Kt+1 = Kt + s(AtKt)
aHb (13)

⇒ gK,t = (Kt+1 −Kt)/Kt = sAatK
a−1
t Hb.

As we can see from the right hand side, capital growth will approach a steady
state such that

agA + (a− 1)gK = 0 ⇒ gK =
a

1− a
gA. (14)
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We will thus have output growth of gY = a(gA + gK) = gAa/(1− a).
As the equipment stock grows, wages rise. As capital-augmenting tech-

nology rises and effective equipment grows more abundant, however, there
comes a time past which it is optimal to split further capital between equip-
ment and robotics. The labor growth rate then jumps to the rate that keeps
its marginal productivity equal to that of equipment, and the output growth
rate jumps accordingly.12 In particular, with capital now filling the roles of
both equipment and labor, we now have

gY = gK =
a+ b

1− a− b
gA, (15)

by the same calculation as above.13

Hanson estimates the growth implications of crossing the robotics
cost threshold using a slightly more realistic model with roughly realistic
estimates of the parameters involved. The level of capital-augmenting
technology is assumed to double (i.e. the cost of effective capital is assumed
to halve) every two years, in a conservative approximation to Moore’s Law.
Before capital begins to be used as robotics, output in the model grows at a
relatively familiar rate of 4.3% per year. After, the growth rate is 45%.

In the model above, because the production function is Cobb-Douglas, the
labor share—the share of output paid in compensation for human and/or
robotic labor—is independent of the factor quantities. As human labor con-
stitutes an ever smaller share of total labor, however, the human labor share
falls to zero.

Furthermore, even the absolute wage FL falls to zero. To see this, note
that in a CRS production function, the marginal productivities of equipment
and labor are kept equal (FQ,t = FL,t) when the quantities of the two fac-
tors grow at the same rate. We can thus rearrange our formula regarding

12As Yudkowsky (2013) points out, we might interpret this as a model in which AI
comes in the form of “ emulations”—a theoretical technology on which Hanson has written
extensively—which are always technically feasible but which are, at first, prohibitively
expensive, because effective capital is sufficiently scarce.

13Note that, were it not for the inclusion of the non-accumulable factor land, there would
be no steady-state growth rate; in solving for it, we would have to divide by 0. Instead, the
economy would be, asymptotically, an AK economy with exogenous capital-augmenting
technology growth. As we saw in the previous section, we would have a Type I growth
explosion.
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competitive CRS factor payments:

FL,tQt + FL,tLt + FW,t = Yt ⇒ FL,t =
Yt − FW,t
Qt + Lt

. (16)

With a constant share of output accruing to land as well, but the quantity
of land fixed, land rent per unit of land—i.e. the land rental rate FW—must
grow at the same rate as output. Y and FW will thus both grow at gY , and
Q and L will both grow at rate gA + gK = gA + gY > gY . The right-hand
ratio will then fall to zero.

In any CRS production function without labor-augmenting technology,
what happens to the marginal productivity of labor, and thus wages, depends
on the quantity of effective labor relative to that of the other effective factors
of production. This relative quantity need not rise; it could fall if labor’s
complements grow productive and plentiful more quickly than its substitutes,
or stay fixed if they grow at the same rate.

Consider the following model, very similar to the above, but in which
technology augments only equipment, not capital used as robotics:

Y = F (Q,L[,W ]) = QaLb = ((1− S)AK)a(H + SK)b. (17)

The growing stock of equipment implies that, as above, wages rise before
the substitutability cost threshold is crossed. Furthermore, we will still have
gY = gK , and thus

gY = a(gA + gK) ⇒ gY =
a

1− a
gA (18)

before the threshold is crossed. Finally, the threshold will still eventually
be crossed: if all capital were used as equipment indefinitely, the marginal
productivity of capital used as equipment AFQ = aY/K would fall below
that of labor FL = bY/H.

After the threshold is crossed, we will have

gY = a(gA + gK) + bgK ⇒ gY =
a

1− a− b
gA. (19)

This is still a growth rate increase, though not as large as that in the first
model above.

To see what happens to wages, however, observe that when S is chosen
so that invested output is split optimally between equipment and robotics,
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it will satisfy AFQ = FL, or

aY

(1− S)K
=

bY

H + SK
⇒ S =

b− aH/K
a+ b

. (20)

As K → ∞, we have S → b/(a + b) < 1, and therefore gL = gK = gY . As
above, because the production function is Cobb-Douglas, the labor share
is constant. Now, however, the quantity of effective labor grows no more
quickly than output, so labor payments per labor quantity—i.e. wages per
human worker—merely stagnate.

Korinek and Stiglitz (2019) offer another illustration of this phenomenon, in
the context of a somewhat similar model. As usual we will simplify here to
highlight the intuition.

Suppose that Y is produced as in the second model of this section (i.e.
the model just above), except that the substitution parameter between land
and the other two factors is bounded below 0. Though land is in fixed supply,
it is at first plentiful enough that its factor share is low. The saving rate is
fixed.

At first, as capital accumulates, it is split between use as robotic labor
and use as equipment, so that the relative quantities of labor and equipment
are unchanged. The capital and labor shares are roughly constant, but the
absolute wage stagnates, as we have seen. In time, however, land becomes a
binding constraint. The share of output received as land rents approaches 1,
and the absolute wage falls to 0.

As should be clear, the same logic could apply to many more complex
models. Embed any production function in a “surrounding” production func-
tion with a fixed-supply and low-substitutability resource such as land, and
in the long run, even if all of the original production function’s resources
grow abundant, the resource in fixed supply constrains growth and its own-
ers receive approximately all output.

3.4 Substitutability in robotics production

Like Korinek and Stiglitz, Mookherjee and Ray (2017) develop a model in
which capital can replace human labor without technological progress. Unlike
Korinek and Stiglitz, they do not simply assume that capital can be used as
robotics, but make the robot production function explicit and identify a
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condition under which human labor replacement can occur. A simplification
of their model is as follows.

The final good Y is produced using capital K and labor L in a typical
two-factor production function F (·), with a substitution parameter bounded
below 0. Labor is supplied by human work H and robotics R, which are
perfect substitutes. Robotics is better thought of as the provision of robot
services than as robots, because it must be used as it is produced; it cannot
be accumulated. If we would like to think of it as a kind of physical capital,
we would say that it exhibits full depreciation.

Robotics is also produced using capital and labor, using a standard but
perhaps different production function f(·), also with a substitution parameter
bounded below 0. Whereas one unit of robotics is defined as that which
replaces 1 human worker in the output production function, one unit of
robotics replaces some D ∈ (0, 1) human workers in the robotics production
function. For each input X ∈ {K,H,R}, SX is defined (assuming X > 0)
to be the fraction of X that is allocated to the production of robotics rather
than the final good. For simplicity, the population of human workers is fixed
and there is no technological progress. More formally, output and robotics
at t are

Yt = F ((1− SK,t)Kt, (1− SH,t)H + (1− SR,t)Rt); (21)

Rt = f(SK,tKt, SH,tH +DSR,tRt).

As usual, a constant fraction of output is saved as capital.
Early on, when capital is scarce and human labor relatively plentiful,

there may be no reason to produce robotics at all. As capital accumulates
and output begins to be constrained by human labor, however, the marginal
output productivity of capital falls to zero. It may therefore at some point be
worthwhile to allocate some positive fractions SK and SH of available capital
and human labor to robotics production. To be precise, it will necessarily
start being worthwhile iff fL(k, 0) > 1 given k > 0, i.e. if, given some cap-
ital (which is eventually near-worthless in final good production), marginal
contributions of labor can create robotics at a ratio of more than 1:1. Let
us call this the “robotization condition”. Note that it is a relatively weak
condition; fL(k, 0) =∞ given k > 0 if f(·) is CES, for example.

If robotics production relies on capital and human labor—i.e. if we set
SR = 0—it too will ultimately be constrained by lack of labor:

as SK,tKt →∞, Rt → SH,tR̄, where R̄ , lim
x→∞

f(x,H). (22)
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Output in turn is constrained by total labor, despite the possibility of
robotics:

as (1− SK,t)Kt →∞, Yt → Ȳ
(1− SH,t)H +Rt

H + R̄
, (23)

where Ȳ , lim
x→∞

F (x,H + R̄).

Long-run output will be maximized by setting SH = S∗H , the value that
maximizes (1 − S∗H)H + S∗HR̄—i.e. S∗H = 1 if the robotization condition is
met, because in this case R̄ > H, and S∗H = 0 if not. Long-run output will
then approach an upper bound of Ȳ ((1−S∗H)H+S∗HR̄)/(H+R̄). The human
labor share will approach 1, either because it is the scarce input to output
directly or because robotics is the scarce input to output and human labor
is the scarce input to robotics. The absolute wage will of course stagnate.
In short, robotization can raise the output ceiling, but it cannot on its own
produce a sustainably positive growth rate.

One might expect that, if we do not fix SR = 0, it will eventually be
optimal to use robotics in the production of robotics. In fact, this will only
happen if D is large enough that, as the quantity of capital allocated to
robotics production grows large, one unit of robotics can produce more than
one unit of robotics: that is, if limk→∞ fL(k,H) > 1/D; or equivalently,
because f(·) is CRS, if fL(k, 0) > 1/D for k > 0. The identification of such a
condition in their more general setting is Mookherjee and Ray’s key insight,
and they call the condition the “von Neumann singularity condition”, after
the work by Burks and Von Neumann (1966) on self-replicating automata.
It is of course very closely analogous to the robotization condition above, but
stronger since we are imposing D < 1. We might take this to be the natural
case; robotics production is presumably harder to automate than most other
tasks are.14

Suppose that this condition is met, and that SKK is large enough that
fL(SKK,H) > 1/D. Then there is an optimal quantity of robotics to allocate
to robotics production, so as to maximize net robotics production. This is the
quantity such that use of a marginal unit of robotics on robotics production
increases robotics output by exactly one unit. That is, it is optimal to set
SR > 0 such that SR satisfies fL(SKK,H +DSRR) = 1/D.

14Presumably at least some other tasks are more difficult to automate, however. As
Mookherjee and Ray present in the original paper, their central result does not depend on
robotics production being more difficult to automate than all other tasks, just on robotics
production being sufficiently difficult to automate.
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The value of R depends on SR, since more inputs to robotics produc-
tion will correspond to higher robotic output. Nevertheless, we know that a
unique SR ∈ (0, 1) satisfying the above equality exists, for a given SKK. To
see this, recall that fL(SKK,H +DSRR) > 1/D at SR = 0, by supposition.
And we must have limSR→1 fL(SKK,H+DSRR) < 1/D, or else the quantity
of robotics output R and thus also SRR would grow without bound, fixing
SKK, as SR → 1; but in this case fL → 0, by the assumption that the sub-
stitution parameter in the robotics production function is bounded below 0.
By the concavity and continuous differentiability of f(·), therefore, there is
a unique S∗R : fL(SKK,H +DS∗RR) = 1/D.

Under the singularity condition, SK and SR approach constants S∗K and
S∗R, strictly between 0 and 1, as the capital stock grows.15 Growth proceeds
as in an AK model, with the rate of capital accumulation, final good output
growth, and robotics output growth all asymptotically constant and propor-
tional to the saving rate.16 The wage level is constant and lower than it is in
the absence of the singularity condition, since the ratio of capital to labor in
robotics production is still asymptotically constant but now positive rather
than zero. The share of income accruing to human labor falls to zero.

As with Hanson (2001), moderate tweaks to this model could result
in absolute human wages rising or falling, rather than merely stagnating.
Also, in the presence of population growth or labor-augmenting technology
growth, introducing automation can increase the growth rate of final good
output (or final good output per capita) from the rate of effective labor
(or labor-augmenting technology) growth to something much higher, given
sufficient saving.

