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1. Introduction

This paper proposes a new approach to the “factor zoo” conundrum in asset pricing. Most of
the current literature tries to resolve the multidimensional challenge (Cochrane (2011)) by sorting
individual assets into portfolios according to a (potentially large) set of characteristics. Factors, or
the stochastic discount factor (SDF), are estimated using the panel of portfolio returns as inputs. The
econometric methods used in the second step exploit the dependence structure of the cross-section
of portfolio returns and “summarize” the information in a small number of factors. One class of such
models is based on Principal Component Analysis (PCA), see for example Connor and Korajczyk (1986,
1988), Pelger (2019), Kelly et al. (2019), Lettau and Pelger (2020a,b), and Giglio and Xiu (2021). More
recently, the literature has also considered machine learning (ML) methods, such as Lasso regressions
(Feng et al. (2020)), elastic nets (Kozak et al. (2020)), regression trees (Bryzgalova et al. (2023a)), and
neural nets (Chen et al. (2023)).

The method used in this paper reverses the order of the sorting and factor construction steps.
First, factors are constructed in the characteristic space rather than in the return space. These factors
capture the dependence structure of characteristics across time, across individual assets, and across
characteristics but do not use returns of individual assets. Second, I sort individual assets into portfo-
lios according to these “characteristic factors” (instead of the original characteristics) and obtain asset
pricing factors by subtracting the returns of the highest portfolios minus the returns of the lowest
portfolios. This approach has several advantages. First, it exploits dependence along all dimensions.
This is important since characteristics are likely correlated across time, across assets, and across
characteristics. Second, the methodology allows for complex dependence structure across many char-
acteristics. Univariate portfolio sorts according to individual characteristics do not take information
in other, potentially correlated, characteristics into account. Sorting on multiple characteristics is of-
ten infeasible since the number of individual assets in sorted portfolios decreases geometrically in
the number of sorting characteristics. Third, the methodology can accommodate samples with large
numbers of individual assets and characteristics even when the number of time series observations is
small.

The intuition of the methodology is as follows. Principal Component Analysis is based on an eigen-
value/eigenvector of the covariance matrix of a 2-dimensional panel data set, or, equivalently, on the
Singular Value Decomposition (SVD) of the 2-dimensional data matrix.1 However, the econometrician
observes characteristics of individual assets over time thus forming a 3-dimensional data set. Hence,
PCA-based methods are not directly applicable and instead require ad hoc methods to eliminate one
of the dimensions.2 The method used in this paper can be understood as a generalization of PCA fac-
tor models to higher-dimensional data sets. Formally, data sets with more than two dimensions form
tensors, which extend the notions of vectors and matrices to higher dimensions.3 Correspondingly,

1Alternatively, the correlation matrix can be used. The RP-PCA method of Lettau and Pelger (2020a,b) is based on different
second-moment matrices as PCA inputs.

2Consider, for example, Balasubramaniam et al. (2023) who study stock ownership in India. While their sample, consisting
of stock holdings of individual investors over ten years, is 3-dimensional, they estimate a cross-sectional 2-dimensional factor
model for a single period. Therefore, their factor model does not exploit potentially useful time series information.

3Tensors were introduced by Ricci-Curbastro and Levi-Civita (1900) and have many applications in physics and engineering.
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the high-dimensional factor models used in this paper are based on generalizations of the SVD matrix
decomposition and 2-dimensional principal component analysis to tensors and can be applied to any
data set with more than two dimensions.4 A distinct advantage of these models is that they capture
dependence structures along all dimensions simultaneously.

Tensor factor models (TFM) are related to 2-dimensional factor models in the following way.5 Sup-
pose the data set is 3-dimensional with 𝑇, 𝑁, and 𝐶 observations in the three dimensions with a total
of 𝑇𝑁𝐶 observations. In the empirical implementation, the data set consists of 𝐶 characteristics of 𝑁
assets observed over 𝑇 time periods. An econometrician could estimate separate 2-dimensional PCA
models for each time period 𝑡= 1,...,𝑇. Each PCA model is based on a matrix of characteristics of
individual assets at time 𝑡, hence the PCA factors capture cross-sectional correlations of characteris-
tics across assets in a given period. Alternatively, she could estimate separate PCA models for each
asset 𝑛=1,...,𝑁. Each factor model captures the time series correlations across characteristics for a
given asset. Finally, to capture time series correlations of a given characteristic 𝑐 across assets, she
could estimate separate PCA models for each characteristic 𝑐=1,...,𝐶. This approach yields 𝑇+𝑁+𝐶
individual PCA models that are estimated separately. Since each PCA only uses two dimensions, po-
tentially useful information is lost and the procedure is therefore inefficient. In contrast, TFM can
be understood as the simultaneous estimation of the 𝑇+𝑁+𝐶 individual PCA models while allowing
for dependence across all dimensions. In other words, the tensor factor model yields interconnected

2-dimensional factor models that are mutually consistent and exploit correlations in all dimensions.
The tensor structure also imposes restrictions on the 2-dimensional factor models. In practice, TFM
estimations are based on a single 3-dimensional representation rather than the direct estimation of
𝑇+𝑁+𝐶 2-dimensional factor models. The 3-dimensional model in turn implies a system of intercon-
nected 𝑇+𝑁+𝐶 2-dimensional factor models.

Similar to PCA factor models, tensor factor models can be interpreted as dimension reduction
methods. The information in a large data set is summarized by a small number of factors. In contrast
to 2-dimensional PCA, the tensor factor model used in this paper allows for different numbers of
factors for each dimension. In other words, the 𝑇 observations of the first dimension are summarized
by 𝐾𝑇 “time” factors, the 𝑁 observations in the second dimension are summarized by 𝐾𝑁 “asset”
factors, and the 𝐶 observations in the third dimension are summarized by 𝐾𝐶 “characteristic” factors.
The form of TFM models is similar to that of the matrix SVD. The matrix of eigenvalues is replaced by
a (𝐾𝑇×𝐾𝑁×𝐾𝐶)-dimensional “core” tensor, which is multiplied by three matrices that replace the two
eigenvector matrices of the SVD. The TFM can also be written as a 3-dimensional factor model so that
the three matrices also have the interpretation of “loading” matrices. However, the “core” tensor and
“loading” matrices in the TFM are not linked to eigenvalues and eigenvectors since these notions do
not exist for tensors.

Since the objective is to construct factors that summarize the information in characteristics, I show

4This paper focuses on 3-dimensional applications but all results extend to higher dimensions.
5The tensor factor model used in this paper is due to Tucker (1966). There are other high-dimensional factor models that

are special cases of the Tucker model, e.g., the CP model (Carroll and Chang (1970), Harshman (1970)). I discuss the differences
in Section 3.
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that the 3-dimensional tensor factor model implies a 2-dimensional factor representation for each as-
set. Intuitively, the 𝐶 characteristics of each asset are summarized by 𝐾𝐶 “characteristic” factors.
Since they are derived from a TFM, these “characteristic” factors exploit dependencies across char-
acteristics, across assets, and across time. The TFM factors can be used to construct asset pricing
factors. The only difference is that portfolios are constructed by sorting assets according to the 𝐾𝐶

TFM characteristic factors instead of the 𝐶 individual characteristics.
The methodology has three steps. First, I estimate the TFM and obtain the core tensor and loading

matrices. Second, I compute 𝐾𝐶 characteristic factors for each asset from the fitted TFM. Third, in
each period 𝑡 I sort assets according to the 𝐾𝐶 characteristic into decile portfolios and compute the
portfolio returns in 𝑡+1. Finally, I compute 𝐾𝐶 asset pricing factors as the differences between decile-
10 and decile-1 portfolios. These pricing factors derived from the TFM can be used in asset pricing
tests and can be compared to other factors, such as Fama-French and PCA-based factors. Similar to
factors derived from PCA models, the TFM factors are subject to a look-ahead bias since the TFM is
estimated using the entire data set. I, therefore, also construct out-of-sample factors that are based
on the estimation of TFM using expanding samples, so that TFM factors and portfolios use only past
information.

I implement the methodology using a data set consisting of 25 characteristics of 934 mutual funds
observed over a sample of 34 quarters totaling 793,900 observations. Characteristics are correlated
across assets; for example, the book-to-market ratios of stocks and mutual funds tend to move to-
gether. In addition, some characteristics of a single asset might be correlated, e.g., the book-to-market
and earnings-to-price ratios. Finally, the cross-sectional correlation of assets and characteristics can
vary over time. Hence, applying 2-dimensional models by eliminating one dimension inevitably causes
a loss of information.

I evaluate the fit of a range of tensor factor models with different numbers of factors and find that
parsimonious TFM capture most of the variation in the data. I compare specifications by their fit as
measured by the mean-square error or, equivalently, the 𝑅2, as well as the parsimony of the model
measured by the “compression ratio,” which is defined as one minus the ratio of the number of free
parameters of a model and the total number of observations. For example, a TFM with (𝐾𝑇,𝐾𝑁,𝐾𝐶)=
(8,12,12) factors captures over 92.9% of the variation in the data with a compression ratio of 98.4%.
Dimension reduction is particularly effective in the mutual fund dimension since this specification
summarizes the information in all 980 mutual funds in only 12 “mutual fund” factors. Note that a
compression ratio is 98.4% corresponds to a standard PCA model with one or two factors for a 2-
dimensional data set with 100 variables. The 𝑅2 of a more parsimonious model with (𝐾𝑇,𝐾𝑁,𝐾𝐶)=
(3,10,10) is slightly lower, 90.4%, but the compression ratio increases to 98.8%. I find that the models
yield good fits for all data points except for some outliers. In addition, the model is stable over the
sample, across mutual funds, as well as across characteristics. Many aspects of the tensor model are
similar to patterns found in 2-dimensional factor models. For example, the first factors along the three
dimensions are “level” factors with positive “long-only” loadings, while higher-order components are
“long-short” factors.

