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ABSTRACT

A researcher can use a tightly parameterized structural model to obtain internally consistent
estimates of a wide range of economically interesting targets. We ask how reliable these estimates
are when the researcher’s model may be misspecified. We focus on the case of multivariate,
potentially nonlinear models where the causal variable of interest is endogenous. Reliable estimates
require that the researcher’s model is flexible enough to describe the effects of the endogenous
variable approximately correctly. Reliable estimates do not require that the researcher has
correctly specified the role of the exogenous controls in the model. However, if the role of the
controls is misspecified, reliable estimates require a property we call strong exclusion. Strong
exclusion depends on having sufficiently many instruments that are unrelated to the controls. We
discuss how practitioners can achieve strong exclusion, and illustrate our findings with an

application to a differentiated goods model of demand for beer.
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1 Introduction

Answers to economic questions often turn on the causal effects of endogenous variables on out-
comes of interest. Researchers commonly answer these questions by specifying a tightly param-
eterized structural model, and then estimating their model using instrumental variables to address
endogeneity. Examples of this approach include studies of demand (Berry, Levinsohn, and Pakes
19935)), production (Ackerberg, Caves, and Frazer |2015), residential choice (Diamond|2016), hu-
man capital accumulation (Attanasio et al.|2020), banking (Egan, Lewellen, and Sunderam|[2022),
household consumption (Li2021)), and trade (Adao, Costinot, and Donaldson2017)).

A strength of this approach is that a single estimated structural model can often yield answers to
a wide range of counterfactual questions. The approach can therefore be applied in settings where
questions of interest are dictated by the needs of decision-makers and cannot be answered directly
from historical experience.! Precisely because such questions are important, and a structural model
1s an approximation, it is valuable to know how the researcher’s conclusions are affected by the
possibility of misspecification.?

We study two questions. First, theoretically, under what forms of misspecification can struc-
tural estimates remain reliable? Second, practically, how can a researcher concerned with misspec-
ification select an estimator to improve reliability? We focus on the situation where the researcher
wishes to use a single estimated model to answer a potentially rich set of counterfactual questions,
and we allow for both the outcome and the endogenous variable to be multivariate. These decisions
connect our analysis to a large swathe of modern structural estimation.

To answer our two questions, we nest the researcher’s parameterized structural model in a
flexible potential outcomes model in the spirit of Imbens and Angrist|(1994)), Angrist, Imbens, and
Rubin/(1996)), and others. The researcher is interested in the effect of some variable D (e.g., prices)
on some outcome Y (e.g., market shares), where D may be endogenous to unobserved factors

(e.g., preferences) affecting Y, and both D and Y may be vector-valued (e.g., there are multiple

'Nevo and Whinston (2010, p. 71) explain, “The change we are interested in may literally never have occurred before...
so the previously observed effects may not provide a good prediction of the current one. Structural analysis gives us
a way to relate observations of responses to changes in the past to predict the responses to different changes in the
future.”

2As Pakes (2003, p. 195) explains, “Of course the ‘real world’ is complex and we will never get the model exactly
'right’. That, however, is also a rather naive goal. The question is not whether a paper has gotten it ’right’ but rather
whether the paper has provided a more meaningful approximation than the next best alternative. Firms are going to
use data to help make decisions, agencies are going to use it to help determine policies, and academics are going to
use it to interpret market outcomes, whether we like it or not. The only question is whether we can improve on how
this is being done.”



products). The researcher’s model specifies Y as a function of D and some included covariates or
controls X (e.g., product characteristics), with the causal relationships governed by a parameter
vector . The researcher may also have access to some excluded exogenous variables Z (e.g., cost
shifters) that causally affect D but not Y. The nesting model respects the researcher’s assumptions
about which variables causally affect the outcome (see Figure[I]) and which are exogenous, but may
disagree with the researcher’s specified functional form for the outcome. Our analysis therefore
sets aside important questions about the validity of exclusion and exogeneity restrictions that have
been the focus of prior work, and focuses instead on model misspecification.

To answer our first theoretical question, we consider an oracle estimator of the researcher’s
model. Like the researcher, the oracle must select an estimate 0 of the unknown parameter. Unlike
the researcher, the oracle knows the true data-generating process (DGP); the oracle can therefore
select at least as good an estimate as any feasible procedure. To align with common empirical
practice, we require that the oracle uses its preferred estimate 0 of the researcher’s model to answer
any causal or counterfactual question that is asked of it: the oracle does not change its estimate to
suit the question.

We suppose that the economic targets take the form of causal summaries, which are generalized
weighted averages of partial derivatives of the outcome with respect to the endogenous variable.
The answers to many economic questions of interest (e.g., average own- or cross-price elasticities,
or the level of demand or change in surplus at a counterfactual price) are causal summaries, and
many of our results extend directly to the more general case of targets (e.g., the equilibrium price
effects of a merger) that can be written as smooth functions of the potential outcomes.

We ask when the oracle is guaranteed to be able to estimate all causal summaries approximately
correctly. Such a guarantee naturally requires a restriction on misspecification, but prior work
has not shown the form this restriction takes. We find that the necessary restriction is that the
researcher’s model be flexible enough to get the causal effects of the endogenous variable D on
the outcome Y approximately right for some value of the unknown parameter. In this case, we say
the researcher’s model satisfies approximately causally correct specification, and we show how to
adapt this characterization to situations in which the researcher is interested only in a subset of
causal summaries.

Approximately causally correct specification is quite restrictive in some important respects. If,
for example, the researcher models market shares using a multinomial logit model of demand, it

is well-known that the researcher’s model implies very restrictive substitution patterns (see, e.g.,



Berry, Levinsohn, and Pakes [1995). Approximately causally correct specification requires that
these restrictive substitution patterns are a good approximation to the substitution patterns in the

true DGP.

Figure 1: Causal graph of observed variables in the researcher’s model

Note: Appendix Figure[I] presents a causal graph that includes unobserved variables.

Approximately causally correct specification is quite permissive in other important respects.
In particular, approximately causally correct specification allows the researcher to have badly mis-
specified the way the control variables affect the outcome. If, for example, the researcher models
market shares using a multinomial logit model of demand, and assumes that mean utility for a
product depends on the product’s characteristics via some particular functional relationship, ap-
proximately causally correct specification allows that this functional relationship under the true
DGP may be arbitrarily different from the one specified by the researcher.

The answer to our theoretical question tells us how to pose our practical question. The best
the researcher can hope for is to estimate causal summaries approximately correctly under approx-
imately causally correct specification. We call this property approximate causal consistency and
ask what feasible estimators achieve it. Motivated by the common use of Generalized Method of
Moments (GMM, Hansen| 1982), we focus on a class of estimators that ensure that the unobserv-
ables implied by the model are orthogonal to a weighted combination of instruments. Consistent
with common practice, the instruments may be functions of the included control variables X, the
excluded variables Z, or both.

Under regularity conditions, we find that the researcher’s estimator is approximately causally
consistent if and only if it satisfies a condition that we call strong exclusion. Strong exclusion
requires that sufficiently many of the instruments be functions of excluded variables, and that these
functions are mean-independent of the controls. Strong exclusion also typically requires that not
too many of the instruments are functions only of the controls. Intuitively, strong exclusion limits

the impact that misspecification of the controls can have on the researcher’s conclusions about the
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causal effects of the endogenous variable. When strong exclusion fails, such misspecification can
lead the researcher’s estimator to perform poorly. We show that strong exclusion is important even
if the researcher is willing to focus on a fairly narrow class of causal summaries. We provide a
recipe to enforce strong exclusion provided the researcher has access to excluded variables.

We illustrate our findings in an application to differentiated goods demand estimation. We
model a researcher who aims to learn the average own-price elasticity and does not know the DGP.
We discipline the DGP by calibrating it to Miller and Weinberg’s (2017) estimated model of the
demand for beer. When the researcher’s model is approximately causally correct, only estima-
tors satisfying strong exclusion perform well across situations in which the role of the controls is
misspecified.

Our theoretical analysis assumes that the researcher’s estimator converges reliably to a well-
defined population estimand, and thus sets aside important issues of instrument strength and ef-
ficiency that have been the focus of prior work.? In practice, because enforcing strong exclusion
requires using sufficiently many instruments that are mean-independent of the included controls,
enforcing strong exclusion may reduce power. We discuss steps that researchers can take in the
direction of strong exclusion without enforcing it fully, and show the benefits and drawbacks of
these steps both theoretically, and numerically in our application.

A wide range of applications of structural methods in economics fit our setting. A leading
example is demand for differentiated products (Berry and Haile 2021} Gandhi and Nevo|[2021]).
Following ideas in Berry, Levinsohn, and Pakes| (1995} see also |Bresnahan |1987), a large body of
work addresses price endogeneity using instruments constructed as a function of the characteristics
of the products available in the market.* Strong exclusion fails in these cases because the estimators
do not use instruments that depend on excluded variables. Some studies (e.g., Berry, Levinsohn,
and Pakes|1999; Miller and Weinberg 2017} |Backus, Conlon, and Sinkinson|2021) use functions of

both included variables (e.g., product characteristics) and excluded variables (e.g., cost shifters) as

3Regarding instrument strength and efficiency in the context of the demand for differentiated goods, see, for example,
Reynaert and Verboven| (2014), Rossil (2014)), |/Armstrong| (2016)), (Gandhi and Houde| (2020), and (Gandhi and Nevo
(2021). |Gandhi and Houde| (2020) recommend using carefully chosen functions of included variables as instruments
in order to improve instrument strength.

4Gandhi and Nevo (2021) write that “By far, the most popular IVs are ... the characteristics of all products in the
market” (p. 92). They explain that these instruments “are informative because they can be used to measure the
proximity of competition... and therefore should be correlated with price and other endogenous variables” (p. 92).
For examples of other work using instruments constructed as a function of included variables, see Bayer, Ferreira,
and McMillan| (2007) and |Bourreau, Sun, and Verboven| (2021). A literature following |Park and Guptal (2012} and
reviewed in |Qian, Koschmann, and Xie|(2024) recommends methods for correcting endogeneity that do not require
excluded variables.



instruments, but construct their estimators in such a way that strong exclusion will typically fail.’
We are not aware of estimates of differentiated goods demand models where strong exclusion
holds. Appendix [D.3] extends our analysis to cover dynamic settings such as the estimation of
production function models with input endogeneity.

A large literature following Imbens and Angrist (1994) and Angrist, Imbens, and Rubin|(1996)
studies the interpretation of instrumental variables estimators under potential model misspecifi-
cation. Within this literature our work is closest to that of |/Angrist, Graddy, and Imbens (2000),
who study the nonparametric interpretation of estimands in linear simultaneous equations models
when instruments are based on excluded exogenous variables. We differ in studying recovery of
the full range of causal summaries, and in considering settings in which the outcome variable is
potentially vector-valued, the researcher’s model is potentially nonlinear, and the instruments may
not be based on excluded exogenous variables. Our results are applicable to important economic
contexts in which nonlinear structural models are estimated using instruments, for which (to our
knowledge) a similar analysis of reliability under misspecification was not previously available.
We illustrate connections to the literature on linear models with examples in the text, and discuss
these connections in more detail in Section 4.3|and Appendix

Recent work has studied issues of nonparametric identification in settings like those we con-
sider.® As our theoretical and numerical findings show, the availability of an excluded variable, or
even its use in a set of instruments, is not sufficient to ensure good performance of the researcher’s
estimator. Appendix presents some results on nonparametric identification for our setting and
discusses connections to prior work.

The notion of strong exclusion that we study is related to Ackerberg and Crawford’s (2009)
and Ackerberg, Crawford, and Hahn’s (2011) suggestion to learn the effect on an outcome of
one endogenous variable in the presence of a second endogenous variable by employing instru-
ments that are orthogonal to the second variable. It is also closely related to the suggestion in
Borusyak and Hull| (2023) to recenter instruments (in the linear model) by subtracting their condi-
tional mean given observed covariates, and to conditions discussed in Kolesar| (2013)) and |Blandhol

et al.[(2022).” As our theoretical development shows, strong exclusion concerns not only which

For examples of other work using instruments constructed as a function of included and excluded variables, with
more instruments than parameters, see Villas-Boas| (2007), [Decarolis, Polyakova, and Ryan| (2020)), |[Fan and Yang
(2020), Reynaert| (2021)), and |[Hristakeval (2022).

6See, for example, Berry and Haile (2014, 2016)) regarding differentiated goods demand models and|Gandhi, Navarro,
and Rivers|(2020) regarding production models.

TOur work also relates to broader econometric literatures on efficient choice of instruments under correct specification
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instruments are chosen, but also how they are used in constructing moment conditions, something
that plays an important role in the GMM-type estimators we consider here and that is not (we
think) obvious from prior work.

The remainder of the paper proceeds as follows. Section 2| sets up our model. Section
defines causal summaries and shows what an oracle estimator can achieve. Section Ml defines
strong exclusion, explains it in examples, and presents our main results on the importance of strong
exclusion for approximate causal consistency. Section [5] presents our application to the demand
for beer and uses it to illustrate how to enforce strong exclusion in practice. We reserve our most
general theoretical statements, and some technical lemmata, for the appendix, with the main text

focusing on the key aspects that we think are most relevant to practitioners.

2 A Potentially Misspecified Structural Model

The researcher observes variables (Y;, D;, X;, Z;) for units ¢ = 1,...,n. All variables are finite-
dimensional, and Y; € R’. To capture the possibility of misspecification, we introduce a model
with two layers: first, a nesting model that is consistent with the true data generating process
(DGP) and summarizes the causal relationships between the observed variables; and second, the

researcher’s model which is more restrictive and may rule out the true DGP.

2.1 Nesting Model

The nesting model is a general potential outcomes model (e.g., Imbens and Angrist [1994; An-
grist, Imbens, and Rubin||1996). Under the nesting model, the observed outcome satisfies Y; =
Y; (D;, X;, Z;) for Y; (d, x, z) a potential outcome function, and similarly the observed endoge-
nous variable satisfies D; = D; (X;, Z;) for D; (z, z) a potential endogenous variable function.
The potential outcome function Y; (-) and potential endogenous variable function D; (-) summa-
rize the true causal relationships between the variables. These functions may vary richly across
units for reasons that are unobserved by the researcher, making it difficult to learn the underlying

causal relationships.

Example. (Demand.) A researcher observes the log quantity Y; € R of a single commodity (e.g.,

(e.g., Hansen| 1982}, (Chamberlain|[1987; Newey|[1990) and optimal estimation under certain forms of potential mis-
specification (e.g., Kitamura, Otsu, and Evdokimov|2013; |Armstrong and Kolesar|2021; |Bonhomme and Weidner
2022). Analytically, our approach differs from much of the latter literature in that we consider misspecification that
is nonlocal, in the sense that the degree of misspecification remains fixed as the sample grows large.
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fish as in Angrist, Graddy, and Imbens 2000) in markets 7 = 1, ..., n, along with the log price D;,
a demand shifter X; € R such as log income, and a cost shifter Z; € R such as weather. Or,
a researcher observes the market shares Y; € R” of J differentiated products (e.g., automobiles
as in |Berry, Levinsohn, and Pakes| 1995, or beer as in Miller and Weinberg|2017), along with the
prices D; € R’ of each product, a matrix X; € R4*/ collecting the A characteristics of each of
the J products, and cost shifters Z; € R” such as the distance to the owners’ closest brewery. The
potential outcome function Y; (d, z, z) summarizes the counterfactual demand for each product
in market i. The potential endogenous variable function D; (x, z) summarizes the counterfactual

price of each product in market 7.

Example. (Firm production.) A researcher observes log output Y; € R” across .J periods for firms
1 =1, ..., n. For instance, these may be particular manufacturing firms observed over several years
(e.g., Olley and Pakes| 1996} |Gandhi, Navarro, and Rivers/[2020). The researcher observes the
vector of log static inputs D; € R” such as labor, and other observables X; ; which may include
dynamic inputs such as capital. The researcher also observes input cost shifters Z; ; such as factor
prices. The potential outcome function Y; (d, x, z) summarizes the production function for firm
i, and the potential endogenous variable function D; (z, z) summarizes the counterfactual static

input choices of firm 7.

Throughout our analysis, we maintain two important restrictions on the nesting model, both of
which are in line with a long tradition of work studying instrumental variables. The first restriction
is exclusion: we assume that the potential outcome function Y; (d, z, z) does not directly depend on
Z;, and so we simply write the potential outcome function as Y; (d, z) and the observed outcome as
Y; (D; X;). In our demand estimation example, the exclusion restriction imposes that cost shifters
do not directly affect consumer demand. In our firm production example, the exclusion restriction
imposes that input price shocks do not directly affect output. We therefore refer to Z; as excluded
variables since they are assumed not to causally affect the outcome, and we conversely refer to X;
as included variables since they may causally affect the outcome under the nesting model.

The second restriction is exogeneity, which requires that the excluded variables are unrelated
to the unobserved determinants of the outcome and endogenous variable. More precisely, we will
consider two forms of exogeneity: first, unconditional exogeneity meaning
(Y:(-),D; () L (X;, Z;); and second, conditional exogeneity meaning (Y; (-), D; (+)) 1L Z;| X;.

Notice that unconditional exogeneity implies conditional exogeneity. Both forms of exogeneity



therefore imply that, conditional on the included variables X;, the excluded variables Z; are ex-
ogenous with respect to the unobserved determinants of the outcome Y; and endogenous variable
D;. But only unconditional exogeneity implies that the included variables X; are also exogenous.

We will state our negative results (on the absence of a desirable property of an estimator) under
unconditional exogeneity, which immediately implies that they hold under conditional exogeneity.
In this sense, none of our negative results hinge on a concern that the included variables X; are
endogenous.

We will state our positive results (on the presence of a desirable property of an estimator) under
conditional exogeneity, which immediately implies that they hold under unconditional exogeneity.
In this sense, all of our positive results hinge on the assumption that the variables Z; are exogenous,

at least once we have conditioned on X.

Example. (Demand, continued.) Suppose that the cost shifters Z; are determined by external fac-
tors, such as exchange rates (as in, e.g., (Grieco et al., 2024). Unconditional exogeneity requires
that both the product characteristics X; and the cost shifters Z; are independent of the unobserved
determinants of market shares, such as preferences, that are captured in the potential outcome func-
tion Y; (d, z, z). One reason that unconditional exogeneity may hold is that product characteristics
are chosen before firms learn the unobserved determinants of market shares (see, e.g., |Wollmann,
2018). One reason that unconditional exogeneity may fail is that product characteristics are chosen
with knowledge of the unobserved determinants of market shares.®

Conditional exogeneity allows that product characteristics and cost shifters are not independent
of these unobserved determinants of market shares, but requires that, once we condition on the
product characteristics, the cost shifters become independent of these unobserved determinants.
One reason conditional exogeneity may hold is that observed product characteristics proxy for
factors (such as time trends) that affect both cost shifters and unobserved determinants of market
shares. One reason that conditional exogeneity may fail is that product characteristics are chosen
with knowledge of both the unobserved determinants of market shares and the values of the cost

shifters.

Throughout the rest of the paper, we assume that (Y; (), D; (+), X;, Z;) are drawn i.i.d. for

8Nevo| (2000b) writes, “the main problem [with product characteristic instruments] is that in some cases the assumption
that observed characteristics are uncorrelated with the unobserved components is not valid” (p. 535). See also, for
example, discussions in [Berry, Levinsohn, and Pakes| (1995)), |Bresnahan| (1996), |/Ackerberg and Crawford, 2009,
Ackerberg et al.l 2011} Rossi|(2014),|Gandhi and Nevo| (2021), Berry and Haile|(2021)), and |Petrin, Ponder, and Seo
(2022).



units ¢ = 1,...,n according to some distribution G that lies in a class G satisfying the preceding
exclusion and exogeneity restrictions. The class of distributions G summarizes the nesting model.
Assumption[I]in Appendix [A]collects additional regularity conditions about the nesting model that

we maintain throughout the paper.

2.2 Researcher’s Model

The researcher’s model is a special case of the nesting model. Under the researcher’s model, the
causal effects of the endogenous variable and included variables on the outcome are governed
by a finite-dimensional parameter # € R, and the unobservables in the model are captured by
a finite-dimensional mean-zero variable £ € R’. More specifically, the researcher specifies that
Y; = Y* (D, X, &; 0) for a function Y* (+) that is known to the researcher up to the parameter 6.
Unlike the potential outcome function under the nesting model, the function Y* (-) is not indexed
by i since all unobserved factors are contained in ¢; € R” under the researcher’s model.

Importantly, we assume that the researcher’s model is invertible, meaning that there is a func-
tion R*(-;0), known up to the parameter § and determined by the form of Y*(-), such that
& = R*(Y;, D;, Xi; 0p), where 0 is the true value of the parameter . This invertibility property
is what will enable the researcher to estimate their model via GMM. Although not all structural
models in economics are invertible in this sense, many canonical ones are.

We will decompose § = («, 3) where we may loosely think of the parameter  as governing
how the included variables X; shift the implied residual, and of the parameter « as governing the

remaining causal effects in the model. We will sharpen this distinction in Section 3]

Example. (Linear model.) Suppose the outcome variable Y; is a scalar (so J = 1), and the
researcher’s model is linear with Y* (D;, X;,&;0) = aD; + X;5 + &;.

For instance, in the example of demand for a commodity, this researcher’s model imposes that
log quantity demanded Y; is linear in log price D; and in log income X;, or equivalently that
demand is isoelastic in price and income. In this case, the residual function is R* (Y;, D;, X;;0) =
Y;—aD;— X;3. Angrist, Graddy, and Imbens (2000) study the causal interpretation of IV estimates
of o in such a setting.

Analogously, researchers often analyze firm production assuming a Cobb-Douglas technology,
in which case the researcher’s model for the log output of firm ¢ in period j is again a linear

function of its contemporaneous, log input quantities (see, e.g., |Ackerberg, Caves, and Frazer

10



2015, Section 4.3.3; Blundell and Bond| 1998, 2000). Accommodating the instrumental variable
strategies commonly used in production function estimation requires us to extend our analysis to a
dynamic setting. Since this extension requires more cumbersome notation but does not introduce

new ideas, we provide it in Appendix |D.3

Example. (Logit model.) Suppose now that the outcome variable Y; is a vector (so J > 1), and the
researcher’s model is a logit model for the market shares of differentiated products (for example,

different beers). In this case,

D; i+ X, iy
Y} (Dy X, 6:0) = — (0D £ X £8)
1 + Zj’:l exp (aDi,j’ + Xi,j’ﬂ + gi,j’)
where j = 0 denotes the outside option (for example, not buying any beer). In this case, we can

define the residual function as
R (Yi, Dy, X350) =InY; ; —InY;o —aD;; — X ;3

where Y, = 1 — Z;’:l Y; ; 1s the market share of the outside good, and R;f (+;0) denotes the gth
element of the residual function. The model is invertible because of the aggregate residual &;;
a discrete-choice model without such a residual, such as that in |Gentzkow| (2007), need not be

invertible in the same sense.