As we saw in Section 3.3, when human work must compete with robotics for
which it is perfectly substitutable, the standard result is that the human labor
share falls to 0 and the wage stagnates or changes (likely falls) as well. Above,
however, we saw that modeling robotics production explicitly, rather than
stipulating a frictionless conversion of the final output good into robotics,
allows for a channel through which human work can remain necessary. A

15See Appendix B.1 for a proof.
16The model will approximate an AK model with A = Y/K = F ((1–S∗K), (1–S∗R)R/K),

where R/K likewise satisfies R/K = f(S∗K , S
∗
RR/K). Technological progress that allows

capital to produce more robotics increases long-run R/K and functionally “increases A”,
though it will never exceed its upper bound of F (1,∞). This will be finite, by the as-
sumption that F (·)’s substitution parameter is bounded below 0.
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positive human labor share can be maintained, even when robotics can fully
substitute for human work in the final good production function, when human
work cannot be fully substituted for in robotics production.

Korinek (2018) presents another model in which robots are not simply
“capital that can function as labor” but are economic agents of their own
that must be sustained through robot absorption, just like humans need
consumption to be sustained. He too finds that the human labor share, and
in his case also the wage rate, can fall to 0 unless human labor remains
necessary for the maintenance of the robot population.

Growiec et al. (2023) develop a framework in which they distinguish pro-
duction factors into “hardware” and “software” rather than the typical fac-
tors capital and labor. They observe that any production process requires
physical action steered by information processing. Traditionally, these two
functions have been performed by human brawn and human brains, but tech-
nological progress over the centuries has increasingly enabled machines to do
both.

3.5 Growth impacts via impacts on saving

In some of the models we have considered, saving has been an important
determinant of growth. The saving rate, however, has been assumed to be
exogenous. This leaves open another channel through which developments
in AI could impact growth: by changing the rate of return to saving, more
advanced AI could change the rate of saving and thus the growth rate.

This scenario can be illustrated most simply using a model from Korinek
and Stiglitz (2019). Suppose labor and capital are perfectly substitutable.17

Labor can only be supplied by humans. Activity unfolds in discrete time,
and capital depreciates fully every period; it cannot accumulate. (Capital
depreciation simplifies the exposition but is not necessary for the central
result.) Given saving rate st, output and capital growth are then

Yt = AKt +BLt, Kt+1 = stYt. (24)

We begin with K = 0. Output per capita is thus B and, without saving,
does not grow. If A < 1, there is no incentive to save, and doing so cannot
generate growth; foregoing each unit of consumption at t would offer someone

17Equivalently, we could say that output is produced by a single factor, labor, which
can be supplied both by humans and by robots.
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only A < 1 additional units of consumption at t + 1, starting from the
same baseline of B. For any A > 1, on the other hand, sufficiently patient
individuals will want to save some fraction st > 0 of their incomes; not to
do so would be to miss the opportunity to give up marginal consumption
at baseline B in exchange for a larger quantity of marginal consumption
also at baseline B. More precisely, it should be clear that positive saving
will be optimal, given any pure time discount factor β < 1, as long as A >
1/β. Furthermore, under certain assumptions about the shape of individuals’
utility functions, the induced saving rate will be some constant s > 1/A,
independent (at least roughly) of the absolute output level. In the long run,
as the relative contribution of effective human labor BLt grows negligible,
we will have Yt ≈ AKt. And since

Kt+1 = sYt ≈ sAKt (25)

⇒ (Kt+1 −Kt)/Kt ≈ sA− 1,

capital and therefore output will grow at asymptotic rate sA− 1 > 0.
In short, an increase in A—induced, perhaps, by AI developments which

render robots cost-effective replacements for human labor—can trigger
saving and can thus increase the growth rate of output and output per
capita. Here, an A-increase raises per capita output growth from zero to
a positive number, leaves the wage rate constant at B, and pushes the
human labor share to zero; but other impacts on wages, the labor share,
and growth are possible. The point is just that, in addition to the ways in
which increases in A can sometimes directly impact the growth rate, they
can sometimes do so indirectly by impacting s.

There is another mechanism through which developments in AI could impact
the saving rate. If the saving rate is heterogeneous across the population,
then growth will depend on how income is distributed between high- and low-
savers. Developments in AI could thus affect the growth rate by affecting
the income distribution. In principle, this effect could have implications for
growth in either direction. Here, we will focus on the especially interesting
and counterintuitive possibility that AI slows and even reverses growth by
transferring wealth from those with low to those with high propensity to
consume.

This scenario is illustrated most simply by Sachs and Kotlikoff (2012),
though the same mechanism is explored in more detail by Sachs et al. (2015).
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If some investment goods are sufficiently substitutable for labor, automation
raises capital rents but lowers wages. If saving for the future comes dispropor-
tionately out of wage income, for whatever reason, then this wage-lowering
can cause future output to fall.

Consider an overlapping generations economy with constant population
size. Each person lives for two periods. The young work, investing some
of their income; the old live off their investments. More precisely, output is
a symmetric Cobb-Douglas function of labor and capital. The output good
can be consumed or invested as capital K. Capital can be used either as
equipment Q or as robotics, which serves as labor, and it is split between
these uses until their marginal products are equal. The human workforce
H is fixed and can only serve as labor. Unlike in the Hanson model, how-
ever, equipment’s factor-augmenting technology level is fixed. A denotes the
augmentation of robotics only.

Formally, if S is the share of capital used in robotics,

Yt = F (Qt, Lt) = ((1− St)Kt)
1/2(H + StAtKt)

1/2. (26)

Capital at t is financed by those who were young at t− 1, who put aside half
their wage incomes as investment.18 The old at t consume all their wealth:
not only their investment income, FQ,t(1−St)Kt +FL,tStAtKt, but even the
capital stock Kt, which is liquidated after use in production. The economy
is in a zero-growth steady state when investment is just replenished each
period: that is, when FL,t/2 = Kt.

Now suppose robotics grows slightly more productive, so that At+1 > At.
Let GA , 1 + gA denote At+1/At. For a single period, total output and
the incomes of the old grow. The young see a fall in wages, however, and
investment therefore falls as well. This fall in investment outweighs the fact
that some of the investment, namely that in robotics, is now more productive.
Output therefore falls. The wage rate falls too, due both to the abundance
of robotics and to the lack of investment in equipment.

More formally: in the new equilibrium, the marginal product of robotics is
again equal to that of equipment. Because the “relative cost” of robotics has
now been multiplied by 1/GA and because here ρ = 0, the relative quantity of

18Let rt denote the interest rate at t: that is, here, FQ,t+1, or equally At+1FL,t+1.
Suppose that period utility is logarithmic in consumption and that the young choose the
saving rate st to maximize lifetime utility ln((1 − st)FL,t) + ln(stFL,t(1 + rt)). Then the
chosen saving rate will always equal 1/2.
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labor must be GA times higher. Letting asterisks denote the new equilibrium
outcomes, L∗/Q∗ = GALt/Qt. So

F ∗L =
1

2

(L∗
Q∗

)−1/2

, FL,t =
1

2

(Lt
Qt

)−1/2

(27)

⇒ F ∗L = FL,tG
−1/2
A < FL,t.

The new rate of return on investment is r∗ = At+1F
∗
L = GAAtF

∗
L, the new

wage is F ∗L, and the saving rate remains 1/2. The consumption of the old
thus equals half their income while young, times 1 + r∗:

(1 +GAAtF
∗
L)
F ∗L
2

= (1 + AtG
1/2
A FL,t)

FL,t

2G
1/2
A

(28)

= (G
−1/2
A + AtFL,t)

FL,t
2

< (1 + AtFL,t)
FL,t

2
.

The new equilibrium therefore features lower output in all subsequent peri-
ods, and lower consumption for both young and old.

If robotics-augmenting technology continues to grow at rate gA, the wage
rate, and thus the consumption of the young, will continue to fall to 0 at
rate G

1/2
A − 1. The consumption of the old (and thus also output) will fall

at a falling rate, and will eventually stabilize above 0, as the increasing
productivity of invested equipment ever more closely compensates for the
falling absolute amount invested.19 The human labor share thus falls to 0.

Again, the direction of these impacts is sensitive to whether the “winners”
from advances in AI save more or less than the “losers”. As Berg et al. (2018)
point out, for instance, those who make most of their incomes from wages
currently empirically exhibit lower saving rates than those who make most of
their incomes from capital rents, so the mechanism identified by Sachs and
Kotlikoff should if anything increase output growth. In any event, the key
point is essentially a special case of the well-known fact that, in a neoclassical
growth model with finitely lived agents and no (or imperfect) intergenera-
tional altruism, the rate of saving is not necessarily optimal. Accordingly,
policymakers must always consider not only the impact of a policy or techno-
logical development on short-term output, but also its impact on the saving
rate. When a given development produces a suboptimal saving rate, it should

19Technically, if flow utility is logarithmic in consumption (see footnote 18), lifetime
utility falls to negative infinity as the consumption of the young falls to zero.
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be counterbalanced by investment subsidies or by transfers from those with
high to those with low propensity to consume: in this model, from the old
to the young.

4 AI in task-based models of good produc-

tion

4.1 Introducing the task-based framework

In Section 3, we imagined that capital and labor were each employed in a
single sector. In the Cobb-Douglas case, we held the exponent a on capital
fixed. We then explored the implications of changing ρ, the substitutability of
capital and other durable investments for human labor, and of independently
changing the growth rates of factor-augmenting technology.

In reality, however, capital and labor are of course employed heteroge-
neously, and this heterogeneity seems likely to shape the economic impacts
of developments in AI. Indeed, sectors with high rates of automation have
historically experienced stagnating or declining wages (Acemoglu and Au-
tor, 2012; Acemoglu and Restrepo, 2020), even as wages on average have
increased.

Here, therefore, we will explore a model of CES automation from Zeira
(1998), which makes room for this sort of heterogeneity. (We will follow the
exposition and extension of Zeira’s model given by Aghion et al. (2019).)
As we will see, this model amounts roughly to assuming a fixed substitution
parameter ρ and either a changing capital exponent a, in the Cobb-Douglas
case, or impacts on factor-augmenting technology which are sensitive to ρ
when ρ 6= 0.

Let us begin with the ρ = 0 case. Suppose output is given by a Cobb-Douglas
combination of a large number n of factors Xi, for i = 1, . . . , n:

Y = Xa1
1 ·Xa2

2 · · · · ·X1−a1−···−an−1
n . (29)

At such a fine-grained level, these “factors” might better be thought of as in-
termediate production goods (Zeira, 1998), or even as individual tasks (Ace-
moglu and Autor, 2011). We will refer to them as tasks.

Fraction a of the tasks are automatable, in that they can be performed by
capital or labor, and fraction 1−a are not, in that they can only be performed
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by labor. Given capital and labor stocks K and L, if all automatable tasks
are indeed automated (performed exclusively by capital), K/(na) units of
capital will be spent on each automatable task and L/(n(1 − a)) units of
labor on each non-automated task. With just a little algebra, we have

Y = AKaL1−a, (30)

a two-factor Cobb-Douglas production function with an unimportant
coefficient A.20

Now consider a CES production function, of substitution parameter ρ 6= 0,
with a continuum of production factors Yi from i = 0 to 1, instead of just
two:

Y =
(∫ 1

0

Y ρ
i di
)1/ρ

(31)

Tasks i ≤ β ∈ (0, 1) are automatable.
Let K and L denote the total supplies of capital and labor, and Ki and

Li the densities of capital and labor allocated to performing some task i (so
Yi = Ki +Li). Suppose again that all automated tasks are indeed performed
exclusively by capital. Since the tasks are symmetric and the marginal prod-
uct of each task is diminishing (∂2Y/∂X2

i < 0), the density of capital applied
to each task i ≤ β will be equal (assuming that production proceeds effi-
ciently), as will the density of labor applied to each i > β. And since we
must have ∫ β

0

Kidi = K and

∫ 1

β

Lidi = L, (32)

we know that Ki = K/β ∀i ≤ β and Li = L/(1 − β) ∀i > β. We can thus
write our production function as

Y = [β(K/β)ρ + (1− β)(L/(1− β))ρ]1/ρ (33)

= [β1−ρKρ + (1− β)1−ρLρ]1/ρ

= F (AK,BL) = [(AK)ρ + (BL)ρ]1/ρ

where A = β(1−ρ)/ρ and B = (1− β)(1−ρ)/ρ. This is simply a two-factor CES
production function.