Next, I construct 𝐾𝐶 characteristic factors that are implied by the estimated TFM. I consider two
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specifications. First, I estimate the TFM model using the entire sample and then construct factors
for each fund in each quarter. Since the TFM uses future information, the factors are subject to a
look-ahead bias. I, therefore, also estimate TFM recursively on expanding windows and construct
factors using only past information. The results for the out-of-sample factors are slightly weaker
but follow the same patterns as the in-sample factors. Most factors have economic interpretations.
For example, the first factor is related to means of characteristics, while the second factor is related
to “value” and “growth” characteristics. To assess whether these TFM factors are related to mutual
fund returns, I regress fund returns on lagged characteristic factors and find that most factors are
statistically significant and capture 50% of the cross-sectional variation in fund returns. Regressing
fund returns on lagged characteristics instead of TFM characteristic factors yields a worse overall fit
and few characteristics are statistically significant. Even though no return information is used in the
estimation of the tensor factor model, the characteristic factors derived from the TFM are related to
returns.

Given the 𝐾𝐶 characteristic factors, I sort mutual funds into decile portfolios in each quarter and
obtain 𝐾𝐶 asset pricing factors by forming returns of “long/short” decile-10 minus decile-1 portfolios.
Following the same procedure, I also construct such “long/short” portfolios for each of the 𝐶 origi-
nal characteristics as benchmarks. I find that mean returns and Sharpe ratios of many TFM factors
are substantially higher than those of characteristic portfolios. For example, the highest annualized
Sharpe ratio of all 𝐶 characteristic portfolios is 0.46, while the highest Sharpe ratio of in-sample TFM
factors is almost twice as high, 0.89, and 0.66 for out-of-sample factors. In addition, several alphas
of TFM with respect to the CAPM and 3-factor Fama-French factors are statistically significant while
alphas are insignificant for characteristic portfolios. Note that there is no mechanical link between
TFM factors and their returns as no return information was used in the construction of the portfolios
that underlie the factors.

Finally, I use TFM pricing factors in cross-sectional asset pricing tests and compare the results
to those for Fama-French models. I also construct factors using the standard PCA approach, i.e., I
construct decile portfolios for each of the 𝐶 original factors and then compute a PCA model for the
panel of 10𝐶 portfolio returns. I find that the TFM factors yield smaller pricing errors than Fama-
French and PCA factors. This is not only true for the in-sample TFM factors but also the out-of-sample
factors. Moreover, adding TFM factors to Fama-French and PCA factor models improves the fit, while
adding Fama-French or PCA factors does not improve the fit of TFM factors.

There are many potential applications of tensor-based methods to model high-dimensional data
in finance and economics. For example, databases, such as CRSP and COMPUSTAT, include variables
observed for individual stocks and across time and are thus inherently 3-dimensional. The estimation
of dynamic corporate finance models often involves data sets with three or more dimensions, see
Strebulaev and Whited (2012) for a survey. The investor-level data used in the household finance
literature that studies portfolio holdings have more than two dimensions, see for example Odean
(1998), Campbell (2006), Calvet et al. (2009). In asset pricing, tensor-based methods are used to study
the joint behavior of asset-level characteristics and returns or asset prices across countries. A distinct
advantage of high-dimensional factor models compared to 2-dimensional models is that they can be
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estimated on data sets with short time series since information in all dimensions is used. This feature
makes factor modeling feasible in situations in which 2-dimensional factor models are not applicable
Based on the results in this paper, tensor decompositions are promising additions to the toolbox of
economists for modeling higher-dimensional data.

This paper is related to several strands of the literature. Although the term “factor zoo” was
coined by Cochrane (2011), concerns about an increasing abundance of cross-sectional factors go back
further, see, for example, Subrahmanyam (2010), and have generated a large and diverse literature
that tries to address the multidimensionality of risk factors. The May 2020 issue of the Review of

Financial Studies is dedicated to “new methods for the cross-section of returns,” see Karolyi and Van
Nieuwerburgh (2020) for an overview of the included articles. Some approaches follow “classical”
econometric methods while others use machine learning methods. Some examples of the former are
Harvey et al. (2016), who suggest using a higher hurdle for 𝑡-statistics for any new factors, and Harvey
and Liu (2021), who propose a bootstrap model selection approach. McLean and Pontiff (2016) use
the time period after publication as an out-of-sample test. I already referenced some applications of
PCA and machine learning methods that are based on portfolio sorts above. Other papers apply such
methods to data sets with individual stocks rather than portfolios. For example, Pelger (2019) and
Pelger and Xiong (2022) develop a PCA estimator for high-frequency observations of individual stocks
to identify continuous and jump factors. Chinco et al. (2019), Freyberger et al. (2020), and Martin and
Nagel (2022) use regulation methods, such as Lasso and Ridge, while Moritz and Zimmermann (2016)
use random forests.

This paper is also related to the large literature on mutual fund performance that goes back to
Jensen (1968). Some recent contributions are Gruber (1996), Carhart (1997), Berk and Green (2004),
Berk and van Binsbergen (2015), Mamaysky et al. (2007), Fama and French (2010), Harvey and Liu
(2018), and Jones and Mo (2021). There is an emerging literature that uses machine learning methods
to identify funds that outperform their benchmarks. Li and Rossi (2020) uses regression trees to select
funds based on the characteristics of the stocks they are holding. Kaniel et al. (2023) find that fund
momentum and fund flows are the most important predictors of risk-adjusted returns based on a
neural network estimation. DeMiguel et al. (2021) compare estimations using elastic nets, gradient
boosting, and random forest to identify mutual funds with positive alphas.

Finally, there are a few recent papers that model high-dimensional data. Bryzgalova et al. (2023b)
(BLLP) an estimationmethodology for 2-dimensional cross-sectional panels that are observed over time.
Their procedure combines 2-dimensional factor models that are estimated for each period with time
series models of the latent factors. BLLP apply their method to infer missing values in a time series
panel of stock characteristics. There are several differences between BLLP’s estimator and themethods
used in this paper. First, BLLP study 2-dimensional panel data observed over time, while I focus on
generic high-dimensional data that may or may not include a time dimension. Second, in its current
form, the estimation method in this paper requires a balanced panel without any missing values, while
BLLP’s estimation is designed to impute missing data. Chen et al. (2021) and Chen et al. (2022) develop
factor models for high-dimensional time series and Babii et al. (2022) propose an estimation method
for high-dimensional data set that is based on a different tensor factor model than the one used in

5



this paper.
The rest of the paper is organized as follows. Section 2 introduces the data set used in the paper.

Section 3 introduces the tensor factor model and its estimation. The empirical implementation is
described in Section 4 and includes a comparison of tensor models of different orders, a detailed
analysis of the fit of the benchmark specification, and develops an economic interpretation of the
components of the decomposition. Section 5 studies the pricing factors that are derived from the
tensor factor model and shows that they capture the cross-section of mutual fund returns. Section 6
concludes.

2. Mutual fund characteristics and returns

The data set includes characteristics of active mutual funds over time and is taken from Lettau
et al. (2021). I refer to their paper for a detailed description of the data. Lettau et al. (2021) construct
25 characteristics of mutual funds and exchange-traded funds (ETFs) based on portfolio holdings.
Characteristics on the mutual fund level are computed as weighted averages of the characteristics of
the stocks in their portfolios and are scaled from 1 (low) to 5 (high). The data set includes seven price-
ratios, five growth rates of fundamentals, three “value”/“growth” Morningstar indices, momentum,
reversal, size, operating profitability, investment, quality6, and four liquidity measures, see Table 1.
To obtain a balanced panel with no missing data, I select all mutual funds and ETFs that are in the
sample between 2010Q3 and 2018Q4.7 The final sample consists of 𝑇=34 quarters, 𝑀=934 active
mutual funds and ETFs, and 𝐶=25 characteristics for a total of 793,900 observations.

Table 2 shows some properties of the mutual funds in the sample. I first take time series means
by funds and then compute descriptive statistics of the distribution of fund means. The median fund
has a total net asset value (TNA) of $677 mil. with an inter-quartile range of $254 mil. to $1.79 bil.
The mean TNA of $1.91 bil. is larger than the 75%-th percentile indicating that the TNA distribution is
heavily right-skewed. The median fund holds 81 stocks with an interquartile range of 56 to 121 and a
mean of 120. The lower panel breaks the sample by fund category. The sample includes 346 “growth”
funds (G), 213 “cap-based” funds (C), and 202 “value” funds (V). The remaining 20% of the sample are
“sector”(S, 116) and “balanced” funds (B, 45). 12 funds do not fit in this classification and are labeled
as “other” (O, 12).

As is well known in the literature, mutual funds underperform broad stock market indices, and
alphas of the majority of mutual funds and ETFs are negative. The annualized mean fund excess
returns over the sample is 11.67%, well below the mean CRSP-VW return of 13.20%. 233 of the 934
funds in the sample have a higher return than the CRSP-VW index. The average standard deviation of
14.40% is higher than the standard deviation of CRSP-VW returns (13.05%) and excess returns of 722
funds are more volatile than the CRSP-VW index. The interquartile ranges of mean returns and mean
standard deviations are (10.56%,11.84%) and (13.20%,15.65%), respectively. The market beta of most
funds is close to one. The mean beta is 1.00 and the beta of three-quarters of all funds is between

6The quality index combines the return-to-equity, debt-to-equity, and earnings variability.
7Choosing an earlier starting date drastncally reduces the number of funds.
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0.95 and 1.10. Consistent with the literature on fund performance, the majority of funds in the sample
underperform. The mean and median CAPM alphas are negative (-1.59% and -1.71, respectively), and
only a quarter of the funds generate positive alphas. Only 10 alphas are statistically significantly
positive at the 5% level. The lower panel shows the distribution of returns by fund category. Since
“growth” stocks outperform “value” stocks over the sample period, the returns of “growth” funds are
higher than those of “value” funds. Sector funds performed poorly on average but there is a large
dispersion of mean returns across funds.

