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1 Introduction

The natural rate of return is an important diagnostic for the economy. Wicksell (1958)

introduced this idea in the context of the natural rate of interest, which clears the market

for saving and investment. More broadly, the natural rate of return is the required return on

various assets, which balances the supply and demand for goods, employment, savings and

investment. Measuring the natural rate of return is critical for detecting structural shifts in

the economy, such as whether the era of “secular stagnation” has ended. As a result, central

bankers and financial market participants pay a great deal of attention to this object.

However the natural rate of return is difficult to measure. Conceptually, the natural

rate represents an economy’s expected long run equilibrium, once transitory factors such as

business cycles and adjustment costs have subsided. Therefore the correct measure must

“look through” shorter run factors. An influential approach, pioneered by Laubach and

Williams (2003) and Holston, Laubach and Williams (2017) (HLW), uses structural time

series methods to measure the natural rate of return on safe assets (r∗). HLW make model-

derived assumptions about the relationship between inflation, the output gap and interest

rates, in order to filter out short run shocks and identify r∗.

This work and the subsequent literature are justly celebrated for tackling a difficult and

important problem.1 However HLW themselves point out that their “estimates of the natural

rate of interest are inherently imprecise and potentially sensitive to model specification”. To

wit: the HLW estimates were discontinued during the pandemic due to misspecification

(Williams, 2023), and structural models disagree about whether r∗ rose after the pandemic

(Baker, Casey, Del Negro, Gleich and Nallamotu, 2023). This misspecification may prevent

central bankers from using r∗ to guide policy, as the Bank of England’s Chief Economist

argued in a recent speech (Pill, 2023).

This paper takes a different approach to measuring the natural rate of return by using

natural experiments and microdata instead. The natural experiment approach is less sen-

sitive to misspecification issues and standard errors are orders of magnitude smaller. We

measure r∗K, which is the market’s expectation of the natural rate of return on capital, or the

the long run discount rate on capital, net of capital gains. Formally, r∗K has three elements,

with r∗K ≡ r∗ + ζ∗ − g∗P , where ζ∗ is the natural risk premium on capital, g∗P is the long

run expected capital gain and r∗ is the natural rate of interest. r∗K is also equivalent to the

long-run (or natural) dividend-price ratio, as well as the Hall and Jorgenson (1967) user cost

of capital, normalized by its price. The natural rate of return on capital thus reflects an

1Related papers include Kiley (2015), Lubik and Matthes (2015), Johannsen and Mertens (2016), Crump
et al. (2016), Hamilton et al. (2016), Rachel and Smith (2017), Christensen and Rudebusch (2017), Del Negro
et al. (2017), Rachel and Summers (2019) and Del Negro et al. (2019).
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important price that clears the market for private capital in the long run.

We develop a dynamic real-time estimate of r∗K for housing using a natural experi-

ment approach in the UK from 2003 to present. Most apartments in the U.K. are sold

as “leaseholds”—long duration leases starting at ninety years or more, issued by the ulti-

mate owner of the property, or “freeholder”. The leaseholder can buy or sell the lease, giving

each lease a series of market prices. Moreover leaseholders have the right to extend their

lease conditional on paying freeholders the value of the lease extension. Lease extensions

typically happen when the current lease has somewhere between 60 to 90 years left, and the

typical extension is for an additional 90 years or more.

This paper assembles a new data set on leasehold extensions and transactions from 2003

to the present. We estimate the increase in the market value of a leasehold due to duration

extension, by comparing its price before and after lease extension with an otherwise similar

control group of leaseholds that do not get extended at the same time. We embed this

difference-in-differences estimate of the market value of lease duration extension into a simple

discounted-cash-flow pricing equation. The equation allows us to estimate the market’s

expected r∗K via non-linear least squares, using over 130,000 lease extension experiments

from 2003 onward.

An important empirical advantage of our natural experiment approach to estimating r∗K

is that extensions generate variation in lease duration for the same property, allowing us to

“difference out” shorter run factors that should not influence the natural rate estimation.

Intuitively, the price before extension measures short run value, whereas the price after

extension measures both the short and long run value of the same property. Hence the

difference in prices measures only the long run value, and short to medium run shocks to

rate of return, such as monetary tightening, do not affect our estimate of r∗K. Similarly,

our estimate is unaffected by short run shocks to the service flow of housing or other hard-

to-measure characteristics of any given property. For instance, a shock to demand for a

particular segment of London property, which raises its service flow, does not affect our

estimate.

The key assumption for our natural experiment to identify r∗K is “parallel trends”: the

service flow of housing must grow similarly for extended properties and their control group.

We support this identification assumption in four ways. First, there are no pre-trends, mean-

ing prices of extending properties evolve similarly to the control before extension. Second,

the treatment and control group are balanced on a rich set of hedonic characteristics. Third,

market rents and hedonic characteristics evolve similarly for extenders and the control group.

Fourth, the estimator is not sensitive to controlling for observed heterogeneity, suggesting

bias from unobserved characteristics is small (Altonji, Elder and Taber, 2005; Oster, 2019).
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Figure 1: Time Series of the Natural Rate of Return of Capital

The figure shows estimates of r∗K for each year of data and for the full sample of lease extensions. Monthly estimates for January
2023 through June 2023 are also reported and highlighted in teal. The shaded area shows 95% confidence intervals for the
estimates. Standard errors are heteroskedasticity robust.

Figure 1 plots the average r∗K for each year from 2003 to 2022, and the shaded area

represents the 95% confidence interval. r∗K stays around 4.8% between 2003 and 2006, but

starts to fall at the onset of the Great Recession, reaching a low of 2.3% in 2022. The

magnitude of this decline is large, equivalent to a doubling of the natural price-dividend

ratio. There is a period in between, 2010 to 2012, when r∗K stabilized for a while before

continuing its downward trajectory. There is also a brief period during the early pandemic

months when markets raise their expectation of r∗K, but ultimately r∗K returns to its longer-

term downward trend through the end of 2022.

The number of lease extension experiments increases over time which results in more

precise estimate of r∗K in recent years. The standard error for our estimate of r∗K for 2022

is 0.025pp, whereas standard errors from time series estimates of natural rates tend to be

one to two orders of magnitude larger.2 Time series estimates of natural rates are imprecise

because there is relatively little variation in the aggregate time series that is informative

about the long run (Farmer, Nakamura and Steinsson, 2021). By contrast our micro data

based strategy exploits the large amount of variation available from the cross section, which

turns out to be informative about natural rates.

2For instance, the standard error for the HLW estimate of r∗ in 2019 for the UK was 4.8 pp.
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The lease extension data base put together in this paper is based on publicly available

data, and is updated monthly in real time. Thus not only can our methodology be easily

replicated, but our time-series estimates can be extended in real time. There are over a

thousand leasehold extensions every month, which allows for precise estimates of r∗K even

at a monthly frequency. We illustrate this in Figure 1 by estimating r∗K separately for each

month for 2023, with the latest data point ending in June of 2023. Real-time monthly data

shows a modest uptick in r∗K in 2023 thus far.3

While our measure of the natural rate of return is from UK housing, a couple of ob-

servations suggest that our estimates should be relevant for other forms of capital as well.

First, housing is a major asset class, so the natural rate of return for housing should relate

to the broader economy. Moreover leaseholds are a significant share of the U.K. housing

market, being 97% of apartments and 22% of all dwellings. Lease extension experiments

occur throughout the U.K. in all major regions, and the U.K. housing market is deep and

liquid.

Second, though there might be differences in the level of r∗K for capital other than housing,

the trends may still be similar. The level of r∗K ≡ r∗ + ζ∗ − g∗P might differ across assets due

to different risk premia ζ∗ or expected capital gains g∗P . However, suppose that the fall in

r∗K for housing is due to factors that are not specific to housing. Then other assets should

also experience similar falls in natural rates of return, because the usual arbitrage conditions

equate risk-adjusted rates of return across assets, especially in the long run. We also present

suggestive evidence that the decline in r∗K for housing is due to common factors, rather than

housing specific factors such as housing risk premia or capital gains.

Our paper is closely related to the seminal work of Giglio, Maggiori and Stroebel (2015),

who were the first to observe that because UK apartments vary in duration, they are partic-

ularly well suited to estimating natural rates of return.4 Giglio et. al. make a cross-sectional

comparison of properties with different duration, and control for a rich set of hedonic char-

acteristics, in order to estimate the level of r∗K . Our paper studies the dynamics of r∗K , and

in doing so builds on their work in two ways. First, we use a quasi-experimental design

based on lease extensions, which allows us to use variation in leasehold duration and price

within the same property. We show that within-property variation is critical to accurately

estimating r∗K, due to unobserved heterogeneity in the service flow of housing. Our method

can then estimate the dynamics of r∗K reliably in real time, at monthly frequency. Second,

3See our website for data, real-time estimates and replication instructions. As we discuss in Section 3.3,
our estimates contain a lag of 3-5 months, so the June estimates capture market expectations of r∗K at the
start of 2023.

4See also Badarinza and Ramadorai (2015), Giglio, Maggiori and Stroebel (2016), and Bracke, Pinchbeck
and Wyatt (2018).

5

https://sites.google.com/view/naturalrate/home


the possibility of lease extension creates option value that might affect the price of UK lease-

holds. We explicitly take this option value into account, and in Section 6 we develop a new

bunching estimator to measure this option value.

Our paper also relates to a literature inferring the return to capital using data from

national accounts (e.g. Gomme, Ravikumar and Rupert, 2015; Farhi and Gourio, 2018;

Reis, 2022; Vissing-Jorgensen, 2022). This literature notes that the ratio of profits to the

capital stock—which proxies for the return to capital when there is perfect competition and

constant returns to scale—has been stable, whereas we find that the natural rate of return

on capital has fallen. Amongst other explanations, rising monopoly power in goods markets

can reconcile these two phenomena. As Farhi and Gourio (2018) show, given the natural

rate of return on capital, rising monopoly power raises the profit-to-capital ratio.

Outline. The rest of the paper is structured as follows. Section 2 defines the natural

rate of return on capital. Section 3 describes the data. Section 4 presents our empirical

methodology. Section 5 presents our estimates of lease extension price changes and estimates

of r∗K. Section 6 measures the option value from lease extension and Section 7 concludes with

a discussion of possible future work based on our new methodology.

2 Introducing The Natural Rate of Return on Capital

The natural rate of return on capital is markets’ expectations of rates of return in the long

run, after medium-run forces have subsided. Formally, consider the price of a unit of capital.

The price at time t, Pt is given by the present value of its dividend, Rt, as

Pt = Rt

∫ ∞

0

e−
∫ s
0 (r(u)+ζ(u)−gR(u))duds. (1)

In this equation, r(u) + ζ(u) is the discount rate of capital u periods in the future, which

discounts the present value of dividends at a rate that sums the safe rate of return and the

risk premium, all in real terms, and gR is dividend growth.5

We adopt the compact notation for the natural rate of return on capital y(u) ≡ r(u) +

ζ(u)− gR(u), and will sometimes refer to y(u) as the “yield”. In defining the rate of return

net of capital gains, we use a similar language to Farhi and Gourio (2018) and Reis (2022).

We are interested in the natural rate of return on capital r∗K, that is, rate of return of capital

expected in the long run. We assume that r∗K exists, in which case it is given by

lim
u→∞

rK(u) = r∗K = r∗ + ζ∗ − g∗P . (2)

5For simplicity this derivation omits a “rational bubble” term.
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In the long run and on a balanced growth path, the dividend-price ratio converges to the

the natural rate of return, since by Equation (1) we have

R∞

P∞
= lim

u→∞
r(u) + ζ(u)− gR(u) = r∗ + ζ∗ − g∗P , (3)

where the final equality exploits that in the long run, price and dividend growth are equal.

The natural rate of return on capital matters for at least two reasons. First, r∗K contains

information about the safe rate of return r∗, which matters greatly to policymakers. For

instance, if risk premia and capital gains are stable over time, then Equation (2) shows that

changes in r∗K and changes in r∗ are equal. Second, the natural rate of return on capital is

an important variable in its own right, beyond information about the safe rate of return. In

particular, since r∗K is the natural dividend-price ratio, it is the key variable that clears the

market for capital in the long run, and therefore the supply and demand for assets in the

economy at large.

In Appendix A.3 we utilize a simple model of firm investment to show that under a no

arbitrage assumption, r∗K is equal to the user cost of capital, or equivalently the marginal

product of capital, normalized by the price of capital. This equivalence is also present in

Hall and Jorgenson (1967) and Farhi and Gourio (2018).

Crucially, r∗K is independent of short run, transient shocks to rates of return or dividends.

As such, the key challenge to estimating natural rates is to filter out these shorter run shocks.

Current asset prices—even for very long duration assets—depend not only on r∗K but also on

shorter run rates of return, which include transitory factors such as monetary policy, credit

booms, short run bubbles and adjustment costs. The reason is that, as Equation (1) shows,

the price of a long duration asset depends on the integral of short and longer term discount

rates. Therefore the current dividend-price ratio, Rt/Pt, is affected by these transitory shocks

and may greatly differ from the natural ratio of dividends to prices—which by Equation (3)

equals the natural rate of return. Moreover, the dividend of capital Rt is often difficult to

observe. For instance, the service flow of owner-occupied housing cannot be observed from

market transactions, and must be imputed. Therefore short run shocks to the dividend

of capital—for instance, a temporary increase in demand for a certain segment of London

housing—are an additional source of variation that confounds estimates of r∗K.

Structural time series methods, such as Laubach and Williams (2003), make model-

derived assumptions about the joint behavior of macroeconomic aggregates, in order to filter

out these short run shocks and identify natural rates of return. The next section describes

an alternative approach, based on microdata and natural experiments from the UK housing

market.
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3 Data & Lease Extension Details

This section introduces the setting—lease extensions for long duration leasehold properties

in the United Kingdom—and explains the data sets we will use for our analysis.

3.1 Data

We use five data sets for the analysis of this paper. Most of the analysis uses data that are

publicly available almost in real time. This is an important feature of our method, since it

allows for real-time updates and replication. A website accompanying this paper contains

data, replication instructions, and real time analysis. We now describe our five data sets.

(1) Land Registry Transaction Data: We obtain publicly available data on all prop-

erty transactions registered in England and Wales between 1995 and June 2023 from the

Land Registry. The data set includes the exact date, price and address for each transaction.