20A = a–a(1–a)a–1, which ranges from 1 (at a = 0 or 1) to 2 (at a = 1/2).
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We have assumed that all automatable tasks are indeed performed ex-
clusively by capital. This will obtain so long as there is more capital per
automatable task than labor per non-automatable task, i.e. as long as

K

β
>

L

1− β
. (34)

In this case, even when capital is spread across all automatable tasks, we
have FK < FL, so there is no incentive to use labor on a task that capital
can perform. Let us call this condition the “automation condition”. For any
fixed β, if the capital stock grows more quickly than the labor supply, the
condition will eventually hold.

4.2 Task automation

Let us now explore the implications of task automation in more detail,
across the regimes of CES production with ρ = 0 and < 0. The case of ρ > 0
will be covered in Section 4.3.

As we have seen, under Cobb-Douglas production, task automation raises a
along the range from 0 to 1. The Cobb-Douglas production function under
factor-augmenting technology is given by (5). Since a constant saving rate
imposes gY = gK in the long run, the long-run growth rate in this case
satisfies

gY = a(gA + gK) + (1− a)(gB + gL)

⇒ gY =
a

1− a
gA + gB + gL. (35)

The impact of a one-time increase to a, or of increases only up to some
bound strictly below 1, is therefore straightforward. The capital share rises
with a. If gA > 0, the growth rate increases, ultimately raising the wage rate;
otherwise the growth rate is unchanged, and the impact on the wage rate is
ambiguous.

Given asymptotic complete automation, with 1 − a falling to 0 expo-
nentially or faster, the model approximates an AK model. If gA = 0, the
growth rate rises to sA. If gA > 0, the growth rate rises without bound, and
wages too rise superexponentially.
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Automation, as we have defined it, allows capital to perform more tasks. One
might therefore imagine that it is equivalent to the development of some sort
of capital-augmenting technology. Aghion et al. (2019) observe, however, that
automation in the above model is actually equivalent to the development of
labor -augmenting—and capital-depleting!—technology, as long as ρ < 0 and
the automation condition holds. To see this, recall our production function:

Y = [(AK)ρ + (BL)ρ]1/ρ, (36)

where A = β(1−ρ)/ρ and B = (1− β)(1−ρ)/ρ. As β rises from 0 to 1, therefore,
A falls from unboundedly large values to 1, and B in turn rises from 1 without
bound.

The reason for this result is that, as β rises, capital is spread more thinly
across the widened range of automatable tasks, and labor is concentrated
more heavily in the narrowed range of non-automatable tasks.21 Automation
therefore allows capital to serve as a better complement to labor. A marginal
unit of labor is spread across fewer non-automatable tasks, producing a larger
increase to the supply of each; given the abundance of capital, this then
produces a larger increase to output. Conversely, under this allocation, labor
serves as a worse complement to capital, requiring capital to spread itself
over more tasks (and only partially compensating for this effect by supplying
the remaining tasks more extensively).22

As explained in Section 2.2, when ρ < 0, labor-augmenting technol-
ogy is the key to sustained output growth. Let us spell that out in this
context. Suppose that, by some exogenous process, a constant fraction of
the remaining non-automatable tasks are made automatable each period, so
that (1 − βt) → 0 at a constant rate g1−β < 0. Then B will grow at rate
gB = g1−β(1 − ρ)/ρ > 0. A is asymptotically constant at 1, so gA ≈ 0. If
the saving rate s is constant and high enough to maintain the automation
condition, we get our familiar “balanced growth path”. The capital stock,
effective labor supply, and output all grow at asymptotic rate gY = gB + gL,
output per capita grows at rate gB, and the labor share is asymptotically

21Here we are only considering increases in β up to the point that capital per au-
tomatable task no longer exceeds labor per non-automatable task, so that the automation
condition is satisfied.

22These observations are also made by Growiec (2022b) who shows that under partial
automation with ρ < 0, capital and labor remain complements. However, under full
automation, they become substitutes.
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constant and positive.23

Automation can thus increase the growth rate of output per capita, and
have other transformative consequences.24 In the model above, because the
automation rate −g1−β is the only driver of growth, introducing it increases
the growth rate from 0 to g1−β(1 − ρ)/ρ. In the presence of growth from
other sources, automation can increase the growth rate further. Consider for
instance what follows if we have Bt = Dt(1− β)(1−ρ)/ρ, with β constant but
Dt growing exogenously at rate gD. Given saving sufficient to maintain the
automation condition, output per capita grows at rate gD. The implications
of introducing automation at rate −g1−β then depend on whether saving is
still sufficient to maintain the automation condition. If it is, the per-capita
growth rate increases to gD + g1−β(1− ρ)/ρ, and the labor share falls to an
asymptotic positive value, as observed above. For more on a model of task
automation with (something close to) direct labor-augmenting technology
growth gD > 0, see Section 4.4.

Now suppose again that gD = 0, but now suppose that saving is not
sufficient to maintain the automation condition—as it cannot be if, for
instance, all tasks become automatable. In this case, some automatable
tasks will not be automated. Here, things proceed roughly as in a model
of full substitutability. The growth rate is capped at sA, the wage rate
equals the capital rental rate and stagnates, and the labor share equals
L/(L+K). Assuming sA > gL, the labor share falls at rate gL−gK = gL−sA.

Finally, consider the implications of exogenous growth in capital-augmenting
technology A. When not all tasks are automated, increases to A only increase
the effective capital stock. If gA > 0 and s > 0, even if the automation
condition is not yet met, the growth rate sA will grow until it is met. The

23The capital share here equals β1−ρ
t (Kt/Yt)

ρ. As β → 1, the capital share rises to an
upper bound of (K/Y )ρ, where K/Y is the long-run capital-to-output ratio, as long as
this exists and is finite. It follows from sYt = Kt+1 −Kt that sYt/Kt = gK,t; and since
gK = gY = gB + gL, we have K/Y = s/(gB + gL). The labor share will thus fall to
1− (s/(gB + gL))ρ. This is nonnegative because sA ≥ gB + gL, by sufficient saving, and A
is asymptotically 1; and it is strictly positive as long as we are not in the knife-edge case
of sA = gB + gL.

24One might however take the position that what we have here been calling automation
is not a new force on the horizon, promising to augment pre-existing drivers of growth,
but a microfoundation for the process of labor-augmenting technological development we
have observed for centuries. On this view, advances in AI will continue to push β ever
closer to 1, but this process will simply continue the existing trend.
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capital stock will then grow at the output growth rate, the effective capital
stock will grow faster by gA, and the capital share will fall to 0, roughly as
explained in Section 3.1.

When all tasks are automated, on the other hand, output Yt asymptoti-
cally equals AtKt, and sustained exponential growth in A produces a Type I
growth explosion.

4.3 Task creation

Let us begin with the Aghion et al. (2019) model of automation and introduce
a process of task creation. The resulting model will be somewhat akin to that
developed by Hémous and Olsen (2014).

As before, output is a CES production of a range of tasks. Each task is
performed by labor and/or capital, with tasks above an automation threshold
β requiring labor. Now, however, new and initially non-automated tasks can
be created. The range of tasks thus runs from i = 0 to N , with tasks i ≤ β
automatable, and not only β but also N can be increased. By the same
reasoning as in Section 4.1, if there is enough saving that the automation
condition is met, output is

Y = [(AK)ρ + (BL)ρ]1/ρ, (37)

where A = β(1−ρ)/ρ and B = (N − β)(1−ρ)/ρ.
If ρ < 0, then increases to β holding N fixed act like labor-augmenting

technology, as in Aghion et al. (2019). By the same token, however, increases
to N holding β fixed act like labor-depleting technology; they require labor
to “spread itself too thinly”. It will never be productive to create new tasks,
and automation and growth will simply proceed as in Section 4.2.

If ρ > 0, on the other hand, then it is increases to N , holding β fixed, that
function as labor-augmenting technology. In particular, they asymptotically
produce gB = gN(1−ρ)/ρ. As explained in Section 3.2, growth then proceeds
at a rate of max(sA, gB), where s denotes the saving rate. Increasing the rate
of task creation can thus increase the growth rate.

More importantly, increases to β, regardless of N , function as advances
in capital-augmenting technology. Recall that effective capital accumulation
is enough for growth when ρ > 0. By raising the “ceiling” N and allowing
for future automation to raise β, task creation can thus have radical effects.
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To see this, first suppose that N increases exogenously at a constant pro-
portional rate gN , and that N − β is constant. This is essentially the case
explored by Nordhaus (2021) and summarized in Section 3.2: given ρ > 0,
capital accumulation and capital-augmenting technology growth combine to
produce a Type I growth explosion. The labor share falls to 0, even while
wages, like output (though more slowly than output), grow superexponen-
tially.

If gA = gB, i.e. if gβ = gN so that a constant fraction of tasks is
always automated, the outcome is similar. Indeed, conditions are even
more favorable to labor. Upon endogenizing the task automation and
creation processes, the gβ = gN condition turns out to hold under relatively
natural-seeming circumstances. For a few more words on this, see the end
of the following section.

Finally, as discussed at the end of Section 3.3, suppose we embed production
function (37) in a “surrounding” production function. That is, suppose that
the good denoted Y , which we had been referring to as the final output good,
must instead be combined with a fixed-supply resource (such as land) W in
order to produce the final output Z.

What follows depends centrally, as we have seen, on the substitution
parameter ρ′ between Y and W . If ρ′ > 0, essentially nothing changes; the
land share is asymptotically 0, growth in Z approximately equals growth in
Y , and so forth. If ρ′ < 0, on the other hand, output approaches an upper
bound. Then the relative quantity of Y rises without bound, by capital
accumulation or asymptotic task automation; the land share rises to 1; and
the wage rate falls to 0.

This is more similar to the case explored by Hémous and Olsen, though
they take the fixed-supply resource to be skilled labor, whereas we are ignor-
ing skill differences throughout this review. In any event, we will not explore
this further here.

4.4 Task replacement

Acemoglu and Restrepo (2018b, 2019a) develop a similar model of task cre-
ation, but combine it with a process of task replacement. Here is a simplifi-
cation.

Instead of ranging from 0 to N , task indices i now range from N − 1
to N . Capital is equally productive at all tasks it can perform, but labor’s
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productivity at task i is Bi = Di(1 − β)(1−ρ)/ρ, where Di = exp(gDi), for
some gD > 0. In an exogenous growth setting, both β ∈ (N − 1, N) and N
grow over time at a constant exogenous absolute rate—let us say, without
loss of generality, at one unit per unit time. The fraction of tasks not au-
tomatable is thus constant at N −β, but the productivity of human labor at
the non-automatable tasks grows at exponential rate gB = gD. With enough
saving, all automatable tasks are automated. Output and capital grow at
rate gD + gL, in line with the effective labor supply, and wages grow at rate
gD. The labor share is constant, as in any CES model with labor-augmenting
technology growth and sufficient saving.

Moving from asymptotic automation in the original setting of Section 4.2
to this model of task automation, creation, and replacement thus increases
the output growth rate iff gD > g1−β(1 − ρ)/ρ. As usual, if we imagine
starting from a world without task creation and replacement, introducing
this process raises the growth rate from 0 to a positive number; and if we
imagine starting from a world with some other source of exogenous growth
in labor-augmenting technology, introducing this process raises the growth
rate, given enough saving to maintain the automation condition.