Example. (Random coefficients logit model.) Suppose instead that the researcher assumes, in
each market 7, there is a unit mass of consumers c that each choose one product 7 to maximize
their utility given by uc;; = o1 D;; + Xi; (84 ve;) + & j + €cij» Where v,; € R4 is an i.id.
mean-zero random coefficient with a distribution £ (-; o) known up to the parameter ap, and €. ; ;
is a consumer-specific utility shock that follows an i.i.d. type-I extreme value distribution and is
independent of all other variables. In this case, the researcher’s model for product market shares is

given by

exp (1 Dij + Xij (B + vei) +&ij)
1 + Z}-flzl exp (OélDi,j/ -+ X’i,j/ (5 + Vc,i) —+ fi,j’)

}/;*(Dlszaflve) - dF (Vc,i;OQ)-

Under conditions discussed in, for example, Berry (1994), Berry, Levinsohn, and Pakes|(1995), and
Berry, Gandhi, and Haile|(2013)), the researcher can recover &; via aresidual function R;f (Y;, D;, X;;0)

that depends on market shares, product prices, product characteristics, and 6.
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3 Summarizing Causal Effects Under Potential Misspecification

We suppose that the researcher is interested in studying the causal or counterfactual effects of
the endogenous variable D; on the outcome Y;. To describe these, we assume that the poten-
tial outcome function Y; (d, X;) is differentiable in the endogenous variable d under the nesting
model, such that causal effects at the observed value (D;, X;) are captured by the partial deriva-
tive 0Y; (D;, X;) /OD;. Of course this partial derivative is an extremely rich object. In the de-
mand estimation example with J products, the partial derivative 0Y; (D;, X;) /0D; isa J x J
matrix that summarizes how the market share of each product varies with respect to the price
of every other product in the market. Moreover, because demand may be nonlinear, the value
of 9Y; (D;, X;) /OD; generally depends on the value of (D;, X;) at which it is evaluated, so that
9Y; (D;, X;) /OD; will typically differ across units 7. Finally, a researcher may be interested in
evaluating the partial derivatives 9Y; (d, X;) /Od at values of d other than the one that is observed,

for example to integrate these derivatives and thus predict demand at a counterfactual price.

3.1 Summarizing Causal Effects

In order to tame the richness of causal effects in these settings, researchers commonly report sum-
maries of causal effects, such as averages. In the demand estimation setting, for example, the
average own-price elasticity evaluated at observed prices D; is related to the extent of market
power (Miller and Weinberg| 2017). To describe a wide range of such targets that may be of
economic interest, we define a causal summary T as some generalized weighted average of the
partial derivatives 0Y; (d, X;) /Od, where the average may be taken across elements of the ma-
trix 9Y; (d, X;) /Od, across units i, and/or across values d, and where the weights may be data-
dependent or even DGP-dependent. We let 7 be the set of all such summaries with bounded
weights. We assume that all causal summaries are scalar-valued, but if a researcher is instead

interested in multi-dimensional summaries, our results naturally extend.

Definition 1. A causal summary 7 is a generalized weighted average of the partial derivatives

oY (d, X;) /9d, i.e.,
T (G) = Z EG

),

0
/ aleYi,j’ (d, Xi) dwi j 3 (d)

where the expectation E¢; [] is taken with respect to draws of units ¢ from the DGP G and where

dw; ; i (+) are weights. The set 7 consists of all causal summaries with uniformly bounded weights,
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max; j [ |dw; ;o (d)] < W for all i and some W > 0. We use the notation d; without implying
that dim (d) = J in general.

Example. (Demand for differentiated goods.) We can measure the average degree of substitutabil-

ity of the average product with other products by the average own-price elasticity at observed

. st lx~J 1x-n Dij 9Yi, :
prices. In a sample of n markets, thisis 53 .5_, > 0Ly ¥ oD In expectation under the DGP G,

itis 7 (G) = % ijl Eq [6; gg—ﬂ The average own-price elasticity at observed prices is there-
fore a causal summary where the weights dw; ; ; (d) assign mass %%—J]' when j' = jand d = D;,
and zero mass otherwise. These weights are data-dependent. An estimated average own-price elas-
ticity is reported in many articles that estimate demand for differentiated goods (e.g., Bento et al.
2009, Table 4; Starc 2014, page 208; Miravete, Seim, and Thurk/ 2018} Table V; |Grieco, Murry,
and Yurukoglu|[2024, Table V).

We can measure the relative substitutability of one good, say j = 1, with respect to two other

D; 2 0Yi1 D; 3 0Yi1

Y;1 0D; 2 Y;1 0D; 3]

goods, say j = 2, 3, by the average difference in cross-price elasticities, 7 (G) = Eg {

at observed prices. The average difference in cross-price elasticities at observed prices constitutes

D; o
Y1

a causal summary where the weights dw; ; ;» (d) assign positive mass when j = 1,5/ = 2

9

i

and d = D;, negative mass — 13 when j = 1,5/ = 3, and d = D;, and zero mass otherwise.
Another example with naturally negative weights is the difference in average elasticities between
two groups of markets (e.g.,|Gandhi, Lu, and Shi|2023, Table 8).

We can measure the extent to which an increase in the price of one product, say 7 = 1, displaces

0Y;2/0D; 1 }

demand to another product, say j = 2, by the average diversion ratio, 7 (G) = Eg [m

at the observed prices. The average diversion ratio constitutes a causal summary with weights

1

——-—— when j = 1, j/ = 2, and d = D;, and zero mass otherwise.
9Y;,/0D;

dw; j j» (d) that assign mass
These weights depend on the potential outcome function. An estimated average diversion ratio is
reported in, for example, Backus, Conlon, and Sinkinson| (2021} Table 4), Conlon and Mortimer
(2021, Table 4), |Almagro et al. (2024, Table 2), and Fosgerau, Monardo, and de Palmal (2024,
Table 6).

Suppose that an economic model predicts the change A; in price D; in each market ¢ due
to a change in market structure (e.g., a merger). In a given market, the resulting change in the
market share of good j is [ Wdt. In expectation under the DGP G, it is 7 (G) =
Eq [ fol Wdt} . The counterfactual change in market share constitutes a causal summary

with data-dependent weights dw; ; ; (d) that are uniform on the interval [D; ;, D; ; + A;] when

Formally, the weights can be negative because they are based on a signed measure (see Appendix .
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j = j', and assign zero mass elsewhere. Because the consumer’s surplus is an integral over
counterfactual changes in demand, and an integral is a linear functional, the average change in
consumer’s surplus in response to the change A; in prices, as well as the consumer’s surplus
at observed prices, also constitute causal summaries.'® An estimated average or total change in
consumer’s surplus in response to a counterfactual change in prices is reported in, for example,
Nevo (2000a, Table 7), Town! (2001, p. 986), Miller and Weinberg| (2017, Table X), Dopper et al.
(2024, Table 3), and |Grieco, Murry, and Yurukoglu (2024, Figure XII).

An appealing aspect of the researcher’s model is that it implies an estimate of any causal sum-
mary 7 € T given an estimate of the unknown parameters 6,. More specifically, given an estimate
5, the researcher can estimate the unobservable &; (é) = R" (Y;, D;, X;; é) using the residual func-
tion, and thereby estimate the partial derivative JY;* (d, X & (5) ; 5) /0d for each observed unit
1 and at each value d. The estimated partial derivatives imply an estimate 7* (5) of any causal
summary under the researcher’s model. Thus, a researcher with an estimate 0 of the parameter 6,
automatically possesses mutually consistent estimates of a wide range of economically interesting
targets. Of course, the researcher’s model may be misspecified and so these estimates need not be
correct. We measure the researcher’s error for a given causal summary 7, given some true DGP

G € g, by the absolute value |7* (é) -7 (G)‘ of the difference between the value 7* (5) implied

by the researcher’s estimate and the true value 7 (G) under the given DGP.

Definition 2. The researcher’s error for a given causal summary 7 € 7 under parameter value 6
and DGP G is the absolute difference |7* (/) — 7 (G)| between the true value 7 (G) of the causal

summary and its model-implied counterpart
* a *
T (0) = 3 Ea | [ 5Vt (4 X0, 6 (0)30) dwryr (d)
33 J

for §; (0) = R* (Y;, Di, Xi;0) .

Example. (Linear model, continued.) Here, the model-implied counterpart of the average price

elasticity at observed prices is 7% (f) = a. The model-implied counterpart of the average change

OWith quasilinear utility, the expected change in consumer’s surplus can be written as 7(G) =
> Ea |:Ai,j fol 01 d“"f(t(D&jsAi)’Xi)dtds]; see, e.g., [Berry and Haile (2014, Section 4.2). The baseline con-
sumer’s surplus is then the change in consumer’s surplus from an increase in prices large enough to take all market
shares to zero. Though many common formulations imply quasilinearity (again see Berry and Haile|2014} Section
4.2), this causal summary remains well-defined even if the set of potential outcomes models includes models of
demand that are microfounded without quasilinear utility.
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in log demand when increasing the log price by A is 7 (0) = aA.

Example. (Logit model, continued.) Here, the model-implied counterpart of the average own-
price elasticity at observed prices is 7% (0) = o= Z}]:1 E¢[D;; (1 —Y;;)]. The model-implied
values of cross-price elasticities and counterfactual changes in demand likewise follow from stan-

dard formulae.

3.2 Bounding Error with an Oracle Estimator

To analyze the researcher’s error without reference to any particular approach to estimation, we
consider an oracle that works within the confines of the researcher’s (potentially misspecified)
model. In particular, the oracle can choose an estimator (G) of the parameters of the researcher’s
model as a function of the true DGP (Y; (-), D; (-), X;, Z;) ~ G. This is infeasible in practice, of
course: such an estimator can depend, for example, on the distribution of the true partial derivatives
dY; (d, X;) /0d; because knowing these requires observing the same unit (e.g., market) at different
values of the endogenous variable (e.g., prices), their distribution is not generally identified even in
randomized experiments (e.g., Manski 1997} Fan, Guerre, and Zhu [2017). Analysis of the oracle
therefore establishes the outer limit of what the researcher could possibly hope to achieve under
their model. We use the oracle to examine what forms of misspecification the researcher can and
cannot hope to tolerate.

Towards an answer, we say that the researcher’s model satisfies causally correct specification
if there is some value 6 of the unknown parameter under which the researcher’s model correctly de-
scribes the causal effects of D; on Y}, so that, for example, 0Y; (D;, X;) /0D; = 0Y;* (D;, X;,&:;0) /OD;
under the true DGP. Importantly, causally correct specification only requires that the researcher’s
model correctly describes the causal effects of D; on Y; for some value of the parameter ; this need
not be the value that the researcher estimates. At the same time, because 0 is finite-dimensional and
the distribution of 9Y; (D;, X;) /OD; is not, it appears unlikely that causally correct specification
will hold exactly in typical applications.

We measure departures from causally correct specification with the distance from causally cor-
rect specification, defined as the distance of the true DGP to one with causally correct specification.
To state this definition, for a given value of the researcher’s parameter 6, let § (0, G) be the largest
expected discrepancy, under the true DGP G, between the true causal effects of D; on Y; and those

implied by the researcher’s model under . We then let § (G) be the smallest possible value of
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(0, G) under any parameterization of the researcher’s model. We take § (G) as our measure of

the distance from causally correct specification of the researcher’s model.

Definition 3. The researcher’s model satisfies causally correct specification under a DGP G if
there is some value # of the parameter at which the researcher’s model correctly describes the
causal effects of D; on Y;. The distance from causally correct specification J (G) measures the

degree to which the researcher’s model departs from causally correct specification under G.

That is, 0 (G) = infy (0, G) where

9(6,6)=2_Fa [Sip’ ad, ad; !

33"
for &; () = R* (Y;, D;, X;; 0), and causally correct specification holds if and only if 6 (G) = 0.

Intuitively, believing that the researcher’s model is close to causally correct specification means
believing that the researcher’s model is flexible enough to get the causal effects of interest approx-
imately right under some value of 6.

Our next result shows that approximately causally correct specification—that is, bounded dis-
tance from causally correct specification—is necessary (and sufficient) for even an oracle to ensure

bounded estimation error across the full range of causal summaries.

Proposition 1. For any bound b > 0, if § (G) is unbounded over G, then there is no oracle esti-

T* (é (G)) -7 (G)‘ < b for all causal summaries T € T and all

mator 0 (+) that achieves error
Ged.

By contrast, there exists some oracle estimator g () such that, for any bound b > 0 on
the error; there is a bound 5 > 0 on the distance from causally correct specification such that

T* (é (G)) -7 (G)‘ < b for all causal summaries T € T whenever ¢ (G) < 0.

Because the oracle estimator 0 (G) can depend directly on the distribution of potential outcomes,
the conclusions of Proposition [T hold irrespective of what form of exogeneity (if any) we impose
on X;, Z;.

Proposition |1 shows that approximately causally correct specification is necessary and suffi-
cient for approximately correct oracle estimation of causal summaries. In this sense, approxi-
mately causally correct specification emerges from our analysis as the property the researcher’s
model must attain in order to deliver reliable answers to the full range of economic questions that

we consider. Before further unpacking the economic content of causally correct specification, we
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pause to discuss the interpretation of Proposition [I| with narrower, or broader, classes of economic

questions.

Remark 1. (Restrictions on causal summaries.) While Proposition [1| considers a researcher inter-
ested in all causal summaries 7, the proof in Appendix [A.1|shows that an analogous result applies
for a researcher interested in a subset of causal summaries 7* C 7. In particular, if 7* con-
tains causal summaries that put nonzero weight only on certain partial derivatives (e.g., own-price
derivatives at observed prices), then an analogue of Proposition |1| applies, replacing ¢ (G) with a
counterpart that depends only on the distance from correct specification of those particular partial

derivatives.

Remark 2. (Relaxations of causal summaries.) While Proposition |1|{ focuses on causal summaries

that are linear in the partial derivatives 8%]_}/;7]-/ (d, X;), arguments similar to those in Appendix |A.4
imply that for a suitably-defined oracle estimator 6 (), Y;* (d, X, & (9~ (G)) -0 (G)) approximates

Y; (d, X;) uniformly in d as 6 (G) — 0, so the true and model-implied potential outcomes match
in levels, not just derivatives. Consequently, under mild regularity conditions the positive result in
Proposition [T} as well as the positive results we obtain for feasible estimators in Section 4] can be
extended to accommodate any summary that can be expressed as an expectation of a continuous
function of the potential outcomes Y; (+). This would include, for example, the equilibrium change
in price under a counterfactual change in market structure, provided that equilibrium conditions

imply that this change is continuous in Y; (-).

3.3 Interpreting Causally Correct Specification

Proposition [I] shows that approximately causally correct specification is necessary for the re-
searcher to reliably estimate causal summaries. We next unpack the economic content of causally
correct specification. We show that causally correct specification holds whenever the true poten-
tial outcomes match the researcher’s model up to an i- and z-dependent shift in the residuals.
It follows that while approximately causally correct specification requires small misspecification
of causal effects of D; on Yj, it permits arbitrary misspecification of causal effects of X; on Y;.
Assumption |2 in Appendix [A|states additional regularity conditions that we maintain for this sub-
section, including that the support of Y; (-) | X; does not depend on X;.

To state our main result in this section, note that we can decompose any residual function

R*(Y;, D;, X;; 0) additively into a component, L** (X;; (), that depends only on X;, and a compo-
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nent, R** (Y;, D;, X;; a), that depends on Y}, D;, and X;, where we have partitioned the parameters

as 0 = («, B). Specifically, we can write

R*(Y;, Di, X;3;0) = R™ (Yi, Dy, Xis o) — L™ (X35 8) . 6]

The decomposition in (1)) is without loss of generality because we can always take L** (X;; §) to
be null and 3 to be empty, in which case R* and R** coincide.
The decomposition in (]) is helpful because it allows us to rewrite the potential outcomes under

the researcher’s model as
Y* (D, X3, &;0) =Y (D, X3, &+ L™ (X4 8) ;)

where Y** (+) is a model-implied potential outcome function in which X; enters, at least in part,
via an additive shift L** (X;; () to the residual &;.
Our main result in this section is that causally correct specification requires correct specification

of the function Y** (), but does not restrict the misspecification of the function L** (-).

Proposition 2. Causally correct specification holds if and only if, under the true DGP G, there is

some value o such that

Y;l (d7 Q?) =Y (d7 T, f’L + Ll (.CU) ;Oéo)
for some (possibly unknown) unit-specific function L; (x) and some residual &; € R”.

Taken together, Propositions |1| and [2| imply that the oracle can reach approximately correct
conclusions about causal summaries even if the form of L** (X;; 3) is badly misspecified.!! Intu-
itively, because causal summaries concern effects of D; on Y;, Proposition|[I]is restrictive regarding
misspecification of effects of D; on Y;, but permissive regarding misspecification of effects of X;

onY;.

Example. (Linear model.) Recall that the researcher assumes that Y; = aD; + X;08 + &;. As
we increase the distance from causally correct specification, we allow for departures from a lin-
ear, homogeneous effect of D; on Y;. Under causally correct specification, we may have that
Y (D;, X;) = aoD; + L; (X;) + & for L; (X;) an unknown function, and o some value of the

price coefficient . Here, the researcher is correct in supposing that the effect of D; on Y] is linear

UIf L** (X;; 8) is null and f3 is empty, so that the researcher’s model does not include such an additive shift, Proposi-
tion [2) shows that causally correct specification can hold even if the true model does feature such an additive shift.
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and homogeneous, but may have misspecified the way that the included variables (e.g., log income)
affect the outcome (e.g., log quantity demanded), and may have omitted other unit-specific factors.
For example, the true DGP may have that log income enters quadratically instead of linearly,
L; (X;) = X, + X?v, or that log income enters linearly but with a market-specific coefficient,

L; (X;) = X;05;. In the latter case, the true potential outcome function is parameterized by (f;, &;).

Example. (Logit model.) Recall that the researcher assumes that Y; follows a multinomial logit
model, so that the model-implied causal effect of D; on Y; follows a tightly parameterized structure
with, for example, 0Y;*; (D;, X;, &;;60) /OD; ; = aY;; (1 =Y, ;) and 0Y; (D;, X;,&;0) /OD; i =
—aY;;Y;r. As we increase the distance from causally correct specification, we allow for more
general substitution patterns. Under causally correct specification, we may have that the potential

outcomes satisfy

Y., (Ds, X;) = — 5P (@0Diy o+ Lig (Xiy) + &)
! 7 1+ Z}‘]':1 exp (aoD; o + Lij (Xij) + & jr)

for L, ; (-) an unknown function, and o, some value of the price coefficient «. Here, the researcher
has correctly modeled the effect of D; on Y, but may have misspecified the way that the included
variables X ; (e.g., product characteristics) affect the outcome (e.g., market shares). For example,
taking for simplicity the case where X ; is a scalar, the true DGP may have that the product

characteristic enters quadratically instead of linearly, L; ; (X; ;) = X; ;8+X?

i.;7» or that the product

characteristic enters linearly but with a market-specific coefficient, L; ; (Xi,j) = Xi ;B
Example. (Random coefficients logit model.) Recall that the researcher specifies the model

exp (1 Djj + X5 (B + veq) + &ij)

Y (Di, X;,650) =
i ) L+ 3y exp (arDig + Xigr (B + vey) + &)

dF (Vcﬂ'; Oég)

where v, ; is a mean-zero random coefficient distributed across consumers according to cdf F' (-; a)
known up to the parameter ;. The parameter 5 can be thought of as controlling the mean pref-
erence for characteristics X ;, the parameter « as controlling the dispersion in the preference for
these characteristics, and the parameter «; as controlling the effect of price on the mean preference.

Under causally correct specification, we may have that the potential outcomes satisfy

exp (a1 D;; + Lij (Xi;) + Xijvei +&ij)

g ) I+ Z}]/:l exp (o1 Dsjr + Lijr (Xij) + Xijve, + &)

dr (Vc,z; 040,2)
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for L; ; (-) an unknown function, and oy = (a1, 0 2) some values of the price coefficient and
dispersion parameter. Here, the researcher has specified the model correctly, up to potentially
misspecifying the way that product characteristics X;; ; affect the mean preference for good j. For
example, again taking for simplicity the case where X; ; is a scalar, the true DGP may have that the
product characteristic affects the mean preference for good j with a quadratic term, L; ; (X; ;) +
Xijves = Xijf + X7y + Xijve, or with a market-specific coefficient, L; ; (X; ;) + Xijveq =
X jBi + X, jvc;. Importantly, these forms of misspecification affect only the mean preference for

the characteristic, and preserve the dispersion in the preference for the characteristic.

Remark 3. (Causally correct specification with an invertible demand system.) Berry, Gandhi, and
Haile| (2013) and Berry and Haile|(2014)), among others, discuss conditions under which a demand
system can be inverted, for example to recover a mean utility for each product (see, for example,
Lemma 1 and Equation 5 inBerry and Haile|2014). Proposition[2]shows that, when the researcher’s
specified demand system can be inverted to recover a mean utility, causally correct specification
holds when the researcher has specified the form of the inversion correctly, but may have specified
the dependence of the mean utility on observable product characteristics, and (possibly unobserv-

able) market characteristics, incorrectly.

Remark 4. (Specification of the additive shift in the residual.) We suspect that researchers estimat-
ing differentiated goods demand models are often uncertain about how to specify L** (X;; 5). One
piece of evidence for this is the common practice of reporting the sensitivity of research conclu-
sions to alternative specifications of L™ (X;; 3). For example, in their main model of smartphone
demand, Fan and Yang| (2020, Equation 1) allow the mean utility for a given smartphone to depend
on the brand and time period, while in sensitivity analysis, Fan and Yang (2020, Table SA.4) allow
interactions between brand and time period. See also, for example, Nevo (2001, p. 327), (Gordon
and Hartmann| (2013], Table 5), Barwick et al.| (2024, Table A2), and Bokhari, Mariuzzo, and Yan
(2024, Table B.2.C).

Remark 5. (Causally correct specification under no causal effects.) Causally correct specifica-
tion holds when D; has no causal effect on Y; and the researcher’s model allows this possi-
bility. Specifically, causally correct specification holds if under the true DGP G, we have that
Yi(d,X;) = Y;(d,X;) forall d,d’" € D, and if, under the researcher’s model, there is some g
such that Y* (d, X;, &; o) = Y* (d', X;, &5 a0) forall d,d’ € D.
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4 GMM Estimation With and Without Strong Exclusion

To this point, we analyzed the effect of model misspecification without reference to any particular
approach to estimation, establishing that approximately causally correct specification is necessary
and sufficient for approximately correct estimation of causal summaries by the oracle. We next
consider a researcher who estimates their model by GMM using moment conditions that depend
on instrumental variables, where these instrumental variables are transformations of the included
variables X; and the excluded variables Z;, and the moment conditions are motivated by uncondi-
tional exogeneity. We ask under what conditions the researcher’s estimator delivers approximately
correct estimates of causal summaries in large samples.