Properties are also subdivided into two categories: freeholds and leaseholds. Freeholds are

a perpetual claim to the ownership of a property. Leaseholds are long duration leases to the

property that can be bought and sold, and which typically last for many decades at origina-

tion. As we will discuss in detail below, leasehold flat durations are periodically extended,

after negotiation with the freeholder. The distinction between freeholds and leaseholds dates

to medieval England, during which permanent ownership of land and property, known as

“freehold” ownership, was available only to feudal nobility.6 During this time, leasehold es-

tates were granted to serfs who would work the land for a set period of time and in exchange

would pay a portion of the harvest to the freehold landowner. During the 20th century,

cash-poor landowners began to issue long leaseholds of 99 and 125 years, providing imme-

diate liquidity without giving up ownership of the underlying land. To this day, leaseholds

are very common in England and Wales, comprising approximately 5% of houses and 97% of

apartments. The freeholds underlying UK flats are typically owned by landed estates (e.g.

the Cadogan Estates) which are privately managed, and other private landlords, developers,

and investment companies. A very small proportion of these freeholds are owned by the

Crown or the Church of England.

(2) Land Registry Lease Data: Data on the length of lease terms, which vary signif-

icantly across leaseholds, are provided in a separate Land Registry data set, also publicly

available. The Land Registry lease term data set includes the property address associated

to the lease, the term length and origination date of the lease, as well as the date in which

the lease was registered with the Land Registry. A majority of leases were originated and

6The first known use of the term “freeholder” is in the Domesday Book published in 1086 under the reign
of William the Conqueror.
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registered after the 1950s. Starting in late 2003, lease registration became mandatory, so

we capture all registered leases after this period. We will start our analysis in 2003, after

mandatory registration.

Each entry in the lease term data set provides the length of the lease term, its registration

date, and the start date of the lease. The Land Registry does not provide match keys to

merge the transaction and lease term data sets, so we conduct a fuzzy merge based on

provided addresses, as we detail in Appendix A.4.7

The Land Registry classifies properties into five types: flats, detached houses, semi-

detached houses, terraced houses, and others. The three categories of houses are for the

most part freehold properties. Even when they are leaseholds, houses tend to have very long

lease terms relative to flats, with median remaining lease term over 800. Since leaseholds

are mostly flats, we will drop non-flats for the bulk of our analysis.

(3) Land Registry Extensions Data: We obtain data on lease extensions from two

sources, neither of which have been used in prior academic research to our knowledge. First,

beginning in September 2021, the Land Registry began publicly releasing information on

lease extensions. Second, we have obtained from the Land Registry all lease extensions

before September 2021, which we have made available on the website accompanying this

paper.

(4) Rightmove Hedonics Data: We obtain data on housing characteristics and rental

prices from Rightmove, Inc. spanning 2006 to the present, which include the number of bed-

rooms, number of bathrooms, number of living rooms, floor area, property age, parking type,

heating type and property condition (rated as Good, Average, or Poor) of listed properties.

It also includes rents for rented properties. These data must be purchased from Rightmove,

however, our main analysis can be carried out without these data.

(5) Zoopla Hedonics Data: We supplement this with data from Zoopla, Inc. which is

provided for free to researchers by the Urban Big Data Centre. This data set also provides

number of bedrooms and bathrooms and rents. Additionally, it includes the number of floors

and receptions of the property. We are able to match approximately 80% of transactions to

the Rightmove and Zoopla listing data. Rental data is available for about 40% of properties.

3.2 Lease Extension Details

This section provides additional details about leaseholds in England and Wales and the

circumstances under which the duration of leases can be extended. As we described in the

previous section, leaseholds are properties with very long but finite leases, moreover these

7We exclude 0.02% of our transactions, which have implied negative lease terms at the time of transaction.
We also exclude 0.6% of properties which are sold both as a leasehold and a freehold within our sample.
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leases can be bought and sold. The lease length at the time it was issued is denoted its

“initial lease term” and the lease length it has at any future point in time is denoted its

“remaining lease term.” The distribution of leases can be divided into two groups; about

70% of leasehold flats in our sample are short leaseholds with remaining terms of 250 years

or less and the other 30% are long leaseholds with remaining terms of 700 years or more.

There are practically no properties with remaining terms between 250 and 700.8. The most

common initial terms for short leaseholds are for 99 and 125 years, which account for 77%

of short leaseholds. The most common initial term for long leaseholds is 999 years, which

account for 96% of all long leaseholds.

Figure 2: Diagram of Extension Time

Holding Period (h)

Purchase Time (t-h)

Extension Time (t-h+u)

Sale Time (t)

The figure is a diagrammatic representation of the notation we will use in the paper. We say a property is purchased at time
t− h, sold at time t and held for an amount h of years. We say that a property extends at time t− h+ u, where u < h.

Beginning in 1993, the Leasehold Reform, Housing and Urban Development Act (1993

Act) granted flat leasehold owners the right “to acquire a new lease” 90 years longer than the

original lease, conditional on a one-off negotiated payment to the freeholder. This negotiation

is potentially costly, since both the freeholder and the leaseholder may hire qualified surveyors

in order to assess the value of the property, and the negotiation can be lengthy. We denote

these cases as lease extensions. This option is particularly relevant for leasehold owners of

short leaseholds for whom lease expiration may be more of a concern than for owners of long

leaseholds.

Although the 1993 Act legally provides the option to extend, almost all extensions are

negotiated out of court by leaseholders and their freehold landlords. Despite this, the court-

recommended amount of 90 years is the most common extension length (accounting for about

8This distribution is illustrated in Appendix Figure A.1
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30% of all extensions). A fraction of extensions, however, are for approximately 900 years,

which effectively convert short leaseholds into long leaseholds.

We will now introduce some notation that we will use throughout the paper to refer to

extended properties in our sample, which we show in a diagram in Figure 2. Consider a

lease that transacts twice within the Land Registry Transaction Data Set. We say that a

property was purchased at time t − h and sold at time t, where h is the amount of time

between purchase and sale. We are interested in properties which were extended at some

time t− h+ u where u < h.

We denote the lease term to maturity, henceforth referred to interchangeably as lease

duration, at purchase time as T + h and its duration at sale time as T + 90 (notice that

its duration would have been T at sale had the lease failed to be extended). We denote

the price of a property i of duration T at time t by P T
it . The transacted prices before and

after lease extension, and the lease duration before extension, will be the key inputs into

our estimation; however we do not observe the extension payment paid by leaseholders to

freeholders.

As we see in Appendix Figure A.2, properties with a very short holding period, h, are very

likely to be “flippers” who purchase, renovate and sell properties with the explicit intention

of making a quick profit and therefore behave differently from other owners. Unless otherwise

specified, we exclude properties with h ≤ 1 year from our analysis.

Table 1: Number of Extensions

Extension Amount 90 700+ Other Total
2003-2005 640 1,942 2,041 4,623
2006-2010 3,392 6,901 5,160 15,453
2011-2015 11,648 15,458 10,417 37,523
2016-2020 16,845 18,777 11,753 47,375
2021-2023 10,721 11,041 5,103 26,865
Total 43,246 54,119 34,474 131,839

The table reports the number of extended leases that have transaction data for each time period. The first column includes
90 year extensions, the next column includes 700+ year extensions, and the third column includes others, which are almost all
non-90 under 200 year extensions.

In Table 1 we present the distribution of extensions for different amounts over time. In

total, there are 131,839 lease extensions in our main sample, which is 5% of flats. How

common are these lease extensions? In Appendix Figure A.3 we show the hazard rate of

extension, defined as the conditional probability a property will extend given how long its

remaining term to maturity is. We can see that almost no properties extended with more

than 90 years remaining. After a property hits 80 years remaining, its extension probability
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jumps to a probability of extension of about 5%, and then slowly falls back to 2% or so. We

elaborate more on the particulars of this hazard rate in Appendix A.10.

For most of our analysis, we will focus on leases that extend by the typical amount of 90

years. For these leases, the median duration before extension is large, at around 70 years,

as shown in Appendix Figure A.5. The median time between transactions is 10 years, with

7 years between purchase and lease extension (see Appendix Figure A.6 and Appendix Fig-

ure A.7). In Appendix A.1, we provide additional summary statistics about lease extensions,

including a heatmap of the extension rate by region; and the distribution of transaction dates

and extension amounts. We also show that leasehold owners are broadly representative of

the overall UK housing market in terms of owner and mortgage characteristics and price-to-

rent ratio business cycles in Appendix Table A.1 and Appendix Figure A.8, as well as the

geographic distribution of extensions in Appendix Figure A.9.

3.3 What t do we observe?

In Section 5, we will estimate r∗Kt over time, where t is the transaction date provided by

the Land Registry. The date captured by the Land Registry is the date in which the form

to transfer the property deed from the buyer and the seller is signed by both parties. This

typically occurs shortly after the parties sign a contract to settle on the transaction price,

and a few weeks before the actual move occurs.

However, the date that the transfer deed is signed can be several months after the parties

agree on a price. After the seller accepts an offer from the buyer, both parties must undergo

a lengthy process of conveyancing, which involves finalizing mortgage details, conducting

an inspection of the property, and drafting the relevant contracts. This process can be

particularly long when the property is sold on a housing chain, meaning that the seller is

simultaneously purchasing a home or the buyer is simultaneously selling a home. Chains can

be include several houses and a delay at any single part of the chain can slow down the sale

process for all the other buyers and sellers on the chain.

We can bound the amount of time between the date in which the buyer and seller agree on

a price and the date in which the price is recorded by the Land Registry by using property

listing data from Rightmove. If we assume that sellers stop posting house listings after

agreeing on a price with a buyer, then the last date that a listing is posted must precede

the date in which the buyer and seller agree to a price. The median amount of time elapsed

between the last property listing on Rightmove and the date recorded by the Land Registry

for transactions which have an associated Rightmove listing is 3 months, with a mean of

about 4.5 months. The full distribution of the time elapsed between the listing date and the
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Land Registry date recorded is presented in Figure A.10. This suggests that the estimates

we present have a lag of around 4.5 months, so shocks to the economy may take this much

time to materialize in our r∗Kt estimates.

4 Empirical Methodology

This section explains how to use the price gain from lease extension to estimate the nat-

ural rate of return of capital, for the major asset class of UK property. We also explain

how we select the control group for our estimator, and present evidence in support of our

identification assumption.

4.1 Pricing Leaseholds

We start by deriving the price of a leasehold. The price of a leasehold P T
t , with T years until

expiration, and an option to extend by 90 years on expiration, is

P T
t = Rt

∫ T

0

e−
∫ s
0 y(u)duds+max

[
0, (1− α)Rt

∫ T+90

T

e−
∫ s
0 y(u)duds+ ...

]
(4)

This equation starts with the asset pricing identity of Equation (1), since the first term is the

present value of service flows from housing over the first T periods before the lease expires.

The second term represents the option value of additional extensions. (1 − α) is the share

of the price gain from extension, after deducting the negotiated payment to the freeholder

and various costs that this negotiation entails. These terms multiply the present value of

service flows from the lease, over the 90 year period after the extension. The ellipsis refers

to the value of future extensions after T + 90, which have a similar structure. The max

operator acknowledges that option value is non-negative—instead of extending the lease, the

leaseholder can choose not to extend and receives zero payoff.

This equation clarifies that the option value of lease extension raises the value of a

leasehold. Consider two cases. First, suppose α = 0. Then, the leaseholder receives the

entire value of a lease extension. Provided that the value of an extended lease is positive,

the leaseholder will always choose to extend—the option of lease extension is always “in the

money”.9 Then P T
t = Rt

∫∞
0

e−
∫ s
0 y(u)duds, meaning the price of a finite duration leasehold is

the same as the price of an equivalent, but infinite duration asset. Since the property always

costlessly exercises its option to extend, then the effective duration of the asset is infinite. A

second instructive case is α = 1. In this case, the leaseholder receives none of the value from

9For simplicity, we ignore uncertainty in the rate of return of the asset.
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extension, and the price of a leasehold is P T
t = Rt

∫ T

0
e−

∫ s
0 y(u)duds. This price is the same as

an asset with a duration of exactly T periods. The service flows after T have no value to the

leaseholder, since they go to the freeholder. With intermediate values α ∈ (0, 1), the price

of a T duration leasehold is between the duration T price, and the infinite duration price.

In the main analysis, we will assume that α = 1, so that the value of extension goes

entirely to freeholders and not leaseholders. Therefore there is no option value from lease

extension. This assumption is appropriate given the institutional features of the UK prop-

erty market. As we discuss at length in Section 6, the law recommends that leaseholders pay

freeholders the entire value of lease extensions. In Section 6 we will also consider a bunching

estimator, which identifies α using discontinuities in legally mandated lease extension pay-

ments when T = 80. Our estimates of natural rates change by little when we estimate α

directly.

We remind the reader that at long maturities, the yield y(t) converges to the natural

rate of return of capital r∗K , as Section 2 discusses. That is, by Equation (3) of Section 2,

we have limt→∞ y(t) = r∗K . Therefore we will use information from long term yields in order

to estimate r∗K .

4.2 A Difference-in-Differences Estimator of r∗
K

Next, we embed the formula for the lease extension price into a difference-in-differences

estimator, in order to identify r∗K for UK housing. We will study a difference-in-differences

estimator ∆it for the percent price change after lease extension:

∆it ≡
[
logP T+90

it − logP T+h
i,t−h

]
−
[
logP T

jt − logP T+h
j,t−h

]
.

In this equation, logP T+90
it − logP T+h

i,t−h is the price change for a property i bought h periods

previously, which extends by 90 years from a duration of T years remaining, at time t.

Property j is a suitably chosen control property, bought and sold in the same periods, with

the same duration as property i prior to extension. Substituting the formula (4) for the price

of a leasehold, with α = 1, into the difference-in-differences estimator implies

∆it = log

(∫ T+90

0

e−
∫ s
0 y(u)duds

)
− log

(∫ T

0

e−
∫ s
0 y(u)duds

)
+∆t,t−h (logRit − logRjt) . (5)

In this equation, the first two terms represent discounting of the extended lease versus its

control property. The final term is the difference between the growth rate of the service flow

of housing, for the treatment versus the control group.

The identification assumption of our estimator is a form of “parallel trends”. The growth
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in service flows for the treatment and control properties, before versus after extension, must

be the same. If so, then the final term from Equation (5) vanishes. Helpfully, in this case

the difference-in-differences estimator no longer depends on the holding period h, meaning

the estimator automatically corrects for the size of the holding period.10

Finally, in order to implement the estimator we parameterize the shape of the yield curve

y(s). We make the simple assumption that y(s) = r∗K, so that the yield curve is horizontal

and equal to its terminal value, which is the natural rate of return on capital. Shortly, we

will see that this assumption accurately prices leaseholds in our quasi-experiment, even when

there is significant variation in the slope of the yield curve at short horizons. The reason is

that when T is large, the difference-in-differences estimator is primarily identified from long

duration flows between T and T + 90. With this parameterization and the parallel trends

assumption, we arrive at the final form of our estimator

∆it = log
(
1− e−r∗K(T+90)

)
− log

(
1− e−r∗KT

)
. (6)

4.3 Advantages of the Estimator

The key advantage of our estimator is that it “differences out” short run variation in property

prices, from either short term yields or in the service flow of housing. This differencing out

applies regardless of the precise specification of the short run shocks affecting property prices.