This model is nearly equivalent to a task-based model in which the
task-range is fixed at the unit interval, β is fixed, and B grows exogenously
at rate gD. Its framing is motivated by the empirical observation that we
have long seen the automation of existing tasks go hand-in-hand with the
creation of new, high-productivity tasks that only humans can perform, at
least temporarily (Goldin and Katz, 2009; Acemoglu and Autor, 2012). We
continue to see this pattern in the recent past (Autor, 2015; Acemoglu and
Restrepo, 2019b). The result is a near-complete turnover of job types over
time, rather than a mere encroachment of automation onto human territory.
In this sense, this promises to be a more realistic model of automation
over the past two centuries than one without task replacement. As we
have just seen, models of this type are also compatible with balanced growth.

This balanced growth result is, however, sensitive to the assumption that ad-
vances in automation technology (increases in β) and task creation (increases
in N) proceed at the same rate.

If task creation outstrips automatability, the labor share rises, and as
β − N + 1 → 0 asymptotically, the labor share rises to 1. In this case, we
approach a state in which labor performs all tasks. Capital is relegated to
an ever-shrinking band of the lowest-labor-productivity tasks. Since output



33

and, given a constant saving rate, capital grow at the same rate as effective
labor, while capital is used ever less efficiently, capital rents fall and the
capital share falls to 0. In equilibrium, output grows at rate gD + gL, and
wages grow at the labor-augmenting technology growth rate gD, as before.

Now suppose that automatability outstrips task creation, and in partic-
ular that it does so at a constant rate gN−β < 0. What follows depends
on the extent to which capital accumulation keeps up with this process. If
s ≤ gD + gL, the automation condition will not be met in the long run,
and capital and effective labor will be perfect substitutes on the margin.
Output will thus equal Kt + DtLt, and the stock of capital grows at the
same rate as that of effective labor when s(Kt + DtLt)/Kt = gD + gL,
i.e. when Kt/(Kt + DtLt) = s/(gD + gL). In the long run we thus have
gK = gY = gD + gL, the labor share and the fraction of tasks not automated
approach 1− s/(gD + gL) (ranging from 1 at s = 0 to 0 at s = gD + gL), and
wages grow at rate gD.

Now suppose that s ∈ (gD + gL, gD + gN−β(1 − ρ)/ρ + gL], so that cap-
ital accumulation outpaces labor and labor-augmenting technology growth
in isolation but not in combination with automation. Now the fraction of
tasks automated grows over time: if it stayed constant, capital per auto-
mated task would ultimately exceed effective labor per non-automated task,
since s > gD + gL, and it would be profitable to reallocate some capital to
automatable but non-automated tasks. But the fraction of tasks automated
does not catch up with the automatability frontier: if all automatable tasks
were automated, effective labor per non-automated task would ultimately
exceed capital per automated task, since s < gD + gN−β(1− ρ)/ρ + gL, and
it would be profitable to reallocate some labor to currently automated tasks.
Thus the automation condition is not met in this scenario either, and capital
and effective labor are still perfect substitutes on the margin. Since the stock
of capital grows more quickly than that of effective labor, in the long run
output grows at rate s, wages grow at rate gD, and the labor share again
falls to 0.

Finally, if s > gD + gN−β(1 − ρ)/ρ + gL, the automation condition is
met. Growth proceeds at gD + gN−β(1 − ρ)/ρ + gL and the labor share
approaches a positive constant, as in the model of Section 4.2 with direct
labor-augmenting technology growth gD > 0. Empirically the saving rate
is currently far higher than the growth rate of effective labor, so unless
automation accelerates dramatically, this is the most relevant case for
consideration.
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Now let us briefly and informally consider the implications of endogenizing
the automation technology and task creation processes. Suppose that, in
addition to the labor force, there is a pool of researchers who allocate their
efforts between increasing β and increasing N . Upon doing either, they earn
a patent right to some of the gains that result.

This scenario, as detailed by Acemoglu and Restrepo (2018b), produces
intuitive equilibrating pressures, suggesting that we might expect to observe
automation technology and task creation proceeding at the same rate, with-
out having to assume this ad hoc. Excessive development of automation
technology results in tasks that are automatable but not automated, be-
cause of an insufficient ratio of capital to effective labor. This eliminates
the immediate value of further automation technology. Excessive task cre-
ation, on the other hand, increases the value of automation technology, by
inefficiently relegating capital to a narrower range of tasks.

The full range of possibilities here, however, is essentially the same as in
the exogenous growth case. The proportion of tasks automated can fall to 0,
if the saving rate is sufficiently low; there can be asymptotically complete au-
tomation if the saving rate is sufficiently high; and there is partial automation
in intermediate cases. The primary novelty of the endogenous research case
is that here, which case obtains can depend on the researchers’ productivity
at developing automation technology relative to their productivity at task
creation. In particular, increases in productivity at developing automation
technology, relative to productivity at task creation, can increase the equi-
librium automation rate and decrease the equilibrium labor share. Also, the
growth rate here is not exogenous but depends on the level of productivity
at both researcher tasks, as well as on the size of the researcher population.

5 AI in technology production

Throughout the discussion so far (except for the brief note at the end of the
previous section), technological development has been exogenous, when it has
appeared at all. Even in this circumstance, developments in AI have proved
capable of delivering transformative economic consequences. When techno-
logical development is endogenous, and in particular when more advanced
AI can allow it to proceed more quickly, the resulting process of “recursive
self-improvement” can generate even more transformative consequences.
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5.1 (Semi-)endogenous growth

Endogenous growth theory models growth in B as the output of a deliberate
effort, such as technological research. That is, technology, like final output,
is generated from inputs such as labor, capital, and the stock of existing
technology. In a standard research-based growth model in the tradition of
Romer (1990) and Jones (1995), the growth of B in absolute terms is given
by

Ḃt = θBφ
t (StLt)

λ (38)

for θ > 0, λ > 0, and, for our purposes, unrestricted values of φ. St denotes
the fraction of the labor force working as researchers (or “scientists”) at t.
Intuitively, λ > 1 corresponds to cases of increasing returns to research, in
which researchers complement each other, and λ < 1 corresponds to cases of
decreasing returns, in which some sort of “duplicated work” or “stepping on
toes” effect predominates. As before, final output is given by

Yt = F (Kt, Bt(1− St)Lt). (39)

Various tweaks to the basic growth model of (38)–(39) are explored through-
out the subsections below.

In this setting, though output is CRS with respect to capital and
effective labor at any given time, it exhibits increasing returns to scale in
population across time. We therefore cannot continue to assume that all
inputs to production are paid their marginal products. In particular, we
cannot assume that technological innovators are compensated for all the
additional future output that their research produces on the margin; this
sum of marginal products would exceed total output. (Indeed, Nordhaus
(2004) estimates that innovative firms accrue on average only about 2%
of the value they produce.) It would be beyond the scope of this section
to summarize theories regarding the empirical or optimal number of
researchers, or the empirical or optimal level of researcher pay. For now, to
introduce endogenous technological development without having to consider
its interactions with the rest of the framework, we might simply assume that
a government sets St and pays StLt workers to do research. Their wages
are equal to non-research workers’ wages, in this stylization, and they are
financed by lump-sum taxes levied equally across the population.

To maintain a constant growth rate in output per capita, we must maintain a
constant rate of labor-augmenting technology growth, by the reasoning laid
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out in Section 2.2. However, the growth rate of B at t, denoted gB,t, is by
definition equal to Ḃt/Bt. Holding L and S fixed, therefore, we now have

gB,t = θBφ−1
t (SL)λ. (40)

If φ < 1, as we can see, gB,t falls to 0 as Bt grows. If φ > 1, gB,t rises to
infinity. Only in the knife-edge case of φ = 1 do we get exponential growth
with a constant number of researchers.25

Empirically, both the population and the fraction of the population work-
ing in research have grown dramatically over the past few centuries. For
simplicity, and because the number of researchers cannot grow indefinitely in
a fixed population, let us here ignore the second trend and suppose that S is
fixed, with Lt growing at a constant rate gL. In this case, labor-augmenting
technology growth gB is constant over time iff

Bφ−1
t (SLt)

λ = Bφ−1
0 egB(φ−1)t · Sλ · Lλ0egLλt (41)

is constant over time; that is, iff the change in the number of researchers just
offsets the change in the difficulty of producing proportional productivity
increases. This in turn will obtain iff (φ− 1)gB + λgL = 0, or26

gB =
λ

1− φ
gL. (42)

Because we are holding 1− St fixed, the number of non-research workers
will grow at rate gL. By extension, the number of effective non-research
workers will grow at rate gB + gL. As we have seen, under a constant saving
rate, capital and output will grow at this rate too, and output per person
will grow at rate gB.

Observe that the steady-state rate of labor-augmenting technology growth is
here undefined when φ = 1. The calculation also breaks down when φ > 1,
absurdly predicting a negative rate. This is because the value assumed to
exist in the derivation, namely a steady-state technology growth rate gB

25Indeed, some reserve the term “endogenous” for growth models in which φ = 1, since
an unexplained process of exponential population growth is needed when φ < 1. Models
of this form with φ < 1 are then termed “semi-endogenous”.

26It follows from (40), with φ < 1, that the corresponding growth path is stable. If Bt
is “too high”, growth subsequently slows, since φ − 1 < 0. Likewise, if Bt is “too low”,
growth accelerates.
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under a growing research workforce, does not exist when φ ≥ 1. When
φ = 1, it is straightforward to see that a positive growth rate in the number
of researchers produces an increasing rate of labor-augmenting technology
growth. When φ > 1, even a constant number of researchers produces ever-
increasing labor-augmenting technology growth as well.

The ever-increasing gB,t that follows when φ = 1 and gL > 0 translates
into an increasing output growth rate up to the point that gB,t + gL = sA.
At that point capital accumulation cannot keep up with the growth of the
effective labor force, and production is constrained by capital. If capital-
augmenting technology can be developed in parallel with labor-augmenting
technology, however, the two factors can both grow at an increasing rate, and
output therefore can as well. That is, we have a Type I growth explosion.

When φ > 1, moreover, even a constant number of researchers is enough
to produce “infinite output in finite time”, which Aghion et al. term a Type
II growth explosion. The intuition for this is easiest to grasp when φ = 2
and (SL)λ = 1, so that we have gB,t = Bt. Suppose gB,0 is such that
technology doubles every time period. Thus B1 = 2B0, so gB,1 = 2gB,0.
At this doubled growth rate, technology doubles every half-period; B1.5 =
2B1. By repeated applications of the same reasoning, the technology level
approaches a vertical asymptote at t = 2. If capital-augmenting technology
follows a similar process, output approaches a vertical asymptote at t = 2 as
well.

The potential for endogenous growth processes to produce explosive
growth is striking. However, since the researcher population growth rate
has long been positive and the technology growth rate has long been roughly
constant, and in fact declining over recent decades (Gordon, 2016), we can
infer that at least historically φ < 1. Indeed, Bloom et al. (2020), the most
extensive study of the topic to date, estimates that φ ≈ −2. An estimate of
φ ∈ (0, 1) would indicate that, when we have access to a large stock of exist-
ing technologies, these aid in the development of new technologies, but offer
diminishing marginal aid. An estimate of φ < 0 implies that when there is a
large stock of existing technologies it is harder to develop new technologies—
perhaps because so much of the low-hanging technological fruit has already
been developed, with this “fishing out” effect outweighing the effect of tech-
nological assistance in technological development.
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5.2 Learning by doing

This recursive effect can be seen most simply in a model with Cobb-Douglas
production. Let us interpret the production as task-based, with fraction a
of tasks automated, as in Section 4.1. The model below is inspired by the
exploration of learning by doing in Hanson (2001).