PCA/factor models exploit the dependence structure of the data. In 2-dimensional data sets, this
is straightforward since the covariance matrix captures all relevant information and determines the
principal components and implied factors. The dependence structure in higher dimensional data is
more complex. The mutual fund data set has three dimensions: time, funds, and characteristics, and
its dependence structure is in general multi-dimensional. For example, a characteristic of a given fund
may be correlated with other characteristics of the fund andmay also be correlated with characteristics
of other funds. In addition, characteristics are correlated across time.

Figure 1 shows heatmaps of time series (upper triangle) and cross-sectional (lower triangle) corre-
lations of characteristics. To obtain time series correlations, I first compute (time series) correlations
of characteristics for each mutual fund and then take means across all funds. Cross-sectional correla-
tions are obtained by computing (cross-sectional) correlations of characteristics for each quarter and
averaging across all quarters. Comparing the two correlation measures shows that the overall patterns
are similar, but cross-sectional correlations in the lower-left triangle are on average larger (in absolute
value) than time series correlations in the upper-right triangle. Not surprisingly, price-ratio character-
istics are positively correlated, as are characteristics related to the growth of fundamentals, but the
two blocks are negatively correlated. Since the Morningstar variables MS, MULT, and GR are based on
price ratios and growth rates, their correlation pattern is to a large degree mechanical. Investment,
momentum, and reversal are negatively related to price ratios but positively related to growth rates,
and size is positively correlated with higher liquidity.

Recall that Figure 1 is based on the means of the correlation distribution and therefore cannot
capture more complex relationships in the 3-dimensional data set. For example, time series correla-
tions across characteristics differ by mutual fund and cross-sectional correlations may vary over time.
Figure E.1 shows time series and cross-sectional correlations of four characteristic pairs across funds
and time, respectively. While cross-sectional correlations are relatively stable over time (with the ex-
ceptions of correlations involving momentum and reversal), there are large variations of time series
correlations across funds. For example, the book-to-market and earnings-to-price ratios are positively
correlated on average (the mean and median are 0.38 and 0.46, respectively). However, there is consid-
erable variation in the (BM, EP)-correlation across funds. The interquartile range is (0.14, 0.66) and BM
and EP are negatively correlated for 16% of all funds. Such a large dispersion of pairwise time series
correlations is typical for characteristic pairs.

The discussion above described the correlation patterns across characteristics. The same analysis
can be repeated for the other two dimensions of time and mutual funds. The goal of high-dimensional
factor models is to capture the complex dependence structure in the data in a parsimonious model
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without having to collapse the data to two dimensions and loss of information.

3. High-dimensional factor models

Traditional factor models used in finance and economics are based on 2-dimensional data sets, i.e.,
the data can be represented by a matrix. A canonical example in asset pricing is the factor analysis
of a panel of returns of 𝑁 assets observed over 𝑇 periods. Latent factors can be constructed by PCA,
which is based on the eigenvalue/eigenvector decomposition of a second-moment matrix of returns,
or, equivalently, by the SVD of the data matrix. The vast literature on factor models has suggested
many extensions to the standard model but has been limited to 2-dimensional data. In this section, I
consider generalizations of factor models to situations when the data set has more than two dimen-
sions. The data set used in the empirical section below is 3-dimensional and composed of observations
of characteristic 𝑐 of asset 𝑛 in period 𝑡, and I use this example to illustrate the theoretical results in
this section.

Higher-dimensional data form tensors, which were first defined by Ricci-Curbastro and Levi-Civita
(1900). Tensors generalize the notions of vectors and matrices to more than two dimensions. Many
tensor operations are straightforward extensions of matrix algebra, but there are some important dif-
ferences and the notation is necessarily more complex. This section defines tensors and summarizes
tensor operations used in the rest of the paper. I start with a brief summary of 2-dimensional factor
models, PCA, and SVD to facilitate a better understanding of the extensions to higher dimensions.

The tensor models used in this paper can be interpreted as extensions of the SVD of a matrix. Sim-
ilar to SVD and PCA, the goal is to summarize the variation in the data efficiently by expressing the
data tensor in terms of lower-dimensional tensors and matrices. In this sense, SVD/PCA and tensor
decompositions can be thought of as dimension reduction methods. I also show that the decompo-
sition of a 3-dimensional tensor implies a collection of 2-dimensional factor models that are linearly
connected across all three dimensions and internally consistent. As with any latent factor method, it
is important to pay attention to the economic meaning of the model. It turns out that the different
components of tensor decompositions have clear economic interpretations, as I explain below.

3.1. From matrices to tensors

As mentioned above, tensors extend the notions of vectors and matrices into higher dimensions. This
section presents a brief introduction to tensor algebra and is limited to operations used in the rest
of the paper. See Kolda and Bader (2009) for a concise summary and Kroonenberg (2007) for a more
comprehensive treatment of tensor algebra and decompositions.

Throughout the paper, I use the following notation:

scalar: 𝗑∈ℝ
vector: 𝘅∈ℝ𝐼

matrix: 𝗫∈ℝ𝐼1×ℝ𝐼2

𝑗-th order tensor: 𝓧𝓧𝓧∈ℝ𝐼1×ℝ𝐼2×...×ℝ𝐼𝑗 .

8



Hence, a zero-order tensor is a scalar, a first-order tensor is a vector, a second-order tensor is a matrix,
and a third-order tensor is a cuboid. Each of the 𝑗 dimensions of a tensor is called a mode. A tensor
𝓧𝓧𝓧 is diagonal if 𝗑𝑖1,...,𝑖𝑗 ≠0 only if 𝑖1 =...= 𝑖𝑗 and 0 otherwise.

The data set that will be used later has three dimensions: the characteristic 𝑐 of asset 𝑛 at date 𝑡,
𝗑𝑡𝑛𝑐. To simplify the notation, I will therefore focus on tensors of order 𝑛=3 but all results can be
easily generalized to higher dimensions. Let 𝓧𝓧𝓧∈ℝ𝑇×ℝ𝑁×ℝ𝐶 be a 3-dimensional (𝑇×𝑁×𝐶) tensor 𝓧𝓧𝓧
with elements 𝗑𝑡𝑛𝑐.8 Thus, the dimension of the tensor that represents the asset data set is 34×934×25.

A 3-dimensional tensor can be expressed as collections of one-dimensional fibers or 2-dimensional
slices. Fibers are vectors and correspond to rows and columns of a matrix, while slices are matrices.
Fibers are defined by fixing every index but one so that 𝓧𝓧𝓧 has fibers along each mode, denoted by
𝘅(𝑛𝑐)𝑡,𝘅(𝑡𝑐)𝑛, and 𝘅(𝑡𝑛)𝑐, respectively.9 Slices are created by fixing all but two indices and are written as
𝗫(𝑡)𝑛𝑐,𝗫(𝑛)𝑡𝑐,𝗫(𝑐)𝑡𝑛.10 Tensors can be written as matrices by unfolding, or stacking, 2-dimensional slices
along a mode 𝑛. The resulting matrix 𝗫(𝑖) is defined so that the number of rows equals the mode-𝑛
order of 𝓧𝓧𝓧. The number of columns of 𝗫(𝑖) is equal to the product of the dimensions along all other
modes.11

3.2. Tensor factor models

Before introducing tensor models, consider first the familiar case of 2-dimensional factor models.
Further detail are in Appendix B. Let 𝗫 be a (𝑇×𝑁) data matrix with 𝑇𝑁 observations 𝗑𝑡𝑛. A 𝐾-factor
model is defined as

𝗫=𝗙𝐾𝗕⊺
𝐾+𝗘𝐾, (1)

where 𝗙𝐾 and 𝗕𝐾 are (𝑇×𝐾) and (𝑁×𝐾) factor and loading matrices, that can be estimated using
Principal Component Analysis (PCA). Let �̂�𝐾 =𝗙𝐾𝗕⊺

𝐾 be the matrix of “fitted” values. PCA factors and
loadings can be obtained from the truncated SVD of 𝗫:

�̂�𝐾 =𝗨(1)
𝐾 𝗛𝐾𝗨(2)⊺ (2)

=
𝐾

∑
𝑘=1

ℎ𝑘𝑘 𝘂(1)
𝑘 𝘂(2)⊺

𝑘 (3)

=
𝐾

∑
𝑘=1

ℎ𝑘𝑘 𝘂(1)
𝑘 ∘𝘂(2)

𝑘 ≡ 𝙵𝑇𝑁(𝐾), (4)

where 𝗛𝐾 is the (𝐾×𝐾) matrix with the square roots of the 𝐾 largest eigenvalues, ℎ𝑘, of 𝗫⊺𝗫 on the
diagonal.12 𝗨(1)

𝐾 and 𝗨(2)
𝐾 are (𝑇×𝐾) and (𝑁×𝐾) matrices whose columns are the eigenvectors 𝘂(1)

𝑘

and 𝘂(2)
𝑘 of 𝗫𝗫⊺ and 𝗫⊺𝗫 that are associated with the 𝐾 largest eigenvalues. Factors and loadings are

8Figures E.2 to E.4 show a third-order tensor with dimensions𝑇=5,𝑁=4,𝐶=3 and illustrate the tensor operations described
in this section.

9See Panels B, C, and D of Figure E.2.
10See Panels E, F, and G of Figure E.2.
11Figure E.3 shows the unfolding of a (5×4×3) tensor 𝓧𝓧𝓧 along each mode. The resulting matrix of unfolding 𝓧𝓧𝓧 along mode-1,

𝗫(1), has five rows and 4⋅3=12 columns. Unfolding along modes two and three yields matrices 𝗫(2) and 𝗫(3) with dimensions
(4×15) and (3×20), respectively.