Therefore our estimator is able to estimate long run rates of return without relying heavily

on a particular, potentially mis-specified, structural model.

In more detail, a first advantage of the estimator is that it differences out the service flow

of housing, provided that that parallel trends assumption holds. Terms related to service

flow do not appear in the value of the difference-in-differences estimator (6). The service flow

includes taxes, depreciation, as well as the utility from consuming housing. This property of

the estimator is appealing because the service flow is difficult to measure directly, especially

for owner occupied housing. Moreover there may well be significant unobserved heterogeneity

in this service flow across properties, which may vary across time. For instance, consider a

temporary increase in demand for a narrow segment of London property. This shock does

not affect the natural return but does affect service flows and prices for certain properties in

the short run—our estimator eliminates this variation.

The second advantage of our estimator is that it differences out the effect of short term

yields on asset prices, in order to estimate the natural rate. Therefore a transitory shock

to yields, such as a monetary tightening, does not affect our estimate of the natural rate.

10Appendix Figure A.11 shows that estimates of ∆it are uncorrelated with h.
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Intuitively, suppose that the duration before extension T is large. The price before extension

capitalizes flows over the first T periods. The price after extension capitalizes flows over

T + 90 periods. Therefore the price change at extension identifies the price of cashflows

after T , only in the far future. However in practice, this argument is hard to demonstrate

analytically.11

We illustrate the success of our estimator in differencing out short term yields numeri-

cally. In general, the success of our estimator depend on the shape of the yield curve before

it converges to the natural rate r∗K, and on the duration of the property before it extends.

Numerically, our estimator successfully estimates r∗K under an empirically reasonable yield

curve, and when it is applied to long duration properties. The black solid line in Figure 3

presents one possible parameterization of the forward yield y(s), where the forward yield

curve y(s) flattens out to r∗K for s ≥ 40 years, with r∗K equal to 3.0 pp.12 Given our pa-

Figure 3: A Parameterization of the Housing Yield Curve

The black line presents one parameterization of the forward yield curve, y(s), which is chosen so that its shape matches the
forward curve implied by the UK 3-month LIBOR, the 10 year gilts and the 30 year gilts. r̂∗K(s) is our estimator of r∗K for each
T , described below.

rameterization of y(s), we can solve for logP T+90
it − logP T

it for all T . Then, for each T , we

can solve for our estimator of r∗K as a function of T numerically. The resulting values of

11In effect, we are studying the price of a positive coupon bond, which is not analytically tractable.
12We choose a flexible functional form y(s) = β1 − β2 · β−β4(s−β5)

3 and estimate the β parameters such
that y(0) is equal to the 3-month London Interbank Offered Rate (LIBOR), y(10) is equal to the 10-year
gilt yield, and the average of y(s) for 10 ≤ s ≤ 30 is equal to the 10 Year 20 Year gilt forward yield. For all
the bond yields, we use the mean yield for our sample period. We present other possible parameterizations
of y(s) in Appendix A.5.
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our estimator, which we term r̂∗K(T ), are plotted in blue in Figure 3. Our estimator r̂∗K(T )

closely approximates the true natural rate r∗K for durations T after which the forward curve

has flattened. We also plot the point estimate of r̂∗K at T = 70, which is approximately the

median duration of leaseholds at extension.

Our estimator produces tight estimates for a wide range of yield curves. In Figure 4a we

present a time-varying yield curve for which the short-end fluctuates tremendously over time

but the long end (r∗K) is constant. For instance, the yield curve labelled d is very downward

sloping, whereas yield curve g is very upward sloping. Then, the solid line in Figure 4b

shows how our estimator r̂∗K reacts to changes in the short-end of the yield curve, where r̂∗K

is estimated for a lease with 70 years remaining. The points corresponding to each instance

of the yield curve in Figure 4a are labelled accordingly. For instance, point d in Figure 4b

corresponds to estimates of r∗K for the downward sloping yield curve d of Figure 4a. Our

estimator is relatively stable despite the fluctuations in the short end of the yield curve, and

remains within 0.1% of r∗K. This logic suggests that our estimator can successfully estimate

the dynamics of r∗K, even in the presence of volatile shocks to short term rates.13

The reason why our estimator is able to provide a close approximation of r∗K is because

T is large, which effectively differences out most of the yield curve y(s) for s < T . As

T becomes smaller, the effect of the short-end on r̂∗K(T ) increases, meaning estimates of

r∗K become increasingly biased. To see this, we can consider an alternative estimator: the

rent-to-price ratio of a freehold property, Rit

P∞
it
. Like our estimator, the price-to-rent estimator

cancels out the flow value of housing; it does not, however, difference out the short-end of the

yield curve and is therefore far more susceptible to changes in short-term forward rates. The

dashed line in Figure 4b indicates the value of the rent-to-price ratio, as the short-end of the

yield curve shifts. Changes in the short-end of the yield curve affect the rent-to-price ratio

by almost an order of magnitude more than they affect r̂∗K(70). These results demonstrate

that to effectively capture r∗K, we must take the difference between two long duration assets;

one does not suffice.

Our approach does not require a particular structural model of why short run yields

vary. Short run yields may fluctuate due to cyclical movements in housing risk premia, safe

interest rates or liquidity conditions. Bubbles of the form studied by Harrison and Kreps

(1978) also manifest in short run yields, provided that these bubbles disproportionately affect

short duration valuations. Regardless, our approach differences out this short run volatility

in order to estimate the natural rate of return. As an additional, third advantage, our

estimator also differences out any variation associated with “rational bubbles”.14

13In Appendix A.5 we show that we can use r̂∗K(s) to bound the approximation error of our estimator, and
therefore get a lower and upper bound for r∗K .

14Our approach is related to how forward yields are calculated on financial assets such as zero coupon
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Figure 4: “Differencing Out” the Short End

(a) y(s) (b) r̂∗K and Rent-to-Price

The figure illustrates the effect of fluctuations at the low-end of the yield curve on r̂∗K and the rent-to-price rate, the rent-to-price
ratio. Panel (a) presents several instances of the yield curve, y(s) over time. Panel (b) indicates the estimates r̂∗K and the
rent-to-price ratio at each of these instances. For instance, point d on the right panel corresponds to the true value of r∗K ,
the estimated value of r∗K , and the rent-to-price ratio; given a yield curve d on the left panel. The the rent-to-price ratio is

estimated such that P∞
it /Rit =

∫∞
t e−

∫ s
t y(u)duds ≡ 1

R/P
.

4.4 Implementing the Estimator and Selecting a Control Group

We now describe how to implement our estimator via nonlinear least squares, as well as the

procedure to identify “control” properties. We also present evidence supporting our main

identification assumption of parallel trends.

According to Equation (6), for each individual property i our difference-in-differences

estimator is

∆it = log
(
1− e−r∗Kt(Tit+90)

)
− log

(
1− e−r∗KtTit

)
. (7)

Here, we have generalized the expression of the estimator to allow a time varying natural

rate, and to acknowledge that the duration of the property before extension, Tit, can vary.

Equation (7) shows that we can estimate r∗Kt by nonlinear least squares. The estimator

is valid at any point in time, hence we can estimate the dynamics of r∗Kt. Two statistics

inform r∗Kt in the estimator. First, the difference-in-difference ∆it can be calculated for

every property i, as the difference in price growth between the extending property and its

control. Second, the covariance between ∆it and the duration before extension Tit also helps

to identify r∗K.

We select a control group separately for each extending property, from neighboring

properties of a similar duration that did not extend.15 Let property p be a flat which

bonds, but is available at far longer horizons than are normally available for financial assets.
15Therefore control properties are not treated, avoidiong the “forbidden comparisons” problem (Borusyak

et al., 2021).
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was purchased at time t − h, sold at time t, and extended for 90 years at some time

t−h < t−h+u ≤ t. Suppose p has duration T +h at purchase and duration T +90 at sale.

The control pool for property p is the set, Q(p) = {q : Haversine Distance(p, q) ≤ xkm} where
x ∈ {0.1, 0.5, 1, 5, 10, 20}, using the traditional Haversine Distance formula based on latitude

and longitude coordinates.16 In general, we choose x to be the smallest possible value such

that both the control sets described below are non-empty. The controls for the purchase

transaction are Q
(p)
t−h =

{
q ∈ Qp : tq − hq = t− h and

∣∣∣ (T+h)−(Tq+hq)

T+h

∣∣∣ ≤ 10%
}

where tq − hq

is the purchase date and Tq + hq is the duration at purchase for property q. The controls

for the sale transaction are Q
(p)
t =

{
q ∈ Qp : tq = t and

∣∣∣T−Tq

T

∣∣∣ ≤ 10%
}

where tq is the sale

date and Tq is the sale duration for property q. Note that we choose controls that have a

lease term close to what the extended property p would have had at sale had it had not been

extended.

Then, the control purchase price for extended property p is given by Pp,t−h = mean{Pq,tq−hq :

q ∈ Q
(p)
t−h} and the control sale price is given by Pp,t = mean{Pq,tq : q ∈ Q

(p)
t }. Under this

methodology, we are able to identify controls for 130,430 of our 131,839 lease extension

experiments. This serves as our primary control measure.

Our identification assumption is parallel trends: growth in the service flow of housing

should not differ for extending properties and controls. We provide two tests in support of

this assumption. First, our treatment and control groups are close to being balanced on

observable characteristics. We use the property characteristics data provided by Rightmove

and Zoopla. The results of regressing the same hedonic characteristics on an extension

dummy are presented in Panel A of Table 2. Flats that have been extended at some point

tend to have slightly better amenities than neighbouring flats of similar lease length. The

differences in magnitude are small, however. For instance, the mean number of bedrooms,

after controlling for geographical region and lease length, in an extended property is 1.8, as

opposed to 1.7 in a property that has not been extended. Average floor area is 68.5 vs 64.4

square meters for extended and non-extended properties, respectively. As a whole, rental

prices, which ought to be representative of the aggregate quality of the property, are about

8% higher in extended properties.17

16The Haversine formula is given by d(p, q) = 2r arcsin

(√
sin2

(
ϕq−ϕp

2

)
+ cosϕp · cosϕq · sin2

(
λq−λp

2

))
where (ϕp, λp) and (ϕq, λq) are latitude-longitude pairs for points p and q respectively and r is the radius of
the Earth.

17In Appendix Figure A.12 we show how our main hedonic variables vary with log price, controlling for
Local Authority fixed effects. Notice that property size, bedroom number, and the log of rental prices all
vary approximately linearly with log price. We also regress our hedonic characteristics on an experiment
fixed effect and plot the density distribution of the residuals in Appendix Figure A.13. These residual plots
visually confirm how similar the amenities distribution is between extensions and controls.
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Table 2: Hedonic Characteristics in Extended vs Non-Extended Flats

Panel A: Levels

(1) (2) (3) (4) (5) (6)
Num Bedrooms Num Bathrooms Num Living Rooms Floor Area Age Log Rental Price

Extension 0.08∗∗∗ 0.04∗∗∗ 0.01∗∗∗ 4.08∗∗∗ 7.46∗∗∗ 7.89∗∗∗

(0.005) (0.004) (0.001) (0.246) (0.428) (0.239)
Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓
N 1,353,712 1,066,889 940,298 1,076,266 839,631 747,548

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel B: Differences

(1) (2) (3) (4) (5)
∆ Num Bedrooms ∆ Num Bathrooms ∆ Num Living Rooms ∆ Floor Area ∆ Log(Rent)

Extension 0.00 -0.00 -0.00∗ -0.03 -0.71
(0.00) (0.00) (0.00) (0.12) (0.64)

Fixed Effects ✓ ✓ ✓ ✓ ✓
N 200,251 154,605 137,590 151,345 76,772

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel A reports level of hedonic characteristics for extended properties relative to their non-extended counterparts. It presents
estimates of β for the specification, Xit = α + β1(Extendedit) + Γit + ϵit, for several hedonic characteristics Xit where Γit

are 10-year duration bin × Local Authority fixed effects. The sample is leasehold flats which appear at least once in the
Land Registry Transaction Data Set. Panel B reports renovation rates in extended properties relative to their non-extended
counterparts. It presents estimates from regression equation (8). For Columns 1-4, the sample includes properties with two
separate Rightmove or Zoopla listings corresponding to two separate transactions. For Column 5, the sample includes properties
that transact twice and have distinct rental price data around each transaction. In both panels, log rent is multiplied by 100.
Standard errors are clustered at the purchase year, sale year and Local Authority level.

As a second test of parallel trends, we show that extending properties are no more likely

to renovate than controls; nor do rents grow by more for extensions. As such, the service

flow of housing seems to behave similarly for control and treated groups, in support of the

identification assumption. We study Rightmove and Zoopla data for properties that have

two distinct listings. For these properties we estimate the following specification,

∆hHedonic Controlit = α + β × 1Extensionit + Γit + ϵit (8)

where Γit are Local Authority × duration × year of hedonic characteristics listings fixed

effects. The regression results are presented in Panel B of Table 2. We find no significant

evidence that extended properties renovate at a different rate than other properties. Impor-

tantly, Column (5) also indicates that the rental value of the property, an observable proxy

for the service flow, does not change before and after extension.

We also construct a second control measure, that explicitly accounts for hedonic differ-

ences between the treatment and the control group. In particular, we run the following
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regression,

Pit = α + Γ× Hedonic Controlsit + ϵit

where the hedonic controls are number of bedrooms, number of bathrooms and floor area.

Then, we create a residualized price variable, P
(res)
it = P +ϵit where P is the mean price level

across all flats. P
(res)
it represents the price of property i at time t, taking out the average effect

of its hedonic characteristics. We can use the previously described procedure to condition

on hedonic characteristics, by residualizing prices for both extensions and their controls.

The advantage of this second measure is that it controls for potentially confounding

sources of heterogeneity in price. The disadvantage is that we only observe hedonic char-

acteristics for a fraction of our experiments (e.g. we have data on bedroom count for 109

thousand and data on floor area for 87 thousand of our 131 thousand experiments), so it

reduces our already limited sample. As we will see in Section 5, hedonic controls do not

significantly affect our estimates, so the majority of our analysis is conducted using the first

control measure. We use the hedonic control measure for robustness on all our results.18

5 Empirical Results

This section presents our main empirical results. Using our difference-in-differences approach,

we estimate the level of the natural rate for UK property to be 3%. We also investigate the

dynamics of the natural rate between 2003 and 2023. We find a decline from about 4.8%

in 2006 to 2.3% in 2023. Moreover the fall takes place before 2020 while the natural rate is

relatively stable afterwards—despite rising yields on safe assets over the same period.