The labor supply grows at exogenous rate gL > 0, but capital-augmenting
technology growth proceeds endogenously. We will use a modification of the
endogenous growth model presented in Section 5.1. In that model, technology
growth is a function of existing technology and “researcher effort”. Here,
instead, we will not introduce research and will say simply that capital-
augmenting technology grows as a function of the existing technology and
output. That is,

Yt = (AtKt)
aL1−a

t , (43)

where
Ȧt = θAφt Y

λ
t ⇒ gA,t = θAφ−1

t Y λ
t (44)

for some θ, λ > 0 and φ < 1. One might interpret this as a model in which
the production process itself contributes to the generation of productivity-
increasing ideas.

Given a constant saving rate, if growth in the long run is exponential, in
the long run we have gK = gY . So, from our production function,

gY = a(gA + gY ) + (1− a)gL ⇒ gY =
a

1− a
gA + gL. (45)

From our formula for gA,t, the steady state of gA (if it exists) will be that
which satisfies (φ − 1)gA + λgY = 0. Substituting for gY in this expression
and solving for gA, we have

gA =
λ(1− a)

(1− a)(1− φ)− λa
gL. (46)

This exponential growth path will exist as long as the denominator is positive:
that is, as long as

a <
1− φ

1− φ+ λ
. (47)



39

In this case, output growth will be given by27

gY =
(1− a)(1− φ)

(1− a)(1− φ)− λa
gL. (48)

Otherwise, the recursive process by which proportional increases to At gener-
ate proportional increases to Yt, which in turn generate proportional increases
to At+1 (using discrete-time notation for clarity), results in the proportional
increases at t+ 1 being larger than those at t. The growth rates of A and Y
thus increase without bound.

The transformative potential of automation is now straightforward.
Increases in a increase the long-run growth rate without bound, as a
approaches (1 − φ)/(1 − φ + λ). Increasing a past this threshold triggers a
growth explosion.

The growth explosion type can be determined by substituting (43) into ex-
pression (44) for gA,t:

gA,t = θAφ−1
t Y λ

t = θAφ−1
t Aaλt K

aλ
t L

(1−a)λ
t . (49)

Since capital is a fraction of all past output, and since here output grows
superexponentially, capital grows less quickly than output. An upper bound
on gA,t, for large t, can thus be found by positing that Kt = (43), rearranging

to get Kt = A
a/(1−a)
t Lt, and substituting the result into (49):

gA,t < A
φ−1+λa/(1−a)
t Lλt . (50)

When a = (1 − φ)/(1 − φ + λ), therefore, the technology growth rate itself
grows asymptotically at a rate no greater than λgL. The growth explosion is
of Type I.

When a > (1− φ)/(1− φ+ λ), a Type II growth explosion obtains even
with L fixed. This can be confirmed by observing that the model in this case
is the same as that explored in Section 6, after a simple change of variables.

27Note that, in this case, effective capital growth gA + gY will always equal gL((1 −
a)(1 − φ) + λ(1 − a))/((1 − a)(1 − φ) − λa) > gL. With effective capital growing more
quickly than labor, the automation condition will always eventually be met for any fixed
a.
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5.3 Automated research

Cockburn et al. (2019) taxonomize AI systems as belonging to three broad
categories: symbolic reasoning, robotics, and deep learning. Symbolic rea-
soning systems, they argue, have proven so far to have few applications.
Robotics—by which they broadly mean capital that can substitute for hu-
man labor in various ways, instead of complementing it—has had many ap-
plications in recent decades. It has also been the subject of a substantial
majority of the theoretical literature on the economics of AI, including all
that discussed in this survey so far. The most dramatic possibilities, how-
ever, may come from deep learning systems that can automate processes of
technological development.

Economic reasoning about the transformative effects of automating re-
search goes back at least to Griliches’s (1957) discussion of the implications
of “inventing a method of invention”. The experience of of recent years
suggests that deep learning systems are fast becoming methods of invention
in the relevant sense. Besiroglu et al. (2023), for instance, present evidence
that deep learning has already given rise to significant research automation
the field of computer vision. Closer to home, Korinek (2023) evaluates the
scope for using generative AI to automate research tasks in economics.

Following Aghion et al. (2019), let us focus directly on the implications of
technology production by using an even simpler production function than
usual:

Yt = At(1− S)Lt. (51)

Labor L is the only factor of production. S is the constant proportion of
people who work in research as opposed to final good production. Output
technology A, however, is developed using a CES function of both labor and
capital K. Building on the standard technology production function from
Section 5.1, i.e., Ȧt = θAφt (StLt)

λ, we have

Ȧt = Aφt [(CtKt)
ρ + (DtSLt)

ρ]λ/ρ, ρ 6= 0; (52)

Ȧt = Aφt (CtKt)
λa(DtSLt)

λ(1−a), ρ = 0,

for some permitted values of ρ, λ, and, in the Cobb-Douglas case, a. (The
latter formulation is also the one used by Besiroglu et al. (2023).)

Ct and Dt denote capital- and labor-augmenting technology levels re-
spectively, in the research context. Including them removes the need for a θ
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coefficient. The inclusion of factor-augmenting technology terms is unusual
in a technology production function, and perhaps somewhat unsatisfying, as
it amounts to introducing an explicit technology production function in the
final good sector only to leave technology growth in the new “research” sector
potentially unexplained. That said, one must introduce a wrinkle along these
lines to study the implications of the (exogenous) asymptotic automation of
research tasks—keeping in mind the Aghion et al. (2019) result, summarized
in Section 4.2, that if ρ < 0, asymptotic automation can amount to growth
in what is here denoted D. The implications of growth in both C and D,
and across all values of ρ, have then been included for generality. To explore
the case in which no technology growth is exogenous, simply posit that C
and D are constant throughout the discussion below.

As usual, we will assume a constant saving rate, so that capital accumu-
lation in the long run tracks output.

Suppose ρ < 0. Recall that in this case sustained growth in effective capital
and in effective research labor are both necessary to sustain growth in output
technology, and growth will be driven by whichever factor grows more slowly.
Observe that when growth is constrained by effective capital accumulation,
we have28 gA ∝ Aφ−1

t (CtKt)
λ, and that when it is constrained by effective

research labor growth, we have gA ∝ Aφ−1
t (DtLt)

λ.
Regarding φ:

• Recall from the reasoning of Section 5.1 that, if φ < 1, we have gA =
λ(gC + gK)/(1 − φ) on the capital-constrained path and gA = λ(gD +
gL)/(1 − φ) on the labor-constrained path. In the former case, since
gK = gY = gA + gL, we can substitute for gK and rearrange to get
gA = λ

1−φ−λ(gC +gL). A capital-constrained path with this growth rate
exists when φ < 1− λ.

Thus, if φ < 1 − λ, gA = min( λ
1−φ−λ(gC + gL), λ

1−φ(gD + gL)). A
one-time increase to Ct, Dt, Lt, or S, as long as S remains below 1,
does not affect the output technology growth rate. On the other hand,
a permanent increase to gL, or to gC and/or gD, does increase the
growth rate of output technology and thereby output per capita.

• If φ ∈ (1− λ, 1),29 output technology growth cannot be constrained by

28The “∝” symbol means “is asymptotically proportional to”.
29The dynamics of the knife-edge φ = 1 − λ case are somewhat complex and will be

omitted for clarity.
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capital accumulation; such a scenario would imply gA ∝ Aφ−1
t (CtKt)

λ ∝
Aφ−1+λ
t (CtLt)

λ, contradictorily producing superexponential growth in
output technology, output, and capital. We have gA = λ

1−φ(gD + gL).

• If φ = 1, suppose labor remains fixed at L and labor-augmenting tech-
nology remains fixed at D, while effective capital accumulates. In the
long run we then have gA = DSL. A one-time increase to D, S, or
L increases the growth rate of output technology and thereby output
(again, as long as S remains below 1). If we begin from a state in
which gD = gL = 0 and introduce positive labor or labor-augmenting
technology growth, the result is a Type I growth explosion.

• If φ > 1, we have a Type II growth explosion regardless of the other
parameters, as explained in Section 5.1.

As noted above: recall from Section 4.2 that, given ρ < 0, increases to D
can be interpreted as increases to the fraction of research tasks that have
been automated.

Suppose ρ = 0. Technology growth is then

gA,t = Aφ−1
t (CtKt)

λa(DtSLt)
λ(1−a) (53)

∝ emtt,

where
mt , gA,t(φ− 1) + λa(gC + gK,t) + λ(1− a)(gD + gL). (54)

(Though there is no conceptual distinction between capital- and labor-
augmenting technology in the Cobb-Douglas case, both variables have been
retained, for easier comparison with the other cases.)

From our assumption of a constant saving rate, exponential growth re-
quires gK = gY , which equals gA + gL. So it requires constant

m = gA(φ− 1 + λa) + λagC + λ(1− a)gD + λgL. (55)

Regarding φ:

• If φ < 1 − λa, we will have, in equilibrium, the constant output tech-
nology growth rate that sets m = 0. This is gA = λ

1−λa−φ(agC + (1 −
a)gD + gL). One-time increases to C, D, S, or L do not change the
growth rate, but increases to gC , gD, or gL do.
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• If φ = 1 − λa, we have steady growth only if C, D, and L are in the
long run constant, since we are assuming that these growth terms are
all nonnegative. Fixing A0 = K0 = 1, the output technology growth
rate is Cλa(DSL)λ(1−a). A one-time increase to C, D, S, or L increases
the growth rate. If C, D, or L grow unboundedly, we have a Type I
growth explosion.

• If φ > 1 − λa, we have a Type II growth explosion regardless of the
other parameters.

Recall from Section 4.1 that increases to a can be interpreted as increases
to the fraction of research tasks that have been automated. They can thus
induce Type I and Type II growth explosions, if φ ∈ (0, 1).

Suppose ρ > 0. Recall that in this case sustained growth in effective capital
or in effective research labor suffice to sustain growth in output technol-
ogy, and growth will be driven by whichever factor grows more quickly.
Now, when growth is driven by effective capital accumulation, we have
gA ∝ Aφ−1

t (CtKt)
λ, and when it is driven by effective research labor growth,

we have gA ∝ Aφ−1
t (DtLt)

λ.
Regarding φ:

• If φ < 1 − λ, the capital- and labor-driven technology growth rates
equal λ

1−φ(gC + gK) and λ
1−φ(gD + gL), respectively. In the former case,

since gK = gY = gA+gL, we can substitute for gK and rearrange to get
gA = λ

1−φ−λ(gC + gL). Thus gA = max( λ
1−φ−λ(gC + gL), λ

1−φ(gD + gL)).
Growth rate increases require increases to gC , gD, or gL.

• If φ > 1 − λ,30 we have a Type II growth explosion regardless of the
other parameters.

An intuition for these results is as follows. As explained briefly in Section
5.1, the growth of some variable X exhibits a Type II growth explosion if
its growth rate takes the form gX ∝ Xψ for some ψ > 0. When ρ < 0,
capital accumulation cannot accelerate technological development, which is
bottlenecked by its slower-growing factor, namely effective labor. Output
technology growth is then gA ∝ Aφ−1, so the Type II growth explosion re-
quires φ > 1. When ρ > 0, on the other hand, capital accumulation in line

30As under ρ < 0, the φ = 1− λ case has been omitted for simplicity.
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with (albeit lagged) output and technology effectively multiplies gA by a fac-
tor of Aλ, so gA ∝ A1−φ+λ. The Type II growth explosion therefore requires
only φ > 1− λ.

Note that our analysis of the ρ > 0 case also covers the case in which the
development of output technology is fully automated. Simply use ρ = 1.