12The outer product ∘ of two vectors 𝗮∈ℝ𝑇 and 𝗯∈ℝ𝑁 is defined as 𝗮∘𝗯=𝗮𝗯⊺ ∈ℝ𝑇×ℝ𝑁.
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given by 𝗙𝐾 =𝗨(1)𝗛=𝗫𝗨(𝟮) and 𝗕𝐾 =𝗨(2). I will refer to the 𝐾-factor model for the (𝑇×𝑁) matrix 𝗫 as
𝙵𝑇𝑁(𝐾).13

The representations (3) and (4) show that �̂�𝐾 is the weighted sum of 𝐾 matrices with dimensions
(𝑇×𝑁), which are the outer vector product of the eigenvectors 𝘂(1)

𝑘 and 𝘂(2)⊺
𝑘 . Each 𝑘 in the summation

represents a factor in the 𝐾-factor representation (1). The advantage of representation (3) is that it
shows the contribution of each of the 𝐾 factors in the fit of the model. Since the eigenvectors are
normalized, the 𝐾 outer vector products 𝘂(1)

𝑘 𝘂(2)⊺
𝑘 are of the same magnitude, so the weight of the

contribution of each factor 𝑘 is approximately equal to the 𝑘-th eigenvalue.
Next, consider a 3-dimensional tensor 𝓧𝓧𝓧 with dimensions (𝑇×𝑁×𝐶). One possible way to investi-

gate the factor structure of 𝓧𝓧𝓧 is to estimate 2-dimensional factor models after collapsing one of the
three dimensions. For example, fix 𝑡 and estimate a 2-dimensional 𝐾𝑇-factor model 𝙵𝑁𝐶(𝐾𝑇) for the
𝑡-th slice 𝐗(𝑡)𝑛𝑐 of 𝓧𝓧𝓧. 𝐗(𝑡)𝑛𝑐 is a (𝑁×𝐶) matrix, so the model represents a cross-sectional factor model
for 𝐶 characteristics of𝑁 assets. Alternatively, for a given asset 𝑛, one can estimate a 𝐾𝑁-factor model
𝙵𝑇𝐶(𝐾𝑁) for the 𝑛-th slice 𝐗(𝑛), which forms a (𝑇×𝐶) matrix. This model captures the time series cor-
relations across 𝐶 characteristics of asset 𝑛. Finally, fix characteristic 𝑐 and consider the 𝐾𝐶-factor
model 𝙵𝑇𝑁(𝐾𝐶) for the 𝑐-th slice of 𝓧𝓧𝓧. This factor model captures time series correlations across
𝑁 assets for characteristic 𝑐. In principle, one could estimate 2-dimensional factor models for each
𝑡= 1,...,𝑇,𝑛=1,...,𝑁, and 𝑐=1,...,𝐶 and obtain 𝑇+𝑁+𝐶 models. Note that estimating the models
separately implies that information is lost. For example, estimating factor models for each 𝑡 does not
exploit potentially useful time series information.

In contrast, tensor factor models (TFM) are estimated in a single joint step that exploits all three (or
more) dimensions simultaneously. The Tucker factor model (Tucker (1966)) extends the matrix SVD
to higher-dimensional tensors. For the 3-dimensional case of asset characteristics, the 3-dimensional
representation of the Tucker model implies 2-dimensional factor models for each dimension that
have the same structure as the factor models described in the previous paragraph. In other words,
the Tucker model implies a 2-dimensional factor model for each 𝑡=1,...,𝑇, each 𝑐=1,...𝐶, and each
𝑛=1,...,𝑁. Instead of having to estimate 𝑇+𝑁+𝐶 separate 2-dimensional factor models, it is pos-
sible to estimate a single 3-dimensional factor model and derive the 𝑇+𝑁+𝐶 implied 2-dimensional
factor models. Since all 2-dimensional factor models stem from the same 3-dimensional representa-
tion, they are mutually consistent. In addition, the 3-dimensional Tucker model exploits dependence
in all dimensions without having to collapse any one dimension and the corresponding loss of infor-
mation. Finally, the Tucker model has an order of magnitude fewer free parameters than 𝑇+𝑁+𝐶
2-dimensional factor models.

The Tucker factor model is based on a generalization of the SVD decomposition and PCA for ma-
trices to tensors. The Tucker model is usually written in tensor notation, see Appendix A for more
details. Briefly, the𝑛-mode product of a tensor𝓧𝓧𝓧 and amatrix𝗔𝑛 is the multiplication of each𝑛-mode

13Note that we could define the truncated SVD using different numbers of factors, 𝐾1 and 𝐾2, for the two dimensions.
However, since 𝗛 is diagonal, this SVD reduces to a 𝐾-factor SVD where 𝐾=min(𝐾1,𝐾2). In contrast, the equivalent object to
𝗛 in the tensor factor model considered below is not diagonal so the number of factors can differ by dimension. See Appendix
B for more details.
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fiber of 𝓧𝓧𝓧 by the row vectors of 𝗔𝑛. For example, the mode-1 product of a (𝑆×𝑁×𝐶) tensor 𝓧𝓧𝓧 and a
(𝑇×𝑆) matrix 𝗔1 is equal to a (𝑇×𝑁×𝐶) tensor 𝓨𝓨𝓨 given by 𝓨𝓨𝓨=𝓧𝓧𝓧×1 𝗔1 (see Figure E.4). Note that the
standard matrix product can be written in tensor notation: 𝗔1𝗫𝗔⊺

2 =𝗫×1𝗔1×2𝗔2.
Let𝓧𝓧𝓧 be a data tensor with dimensions (𝑇×𝑁×𝐶). The Tucker approximation �̂�𝓧𝓧 of order (𝐾𝑇,𝐾𝑁,𝐾𝐶)

is given by

�̂�𝓧𝓧(𝐾𝑇,𝐾𝑁,𝐾𝐶)=𝓖𝓖𝓖×1 𝗩(𝑇)
𝐾𝑇 ×2 𝗩(𝑁)

𝐾𝑁 ×3 𝗩(𝐶)
𝐾𝐶 , (5)

where 𝓖𝓖𝓖 is a (𝐾𝑇×𝐾𝑁×𝐾𝐶) tensor with elements 𝑔𝑘𝑇𝑘𝑁𝑘𝐶 and 𝗩(𝑇)
𝐾𝑇 ,𝗩

(𝑁)
𝐾𝑁 ,𝗩

(𝐶)
𝐾𝐶 are (𝑇×𝐾𝑇),(𝑁×𝐾𝑁), (𝐶×𝐾𝐶)

matrices, respectively. Given the definition of the𝑛-mode tensor product, �̂�𝓧𝓧 is a (𝑇×𝑁×𝐶)-dimensional
tensor and thus has the same dimensionality as the data tensor 𝓧𝓧𝓧. 𝓖𝓖𝓖 is called the core tensor and can
be thought of as a “compressed” version of𝓧𝓧𝓧. As we will see below, the matrices 𝗩(𝑖)

𝐾𝑖 correspond to the
loadings matrix 𝗕𝐾 in the 2-dimensional factor model (1) and I will refer to them as loadings matrices
of the Tucker model. To simplify the notation, I omit the subscripts of the loading matrices hence-
forth. The approximation error is 𝓔𝓔𝓔=𝓧𝓧𝓧−�̂�𝓧𝓧. The optimal Tucker model minimizes the mean-squared
error (MSE) of 𝓔𝓔𝓔 among all �̂�𝓧𝓧(𝐾𝑇,𝐾𝑁,𝐾𝐶) of the form (5).

The mechanism of the Tucker decomposition (5) is illustrated in Figure 3, which shows the decom-
position of a (6×5×4) tensor 𝓧𝓧𝓧 by a Tucker model of order (𝐾𝑇,𝐾𝑁,𝐾𝐶)= (3,2,2). The core tensor
𝓖𝓖𝓖 compresses 𝓧𝓧𝓧 to a lower-dimension of (3×2×2). The Tucker loading matrices 𝗩(𝑇),𝗩(𝑁), and 𝗩(𝐶)

expand the core tensor to the full dimension of 𝓧𝓧𝓧 and have the matching dimensions of (6×3),(5×2),
and (4×2). With slight abuse of notation, the dimensions of the tensors and matrices can be expressed
as (3×2×2)×1 (6×3)×2 (5×2)×3 (4×2)=(6×5×4).

The 2-dimensional 𝐾-factor SVD-PCA model (2) is a special case of the Tucker model when �̂�𝓧𝓧 is a
matrix and 𝐾𝑖 =𝐾. This can be seen by rewriting (2) in tensor notation:

�̂�=𝗨(1)
𝐾 𝗛𝐾𝗨(2)⊺

=𝗛𝐾 ×1 𝗨(1)
𝐾 ×2 𝗨(2)

𝐾 . (6)

Thus the core tensor 𝓖𝓖𝓖 in (5) corresponds to 𝗛𝐾 and the matrices 𝗩(𝑖) correspond to 𝗨(𝑗)
𝐾 .

Recall that the 𝐾-factor SVD-PCA model can be written as the sum of 𝐾 outer products of the
column vectors of 𝗨(1)

𝐾 and 𝗨(2)
𝐾 , see (4). The Tucker model (5) has an analogous representation in

terms of outer products of the column vectors of the loading matrices 𝗩(𝑇),𝗩(𝑁),𝗩(𝐶):

�̂�𝓧𝓧(𝐾𝑇,𝐾𝑁,𝐾𝐶)=
𝐾𝑇

∑
𝑘𝑇=1

𝐾𝑁

∑
𝑘𝑁=1

𝐾𝐶

∑
𝑘𝐶=1

𝑔𝑘𝑇𝑘𝑁𝑘𝐶𝘃
(𝑇)
𝑘𝑇 ∘𝘃(𝑁)

𝑘𝑁 ∘𝘃(𝐶)
𝑘𝐶 , (7)

where 𝘃(𝑖)
𝑘𝑖 are columns of 𝗩(𝑖). The intuition of the Tucker model is similar to that of the SVD decom-

position. Each outer product 𝘃(𝑇)
𝑘𝑇 ∘𝘃(𝑁)

𝑘𝑁 ∘𝘃(𝐶)
𝑘𝐶 forms a (𝑇×𝑁×𝐶) tensor that has the interpretation of

a tensor factor. Hence, �̂�𝓧𝓧(𝐾𝑇,𝐾𝑁,𝐾𝐶) is the sum of 𝐾𝑇𝐾𝑁𝐾𝐶 tensor factors. Each factor is weighted by
the corresponding element of the core tensor 𝑔𝑘𝑇𝑘𝑁𝑘𝐶 . Factors with larger 𝑔𝑘𝑇𝑘𝑁𝑘𝐶 have higher weights
in the Tucker model than factors with low 𝑔𝑘𝑇𝑘𝑁𝑘𝐶 .