5.1 Event Study Representation of Lease Extension

The duration of properties when they extend is long. Leaseholds that extend by 90 years

have a median duration at sale of 157 years—meaning had they not extended, they would

have had a duration of 67 years at sale.19

What effect does lease extension have on property valuations? To visualize this, we create

a pseudo event study for the leases that extend by 90 years. We calculate the mean difference

in log price between the extending property and its controls. We can calculate this price

difference twice: once before and once after extension. We plot these price differences for all

of the extension experiments, using time to extension, u, as our x-axis variable. The result

18In much of our analysis, we focus on extensions of 90 years. Appendix Table A.2 repeats the analysis of
Table 2 on that subsample only.

19Appendix Figure A.14 displays this information in a histogram, also including the duration of the control
observations that did not extend.
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Figure 5: Event Study Representation of Lease Extension

The figure presents the difference in transaction price between extended properties and their controls before and after extension.
The x-axis is the difference between transaction time and extension time, which we identify using the lease registration date
for extended properties. The grey circles use mean log(price) as the y-axis variable and the blue diamonds use log(price)
residualized on hedonic characteristics as the y-axis variable. We include 95% confidence intervals for each point estimate.

is in gray in Figure 5. Though we only observe each extension experiment once on either

side of extension, we have stacked multiple experiments together according to their distance

from extension. Therefore we can study the trends in prices versus the control before and

afterward. The result is similar to an event study. Upon extension, the difference in log price

between extended properties and their controls jumps by 0.12 log points, or about 12.7%.

The difference continues to grow after this point because as time from extension increases,

the lease term falls more, which results in a greater predicted difference in price between

extension and control according to our simple asset pricing model. Moreover, consistent

with our identification assumption, there are small and statistically insignificant “pre-trends”

before lease extension. The difference-in-difference price increase at extension, ∆it, is a key

input into our estimation of r∗K.

As we saw in Section 4.4, extended properties tend to have slightly better amenities than

their non-extended counterparts. We can see this in Figure 5, where extended properties con-

sistently sell at a time-invariant premium relative to controls before being extended. Given

the parallel trends assumption and the absence of a pre-trend, this level shift is differenced

out by our difference-in-difference estimate. However, the estimates plotted in blue in Fig-

ure 5 assuage any lingering worries by showing that the premium is largely accounted for by

differences in property characteristics; i.e. once we control for hedonic variables, even small
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pre-extension differences in price between extensions and their controls disappear. Most

importantly, our difference-in-difference estimates are essentially identical with and without

hedonics, as we shall see formally in Section 5.2.20

5.2 Estimating the Level of r∗
K

We present estimates of the level of r∗K. We estimate Equation (7),

∆it = log
(
1− e−r∗K(Tit+90)

)
− log

(
1− e−r∗KTit

)
using all lease extension experiments i. There are two sources of variation identifying r∗K.

First, the estimating equation predicts that the price gain is larger when r∗K is lower, because

a lower value of r∗K raises the value of duration. Second, the gain from extension varies with

duration, Ti. Leaseholds with shorter remaining terms will receive the benefit of extension

sooner, which leads to greater price growth upon extension.

Figure 6: Duration Before Extension vs. Price Gain After Extension

The figure is a binscatter of our difference-in-difference estimator against duration before extension, T , with 100 bins. The
sample includes leases that were extended for 90 years. The black line shows fitted estimates of Equation (7).

Now we plot the variation from the data that identifies r∗K according to our estimator.

Figure 6 binscatters the difference-in-difference estimates ∆it for various durations Ti, for

20Figure A.15 and Figure A.16 show the event studies for lease extensions of sizes other than 90 years.
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the sample of leaseholds that extend by 90 years. As predicted by the estimating equation,

the percent increase in property value as a result of extension increases in the duration

before extension—ranging from only 7% for 90-year duration properties to more than 30%

for properties with duration of 40 years at extension. The black curve in Figure 6 presents

fitted estimates from our nonlinear estimator. Inspection of Figure 6 indicates that our

estimate of r∗K is a good fit across both the average price gain after an extension, and

variation in the price gain across T—the two statistics that identify r∗K.
21

Table 3: Estimated r∗K

Constant Flexible N

(1) (2) (3) (4) (5) (6)
T = 50 T = 60 T = 70 T = 80

No Hedonics 3∗∗∗ 2.93∗∗∗ 3∗∗∗ 3.06∗∗∗ 3.12∗∗∗ 43,083
(0.02) (0.03) (0.02) (0.02) (0.03)

No Hedonics (Hedonics Sample) 2.95∗∗∗ 2.85∗∗∗ 2.94∗∗∗ 3.03∗∗∗ 3.11∗∗∗ 27,636
(0.02) (0.03) (0.02) (0.02) (0.04)

Hedonics 2.94∗∗∗ 2.82∗∗∗ 2.93∗∗∗ 3.04∗∗∗ 3.16∗∗∗ 27,636
(0.02) (0.03) (0.02) (0.02) (0.04)

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 01

Column 1 presents estimates of r∗K from Equation (7) for 90 year extensions. Column 2-5 present estimates of r∗K(T ) for
T ∈ {50, 60, 70, 80}, where we parameterize r∗K linearly as a function of T , r∗K(T ) = γ + β · T . The first row presents estimates
using the baseline procedure to find controls described in Section 4.4, which utilize the raw transaction price variable as the
main outcome variable. The second row presents estimates using the raw transaction price variable, but restricted to the sample
of observations which are not missing hedonic characteristics. The third row presents estimates of r∗K and r∗K(T ) produced using
transaction price residualized on hedonic characteristics as the main outcome variable, as described in Section 4.4. Standard
errors are heteroskedasticity robust.

Next, we present estimates of the r∗K implied by Figure 6. We estimate as r∗K = 3.0%,

indicated in Column 1 of Table 3. The second and third rows of Table 3 show that these

estimates are largely unchanged by inclusion of hedonic controls, as already demonstrated

by the event study plot in Figure 5.22

As we discussed in Section 4.3, our estimator is not perfectly accurate when the short

end of the yield curve for housing is upward sloping. In this case, our estimated r∗K will vary

with duration T (i.e. y(T ) will be upward sloping if y(T ) is upward sloping, and vice versa

if y(T ) is downward sloping). Therefore, we can estimate the degree to which the short-end

of y(s) affects our estimates by parameterizing our estimate of the natural rate of housing as

y(T ) = γ + β · T . We exploit variation in duration at the time of extension to estimate both

γ and β. In Columns 2-5 of Table 3, we present estimates of y(T ) under this more flexible

21In Figure A.17 we present a binscatter using properties that were extended for more than 700 years.
22In Appendix Table A.3, we estimate r∗K using all extension lengths, which produces very similar results.
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form for our sample range of T . We can see that y(T ) varies little over the range we observe

it, suggesting our estimates are close to the true r∗K.
23,24

One concern about our estimate may be that short duration leaseholds have an additional

liquidity premium because banks are less willing to issue a mortgage against shorter duration

leaseholds. We investigate this concern in Appendix A.6 and find that liquidity premia do not

seem to affect our results: from survey data, short duration leaseholds seem to have similar

characteristics to other leaseholders and seem to be similarly liquid. Explicitly incorporating

liquidity frictions into our estimator affects the value of r∗K little. In Appendix A.7, we

investigate the seasonality of our estimate of r∗K . Spot UK house prices are highly seasonal

(Ngai and Tenreyro, 2014). Reassuringly, we find that our estimate of r∗K is not seasonal,

consistent with its interpretation as a long run rate of return.

5.3 Trend Dynamics of r∗
K

Figure 7: Price Change From Extension, Over Time

The figure shows the mean difference-in-difference estimate for various durations in the pre-2008, 2008-2016 and post-2016
periods. The bars show the level of ∆it for each bin and the dashed lines shows fitted estimates. The sample includes only
90-year extensions. Bars are shaded proportionally to the number of observations that make up the bar.

Now we present our first key result: estimates of the trend dynamics of r∗K. Interest rates

23In Figure A.18 we estimate the event study of Figure 5 separately for different durations, which also
documents the lack of pre-trends at all durations.

24We can also choose more flexible parameterizations of r∗K which capture its curvature. For example, the

forward sloping parameterization of y(T ) = γ + β (1−e−T )
T estimates that y(T ) is even more flat that the

linear parameterization.
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have been falling in the UK, as in much of the rest of the world, for at least four decades.

Can the same be said for r∗K? We find a sizable fall in r∗K across the entire yield curve between

the start and end of our sample period. This decline in r∗K is depicted in Figure 7. In this

figure we show that at all durations, the price growth associated with lease extension ∆it,

has increased by approximately 20pp between the beginning and end of our sample. The

opacity of the bar graph is shaded by the number of observations in the bar, and contains

only 90 year extensions. An increase in the price growth from lease extension implies that

the value of long duration cashflows has increased—that is, r∗K must have fallen.25

Given our large data set, we are able to estimate the dynamics of r∗Kt with precision. We

start in 2003, at the beginning of our sample. We have already presented the estimates in

Figure 1 in the Introduction, which contains estimates of r∗Kt at annual frequency. Our time

varying estimate includes all lease extensions, instead of only 90 year extensions, in order to

raise the precision of our estimates; the shaded region is 95% confidence intervals for the full

sample of leases.26

The estimates show that the fall in r∗K has been relatively consistent throughout this

entire sample period. Between 2003 and 2023, we estimate r∗K has fallen from around 4.8%

to 2.3% — a more than 50% decline. The magnitude of this decline is large, corresponding

to a doubling of the long run expected price-rent ratio. Notably, our estimates are stable

during the 2020 pandemic, despite considerable volatility in shorter term asset prices during

this period.

Our estimate of a declining capital yield before 2022 is related to the well known fact

that government bond yields fell around the world before 2022 (e.g. Holston et al., 2017).

However bond yields could have fallen due to factors that are specific to safe assets, such

as quantitative easing or rising demand for the safety and liquidity of government bonds

(e.g. Krishnamurthy and Vissing-Jorgensen, 2012; Caballero and Farhi, 2018). These safe

asset-specific factors may be unrelated to the yield on capital in the real economy. To the

contrary, our estimates show that capital yields also experienced large trend declines in yields

before 2022, similar to bonds.

5.4 Real Time Dynamics of r∗
K

As mentioned earlier, one useful feature of our methodology is that it can be implemented

in real-time, with publicly available data. Figure 8 plots our estimate of the natural rate of

25In Figure A.19 we plot the event study of Figure 5 separately for each period, which also documents the
lack of pre-trends at all times.

26Appendix Figure A.20 plots the time varying estimate r∗Kt using various extension amounts shows similar
results.
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return, at monthly frequency until June 2023, the last month for which UK housing data are

available. The shaded area represents the 95% confidence interval of our estimate of natural

rates and shows how precise our standard errors are, even when estimating r∗Kt at a monthly

frequency. The tight standard errors result from having a reasonably large sample size of

around 900 lease extensions per month.

Figure 8: Monthly estimates of r∗K and rate of return on government bonds

The solid line presents r∗Kt estimated at a monthly frequency. The dotted line presents the real 10 year 20 year forward rate.
The lines are plotted from January 2016 to June 2023. 95% confidence interval is shaded.

As discussed in Section 3.3, due to the natural lag between the agreement on terms of

the contract and the formal recording of a transaction, our r∗Kt estimates should be seen

as reflective of the market expectation of the natural rate of capital with a lag of about 5

months. Two observations from the monthly time-series are worth mentioning: the first is

that there is a spike in r∗Kt at the start of the Pandemic Recession which is entirely driven by

London. This likely represents a housing-specific shift in markets’ expectations of possibly

long lasting effects of the COVID-19 pandemic (e.g. a shift in ζ∗). However, this shift

appears to have reversed with the end of the pandemic. In the future, our estimates should

help policymakers to understand in real time whether other shocks have also affected long

run expectations.

Second, the recent post-pandemic tightening cycle of monetary policy starting in January

2022 has had a large effect on real yields on safe assets, even at relatively long durations.

The dashed line in Figure 8 indicates that the 10-year-20 real forward rate on government

bonds has risen by about 300 basis points since the beginning of 2022. An uptick in r∗Kt has
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only recently started to materialize and is modest in magnitude, though it is important to

remember that these estimates include a lag of about 5 months. The divergence in trends

between the two series, thus far, suggests that a wedge has appeared between long-term

bond rates and r∗K. Time will tell how this wedge will close. There are two possibilities. On

one hand, high interest rates may gradually lead to a rising natural rate of return, and a

collapse in house prices. On the other, long-run interest rates will fall. According to this

second possibility, the current rise in the long term forward rate is a temporary deviation

from r∗, which has remained low. Our real-time estimates of r∗K will allow us to track this

convergence process on a monthly basis, with robust standard errors of about 0.09pp.

Our real-time estimates will therefore contribute to the active debate about whether the

current increase in yields around the world will prove transitory. For instance, Blanchard

(2023) argues that after the current period of monetary tightening, yields will revert to the

low levels of the “secular stagnation” era. The real time dynamics of our measure of r∗K will

help to inform this debate.

Overall, we have estimated a trend fall in the natural rate of return, for the specific asset

of UK housing, so there may be a question of how representative our estimates are of other

natural rates, such as the natural rate of interest. We believe that other kinds of capital

likely experienced a similar trend fall in the natural rate of return. Recall the definition of

the natural rate of return, r∗K ≡ r∗ + ζ∗ − g∗P . The level of r∗K ≡ r∗ + ζ∗ − g∗P might differ

across assets due to different risk premia ζ∗ or expected capital gains g∗P . However, suppose

that the fall in r∗K for UK housing is due to factors that are not specific to housing, i.e. not

due to housing-related changes in capital gains or risk premia. In that case, other forms

of capital should also experience a similar trend decline in natural rates of return, because

the standard arbitrage conditions mean that risk-adjusted rates of return are equal across

different forms of capital, especially in the long run.

In Appendix A.8, we present suggestive evidence that the decline in r∗K for housing is

not due to housing specific factors. In particular, we estimate long run housing risk premia

and expected capital gains using a standard Vector Autoregression approach (e.g. Campbell

and Shiller, 1988), and show that neither long run UK housing risk premia, nor capital gains

for housing, can account for the trend decline of r∗K for housing. As such, we infer that the

trend decline may also be relevant for other assets, though this exercise is tentative due to

the uncertainty of the VAR based procedure.
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5.5 Advantages of Natural Experiments and Microdata

Our microdata and quasi-experimental approach complements the prevailing approach to

estimating natural rates, which uses structural time series methods (Laubach and Williams,

2003; Holston et al., 2017). This approach is rightly celebrated for tackling a key problem

in macroeconomics, but is subject to concerns about model mis-specification. For instance,

the Laubach & Williams estimate of r∗ broke down after the sharp decline in GDP at the

start of the Pandemic Recession. The reason appears to have been that the structural model

of short run shocks to the economy was not well specified during the Pandemic (Williams,

2023). Our method is potentially more robust to model mis-specification, because our natural

experiment approach “differences out” short run shocks to asset prices, without requiring

a structural model of these shocks—meaning, for instance, that our estimates are available

through the Pandemic.