It also covers a common interpretation of the possibility of “recursive self-
improvement”. If A represents cognitive ability, and enhanced intelligence
(human or artificial) speeds the rate at which intelligence can be improved
such that gA,t ∝ Aφ−1

t Kλ
t , then explosive growth obtains iff φ > 1− λ (since,

again, K grows in line with A, in a relevant sense). If we remove capital
accumulation entirely and say that the development of intelligence depends
only on the intelligence level, such that gA,t ∝ Aφ−1

t , then explosive growth
obtains iff φ > 1.

5.4 AI assistance in research

In Section 4, we discussed several papers which use a microfoundation of
the output production function as a basis for exploring the implications of
a certain kind of automation. Somewhat analogously, Agrawal et al. (2019)
use Weitzman’s (1998) “combinatorial” microfoundation of the process
of technological development as a basis for exploring the implications
of a certain way in which advances in AI might assist in technological
development.

Let Y = A(1−S)L, as before, and hold S fixed but posit labor growth gL > 0.
Given A existing “technological ideas”, a researcher has access to only Aφ,
for some φ ∈ (0, 1), perhaps due to some sort of cognitive limitation.31 New
ideas are made from combinations of existing ideas. Given access to Aφ

ideas, a researcher therefore faces 2A
φ

idea-combinations. Of these, not all
can generate new technological ideas, perhaps due to some other sort of
cognitive limitation. Instead, each researcher’s idea-generation function is
“isoelastic” in ideas available:

Ȧ = θ
(2A

φ
)α − 1

α
, α > 0;

Ȧ = θ ln(2A
φ

) = θ ln(2)Aφ, α = 0,

(56)

31The model requires φ > 0 such that the fishing-out effect does not predominate. As
discussed in Section 5.1, Bloom et al. (2020) estimate φ ≈ −2.
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for some θ > 0 and some α ∈ [0, 1].32

Suppose that θ = 0 (or that θ → 0 as A → ∞), and that total re-
search output is linear in the number of researchers raised to some positive
power λ, as in the growth model of Section 5.1. Then collective technological
development is given (at least asymptotically) by

Ȧ = θ ln(2)Aφ(SL)λ ⇒ gA =
λgL

1− φ
. (57)

This is just the standard Jones model, with a coefficient of ln(2) rescaling θ.
Now suppose that α > 0 (or that α is bounded below by α > 0 as

A → ∞). Then collective technological development is bounded below (at
least asymptotically) by

Ȧ = θ
(2A

φ
)α − 1

α
(SL)λ (58)

⇒ gA = θ
(2A

φ
)α − 1

Aα
(SL)λ.

It follows from the second term that, for large A, gA increases more than
polynomially in A. That is, gA increases quickly enough in A to produce
a Type II growth explosion. If the above model approximates reality,
therefore, we presumably currently have α = 0.

Given α = 0, let us now consider the potential impacts of artificial research
assistance.

If it allows for a one-time increase to θ, this amounts to a one-time increase
to the supply of effective researchers. This puts us on a higher growth path,
but it does not increase the growth rate or have any other transformative
effects. But if AI assistance improves with time in this way, allowing for θt
to grow at some positive exponential rate, this amounts to an increase in the
growth rate of effective researchers. It can thus increase the growth rate of
technology and thereby output.

If AI assistance allows researchers to access more of the stock of exist-
ing ideas, it amounts to a one-time increase in φ. (One might argue that
this is what internet library access and accurate search engines have already
enabled.) As we can see, this increases the growth rate as well.

32The formula for α = 0 is the limiting case of the formula for α > 0, as α→ 0.
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Most transformatively, if AI tools help researchers search through
the ever-growing “haystacks” of possible idea-combinations for valuable
“needles”, they could permanently increase α. Agrawal et al. (2019) argue
that this is precisely the sort of activity to which AI systems are best suited:
they are already being profitably used to identify promising combinations
of chemicals in pharmaceutical development, for example. (See Agrawal et
al. (2018) for a more thorough defense of this argument.) If this turns out
to hold across the board, the result is stark: as shown above, a permanent
increase to α produces a Type II growth explosion.

Agrawal et al. (2019) also explore the potential impacts of AI assistance
in research teams, rather than in assisting individual researchers. Seeber
et al. (2020) do the same, in the context of a much more applied and less
formal inquiry. Neither analysis appears to reveal channels for transformative
growth effects substantively different from those presented above.

5.5 Growth impacts via impacts on technology invest-
ment

Throughout Section 5, we have taken technology production to be endoge-
nous, in the sense that it has required explicit inputs of capital and la-
bor. Nevertheless, we have taken the drivers of investment in technological
development—the fraction S of labor, and (in Section 5.3) the amount of
capital, allocated to research—to be exogenous. A final way in which AI
could have a transformative impact, therefore, is by changing the levels of
investment in, and effort allocated to, technological development. As we have
seen, at least in some circumstances, this can change the growth rate, or can
determine the existence or type of a growth explosion.

This pathway to transformative impact is somewhat analogous to the
possibility, explored in Section 3.4, that developments in AI could affect the
growth rate by affecting the saving rate, even in an economy without en-
dogenous technological development. As in that case, this change could in
principle be positive or negative. (One way AI could impact the extent to
which resources are devoted to technological development is by affecting the
saving rate, as long as capital is modeled as an input to technology produc-
tion.) Also as in that case, to the extent that the literature has explored this
pathway to transformative impact, it has focused on the perhaps counterin-
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tuitive possibility that AI slows growth.
This could take place by accelerating the “Schumpeterian” process of

“creative destruction”. In this analysis, the incentive to innovate comes
from a temporary monopoly that the innovators enjoy, either by patents
or by trade secrets, during which they can extract rents from those who
would benefit by using the new technology in production. AI, however, could
make it easier for competitors to copy innovations. Relatedly, AI could also
ease the rapid development of technologies only negligibly more productivity-
enhancing than those they replace. Because these technologies would entirely
eliminate the markets for those they replace, their rapid development would
curtail the incentive for innovation. In the absence of this incentive, technol-
ogy growth can slow to a halt. This cannot cause output per capita to fall,
at least in most models, but it can cause output per capita to stagnate.

This dynamic is explored more formally by Aghion et al. (2019) in the
context of the model of automated research laid out in Section 5.3, and by
Acemoglu and Restrepo (2018b) in the context of the model of automation
and task replacement laid out in Section 4.4. We will not work through it
here.

As with the Sachs and Kotlikoff (2012) observation that AI can do damage
by lowering the saving rate, the insight here is not primarily an insight about
artificial intelligence. It is primarily a special case of the well-known fact,
mentioned briefly in Section 5.1, that though free and competitive markets
can generally be expected to appropriately compensate production factors
for a final good in a static setting, the same cannot be said about the in-
puts to technological development. Policymakers interested in growth must
always consider the impact of structural economic changes on the incentives
for technological innovation, therefore, and must adjust their funding or sub-
sidization of basic research in light of such changes as they unfold.

6 AI in both good and technology production

Naturally, the effects of AI are most transformative of all when it allows
capital to better substitute for labor in both good production and technology
production. Unfortunately, this pair of circumstances has been studied even
less extensively than the effects of AI in each sector separately. Nevertheless,
an analysis that begins with the research automation of Section 5.3, but
replaces the labor-only production function with a CES one, proves relatively
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straightforward.
Suppose we replace the labor-only final good production function, (51)

from Section 5.3, with a CES production function in capital and labor. Let
the substitution parameter in the final good sector be denoted ρY , and that
in the research sector be denoted ρA. We will ignore factor-augmenting
technology in the good production function; output technology A will be
thought of as augmenting both. We will assume a constant and sufficient
saving rate s, and fractions of capital and labor used in the technology
sector—SK and SL respectively—strictly between zero and one.

We can now consider the growth regimes that obtain under different values
of ρY and ρA. For simplicity, we will not allow for labor growth or exogenous
sources of technology growth. To begin, let us list the cases we have already
implicitly covered.

If ρY < 0, little changes from the case of Section 5.3. Output is still
bottlenecked by the scarce factor, namely labor. Output therefore asymp-
totically resembles A(1 − SL)L, as before. How technology evolves depends
on ρA, as covered in Section 5.3.

If ρY = 0 but ρA < 0, we are in the well-worn territory of Cobb-Douglas
production—so, given capital depreciation, production per capita that grows
with technology—and technology that grows sub-exponentially (unless re-
search labor inputs grow exponentially).

If ρY > 0 but ρA < 0, we reach the Type I growth explosion discussed in
Section 3.2. Output in the absence of growth in A grows at rate sA, but A
grows without bound, even without growth in research labor inputs.

If ρY = ρA = 0, however, the ability of capital to contribute to both good
production and technology production generates possibilities we have not yet
considered. As we will see, the resulting growth path is highly sensitive to
the other parameters.33

In particular, let

Yt = At((1− SK)Kt)
a, (59)

K̇t = sYt, and (60)

Ȧt = θAφt (SKKt)
λ, (61)

33What follows is an elaboration on Aghion et al. (2019), Section 4.1, Example 3.
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where SK ∈ (0, 1), a ∈ (0, 1), s > 0, θ > 0, φ < 1, and λ > 0. Also, define

γ ,
λ

(1− a)(1− φ)
. (62)

Then
• If γ > 1, Y exhibits a Type II growth explosion.
• If γ = 1, Y grows exponentially, with

lim
t→∞

gY,t = s
λ

1+λ−a

( θ

1− a
SλK

(1− SK)a

) 1−a
1+λ−a

. (63)

• If γ < 1, Y grows power-functionally.

Note that the production function of (59) is Cobb-Douglas with an implicit
constant labor stock normalized to 1, and/or a constant land stock also
normalized to 1, and (given CRS) the exponents on labor and land summing
to 1 − a. Note likewise that technology production, as described by (61),
may be interpreted as Cobb-Douglas with inputs other than capital fixed.

A proof of the above can be found in Appendix B.2, but an intuition for
the exponential growth threshold provided by γ = 1 is as follows. If growth
in A and Y were driven by exogenous exponential growth in K, we would
have, in steady state,

gA =
λ

1− φ
gK (64)

and thus

gY =
( λ

1− φ
+ a
)
gK . (65)

But gK is not exogenous: future growth in K roughly equals past growth in
Y , since capital accumulation is driven by saving a proportion of output. If
λ

1−φ + a > 1, therefore, a given growth rate in K generates a higher growth
rate of Y , and this higher growth rate is subsequently exhibited by K. The
growth rate of K therefore grows over time. Likewise, if λ

1−φ +a < 1, a given
growth rate in K generates a lower growth rate of Y , and this lower growth
rate is subsequently exhibited by K. The growth rate of K therefore falls.
Finally, observe that λ

1−φ + a > 1 iff γ > 1, and likewise for < and =.

If we replace the ρY = ρA = 0 model with one in which (a) ρY > 0 and/or
(b) ρA > 0, nothing changes except that, respectively,
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1. the exponent on capital in good production effectively rises from a to
what, in a fully specified Cobb-Douglas model, would have been the
sum of the exponents on capital and labor in good production; and/or

2. the exponent on capital in idea production effectively rises from λ to
what, in a fully specified Cobb-Douglas model, would have been the
sum of the exponents on capital and labor in idea production.

Let us denote these new exponents ã and λ̃.
In the absence of a natural resource constraint, ã = 1, by the assumption

of CRS good production. Since, from (62), we have lima↑1 γ =∞, it follows
that, absent significant natural resource constraints, ρY > 0 and ρA ≥ 0
always produce a Type II growth explosion.

By contrast, we do not in general assume that λ̃ = 1, i.e. that research
outputs exhibit constant returns to scale in research inputs. Furthermore,
even if we did, a value of λ = 1 is not sufficient (or, for that matter, necessary)
for γ > 1. An assumption of ρA > 0 therefore has no qualitative implications
beyond those of the ρA = 0 case.