As we will see below, the Tucker model shares some properties with the SVD-PCA model for ma-
trices. However, there are some important differences. First, the Tucker model allows for a different
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number of factors in each dimension while the SVD-PCA specifies a single number of factors (i.e. 𝗛𝐾

is a 𝐾×𝐾 matrix). Note that, in principle, the decomposition 𝗨(1)
𝐾 𝗛𝐾𝗨(2)⊺

𝐾 could be specified so that 𝗨(1)
𝐾

and 𝗨(2)
𝐾 have different numbers of columns (with appropriate dimensions for 𝗛𝐾). However, in the

2-dimensional SVD, the off-diagonal elements of 𝗛𝐾 are zero so that in effect the number of columns
of 𝗨(1)

𝐾 and 𝗨(2)
𝐾 are the same. In contrast, the Tucker core tensor 𝓖𝓖𝓖 and loading matrices 𝗩(𝑖) are not

tied to eigenvalues and eigenvectors. In general, 𝓖𝓖𝓖 is not diagonal, so the number of factors may differ
across dimensions.14 Second, there is no closed-form solution for the optimal Tucker model, so the
model has to be solved numerically. I discuss numerical solutions in section 3.6.

Neither the SVD nor the Tucker model are unique and can be rotated. Let 𝗦𝑖,𝑖=𝑇,𝑁,𝐶, be nonsin-
gular (𝐾𝑖×𝐾𝑖) matrices. Then (5) can be written as

�̂�𝓧𝓧(𝐾𝑇,𝐾𝑁,𝐾𝐶)=(𝓖𝓖𝓖×1 𝗦𝑇 ×2 𝗦𝑀 ×3 𝗦𝐶)×1 (𝗩(𝑇)𝗦−1
𝑇 )×2 (𝗩(𝑁)𝗦−1

𝑀 )(𝗩(𝐶)𝗦−1
𝐶 ). (8)

Typically, (5) is normalized so that the 𝗩(𝑖) matrices are orthonormal, similar to the eigenvector matri-
ces in the SVD-PCA model.

One important property of Tucker decompositions is that they cannot be computed sequentially.
Consider two Tucker decompositions with (𝐾𝑇,𝐾𝑁,𝐾𝐶) and (𝐾′

𝑇,𝐾′
𝑁,𝐾′

𝐶),𝐾′
𝑗 <𝐾𝑗, respectively. The

first 𝐾′
𝑇,𝐾′

𝑁,𝐾′
𝐶 components of the Tucker (𝐾𝑇,𝐾𝑁,𝐾𝐶) model are in general different from the Tucker

(𝐾′
𝑇,𝐾′

𝑁,𝐾′
𝐶) model.15 In contrast, the first 𝐾 factors of a 2-dimensional SVD-PCA factor model with

𝐾′ >𝐾 factors are the same as those of a 𝐾-factor model since they are based on eigenvalues and
eigenvectors.

3.3. Factor representation

The Tucker model can be written in factor form similar to (1) along each dimension.16 Consider first
the representation for the characteristic dimension implied by (5):

𝓧𝓧𝓧=𝓕𝓕𝓕(𝐶)
𝑡𝑛 ×3𝗩(𝐶)+𝓔𝓔𝓔 (9)

where 𝓕𝓕𝓕(𝐶)
𝑡𝑛 =𝓖𝓖𝓖×1 𝗩(𝑇) ×2 𝗩(𝑁). (10)

𝓕𝓕𝓕(𝐶)
𝑡𝑛 is a (𝑇×𝑁×𝐾𝐶)-dimensional “factor” tensor and 𝗩(𝐶) is the (𝐶×𝐾𝐶)-dimensional loadings matrix.

The interpretation of 𝓕𝓕𝓕(𝐶)
𝑇𝑁 is similar to that of factor matrices in 2-dimensional SVD-PCA models. For

a given asset 𝑛, the 𝑛th slice of 𝓕𝓕𝓕(𝐶)
𝑡𝑛 ,𝗙(𝐶)

𝑡(𝑛), is a (𝑇×𝐾𝐶) matrix whose columns are the time series of 𝐾𝐶

characteristic factors of asset 𝑛. Recall that the 𝑛th slice of 𝓧𝓧𝓧,𝗫(𝑛)𝑡𝑐, is a (𝑇×𝐶)matrix whose columns
are the time series of all 𝐶 characteristics. In other words, the 𝐾𝐶 factors given by 𝗙(𝐶)

𝑡(𝑛) summarize the

14The CP tensor decomposition (Carroll and Chang (1970)), Harshman (1970)) is a special case of the Tucker decomposition
where the core tensor is restricted to be diagonal. The CP decomposition restricts the number of factors to be identical for all
dimensions, which is a drawback when the dimensions of the data tensor differ substantially. In addition, in contrast to the
Tucker decomposition, the CP decomposition might not exist. However, if it exists, the CP decomposition is unique. See Kolda
and Bader (2009) for more details and Babii et al. (2022) for a recent application.

15In practice, the differences are small.
16Note that there are two isomorphic factor representations in the 2-dimensional case, one for 𝗫 and one for 𝗫⊺ in which the

roles of 𝗨(1)
𝐾 and 𝗨(2)

𝐾 are reversed. The factors and loadings in the representation for 𝗫 are given by 𝗨(1)
𝐾 and 𝗨(2)

𝐾 , respectively,
while 𝗨(2)

𝐾 forms factors and 𝗨(2)
𝐾 forms loadings in the 𝗫⊺ representation.
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information in all 𝐶 characteristics of asset 𝑛. The implied factor model for asset 𝑛 is given by

𝗫(𝑛)𝑡𝑐 =𝗙(𝐶)
𝑡(𝑛)×3𝗩(𝐶)+𝗘(𝑛)𝑡𝑐 =𝗙(𝐶)

𝑡(𝑛)𝗩(𝐶)⊺+𝗘(𝑛)𝑡𝑐. (11)

Thus, (9) can be understood as a collection of 𝑁 2-dimensional 𝐾𝐶-factor models for characteristics of
individual assets 𝑛=1,...,𝑁. The estimation of the 3-dimensional Tucker model implicitly obtains the
𝑁 factor models jointly and exploits information across assets. The 𝐾𝐶 characteristic factors encoded
in 𝓕𝓕𝓕(𝐶)

𝑡𝑛 form the basis for the pricing factors that will be the focus of section 5.
The factor representations for the other dimensions are defined accordingly:

𝓧𝓧𝓧=𝓕𝓕𝓕(𝑁)
𝑡𝑐 ×3𝗩(𝑁)+𝓔𝓔𝓔 (12)

𝓧𝓧𝓧=𝓕𝓕𝓕(𝑇)
𝑛𝑐 ×3𝗩(𝑇)+𝓔𝓔𝓔. (13)

The (𝑇×𝐾𝑁×𝐶)-dimensional factor tensor 𝓕𝓕𝓕(𝑁)
𝑡𝑐 summarize the information in all 𝑁 assets into 𝐾𝑁 fac-

tors and the (𝐾𝑇×𝑁×𝐶)-dimensional 𝓕𝓕𝓕(𝑇)
𝑛𝑐 is composed of 𝐾𝑇 factors that summarize the information

in 𝑇 time periods.

3.4. The Tucker model implies interconnected 2-dimensional factor models

As discussed in section 3.2, the econometrician could estimate separate 2-dimensional factor models
for each 𝑡=1,...,𝑇, each 𝑛=1,...,𝑁, and each 𝑐=1,...,𝐶. Next, I show that the Tucker model (5) implies
2-dimensional factor models that are interconnected and subject to restrictions that are imposed by
the 3-dimensional representation of the Tucker model. These restrictions would be violated if the 2-
dimensional factormodels were estimated separately. The factormodels are formed by the columns of
the loadingmatrices𝗩(𝑖) andweighted by the elements of the core tensor𝓖𝓖𝓖. Recall that a 2-dimensional
𝐾-factor model 𝙵(𝐾) can be written as the weighted sum of 𝐾 outer products of vectors, see (4). The
corresponding representation (7) expresses the Tucker model as the sum of outer products of the
column vectors of the loadings matrices and can be rewritten in terms of 𝐾𝑇 2-dimensional factor
models as follows:

�̂�𝓧𝓧(𝐾𝑇,𝐾𝑁,𝐾𝐶)=
𝐾𝑇

∑
𝑘𝑇=1

𝘃(𝑇)
𝑘𝑇 ∘ ⎡

⎣

𝐾𝑁

∑
𝑘𝑁=1

𝘃(𝑁)
𝑘𝑁 ∘⎛

⎝

𝐾𝐶

∑
𝑘𝐶=1

𝑔𝑘𝑇𝑘𝑁𝑘𝐶𝘃
(𝐶)
𝑘𝐶 ⎞

⎠
⎤
⎦

(14)

=
𝐾𝑇

∑
𝑘𝑇=1

𝘃(𝑇)
𝑘𝑇 ∘ ⎡

⎣

𝐾𝑁

∑
𝑘𝑁=1

𝘃(𝑁)
𝑘𝑁 ∘�̃�(𝐶)