Another benefit of micro-data is precision. Even before the Pandemic Recession, the HLW

standard errors were relatively large. For the UK the mean standard error of r∗ between

2000 and 2019 was 4.3pp — an order of magnitude greater than our real-time quarterly

standard errors. The difference in precision is an intrinsic advantage of using microdata.

Time series data is relatively uninformative about the long run, meaning inference about

long run parameters is uncertain (Farmer et al., 2021). The micro-data approach instead

uses informative cross-sectional variation to make inferences about long run parameters. We

elaborate on the differences between our estimates and those of Laubach & Williams in

Appendix A.9.27

Our microdata-based approach to estimating r∗K builds on the key insight of Giglio et

al. (2015), which was the first paper to observe that UK properties are uniquely well suited

to estimating long term housing yields, because of their varying duration. Giglio et al use

a cross-sectional comparison of freeholds and leaseholds with different duration to estimate

the level of r∗K. Building on their insight, our approach uses the quasi-experiment of lease

extensions to estimate the dynamics of r∗K. We now elaborate on some advantages of quasi-

experiments compared with cross-sectional variation.

An important difference between the cross-sectional approach and the quasi-experimental

approach is that in the former, the primary source of variation for duration is across prop-

erties rather than within properties. Long duration properties might have differences in the

service flow of housing. For example, freehold flats might have higher quality construction.

As such, the cross-sectional approach relies on detailed hedonic characteristics to control

sources of variation in property price associated with the service flow. However with either

27Also, the structural approach requires a model of inflation expectations. Our estimates are automatically
in real terms.
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the cross sectional or the quasi-experimental approach, unobserved heterogeneity may bias

the estimates.

To gauge the effect of unobserved heterogeneity on the quasi-experimental and the cross

sectional estimates, we study the sensitivity of the estimates to observed heterogeneity, in

the spirit of Altonji et al. (2005) and Oster (2019). We therefore estimate r∗K using both

the quasi-experimental and the cross-sectional approach, controlling for over 100 different

variations of hedonic characteristics. In one variation we do not include any controls. In

another, we allow price to vary linearly with number of bedrooms and floor area, and in

yet another we allow price to vary quadratically with these same controls. In the most

extreme case, we control for fixed effects of the following seven characteristics: number of

bedrooms, number of bathrooms, floor area, age, heating type, property condition rating,

and availability of parking.28 The other variations include all possible subsets of these seven

characteristics.

We then plot our estimates of r∗K under each variation for both the quasi-experimental and

cross-sectional methodologies in Figure 9. Under the cross-sectional approach, the estimates

vary tremendously from 1.3% (in the case of no hedonic controls) to more than 7%. In

contrast, our quasi-experimental estimates of r∗K are highly stable around 3%. These results

provide tentative evidence that our quasi-experimental methodology offers estimates of the

natural rate of return on housing that are relatively robust to unobserved heterogeneity.

6 Measuring the Option Value of Lease Extension

So far, we have assumed that there is no option value from lease extension, because leasehold-

ers pay the market value of extension to freeholders when they extend. This section studies

option value and its consequences for estimates of r∗K, in three steps. First, we present a

simple framework that encompasses a key feature of the UK law on extensions, namely dis-

continuities in the cost of lease extensions when leaseholds have 80 years remaining. Second,

we use this framework to derive discontinuity based tests about whether there is option value.

These tests indicate that the baseline estimate of the fall in r∗K, which ignores option value,

is a lower bound for the true fall in r∗K. Third, we generalize our the difference-in-differences

estimator to point identify the size of option value. We find that our baseline estimate of

28The fixed effects controls are the same as the main specification Giglio et al. (2015). Giglio et. al. add
an indicator variable for properties with missing hedonics and includes them in the main sample — whereas
the current exercise restricts the sample with controls to properties that have hedonic characteristics. We
remove properties without hedonics because these properties will not be affected by different ways of adding
controls. Moreover, if controls are important, then including properties with missing control information
may lead to omitted variable bias.
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Figure 9: Stability of r∗K, Controlling for Observables

The figure presents estimates of r∗K under various choices of hedonic controls. For the cross-sectional estimates, we estimate

logPT
it − logP∞

it = log(1 − e−r∗KT ) by NLLS, where P∞
it is the price of a freehold transacted in the same quarter and Local

Authority as a T duration leasehold. For the quasi-experimental estimates, we follow the methodology described in Section 4.
For each methodology, we perform over 100 estimations, controlling for different combinations of hedonic characteristics. We
indicate in various shades of blue four important sets of controls: no controls, linear controls, quadratic controls, and the full
set of hedonic fixed effects. The gold cross presents the r∗K estimate from Giglio et al. (2015), and the red cross presents our
replication of their estimate, using the full data from 2003-2023.

r∗K, which ignores option value, is an excellent approximation.

6.1 A Framework for Lease Extension Costs

We now summarize the institutional framework of lease extensions and develop a simple

model of this framework.

Tribunals. Leaseholders are legally entitled to a 90-year extension by the 1993 Leasehold

Reform, Housing and Urban Development Act. According to the act, lease extensions ought

to be priced at their market value, the present value of service flows from the lease. However

the leaseholder and freeholder negotiate the size of the market value, by independently hiring

surveyors. If there is no agreement, a Residential Property Tribunal determines the value of

the extension after a costly legal process. Tribunals require that the extension is 90 years

long, and price extensions using a two part formula, which requires an estimate of reversion

value and marriage value.

Reversion value. The reversion value is the value of the lease extension according to a

yield assumed by the tribunal. Therefore reversion value of property i at time t satisfies the
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formula

RV T
t =

Rit

rRV

(
e−rRV T − e−rRV (T+90)

)
, (9)

which is the value of the lease extension according to a Gordon Growth model, with a discount

rate of rRV and a current service flow Rit. In practice, the service flow Rit is imputed from the

price of an observably similar freehold property. The discount rate is fixed by the tribunal

at rRV = 5%.

Marriage value. The marriage value is the tribunal’s estimate of the market value of

the lease extension, given by MV T
it = P T+90

it − P T
it , which is the difference in price between

property to be extended, with duration T , and the price of the same property with duration

T +90. The price of the property with T +90 duration is imputed from the transacted prices

of observably similar properties. Provided that the tribunal imputes correctly, the marriage

value is the market value of the lease extension, and satisfies

MV T
it =

Rit

r∗Kt

(
e−r∗KtT − e−r∗Kt(T+90)

)
. (10)

Here, we have written the marriage value as the market value of a lease extension according

to a Gordon Growth model, where the natural rate expected by the market, r∗Kt, enters the

equation for market value.

Reversion value vs. marriage value. Our approach makes extensive use of the

following observation. Compare Equation (9) and Equation (10) for reversion and market

value. Reversion value calculated by the tribunal is greater than market value, if and only

the natural rate is greater than the 5% yield assumed by the tribunal.

Discontinuity at 80 years duration. There is a discontinuity in the tribunal assessed

cost of the lease extension when 80 years remain on the lease. For leases with more than 80

years remaining, the tribunal dictates that only the reversion value must be paid, whereas

for leases with less than 80 years remaining, the cost is the average of the reversion value

and the marriage value.

Tribunal costs to leaseholder. There are significant costs to the leaseholder of ap-

pealing to the tribunal. These costs include time and information costs, uncertainty from

the outcome of the tribunal, costs of hiring a survey to value the lease, and legal costs as-

sociate with the tribunal. Moreover the law dictates that leaseholders must cover all of the

freeholder’s legal and surveyor fees associated with extension. We will denote these costs for

property i by γRit, which we assume for simplicity scales with the current service flow Rit.

Leaseholder’s participation constraint. The leaseholder also has a participation

constraint—if the tribunal assessed costs of extending are greater than the value of extending,

the leaseholder can opt not to extend. Therefore the freeholder should reduce costs down
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to the market value of extension, so that a transaction can occur. The converse is not true:

if the tribunal associated costs are less than the market value of extending, the leaseholder

will choose the tribunal costs instead of paying the freeholder the market value of extension.

Total extension costs. We can summarize the cost of extension κT
it, of a property i

with T years remaining at time t, as

κT
it =

min
{
RV T

it + γRit,MV T
it

}
T ≥ 80

min
{

RV T
it +MV T

it

2
+ γRit,MV T

it

}
T < 80

(11)

Equation (11) recognizes that the cost of extension κT
it is the minimum of the market value of

extension from the present value of rents; and the tribunal recommended value of extension

plus the costs of a tribunal settlement. For simplicity, we have equated the market value

of extension to MV T
it , the marriage value. The tribunal recommended settlement varies

discontinuously at 80 years, provided that the market value and the reversion value are not

equal.29

Price of a T duration property. We assume property prices satisfy a simple no

arbitrage assumption. Therefore the price of a property P T
it , that has not extended, must

equal the price of an otherwise similar property that has extended, after deducting lease

extension costs. That is, prices satisfy

P T
it = P T+90

it − κT
it. (12)

We denote αT
t = κT

it/MV T
it ≤ 1 as the share of the extension value that is lost by the

leaseholder, noting that under our assumptions α does not depend on the service flow i.

Remark on option value. When αT
t = 1 we say there is zero option value and when

αT
t < 1 there is positive option value. This terminology acknowledges that when αT

t = 1 for

all T , then all of the gains of lease extension are lost to the leaseholder. As a result, the

option to extend the lease has no value to the leaseholder ex ante.

6.2 A Discontinuity Based Test for Option Value

We now use our framework for lease extension costs to derive a discontinuity based test

of whether there is positive option value. We summarize our predictions in the following

proposition.

Proposition 6.1. There exists some value r̄K ≤ rRV such that:

29For exposition, we assume that the tribunal, the leaseholder and the freeholder all agree on the market
value of the extension. Our qualitative and quantitative results are not affected by this assumption.
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1. If the natural rate satisfies r∗Kt ≥ r̄K then: (i) there is zero option value at all years

of duration remaining, that is, αT
t = 1 for all T ; (ii) the price of a leasehold is con-

tinuous in duration as the property’s duration falls below 80 years, so limT→80− P T
it =

limT→80+ P T
it .

2. If the natural rate satisfies r∗Kt < r̄K then: (i) there is positive option value above 80

years in duration, that is, αT
t < 1 for all T > 80 and option value discontinuously

falls at 80 years, so that αT
t discontinuously increases at T = 80; (ii) the price of

a leasehold discontinuously falls as the property’s duration falls below 80 years, so

limT→80− P T
it < limT→80+ P T

it .

This proposition, which we prove in Appendix A.13, has two implications. First, we

should expect zero option value at all durations, including above 80 years remaining, only if

the natural rate is relatively high. Second, we can test for the presence of zero option value

by searching for discontinuities in the price of leaseholds at 80 years.

Part (1) of the proposition shows that when natural rates are high, there is zero option

value at all durations. Intuitively, suppose that natural rates are greater than the yield

assumed by the tribunal to calculate the reversion value of the extension. Then, the reversion

value of the lease extension calculated by the tribunal is greater than the market value. The

freeholder will only require the leaseholder to pay the market value, given their participation

constraint. Beneath 80 years, the tribunal assessed value remains above the market value of

the lease extension—again, by the participation constraint, the freeholder can only force the

leaseholder to pay the market value. Part (1) of the proposition also shows how to detect

whether the economy has zero option value everywhere—in that case prices are continuous

around 80 years of duration. Note that we can extrapolate from the 80 year threshold to

conclude that there is no option value at any durations, because we know the functional

form of lease extension costs.

Part (2) of the proposition shows that when natural rates are low, there will be positive

option value when lease durations are greater than 80 years. Suppose that the natural rate

is significantly lower than the yield used by the tribunal to calculate the reversion value of

the lease extension. Then the cost paid by leaseholders to extend via the tribunal, if more

than 80 years remain, is less than the market value of extension plus time and legal costs—

meaning positive option value. Beneath 80 years, the tribunal assessed cost of lease extension

discontinuously increases, since the tribunal assessed extension cost is now a weighted average

of the reversion value and market value plus additional costs, and market value is greater

than reversion value. As a result, the price of leases must discontinuously fall. Importantly,

Part (2) of the proposition does not rule out full holdup for leases with less than 80 years

34



remaining.

We use Proposition 6.1 to test for whether there is option value. The natural rate of

return for housing seems to have been declining over time. As a result, our proposition

suggests that there should be zero option value at all durations, only in the early part of the

sample. Later on, there should be positive option value, at least for long duration leases.

Our discontinuity based test confirms these predictions.

We test for holdup by estimating whether there is a discontinuity in prices at 80 years,

before and after 2010. To determine whether there is a discontinuity in property price at

T = 80, we can estimate,

∆h logP
T
it

h
= α + β · 1Crossed 80 + Γi,t,t−h (13)

where the left hand side variable is the annualized log change in price of a property i between

time t − h and t and the right hand side variable is a dummy which checks whether i fell

below 80 between time t − h and t. More precisely, we say that a property crossed 80 if at

time t, T < 80 and at time t − h, T > 82. We choose a cutoff of 82 because leaseholders

cannot extend through the tribunals during the first two years of ownership, so any property

purchased with less than 82 years remaining must pay the marriage value upon extension.

Γi,t,t−h are Purchase Year x Sale Year x Local Authority fixed effects. We restrict the sample

to properties with duration between 70 and 90, to get the local effect around 80.

Table 4 reports the estimated coefficient from Equation (13). The first column presents

estimates before 2010. There is no statistically significant discontinuity in price at 80. In

fact, Appendix Figure A.21 shows that in the pre-2010 period, the estimated coefficient is

approximately in the middle of a distribution of “placebo” experiments using 30 placebo

cutoffs between 70-100. Column (2) of Table 4 presents estimates after 2010. There is a

significant discontinuity in the price of properties that fall below 80 years duration remaining.

This fall is much greater in magnitude than any placebo test with cutoffs ranging from 70-

100, shown in Appendix Figure A.21. Taken together, the price discontinuity results show

that there is zero option value at all durations before 2010, and positive option value for

long duration leases after 2010. However the results do not pin down whether there is full

holdup for leases with less than 80 years remaining.
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Table 4: Test for Discontinuity at 80

(1) (2)

Crossed Cutoff -0.05 -0.92∗∗∗

(0.10) (0.12)

Sale Year x Purchase Year x LA FE ✓ ✓

Period Pre 2010 Post 2010

N 65,871 12,459

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table provides an estimate of the discontinuity in log price at T = 80. The sample includes properties with duration
between 70 and 90. The first column is run on the pre-2010 data, and the second column is run on post-2010 data. Standard
errors are clustered at the purchase year, sale year and Local Authority (LA) level.