To construct their GMM estimator, the researcher first selects some function f* (X, Z;) of the
included and excluded variables to serve as instrumental variables. The researcher then constructs

a moment function of the form
1 1 . .
n < n <

Under the researcher’s model and the assumption of unconditional exogeneity, 712 (6y) converges to
zero in large samples, where recall that 6 is the true value of the unknown parameter. Motivated

by this fact, the researcher’s estimator 4 solves

where ) is some weight matrix with population value (2. When interior, the estimator 6 will satisfy

the first-order condition

0= (0)" i () MQQ Zf (X, Z) R (Yi, D, X;30).

where M, is a shorthand for % S (X Zy) %R* (Yi, D;, X;; é) with population value M.
Under standard regularity conditions (e.g., Newey and McFadden|1994), the estimator 0 will
converge in large samples to an estimand 6* (G) that solves a population analogue of the first-order

condition:

0 = Eq [MeQf* (Xi, Z0) R (Y, Dy, X307 (G))]. )
The estimand is well-defined even if the researcher’s model is misspecified, and if the researcher’s
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model holds, it will equal the true parameter value, 0* (G) = 6.

We assume that the researcher’s estimand satisfies an equation of the form,
0= E¢[f&(Xi, Zi) R* (Yi, Dy, X307 (G))] - (3)

An equation of the form of (3) holds for the GMM estimand described in (2)) as well as for esti-
mands of some non-GMM estimators. In the case of the GMM estimand described in (2), we have
16Xy, Zi) = MpQUf* (Xi, Z;), with the subscript G a reminder that the population values of
and My may depend on the DGP. In the special case of just-identified GMM, where f* (X;, Z;) has
the same dimension as 6, we have f% (X, Z;) = f* (X, Z;).

Example. (Linear model, continued.) Here the sample moment function takes the form
1 *
= (X, Z) (Y —aD; — X, 3) .

Suppose the researcher selects instruments f* (X;, Z;) = (X;, Z;) and estimates via GMM. Be-
cause we are in a case of just-identified GMM, we have that f% (X;, Z;) = f*(X;, Z;) = (Xi, Zi)".
Suppose, instead, that the researcher selects instruments f* (X;, Z;) = (X;, Z;, Z?)" and esti-

mates via efficient GMM under the assumption of homoskedastic errors ;. In this case,

-1

(X, Zi) = Eq [(Xi, D) (X3, 2, 27) | Ee {(X 7.7 (X, 2, Zf)] (xi, 2, 22) ",

which is equivalent to estimation via two-stage least squares.

Example. (Logit model, continued.) Here the sample moment function takes the form

ZZf XuZ 1nY;,j_lnY;,0_ 7 z]ﬁ)
i g=1
Suppose the researcher selects instruments f7 (X;, Z;) = (X;;, Z;;)' and estimates via GMM.
Then we again have that f (X;, Z;) = f* (X, Zs) = (X; 7).
Suppose, instead, that the researcher selects instruments f; (X, Z;) = (XZ s Li g Z ) . Es-
timation via efficient GMM under the assumption of errors &; ; that are independent and ho-
moskedastic across ¢, j will again result in the two-stage least squares estimator, with f (X;, Z;)

taking an analogous form to the linear model.
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4.1 Strong Exclusion of the Researcher’s Estimator

Taking the researcher’s model and form of estimator as given, the behavior of the researcher’s
estimand 0* (G) is determined by the researcher’s choices of instrumental variables f* (X;, Z;)
and weights Q). In the case of just-identified GMM, where f* (X;, Z;) has the same dimension
as 0, the weight matrix drops out of the first-order condition, and only the choice of instruments
matters. In the case of over-identified GMM, where f* (X, Z;) has larger dimension than 6, the
weight matrix also plays a role.

There is reason to expect the choice of instruments f* (X, Z;) to be important for the re-
searcher’s ability to correctly recover targets of interest under misspecification. Prior work on
the nonparametric identification of differentiated goods demand models emphasizes the need for
data on excluded variables Z;.'? In our setting, Appendix shows that, under mild conditions,
there exists a nonparametrically identified, nontrivial causal summary 7 € 7 if and only if the
researcher has data on excluded variables Z;. Although these results concern nonparametric iden-
tification rather than estimation under misspecification, they suggest that the excluded variables Z;
play an important role in recovering causal summaries.

Consistent with this intuition, we find that the behavior of the researcher’s estimator depends on
whether it satisfies a criterion that we call strong reliance on mean-independent excluded variables,
or strong exclusion for short. To define strong exclusion, recall that a random variable V; is mean-

independent of X, if £'[V;|X;]| = E [Vi].

Definition 4. The researcher’s estimator satisfies strong reliance on mean-independent excluded
variables, or strong exclusion for short, if the corresponding estimand solves a moment equation
of the form in (3)), where there is a component of f (X;, Z;) that is mean-independent of X,
mean-zero, and has at least dim (o) = dim () — dim (/) linearly independent rows, where recall
that (3 is the parameter that controls the way that the included variables shift the residual in the
researcher’s model.

That is, the researcher’s estimator satisfies strong exclusion if for all DGPs G € G the estimand

solves (3) for some f¢; (X;, Z;) = (fg (Xi, Z)' s & (X, Zi)/), where E [fg (Xi, Z;) |Xz] = Oand

rank (Eq [ 15 (X, Z:) 5 (X3, Z:)']) = dim (a)

12Berry and Haile, (2014) discuss the need for excluded variables for nonparametric identification of differentiated
goods demand models, writing, ““We emphasize that we require both the excluded instruments... and the exogenous
demand shifters” (pp. 1761-2). See also|Berry and Haile| (2016).
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for a defined as in Proposition 2]

To unpack this definition, we discuss it first in a setting of just-identification, and next in a setting
of over-identification.

Suppose first that there are exactly as many instrumental variables as there are parameters in
6. Then strong exclusion is equivalent to two requirements. The minimal excluded dimension
requirement is that there are at least as many instrumental variables in f (X, Z;) that depend on
the excluded variables Z; as there are parameters in «, i.e., parameters in ¢ that do not govern the
additive shift in the residual. The mean-independence requirement is that these functions of Z; are
mean-independent of the included variables X; and have mean zero. It is helpful to understand

these requirements in the context of a familiar example.

Example. (Linear model, continued.) Recall that dim («) = 1. For simplicity say that X; and Z;
are scalar. A natural choice of instruments might be f* (X;, Z;) = (X;, Z;)', in which case the min-
imal excluded dimension requirement is automatically satisfied. Other choices that involve a single
instrument dependent on Z;, such as f* (X;, Z;) = (X;, Z2)', will also satisfy the minimal excluded
dimension requirement. On the other hand, the choice of instruments f* (X, Z;) = (X;, X?)' does
not satisfy the minimal excluded dimension requirement, even though it is an appropriate choice
of instruments in the case where the researcher’s model holds (see, e.g.,/Gao and Wang|2023)).
Researchers employing excluded variables as instruments often argue that these variables are
“balanced” with respect to included variables (e.g., |Attanasio et al.|[2020). Mean-independence
is a strong form of balance. In the case where the instruments are f* (X;, Z;) = (X;, Z;)', mean
independence requires that E'[Z;|X;] = E[Z;] = 0. There are some situations in which mean-
independence is easy to satisfy in a linear model. One is where the researcher has a design-based
model of the assignment of Z;, as in Borusyak and Hull| (2023)), because in this case the researcher
can readily construct F [Z;| X;] using the model of assignment, and then take
(X, Z;) = (X3, Z; — F'[Z;|X;])". There are also some situations in which mean-independence
holds automatically in a linear model. One is where the included variable X; enters the model and
instrument vector sufficiently flexibly, as in the rich covariates condition of Blandhol et al. (2022),
because in this case a linear IV estimator using f* (X;, Z;) = (X;, Z;)' has the same estimand
as one using f* (X;, Z;) = (X;,Z; — E[Z;]X;])". In the remaining situations, enforcing strong
exclusion requires adopting some estimator of the conditional expectation function E [Z;| X;]. For-

tunately, estimators of conditional expectation functions are widely studied in the literatures on
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nonparametric estimation and machine learning. Appendix discusses conditions for the use of

such estimators in a first step that precedes GMM estimation.

Example. (Logit model, continued.) Recall that dim (o) = 1. For simplicity, say that X; ; and
Z; ; are again scalar. A popular choice of instruments in the spirit of Berry, Levinsohn, and Pakes
(1995) is f;‘ (X, Z;) = (Xl js X ) where X i,—; 1s the average of the characteristic X; ; for prod-
ucts in market ¢ other than product j. These instruments do not satisfy strong exclusion; more gen-
erally, instruments that are fully determined by X; cannot satisfy strong exclusion. An alternative
choice of instruments might be f7 (X;, Z;) = (X, Z; ;) where Z; ; is the cost shifter for product
J» which satisfies the minimal excluded dimension requirement. If Z; ; is mean-independent of X;

and has mean zero, then this choice further satisfies the mean-independence requirement.

Suppose next that there are more instrumental variables than there are parameters in 6. In this
case, the minimal excluded dimension requirement and the mean-independence requirement are
necessary, but no longer generally sufficient, for strong exclusion. Instead, Appendix shows
that strong exclusion typically requires the additional maximal included dimension requirement
that there are no more instrumental variables in f* (X, Z;) that depend only on the included vari-
ables X; than there are parameters in [, i.e., parameters in 6 that govern the additive shift in the
residual. Again, it is helpful to understand the maximal included dimension requirement in the

context of an example.

Example. (Linear model, continued.) When X is scalar, dim (3) = 1. The choice of instruments
*(Xi, Z;) = (Xi, Z;, Z2) satisfies the maximal included dimension requirement, whereas the
choice f* (X;, Z;) = (Xi, Z;, X?) does not.

Example. (Logit model, continued.) When X;; is scalar, dim () = 1. The choice of instruments
[ (Xe, Zi) = (XZ iy Zijy L2 ) satisfies the maximal included dimension requirement, whereas the
choice f; (Xi, Z;) = (X”, Ziin X ) does not.
If we strengthen the maximal included dimension requirement to state that there are no more
instrumental variables in f* (X, Z;) that depend at all on the included variables X; than there are
parameters in 3, then this stronger requirement, in tandem with the minimal included dimension
requirement and the mean-independence requirement, is typically sufficient for strong exclusion
(again see Appendix [C.I).

To preview why strong exclusion is important, recall that, under causally correct specification,

the researcher’s model can correctly describe the causal effects of D; on Y; given a good estimate
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of a. Because strong exclusion ensures that the portion of the first-order condition involving o can
use instruments that do not depend on the included variables X;, strong exclusion also ensures that
the researcher’s estimate of o can remain reliable even if the researcher has badly misspecified how
the included variables X; shift the model residual. Using too few instruments that are unrelated
to X; means that the researcher’s estimate of « is instead affected by misspecification of how the
included variables X; shift the model residual. Using too many instruments that are functionally

dependent on X; has the same effect. We turn next to formalizing these intuitions.

4.2 Approximately Correct GMM Estimation of Causal Summaries

To study the effect of strong exclusion on the performance of the researcher’s estimator, we adopt

a definition of performance motivated by our study of the oracle estimator in Section 3]

Definition 5. An estimator with estimand 6* (G) is approximately causally consistent if, for any
bound b > 0 on the error, there exists some bound § > 0 on the distance from causally correct
specification such that |7* (0*) — 7 (G)| < b for all causal summaries 7 € 7 whenever § (G) < 6.

That is, an estimator with estimand 0* () is approximately causally consistent over G if for

any b > 0, there exists 6 > 0 such that

sup sup|r” (6 (G)) — 7 (G)[ <b.
{Geg:s(a)<s} TET

Approximate causal consistency requires that, when the researcher’s model of the causal effect of
D; on Y, is approximately correct, so are the researcher’s conclusions about causal summaries.

Proposition [I] in Section [3] establishes that there is always a (possibly infeasible) oracle esti-
mator that is approximately causally consistent. Proposition (1| also establishes that even an oracle
estimator cannot guarantee a small error |7* (6*) — 7 (G)| without a bound on the distance from
causally correct specification d (G). In this sense, approximate causal consistency seems like the
best one can hope for from a feasible estimator. Because 6* () is the population analogue of a
generalized minimum distance estimator (see, e.g., Newey and McFadden |1994, Section 1), ap-
proximate causal consistency will imply asymptotic bias bounds for corresponding finite-sample
estimators under mild regularity conditions (see, e.g., Theorem 2.1 of Newey and McFadden|1994).

The next proposition shows that a (feasible) GMM estimator is approximately causally con-
sistent if and only if it satisfies strong exclusion. Because this result concerns the behavior of

the researcher’s estimand when the researcher’s model holds approximately, it requires additional
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regularity conditions. Most importantly, we assume that « is strongly identified by the mean-
independent instruments f& (X;, Z;), in the sense that moment conditions formed using these in-
struments are far from zero when « is far from the researcher’s estimand. Strong identification
rules out, for example, that there are multiple solutions to the moment equations, or that small
changes in the distribution of the data lead to large changes in the estimand. The condition there-
fore sets aside issues of weak identification that have been the subject of a large literature and that

are distinct from the issues of misspecification that are our focus here.

Definition 6. (Strong identification.) Under strong exclusion, « is strongly identified by the
mean-independent instruments if the moment conditions formed using these instruments hold
approximately only in a neighborhood of the researcher’s estimand. That is, the parameter « is
strongly identified by f& (X;, Z;) if and only if, for any € > 0, there exists ¢ > 0 such that for all
G € G and any «, 8

|Ba [£E (Xi, Z0) R* (Y, Di, X 0, B)]|| = || B [£E (X, Z:) B™ (Y;, Di X 0)]| < ¢

only if [[a — a* (G)]| < e.

Example. (Linear model, continued.) Strong identification by the mean-independent instruments
holds when the first-stage coefficient from regressing D; on Z; — E [Z;| X;] is bounded away from

Z€10.

Using strong identification and additional regularity conditions (specifically, Assumptions [3]

and [ in Appendix we obtain the following result.

Proposition 3. If conditional exogeneity holds, then any estimator satisfying strong exclusion and
strong identification is approximately causally consistent.
Moreover, even if unconditional exogeneity holds, any estimator that is approximately causally

consistent must satisfy strong exclusion.

Proposition [3]states that strong exclusion is both necessary and sufficient for approximately correct
specification to guarantee approximately correct conclusions. Notice that, absent strong exclusion,
approximate causal consistency fails even under unconditional exogeneity, in which case the in-
cluded variables X; are themselves exogenous. Proposition [3] therefore shows that the importance
of strong exclusion does not hinge on the researcher being concerned about the endogeneity of the

included variables.
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We can interpret Proposition [3|in a familiar example.

Example. (Logit model, continued.) For simplicity again say that the product characteristic
X, ; 1s a scalar. A choice of instruments in the spirit of Berry, Levinsohn, and Pakes (1995) is
i (Xi, Z;) = (XZ-J,Y@_]-), where X; _; is the average of the characteristic X; ; for products in
market ¢ other than product j. These instruments do not satisfy strong exclusion. Intuitively, if the
true mean utility contains a function of X; other than X; ;3, the estimated price coefficient ov must
adjust to compensate. As a result, misspecification of the way X ; affects mean utility can affect
the estimated price coefficient.

An alternative choice of instruments might be f; (X;, Z;) = (X, , Zm-)' where Z; ; is the cost
shifter for product j. If Z;; is mean-independent of X;, then the estimated price coefficient a
solves a moment condition that is unrelated to X; and therefore insensitive to misspecification
of the functional role of X, ; in the equation for mean utility. Notice that, in this multivariate
setting, mean-independence requires that Z; ; be mean-independent of X; rather than only of X ;.
Intuitively, if the cost shifter Z; ; for product j is, say, correlated with the characteristics X j» of
product j’, then misspecification of the way that X, ; affects the preference for product j' can
influence the behavior of the estimated price coefficient .

As the distance § (G) from causally correct specification shrinks, the true DGP is closer to
one with substitution patterns governed by the logit model. Under strong exclusion, this ensures

approximately correct estimates of causal effects of D; on Y;. Absent strong exclusion, it does not.

4.3 Trading off Restrictions on Misspecification with Restrictions on Causal Summaries

We have focused our analysis on the situation of a researcher who is potentially interested in the
full set of causal summaries 7. A researcher interested in a subset of causal summaries may hope
to achieve good performance under weaker conditions. Here we consider that possibility.

Our first result in this section is that, absent strong exclusion, approximate causal consistency
fails even for a fairly narrow class of causal summaries. To see this, we introduce the following

definition.

Definition 7. A class of causal summaries 7' C 7T is a—sensitive if for any o # o/, and any

B,0', there exists a target 7 € T’ whose model-implied counterpart differs at § = («, ) and

0= (,3), 7 (0) # 7 (¢).

28



An a—sensitive class of causal summaries is one whose model-implied counterparts depend on the
parameter «. The class of a—sensitive causal summaries includes many parameters of economic

interest in leading applications.

Example. (Linear model, continued.) Any causal summary that positively weights all partial

derivatives of Y; with respect to D; is a—sensitive.

Example. (Logit model, continued.) Because any partial derivative of Y; with respect to D; de-
pends on «, any positively weighted average of a particular own-price or cross-price elasticity is

a—sensitive.

Remark 6. The conclusions of Proposition [3| hold for any a-sensitive set of causal summaries
T’ (see Appendix |A.4). As a result, the practical takeaways of Proposition [3| apply as long as
the researcher is interested in causal summaries whose model-implied counterparts depend on the

parameter .

Our second result in this section is that, under strong exclusion, an interpretable tradeoff arises
between restrictions on the causal summaries considered and restrictions on the degree of misspec-
ification. Proposition [5|in Appendix [B|shows that, under strong exclusion, for any DGP G, there
isaset 7* C T of causal summaries that the researcher can estimate correctly regardless of the
distance from causally correct specification.'® For any causal summary 7 € 7, including those
not in 7, Corollary [2] in Appendix [B] derives a bound on the error, and shows that this bound is
proportional to the product of the distance from causally correct specification and the distance (i.e.,
difference in weights) between 7 and the closest member of 7*. In this sense, under strong ex-
clusion, the requirement of approximately causally correct specification becomes more demanding
the further is a given causal summary 7 from one that the researcher is guaranteed to estimate cor-
rectly. Appendix Figure[2]illustrates this idea, which connects to well-known ideas in the literature

on linear instrumental variables models.

Example. (Linear model, continued.) Our characterization of the causal summaries in 7 gen-
eralizes the well-known finding that a researcher estimating a linear model via IV methods can

reliably recover a local average treatment effect (LATE) even if the model is badly misspecified

BThis is true despite the fact that the weights dw; ;s (-) for the causal summaries in 7* depend only on
(Y; (1), Di (-), X;, Z;, 0% (G), fE (Xi, Z;)). Appendix [B| gives conditions—including separability of the resid-
ual function as in our running examples—under which strong exclusion ensures that the class 7* is a—sensitive.
Appendix shows, by contrast, that when strong exclusion fails, there is no a—sensitive class of targets that the
researcher estimates correctly regardless of the distance from causally correct specification.
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(Imbens and Angrist|1994; Angrist and Imbens||1995). Specifically, suppose that the instruments
are (X;, Z;) and that E¢ [Z;| X;] = 0 so that strong exclusion holds. Then if D; (X}, z) is monotone
increasing or monotone decreasing in z for all 7, any causal summary 7* € 7" is proportional to a
LATE characterized in /Angrist, Graddy, and Imbens| (2000)).

When the linear model is misspecified researchers estimating linear models may fail to recover
other causal summaries of interest (see, e.g., Heckman and Vytlacil 2005). Our results imply
that the extent of the researcher’s error depends on the distance of the causal summary of interest
from the LATE. Specifically, Corollary |3|in Appendix [B|implies a bound on the researcher’s error
|7* (0* (G)) — 7 (G)| for any target 7 ¢ T, where the bound is proportional to the product of the
distance from correct specification ¢ (G) and the distance of the weights in 7 from those of the

LATE.

4.4 Enforcing Strong Exclusion in Practice

In light of the preceding results, we recommend that practitioners enforce strong exclusion when
possible. Here we discuss how a practitioner may do this. We suppose that the practitioner has
selected some initial instruments f (X;, Z;) and weights Q) that do not necessarily enforce strong
exclusion. We also suppose that the function L* (X;; 3) is not fully saturated in X;, because if it is,
strong exclusion holds automatically whenever the researcher’s estimator ensures that the implied
residual R* (Y;, D;, X;; 6% (G)) has mean zero for every value of X;.

A direct procedure for enforcing strong exclusion is to set aside exactly dim () rows of
f (X, Z;), and to flexibly residualize the remaining rows with respect to X; so that they are mean-
independent of X;. If the resulting estimator is well-defined, then it satisfies strong exclusion.
Intuitively, this procedure ensures that the parameters « are pinned down by moment conditions
that do not depend on X;, while allowing the parameters ( to be pinned down by moment con-
ditions that do depend on X;. This intuition is particularly clear in the case of a just-identified
estimator, but extends to an over-identified estimator as well. Of course, in order for this procedure
to yield a well-defined estimator, there must be at least dim (o) rows of f (X;, Z;) that depend on
Z;. Appendix [C.3]discusses estimation and inference under this direct procedure.

In many situations we expect it will be intuitive how to select the rows of f (X, Z;) that are
allowed to depend on X;. For example, in the case of a differentiated goods demand model in
which some function L7*(X; ;) of the product characteristics X; ; enters mean utility linearly,

so L3* (Xi; 8) = Li* (Xi;) B, it is common in practice to include the function L}* (X; ;) in the
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instruments f (X;, Z;). As this function must conform with 3, its dimension is exactly dim (),
and it seems natural to exclude it from residualization. We illustrate this situation in our application
below.

In other situations researchers may wish to have an automated procedure that does not require
making an intentional choice of which instruments to residualize. For such situations, Appendix
[C4 offers a recipe for enforcing strong exclusion. The recipe takes the form of a nested loop
optimization procedure, where moment conditions in the outer loop, which may depend on X, pin
down the parameters 3, and moment conditions in the inner loop, which depend on residualized
instruments, pin down the parameters o«. We illustrate this procedure in our application below.

A distinct practical consideration—which arises even in linear models—is that when Xj; is rich,
it can be difficult to flexibly residualize functions of Z; with respect to X; while still maintaining
identifying power. We discuss this and other related practical considerations in the context of our

application, to which we turn next.