𝑘𝑇 ⎤
⎦

(15)

=
𝐾𝑇

∑
𝑘𝑇=1

𝘃(𝑇)
𝑘𝑇 ∘ 𝙵𝑘𝑇

𝑁𝐶(𝐾𝑁) (16)

where �̃�(𝐶)
𝑘𝑇 =∑𝐾𝐶

𝑘𝐶=1 𝑔𝑘𝑇𝑘𝑁𝑘𝐶𝘃
(𝐶)
𝑘𝐶 . 𝘃(𝑁)

𝑘𝑁 and �̃�(𝐶)
𝑘𝐶 are (𝐾𝑁×1) and (𝐾𝐶×1) vectors, so their outer product is

a (𝑁×𝐶) matrix. Thus, the terms in square brackets in (14) and (15) represent a 2-dimensional 𝐾𝑁-
factor model 𝙵𝑘𝑇

𝑁𝐶(𝐾𝑁) for the 𝑁 and 𝐶 dimensions of 𝓧𝓧𝓧. The factor model is formed by the columns
of loading matrices, 𝘃(𝑁)

𝑘𝑁 and 𝘃(𝐶)
𝑘𝐶 , of the Tucker model (5). Note that for a given 𝑘𝑇, the vector �̃�(𝐶)

𝑘𝑇 in
square brackets of (15) is the same for all 𝑘𝑁, so that 𝙵𝑘𝑇

𝑁𝐶(𝐾𝑁) is a restricted factor model. The last
equality shows that the Tucker model can be written in terms of 𝐾𝑇 2-dimensional (restricted) (𝑁×𝐶)
factor models. 𝘃(𝑇)

𝑘𝑇 is a (𝑇×1) vector and 𝙵𝑘𝑇
𝑁𝐶(𝐾𝑁) is a (𝑁×𝐶) matrix so that their outer product is a
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(𝑇×𝑁×𝐶)-dimensional tensor and has the same dimensions as �̂�𝓧𝓧.
The order of the summation in the term in square brackets in (14) can be reversed so that the sum

in square brackets in (15) is over 𝑘𝐶 instead of 𝑘𝑁. The resulting factor model is equivalent to (16)
but has 𝐾𝐶 factors. I will choose the representation that has the fewest factors and write the resulting
factor model as 𝙵𝑘𝑇

𝑁𝐶(�̃�𝑁𝐶), where �̃�𝑁𝐶 =min(𝐾𝑁,𝐾𝐶).
Next, consider estimating a 2-dimensional cross-sectional factor model for period 𝑡 by computing

the SVD of the (𝑁×𝐶) matrix given by the 𝑡-th slice 𝗫(𝑡)𝑛𝑐. The corresponding factor model implied by
the Tucker model is given by multiplying 𝙵1

𝑁𝐶(𝐾𝑁),...,𝙵𝐾𝑇
𝑁𝐶(𝐾𝑁) by the 𝑡-th elements of the vectors 𝘃(𝑇)

𝑘𝑇

in (16):

�̂�(𝑡)𝑛𝑐 =
𝐾𝑇

∑
𝑘𝑇=1

𝗏(𝑇)
𝑘𝑇,𝑡 𝙵

𝑘𝑇
𝑁𝐶(𝐾𝑁)≡𝙵(𝑡)

𝑁𝐶(𝐾𝑁), (17)

where 𝗏(𝑇)
𝑘𝑇,𝑡 is the 𝑡-th element of the 𝑘𝑇-th column of the loading matrix 𝗩(𝑇). (17) shows that the

implied 2-dimensional factor model for period 𝑡 is given by a weighted sum of 𝐾𝑇 factor models
𝙵𝑘𝑇

𝑁𝐶(�̃�𝑁𝐶),𝑘𝑇 =1,...,𝐾𝑇 and is therefore also a �̃�𝑁𝐶-factor model, defined as 𝙵𝑡
𝑁𝐶(�̃�𝑁𝐶). The weights are

given by the rows of 𝗩(𝑇). Since the weights vary across periods 𝑡, the factor models 𝙵𝑡
𝑁𝐶(�̃�𝑁𝐶) change

over time. However, the time-𝑡 factors are based on the same 𝙵𝑘𝑇
𝑁𝐶(�̃�𝑁𝐶) and differ only by time-varying

weights.
An interesting special case is when there is only a single 𝑇-factor, i.e. 𝐾𝑇 =1. In this case,

𝙵(𝑡)
𝑁𝐶(�̃�𝑁𝐶)=𝗏(𝑇)

1,𝑡 𝙵1
𝑁𝐶(�̃�𝑁𝐶), (18)

which implies that all 𝑡-slices are proportional to the same factor model 𝙵1
𝑁𝐶(�̃�𝑁𝐶), or, equivalently, pro-

portional to the same (𝑁×𝐶) matrix given by the term in square brackets in (15) that forms 𝙵1
𝑁𝐶(�̃�𝑁𝐶).

The proportionality of 𝑡-slices in turn implies that all 𝑡-fibers are perfectly correlated. Recall that
the 𝑡-fibers in the asset application are given by time series of mutual/asset characteristic pairs. In
the special case of 𝐾𝑇 =1, the Tucker model implies that all 𝑁𝐶 time series are perfectly correlated.
Therefore, the behavior of time series in Tucker models with a single 𝑇-factor is severely restricted.
The Tucker model shares this property with SVD-PCA models since the columns of the matrix that is
given by a 1-factor SVD-PCA model are also proportional to each other. Adding 𝑇-factors enriches the
dynamics across time series fibers. For example, 𝐾𝑇 =2 implies

𝙵(𝑡)
𝑁𝐶(𝐾𝑁)=𝗏(𝑇)

1,𝑡 𝙵1
𝑁𝐶(�̃�𝑁𝐶) + 𝗏(𝑇)

2,𝑡 𝙵2
𝑁𝐶(𝐾𝑁). (19)

Time slices are given by weighted sums of two (𝑁×𝐶) factor models and are thus not proportional.
However, unless the weights 𝗏(𝑇)

1,𝑡 and 𝗏(𝑇)
2,𝑡 differ significantly, 𝑡-slices and time series fibers will be

correlated. Adding further 𝑇-factors creates scope for more complex dependence structures across
𝑡-slices and time series fibers.

Although the derivations above focus on the properties along the 𝑇-dimension of 𝓧𝓧𝓧, the results
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apply to the other dimensions as well and can be summarized as follows:

�̂�𝓧𝓧(𝐾𝑇,𝐾𝑁,𝐾𝐶)=
𝐾𝑇

∑
𝑘𝑇=1

𝘃(𝑇)
𝑘𝑇 ∘ 𝙵𝑘𝑇

𝑁𝐶(�̃�𝑁𝐶) (20)

=
𝐾𝑁

∑
𝑘𝑁=1

𝘃(𝑁)
𝑘𝑁 ∘ 𝙵𝑘𝑁

𝑇𝐶(�̃�𝑇𝐶) (21)

=
𝐾𝐶

∑
𝑘𝐶=1

𝘃(𝐶)
𝑘𝐶 ∘ 𝙵𝑘𝐶

𝑇𝑁(�̃�𝑇𝑁) (22)

�̂�(𝑡)𝑛𝑐 =𝙵(𝑡)
𝑁𝐶(�̃�𝑁𝐶) (23)

�̂�(𝑛)𝑡𝑐 =𝙵(𝑛)
𝑇𝐶 (�̃�𝑇𝐶) (24)

�̂�(𝑐)𝑡𝑛 =𝙵(𝑐)
𝑇𝑁(�̃�𝑇𝑁). (25)

The first three equations show that the Tucker model can be written as a set of 2-dimensional factor
models for each dimension. The factor models are based on the columns of the loadings matrices
𝗩(𝑖) and weighted by the elements of the core tensor 𝓖𝓖𝓖, and are thus connected. The Tucker model
imposes the restriction that the vectors underlying the factor models 𝙵 are identical in one of the
two dimensions. The last three equations show that slices of �̂�𝓧𝓧 form 2-dimensional factor models.
The factor models in a dimension 𝑛 are connected since they are given by weighted sums of 𝐾𝑖 factor
models. If 𝐾𝑖 =1, the slices and fibers in dimension 𝑛 are perfectly correlated.

Note that “time” does not play a special role in factor modeling. If one of the dimensions of the
data set is “time”, it is not treated differently from the other dimensions. In the setting of this paper,
it is important to keep this in mind when interpreting “time” factors. As we have seen above, “time”
factors do not capture serial correlation but instead capture cross-sectional dependence of the time
series that make up the data. If the time series in 𝓧𝓧𝓧 are relatively highly correlated, relatively few
“time” factors are sufficient to capture the correlations across time series. If correlations across time
series are low or vary substantially, more “time” factors are needed to capture the overall dynamics of
the data. Of course, in an application, the logic is reversed. If correlations across times series are high
(low), the econometrician will find that few (many) 𝑡-factors are required, so that 𝐾𝑇 is small (high).

The same intuition holds for factors in the other dimensions. If there is a single asset factor,
𝐾𝑁 =1, the Tucker model implies that all 𝑛-slices �̂�(𝑛)𝑡𝑐, which are matrices of dimension (𝑇×𝐶) are
proportional and all 𝑛-fibers �̂�(𝑡𝑐)𝑛 ((𝑁×1) vectors) are perfectly correlated. In other words, all char-
acteristics are proportional across assets. If 𝐾𝐶 =1, 𝑐-slices �̂�(𝑐)𝑡𝑛 ((𝑇×𝑁) matrices) are proportional
and 𝑐-fibers �̂�(𝑡𝑛)𝑐 ((𝐶×1) vectors) are perfectly correlated, so all assets observations are proportional
across characteristics.