Proposition 6.1 also suggests there should be time varying bunching of lease extensions.

When the natural rate is relatively high, there is no gain to extending slightly before 80

years remaining; whereas when the yield is low there can be large gains to extending before

80 years. Therefore lease extensions should bunch in a time varying fashion—leases should

be more likely to extend shortly before 80 years remain, only if natural rates are relatively

low.

Figure 10 shows precisely this pattern of bunching. In the figure, we plot the likelihood

that a lease extends when it has T years remaining, separately before and after 2010. Before

2010, the likelihood that a lease extends smoothly increases as leases cross the 80 year

threshold. After 2010, the likelihood jumps just before 80 years, and there is a missing

mass after 80 years. This time varying bunching strongly suggests that there is a difference

in option value above versus below 80 years, only when natural rates are low—consistent

with Proposition 6.1. Our results on option value so far imply an informative bound—

the estimates of the fall in r∗K from the main analysis of Section 5 , which assumes zero

option value at all durations and times, are a lower bound on the magnitude of the true fall.

Intuitively, if there is positive option value then the true duration of non-extended leases is

higher than their notional duration. As such the price gain from lease extension is associated

with a smaller increase in duration after lease extension. Therefore incorrectly assuming zero

option value biases estimates of the natural rate of return upward. Given that option value

emerges later in the sample, this bias increases over time, meaning the estimates that ignore

this source of bias will under-estimate the fall in r∗K. We now introduce more structure to

show that this bias is small.
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Figure 10: Hazard Rate of Extension, Before and After 2010

The figure shows the conditional probability of extension for each T . The black line shows the probability before 2010 and
the blue line shows the probability after 2010. We exclude the post-2020 pandemic period due to disruptions to the lease
registration process, which resulted in lower extension rates than usual.

6.3 A Difference-in-Differences Estimator of Option Value

This subsection directly estimates the degree of option value before and after 2010, both

above and below the 80 year threshold, and explores the implications for r∗K. To do so,

we introduce more structure by embedding the framework for lease extension costs into our

difference-in-differences estimator of r∗K. Doing so lets us point identify option value, using

a different source of variation from the discontinuity based tests of the previous subsection.

In order to incorporate option value and the threshold in a simple fashion, we take as given

the probability that a lease of duration T extends at time t. We also assume that the share

of extension value lost by leaseholders is piecewise constant in duration and discontinuous at

80 years remaining, which captures the discontinuities imposed by the tribunal. Therefore

we have αT
t = αH

t if T > 80 and αT
t = αL

t otherwise. In this case, Appendix A.11 shows that

the difference-in-differences estimator of the price gain upon lease extension becomes

∆T
it = log

(
1− e−r∗Kt(Tit+90)

)
− log

( (
1− e−r∗KtT

)
+
[
ΠH

Tt

(
1− αH

t

)
+ΠL

Tt

(
1− αL

t

)]
e−r∗KtTit

(
1− e−r∗Kt90

))
(14)

For simplicity, this derivation makes the additional assumption that leases extend only
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once.30 In this equation, ΠH
Tt is the probability that a lease with T > 80 years remain-

ing extends with more than 80 years remaining. ΠL
Tt is the probability that a lease extends

with less than 80 years remaining. The cumulative probability of extension is derived from

the observed extension hazard rate, as shown in Figure 10. Equation (14) is the same as the

baseline estimator Equation (6) either when αH = αL = 1, or ΠT
H = ΠL = 0. In either case,

there is no option value from lease extension and the final term in square brackets vanishes.

We jointly estimate r∗Kt, α
H
t and αL

t , by using the difference-in-differences estimator with

option value, Equation (14), as an input into a non-linear least squares estimation similar

to the baseline procedure. Relative to the baseline estimation, we also add information on

the probabilities of extension ΠT
H and ΠL, which helps to identify αH

t and αL
t .

The estimated r∗K, α
H
t and αL

t parameters are presented in Table 5. In the estimation,

we constrain the α parameters to lie between zero and one. The results suggest, once again,

that α = 1 for all T in the pre-2010 period. In the post-2010 period, there is positive option

value when leases have more than 80 years remaining, but there is zero option value below

80 years remaining.

Table 5: Estimating Alpha

(1) (2)
r∗K 4.27∗∗∗ 2.92∗∗∗

(0.05) (0.01)
αH
t 1.00∗∗∗ 0.72∗∗∗

(0.00) (0.04)
αL
t 1.00∗∗∗ 1.00∗∗∗

(0.00) (0.01)
Period Pre 2010 Post 2010
N 19,926 110,504

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table presents estimates of αH
t and αL

t , estimated jointly with r∗K from a nonlinear least squares estimate of Equation (14).
Estimates of αL

t and αH
t are constrained to lie within [0,1]. Standard errors are bootstrapped.

Our difference-in-difference estimates of option value in this subsection are consistent

with the discontinuity-based results from the previous subsections—even though the two

subsections use different sources of variation. In both subsections, there is zero option value

for leases with less than 80 years remaining, at all times; and positive option value after

2010 for leases that extend with more than 80 years remaining. Our estimates of the change

in option value before versus after 2010 for leases above 80 years, is also similar across the

30The value of subsequent extensions, in the very far future, is quantitatively small but complicates the
algebra.
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two subsections. In this section, we estimate a change of 0.28. In the previous subsection

we estimate a change of 0.44.31

6.4 Estimates of r∗
K
Corrected for Option Value

Finally, we present estimates of r∗K that correct for option value using the estimates of option

value. Figure 11 presents a version of our r∗K timeseries which corrects for αH
t = 72% in the

post-2010 period. The solid line is the estimate of r∗K from Section 5, using our baseline

assumption of zero option value at all times and durations. The dashed line is the estimate

of r∗K using our estimates of the degree of option value.

Figure 11: Estimate of r∗K Correcting for Option Value

The figure presents a corrected r∗K timeseries, adjusting for the fact that αH
t = 0.69 for the post-2010 period. The black line

presents the unadjusted estimates from Section 5.3.

The estimate of r∗K that corrects for option value is very similar to the baseline estimates

that assume no option value. The reason is that most leases do not extend with more than

80 years remaining, as Figure 10 shows. Therefore the possibility of extending with more

than 80 years remaining has a small effect on equilibrium prices, meaning departures from

zero option value are quantitatively small.

31The details of this calculation are presented in Appendix A.12.
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7 Concluding Remarks

This paper estimates the natural rate of return on capital and its dynamics from 2003 to

present for the UK property market. We exploit a natural experiment — extensions of long

duration property leases in the British property market. Our findings show that r∗K fell from

an average of 4.8% between 2003 to 2006 to 2.3% in 2022.

Natural rates are valuable because they “look through” the short term factors affecting

asset prices in real time. There has been a growing gap between natural rates and real

forward yields in 2022-23. This gap will narrow either by a fall in spot real yields, as

the “secular stagnation view” suggest, or a rise in natural rates if post-covid era reflects a

structural regime shift. The consequences of these two scenarios for asset prices and the real

economy could of course be very different. In recent months, there has been a modest uptick

in r∗K. The real time estimates of r∗K should be helpful to determine the trajectory of the

natural rate of return going forward.

The focus of this paper has been the measurement of the natural rate of capital, which

as we have discussed, is difficult to do with precision and minimal assumptions. However,

our paper introduces several questions for future research: Why has the natural rate fallen?

And what does this imply about the state of the economy? Although these questions are

out of the scope of this paper, we believe that there is much that can be learned about the

economy from studying r∗K in the cross section. In particular, we believe that the dynamics

of r∗K encode useful information about the elasticity of capital supply. We leave this work to

future research.
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A Appendix

A.1 Additional Figures

Figure A.1: Distribution of Lease Term for Leasehold Flats

The figure is a histogram of the remaining lease term at the time of transaction. The sample is all leasehold flats that transact
at least once in the Land Registry Transaction Data Set.
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Figure A.2: Renovations By Holding Period

The figure shows the change in number of bedrooms reported relative to property holding period, where very short holds have
a disproportionately high renovation rate. We take this as evidence that many of these are “flippers” who buy properties to
re-sell them. The sample is all flats for which we observe two different Rightmove or Zoopla listings associated with two different
property transactions.

Figure A.3: Hazard Rate of Lease Extension

(a) Raw (b) Corrected

The figure shows the conditional probability of extension, θ(T ) given that a property has duration T . In the first panel, the

conditional probability of extension is given by θ1(T ) =
NExt

T
NT

where NExt
T is the number of properties which extended with

duration T and NT is the number of properties that reached duration T . In the second panel, the conditional probability of

extension is θ2(T ) = γ
NExt

T
NT

where γ = 1.17 adjusts for the fact that our primary method does not identify properties which

never transact before extension. The shaded area shows the 95% confidence interval.
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Figure A.4: Cumulative Hazard Rate

The figure shows the cumulative probability of extending over a property’s lifetime. The sample includes all leases with at least
one transaction and covers the 2003-2020 period. We exclude the pandemic period due to abnormally low extension rates.

Figure A.5: Histogram of Duration Before Extension

The figure presents a histogram of lease duration immediately before extension. The sample is all extended flats.
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Figure A.6: Histogram of Years Between Transaction

The figure shows a histogram of the holding period, h, for lease extensions which have a recorded transaction before and after
extension. The dotted line shows the h = 1 cutoff; properties below the cutoff are not included in our primary sample. The
sample is all extended flats.

Figure A.7: Histogram of Years Between Transaction and Extension

The figure presents a histogram of the number of years between purchase and extension time. The sample is all extended flats.
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Figure A.8: Price to Rent (Freeholds vs Leaseholds)

The figure shows the property-level price to rent ratio for leasehold and freehold properties. Leaseholds are subdivided into
those which extend during our sample and those which do not. Property-level rental price data is collected from Rightmove
and Zoopla.
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Figure A.9: Heat Map of Extension Rate

The figure shows a heatmap of the number of properties extended in each Local Authority in England and Wales.
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Figure A.10: Time Elapsed Between Rightmove Listing and Land Registry Transaction
Date

The figure shows a histogram of the amount of time (in days) between the last property listing on Rightmove and the date in
which the transaction is recorded by the Land Registry. Each bin refers to one week. The sample is transactions for properties
which have Rightmove listings within two years of the Land Registry transaction date.

Figure A.11: Relation Between Holding Period and Difference-in-Difference

The figure shows a binscatter of the difference-in-difference estimator, ∆it, by holding period, controlling for sale year t fixed
effects. The sample is all 90 year extensions.
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Figure A.12: Binscatter Log(Price) on Hedonics

(a) Bedrooms (b) Bathrooms (c) Living Rooms

(d) Floor Area (e) Year Built (f) Log(Rent)

The figures are binscatters of log transaction price against the following hedonic characteristics: number of bedrooms, number of
bathrooms, number of living rooms, floor area (sq. meters), year that the property was built, and log yearly rental price. Both

the x and y-axis variables are residualized by Local Authority fixed effects, Γit. In particular, the y-axis variable is log(Pit)+ϵit
where log(Pit) is the mean log transaction price and ϵit is the residual from the following specification: log(Pit) = Γit + ϵit.
The x-axis variable for each hedonic characteristic Xit is Xit + ηit where Xit is the mean level of Xit and ηit is the residual
from the following specification: Xit = Γit + ηit. The sample is leasehold flats which appear at least once in the Land Registry
Transaction Data Set.
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Figure A.13: Hedonics Residuals Density Curve for Extended and Non-Extended Proper-
ties

(a) Bedrooms (b) Bathrooms

(c) Living Rooms (d) Floor Area

(e) Age (f) Log(Rent)

The figures show the distribution of residuals for extended and non-extended flats after regressing hedonic characteristics on
5-year duration bin × Local Authority × year fixed effects. The sample is leasehold flats which appear at least once in the
Land Registry Transaction Data Set.
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Figure A.14: Histogram of Remaining Lease Term At Sale

The figure shows a histogram of remaining duration at sale time t for the approximately 40 thousand experiments which were
extended for 90 years. The blue-shaded histogram includes the sale duration for the controls in the experiment and the grey-
shaded histogram includes the sale duration for the extensions.

Figure A.15: Event Study for Extension of Extension Length Less than 200 Years (Ex-
cluding 90 Year Extensions)

The figure replicates Figure 5 using extensions of lengths of less than 200 years, excluding 90 year extensions.
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Figure A.16: Event Study for Extension of Extension Length More than 700 Years

The figure replicates Figure 5 using extensions for lengths of more than 700 years.

Figure A.17: Duration vs. Price Gain After Extension, Leases with 700+ Years

The figure is a binscatter of our difference-in-difference estimator against duration before extension, T , with 100 bins. The
sample includes leases that were extended for more than 700 years. The black line shows fitted estimates of Equation (7).
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Figure A.18: Event Study By Duration

(a) T ≤ 60 (b) 60 < T ≤ 80 (c) T > 80

The figure replicates Figure 5 for properties that were extended with low, medium and high durations.

Figure A.19: Event Study By Time Period

(a) 2003-2010 (b) 2010-2018 (c) 2018-2023

The figure replicates Figure 5 for three different sub-periods: 2003-2010, 2010-2018, and 2018-2023.
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Figure A.20: r∗Kt Estimates For Various Extension Amounts

The figure presents estimates of r∗Kt for every year of our sample period for lease extensions that were extended for 90 years,
for more than 200 years, or for another amount, separately.

Figure A.21: Test for Discontinuity at 80 Years (Placebos)

The figure presents the estimates from Table 4 in red. In grey, we run 30 placebo tests using alternative cutoffs between 70-100.
In each case, the sample includes properties within 10 years above and below each cutoff.
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A.2 Additional Tables

Table A.1: Freehold vs Leasehold Statistics (English Housing Survey)

Freehold Leasehold

Income 29,628.73 25,653.20

(52.95) (138.48)

Age 53.95 51.49

(0.03) (0.10)

% Have Mortgage 54.82 59.07

(0.10) (0.28)

LTV 72.17 76.16

(0.14) (0.39)

N 305,135

This table reports the mean characteristic for freehold owners, in column 1, and leasehold owners, in column 2. The standard
error of the mean is in parentheses.