5 Implementation and Application to the Demand for Beer

To illustrate how to enforce strong exclusion, and why it matters, we develop an application to
the demand for beer. We base our data and simulations on the work of Miller and Weinberg
(2017, henceforth MW).!* In this setting, an observation i is a market, defined as a region-month.
The outcome, Y; € R, is the vector of market shares of J = 39 different beer products. The
endogenous variable, D; € R, is the vector of prices of these products. The matrix X; encodes
the set 7; of products available in market 7, the month of the year of market ¢, and an indicator for
whether market ¢ has high income.

We begin with a simple case, modeled on one of our running examples, in which the researcher
specifies a logit model, and where we vary the true DGP from the one specified by the researcher
towards one closer to that estimated by MW. We illustrate how to enforce strong exclusion and
how it affects the reliability of the researcher’s economic conclusions. Although these simulations
do not explore the full range of DGPs covered by our theoretical results, they serve to illustrate the
importance of the issues we study in an economically realistic setting.

We then elaborate the setting to consider both the possibility that the covariates are too rich

“We focus on the specification that MW report in column (ii) of their Tables IV and VI, which we re-estimate using
MW’s original code and data. Data on the beer market are from the IRT Academic Database (Bronnenberg, Kruger,
and Melal[2008). Data on income in each region-year are from the American Community Survey.
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to allow full residualization, and the possibility that the researcher wishes to estimate a richer
model that includes random coefficients. These elaborations allow us to illustrate the practical

considerations that we highlighted in Section 4.4

5.1 Researcher’s Model and Default Estimator

Following one of our running examples, we imagine a researcher who specifies the mean utility

for product j in market ¢ as linear and separable in price and other characteristics,
Y (Dy, Xy, 850) — In Y (Dy, X4, 6350) = aDij + X j 8+ &ij,

where X;; includes indicators for the brand associated with product j, the month of the year asso-
ciated with market ¢, and for whether the market  is high income. The researcher estimates their
model via two-stage least squares, which is a special case of the GMM setup in Section 4] Follow-
ing common practice (and MW), the researcher includes in their initial instruments fj (X, Z;) the
brand indicators, month indicators, and income indicator that directly enter the mean utility. There
are dim (3) = 25 of these indicators, corresponding to 13 brand indicators, 11 month indicators,
and 1 income indicator.

Because the researcher is concerned about price endogeneity, the researcher also wishes to
include in f] (X;, Z;) some instruments that do not enter the mean utility function directly but
are nevertheless relevant for prices. We follow MW and include in f] (Xi, Z;) a set of variables
SMW(X;, Z;) that can serve in this role.'” The variables f" (X, Z;) include functions of ex-
cluded variables Z;, such as the cost and ownership structure of the products, which affect pricing
(via firms’ incentives) but do not directly affect consumer demand. The variables fJM W (X, Z;)
also include functions of included variables X, such as the number of available products in the
market, which do not enter the researcher’s specification of mean utility but do causally affect
market shares. MW select these instruments to estimate their (richer) model; we select the same

instruments to discipline our simulation design.

SFor a given product j, ij W (X, Z;) contains (i) the product of the distance to the owner’s closest brewery and the
prevailing price of diesel fuel (a function of Z;), (ii) an indicator for whether the product is part of a merged entity
(a function of Z;), (iii) the number |7;| of products in the market (a function of X;), (iv) the product of (iii) and
ownership indicators (a function of X; and Z;), (v) the sum of distances to the owner’s closest brewery over available
products J; (a function of X; and Z;), (vi) the products of (v) and ownership indicators (a function of X; and Z;),
and (vii) the products of mean income in market ¢ with a constant and with the number of calories in the product (a
function of Xj;).
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5.2 Enforcing Strong Exclusion

Following the recipe in Section|4.4] to enforce strong exclusion in this case, it suffices to residualize
the instruments ij W (X3, Z;) with respect to the included variables X;, leaving the remaining
dim () instruments unchanged. To describe the residualization, define the function ?jww (x) that
returns the average of £ (Xj, Z;) across all observations in the dataset with X; = z.'° We can
then let

=MW

FE(X Z) = MY (X, Z0) -

j (Xi)
denote a residualized version of MW’s instruments that, by construction, has zero mean within
each covariate cell. If we replace f"" (Xj, Z;) with fJM WE(X;, Z;), we have enforced strong

exclusion.

5.3 DGP and Comparison Estimators

We simulate from a potential outcome model denoted by Y;%'™ (D;, X;,~). Here, v is a parameter
that controls the degree of misspecification of the researcher’s model. When v = 0, the researcher’s
model is correctly specified, Y;* (d, X;) = Y;°™ (d, X;,0). As ~ departs from 0, the DGP becomes
closer to the one specified by MW, and further from the one specified by the researcher.

We allow Y;*™ (D;, X;, v) to capture two dimensions in which MW’s model departs from the
researcher’s model. The first is the presence of product rather than brand fixed effects. Departures
in this direction do not increase the distance from causally correct specification, as they entail
misspecification only of the way the included variables X; enter the mean utility. The second is
the presence of random coefficients and a nested logit structure. Departures in this direction imply
increases in the distance from causally correct specification, because they imply that the researcher
has misspecified how prices D; affect market shares Y;.!” Appendix provides additional details
on how we generate simulated data.

To measure the degree of misspecification of the mean utility, for each value of -, we calculate,
over all values of the researcher’s parameter 6, the least possible root mean squared difference

between the effect of the covariates X; on market shares Y; implied by the researcher’s model, and

16That is,
MW

f (x) _ Zi;xi:z fMW (Xia Zi)

[{i: X; = a}|

forany x € X.
70n how incorporating random coefficients affects the structure of the market share equation, see, e.g., Salanié and
Wolak| (2022).
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those prescribed by the DGP. To measure the degree of misspecification of substitution patterns, for
each value of 7, we calculate the least possible root mean squared difference between the effect of
prices D; on market shares Y; implied by the researcher’s model, and those prescribed by the DGP.
This latter measure is formally a lower bound on the distance from causally correct specification.
We measure effects in whole percentage points, so that a misspecification value of 0.1 means that,
across all possible parameters 6, the researcher’s model can, at best, approximate the true causal
effects in the model with a root mean squared difference of 0.1 percentage points. Appendix [E.2]
provides additional details on how we define and calculate these measures of misspecification.
We compare the estimator that satisfies strong exclusion to a baseline estimator that uses
fJM W(X;, Z;) in place of fJM w.E (Xi, Z;). This estimator is a relevant comparison because of the
popularity of instruments that depend on included variables. To aid interpretation of magnitudes,

we also report estimates of the endogeneity bias under correct specification.'8

5.4 Estimation Error Under Alternative Estimators

We focus on recovery of the average own-price elasticity, which is a target of economic interest in
MW:’s setting, and which is frequently used to measure or contrast the performance of estimators
of models of differentiated goods demand.'"” We focus on the median bias as a finite-sample
counterpart of the error.

Panel A of Figure 2| shows the median bias when the only departure from the researcher’s
model is the presence of product, rather than brand, indicators in the mean utility. As we move
along the x-axis of the plot, we increase the importance of the product indicators in the true DGP,
leaving the researcher’s model and estimator unchanged. Following Section because the only
form of misspecification here is in the way that the included variables enter the mean utility, all
of the DGPs we consider in this plot satisfy causally correct specification. Following Proposition
[l we therefore expect the estimator that enforces strong exclusion to perform well throughout.

By contrast, we expect the baseline estimator to perform poorly as the true DGP departs from the

18We obtain these estimates by maintaining correct specification of the researcher’s model (y = 0) but using D;; in
place of f]M W (X, Z;) in constructing the researcher’s estimator. Because the DGP we use incorporates an eco-
nomic model of equilibrium pricing, prices are endogenous to the potential outcomes Y;*" (-), and we expect this
endogeneity to lead to systematic misestimation of causal summaries. As further context for interpreting magnitudes,
we note that applying the estimator that satisfies strong exclusion to MW'’s original data yields an estimated mean
own-price elasticity of -11.57, while applying the baseline estimator yields a mean estimated own-price elasticity of
-4.35.

198ee, for example, Ackerberg and Rysman| (2005)), (Gandhi, Lu, and Shi|(2023), [Head and Mayer (forthcoming), and
Birchall, Mohapatra, and Verboven| (forthcoming).
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researcher’s model.

Panel A shows that these expectations are borne out in the simulations. As the degree of
misspecification of the mean utility grows large, the strongly excluded estimator remains approxi-
mately median-unbiased, whereas the baseline estimator becomes severely median biased. Under
the most severe form of misspecification we consider, the researcher’s model is off by a bit more
than 0.4 percentage points, on average, in describing the causal effects of the covariates X; on
market shares. Under this degree of misspecification, the median bias of the baseline estimator is
larger than the endogeneity bias under correct specification.

Panel B of Figure 2[ shows the median bias when we allow random coefficients and a nested
logit structure, in addition to the presence of product, rather than brand, indicators in the mean
utility. As we move along the x-axis of the plot, we maintain the degree of misspecification of
mean utility, but we increase the importance of the random coefficients and nesting structure in
the true DGP, so that the distance from causally correct specification grows larger. Following
Proposition I} we know that any estimator must perform poorly for some targets when the distance
from causally correct specification is sufficiently large. However, following Proposition [3] we
expect the strongly excluded estimator to perform well when the distance from causally correct
specification is not too large, whereas we have no such expectation for the baseline estimator.

Panel B shows that these expectations are borne out in the simulations. As the distance from
causally correct specification grows small, only the strongly excluded estimator becomes approx-
imately median unbiased. The baseline estimator remains severely median biased for all DGPs.?°
The median bias of the baseline estimator is uniformly larger than the endogeneity bias under
correct specification. Under the most severe form of misspecification that we consider, the re-
searcher’s model is off by a bit more than 0.009 percentage points, on average, in describing the
causal effects of the prices D; on the market shares Y;.2! Under this degree of misspecification,
neither estimator performs well, and the median bias of the strongly excluded estimator is slightly

larger than that of the baseline estimator.

2In this design, the median bias of the baseline estimator is fairly insensitive to the distance from causally correct
specification, though we know of no reason to expect that behavior under other designs.

21Intuitively, this value is smaller than its counterpart in Panel A because, in the DGPs we consider, the partial effects
on market shares of characteristics such as brand tend to be larger than the partial derivatives of market shares with
respect to prices.
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5.5 Trading off Bias and Precision by Coarsening Covariates

Our approach to ensuring mean independence enforces that the instruments f]MW’E (Xi, Z;) have
exactly mean zero for each value of X;. In practice, this may reduce the identifying power of the
instruments, inducing a tradeoff between approximate causal consistency and estimator variance.
We can measure this tradeoff by looking at the median absolute error of the alternative estimators,
as the median absolute error reflects both bias and dispersion.

Panel A of Appendix Figure 3|shows that, under causally correct specification, strong exclusion
increases the median absolute error relative to baseline when the mean utility is close to correctly
specified, but reduces it otherwise. The reason is that the median absolute error, though sensitive
to dispersion, becomes dominated by the bias when the mean utility is sufficiently misspecified.
Along similar lines, Panel B of Appendix Figure [3|shows that, when we maintain misspecification
of the mean utility but vary the distance from causally correct specification, strong exclusion re-
duces the median absolute error, relative to baseline, over most of the specifications we consider.
Under these designs, then, a concern with median absolute error motivates a preference for the
strongly excluded estimator unless the researcher is confident in the correct specification of the
mean utility.

In other applications, the included variables X; may be rich enough that it is not practical
to achieve full mean independence. Suppose that a researcher instead enforces row-wise mean-
independence with respect to a product-specific coarsening x; (X;) of X}, and linearly residualizes
against the functions of X;; that appear in the residual function.?> Then Proposition @ in Appendix
shows that the resulting estimator will perform well as long as any misspecification in the
mean utility is spanned by x; (.X;). Thus, coarsening the included variables compromises some,
but not all, of the attractive properties of strong exclusion. We illustrate these ideas with two forms

of coarsening.

5.5.1 Enforcing Mean Independence With Respect to a Subset of Covariates

The first form of coarsening that we consider enforces mean independence with respect to a subset
of the covariates. Specifically, we imagine that the researcher enforces mean-independence only

with respect to product availability 7;, so that x; (X;) indexes possible values of 7;. Notice that

22In the leading case where the researcher’s chosen instruments include L3* (X;,5), the required orthogonality holds
automatically when the GMM system is just identified or when, as in MW’s implementation, the researcher’s esti-
mator ensures that the moments involving L7* (X ;) are solved exactly.
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it is not possible to enforce mean-independence with respect to J; if the chosen instruments are a
function only of the set of available products and their characteristics, as is the case of the most
popular type of instruments used in estimating differentiated goods demand models (Gandhi and
Nevo|2021, p. 92).

Because the misspecification of mean utility concerns the product fixed effects, we expect
enforcing “choice-set residualization” to suffice to ensure good performance under causally correct
specification. Panels A and B of Figure @ show that, indeed, the median bias of the estimator
enforcing choice-set residualization is similar to that of the estimator enforcing strong exclusion.
Appendix Figure[3|further shows that, also as expected, under causally correct specification choice-
set residualization tends to achieve a lower median absolute error than strong exclusion, because
choice-set residualization preserves more of the variation in the instruments.

Of course, how best to coarsen depends on how the mean utility is misspecified. Panel C of
Figure [3| illustrates this by showing the median bias when we use the same form of residualiza-
tion as in Panels A and B, but allow a different form of misspecification of the mean utility. In
particular, we suppose here that, in addition to including brand rather than product indicators in
their model, the researcher mistakenly neglects to allow mean utility to differ by month of the year.
The estimator enforcing choice-set residualization now exhibits a modest median bias even under

causally correct specification.

5.5.2 Enforcing Mean Independence With Respect to Product-Specific Covariates

The second form of coarsening that we consider enforces mean independence only with respect
to the product-specific covariates, so that x; (X;) = X;;. Because the misspecification of mean
utility concerns the product fixed effects, we expect enforcing “product-level residualization” to
suffice to ensure good performance under causally correct specification. Panels A and B of Figure
El] show that, indeed, the median bias of the estimator enforcing product-level residualization is
similar to that of the estimator enforcing strong exclusion. Appendix Figure |3| further shows that,
under causally correct specification, product-level residualization tends to achieve a lower median
absolute error than strong exclusion.

The downside of coarsening in this way is that it does not allow that characteristics of products
other than j may influence the mean utility for product j. Panel C of Figure /4| illustrates this by
showing the median bias when we use the same form of residualization as in Panels A and B, but

allow a different form of misspecification of the mean utility. In particular, we augment our base-
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line DGP to allow that the mean utility depends on the shelf space assigned to the product’s brand
(as in Cisternas et al.|[2024), which we in turn assume is proportional to the brand’s assortment size
(e.g., Hong, Misra, and Vilcassim/[2016). We define the assortment size to be the number of the
brand’s products available in the market, and we calibrate the size of the shelf space effect using
the observed (real-world) data in tandem with MW’s estimator.

Because the researcher has enforced mean independence only with respect to the product-

specific covariates X;;, but the true mean utility depends additionally on the choice set . 7;, Panel C

s
of Figure ] shows that the estimator enforcing product-level residualization now exhibits a modest
median bias even under causally correct specification. Because the median bias under product-
level residualization is negative, it tends to offset the bias of the baseline estimator, so that as
the distance from causally correct specification grows large, the median bias under product-level
residualization is smaller (in absolute value) than that under strong exclusion, with the two levels

of bias converging for sufficiently large distance from causally correct specification.

5.5.3 Inference Under Strong Exclusion

Our DGP features discrete included variables X;. In such cases, a standard bootstrap suffices for
inference following residualization, even under misspecification (Hall and Inoue||2003; Lee 2014,
Equation A.7). Under strong exclusion and causally correct specification, inference will be valid
for the true value of the causal summary of interest. Under strong exclusion and approximately
causally correct specification, inference will be valid for a pseudo-true value that approximates the
true value of the causal summary of interest. Absent strong exclusion, inference will still be valid
for a pseudo-true value, but this pseudo-true value need no longer approximate the causal summary
of interest.

In some applications, the included variables may be naturally continuous, in which case the re-
searcher may wish to residualize against flexible transformations of the included variables, or to use
some nonparametric regression procedure to achieve mean-independence. In this case, Appendix
shows that the researcher’s estimator can be characterized as a two-step GMM estimator, so

that existing results (e.g., /A1 and Chen|2007) can be applied to conduct inference.

5.6 Allowing for More Flexible Substitution Patterns

Our researcher’s model is a logit model, which means that the parameter «, which governs effects

beyond those of the covariates on the mean utility, is a scalar. Our researcher might alternatively
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wish to use a richer model, for example one allowing for random coefficients on product character-
istics, as MW do. In that case, the parameter « will be a vector that includes terms controlling the
importance of the random coefficients. Intuitively, the greater is the dimension of «, the greater is
the reliance on the residualized instruments, and the more likely is residualization to compromise
the instruments’ identifying power. In such situations, it is possible to adapt the automated recipe
discussed in Section [4.4] (and detailed in Appendix [C.4) to use the residualized instruments to pin
down only a subset of the parameters in c.. Proposition[5]in Appendix [B|shows that, in this case, the
researcher can still guarantee recovery of some causal summary, analogous to the results for strong
exclusion in Section Though in this case approximate causal consistency is no longer guar-
anteed, it seems plausible that the estimator will perform acceptably under approximately causally
correct specification in some realistic situations.

To illustrate this situation, we modify the researcher’s estimator to include random coefficients
on two product characteristics—the beer’s calorie content and a constant. Thus, the researcher’s

model now becomes

exp (alDi,j + Xiy (B4 vei) + X5 (vea) + &’j)
1+ 3 exp (alDi,j’ + X5 (B+ve) + XZj (veq) + 5"7j’>

Yj*(Dz‘,Xi,fz‘;@) Z/ dF (Vc,i;Oé2)7
where X}j includes indicators for the brand associated with product j, the month of the year as-
sociated with market ¢, and for whether the market ¢ is high income, X f] includes a constant and
the number of calories, and F (v, ;; o2) describes a normal distribution with a diagonal variance
matrix whose diagonal elements are given by as,. The researcher estimates their model by adapt-
ing the recipe in Appendix using fMW (X}, Z;) as instruments in an outer loop that estimates
the coefficients § (governing the effect of product characteristics on mean utility) and the pa-
rameters o, (governing the dispersion of the random coefficients), and using either fMW (X;, Z;)
or fMW.E (X, 7.) as instruments in an inner loop that estimates the price coefficient ;. When
the researcher uses fMW (X, Z;) in the inner loop, this procedure coincides with GMM using
MW (X, Z;) as instruments. When the researcher uses f"'£ (X;, Z;) in the inner loop, this pro-
cedure falls short of strong exclusion, but achieves the limited guarantee described by Proposition
[5)in Appendix [B]

Figure [5] shows how these alternative estimators perform in our application. Figure [5] shows
that, when the mean utility is misspecified, the estimator that uses the residualized instruments to

estimate the price coefficient exhibits smaller median bias than the baseline estimator. Intuitively,
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requiring that the price coefficient solve a moment condition that does not depend on the included
covariates X; allows reliable conclusions about the mean own-price elasticity even when the role

of these covariates is misspecified.??

Alternative Paradigms for Estimation

If our researcher were concerned about misspecification, an alternative to adding additional para-
metric elements such as random coefficients might be to adopt a nonparametric model of demand.
When feasible such approaches seem appealing given our emphasis on the possibility of misspec-
ification. We are, however, unaware of widely applicable nonparametric methods for settings such
as MW’s that feature many products. In a setting with J = 39 products and no random coefficients,
estimating a demand system nonparametrically (using second-order polynomials) via the method
suggested by (Compiani| (2022)—which builds on the approach in (Chen and Christensen| (2018)—

requires estimating millions of parameters, which is infeasible at present.?*

Approaches discussed
in |Chen, Chen, and Tamer (2023) likewise entail computation that becomes more involved as the
number of products grows large, and do not immediately extend to settings with random coeffi-
cients.” Sensitivity analysis such as that proposed in |Christensen and Connault (2023) requires
specifying a parametric model for the unobservable &, which is not done in MW, and focusing on
one particular causal question of interest, whereas MW discuss several. We think these considera-
tions may help to explain the enduring popularity of the workflow we introduce at the start of the

paper, which uses a single estimate of a tightly parameterized structural model to estimate a wide

range of economically interesting quantities.

6 Conclusion

When a researcher has access to excluded, exogenous variables, we recommend that the researcher
choose their instruments and estimator to enforce strong exclusion. When enforcing strong exclu-
sion would severely limit the identifying power of the excluded, exogenous variables, we offer a

range of compromises that weaken the notion of strong exclusion, at the expense of weaker theoret-

23We can also observe (in Panel B) that the distance from causally correct specification is lower in this case than when
the researcher uses a logit model, reflecting the greater flexibility of the model with random coefficients.

2
24Under exchangeability the number of parameters is {%3} ~ 5 x 109,
25Chen, Chen, and Tamer (2023) note that theirs is the first paper to report nonparametric estimates of causal effects

of an endogenous variable on a J—dimensional outcome variable with J > 5.

40



ical guarantees. When a researcher does not have access to any excluded, exogenous variables, we

recommend that the researcher make explicit that their estimator fails to satisfy strong exclusion.
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Figure 2: Estimates of the average own-price elasticity, with and without strong exclusion

(a) Varying the misspecification of mean utility, under causally correct specifica-

tion
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(b) Varying the distance from causally correct specification, with a misspecified
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Note: The plots report the estimated median bias for different estimators of the mean own-price elasticity.
In Panel A, we maintain causally correct specification, and vary the misspecification of mean utility along
the x-axis. The x-axis displays the least possible root mean squared difference between the effect of the
covariates X; on market shares Y; prescribed by the DGP, and those implied by the researcher’s model (see
Appendix [E.Z). In Panel B, we maintain a constant degree of misspecification of mean utility, but allow
the distance from causally correct specification to vary. The x-axis displays the least possible root mean
squared difference between the effect of prices D; on market shares Y; prescribed by the DGP, and those
implied by the researcher’s model; this is a lower bound on the distance from causally correct specification
(see Appendix [E.2). In both panels, the y-axis depicts the median bias across 100 simulation replicates,
along with 95 percent confidence intervals (when visible). The dashed horizontal line reflects the median
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bias under exactly correct specification when the researcher ignores endogeneity.
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Figure 5:

Estimates of the average own-price elasticity, nonlinear estimator

(a) Varying the misspecification of mean utility, under causally correct specifica-

tion
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Instrument
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(b) Varying the distance from causally correct specification, with a misspecified
model of mean utility
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Note: The plots report the estimated median bias for different estimators of mean own-price elasticity anal-
ogous to Figure 2] In this case, however, we replace the researcher’s logit model with a nonlinear model that
includes random coefficients on product characteristics. In Panel A, we maintain causally correct specifica-
tion, and vary the misspecification of mean utility along the x-axis. The x-axis displays the least possible
root mean squared difference between the effect of the covariates X; on market shares Y; prescribed by the
DGP, and those implied by the researcher’s model (see Appendix [E.2)). In Panel B, we maintain a constant
degree of misspecification of mean utility, but allow the distance from causally correct specification to vary.
The x-axis displays the least possible root mean squared difference between the effect of prices D; on mar-
ket shares Y; prescribed by the DGP, and those implied by the researcher’s model; this is a lower bound on
the distance from causally correct specification (see Appendix [E.2)). In both panels, the y-axis depicts the
median bias across 100 simulation replicates, along with 95 percent confidence intervals (when visible).
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A Proofs for Results in Main Text

To prove our main results, we impose some additional regularity conditions. To state these condi-
tions, define (D, X', Y, Z) as sets which contain the supports of (D;, X;,Y;, Z;) respectively.