The logic for 3-dimensional Tucker models extends to higher dimensional tensors. The Tucker
model (5) for an 𝑛-dimensional tensor is the tensor product of an 𝑛-dimensional core tensor and 𝑛
loadingmatrices, or, equivalently as the𝑛 sums of outer products of𝑛 vectors similar to (7). Slices and
fibers can be written as combinations of factor models of lower rank that are subject to restrictions.
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3.5. Data compression

The core tensor𝓖𝓖𝓖 has𝐾𝑇𝐾𝑁𝐾𝐶 elements and the component matrices 𝗩(𝑇),𝗩(𝑁), and 𝗩(𝐶) have 𝑇𝐾𝑇,𝑁𝐾𝑁,
and 𝐶𝐾𝐶 elements, respectively. The orthonormal normalizations and unit-norm normalizations of
the loading matrices 𝗩(𝑖) add 2(𝐾𝑇+𝐾𝑁+𝐾𝐶) restrictions. Thus, the Tucker decomposition (5) has
𝐾𝑇𝐾𝑁𝐾𝐶+𝑇𝐾𝑇+𝑁𝐾𝑁+𝐶𝐾𝐶−2(𝐾𝑇+𝐾𝑁+𝐾𝐶) parameters. Define 𝜅𝑖 as the number of model parame-
ters divided by the number of data points of a 𝑖-dimensional data set. The data-compression ratio
is defined as 1−𝜅𝑖. For the 3-dimensional Tucker decomposition, 𝜅3 =(𝐾𝑇𝐾𝑁𝐾𝐶+𝑇𝐾𝑇+𝑁𝐾𝑁+𝐶𝐾𝐶−
2(𝐾𝑇+𝐾𝑁+𝐾𝐶))/(𝑇𝑁𝐶). For the special case when the number of factors in all three dimensions is
𝐾=𝐾𝑇 =𝐾𝑁 =𝐾𝐶, 𝜅3 simplifies to 𝐾(𝐾2+𝑇+𝑁+𝐶−6)/(𝑇𝑁𝐶). For comparison, the 2-dimensional
𝐾-factor SVD of a (𝑇×𝑁) matrix has 𝐾+𝐾(𝑇+𝑁)−4𝐾 parameters so that 𝜅2 =𝐾(𝑇+𝑁−3)/(𝑇𝑁).17

Further insights about how data compression is related to the dimensionality of the data tensor can
gained by considering the limiting case when the size of the tensor approaches infinity. For simplicity,
I assume that the data tensor has 𝑀 observations in each dimension and that the number of factors
of the TFM is 𝐾𝑗 =𝐾 for all 𝑗=1,...,𝑖.18 I assume that 𝐾,𝑀→∞ at the same rate so that 𝑄=𝐾/𝑀 is a
constant. Then 𝜅3 =(𝐾/𝑀)3+3𝑀𝐾/𝑀3−6𝐾/𝑀3 =𝑄3+𝑄/𝑀−6𝑄/𝑀2→𝑄3 as 𝐾,𝑀→∞. Hence, the 3-
dimensional Tucker model compresses the data’s total size by a ratio of order 𝓞((𝐾/𝑀)3). If 𝑄=𝐾/𝑀
is 10% and 𝑀 is large, i.e., there is one Tucker component for every ten data dimensions, 𝜅3 =0.001
so that the Tucker model compresses the data by approximately 99.9%. A similar calculation for
the 2-dimensional SVD of an (𝑀×𝑀) matrix shows that 𝜅2 =2𝑄−3𝑄/𝑀→2𝑄, which is an order of
magnitude higher than 𝜅3 of the 3-dimensional Tucker model.

This logic can be applied to Tucker models of higher dimensions. In the special case considered
here, the core tensor of the Tucker decomposition of an 𝑖-dimensional tensor (𝑖>2) has 𝐾𝑖 elements
and each of the 𝑖 normalized loadings matrices 𝗩(𝑖) is of dimension (𝑀×𝐾). Hence there are 𝐾𝑖+
𝑖𝑀𝐾−2𝑖𝐾 parameters, so that 𝜅𝑖 =𝑄𝑖+𝑖𝑄/𝑀𝑖−2−2𝑖𝑄/𝑀𝑖−1→𝑄𝑖. Hence, the order of compression
ratio increases geometrically in the dimensionality of the data tensor. The intuition is that for large 𝑖
the dimensionality of the core tensor, 𝐾𝑖, relative to the size of the data tensor, 𝑀𝑖, is the dominant
term. Going from 𝑖 to 𝑖+1 dimensions multiplies the number of elements in the data tensor by 𝑀,
however, the size of the core is only multiplied by 𝐾.

3.6. Estimation

In contrast to the SVD-PCA matrix representation, there is no closed-form solution for the Tucker
decomposition (5) that minimizes the MSE of the error tensor 𝓔𝓔𝓔. Kolda and Bader (2009) and Kroo-
nenberg (2007), chapter 10, discuss several numerical solutions methods. I use the most popular
algorithm, Higher-Order Orthogonal Iteration (HOOI) throughout the paper. As shown in Kolda and
Bader (2009) and Kroonenberg (2007), it is possible to solve for the loading matrix 𝗩(𝑖) when all other
𝗩(𝑗),𝑗≠𝑖 are known. Therefore, the Tucker model can be solved recursively by choosing some starting

17Since 𝗛𝐾 in the SVD is diagonal, it has 𝐾 free parameters. In contrast, the core tensor 𝓖𝓖𝓖 of the Tucker decomposition is
not diagonal and has 𝐾𝑇𝐾𝑁𝐾𝐶 free elements.

18It is easy to show that the results extend to the general case.
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values for 𝗩(𝑇) and 𝗩(𝑁), solving for 𝗩(𝑇), and iteratively solving for 𝗩(𝑖) until convergence. Once the
𝗩(𝑖) are solved, the core tensor 𝓖𝓖𝓖 can be constructed. Details are in Appendix C.

To assess the precision of the estimation, I perform a Monte Carlo simulation for various combi-
nations of tensor sizes (𝑇,𝑁,𝐶) and orders 𝐊=(𝐾𝑇,𝐾𝑁,𝐾𝐶) of Tucker models. For each combination,
I simulate 1,000 samples of Tucker factor models, 𝓧𝓧𝓧𝑖 and estimate the Tucker model �̂�𝓧𝓧𝑖 for the true
model plus noise, 𝓧𝓧𝓧𝑒

𝑖 =𝓧𝓧𝓧𝑖+𝜎𝑒𝓔𝓔𝓔𝑖. The elements of the noise tensor are drawn from standard normal
distributions. Table 3 reports the mean RMSE of 𝓧𝓧𝓧𝑖−�̂�𝓧𝓧𝑖 across the 1,000 samples. The columns
correspond to different values of the standard deviation of the noise tensor relative to the standard
deviation of the true factor tensor.

I consider combinations of (𝑇,𝑁,𝐶), so that the tensors 𝓧𝓧𝓧𝑖 have 1,000,000 data points, which is
comparable to the size of the asset sample. I choose five combinations of (𝑇,𝑁,𝐶) to mimic different
data patterns. In the first case, the data dimensions are equal (𝑇=𝑁=𝐶=100). In the empirical
application, the second dimension is substantially larger than the first and third dimensions. Hence,
I consider three additional cases with unbalanced data dimensions: (100,500,20), (40,1000,25), and
(25,2000,20). The case with (𝑇,𝑁,𝐶)=(40,1000,25) closely resembles the size of the sample used in
the next section. The ratio of the standard deviation of the noise term to the standard deviations of
𝓧𝓧𝓧𝑖 has five possible values: 0,0.1,0.25,0.5,1. If 𝜎𝑒/𝜎𝑥 =0, the Tucker models are estimated assuming
that the true factor model is observed without error, while for 𝜎𝑒/𝜎𝑥 =1, the noise term is as volatile
as the data in the true factor model. To make the cases comparable, I scale the tensors so that the
volatility of the observed tensor 𝓧𝓧𝓧𝑒

𝑖 is equal to one.19 The starting values of each mode-𝑛 Tucker
loading matrix are set to the 2-dimensional SVD decompositions computed from the unfolded tensor
along mode-𝑛. Typically, the HOOI algorithm converges after 20 to 40 iterations. The procedure is
robust to other starting values, albeit at the cost of slower convergence.

The first and second columns of Table 3 show the order (𝐾𝑇,𝐾𝑁,𝐾𝐶) of the Tucker models and
dimensions of the simulated data tensor. The estimation errors of the Tucker models are small even
when the observed tensors contain a significant amount of noise. The largest error is 3.78% for the case
when the data tensor is most unbalanced, (𝑇,𝑁,𝐶)= (25,2000,20), the order is large, (𝐾𝑇,𝐾𝑁,𝐾𝐶)=
(20,60,20), and noisy (𝜎𝑒/𝜎𝑥=1). The estimation errors are under 1% for all combinations of (𝑇,𝑁,𝐶)
and (𝐾𝑇,𝐾𝑁,𝐾𝐶) when𝜎𝑒/𝜎𝑥<0.25. For fixed (𝐾𝑇,𝐾𝑁,𝐾𝐶), the estimation error is larger for unbalanced
data tensors than for balanced tensors. For fixed (𝑇,𝑁,𝐶), the error for larger underlying factor
structures is higher than for small (𝐾𝑇,𝐾𝑁,𝐾𝐶). The estimation error for the case that resembles the
size of the sample used in this paper, (𝑇,𝑁,𝐶)= (40,1000,25), is below 0.5% for all combinations of
(𝐾𝑇,𝐾𝑁,𝐾𝐶) that are used in the empirical analysis below.