Table A.2: Hedonic Characteristics in Extended vs Non-Extended Flats, Only 90 Year
Extensions

Panel A: Levels

(1) (2) (3) (4) (5) (6)

Num Bedrooms Num Bathrooms Num Living Rooms Floor Area Age Log Rental Price

Extension 0.04∗∗∗ 0.01∗∗∗ -0.00 1.18∗∗∗ 2.79∗∗∗ 6.24∗∗∗

(0.006) (0.003) (0.002) (0.284) (0.763) (0.371)

Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓

N 1,280,574 1,008,459 889,345 1,018,774 793,599 708,613

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel B: Differences

(1) (2) (3) (4) (5)

∆ Num Bedrooms ∆ Num Bathrooms ∆ Num Living Rooms ∆ Floor Area ∆ Log(Rent)

Extension -0.00 -0.00 -0.00∗∗∗ 0.06 -0.62

(0.00) (0.00) (0.00) (0.08) (0.95)

Fixed Effects ✓ ✓ ✓ ✓ ✓

N 183,586 141,871 126,320 138,884 68,721

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table repeats the results from Table 2 for the sub-sample of 90 year extensions.
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Table A.3: Estimated r∗K for All Extensions

Constant Flexible N

(1) (2) (3) (4) (5) (6)

T = 50 T = 60 T = 70 T = 80

No Hedonics 3.08∗∗∗ 3.05∗∗∗ 3.07∗∗∗ 3.10∗∗∗ 3.13∗∗∗ 132,552

(0.01) (0.02) (0.01) (0.01) (0.02)

No Hedonics (Hedonics Sample) 3.03∗∗∗ 2.98∗∗∗ 3.02∗∗∗ 3.06∗∗∗ 3.09∗∗∗ 79,603

(0.01) (0.02) (0.01) (0.01) (0.02)

Hedonics 3.06∗∗∗ 2.99∗∗∗ 3.05∗∗∗ 3.12∗∗∗ 3.18∗∗∗ 79,603

(0.01) (0.02) (0.01) (0.01) (0.02)

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 01

The table repeats the estimates from Table 3 for all extensions.

A.3 Equivalence of r∗
K
and User Cost of Capital

First consider a static model in which a firm has profits Π(K,X), where X is the cost of

other inputs and K is capital. The firm maximizes profits, i.e.

max
K,X

Π(K,X)−RK ·K

where RK is the cost of renting one unit of capital. Then, the first order condition for capital

is,

ΠK(K,X) = RK

so the marginal product of capital is equal to the user cost of capital.

Now, consider a dynamic problem in which capital depreciates at rate δ. Suppose that

the firm purchases capital at price PK . Then, the firm faces the following intertemporal

maximization problem,

V (Kt) = max
It

∫ ∞

t

e−(r∗t+ζ∗t )s(Π(Ks)− PKsIs)ds

where It is investment at time t and K̇t = It− δKt, such that the change in the capital stock

is equal to investment minus depreciation. As in the main text, r∗ + ζ∗ is the required rate

of return of the firm, which can be separated in a risk-free rate and a risk-premium. The
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Hamiltonian for this problem is,

H = Π(Kt)− PKtIt + λt(It − δKt)

where the optimality conditions are,

PKt = λt

ΠK(Kt)− δλt = (r∗t + ζ∗t )λt − λ̇t

Substituting the optimality conditions and reorganizing yields,

ΠK(Kt) = PKt

(
r∗t + ζ∗t + δ − ṖKt

PKt

)

RKt = PKt

(
r∗t + ζ∗t + δ − ṖKt

PKt

)

where in the last equation, we utilize the fact that the marginal product of capital is equal

to the user cost of capital. Normalizing both sides by the price of capital we see that,

RKt

PKt

− δ = r∗t + ζ∗t −
ṖKt

PKt

= r∗Kt

so the user cost of capital normalized by the price of capital and net of depreciation is equal

to the natural rate of return of capital.

A.4 Details on Merge Between Lease and Transaction Data

This section briefly describes our procedure to merge Land Registry data on lease lengths,

and house price transaction data. In the UK, every property can be uniquely identified by

three items: the first address number, the second address number and the 6-digit postcode.

Therefore, we merge according to the following procedure: First, we conduct a perfect merge

using address as our merge key. This methods accounts for 93% of our matches. Second, we

conduct a fuzzy merge on all observations not matched by step 1. The fuzzy merge matches

observations in which (1) all numeric elements of the address are the same, (2) all single

letters (e.g. A, B, C, etc.) are the same, (3) a select set of identifying terms (e.g. first

floor, second floor, basement, etc.) are the same and (4) the postcode is the same in both

addresses. For example, this allows for the property “3 Swan Court 59-61 TW13 6PE” in

the transaction data set to be matched to “Flat 3 Swan Court 59-61 Swan Road Feltham
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TW13 6PE” in the lease term data set. This method accounts for 7% of our matches.

Additionally, we purchase the leasehold titles from the Land Registry for approximately

20 thousand transactions for which we are unable to identify a lease term based on the fuzzy

merge. These include cases where the lease term address has typos, or has been accidentally

omitted from the main public data set.

A.5 Simulation Results For Flexible Forward Curve

In Section 4.3 we presented one possible parameterization of y(T ). In this section, we explore

other parameterizations and present several insights from our simulation. We assume that

for T ≥ 40, y(T ) = r∗K is constant. Hence, for T < 40 we assume y(·) can have any shape as

long as it asymptotes to r∗K as T → 40.

Figure A.22a shows several possible choices of y(T ), all of which asymptote to the same

value. Figure A.22b presents the yield curves associated with each of these forward curves,

which we denote by ρ(T ); and Figure A.22c shows the corresponding r̂∗K(T ) curves that we

estimate by Equation (7) using simulation data. We also plot the point estimate of r̂∗K we

obtain at the median of our true distribution.

Figure A.22: Long Run Discount Rates Using Simulation Data

(a) y(T ) (b) ρ(T ) (c) r∗K(T )

Panel (a) presents multiple possible parameterizations of y(T ), all of which asymptote to 3% by T = 40. Panel (b) presents the
corresponding yield curve, ρ(T ), for each choice of y(T ). Panel (c) presents estimates of r∗K(T ′) obtained by NLLS corresponding
to each choice of y(T ), where T ′ is the average between the control and extension sale duration. The point presents the estimate
of r∗K we would obtain at the median of our distribution.

These simulation results yield several key insights. First, when the yield curve is flat,

y(T ) = ρ(T ) = r̂∗K(T ) = r∗K, as exemplified with the by the dark blue line in Figure A.22.

When the yield curve is not flat, however, our estimate will differ from the true asymptotic

value of y(T ) by some amount η ≡ r∗K − r̂∗K. When the yield curve is upwards sloping, η > 0

and when the yield curve is downwards sloping, η < 0.

Notice that for T ≥ 40, r̂∗K(T ) converges to r∗K much more quickly than ρ(T ). The reason

for this is that our difference-in-difference estimate differences out a large portion of the
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short-end of the yield curve. To see this, consider a property with duration T that extends

by k years to a total of 160 years (T + k = 160). The shorter T is, the less of the short-

end that will be differenced out by our estimate. We present simulation evidence for this

in Figure A.23. For this reason, it is important that our experiments take the difference

between two long-duration properties, as opposed to one long duration property and one

short duration property.

Figure A.23: Estimated r∗K When Extending From T to 160

The figure indicates the point estimate of r̂∗K we obtain by NLLS for an extension from duration T to duration 160. As the
duration before extension increases, the estimate of r̂∗K approaches the limit of the forward curve. We repeat this for each
example forward curve, y(T ), from Figure A.22a.

A.6 Liquidity Premium

One institutional factor which could raise concerns about our estimator is the difficulty for

owners of short leases to obtain a mortgage. If short leases have more limited access to

financing than longer leases, we might worry that part or all of the observed price gain upon

extension is a result of increased access to financing opportunities; in other words, we may

wonder if the effect is driven by a “liquidity premium.” Indeed, important lenders, such as

Barclays, Halifax and The Co-Operative Bank, refuse to lend to leaseholds with less than

70 years remaining. Others have different thresholds, such as 55 years, and some have a

preference for longer leases but allow for case-by-case exceptions.32

Reassuringly, using detailed micro-data from the English Housing Survey 1993-2019,

we find that mortgage access and conditions are not vastly different for shorter and longer

leaseholds, especially for those with more than 30 years remaining, as indicated in Table A.4.

Approximately 60% of short (under 80) duration leaseholds were purchased with a mortgage,

32A comprehensive list of lease length policies for banks in England can be found in the UK Finance
Lenders’ Handbook For Conveyancers.
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relative to 58% of longer (over 80) duration leaseholds. The typical mortgage length and

Loan-To-Value (LTV) ratios are similar across the duration spectrum, at around 23 years and

75-80%, respectively. Additionally, short leaseholds have similar interest rate types as long

leaseholds, with around 30% choosing adjustable rate mortgages (as opposed to mortgages

with a fixed interest rate for a number of years, or tracker mortgages which are indexed to

the Bank of England bank rate). These results suggest that financing constraints are unlikely

to drive the very large extension price changes we observed in Section 5.

Table A.4: Mortgage Statistics For Short Leaseholds

Less Than 50 Years 50-60 Years 60-70 Years 70-80 Years 80-99 Years 100+ Years Total
Mortgage Length 22.1 22.1 23.9 23.0 23.9 23.1 23.3

(0.6) (0.5) (0.5) (0.3) (0.2) (0.1) (0.1)
LTV 76.3 80.8 81.4 77.7 73.3 76.5 76.2

(3.3) (2.6) (1.8) (1.7) (1.0) (0.6) (0.5)
% Have Mortgage 59.9 60.4 62.1 58.1 63.9 55.6 58.2

(2.4) (2.4) (1.6) (1.4) (0.8) (0.5) (0.4)
% Adjustable Rate 24.2 40.0 38.3 32.8 25.3 31.0 30.2

(5.3) (5.2) (4.1) (3.4) (1.5) (1.0) (0.8)
N 18,292

mean reported; standard error of mean in parentheses

The table reports several summary statistics for leases of various durations. The first row presents the average mortgage length;
the second presents the average Loan-To-Value (LTV) ratio for the mortgage, calculated as the initial mortgage value divided
by the market price of the property; the third row presents the percent of properties of that duration which have a mortgage;
the fourth row presents the percent of properties with a mortgage that have a fully adjustable rate mortgage.

Another common way to test for the existence of a liquidity premium resulting from

financing frictions is to use the amount of time a property was listed on the market (i.e. sale

time minus the time of the first listing) as a proxy for its liquidity (Lippman and McCall,

1986; Lin and Vandell, 2007; Genesove and Han, 2012). The intuition is that properties for

which the buyer cannot obtain a mortgage have a smaller pool of potential buyers, which

ought to increase the amount of time that the property is on the market. We find limited

evidence of this in the data, as illustrated in Figure A.24. After controlling for quarter ×
3-digit postcode fixed effects and hedonics, the typical listing time for a 50-70 year lease is

only 3-4 days longer than for a long lease of more than 100 years. This is negligible given that

the average listing time is 5 months. For shorter leases, the listing period actually decreases

further; all else equal, a leasehold with less than 50 years remaining will sell about a week

faster than a leasehold with more than 50 years.
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Figure A.24: Time on Market by Lease Duration

The figure shows the mean time on market for every duration under 125, de-meaned by quarter × Local Authority fixed effects
and controls for bedroom count, floor area and property age.

To further test for the existence of a liquidity premium, we are able to model the case

of discontinuous financing frictions and reject the existence of a liquidity premium using the

data. Consider that under the threshold of 70 years–which is the most prominent bank mort-

gage cutoff duration—it becomes significantly more difficult to finance a leasehold property.

Then the price of a T > 70 duration leasehold is given by,

P T
t = Rt

[∫ t+(T−70)

t

e−(r∗K)(s−t)ds+ e−(r∗K)(T−70)

∫ t+T

t+(T−70)

e−(r∗K+σ)(s−(t+(T−70)))ds

]

= Rt

[
1− e−(r∗K)(T−70)

r∗K
+

(1− e−(r∗K+σ)·70)

r∗K + σ
(e−(r∗K)(T−70))

]
where rents below the cutoff of 70 are discounted at an additional rate σ. One way to think

about σ is as the difference between the return on housing and outside investment options.

Therefore, our difference in difference will yield the following equation:

logP T+90
t − logP T

t = log

[
1− e−(r∗K)(T+90−70)

r∗K
+

1− e−(r∗K+σ)70

r∗K + σ
(e−(r∗K)(T+90−70))

]
− log

[
1− e−(r∗K)(max{0,T−70})

r∗K
+

1− e−(r∗K+σ)(min{70,T})

r∗K + σ
(e−(r∗K)(max{0,T−70}))

]
(15)
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When σ > 0, the price change for extending a lease will have a kink at 70 as shown in

Figure A.25. The reason for this is that as T → 70, there are two incentives to extend:

first is the value of 90 additional years of discounted rents and the second is the value of

postponing the liquidity discount, σ. Once T < 70, the first incentive continues to grow, as

we have discussed in earlier sections, but the second incentive becomes increasingly weaker,

since there are less periods at which rents will be discounted at rate σ. Moreover, as T → 0,

T + 90 grows closer to 70, so the value of the extended lease also starts to decrease as it

approaches the liquidity premium cutoff. This kink is not present in the data, which can

be verified visually in Figure 6, and the existence of a discontinuous liquidity premium at

T = 70 is rejected by estimating Equation (15) by NLLS.

Figure A.25: Liquidity Premium Example

The figure shows the effect of a liquidity premium on the value of extending for 90 years (PT+90
t − PT

t ). The dark line plots
Equation (15) when σ = 1% and the dashed light line plots the same equation absent a liquidity premium, i.e. σ = 0%. The
liquidity premium is assumed to start at T = 70. We can see that when there is a liquidity premium, the value of extension
will exhibit a kinked shape, with a kink at T = 70.

A.7 House Price Seasonality

An important feature of the UK housing market, as well as in other countries including

the United States, is that it is highly seasonal, with systematically higher sale prices in

the second and third quarter (the “hot months”) and lower prices in the first and fourth

quarters (Ngai and Tenreyro, 2014). This may be associated with a number of factors,

including mortgage conditions and market tightness, which we would not expect to affect

the long-run and therefore ought to be differenced out by our estimator.
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To determine whether our estimates are seasonal, we must select control properties which

transact in the same quarter as extended properties. Then, we can estimate r∗Kt at a quarterly

frequency, as described in the main text. We then test for seasonality by regressing our time

series of r∗Kt on quarter dummy variables, controlling for year fixed effects. The regression

results are presented in Table A.5, which indicate that there is no statistically significant

difference in the level of r∗Kt across quarters.

Table A.5: Test for Estimate Seasonality

(1)
2nd Quarter 0.09

(0.07)
3rd Quarter -0.02

(0.06)
4th Quarter -0.06

(0.06)
Year FE ✓
N 82

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table indicates the regression results for a regression of quarter dummies on r∗Kt. We control for year fixed effects and
weight by the inverse variance of the r∗Kt estimate. Standard errors are heteroskedasticity robust.

A.8 Components of r∗K for UK Housing—A VAR Analysis

This section uses a VAR to estimate long run risk premia and expected capital gains for UK

housing, in order to show that neither of these can account for the trend fall in the natural

rate of return for UK housing that we have documented. We stress that this exercise is

tentative, given the inherent uncertainty of any VAR based procedure.