Assumption 1. (i) D, X, Z are compact subsets of Euclidean space; (ii) D and Z are con-
vex; (iii) Y;(-) is almost surely continuous in (d,x) and differentiable in d, and D;(-) is al-

] and

most surely continuous in (x,z) and differentiable in z; and (iv) Eq [Hagyivj’ (-, X3)
J

Eq [H OV (X, & (0) G)HOO are finite for all j, j', all G € G, and all § € ©.

Let Y denote the space of continuous functions from D x X — )/, and D the space of contin-
uous functions from X x Z — D, both equipped with the sup norm. Since the set of continuous
functions on a compact Euclidean domain is complete and separable under the sup norm, Y x D x X’
is a Polish space.

Recall that we consider true and model-implied causal summaries of the form

ZEG V@d (d, X;) dwi gy ()| , and 7 ( ZEG [/M  (d, X, 6 (0) :0) dwi .y (d)

respectively. We next state two lemmas about causal summaries that are useful in proving Propo-

sition

Lemma 1. It is without loss of generality to consider causal summaries whose weights are func-
tions of (Y; (+), D; () , Xi, Z;),

wigg = Mg (d;Yi (-), Di (), Xi, Zi)
for some 1.

Proof. By the law of iterated expectations,
0 0
e /in‘ i (d, X;) dwijj (d) | = Eg /7Y¢ o (dy Xi) dnygr (d5 Y5 (), Xa) |
8dj ’ . 8d] ’ ’
forn; i (d;Y; (1), X;) = E [wi iy (d)|Yi (+), X;] . Similarly, note that
i (0) = R (Y: (D, Xa), Di (X3, Zi) , X330

so the model-implied causal effect 8 o Yi (d, X;,& (0);0) is a function of (Y; (-), D; (), Xs, Z;) .
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Hence, by the law of iterated expectations,

EG[ a?lY* (d, X, & (0);0) dw, j (d)] =
B | [ o Yoo (0K 0):0) s (550,040, X,,2) .

form; j (d;Y; (1), D; (), Xi, Z;) = E[wi ;i (d) |Yi (+), D; (+), Xy, Z;]. Moreover, since
max; j [ |dw; ;j (d)] < W for all i by assumption, Jensen’s inequality implies that

max [ [dny g (d: Vi (), Di (), X, Z0)] < V7.

JsJ’
as well. O]

Motivated by this result, in our proofs we restrict attention to weights of the form considered
in Lemma(I] To make the dependence on the weights 7 and data generating process G explicit, we

write true and model-implied causal summaries as

(Gin) = Ba | [ Y (X (67,00, D10, X, 2)

and
P 0.Gin) = Bo | | Vi (0,60 (0):0)dngy (41 ). D1 ). 0 2)

respectively.

Note that 7 (G;n) and 7* (0, G;n) are linear functionals of 1, where each 7 consists of J x
dim (d) functions from Y x D x X to S, the space of signed measures on D. Let H denote the set
of such 7’s, equipped with the norm

7]l = max sup TV (g 1y (),d (), 2, 2))
33" (y(),d(-),x,2) EYXDX X X Z

for TV (u(+)) the total variation of a signed measure y (-) on D. Our assumptions imply that
7 (G;n) and 7* (0, G; n) are both bounded, and thus continuous. For B (H, R) the set of continuous
linear maps from H to R with generic element [, the operator norm of [ is

1Ullop = sup {[L(n)] : n € H, [Inllg < 1}

B (H,R), equipped with this norm, is the (continuous) dual space to H by the Riesz-Markov

theorem. A special case of the operator norm plays an important role in our results.
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Lemma 2. Forl € B (H, R) of the form
= 3 Eo | [ b (d:Y: (), D5 (), X0 dr (&5 (), D1 (), X3, Z0)]

the operator norm is equal to 3=, ;s Eg [||h” (Y (),D; (+) 7Xi)||oo] :

Proof. By definition,

]|, = sup
P la<t

ZEG Uh” (d;Yi (), D; (),Xz‘)dﬁj,j’(d;yz‘('),Di(')aXi,Zz‘)]‘-

73’

Note that this optimization problem imposes no constraints across different values of j, j, and that

b [ R @) Di () X gy (Y5, D1 (). X )| =

TV nJJ

Eg [Ihi (Y (), Di (), Xl

by the Riesz-Markov theorem. Hence,

¥y = 3= B (s (Y5 (), D (), X o]

A.1 Proof of Proposition 1|

Our assumptions imply that we can limit attention to ||n||y; < W. The signed error 7 (6, G; 7)) —
7 (G;n) is an element of B (H, R), so by Lemma 2]

sup | me—ﬂGmVW’ZE%

nllz<W 3»J

Y (X0 = GV X @):0)] |

Since this equation holds for all 6, it follows that

inf sup |77 (0,G;n) —7(G;n)| =

llnll <W

33’

0 P o
‘adj/Y;,](,X'L> ad; (,Xi:fi(e);Q)H ] =W-6(G).

o)
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This implies the second part of the proposition, where we may take 6’~(G) to be any function
6 : G — O such that

T*(é(G),G;’I]>—T(G;7])‘SQ'in sup |7°(0,G;5n) — 7 (G;n)| forall G € G.

Il <W

To prove the first part of the proposition, note that

supinf sup |77 (6,Gin) — 7 (Gin)| =W -supd (G),
GeG O |yl <W Geg

50 if supgcg 0 (G) is infinite, no selection of ¢ can ensure finite bias uniformly over 7.
If we consider restricted classes of weights H' with n; ;; = 0 for (j,5') € N C {1,...,J} x

{1,...,dim ()},

inf  sup |77(0,G;n) —7(G;n)| —Wlnf > Egl

neH’:||n||y<W G0 EN

: o .. |

so we obtain an analogous measure for the degree of misspecification where we now restrict atten-

tion to index pairs in . O

A.2  Proof of Proposition 2]

To prove Proposition [2] we impose an additional assumption.

Assumption 2. The support of Y; () | X; does not depend on X;, 6 (0,G) is continuous in 6, and

O is compact.
We can now state Proposition [2] more precisely.

Proposition. Under Assumptions|l\and 2} causally correct specification holds if and only if, under

the true DGP G, there is some value o such that
Yi(d,z) =Y (d,z,& + Li () ; )

almost surely for some (possibly unknown) unit-specific function L; (x), and some &; € R”.

We now prove Proposition 2] We first note that if the potential outcomes take the form stated
in the prOpOSitiOH, then for 52 (Oéo) = R* (}/“ Di7 Xza Oéo) = 51 + I/z (Xl) ,

Y (d, X;) = Y™ (d, X;,& (ap) ; ) for all d almost surely. %)
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Consequently, with probability one

0 0 s '
%}/z (d7 Xl) - %Y (d7 Xz; 5@ (O-/O) ) aO) for all d; (5)

and causally correct specification holds.

For the second part of the proposition, note that since ¢ (6, G) is continuous in ¢ and © is
compact, causally correct specification holds if and only if there exists 6, such that § (0, G) = 0.
The definition of § (Ay, G) implies that (5)) holds with probability one when § (6y, G) = 0. By
the definition of the residual function, Y* (D;, X;,&; (6o);60) = Y; (D;, X;) in this case. By the

convexity of D and the fundamental theorem of calculus
Lo,
Yi(d, Xi) = Yi(Diy Xo) + [ <2Yi(Di+t-(d = D), X) (d - D) dt,
0

so (5)) implies (). Since the residual function is the inverse of Y*, it follows that the residual is

constant in d,
R*(Y; (d, X3) ,d, X;;00) = R* (Y; (d', X;) ,d', X4; 0) forall d, d’ almost surely,

and hence that we get the same residual (and the same model-implied potential outcomes) if we
work with the residual at a fixed dy. To make the dependence on x explicit, we now write the

residual as
gi (iL’, 90) = R* (Y; (do, .I') ,do, x; 00) .

Since we now assume the support of Y; (+) is independent of X, (4) holds if and only if
Y (d,z) =YY" (d,x,& (x;00) ; 0p) for all d and almost every = almost surely.
Since &; (x; 6y) may differ from &;, let L; (z) = &; (x;60y) — &. We have shown that
Yi(d,z) =YY" (d,z,& + L; (z) ;6p) for all d and almost every = almost surely.
Note, however, that
Yo (d, 2, & + Li (x);60) = Y™ (d, 2,& — L (2 fo) + Li (x) ; a0)

where we can absorb —L (x; fy) into L; (z) to obtain the desired expression. O
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A.3 Preliminaries for Proposition 3|
To prove Proposition [3] we impose additional assumptions.

Assumption 3. © is compact, and § (0, G) is continuous in 0. f& (z,2) R** (y, d, z; &) is uniformly

Lipschitz in y, in the sense that

sup || (2,2) (R™ (y, d,230) = R (v, d,230)) | < p- ly =/

v,y ,d,z,2,0,G

for some p € R, while %Y;** (d,z, R (y,d, x; ) ; &) is uniformly continuous in «,

2Y** (d,x, R (y,d, x; @) ; )

5 “(d,x, R (y,dws0') ;o) | < k[l — o)

sup
aoy,d,x

= 5%

where k (||a — /||) = 0 as ||a — &/|| — 0.

Assumption 4. The set of data generating processes G contains some data generating process

G such that (i) the researcher’s model is correctly specified, with true parameter value 6y, (ii)

o Eay [ 14, (X, 2:) R* (Y5, D, X5 00)| has full rank, (iii) for all h - X — R” and [ || (x)||* dGq (z) <
00, the data generating process G? that replaces Y; (d, x) by

Vi (d,x) =Y (d,z, R* (Y; (d, ) ,d,x;60) + t - h(z);6p)
is also in G for t sufficiently small, (iv) f%,. (Xi, Z;) is Gateaux differentiable at G with

0 * *
o Ea [fgg (Xi, Zi) R (Yz‘,DuXi;@o)} =

0 9
Eg, @fc*;g (Xi, Zi) R* (Y3, Di, Xi3600) + f&, (Xi, Z5) &R* (Yio't’ D;, X;: 90)1 :

(v) for all o # ag and G € G,
Eg [Varg ([R™ (Y3, Dy, Xi; o) — R™ (Y, Dy, X5 a0) | X5, Zi] [ X5)] # 0.

We also provide a more formal definition of an a-sensitive class of causal summaries.

Definition 8. A class of causal summaries 7 = {7’* (,Gyn):ne€ ]H[/} is a-sensitive if for any
a # o/, any 3,5, and any data generating process G € G, there exists a target 7 € 7' such that
7(0) # 7 (0") for 0 = (o, B) and 0’ = (o, ') .

We next prove a variant of Proposition 3}
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Proposition 4. If conditional exogeneity holds, then any estimator satisfying strong exclusion and
strong identification is approximately causally consistent under Assumptions [l|and 3| Moreover,
even if unconditional exogeneity holds, under Assumption 4| any estimator that is approximately
causally consistent over a class of a-sensitive causal summaries, i.e., whose estimand 0* (-) satis-

fies

st 7 (G~ T (@), Gl =0

must satisfy strong exclusion.

Corollary 1. The conditions of Proposition d|imply Proposition

A4 Proof of Proposition 4]

To prove the first part of the result, note that as argued in the proof of Proposition 2] under each G
there exists some 6 that attains ¢ (G). Denote this value by € (G). Let us pick a fixed value d € D,
and define Y, (d, X;) as the model-implied potential outcome when we compute the residuals at
(d, X3), §, = R (Y (d, Xy) . d, X330 (G))

Y, (d,X;) = Y7 (d.X,.£,:0/(G)).

Consider the difference between Y, and the true potential outcome Y;, and note that by the funda-

mental theorem of calculus

ad od~—

[ (st @000 = Sy (4= )1.X,6:0(0) ) (4 | <
5(@)2\@—@] < 16 (G)

for C'; a constant that depends only on the dimension and diameter of D. Note that by construction

Y, ; (-)is afunction of (Y] (-) , X;) only, and so is independent of Z; conditional on X;. Hence, for

7 2
and any set of mean-independent mean-zero instruments [ (X;, Z;),

Eg [f5 (Xi, Zi) R* (Y,, Dy, X130.(G))] = 0.

Note that since we use mean-independent mean-zero instruments, the moment condition in-

volving f& (z,2) R* (y,d, x;0) is the same whether computed using R* or R**. Our assumption
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that f£ (z, 2) R** (y,d, x; «) is Lipschitz in y implies that
sup | g |18 (X, Z) R (Yi, Dy, Xi30)| = Bg |16 (X3, Z0) ™ (Y., Dy, X 0)| =

< pCoBq [|IY: = Y5ll] < pC6 (G),
for C again a constant that depends only on the dimension and diameter of D. Hence, for small
(@) the moment conditions are nearly satisfied at 6 (G), in the sense that

HEG [fg (Xi, Z;) R™ (Yz‘>Dz‘,X¢;Q(G))] H < pCh (G).

Since we have assumed strong identification, it follows that for any ¢ > 0, there exists 6 > 0 such
that § (G) < § implies |Jo* (G) — a (G)|| < e.

By our uniform continuity assumption on %Yf*, for § (G) < &§ we thus have that

sup | LV (b, B (3. 0° () (G)) — Vi (b, B (3., :(6) 50 ()| < ().
vz 0d " ad
and hence that for £* (o) = R* (Y, D;, X;; ), & (0) = R*(Yi, Dy, X;;0), and w; ;7 (d,n) =

Nj,5' (d’ Y; () 7Dl () 7X’ia Zl) )

sup_ 3" Fg [ / (afl Y5 (0, X6 (0" (6)) 10" (§)) = 5 Yo (0. X" <a<G>>;a<G>>) i <d,n>] -

n:nlla <1 j 5
0. e 0. . )
5 [/ (adjn,jwd,xi,fi 0 GN38°(G) ~ 5 Vi (X <9<G>>,0<G>>> dwi,j,jwd,n)]—
< O3k (g)

for a constant C5. Hence, by the definition of 0 (G) and the triangle inequality, for all G such that
§ (G) < & we have that

sup |7 (0" (G),G,n) — 7 (G,n)| <0+ Cs (e),

73|l <1

where we can make the upper bound arbitrarily small by choosing ¢ and ¢ appropriately. This
proves the first part of the proposition.

To prove the second part of the proposition, for square-integrable functions h : X — R let
us consider paths G} such that G = G| for all h, while for ¢t > 0 G replaces the value Y; (d, x)
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drawn from G, by
Y (d,x) =Y (d,w, R (Y (d,2) d, 23 600) + £ - h () 0p)

By Assumption l 4, G € G for t sufficiently small. By the implicit function theorem and the
assumption that 2mg, (6) has full rank for m¢ (0) = E¢ [f% (X;, Z;) R* (Y;, Dy, X3 6)]

gte* (Go) = (;07”6‘0 (90)>_ gtmGo (6).

Note, however, that by Assumption iV) and the definition of Yl-t‘h,

0

0
&mGo (9) - EG() [aszéo (XZJ ZZ) R* (}/M D27 XZ; 90)] + EGO [féo (XM Zl) h (XZ):| )

where we assume the researcher’s model is correctly specified at Gy and unconditional exogeneity
holds, so R* (Y;, D;, X;;600) = & where E¢ [§;] = 0and & L (X;, Z;). Hence, the first term is

zero, and

29 (Go) = ( O ey <eo>)  Boy [f (X Z) R (X)].

If we take h (X;) = E [féo (Xi, Zi) |Xi]/v, we see that

gte* (Go) = <§0mco (90)> My, M! = B, [EGO [fg;o (X;, Z) \Xi] Ec, [fgo (X, Z:) ’Xﬂ |

Since we have assumed that - m, (6o) has full rank, we know that rank ( [ fe (X, Zy) fe, (Xa, Zs)' D =

dim (). Note that we can write
M = Eg, [f4, (X, Zi) £, (X0, Z))| = MT + M"
for
MP = Eg, [(f&, (Xi, 20) = Bay [f&, (Xi 20) 1X4]) (£, (X, Z0) = Eay [ £, (X, Z:) |1X])] -

For any A in the left null space of M’, AM! = 0, we have F {Aféo (X, Z;) |XZ} = 0,50 Afg, is
a potential choice of conditional mean-zero instrument. For B an orthogonal basis for the left null

space of M, failure of strong exclusion implies that
BEg, [(féo (Xi, Zi) — Eg, [féo (Xi, Zi) |Xz‘D (féo (Xi, Zi) — Eg, [féo (Xi, Zi) |Xz‘m B
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has rank strictly less than « (since otherwise we could take fgo = B[, and verify strong exclu-
sion). For M to have rank 6, M’ must therefore have rank at least dim (3) + 1.
-1
Let S,0 select the rows of 6 corresponding to «.. Since (%mgo (90)) has full rank by as-

sumption, — (%mgo (90))71 M has column rank at least dim () + 1, so
a -1
{Sa <80mG0 (90)> M'v:ve RJ} # {0},

and there exists some vy such that for hy (X;) = F [fgo (Xi, Z;) ]Xi],vg, %a* (GSO) o £ 0.
Consequently, for some € > 0 we have o* (GSO) # o (G?O) . Note, however, that G only shifts

the role of the x in the residual, so causally correct specification holds and ¢ (GQU) = 0, where
YT (d, X0) = Y7 (d, Doy R (Y™, Dy, Xi260) :60) for all d

by construction. Consequently, 7 (GQO; n) =7" (00, Gho; 17) for all causal summaries. Since 7~ is

a-sensitive, however, there exists 77 € H' such that
7 (00, Glosm) # 7 (07 (G0, Go;mp)

and consequently 7 (GQO; n) # T (0* (G?O) , Gho: 77) . Since § (GQO) = 0, this immediately im-
plies that

GegS:?(I();):o ‘T (G‘?O; 77) -7 (9* (G?()) 7G?03 77)‘ > 0,

which proves the proposition. O

A.5 Proof of Corollary]]

The difference between Propositions [3] and [] is that the latter considers an a-sensitive class of
targets 7' while the former considers the maximal class of targets 7. To prove the corollary, it
suffices to show that for the DGPs G" considered in Assumption 4| and discussed in the proof of
Proposition ] there exists 7 € H such that

7 (07 (G2, Glosn) # 7 (60, Glosn) = 7 (Glosm)

Note that this property is weaker than a-sensitivity, since it concerns behavior only at the specific
DGPs G" and compares behavior at 6, to that at 0* (GQO) , while a-sensitivity restricts behavior
across all G € G and considers all («, ') pairs.

Towards contradiction, suppose this property fails to hold. Then for « = o* (GQO) # oy,
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T (0, Gho, n) =T (90, Gho, 77) for all n € H. By the same arguments used to prove Proposmon
this implies that

0 0
Ee | Yo (X, €7 (0)30) = Yoo (d, X, €7 (o)
3 Fo | sup| Vi (X0 5 00300 = 5905 (X0 7 )00

for &* (o) = R (Y;, Di, Xi5a0) , 80

0 0
%Y** (d X, & (aO) Oé()) %Y** (d X, & (a0> ;a0>

for all d almost surely. Since the model implied outcomes match the observed Y; by construc-
tion, it follows that Y** (d, X;, & () ;) = Y™ (d, X;, & (ap) ; ap) for all d almost surely, and
consequently that

R (Y7 (d, X3, &7 (o) s o) d, Xis o) = &7 ()

almost surely, so we can write £ () = ¢ (£ (a) , X;) for a known function q.

Note, moreover, that since G corresponds to the case of causally correct specification, Y; (d, x) =
Y (d, x, &5 o) for & = £ (), where our independence assumptions ensure that & I
Z;| X;. The argument above implies that £ (o) L Z;| X; as well, and hence that

Egno [67 (a0) = &7 () |23, Xi] = Egno [§ (a0) = &7 () [ X)]

by construction, so
Var g (Egro [€7 (a0) = €7 () |25, Xi] 1X;) = 0

almost surely. However, this contradicts Assumption f{(v). O

B Bias Bounds for Restricted Classes of Causal Summaries

Our results in the main text focus on worst-case performance over causal summaries 7 € 7.
When the researcher’s estimand solves moment conditions that satisfy our conditions for strong

exclusion, there exists a class of causal summaries 7 * that are always consistently estimated.

Assumption 5. (Smoothness of researcher’s model) Under the researcher’s model, Y*(d, x,&; 0)
is differentiable in d for all (z,£,0), R* (y,d,x;0) is differentiable in (y,d) for all (x,0), and
a%R* (y,d, x;0) is everywhere full rank.
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Proposition 5. Suppose Assumptions|l|and 5| hold, and that the researcher’s estimand solves
Ec |8 (Xi, Z)) R (Y;, D, Xi 0™ (G))]| =0

where Eg [ £ (X;, Z;) |Xi] = 0, f& (x,2) € RE", and vank (Eq [fE (Xi, Z) 1§ (X1, 2,)']) =
L. Then for each v € RL", we have that 7, (G) = 77 (6%, G) for

0
7 (G) =Y Eq [/ o, Vi (d, X;) dwi; (d)]
i 7 od

where the weights dwy ; ;, (d) are defined implicitly by

1 0
/ hi (d) dw?, (d) = /Z /0 hi (D; (¢, 2)) 5Dy (@, 20) Azt - () dGizx (2]X)
for all integrable functions h;. Here Az = z, — z_, z; = 2z, + tAz, z is any fixed value in Z, and

—v 9 * * /
Wi j (d) = Z aiijj’ (}/Z <d7 XZ) 7d7 X’La 0 (G)) v fg,j’ (XZ7 Z) :

j/

The weights w;; ; have several notable features. First, these weights depend on the first-stage
effect of Z; on D;, and so reflect which units (and which values of D,) are affected by the instru-
ments. Second, these weights may be either positive or negative. Third, these weights (and hence
the target 7,) are indexed by v € RLE, so the dimension of the set 7* = {TU T E ]RLE} is equal to
the number of mean-independent mean-zero instruments f£. Note that Proposition |5 applies even
when L¥ < dim («), so the researcher estimates certain causal summaries correctly (regardless
of the distance from causally correct specification) as soon as the researcher’s estimand solves a
single moment equation formed using mean-independent mean-zero instruments.