7 Overview of the possibilities

The table below summarizes the transformative scenarios we have considered.
They have been rearranged slightly for clarity, and some near-redundant
possibilities have been removed, but they primarily follow the order in which
they are presented in Sections 3 to 6. Relevant literature is cited below
each scenario. Note that, in keeping with the presentation so far, the cited
literature introduces the models that allow for the scenarios in question,
but does not always discuss the transformative scenarios on which we have
focused.

We have not considered all possible AI scenarios, as this table makes
clear. Nevertheless we have hopefully sampled the possibilities thoroughly
enough that the reader is now comfortable filling some of the gaps.
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Scenario34 G
ro
w
th

3
5

L
a
b
o
r

sh
a
re

3
6

W
a
g
e
s3

7

LS in production & capital-augmenting tech growth = → 1 +
Section 3.1 Acemoglu and Restrepo (2018a)

HS in consumption goods ++ C ++
Section 3.2 Nordhaus (2021)

HS in production ++ → 0 ++
Section 3.2 Nordhaus (2021)

HS (not PS) in production & capital-augmenting
tech growth

I → 0 I

Section 3.2 Nordhaus (2021)

PS in production & capital-augmenting tech growth I → 0 L
Section 3.2

PS in production, capital-augmenting tech growth, &
MS land constraint

++ → 0 → 0

Section 3.3 Hanson (2001)

PS in production, equipment-augmen- ting tech gr.,
& MS land constraint

++ → 0 L

Section 3.3

34“PS”, “HS”, “MS”, and “LS” stand for perfect, high, moderate, and low substitutabil-
ity, and refer to substitution parameters ρ = 1, > 0, = 0, and < 0 respectively. Unless
otherwise noted, the “HS” case allows for perfect substitutability. In the scenarios with
endogenous research, “negative”, “positive”, “low”, “intermediate”, and “high [research]
feedback” refer to research feedback exponents φ < 1 − λ, > 1 − λ, < 1, = 1, and > 1
respectively.

35+ and – refer to cases in which AI shifts the output path up or down without changing
the growth rate, e.g. by increasing or decreasing the plateau level in a circumstance where
output plateaus regardless of AI. --, ++, I, and II refer to cases in which AI allows for
decreases to the long-run growth rate, increases to the long-run growth rate, Type I growth
explosions, and Type II growth explosions. = refers to cases in which AI does not change
the long-run output level or growth rate.

36C means that AI pushes the human labor share to some positive constant, not neces-
sarily lower or higher than the value it would take in the absence of AI.

37L means that human wages are driven to some low but constant rate (typically the
rental rate of effective capital). C means that they are pushed to some positive constant,
not necessarily lower or higher than they would be in the absence of AI. All other symbols
are defined as in the Growth column.
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PS in production & LS land constraint (regardless of
tech)

= → 0 → 0

Section 3.3 Korinek and Stiglitz (2019)

HS in final good production, HS in robotics
production

++ → 0 L

Section 3.4 Mookherjee and Ray (2017), Korinek and Stiglitz (2019)

HS in final good production, LS in robotics
production

+ C C

Section 3.4 Mookherjee and Ray (2017), Korinek (2018)

PS in production & one-off capital-augmenting tech
increase → saving increase

++ → 0 =

Section 3.5 Korinek and Stiglitz (2019)

PS in production & capital-aug. tech growth →
saving decrease

− → 0 → 0

Section 3.5 Sachs and Kotlikoff (2012), Sachs et al. (2015)

MS in production & asymptotic or full task
automation

I → 0 I

Section 4.2 Aghion et al. (2019)

LS in production & asymptotic task automation ++ C ++
Section 4.2 Aghion et al. (2019)

LS in production & task automation and
replacement

++ C ++

Section 4.4 Acemoglu and Restrepo (2018b)

HS in production & task automation and creation I → 0 I
Section 4.3 Hémous and Olsen (2014)

Learning by doing, w/intermed. feedback and/or
automation

++

Section 5.2 Hanson (2001)

Learning by doing, with suffic. feedback and/or
automation

II

Section 5.2 Hanson (2001)

LS in tech production, low research feedback, &
asymptotic research task automation; or HS in tech
production, negative research feedback, & research
capital tech growth

++

Section 5.3 Aghion et al. (2019)
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LS in tech production, intermed. research feedback
& asymp. research task automation; or HS in tech
prod., zero research feedback, & research capital tech
growth

I

Section 5.3 Aghion et al. (2019)

LS in tech production & high research feedback or
HS in tech production & positive research feedback

II

Section 5.3 Aghion et al. (2019)

AI-assisted multiplication of combinatorial idea
discovery

++

Section 5.4 Agrawal et al. (2019)

AI-assisted elasticity-change in idea discovery II
Section 5.4 Agrawal et al. (2019)

AI-diminished innovation incentives −−
Section 5.5 Aghion et al. (2019), Acemoglu and Restrepo (2018b)

HS in production & MS or HS in idea production
(for any value of research feedback)

II

Section 6 Aghion et al. (2019)

The human labor share and wage are technically undefined in the models
of endogenous technology production, since—as noted in Section 5.1—we
cannot straightforwardly assume that the factors of technology production
will tend to be paid their marginal products (or anything else in particular).
As often presented, however, human labor is the lone factor of final good
production in these models, and the technology being produced is labor-
augmenting. We can therefore assume that the wage rate corresponds to
the marginal product of labor in final goods production and grows in line
with technology and so with output. That is, it should exhibit growth rate
decreases, increases, Type I growth explosions or Type II growth explosions
as listed above.

8 Conclusion

The literature we synthesized covers a wide range of AI’s possible long-run
macroeconomic impacts. It can hopefully serve as a bridge between the tools
of economics and the larger-scale questions posed by futurists.

Our most significant conclusion is that significant changes to the growth
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regime experienced by our economies are possible across a range of models,
including permanent shifts in growth rates and singularities that involve ever-
increasing growth rates. As we illustrate, the lack of attention to these possi-
bilities by most of the economics profession is not a necessary consequence of
all plausible economic models. Rather, it is the result of a widespread norm
of focusing only on model scenarios in which long-run growth is roughly
constant—in line with the Kaldor Facts that described growth over the past
century or two. Even Aghion et al. (2019), who take the growth potential of
AI most seriously, focus less on scenarios in which labor and capital are highly
substitutable in technology production on the grounds that “researchers are
not a necessary input and so standard capital accumulation is enough to
generate explosive growth. This is one reason why the case of [gross sub-
stitutes] is the natural case to consider.” Expressed motivations along these
lines appear throughout the literature.

In summary, there is no shortage of mechanisms through which advances
in automation could have transformative growth consequences, once we
allow ourselves to look for them. Taking the Industrial Revolution as an
example, there is also historical precedent for significant changes in growth
regimes.

There are many topics relevant to the economics of AI and transformative
AI that we could not cover here.

Wage distribution is a central concern of the literature on the long-term
economic implications of AI, including much of the literature cited here.
It is likewise a central concern of the less long-term-focused reviews of the
economics of AI cited in Section 1. Wages and workers’ skill levels are highly
unequal, and this inequality has increased in recent decades—a development
that many attribute to the rise of automation (e.g. Acemoglu and Restrepo,
2022).

We focus on average wages and on the overall labor share in part for
focus, but also in part because in the long run, the likeliest transformative
scenario is that AI will outsmart us all. In this event, individual human
talents will not save us; if we retain positive wages or a positive labor share,
we will do so only because AI is put to use making us more productive, or
because we actively decide to keep some jobs, like clergy or hospice nurses,
unautomated. To be clear, however, this is not the only scenario. If labor
remains important as a means of income distribution in the long run, AI
may increase income concentration or—in more optimistic scenarios—could
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be used to generate greater shared prosperity (Klinova and Korinek, 2021).

Another important subject that is absent from our discussion but that fea-
tures heavily in futurist discussion about AI is the most transformative
macroeconomic possibility of all: the risk of an AI-induced existential catas-
trophe (see e.g. Bostrom, 2014). With the recent exceptions of Jones (2023)
and Acemoglu and Lensman (2023), treatments of existential risk from AI
appear to be absent from the economics literature.38 This is not primar-
ily “by choice” but because there is no particularly obvious mechanism
through which accelerating automation, within existing models of production
or growth, can pose a danger. In the literature on AI safety, such concerns
typically arise from superintelligent agents, with goals not fully aligned with
ours, who take control of the world. Even though economic growth in such
a scenario could continue without humans, such an outcome is certainly not
in our interest.

The tools of economics can help to shed light on these concerns as well.
Most simply, to the extent that AI development poses such a risk, AI safety
is a global and intergenerational public good. Through that lens, much of
the analysis of public goods, and in particular many of the tools developed
by environmental economists for the pricing and provision of climate risk
mitigation, could apply to AI safety.

More subtly, to the extent that AI risk arises from the ability of AI
systems to control resources independently of human input, models in which
the labor share remains positive and significant should give us comfort. If
human work remains a bottleneck to growth—say, if AI accelerates growth
but continues to rely on human workers to perform certain physical tasks—
then humans remain essential. More worrying are models in which a unit
of capital can grow, do research into capital-augmenting technology, and
recursively self-improve, all without human input.

A thorough analysis of the links between the economics of AI and AI
safety remains an important topic for further research.

38Existential risk from AI is sometimes listed among examples of existential risks to
motivate generic models of catastrophic risk, as in Martin and Pindyck (2015) or Aschen-
brenner (2020).
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A Elasticity of substitution

Given a production function and a list of factor prices, suppose an economic
agent spends a fixed budget so as to maximize output. Suppose furthermore
that the production plans are CRS. The elasticity of substitution between
two factors i and j is then, intuitively, the value ε such that, if the relative
price of i falls by a small proportion (say, 1%), the relative quantity of i
purchased Xi/Xj rises by an ε-times larger proportion (say, ε%).

ε = −∂ log(Xi/Xj)

∂ log(pi/pj)
= −

∂(Xi/Xj)

Xi/Xj

∂(pi/pj)

pi/pj

The second equality holds since we can express the derivative of a logarithmic
function in terms of the derivative of its argument, i.e., d logXi

da
= dXi/da

Xi
, for

any positive and differentiable function Xi(·).
The elasticity of substitution is defined analogously for utility: given a

utility function that is homothetic (i.e., that is CRS, or a monotonic trans-
formation of one that is CRS) and a list of prices of consumption goods, it
captures how much a relative change in prices affects the relative quantity of
goods consumed.

Conversely, given a list of factor (or consumption good) quantities, the
elasticity of substitution is the value ε such that, in order for the relative
quantity of X1 sold to increase by a small proportion (say 1%), the rela-
tive price of X1 must fall by a (1/ε)-times larger proportion ((1/ε)%). For
example, suppose that goods X1 and X2 are traded in a competitive mar-
ket so that their prices equal the market-clearing prices. Now consider the
consequences of exogenously increasing the relative supply of X1 by 1%, say
by increasing the endowment of each factor owner before trade takes place.
The market-clearing relative price of X1 will then fall by (1/ε)%. As we can
see, marginally increasing the relative abundance of a good results in smaller
relative expenditure on that good—i.e. its owners receive a smaller share of
total income—precisely when the elasticity of substitution between it and
other goods, on the current margin, is less than 1 because 1/ε > 1 in that
case.

For illustration, food and other goods are typically not very substitutable.
When food was much scarcer, its owners were able to command such higher
prices for it that people spent larger shares of their incomes on it. On the
other hand, industrially produced goods and handmade goods are very substi-
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tutable. As the former grew more plentiful, following the Industrial Revolu-
tion’s explosion in manufacturing, people spent larger shares of their incomes
on them.