To estimate risk premia and capital gains, we follow the standard practice of Campbell

and Shiller (1988). The inputs into the VAR are: the growth rate of rents, the rent to

price ratio, and the GDP growth rate. To estimate long run expected capital gains, in every

quarter, we estimate forecasts of the rental growth for the subsequent 30 years and take the

mean, recalling that long run expected rent growth is equal to long run expected capital

gains. To estimate long run housing risk premia, we calculate the 30-year ahead predicted

Rent-to-Price ratio (again using forecasts from the VAR). Then ζ = [Predicted RTP]+g−r,

where r is the 10 year 15 year real forward rate.

Figure A.26 displays the results. The estimates for long run expected capital gains, g∗P ,

are stable. Estimates of the long run housing risk premium, ζ∗ have been rising in the
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post-Great Recession era. Therefore the estimates suggest that neither capital gains nor

risk premia for UK housing can account for the trend fall in the natural rate of return,

r∗K ≡ r∗ + ζ∗ − g∗P , that we have documented.

Figure A.26: Risk Premia and Capital Gains for UK Housing in the Long Run

The figure presents estimates of long-run housing risk premia and capital gains estimated using a VAR. Estimates are produced
using data on the UK rent-to-price ratio from the OECD Housing Price Index, as well as the mean level of house prices from
Land Registry data and the mean level of rents from the Valuation Office Agency. UK GDP data is obtained from the St.
Louis Fed, Federal Reserve Economic Data and long-run UK interest rates are obtained from the Bank of England.

A.9 Comparison with Holston et al. (2017) (HLW)

Our natural experiment and microdata approach to estimating natural rates complements

the structural time series approach to estimating the natural rate of interest in real-time. The

most well-known approach to estimate r∗ is the method proposed by Laubach & Williams

(2003) and Holston, Laubach & Williams (2017). This method assumes that the output gap

is an autoregressive, and natural output is a random walk with drift. This output gap is

then linked to the real natural rate of interest via an Euler equation and a Phillips curve.

When estimated using US data, HLW estimate that r∗ has fallen by 2.9pp between 2000

and 2020, with a mean standard error on r∗ of 1.35pp per quarter. When estimated with UK

data, the decline of r∗ over this time period is only 0.81pp, with average standard error of

4.3pp, as seen in Figure A.28a. The reason why the UK estimate has much larger standard

errors has to do with higher inflation volatility in the UK, which is a small open economy

and is therefore more responsive to exchange rate fluctuations (Figure A.27).

66



Figure A.27: Inflation Rate In US and UK

The solid dark grey line shows inflation in the UK between 1960-2020. The dashed light grey line shows inflation in the US
between 1960-2020. The data is the same as that used by HLW.

Our estimates are a useful addition to those of HLW for several reasons. First, our

estimate relies on minimal structure and is largely model-free. Moreover, our standard

errors are on average 0.2 percentage points over our sample period — an order of magnitude

smaller than the HLW r∗ estimate for the UK.

Most importantly, our estimates persist throughout the pandemic and post-pandemic era

and provide valuable insight on the growing wedge between discount rates of housing and

of long-term government bonds. In contrast, when post-2020 data is included, the HLW

methodology is de-stabilized by the steep decline in GDP in the second quarter of 2020. In

the case of the US, the model is incapable of converging when post 2020 data is included. In

the UK, inclusion of post 2020 data results in implausible estimates; ranging from -32.2% in

the third quarter of 2020 to 25.9% in the second quarter of 1975. This error not only affects

the pandemic era, but also propagates to previous to previous decades (Figure A.28b).
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Figure A.28: HLW estimate of r∗

(a) Pre COVID-19 Pandemic (b) Post COVID-19 Pandemic

Panel (a) shows HLW’s estimates of r∗ in the UK using pre-2020 data. Panel (b) shows HLW’s estiamtes of r∗ using post-2020
data. The shaded area represents the 95% confidence interval.

A.10 Calculating the Extension Hazard Rate

In this section, we explain how we calculate the extension hazard rate, shown in Figure A.3

and Figure A.4. We define the conditional probability that a property i extends given that

it has duration T as θi(T ) = P (Extended At S|Duration = S). To get the total cumulative

probability that a T duration property i will extend over the course of its lifetime, we must

convert our conditional probabilities to unconditional probabilities as follows,

πi(S) = Pi(Extended At S)

= Pi(Extended At i|Duration = S)Pi(Duration = i)

= θi(S)
T∏

U=S+1

(1− θi(U))

The cumulative probability that property i extends over its lifetime is then given by Πi(T ) =∑T
S=1 πi(S). In Figure A.4, we scale the hazard rate up by a factor of 1.17. This is because

our method to identify lease extensions does not capture extensions that have no transactions

before extension. We estimate that there are about 17% more extensions that have been

extended but do not have pre-extension transaction data.

Then, the price of a T duration property at time t is given by the following recursive

formula,

P T
i,t =

Ri,t+1 + θi(T )(P
T+90−1
i,t+1 − κT−1

t+1 ) + (1− θi(T ))P
T−1
t+1

1 + r∗ + ζ∗
(16)

Intuitively, the price of a T duration asset is the discounted dividends it yields next period,
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plus with probability 1 − θi(T ), the price of a P T−1
i,t+1 asset, and with probability θi(T ), the

price of a P T+90−1
i,t+1 duration asset minus the cost of extending, all appropriately discounted.

A.11 Difference-in-Differences Estimator with Option Value

This section derives our differences-in-differences estimator of r∗K in the presence of option

value from lease extensions. Let ΠH
Tt be the likelihood that a lease, with T > 80 years of

duration remaining, extends before its duration reaches 80 years. Let ΠL
Tt be the likelihood

that a lease with T ≤ 80 years of duration remaining is extended at some point before

expiration. Assume a constant discount rate r∗K, and also assume that the event of extending

is uncorrelated with the stochastic discount factor of the extender. Then the price of a

leasehold is the present value of its cashflows, i.e.

P T
t =

∫ T

0

e−r∗KsRt+sds+ΠH
Tt

(
1− αH

t

) ∫ T+90

T

e−r∗KsRt+sds+ΠL
Tt

(
1− αL

t

) ∫ T+90

T

e−r∗KsRt+sds.

In this equation, the first term is the present value of the first T years of service flow. The

second term is the next 90 years of service flow, scaled by the share going to the leasholder,(
1− αH

)
; and the likelihood that the lease extends at any time before it falls below 80 years

remaining, ΠT
H . The third term is the analogous option value if the lease extends with less

than 80 years remaining. Rearranging this expression implies

P T
t =

∫ T

0

e−r∗KtRt+sds+ΠH
Tt

(
1− αH

t

) ∫ T+90

T

e−r∗KtsRt+sds+ΠL
Tt

(
1− αL

t

) ∫ T+90

T

e−r∗KtsRt+sds

=

∫ T

0

e−r∗KtsRtds+ΠH
Tt

(
1− αH

t

)
e−r∗KtTRt

∫ 90

0

er
∗
Ktsds+ΠL

Tt

(
1− αL

t

)
e−r∗KtTRt

∫ 90

0

e−r∗Ktsds

=

∫ T

0

e−r∗KtsRtds+ e−r∗KtTRt

∫ 90

0

er
∗
Ktsds

[
ΠH

Tt

(
1− αH

t

)
+ΠL

Tt

(
1− αL

t

)]
=

∫ T

0

e−r∗KtsRtds+ e−r∗KtTRt

∫ T+90

T

er
∗
Ktsds

[
ΠH

Tt

(
1− αH

t

)
+ΠL

Tt

(
1− αL

t

)]
=

1− e−r∗KtT

r∗Kt

Rt + e−r∗KtTRt
1− e−r∗Kt90

r∗Kt

[
ΠH

Tt

(
1− αH

t

)
+ΠL

Tt

(
1− αL

t

)]
.

Then for two properties i and j with identical service flow growth, where property i extends

and j does not, we have

∆T
it = log

(
1− e−r∗Kt(T+90)

r∗Kt

)
− log

(
1− e−r∗KtT

r∗Kt

+ e−r∗KtT
1− e−r∗Kt90

r∗Kt

[
ΠH

Tt

(
1− αH

t

)
+ΠL

Tt

(
1− αL

t

)])
= log

(
1− e−r∗Kt(T+90)

)
− log

((
1− e−r∗KtT

)
+ e−r∗KtT

(
1− e−r∗Kt90

) [
ΠH

Tt

(
1− αH

t

)
+ΠL

Tt

(
1− αL

t

)])
,
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which is the expression in the main text.

A.12 Estimating Change in Option Value Using Discontinuities

As before, assume that αH
t = αT

t for T ≥ 80 and αL
t = αT

t for T < 80, such that the share

of holdup in a given time period t is fixed above and below 80, separately. In this section,

we aim to estimate αL
t − αH

t for the post-2010 period, using the discontinuity in prices at

T = 80 observed in Table 4. From the preceding subsection, the price of a property i with

duration T is

P T
it =

Rit

r∗K

(
1− e−r∗KT +

[
ΠH

Tt

(
1− αH

t

)
+ΠL

(
1− αL

t

)]
e−r∗KtTit

(
1− e−r∗Kt90

))
(17)

To condense notation, denote the option value term

Ω(T ) ≡
[
ΠH

Tt

(
1− αH

t

)
+ΠL

(
1− αL

t

)]
e−r∗KtTit

(
1− e−r∗Kt90

)
.

Then, the difference in change in price between time t− h and t of properties i and j is,

∆ logP T
it −∆ logP T

jt = log(1− e−r∗KTi + Ω(Ti))− log(1− e−r∗K(Ti+h) + Ω(Ti + h))

− (log(1− e−r∗KTj + Ω(Tj))− log(1− e−r∗K(Tj+h) + Ω(Tj + hj))).

This equation acknowledges that option value will discontinuously change around the 80 year

threshold, via changes in the Ω terms. We can then estimate αH
t by nonlinear least squares

on the same sample as for regression Equation (13), by setting αL
t = 1, which is what we

estimate in Table 5, and r∗K to its mean for that period. We obtain an estimate of αH
t = 0.56

in the post-2010 period.

A.13 Proofs

Proposition A.1. There exists some value r̄K < rRV such that:

1. If the natural rate satisfies r∗Kt ≥ r̄K then

(a) There is zero option value at all years of duration remaining, that is, αT
t = 1 for

all T .

(b) The price of a leasehold is continuous in duration as the property’s duration falls

below 80 years, so

lim
T→80−

P T
it = lim

T→80+
P T
it .
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2. If the natural rate satisfies r∗Kt < r̄K then

(a) There is positive option value above 80 years in duration, that is, αT
t < 1 for all

T > 80 and option value discontinuously falls at 80 years, so that αT
t discontinu-

ously increases at T = 80.

(b) The price of a leasehold discontinuously falls as the property’s duration falls below

80 years, so

lim
T→80−

P T
it < lim

T→80+
P T
it .

Proof. From Equation (11) and Equation (12), the price of a property is

P T
it =

P T+90
it −min

[
RV T

it + γRit,MV T
it

]
T ≥ 80

P T+90
it −min

[
RV T

it +MV T
it

2
+ γRit,MV T

it

]
T < 80.

(18)

Recall the definitions of reversion value and marriage value

MV T
it =

Rit

r∗Kt

(
e−r∗KtT − e−r∗Kt(T+90)

)
(19)

RV T
it =

Rit

rRV

(
e−rRV T − e−rRV (T+90)

)
(20)

We will define r̄K as the value of r∗Kt such that RV T
it + γRit = MV T

it , that is, the tribunal

costs for a lease above 80 years are exactly the market value. The value of r̄K satisfies

Rit

rRV

(
e−rRV T − e−rRV (T+90)

)
+ γRit =

Rit

r̄K

(
e−r̄KT − e−r̄K(T+90)

)
=⇒ e−rRV T − e−rRV (T+90)

rRV

+ γ =
e−r̄KT − e−r̄K(T+90)

r̄K
(21)

where in the first line we have substituted in the definitions of marriage value (Equation (19))

and reversion value (Equation (20)). The right hand side of Equation (21) is strictly de-

creasing in r̄K . Therefore there is a unique value of r̄K satisfying the equation.

Now we will prove part (1) of the proposition, in which r∗Kt ≥ r̄K . Equation (21) implies

that for all r∗Kt ≥ r̄K we must have

RV T
it + γRit ≥ MV T

it . (22)

Equation (22) implies

RV T
it + γRit ≥ MV T

it
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=⇒ RV T
it + γRit +MV T

it ≥ 2MV T
it

=⇒ RV T
it + γRit +MV T

it

2
≥ MV T

it

=⇒ RV T
it +MV T

it

2
+ γRit ≥ MV T

it (23)

Therefore for r∗Kt ≥ r̄K , prices satisfy

P T
it =

P T+90
it −MV T

it T ≥ 80

P T+90
it −MV T

it T < 80,
(24)

where we have substituted Equation (22) and Equation (23) into Equation (18) for r∗Kt ≥ r̄K .

Recall the definition of αT
t as the ratio of the lease extension cost to MV T

it . Equation (24)

shows that αT
t = 1 for all t, which proves part (1a) of the proposition. Since the top and

bottom of Equation (24) are equal at T = 80, prices are continuous at T = 80, which proves

part (1b) of the proposition.

Now we will prove part (2) of the proposition, in which r∗Kt < r̄K . Equation (21) implies

that for all r∗Kt < r̄K we must have

RV T
it + γRit < MV T

it . (25)

Then by Equation (18), the price of a property with more than 80 years duration remaining

is

P T
it = P T+90

it −
(
RV T

it + γRit

)
.

The price of a property with less than 80 years remaining is

P T
it = P T+90

it −min

[
RV T

it +MV T
it

2
+ γRit,MV T

it

]
. (26)

Also, note that

RV T
it + γRit < min

[
RV T

it +MV T
it

2
+ γRit,MV T

it

]
, (27)

since RV T
it +γRit < MV T

it by inequality (25) and also by inequality (Equation (25)) we have

RV T
it + γRit < MV T

it

=⇒ RV T
it < MV T

it

=⇒ 2RV T
it < RV T

it +MV T
it
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=⇒ RV T
it <

RV T
it +MV T

it

2

=⇒ RV T
it + γRit <

RV T
it +MV T

it

2
+ γRit.

Equation (26) and Equation (27) imply that for T < 80

P T
it < P T+90

it −
(
RV T

it + γRit

)
Therefore prices discontinuously fall when T falls below 80 which proves part (2b) of the

proposition. Since lease extension costs rise when T falls below 80, αT
t also discontinuously

rises when T falls below 80, which is part (2a) of the proposition.
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