Proposition [5] shows that the researcher makes no error for causal summaries in 7, but can
also be used to bound the degree of error for causal summaries that are “close” to 7 *. Specifically,

for any causal summary 7 = 7 (+; 7)) , define

Il = min [T = 7l

as the distance between 7 and the closest element of 7 *. We can bound the researcher’s error for

all such causal summaries:

Corollary 2. For any n € H, Assumptions|[I|and[5]imply that

7 (Gin) =77 (07 (G) , Gsm)| < |I7ll 6 (G) -
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The weights in Proposition [5] are rather involved and reflect our potentially nonlinear, multi-
variate setting. If we specialize the result to cases considered elsewhere in the literature this result
simplifies considerably. As discussed in the main text, the literature has primarily considered the
linear IV model with a single endogenous variable. Suppose that Y; is scalar, that X is constant,

that Z; is randomly assigned (Y; (-), D; (+)) L Z;, and that the researcher considers a linear model
Vit (d,&;0) =B+a-d+¢

with instruments f* (Z;) = (1,9 (Z;)) or, equivalently, f* (Z;) = (1,9(Z;) — Eg g (Z;)])", not-
ing that the resulting estimand satisfies strong exclusion by construction. Under a monotonicity
assumption, all estimands in the class we consider are rescalings of the LATE derived in Theorem
4 of Angrist, Graddy, and Imbens| (2000).

Corollary 3. In the linear IV model, for all n € H

/ dwi 55 (d)] ,

where Theorem 4 of Angrist, Graddy, and Imbens (2000) provides a LATE characterization of

T (07 (G), Gin) = o" (G) ZEG

o (G) under monotonicity and other assumptions discussed in that paper.

Beyond linear IV, suppose the residual function is additively separable in Y; and the other
variables,
R*(Y;, Dy, Xi30) = A™ (Y;) + B™ (Di, Xisa) — L™ (X3 8) - (6)

This assumption holds, for instance, in the linear and logit examples discussed in the text. In this
case, the class of causal summaries 7* = {Tv v € RLE} derived in Proposition |5(is a-sensitive

in the sense of Definition [7 under an additional identification condition.
Corollary 4. If the residual function takes the form (6)) and the mean of the moments
Eq |8 (X, Z;) R* (Y;, Di, Xi30)| = Ea |18 (Xi, Z) R (Y;, Di, Xi; )]
is a one-to-one function of o for all G € G then the class of causal summaries T* = {Tv NS RLE}
is a-sensitive in the sense of Definition|7]

The condition that the mean of the moments is one-to-one in « is equivalent to requiring that
Eq [ 18 (Xs, Z,) B (D;, X; a)} is one-to-one, and implies that the moment conditions have a
unique solution for all G € G. Hence, this condition is closely connected to (though not nested

with) the assumption that « is strongly identified by the mean-independent instruments.
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B.1 Proof of Proposition

We next state several technical lemmas which will be helpful in proving Proposition [5]

Lemma 3. For any v € R'?, j € [J], 'f&,(Xi, Z;) the jth column of f& (X;, Z;), and any R-
valued function B* (x, z) that is differentiable in z for all x, provided E¢ {v’fgj (X, Z;) |X1} =0

we can write

Ec [V'fE (Xi,2:) B* (X, Z;)| = Eq

/. / (X, 20) Azdt -0 fE (X, 2) dGgix (2 \X»]
for Az =z —zgand z; = zo + 1 - Az.

ProofofLemma Note that since Fg {v’fgj (Xi, Zi) ]XJ =0, Eg {v’fGE,j (Xi, Z;) B* (X, zo)] =
0 for any fixed z,. Hence,

Ea V15, (Xi, Z) B (Xi, Z)| = Eq [V 18, (X, Z:) (B* (X4, Z;) — B (X, 20))| =
Eo | [ (B (Xi,2) = B (Xi,20)) 018, (X3, 2) dGizpx (21X0)| =

Eg [/ / fB* (Xi, z¢) Azdt - v’fgj (Xi,2)dG 7 1x (ZlXZ)]
as we aimed to show. [J

Lemma 4. Suppose that E¢ [v’ 1E (X, Z) \XJ = 0. Then, for any differentiable function B (Y;, D;, X;) €

R,
G[v/fg (X,-,ZZ-)B(YZ-,Di,X = Eg Z/TD*B (d, X;)day; (d)]
where
D=B; _9py 0 0
Ty 7 (d,x)= 8yB] (Y; (d,x),d, x) ad, —Y;(d,z) + o, —B; (Y (d,z),d, x)

is the total derivative of B; with respect to D; j and &} . ., (d) is defined implicitly by

1,5,5"

/h Wi j.j (d) =

d ,
/ / (X2 2)) 5-Dig (X, 7) adt -0/ fE (X, 2) dGzx (21X3)

for all measurable h; (-).
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Proof of Lemma NotethatEG v L XwZz B Y;,D“XZ :EG Z~UI L XuZz B; Y;,DZ,XZ .
G v )Gy J

Under the nesting model and conditional exogeneity, we can write
Eg [v'f5; (X, Zi) B; (Yi, Di, Xi)| =
/v’fgj (z,2) Eq [B; (Y (D; (z,2),x),D; (x,2),2)|X; = 2] dGxz (2, 2) .
Since F¢ [v’fg (X, Z;) |Xz} =0, Lemmaimplies that

Eg [v' 15, (Xi, Z:) B; (Y;, Di, Xi)| =

EG [/ / &BJ* X7,7 Zt AZ . U/fg,j (XZ, Z) dGZ\X <Z|Xz)‘|

for BY (v,2) = Ec [B; (Yi (Di (z,2) ,2), Di (z,2) , ) | X; = z] . By the chain rule, however,

) 0
Ee [TP*BJ‘ (D (X,2), ) 57 Di(X,,9) X,
SO
G [U/fGE (Xl7Z)B (}/ZlevX)} -
S Ea [Jz y T (Di(Xi20)  X0) 205 (Xi, 2) Azt -0/ (8 (Xi, 2) dGzix (2] X5)]

Z]J EG {IZ fO z?‘)B (Dl (Xivzt)aX) 0z Dl] (lezt) Azdt - U/ij (XZ7Z dGZ|X X ]

from which the result is immediate. O

Lemma 5. Suppose that E¢ { 'fE(X;, Z;) |X] = 0. Then for weights dw; ; ., defined as in Lemma
Assumption [ implies

Eq

=L (50" (
Z/TD D (d, X,y dast, ()] =0,
J.3’

Proof of Lemma[S| The result is immediate from Lemmawith B (Y;, D;, X;) = R (Y;, D;, X;; 0* (G)).
O
Returning to Proposition [3] recall that

TDEEO) (g ) = 9 g (Yi(d,z),d,z;0" (G)) = i

a * . O*
0y 5 i (&@) + o R (Yi(d,2), d,2;07(G)).

od
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Under the researcher’s model, however, R* (Y™ (d,z,&;0),d, z;0) = £ for all (d, z, &, 6) . Hence,

by the implicit function theorem,

0 O g (v T e vide
%Y (daxaéve)__ (&/R (Y; (dﬁaf)ad,%@)) %R (K>d7$a9>7

or rearranging, %R* (Y, d, X;;0) = —a%R* (Y (d,z,€),d,x;0) %Y* (d,z,&;0) . Hence,

7;?—>R*(.;9*(G)) (d, JJ) _

DR (Y; (d, ), d,2;0" (G)) (%Y (d,x) — 0¥ (d,z, R* (Vi (d, ), d, 2 06) ;6% (G))) .

Lemma [5] thus implies that

Eq

a o * ~,U
Z/aij (Vi (d, X3) ,d, X550 (G) Vi (d,X0) di 5 (d)| =
5J’' J

Eq

a * * a % " ‘ - . .
%:/ gy (1 (4.X0).d. X0 (G) 57 (d, i, R (Y (d, X3, d, X3 0) ;67 (G)) day s (d)
Note, however, that we can write

9 . Y .,
Z/ayR (Y (d, X3) o, X550 () Y (s X0) dit  (d) =
33’ J

8 a * * ~U
>/ 5 Yia (0 X0 20 o (Y (X0 d X 07 (6)) iy (d).
33"

j//

Thus, if we define w; ; .,by

VY]
! 0
/ / hi (D; (z, 21)) 7Dy (x,2) Azdt - &7 ; (d) dG 71x (2| X;)
2z Jo 0z J
for 5
Wiy (@) = 3 5, By (Vi (d X0, d X 67 (O)fE 5 (X 2)
it Y

and all measurable functions h; (d), the result follows. O
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B.2  Proof of Corollary 2]
Note that for any n* such that 7 (-;n*) € T*, 7(G;n*) = 7 (0" (G),G;n*) by Proposition

Hence,

T(Gin) =77 (07(G), Gin) = (7(Gin) = 7 (Gin")) = (77 (07 (G) , Gim) — 77 (67, G "))

=7 (G, An) =77 (07 (G) , G; An)

for An = n — n*. Note, however, that n € H by assumption. If n* € H then linearity of H implies
that An € H as well, so the proof of Proposition [I] implies that

|7 (G, An) — 7 (6" (G), G; An)| < [|An]lg 6 (G).-

If instead n* ¢ H then ||An||y = oo, and the bound holds trivially under the convention that
00 - 0 = oo. Since the bound holds for all * € 7, minimizing over n* yields the desired result. O
B.3  Proof of Corollary 3]

Note the structure of the linear model implies that

0 * * o 2 . *ok . . _
%Y (de (y7d>x79>79) 8dY (de (y,d,moz),oz)—Oc.

Consequently, for all n
™ (0" (G),G;n) = o™ ( ZEg{/dw”] ],
so 7 (6* (G) , G;n) is an n-dependent rescaling of the estimand o* (G). O

B.4 Proof of Corollary

Note that since R* is the inverse of Y* the function A** must be invertible in Y. Moreover,
Assumption [5|implies that A** is everywhere continuously differentiable with a full-rank Jacobian.
Hence, rather than considering causal effects on Y; we can equivalently consider causal effects on
YA = A (Y;) ,where

d 4 0 e 9
galt (X)) = 5 A" (Yi(d X)) 7Y (4, X0,
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and all causal summaries for outcome Y; can be written as causal summaries for Y;* and vice
versa. For simplicity of notation assume we already transformed the outcome so Y; = Y, and the

residual function is linear in Yj,
R* (Y, Di, Xi;0) = Y; + B™ (Dy, Xis ) + L™ (X5, ) -
Proposition [5|then implies that
0 v
5’
for wy; ;» such that
v a ! rE
/hi (d) dwi sz (d / / (@, 21) aZDi,j/ (@, 2¢) Azdt - v'f( ; (Xi, 2) Gz x (2| X)

for all integrable functions h;. Lemma ] implies that

e [U/fc]:; (Xi, Zi) B™ (Dy, X 04)] = ZEG

—B**
[T X ety (@)

where the linear structure of the model implies that

) . 0

* %k a
7% (d, X)) -5 = (d, X;, ) =

7 (d, X, & (0)0)
for all § = («, B) for some /3. Since the weights are the same as for 7, (G) , we thus have that
o (V15 (X5, Z) B (Dy, Xj5.0)| = 73 (6;G).

We have assumed, however, that the function Eg [ 18 (Xi, Z) B (Dy, X;; a)} is one-to-one in «,

which implies that for any « # o there exists v € RL” such that
o [V I8 (Xi, Z0) B (Di, Xi;.0)| # Eq [V fE (Xi, Z) B™ (D, X )]

and consequently 7" (0;G) # 7 (0";G) for 0 = (a,f) and ¢ = (/, '), as required by the

definition of a-sensitivity. [
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C Additional Results for Enforcing Strong Exclusion in Practice

C.1 Conditions for Strong Exclusion

In this section, we provide necessary and sufficient conditions for the researcher’s estimator to sat-
isfy strong exclusion. We focus on the case in which the researcher’s estimand satisfies a moment
equation of the form in (3) with f5 (X;, Z;) = Waf* (X, Z;) for some weight matrix We. This
nests GMM in which case f& (X, Z;) = MpQf* (X;, Z;). We first provide a necessary condition
that formalizes the maximal included dimension requirement discussed in Section [4] of the main

text.

Lemma 6. Suppose the researcher’s estimand satisfies a moment equation of the form in (3) with
16Xy, Zy) = We f* (Xi, Z;) for some weight matrix W For

2o =B [E[f* (Xi, Z) |X) E [ £ (X:, 2) 1Xi]],
strong exclusion of the estimator holds only if
rank (WeEcW,,) < dim (B) forall G € G. (7)

Lemmal6]implies that even when some elements of the researcher’s chosen instruments f* (X;, Z;)
are mean zero and mean independent of Z;, strong exclusion can still fail for the estimator 6
when too many elements of f* (X, Z;) are functionally dependent on X;. To see this, notice that
E[f*(X;, Z;) | X;] can be interpreted as the component of the researcher’s instruments that de-
pends on the included variables X, and the rank of =4 measures the dimension of this component.
If the researcher selects fewer than dim (5) instruments that depend on included variables, in the
sense that rank (2¢) < dim (/) for all G € G, then rank (Ws=cW(,) < dim (8) for all G and
all W, and the necessary condition (/) for strong exclusion always holds. By contrast, if the re-
searcher instead selects more than dim () instruments that depend on included variables, in the
sense that rank (Z¢) > dim () for some G' € G, then for Lebesgue almost-every W we have
that rank (WgEcW(;) > dim (8) as well, violating (7).

We can further provide sufficient conditions for strong exclusion for commonly-used estima-
tors. As a leading example, suppose the researcher’s estimator is chosen to solve the GMM prob-
lem ming 772(6)'Qu(6). Then, under standard regularity conditions, it is sufficient that at most
dim () rows of f* (X, Z;) are not mean-zero and mean independent of X;. To see why, partition
the instruments as f* (X;, Z)) = (f(X;, Z) (X, Z;)) . where E [f* (X, Z)|X)] = 0,
E [ (X, Zy) ]XZ] # 0and f! (X;, Z;) € RIMBE)*J The first-order conditions of the population

analogue to the GMM problem imply that we can then define the researcher’s estimator as sat-
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wg .
isfying (3) with f¢ (X;, Z) = ( WC; ) (fE (Xi, Zi)/ (X Zi)/)/ for W& € RA™ (@)X and
G
Wi € RImMBXEK where the last dim (3) columns of WE are zero. In this leading case where
the researcher’s estimator is chosen to solve the GMM problem, the additional requirement that at
most dim (3) rows of f* (X, Z;) are not mean-zero and mean independent of X is sufficient for

strong exclusion.

C.2 Enforcing Mean Independence with respect to Coarsened Included Variables

As discussed in the main text, in some cases the included variables X; may be too rich, relative
to the sample size, for full residualization of Z; with respect to X; to be feasible. In such cases,
we can still residualize against coarsenings of X; to obtain weaker versions of our guarantees.
Specifically, let x; ; = x; (X;) denote a (potentially j-specific) coarsening of X;, and suppose the

researcher’s estimand solves the moment equation

Eq

( 1& (Xi, Z) ) R (Y, Di, Xi50" (G)) | =0 ®)

where f& . (X;, Z;), the jth column of fF (X, Z;),is fully residualized against x; ;, E [ FE (X0, Z) v, j} —
0,and f& (X;, Z;) is orthogonal to L** (X;; 8), Eq {fGE (Xi, Z;) L™ (X5 5)} = 0 for all 3, but we
may have Eg [ fg (X, Z;) |XZ-] # 0. We extend our definitions from the main text to cover this

case.

Definition 9. The researcher’s estimator satisfies strong exclusion based on coarsely residual-
ized instruments if the corresponding estimand solves a moment equation of the form in (g),
where f5 (X;, Z;) has at least dim (o) = dim (f) — dim (/3) linearly independent rows.

Definition 10. Under strong exclusion, « is identified by coarsely residualized instruments if the
moment conditions formed using these instruments have a unique solution. That is, the parameter
o is identified by f% (X, Z;) if and only if for all G € G and any a,

|Ec [75 (X0, Z) R (Y, Dy, Xis0)] | = 0
only if @ = o* (G).

For coarse residualization to yield guarantees, we also need to limit the forms of misspec-
ification considered. Specifically, we assume the potential outcomes take the form derived in

Proposition [2] and restrict the functions of X; that appear in the residual.
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Definition 11. The model misspecification is spanned by y; ; if for all G € G and some o (G),
Bo (G), and for some scalar v € R,

Yi(d, X;) =Y (d, X3, &+ - L™ (X4 80 (G)) + L (Xi) 500 (G))

/
where EG [§z|Xz; Zz] =0, L,T (Xz) = (L'T,l (Xi,l) g ey L;J (Xz,J)) s and L;:j () A1 ZZ’X@,] for all j

Note that by Proposition [2]this condition implies causally correct specification, and imposes an

additional restriction that &; be mean-independent of Z; given X;.

Proposition 6. Suppose that strong exclusion holds based on fg (Xi, Z;), that « is identified
by fg (Xi, Z;), and that the model misspecification is spanned by x; ;. Then for all G € G,
o (G) =y (G) and 7 (0" (G)) =7 (G) forall T € T.

Proof. Since we have assumed that Eg | f& (X;, Z;) L** (X;; B)| = Oforall 8, and R* (Y, Di, X;; a, B) =
R (Y;, Dy, X;: ) — L™ (X;; B) , it follows that

Eq {fg (Xi, Zi) R* (Y5, Dz’aXﬁaaB)} = Eq [J?g (Xi, Zi) ™ (Yi,Di,Xz‘S@ﬂ
for all o, 3. Our assumptions imply that

Eq |fE (Xi, Z) &) = Eq |Ee |fE (Xi, Z) | X, Z;] Eq |61 X, Zi]] =0,
Eq [J& (X1, 2) L™ (X4, 60 (G))] = 0,

and

J
Eq [fg (Xi, Zi) L; (Xz)} = ZEG [fg] (Xi, Zi) Ly (Xu)] =

J
3= o B [ 16 (%0 20 Ixei] B L2 06a) bu]] = 0

so B [fg (Xi, Z;) R™ (Y, Dy, Xi; (G))} = 0. By our identification assumption, however, it
follows that o* (G) = o (G) , as we aimed to show. The conclusion for causal summaries is then
immediate. ]

C.3 Enforcing Mean Independence through Residualization

Section[.4introduces a direct procedure for enforcing strong exclusion that involves flexibly resid-

ualizing some of the researcher’s chosen instruments with respect to the included variables X; as a
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first step. In this appendix, we describe in more detail how the researcher may implement flexible
residualization and conduct inference on the resulting estimand.

To describe the direct procedure, again suppose the researcher has selected some initial instru-
ments f (X, Z;) and weight matrix ). The direct procedure for enforcing strong exclusion sets
aside exactly dim () rows of f (X, Z;), flexibly residualizes the remaining rows with respect to
X, and uses the resulting residualized instruments to construct their GMM estimator. As notation,
let fj (X, Z;) denote the j-th row of the researcher’s initial instruments. We write fl:dim( ) (Xi, Z;)
as the first dim () rows of the researcher’s chosen instruments and define f(dimw)ﬂ): L (Xi, Zy)
analogously.

The direct procedure is a semiparametric two-step GMM estimator (see, for example, Andrews
1994, Newey||1994, |A1 and Chen|2003, and /A1 and Chen|2007). We can therefore apply existing
results to conduct inference. In what follows, we discuss two cases: first, the researcher assumes
that the conditional expectation of the researcher’s chosen instruments given the included variables
X, is linear in a fixed and flexible basis of known transformations of X;; and second, the researcher

estimates the conditional expectations using nonparametric estimators.

Flexible parametric first-step estimation We first consider the case in which the researcher as-
sumes that the conditional expectation of f(dim(ﬁ)ﬂ): . (Xi, Z;) given X; is linear in some known
transformations of X;. That s, for each j = dim (8)+1,..., L, Fg [fj (Xi, Zi) | XZ»] = 7jb; (X4),
where b; (X;) € R" is a vector of known transformations of X;. This assumption is automatically
satisfied whenever X; has finite support, as in our application in Section [5] The assumption also
holds if the researcher is prepared to specify a flexible (but known and fixed) basis of nonlinear
transformations of X; such as a finite-dimensional sieve or polynomial basis. The assumption
is also consistent with common practice in many situations—see, e.g., Blandhol et al. (2022) re-
garding the linear instrumental variables model and |Ackerberg, Chen, and Hahn| (2012) regarding
two-step estimators for structural models.

Under this assumption, estimation can proceed in two steps. First, the researcher forms the

sample moment function
Iy (7 X, Z;) = b(X;)T
- g; ( Z> f(PﬁH);L( is 2) - ( z)
letting I" and b (X;) be block diagonal matrices containing Yim(s)+1. - - - vz and bim(s)+ ( i), -

of appropriate dimensions. The researcher then selects the estimator I' = minp § (I')’ Q,9 (T ) for

some weight matrix Qg with population value (2,. Second, taking the estimator r from the first-
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step, the researcher then constructs the sample moment function

2 r 1 fi im(8) (Xi, Z;
a0 == . Frame) (Xi Z)
Jaim@)+1):L (X5, Zi) = b(X;) T

n 7
In the case where the researcher’s estimator is just-identified, it is well-known that we can as-
sess the asymptotic variance of the researcher’s estimator by analyzing the conventional one-step
. . g (I'
GMM estimator with the stacked moments cg((ﬁ ;) (e.g., Murphy and Topel |1985). In the
m )
case where the researcher’s estimator is over-identified, we can again form the stacked moments
but there need not exist parameter values that exactly satisfy the population moments because the
researcher’s model may be misspecified. [Hall and Inoue (2003) characterize the limiting distribu-
tion of misspecified GMM and provide a consistent estimator of the asymptotic covariance matrix.
Lee| (2014) provides a nonparametric bootstrap that is robust to possible misspecification in the

researcher’s model.

Nonparametric first-step estimation We next consider the case in which the researcher mod-
els the conditional expectation of f dim(8)+1):L (X;, Z;) given X; nonparametrically. Let us now
write h; (X;) = Eg |fam@+v:z (Xi Z) | Xi], h(Xi) = (haim()1 (~),...,hL(-)) , and H as
the infinite-dimensional parameter space containing 4 (-). In this case, our direct procedure for en-
forcing strong exclusion can be implemented using the sieve minimum distance estimator analyzed
in|A1 and Chen (2007) and|A1 and Chen|(2012). We can rewrite the population moment conditions
as

Eg | fam@rs (Xi, Zi) = h () | Xi] =0,

Eg | fraims) (Xi, Zi) R* (Yi, Dy, X350)| =0,

G [(f(dim(ﬂ)-i—l):L (X3, Zi) — h ()) R*(Y;, D;, Xi; 9)} =0.