Goods are perfect complements if ε = 0. In this case, output (or utility)
is some constant times the minimum of the goods’ quantities, in some ratio.
(Consider left shoes and right shoes, in the 1:1 ratio, or bicycle frames and
wheels, in the 1:2 ratio.) Whatever the way in which the relative prices of
such goods change, the relative quantities purchased will stay fixed at the
given ratio.

The case of perfect substitutability is approached in the limit as ε→∞.
In this case, a positive quantity of each good is only purchased if their prices
are equal; if their prices differ, only the cheaper one is purchased.

For ease of notation, define the “substitution parameter” ρ , (ε−1)/ε. Note
that the cases ε < 1, ε = 1, and ε > 1 correspond to ρ < 0, ρ = 0, and ρ > 0
respectively.

A production function exhibits constant elasticity of substitution (CES)
if its elasticity of substitution is constant and does not depend on the factor
prices and quantities. It can be shown that any two-factor CES production
function that is also CRS and allows for factor-augmenting technology must
take the form

Y = [(AK)ρ + (BL)ρ]1/ρ (66)

if ρ 6= 0 and
Y = (AK)a(BL)1−a, (67)

for some a ∈ (0, 1), if ρ = 0. In the second case, the function is called
“Cobb-Douglas”.

A common alternative for the parameter ρ is the elasticity of substitution
of a production function, σ = 1/(1− ρ), which captures by what percentage
the ratio of the two input factors capital and labor changes in response to a
one percent change in the marginal rate of technical substitution (MRTS),
which, in equilibrium, equals the relative price of the two factors.

More formally, the elasticity of substitution (σ) is given by:

σ = − d ln(L/K)

d ln(MRTS)

where MRTS = − FL
FK

reflects the ratio of marginal products of labor and
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capital. In a competitive economy, this ratio equals the relative factor prices
of labor and capital.

When σ < 1 (ρ < 0), we call the two factors gross complements. For
ρ ≤ 0, output requires strictly positive quantities of both factors. When
σ > 1 (ρ > 0), we call the two factors gross substitutes. Output can be
produced even if the input of one of the two factors is zero, i.e., the two
factors are no longer essential.

When ρ 6= 0, the share of output paid to factor X, with factor-augmenting
technology C, equals (CX/Y )ρ. When ρ = 0, a factor’s share equals the
exponent on that factor, i.e., a and 1− a. In general, the share of factor X
is decreasing in CX/Y when ρ < 0, independent of CX/Y when ρ = 0, and
increasing in CX/Y when ρ > 0.

B Proofs

B.1 Asymptotically positive fractions of capital and
robotics used in robotics production

We will work within the framework of Section 3.4.
Consider a time t at which SR,t > 0, and let m > 1 denote Kt′/Kt for some

t′ > t. From t to t′, the capital input to robotics production is multiplied
by mSK,t′/SK,t. Because f(·) is CRS, to maintain the condition that fL,t′ =
fL,t = 1/D the labor input to robotics production must also be multiplied
by mSK,t′/SK,t, and robotics production will then also be multiplied by this
factor. We thus have

H +DSR,t′Rt′ = (H +DSR,tRt)mSK,t′/SK,t and (68)

Rt′ = RtmSK,t′/SK,t. (69)

Because both inputs to robotics production are multiplied by a common
quantity, fK is constant across periods. It follows that if the capital input
to final good production grows proportionally more (less) than the labor
input, the marginal productivity of capital in final good production falls
(rises), and the marginal contribution of capital to final good production via
robot production rises (falls). Thus, to maintain the condition that capital
is allocated efficiently, the capital and labor inputs to final good production
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must be multiplied by a common quantity across periods:

m
1− SK,t′
1− SK,t

=
Rt′

Rt

1− SR,t′
1− SR,t

. (70)

Substituting (69) into (68) and (70) and solving for SK,t′ and SR,t′ , we find
that, as m→∞,

SK,t′ → S∗K , SK,t
DRt(1− SR,t)

DRt(1− SR,t)− (1− SK,t)H
and (71)

SR,t′ → S∗R , SR,t +H/(DRt). (72)

SK and SR are thus asymptotically constant and nonzero. Furthermore,
since Rt = fK,tSK,tKt+(H+SR,tDRt)/D, we must have H+SR,tDRt < DRt.
It follows that S∗K and S∗R are strictly less than 1.

B.2 Growth paths given Cobb-Douglas production
and research

As in Section 6, suppose

Yt = At((1− SK)Kt)
a, (73)

K̇t = sYt, and (74)

Ȧt = θAφt (SKKt)
λ, (75)

where A0 > 0, K0 > 0, SK ∈ (0, 1), a ∈ (0, 1), s > 0, θ > 0, φ < 1, and
λ > 0, and where (73)–(75) are defined for t ∈ [0,∞)—or, if the system
exhibits a Type II growth explosion at some time t∗, for t ∈ [0, t∗).

Observe first that, for all t,

gKt = s(1− SK)aAtK
a−1
t and (76)

gAt = θSλKA
φ−1
t Kλ

t . (77)

Let ĝK (,“ggK”) denote the proportional growth rate of gK itself, and let ĝA
be defined likewise. It then follows from (76) and (77) that, for all t,

ĝKt = gAt + (a− 1)gKt and (78)

ĝAt = (φ− 1)gAt + λgKt. (79)
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If, for any time τ , ĝKτ > 0 and ĝAτ > 0, then

gAτ + (a− 1)gKτ > 0

=⇒ gAτ > (1− a)gKτ ; (80)

(φ− 1)gAτ + λgKτ > 0

=⇒ gKτ >
1− φ
λ

gAτ ; (81)

and thus

gAτ >
(1− a)(1− φ)

λ
gAτ (82)

=⇒ γ > 1 (83)

since gAτ > 0 ∀τ by construction.
Likewise, if for any τ we have ĝKτ < 0 (= 0) and ĝAτ < 0 (= 0), then

γ < 1 (= 1, respectively).

For any τ ,

ĝKτ = 0 ⇐⇒ ĝAτ = 0. (84)

The “⇒” direction follows from (78). If ĝKτ = 0, then σgAτ = (1− a)gKτ ; so
if the right-hand side is constant around τ , so is the left. The “⇐” direction
follows likewise from (79).

Also, ĝK and ĝA are continuous in t wherever they are defined. So by
the intermediate value theorem, if either term is negative at some time and
positive at another time, it must equal zero at an intermediate time. By
(84), we must then have γ = 1.

It follows that, if γ 6= 1, either
1. ĝKt > 0 and ĝAt > 0 ∀t,
2. ĝKt > 0 and ĝAt < 0 ∀t,
3. ĝKt < 0 and ĝAt > 0 ∀t, or
4. ĝKt < 0 and ĝAt < 0 ∀t,

with case 4 incompatible with γ > 1 and case 1 incompatible with γ < 1.
We will now show that cases 2 and 3 are also incompatible with γ 6= 1.

Consider case 2. From ĝKt > 0 ∀t, and (78), it follows that

gAt > (1− a)gKt ∀t. (85)
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Recall that, by stipulation, gK always rising and gA is always falling. Thus
{gKt} is bounded above, for instance by gA0/(1 − a), and {gAt} is bounded
below, for instance by (1 − a)gK0. By the monotone convergence theorem
for functions, limt→∞ gKt and limt→∞ gAt are defined (and finite, and—since
gK0 = s(1− SK)aA0K

a−1
0 > 0—positive). Let us denote these limits g∗K and

g∗A respectively.
By (78) and (79), it then follows that limt→∞ ĝKt and limt→∞ ĝAt are also

defined (and finite). Since g∗K and g∗A are finite and nonzero, as we have just
shown, it must be that limt→∞ ĝKt = limt→∞ ĝAt = 0. Taking the limits of
terms (78) and (79), we then have

g∗A = (1− a)g∗K and (86)

g∗K =
1− φ
λ

g∗A, (87)

which jointly imply g∗A = γg∗A and thus γ = 1.
Case 3 can be shown to imply γ = 1 by a precisely analogous proof.

Thus γ > 1 implies case 1 and γ < 1 implies case 4.

Suppose γ > 1. By the statements of case 1 and expressions (78)–(79), we
have

gAt > (1− a)gKt ∀t and (88)

gKt >
1− φ
λ

gAt ∀t. (89)

By (88), and substituting by expressions (76) and (77),

g2
At > (1− a)gAt gKt

= θ̃AφtK
λ+a−1
t ∀t, (90)

where

θ̃ , (1− a)sθ(1− SK)aSλK . (91)

If the relationship of (88) were an equality at all t, then A would always grow
at precisely the same proportional rate as K1−a. Noting that

A0 = A0K
a−1
0 ·K1−a

0 , (92)
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we would maintain this ratio between A and K1−a, with

At = A0K
a−1
0 K1−a

t ∀t. (93)

It thus follows from (88) that

At ≥ A0K
a−1
0 K1−a

t ∀t (94)

=⇒ Kt ≤ K0A
a−1
0 A

1
1−a
t ∀t (95)

(with equality at t = 0 and strict inequality at t > 0). It likewise follows
from (89) that

Kt ≥ K0A
φ−1
λ

0 A
1−φ
λ

t ∀t. (96)

So, if λ+ a− 1 ≤ 0, it follows from (90) and (95) that

g2
At > θ̃A

−λ+a−1
1−a

0 Kλ+a−1
0 A

φ+λ+a−1
1−a

t ∀t. (97)

Given γ > 1, the exponent on At in (97) is positive. Likewise, if λ+a−1 > 0,
it follows from (90) and (96) that

g2
At > θ̃A

− 1−φ
λ

(λ+a−1)

0 Kλ+α−1
0 A

φ+ 1−φ
λ

(λ+a−1)
t ∀t. (98)

Again, given γ > 1, the exponent on At in (98) is positive. Either way,
therefore, A grows at worst hyperbolically, and so exhibits a Type II growth
explosion. It follows immediately that Y does as well.

If γ < 1, a proof that A grows at best power-functionally is precisely anal-
ogous, except that it uses inequality (96) in the λ + a − 1 ≤ 0 case and
inequality (95) in the λ+ a− 1 > 0 case. By (79) and the case 4 stipulation
that ĝAt < 0 ∀t, we then have

gKt <
1− φ
λ

gAt ∀t, (99)

implying that K also grows at best power-functionally. Thus Y grows at
best power-functionally as well.

Furthermore, it follows from (75) that if K were constant, A (and thus
Y ) would grow power-functionally. Since the possibility of capital accumula-
tion cannot decelerate output growth, Y does in fact grow power-functionally.
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Let us last consider the case of γ = 1.
From (78), we know that if gKt > (<) 1

1−agAt then ĝKt < (>)0. Likewise,

from (79), we know that if gAt > (<) β
1−φgAt then ĝAt < (>)0. When γ = 1,

however,

β

1− φ
= 1− a, (100)

so

gK0 ≥ gA0/(1− a) (101)

⇐⇒ gKt ≥ gAt/(1− a) ∀t. (102)

By the reasoning following (85), the limits g∗K , limt→∞ gKt and g∗A ,
limt→∞ gAt are defined, finite, and positive. Furthermore, by the continu-
ity of ĝK and ĝA in gK and gA, we must have g∗K = g∗A/(1− a). Thus

g∗K
g∗A

=
1

1− a
(103)

=⇒ lim
t→∞

s(1− SK)a

θSλK
A2−φ
t Ka−1−λ

t =
1

1− a
(104)

=⇒ lim
t→∞

AtK
a−1
t =

( θSλK
s(1− a)(1− SK)a

) 1−a
1+λ−a

by γ = 1 (105)

=⇒ g∗K = s
λ

1+λ−a

( θ

1− a
SλK

(1− SK)a

) 1−a
1+λ−a

by (76). (106)

Finally,

lim
t→∞

gY t = g∗A + ag∗K (107)

= g∗K by (103). (108)
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