Of course, since the researcher’s model may be over-identified and misspecified, there need not
exist parameters £ (-) , 0 that exactly set the moment conditions equal to zero. For concreteness,
we suppose that the researcher specifies a nonparametric regression procedure based on series
(e.g., splines, polynomials, etc.), but any nonparametric least squares regression procedure may
be used. Like the parametric first-step case, for each j = Pz + 1,..., L, the researcher specifies
basis functions b; (X;) € R¥=, where now the dimensionality of the basis functions depends on
the sample size n. Assuming an identity weight matrix and letting ,, denote the non-decreasing

approximation spaces, the sieve minimum distance estimator solves

R L 1. L 1
(0.h) —afgeegl,igm{ DAL IPILT }

j=dim(8)+1
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for

and
m;; (0,h) = flzdim(ﬂ) (X, Z;) R* (Yi, Dy, X;30)

forj=1,...,Psgand
g (0.h) = (£ (Xi, Z:) — by () R* (Y, Dy, X530)

for j = dim (f) + 1,..., L. Under additional regularity conditions, |Ai and Chen| (2007) estab-
lish that the sieve minimum distance estimator is consistent and asymptotically normal (centered
at the estimand 6* (G)), and provide a consistent estimator of its asymptotic variance. See also
Ichimura and Lee|(2010) for related results. [Hahn and Ridder (2013 and |Hahn and Ridder|(2019)
consider a related but different three-step estimation problem in which the researcher constructs
some parametric estimate, uses the parametric estimate to produce a generated regressor that is
used in a nonparametric regression procedure, and plugs the estimated nonparametric regression

into a moment condition.

Remark 7. If the researcher’s model is just-identified, the researcher may alternatively implement
our direct procedure for enforcing strong exclusion based on a debiased GMM estimator (Cher-
nozhukov et al.[|2022). To see this, we now write researcher’s estimand as satisfying the moment
condition Eg [mm; (0,h)] = 0 for m; (0,h) = (1, (0,h),...,m,;(0,h)). The key step is to
therefore derive the first-step influence function ¢; (0, h, £), which may depend on additional nui-
sance parameters &. Given the first-step influence function, we may form the orthogonal mo-
ment function Eg [m; (0,h) + ¢; (0, h,€)] and construct an estimator 0 using generic machine
learning based estimators for the nuisance functions A (), & (+) and cross-fitting. We provide a
heuristic derivation of the orthogonal moment condition using standard influence function calcu-
lations (e.g., see Kennedy| 2024 and Hines et al.|2022)). For j = 1, ..., P3, the moment condition
E¢m;; (0,h)] = Eq [f] (Xi, Z;) R* (Y, Dy, X 9)} does not depend on the nuisance A (-), and
so it does not need to be orthogonalized. For j = Pz + 1,..., L, we can write the moment con-
dition as E¢ [m;; (0,h)] = Eg [fj (Xi, Z;) R* (Y3, Di,XZ-;H)} — B¢ [h; (X)) R*(Y;, Dy, X;0)],
and we can focus on deriving the influence function for the second term. Defining r (X;;60) =

Eq [R* (Y;, Dy, X;;0) | X;], the orthogonal population moment function is then

Eq |(f; (Xi, Z0) = hy (X)) R* (Yi, Di, X30)] —
Eq |r (X::0) (f5 (X5, Z:) = by (X)) + hy (X3) (R* (Y;, D3, X330) — 7 (X50))]
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C.4 Automated Recipe for Strong Exclusion

Section4.4]discusses a direct procedure for enforcing strong exclusion that requires the researcher
to make an intentional choice of which instruments to residualize. As an alternative, this section

provides an automated procedure for enforcing strong exclusion based on a nested optimization.

Ingredients. (Strong exclusion)
o Instruments f (X;, Z;) € R\ [ > P.

o Weight matrices QF Q) € REXL,

Recipe. (Strong exclusion)

* Residualize f (X, Z;) with respect to X; via nonparametric regression to obtain residual-
ized instruments f¥ (X;, Z;), and define f1(X;, Z;) = f(X;, Z;).

* Form sample moment functions

1

m (0) = ngE (Xi, Z;) R(Y;, Dy, X3 0)
i (6) = -3 17 (X, Z) R (Y, Dy, Xis6)

e Solve

mini! ((8), B) Q' (@(8), ) st

& (8) = argminm” (a, 8) Q¥m* (a, B)

to obtain § = (& (BA) ,B)

Provided the estimand from this procedure falls in the interior of the parameter space, it solves a

WGE E o N/
) (1P (G2 (XL Z))
G

for some WC}E that has zeros except in its upper-left L x L block. Consequently, if the nonparamet-

ric regression used to form f¥ (X;, Z;) is consistent and the excluded instruments have sufficient

population moment equation of the form in (3) with f (X, Z;) = (

variation, then the estimator satisfies strong exclusion.
For a researcher who has selected instruments and a weight matrix sufficient for estimation via
GMM, the researcher can take O = OF = () to be the selected weight matrix. From there, the

recipe is fully automated up to the selection of a nonparametric regression procedure.
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C.4.1 Standard Errors and Efficient Weighting Under Automated Procedure

This appendix provides standard errors for the estimator 0 described in Section that enforces
strong exclusion. In the just-identified case, this is asymptotically equivalent to a standard GMM
estimator under standard regularity conditions, and the researcher may conduct inference using
the techniques described earlier in Section [C.3] We therefore confine our attention to the over-
identified case under the assumption of correct specification. Conventional GMM standard errors
are invalid in over-identified and misspecified settings, and the same holds for the standard errors
derived here. Appendix [C.3] discusses approaches to inference for our direct procedure that are
valid under overidentification and misspecification.

Recall that we define the estimator 6 to solve

min! (& (8), B) i’ (a(8), ) st

& () = argmini® (a, 8) Q"m” (o, §),

where this formulation nests the case with dim (o) = L provided we can solve the excluded
moments. Considering first the “inner-loop” estimator & (/3) , note that the first-order conditions

for this estimator are

A

ME (a(B), B) QPm® (& (8),8) =0,

for MP (a, B) = 2P (a, B), and hence under standard regularity conditions we have that for n

large and (3 close to Sy,
6 (8) ~ — (N2 (ao, B QPN (0, ) NIE (a0, ) Qi® (o, ).

Note further that the first-order conditions for B are
(375 (@ (3) ) 4 412 (a () ) 350 () ) ' (a (3) . 5) =0
g

for M (a, B) = ! (a, B) and M (a, B) = 2! (a,
ularity conditions we will have that for n large, 0

equations S (@,B) m (d, @) ~ 0 for m (o, B) = (mE (o, B) ! (a,ﬁ)') and S («v, 8) is equal

to

) . Consequently, under standard reg-

= (d B) approximately solves the system of

ME (Oé,ﬁ)/ QE Odim(a)XL

Oamiarer (V15 (0 8) = 315 (. 8) (WIF (v, ) QENIE (0, 8)) " NIE (c, BY QPNIE (0, ) ) ©F
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Hence, provided M (d, B) = %m (@,B) 2 M, and S (d, 3) 2 So, as will again hold under

standard regularity conditions, we obtain
0 — 0y ~ — (SoMo) ™" Sorn (o) ,
50 if /rri (6g) % N (0, %) , one can show that
Vi (0= 00) = N (0, (SoMo) ™" SoX0S) (MoSg)™") ,

and we can estimate this asymptotic variance by plugging in S (64, B) for Sy, M <€y, 3) for My, and
estimating ., as appropriate for a given application (e.g., using a cluster-robust variance estimator
if desired).

Finally, to consider the efficient weighting matrix, note that estimation based on the “concen-
trated” moment function 7! (& (3) , ) is a special case of generalized minimum distance estima-
tion as considered in, e.g., Newey and McFadden| (1994). Hence, the efficient weighting matrix
for the outer loop estimator is the inverse of the asymptotic variance of \/nm! (& (3,), Bo) for By
the true parameter value. To derive this weighting matrix, note that, building on the results derived

above,

-1

! (6 (o) , Bo) ~ 1" (o, Bo)— ML (o, Bo) (MY (o, Bo) QPN (a0, Bo)) ML (a0, o) QP (a, o)

MmE (ag, B) )

ml (Oé(), 5)

= (= 02 (0w, o) (51 (. o) D7 NIE (a0, 60)) ™ NEE (oo, 50) OF 1y ) (

which says that for
S, ~1
SQE — <— Mi (a07 50) (Mf (Oé(bﬁ())/ QEMO? (Oéo,ﬁo)) Mf (040, 60)/ QE [L ) ,

~ ~ -1
the efficient outer-loop weighting matrix is (SQE 2054, E) provided this matrix is non-singular.
Hence, a feasible (and efficient under correct specification) outer-loop weighting matrix plugs in

estimates for these components.

D Additional Theoretical Results and Discussion

D.1 Connections to Linear IV Estimands

Although our main focus is on applications to nonlinear, multivariate structural models, we used

the linear instrumental variable (IV) model throughout the main text to build intuition. We now

78



discuss how our findings connect with those in the large literature on the interpretation of linear
instrumental variables (IV) estimators under model misspecification.

In this particular setting, our analysis connects our work to recent articles by Blandhol et al.
(2022) and Stoczynski| (2022). These articles focus on the case of a binary treatment D; € {0,1}
together with the two-stage least squares estimator, and maintain monotonicity assumptions on
the potential endogenous variable function D; (-). These articles analyze whether the researcher’s
estimand o* ((7) is a non-negative weighted average of causal effects of D; on Y; under alternative
ways of accounting for the covariates X;. In the setting of these articles, controlling flexibly for X,
as the articles recommend, guarantees strong exclusion of the estimator. In contrast to these papers,
we consider a continuous endogenous variable D;, and our results apply to any estimator under
which the researcher’s estimand satisfies Equation (3. Our results establish a sense in which strong
exclusion is a necessary and sufficient condition for the researcher’s estimator to be approximately
causally consistent. The conclusion that eliminating dependence between excluded and included
variables strengthens the causal interpretation of linear IV estimators has other antecedents in the
literature, including Ansel, Hong, and Li (2018) and Borusyak and Hull| (2023). In particular,
the “recentering” proposed by |Borusyak and Hull| (2023)) for linear models suffices to ensure that
strong exclusion holds.

When Y; € R is a scalar and D; € R is vector-valued, our setting nests the linear instrumen-
tal variables model with multiple, discrete treatments studied in, for example, Angrist and Imbens
(1995), Heckman, Urzua, and Vytlacil (2006)), Kirkeboen, Leuven, and Mogstad (2016)), Kline and
Walters| (2016)), and Bhuller and Sigstad|(2024), among many others. In a setting with multivalued
treatments, Bhuller and Sigstad| (2024) establish that a causal interpretation of the usual 2SLS es-
timand as a convex weighted average of causal effects of particular treatments requires a condition
ensuring that each instrument is only related to one endogenous variable conditional on the other
instruments.?® Conditions of this kind may apply in some economic settings, but they are precluded
by, for example, the assumption of Bertrand-Nash pricing under complete information about costs
that underlies a large number of applications of differentiated goods demand estimation.?’

Finally, as mentioned in the introduction, a large literature studies the interpretation of linear
IV estimators under other forms of model misspecification, emphasizing concerns that are distinct

from those we study. |Angrist| (2001) studies IV estimands in limited dependent variable settings,

29Kirkeboen, Leuven, and Mogstad| (2016) note that two-stage least squares applied to unordered discrete treatments
does not estimate a convex combination of causal effects in general, but show that this can be resolved when ad-
ditional data is available (in their setting, data on next-best choices). |Kline and Walters| (2016) decompose the
IV estimands into alternative sub-local average treatment effects across different treatment values. |Chalakl (2017)
studies the interpretation of IV estimands in settings with ordered discrete treatments under violations of mono-
tonicity. [Heckman and Pinto| (2018)) and |Lee and Salanié (2018)) study conditions under which treatment effects of
multi-valued treatments are nonparametrically point identified.

?’Gandhi and Nevo (2021, p. 105) refer to this model of pricing as “the workhorse model of horizontal competition.”
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and characterizes a nonlinear estimand in terms of causal effects. |[Kolesar (2013) and |Andrews
(2019) compare the estimands of different IV estimators in linear models. |[Kolesar et al.| (2015))
discuss instrumental variables estimation when the exclusion restriction fails but the exclusion vi-
olations are orthogonal to the first stage. Mogstad, Santos, and Torgovitsky| (2018) discuss the
interpretation of linear IV estimands in terms of marginal treatment effect functions. Kline and
Walters| (2019) show that many nonlinear and linear models deliver numerically equivalent esti-
mates for local average treatment effects and average potential outcomes among certain subgroups.
Mogstad, Torgovitsky, and Walters|(2021) study the interpretation of 2SLS with a binary treatment

and multiple instrumental variables under alternative monotonicity conditions.

D.2 Nonparametric Identification of Causal Summaries

In this section, we establish conditions for the nonparametric identification of a causal summary.
Towards this, we say a causal summary 7 € T is non-trivial over G if there exists some data

generating process G € G such that 7(G) # 0.

Proposition 7. Suppose that Y; (d, x) and D; (x, z) are everywhere continuously differentiable in
(d, z) almost surely under all G € G. Let G* C G denote the class of distributions under which the
researcher’s model holds, meaning the potential outcomes satisfy Y; (d,x) = Y* (d, x,&; 0) with

& = R(Y; (d,z),d, x;0) almost surely under all G € G*.
(a) If conditional exogeneity (Y; (+),D; (+)) L Z; | X; holds under all G € Gand Y; X Z; | X,

holds under some G € G, then there exists a non-trivial causal summary that is identified on

G from the joint distribution Gy px 7 of the observed variables.

(b) Even if unconditional exogeneity (Y; (-),D; (-)) L (X, Z;) holds under all G € G and
Y, I X, holds under some G € G, no non-trivial causal summary is identified on G from

the joint distribution Gy px of the observed non-excluded variables.

(c) If for some instruments [*(X;) the moment condition E¢ [f* (X;) R (Y;, D;, Xi;0)] = 0
has a unique solution under all G € G*, then any causal summary with known weights is
identified on G* from the distribution Gy px.

Proposition states that, under conditional exogeneity, some nontrivial causal summary is
nonparametrically identified provided the researcher observes data on excluded variables Z. This
requires that Z; is not conditionally independent of the outcomes Y;, which can be loosely inter-
preted as requiring that there exists a non-trivial first-stage relationship between Z; and D;. By
contrast, Proposition states that, even under unconditional exogeneity, no nontrivial causal
summary is nonparametrically identified if the researcher does not observe data on excluded vari-

ables. Intuitively, absent data on excluded variables, there is no nonparametric information in the
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data about the effect of ceteris paribus changes in D;. Because the set of causal summaries is
large (including, for example, any average elasticity or derivative of the outcome with respect to
the endogenous variable), failure to nonparametrically identify any member of this set is a strong

form of nonidentification.

Example. (Differentiated goods demand model, continued.) Berry and Haile (2014) discuss the
need for excluded variables for nonparametric identification of differentiated goods demand mod-
els, writing, “We emphasize that we require both the excluded instruments... and the exogenous
demand shifters” (pp. 1761-2). See also Berry and Haile|(2016).

Proposition states that data on excluded variables is not necessary for identification of a
causal summary if the researcher’s model holds. Intuitively, knowledge of functional form means
that the observed effect of X; on Y; can be apportioned between a component due to the direct

effect of X; and a component due to the indirect effect of X; through D;,.

Example. (Differentiated goods demand model, continued.) Berry, Levinsohn, and Pakes| (1995)
discuss identification of a demand model using functions of the product characteristics as instru-
ments. Berry, Levinsohn, and Pakes| (1995) note that assuming that a consumer’s utility depends
only on the characteristics of the chosen good, “combined with specific functional form and distri-
butional assumptions, is what allows us to identify the demand system even in the absence of cost
shifters that are excluded from the [X;;] vector” (p. 855).

D.3 Generalization to Dynamic Settings

In this section, we generalize our analysis to cover dynamic settings, focusing on dynamic panel

approaches to production function estimation as a concrete example referenced in the main text.

D.3.1 Dynamic Nesting Model

As in the main text, the researcher observes variables (Y;, D;, X;, Z;) that are independently and
identically distributed (i.i.d.) according to some distribution for units ¢ = 1,...,n, where all
variables are finite-dimensional. We first lay out a dynamic nesting model defined in a potential
outcomes framework, with potential outcome and potential endogenous variable functions Y; (-)
and D; () and observed values Y; = Y; (X;, D;, Z;) € R’and D; = D; (X;, Z;) € R’, where we
may now think of j € {1,..., J} as denoting time periods. We assume throughout that X; € R4*’
and Z;, € R’.

To accommodate the dynamic structure of this setting, we make important restrictions on the
nesting model. First, as in the main text, we maintain the exclusion restriction that the potential out-

come function Y;(d, z, z) does not depend on the instrument Z;. Second, we assume that there are
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no carryover effects, so that for all j > 1 the potential outcome function Y; ; (d, x) only depends
on the contemporaneous endogenous variable D; ; and contemporaneous included variable X ;.
With these two restrictions, we therefore write the potential outcome function as Y; ; (d;, z;) and
the observed outcome as Y; ; = Y; ; (D; ;, X; ;). Third, we assume that the excluded variable Z; is
dynamically excluded from the potential endogenous variable function D; (z, z), meaning that for
each j > 1, the function D; ; (x, z) only depends on the contemporaneous excluded variable Z, ;.
We therefore write the potential endogenous variable as D, ; (z, z;) and the observed endogenous
variable as D; ; = D, ; (X;, Z; ;). The last restriction is dynamic exogeneity, and we again con-
sider two forms: dynamic unconditional exogeneity meaning (Y; ; (-), D;; (+)) L (X, ,, Z;;), and
dynamic conditional exogeneity (Y; ; (-),D;; (-)) L Z;; | X, ;. In this dynamic setting, we relax
exogeneity to only be a contemporaneous independence restriction within a time period j.

We assume that (Y; (), D; (+), X, Z;) are drawn i.i.d. for units i = 1, ..., n according to some
distribution G that lies in a class G satisfying the preceding restrictions. We further assume that the
class of distributions G summarizing the nesting model additionally satisfies the regularity condi-
tions stated in Assumption Finally, as notation throughout this section, let V; ;.; = (Via,. .., Vm)
denote the first j elements of any vector V; € R”.

D.3.2 Researcher’s Dynamic Model

The researcher’s dynamic model is a special case of the dynamic nesting model. Specifically,
for each j > 1, the researcher specifies that Y;; = Y* (D, ;, X, ;,& ;;6) for a function Y™ (-)
that is known to the researcher up to the parameter # € R and a mean-zero structural residual
&i; € R. We again assume that the researcher’s model is invertible, meaning there exists a function
R (-;0) that is known up to the parameter ¢ such that §; ; = R (Yi;, Dij, Xij;6o) for 6y the true
value of the parameter. As shorthand, we write R} (i, D;, Xi;0) = R(Ym, D;;,X;;;60) and
R*(Y;, D;, X330) = (R; (Y, Dy, X3 0) ..., RS (Ya, Dy, X3 0)).

Without loss of generality, we can again take the researcher’s residual function to be additively

separable in X; and a subset of the parameters
R (Y, Dij, Xij; 0) = I (Yij, Dij, Xijia) — L (Xij; B)
for 0 = (a, B) .We can then write researcher’s residual function as
R* (Y, D;, X;30) = R™ (Yi, Dy, X3 @) — L™ (X33 B) ©)

for R¥* (Vi, Dy, Xi500) = R* (Y, Dy j, Xy 5y a0), L (X33 ) = L* (Xi55 B), R™ (Yi, Dy, X5 0) =
(R (Y, Dy, Xis ), ..., RY (Y, Dy, X5 Oc)),, and L* (X;;8) = (L7 (X 8), ..., LY (Xi;B))
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as discussed in Section[3.3]of the main text. Consequently, we can again rewrite the model-implied
potential outcomes as Y* (D; ;, X; ;,&; ;;6) = Y™ (Dm, Xij, &+ L (Xij30); a).

As an example, consider the firm production setting introduced in Section 2] of the main text, in
which the researcher assumes a Cobb-Douglas technology. In this case, the researcher’s model for
the log output of firm 7 in period j is a linear function of the contemporaneous, log input quantities.
More concretely, let Y; be the vector of log outputs, D; be the vector of log quantities for a static
input, and Z; be a sequence of cost shifters. The covariates X ; consist of state variables including
past values Y;1.;_1 = (Yi1,...,Y; ;1) of the outcome, past values D;1.;_1 = (D;1,..., D; 1)
of the static input, and past and current values K;1.; = (K1, ..., K;;) of a dynamic input. The

researcher assumes
Yij =bo+aD;+biKi;+vi

Vij = Pavij1+ & forj >0,
where f3, is a constant, and v; is drawn from some distribution. Here v; ; is productivity and
evolves as an AR(1) process with innovation &; ;, where ¢; ; is independent over time with E[¢; ;| =
0 for all 7 > 1. The innovation &; ; is realized after the dynamic input is chosen but before the
static input is chosen in period j > 1, and it is therefore independent of X ; (but not necessarily
independent of D;; nor X, ,i1). As aresult, E[¢;; | X;;] = 0. As discussed in Ackerberg,
Caves, and Frazer (2015, Section 4.3.3; see also Blundell and Bond 1998, [2000), under standard

assumptions this model implies the period-specific residual function

R(Yij, Dij, X;5;0) = (Yi; — B2Yijo1)—Bo (1 — B2)—a (Dsj — BoDjj—1)— 1 (K — P2 K j—1)

for 0 = (o, B) and 8 = (5o, 1, P2)- Such an approach may or may not make use of the excluded
cost shifters Z,.

Remark 8. In our framework, the researcher’s model may incorporate both unobserved productivity
v; ; as well as an additional shock to output ¢; ; (as in, e.g.,|Olley and Pakes, 1996} |Levinsohn and
Petrin, 2003)) without sacrificing invertibility. As an example, suppose the researcher’s model for
log output is now

Yij=00+aD;;+ biK;;+vi;+ e,

where productivity v; ; is known to the firm when choosing capital K; ; and the output shock ¢; ; is
not. The researcher states assumptions under which v; ; = ¢ (K; j, M, ;) for some observed proxy
variables //; ; and unknown function ¢ (-). [Wooldridge (2009) shows that, under the researcher’s
model, the structural residual §; ; = (€; j, v, + ei,j)’ can be recovered through the equations

€5 = Y%,j — Bo — OéDz',j - 51Ki,j —4g (K

INE

M; ;)
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Vij+ €5 = Yz‘,j — Bo — aDi,j - Ble‘ - f (9 (Kz‘,j—la Mz‘,j—1))

for some function f (-). By specifying parametric functional forms for ¢ (-) and f (-), and appropri-
ately defining X ;, the researcher can define a function R (+;0) that is known up to the parameter

6 such that &; ; = R (Yi;, Dij, Xij:6o) for 6, the true value of the parameter.

7-] ?
Remark 9. In our framework, the researcher’s model may also incorporate a firm-specific fixed
effect denoted as f3,. In the Cobb-Douglas example with a persistent productivity process, we

would continue to define 0 = («, 31, B2), and would define the period-specific residual function as

R(Y;;, D, X;;;0) = (Yi; — B2Yij—1)—Poi (1 — Ba)—a (D j — BaDjj—1)—P1 (K j — B2 K j—1) -

In this case, £ [E’ (Yi;, Dij, Xij:0) | Xi,j} = FE & — Boi (1 — B2) | Xi ] is no longer mean zero

conditional on X; ;, but instead equals a time invariant, unit-specific constant. Consequently, the

%7

researcher can continue to form moment conditions based on this residual function provided they

apply the within-transformation to their selected instruments.

D.3.3  Summarizing Dynamic Causal Effects and Causally Correct Specification

In this dynamic setting with the restriction of no carryover effects, our definition of a causal sum-
mary 7 extends naturally as a generalized weighted average of the partial derivatives 9Y; ;(d;, X; ;)/0d,;.

Specifically, under our stated restrictions on the nesting model, a causal summary simplifies to

0
T(G) =) Eq [MYM (dj, Xij) dwij (d)] ,
J J

where dw; ; (-) are weights. The collection 7 now consists of all causal summaries with bounded
weights max; [ |dw;; (d)| < W for all i and some W > 0. The researcher’s error for a given
causal summary 7 € 7T is again |7 () — 7 (G) | for its model-implied counterpart 7% (6) =
X Ea |ag Y (dj, Xy, 633 0) dij ().

As in the main text, we may analyze the researcher’s error by considering the behavior of an or-
acle that selects an estimator 6(G) under the researcher’s model based on the true data-generating
process (Y; (+), D; (), X;, Z;) ~ G. In this dynamic setting, proximity to causally correct specifi-
cation is again a minimal requirement for the performance of the oracle. More formally, under our
stated restrictions on the nesting model, the distance from causally correct specification simplifies
to § (G) = infy § (0, G) for

§(0,G)=> Eq lsup
j 4

0Yi;(dj, Xiy)  OYi (dj, Xi3, 6 (6):6)
ad, ad, ’
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and causally correct specification is satisfied if and only if § (G) = 0. Propositionin the main text
immediately applies without modification since its proof does not rely on any notion of exogeneity
of the covariates X, Z;. In this dynamic setting, the best a researcher can hope for is again an

estimator that performs well under approximately causally correct specification.

D.3.4 Dynamic Strong Exclusion

To construct their GMM estimator, the researcher selects some function
f* (X’L7 Zl) = (ff (Xi,lv Zi,l) PRI fj (Xi,Ja Zi,J))

and constructs a moment function of the form 1 (0) = £ ¥, /*(X;, Z;) R*(Y;, D;, X;;0) as in the

main text. We continue to assume that the researcher’s resulting estimator ¢ converges in large

samples to an estimand 6*(() that solves the moment equation
0= Eg [Waf"(Xi, Zi) R* (Y, Di, Xi; 0" (G))] (10)

for W a matrix that may depend on the data-generating process G. As discussed in the main text,
we may define W = M)y in the case of GMM. We now find that the behavior of the researcher’s

estimator depends on whether it satisfies a criterion that we call dynamic strong exclusion.

Definition 12. The researcher’s estimator satisfies dynamic strong exclusion if, for all data-

generating processes G € G, the estimand solves (10) and we can write

W& (X, Z;)

Wel 20 = i (x, 2

)

where Eg [WEf; (Xij, Zi;) | Xi;] = 0 and rank (EG [WGE £ (X0 Z) (WEF (X, Zi)),D >
dim («) for a defined in (9).

Proposition 8. If dynamic conditional exogeneity holds, then any estimator 0 satisfying dynamic
strong exclusion and strong identification (Assumption|[0)) is approximately causally consistent un-

der Assumptions[l|and 3]

Proposition 9. Suppose Assumptions|l|and 5| hold, and the researcher’s estimator solves

Eg [WEF* (Xi, Z) R (Y;, Di, Xi;07(@))] =0,
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where Eg {ngg*( ig» Zig) | Xw} =0, WEf*(X;,Z;) e RE=*Y and

Then, for each v € RLE, we have that 7,(G) = 77 (0*(G)) for

ZEG Vﬁd A(dy, X)) dw? s (d, )]

where the weights w; ; (d;) are defined by

8 —U
[ o) = [ [ by (Dus (X 230) 5-D(Kis, 25 Ayl ()G, (21)

for all integrable functions h; j. Here, Az; = j — Zj0, Zjt = %0 + tAzj, 295 is a fixed value, and
@p(d):R(Yi,j(dﬁXi,) d; X”,Q*( )) f ( (VR )

17]
Example. (Cobb-Douglas, continued). Recall that « is a scalar. A choice of instruments in the
spirit of Blundell and Bond (1998, 2000; see also Ackerberg, Caves, and Frazer 2015, Section
4.3.3)is f7 (Xi, Zi) = (1, Ky 5, Dy ja, K;;1)'. These instruments cannot satisfy dynamic strong
exclusion because they are fully determined by X;.
D.4 Proofs for Additional Theoretical Results
D.4.1  Proof of Proposition[/]

To show that a causal summary is nonparametrically identified from Gy pxz, consider a distri-
bution G such that Y; £ Z; | X;, and a differentiable, real-valued function B (-) and a distribu-
tion G such that E¢ [B (Y;) | X;, Z;] differs from E¢ [B (Y;) | X;] with positive probability. Define
& (%, Xi) = E[B(Y:)|Xi, Zi] — Eq [B(Y;)|X,], and note that Eq [f& (%, Xi) |X] = 0 by

construction. Note, however, that
Eo [f£ (2, X)) B(Y)| = Eq [(Ec [B (Yi) |X,, Z] — Es[B (Y;)|X.)) B (Y))] =

Eg |Eq (B (Y:) |Xi, 2" = Eq [B (Y:) |Xi?| = Eg [Varg (Eq [B(Yi) | Xy, Zi] |X,)] > 0.

By LemmaH] we can write

Eq [fg (Z:, X;) B ZEG [ / T07P (d, X;) divs g (d)
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for weights @; ;/ (d) defined as

/h )diviy (d) =

0
/. / Dy (Xi, %)) 5-Dig (Xiv2) Azdt - f (X3, 2) dGizx (21X0)
for all measurable h; (-). However, 7,077 (d,x) = £ B (Yi(d,x)) 53,V (d,z), and so if we
define the new weights w; ; () = B%B (Y; (+, X)) @i j (), we have that the causal summary

> Eg { JTH7P(d, X5) dws ()} is identified, and is nonzero under the G we selected.

To prove that no causal summary is identified from Gy px, consider any joint distribution
G for (Y;(-),D;(-),X;, Z;). Note that this implies a distribution Gy px for the non-excluded
observables. Next, define an alternative distribution G* such that the distribution of (D; (-) , X;, Z;)
is the same as under G, but Y; (d,x) = Y; (d', x) for all (d, d’, x) for all i. We are free to choose the
conditional distribution of Y; (d, z) given D; (-) for each x. To generate this distribution, for each
x let us draw from Z;| X; = x and consider the implied distribution for D; (Z;, X;) | X; = z. Under
G, this then implies a joint distribution for (Y; (D; (Z;, X;) , X;) , D; (Z;, X;)) | Xi; = x. To generate
the distribution of Y; (d, x) under G*, let us draw from the distribution of D; (Z;, X;) |X; = z, and
then draw Y; (d, z) from the conditional of Y; (D; (Z;, X;) , X;) |D; (Z;, X;) , X; = x under G. By
construction, the conditional distribution of Y; (D;, X;) | D;, X; under G* matches that under G, so
G and G* both imply the same distribution Gy px for (Y;, D;, X;) . Furthermore, it follows that
any generalized weighted average of partial derivatives 0Y;(d, X;)/0d identified from Gy py must
satisfy

ZEG* l/ g Yo (0 X dei (d)| =0,

Since this argument applies for any marginal distribution G'y p x, any generalized weighted average
of partial derivatives identified from Gy px must be equal to zero for all G € G, and so is not a
non-trivial causal summary.

It remains to show that a causal summary is identified from the distribution of Gy px under
the researcher’s model provided the moment condition E¢ [f* (X;) R (Y;, D;, X;;0)] = 0 has a
unique solution under all G € G*. Towards this, notice that for any G € G*, the true value 6, of
the unknown parameter satisfies the moment condition. Under any G € G*, we can write &; as a
function of the potential outcomes Y; (d, z). Hence, by unconditional exogeneity, & L (X;, Z;)

and we can rewrite the moment condition as

Ea " (Xi) &l = Eq[f* (Xi)] Eq [&6] = 0

It then follows that 6, is identified. Note, however, that for #, known we can recover &; as &; =
R (Y;, D;, X;;00) , and thus know the potential outcome function Y; (d,z) = Y™ (d, x,&;; 6p) for
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each unit. Hence, we can immediately identify any causal summary with known weights, such as

the average local effect of changing D; at a given value d, E¢ {%Y} (d, X,)} O

D.4.2  Proof of Proposition|§|

The proof of this result follows the same argument as the proof of Proposition [3] with appropriate
modifications to accommodate the different nesting model and the definition of dynamic condi-
tional exogeneity. To prove the first part of the result, note that as argued in the proof of Proposi-
tion [2, under each G there exists some 6 that attains J (G). Denote this value by 6 (G). Let us pick
a fixed value d; € D, and define Y, ; (d;, X; ;) as the model-implied potential outcome when we
compute the residuals at (dj, Xi,j>, so that §” = f%j (Ym (dj, Xm-) ,dj, Xm-;i(G)> and

Yy (dy Xig) = Y° (45, X5 €, 10(G))

Consider the difference between Xi,j and the true potential outcome Y; ;, and note that by the

fundamental theorem of calculus

Yi,j ('7Xi,j) - Xi,j ('7 Xi,j)’ -

<

/01 (8(39'%,1' (dj + (dj — dj) t,Xz‘,j) - aijyi,j (dj + (dj - dj) t, XZ-J,@’].;@(G))) (dj N @) di
3(G)|d; — dj| < 16 (G)

for C; a constant that depends only on the dimension and diameter of D. Note that by construction
Y

77/ ’.j
for

-)is afunction of (Y; ; (), X; ;) only, and so is independent of Z; ; conditional on X; ;. Hence,
J J y p J J

Xw‘ = X@j (Di7 Xz) )
and any set of dynamic mean-independent and mean-zero instruments [ ; (X, Z;) = W (X, ;, Z; ),

Eq [fg (Xi, Z;) R* (Y, Dy, Xi;Q(G))} = ZEG [WGEf; (Xij, Zij) R (Xi,jv Di,j’Xi,j;f(GD] = 0.
J

Note that since we use dynamic mean-independent and mean-zero instruments the effective
moment conditions are the same whether computed using * or R**. From here on, the proof is

the same as that of Proposition 3] O
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D.4.3  Proof of Proposition[9

To prove this result, we first state two technical lemmas. As shorthand notation, define f£ (X; Z;) =
WE (X, Zi) and f&; (Xi, Zi) = WE 5 (Xay, Zijg) -
Lemma 7. For any v € RYE, j € [J], and R-valued function B* (x;, z;) that is differentiable in z;

for all z;, provided E¢ [v’fg,j (Xi, Zi) | Xm-] = 0, we can write

Eq {v’fgj (X, Z;) B (X3, Z; )} =

1,59

l// 32 Z],Z]t)AZ]dt UWGEf( 1]7Zj)dGZj|Xj (Zlei,j)
J

for Azj = zj — zjoand zj; = zj0 + tAz;.

Proof of Lemma The proof follows the same argument as Lemma 3]

Lemma 8. For any v € RY#, j € [J], and R-valued differentiable function B (Y; s Dig, Xij),
provided Eg { ’fGJ- (Xi, Z;) | ”} = 0, we can write

Eq [V/f£, (Xe: 2) B (Vi Digs Xa)] = e | [ T577 (45, i) dey ()]

where

0

7;[? v
y;

)

g
+ =5 B(Yi;(ds, z5), dj, ;)

0
5, Yialdir 23) + 5
J

;,—B

B(Y; (dj, ), dj, ;)
is the total derivative of B with respect to D; ; and w; j(dj) is defined by
/hi,j(dj)d@;fj(dj) =
! 8 / E px
/Z /0 hij (Dig (Xig, 20)) 5~ Dij(Xig, i) Dzgdt - VWG 7 (Xig, 25) dGz,1x; (2] Xig) -
J

Proof of Lemma The proof follows the same argument as Lemmad0

Lemma 9. Suppose E¢ [U’fgj (X, Z;) | Xz‘,j] = 0. Then, for weights &} ; as defined in LemmaE?]
Assumption [ implies

Fe UTD”“ ) (d;, X, ;) di?y(d;)| = 0.
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Proof of Lemma The result is immediate from Lemma [§] with

B (Y, Dij, Xi;) = R(Yij, Dij, Xi ;07 (G)).

4,55 1,59 i, i,gy <Viygs

|

We are now ready to return to Proposition 9] First, recall that

TDj%R(';G*(G)) (d ZL‘) _
VR

1’7]

o - 9 o - )
aTJjR(Yi,j (dj,x;),dj, x50 (G))asz aleR(Yi,j (dj, ), dj, v, 0" (G)) .

Under the researcher’s model, R(Y*(dj,xj,fj; 0),d;,x;;0) = & for all (d;, x;,€;,0). Hence, by

the implicit function theorem,

Y;;(dj, ;) +

0

8dR(Y

o . o ~ . !
- Y" (dj, 75, &5 )=—<R(Y (dja%fj)’dja%;@)) i3> dj, 1550)

8d 0yj

or rearranging, > R(Y”,dj,xj;@) = —%R(Y* (d;,x;,&5),d;,x;;0) a%jY* (d;,z;,&;:6) . Hence,

TD i—R(::6%(G)) (d T ) _
VR

2]

R (Yij (dy, ) dj, w07 (Q)) (Ve (djwy) = Y (dj, e, R(Yij (), 35)  dj, 567 (@) 567 (G)) )
Therefore, Lemma@impliesthatforé,j (d,0* (@) = R (Vi (dj, X, ;) ,d;, Xi ;0 (@)

Fo R (Y (), Xig)  dj, X 07 (G)) 5 Vi (d, Xu)dw (dj)} =
Eq [f By; (Y (d],X )’de’LJvH (G>) aleY* (dijw’gl,j (dv 0* ) }

Next, observe that

Eg |[v'f8 (Xi, Z) R* (Yi, D, X3:0°(G))] = Y- Ee [V £E,(Xi, Z) R (Vi g, D g, Xi 53 67(@))]

J
By the preceding argument, we therefore have that

2 EG [f% ; (Yiy (dj, Xiy) , dj, X 3 07 (G>> ad Yig (dj, X )d (dy)] -
Z EG [f 8 ( (d X ) ,dj,XiJ;H* (G)) @Y* (djaXi,jagi,j (d, 9* N ) ]

The result then follows by defining w;’; as
/ hij(dj)dwy ;(d;) =
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1 hi; (D;; (X ) 0
i’ . i’ . ’L'7 , Z7t —_
A

for &7 ;(d) = R (Y (dj, Xij) , dj, Xig: 07 (G)) v'WE f7 (Xig, 2). O

N
S—

D j(Xi 5, 2j0) Azjdl - w7 ;(d)dG 7 x; (2] X 5)

E Additional Details and Results for the Application to the Demand for Beer

E.1 Creating Simulated Datasets

We base our data and simulations on the work of MW. In this setting, an observation i € N- MWis
a market (region-month), the outcome Y; € R” is the vector of market shares of .J different beer
products, and the endogenous variable D; € R’ is the vector of prices of these products in MW’s
setting. MW specify that market shares Y; follow a random-coefficients nested logit model where
the mean utility in each market ¢ for each product 5 is additively separable in product fixed effects,
month fixed effects, and a preference shock ¢;;. Random coefficients depend on consumer income.
MW specify that prices D; follow a Bertrand-Nash pricing model, where the marginal cost in each
market ¢ for each product j is additively separable in product fixed effects, calendar month fixed
effects, region fixed effects, a cost shock 7; ;, an indicator for whether the product is part of a
merged entity (multiplied by a coefficient), and the product of the prevailing price of diesel fuel
and the distance of the market to the owner’s closest brewery (also multiplied by a coefficient).
Our simulated DGP uses the same specification with three modifications. First, to vary the role
of the product fixed effects, we take a weighted average of each product’s fixed effect and the aver-
age fixed effects for its brand, so that when the weight v on the product fixed effect equals 0, the
product fixed effects collapse to brand fixed effects, and when the weight v* on the product fixed
effect equals 1, the specification coincides with MW’s. Second, to vary the role of the random co-
efficients and nesting parameter, we multiply these by a scalar vV* > 0, where when vV = 0, the
model is a logit model and when vV% = 1, the specification coincides with MW’s.?® Finally, we
replace calendar month fixed effects with their month-of-year average,? and we coarsen the distri-
bution of consumer income so that it differs only between high-income and low-income markets.*°
This implies a potential outcome model V; = Y; (D; X;) = Y™™ (X, D, &;7), where YSIM (1)

28To ensure a realistic DGP, for each choice of VN L we recalibrate the product fixed effects to match the observed
market shares, and the price coefficient to match the average own-price elasticity estimated in MW, and we estimate
new cost functions to match price responses observed in the data.

2 At MW’s estimated parameters, 61.7 percent of the variance in the estimated calendar month fixed effect is accounted
for by the month of the year.

30Specifically, we assume that the distribution of the ratio of a given consumer’s income to the mean income in the
market is identical across markets, and that each market’s mean income is given either by the mean income of above-
median markets (for markets in the top half) or the mean income of below-median markets (for markets in the bottom
half). The resulting distribution of consumer income has 99.1 percent of the variance of MW’s original specification
at the consumer level, and 58.8 percent of the variance of mean income at the market level.
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is a known function, v = (VL, N L) encodes the design elements we vary, and X; encodes the
set J; of products available in market ¢, the seasonal month of market ¢, and an indicator for high-
income markets.?! Through the assumption of Bertrand-Nash pricing, the potential outcome model
in turn implies a potential endogenous variable model D; = D; (X;, Z;) = D™ (X, Z;, ni; ),
where D™ () is a known function and Z; encodes the region of market 4, the ownership network
of the products, the prevailing price of diesel fuel, and the distance of the market to each owner’s
closest brewery.

To create simulated datasets using a DGP satisfying exogeneity, we draw (X;, Z;) at random
from the values observed in the MW data, and then draw (&;, n;) at random from the model-implied
residuals in the MW data.*> We then construct prices according to D; = DM (X, Z;, n;; ) and
outcomes according to Y; = Y™ (Xi, Di, &;v), so that the variables Z; affect market shares
Y; only via prices D;. To create a single simulated dataset {(Y;, D;, X;, Z;)}!_,, we repeat this
procedure n = 10000 times with replacement. For each value of v, we create 100 simulated

datasets.

E.2 Measuring Misspecification

For each value of v, we measure the degree of misspecification of mean utility by the smallest
root mean squared difference, at the observed prices and covariates, between the true effects of the

included variables on market shares and the effects implied by the researcher’s model, i.e., by

. l SIM - * . . £ . 2
meln(l(]()) J$ Ndlm x] ZZZ(AIZ ,Y (X D’mél? ) Ax, /}/;J(DHX’Hé-’L (‘9)79))

i Logg

where &; (0) = R* (YjSIM (Xs, Dy, &), Dy, X 0), N indexes draws from our simulation DGP,
Ame’j/YQ,j (D, X;) =Yi; (Dy, Xisxe 5 = 1) = Y5 ; (Dy, Xi5 20 = 0) with zy; the jth row and (th
column of X; in the form it enters the mean utility linearly in the true model, and dim (z;) is the
number of dimensions ¢ . We multiply by 100 to express market shares in whole percentage points.

For each value of 7, we measure a lower bound on the distance from causally correct specifi-
cation given by the smallest root mean squared difference, at the observed prices and covariates,
between the true effects of prices on market shares and those implied by the researcher’s model,

1.e., by

3The average market i is in a covariate cell {i’ € NMW : X;, = X;} containing 6 total markets.
32If a given product j is not present in the market we sample, we draw the value of its preference and cost shock at
random from the set of all model-implied residuals across all markets in the MW data.
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2
min (100) ~ ZZ (YSIM (Xi, Diy §i57) — agY* (Dy, X;,& (9);9)) .

F Appendix Figures

Appendix Figure 1: Causal graph of observed and unobserved variables in the researcher’s model

N\
7

Y

Note: The figure depicts a causal graph for the setting described in Section[2] The observed variables are
(Y, D, X, Z), where X may affect (Y, D), Z may affect D, and D may affect Y. The unobserved variables
are (U1, Ua), where U; may affect (Y, D) and Uz may affect (X, Z).
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Appendix Figure 2: Bound on the error for a given causal summary

Bound on
the error
Distance between
given causal summary Large
and closest estimable
causal summary Small
Zero

Distance from causally correct
specification at the estimand

Note: The figure shows example isocurves for the bound on the error for an estimator of a given causal
summary when that estimator satisfies strong exclusion (see Section[4.3)). The x-axis plots the distance from
causally correct specification at the estimand 6* (G). The y-axis plots the distance between a given causal
summary and the closest member of the estimable set 7 *. In the plot, lighter shades represent larger values
of the bound while darker shades represent smaller values. The bound is proportional to the product of the
two distances, so if either distance is zero, then so is the bound.
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Appendix Figure 3: Median absolute error for the average own-price elasticity, various estimators

(a) Varying the misspecification of mean utility, under causally correct specifica-

tion
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(b) Varying the distance from causally correct specification, with a misspecified
model of mean utility
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Note: The plot reports the estimated median absolute error (MAE) for different estimators of the mean own-price
elasticity. Specifications “Baseline” and “Strongly excluded” correspond to their counterparts in Panels A and B of
Figure [2} specification “Choice-set residualization” corresponds to its counterpart in Panels A and B of Figure [3}
specification “Product-level residualization” corresponds to its counterpart in Panels A and B of Figure[d] In Panel A,
we maintain causally correct specification, and vary the misspecification of mean utility along the x-axis. The x-axis
displays the least possible root mean squared difference between the effect of the covariates X; on market shares Y;
prescribed by the DGP, and those implied by the researcher’s model (see Appendix [E.2). In Panel B, we maintain
a constant degree of misspecification of mean utility, but allow the distance from causally correct specification to
vary. The x-axis displays the least possible root mean squared difference between the effect of prices D; on market
shares Y; prescribed by the DGP, and those implied by the researcher’s model; this is a lower bound on the distance
from causally correct specification (see Appendix [E.Z). In both panels, the y-axis depicts the median absolute error
across 100 simulation replicates, along with 95 percent confidence intervals (when visible). The dashed horizontal
line reflects the median absolute error under exactly correct specification when the researcher ignores endogeneity.
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