4. Empirical results

4.1. Fit of Tucker models

I start with the estimation of Tucker models for a wide range of combinations of 𝐊=(𝐾𝑇,𝐾𝑁,𝐾𝐶). For
each combination of𝐊=(𝐾𝑇,𝐾𝑁,𝐾𝐶), I compute the Tucker decomposition (1) and the associated mean

19The scaling of 𝓧𝓧𝓧𝑒
𝑖 has an immaterial impact on the results.
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square error MSE(𝐊). Since the mean of the errors of the Tucker approximation, 𝓔𝓔𝓔, is generally close
to zero, 1−MSE(𝐊)/Var(𝓧𝓧𝓧)≈1−Var(𝓔𝓔𝓔(𝐊))/Var(𝓧𝓧𝓧) can be interpreted as the 𝑅2 of the model. Since
there is no formal test for the optimal choice of (𝐾𝑇,𝐾𝑁,𝐾𝐶) in Tucker models, I follow the literature
and choose “reasonable” parameters based on fit and parsimony.20

The results are shown in Figure 4. Each plot shows the MSE as a function of the number of com-
ponents along one mode while keeping the numbers of the other two components fixed. Panel A
plots the MSE of Tucker(𝐾𝑇,𝐾𝑁,𝐾𝐶) models as a function of 𝐾𝑇 for four different combinations of
(𝐾𝑁,𝐾𝐶)∶ (𝐾𝑇,1,1), (𝐾𝑇,4,4), (𝐾𝑇,15,12), and (𝐾𝑇,25,15). The “minimal” Tucker model with a single
component in each mode collapses the 34 quarters, 934 mutual funds, and 25 characteristics into
a single “summary” mutual fund with a single “summary” characteristic observed at one “summary”
quarter. The MSE of the minimal Tucker(1,1,1) model represented by the left-most point on the blue
line in Panel A is 0.32, corresponding to an 𝑅2 of 40%. The model has a compression ratio of 99.88%.
Note that increasing 𝐾𝑇 while keeping 𝐾𝑁 =𝐾𝐶 =1 does not reduce the MSE further. However, the
MSE is reduced significantly when 𝐾𝑁 and 𝐾𝐶 are larger than one. For 𝐾𝑇 =4 and 𝐾𝐶 =4, the MSE is
0.08 for a single 𝐾𝑇 component, which is equivalent to an 𝑅2 of 84% and thus twice as high as the
𝑅2 of the minimal Tucker(1,1,1) model. Increasing 𝐾𝑇 has a negligible effect on the MSE. The fit of
Tucker models is improved by choosing higher values of 𝐾𝑁 and 𝐾𝐶. The MSE for (𝐾𝑇,12,12) range
from 0.07 for 𝐾𝑇 =1 to about 0.04 for 𝐾𝑇 ⪆5. Increasing 𝐾𝑁 and 𝐾𝐶 to 25 and 15, respectively, has
only a negligible effect on the model fit.

Panel B has the same format but shows the MSE as a function of the number of mode-2 compo-
nents, 𝐾𝑁. Recall that the second mode of the data tensor 𝓧𝓧𝓧 corresponds to the 934 mutual funds
in the sample. Hence, I consider a broader range of values of 𝐾𝑁 from 1 to 40 for combinations
(1,𝐾𝑁,4),(3,𝐾𝑁,10),(8,𝐾𝑁,12), and (12,𝐾𝑁,15). In all three cases, setting 𝐾𝑁 below three yields poor
fits. Furthermore, the MSE of (1,𝐾𝑁,4) models are considerably higher than those of (8,𝐾𝑁,12) mod-
els, however, (12,𝐾𝑁,15) models do not significantly improve the fit further. Finally, Panel C plots
the MSE as a function of 𝐾𝐶 for three combinations of 𝐾𝑇 and 𝐾𝑁: (1,4,𝐾𝐶),(3,10,𝐾𝐶),(8,12,𝐾𝐶), and
(12,25,𝐾𝐶). The MSE declines steeply for 𝐾𝐶 ≲4 and at a lower rate for larger 𝐾𝐶. The MSE of the
(8,12,𝐾𝐶) and (10,25,𝐾𝐶) models are almost identical.

Table 4 and Figure 5 compare the fit of Tucker models with (1,4,4),(3,10,10),(8,12,12), and
(10,20,15) components in more detail. For comparison, the overall MSE of the four models are
0.084,0.053,0.039, and 0.028, respectively, which correspond to 𝑅2 of 85.0%, 90.4%, 92.9%, and 94.9%,
while their respective compression ratios are 99.5%, 98.8%, 98.4%, and 97.3%. Table 4 shows descrip-
tive statistics of the distributions of the errors for the four models. The mean and median errors
are close to zero so the MSE are close to the variance. Skewness is close to zero but errors are mildly
leptokurtic for all specifications. The percentiles in Panel B show the improvement of the fit of models
with higher (𝐾𝑇,𝐾𝑁,𝐾𝐶). The interquartile range of the (1,4,4)model is almost twice as large as that of
the (10,20,15) and, while the minimum and maximum errors are similar, there are fewer data points
with large errors.

20The results in the paper are robust and do not rely on a particular choice of (𝐾𝑇,𝐾𝑁,𝐾𝐶).
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Figure 5 shows the MSE for each dimension separately rather than the overall MSE. Consider first
the MSE by quarter in Panel A. The mean square error for (1,4,4) ranges from 0.06 in the middle of the
sample to 0.12 at the start of the sample period. Adding further components improves the fit across
the sample considerably. The MSE of the (3,10,10) model is around 0.05 for most of the sample but
increases to 0.08 in 2018. The two “largest” models of orders (8,12,12), and (10,20,15) further reduce
the MSE across the whole sample. Panel B shows the fit of all 934 mutual funds. Funds are sorted
by MSE from smallest to largest. For all four models, the errors are small for the majority of funds
but there are some funds with large errors. For example, there are 56 funds with MSE over 0.2 for the
(1,4,4) model. The tail of the error distribution shrinks for larger models and there are only 25, 12,
and two funds with MSE larger than 0.2 for (3,10,10),(8,12,12), and (10,20,15) models, respectively.

The MSE by characteristics is plotted in Panel C. The errors of the (1,4,4) model are considerably
higher than for the larger models for all characteristics. For most characteristics, the improvements
in fit for the largest (10,20,15) relative to the (3,10,10) model are relatively small. The exceptions
are momentum (MOM) and reversal (REV). Note that these are the two characteristics with the high-
est errors for all four Tucker models. The reason is that MOM and REV are volatile and exhibit low
persistence compared to the other characteristics. It turns out there is a link between the time series
behavior of characteristics and the number of time components, 𝐾𝑇. Tucker models with low 𝐾𝑇 can
capture the variation in high-persistence characteristics but perform worse for less persistent charac-
teristics. For example, the MSE of MOM and REV is more than twice as high as the MSE of the other
(more persistent) characteristics for the Tucker(3,10,10) model. Increasing 𝐾𝑇 to 8 and 10 improves
the fit for MOM and REV but has a relatively small impact on the other characteristics.

Finally, I plot the time series of actual and fitted BM, MOM, and REV for individual mutual funds
for the Tucker(10,20,15) model in Figure 6.21 For each characteristic, I plot the 75th and 90th MSE
percentiles funds, as well as the “worst-case” fund with the highest MSE in the sample.22 Each panel
plots the observed characteristic in black and the fitted values of the Tucker model in orange. The
legends include the wficn identifier of the fund that is plotted as well as the MSE of the Tucker model.

Consider first the BM ratio in Panel A. The observed BM of the 75th-percentile fund is stable over
the sample and varies between 1.4 and 1.9. The fitted BM matches the level but is smoother than the
observed data. The pattern is similar for the 90th-percentile fund in the middle panel. The book-to-
market ratio of the fund with the highest MSE in the data set increases from 1.3 to 3.8 over the sample.
The fitted BM also increases but more slowly resulting in large errors at the beginning and end of the
sample.

Momentum, shown in the middle row, is more volatile and less persistent than the book-to-market
ratio. The Tucker model matches the level and variation of the observed data of the 75th-percentile
fund well, resulting in a good fit. While the average fitted BM of the 90th-percentile fund is close to
the observed average, the model does not match the time series variation as well, resulting in an MSE
of 0.37 compared to 0.25 of the 75th-percentile fund. MOM of the “worst-case” fund declines between
2010 and 2012 before increasing sharply to 4.5 in 2013. After 2013, MOM slowly declines to 2 after

21The corresponding plots for the (1,4,4),(3,10,10), and (8,12,12) are in Figures E.8, E.9, and E.10 in the Appendix.
22The histograms of the MSE distributions are plotted in Figure E.7 in the Appendix.
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2017. The fitted MOM matches the decline after 2013 but exhibits large errors before 2013. The fits
for reversals are shown in the bottom row. For all three cases, the Tucker model captures the time
series variation fairly well even though REV often changes substantially quarter-by-quarter, especially
for the 90th percentile and “worst case” funds. However, the variation in the fitted REV is often more
muted than the observed data.

I conclude that parsimonious Tucker factor models yield good approximations of the mutual fund
sample with (34,934,25) observations. The MSE of the model with (𝐾𝑇,𝐾𝑁,𝐾𝐶)= (10,20,15) compo-
nents captures 94.9% of the variation in the data while compressing the data dimensions by 97.3%.
Even a “small” model with (1,4,4) components yields an 𝑅2 of 85%. In the next subsection, I use
the Tucker model with (𝐾𝑇,𝐾𝑁,𝐾𝐶)=(3,10,10) to illustrate the properties of the Tucker tensor factor
model.23

4.2. Properties of the Tucker model

Recall that the Tucker decomposition (5) of a 3-dimensional tensor consists of a core tensor 𝓖𝓖𝓖 and
loading matrices 𝗩(𝑇),𝗩(𝑁),𝗩(𝐶). For the Tucker(3,10,10) model estimated for a data tensor with dimen-
sions (34×934×25), 𝓖𝓖𝓖 is a (3×10×10)-dimensional tensor, 𝗩(𝑇),𝗩(𝑁), and 𝗩(𝐶) are (3×34),(10×934),
and (10×25)-dimensional matrices, respectively. This section focuses on the properties of these vari-
ables.

Panel A of Figure 7 plots the 20 largest elements (by absolute value) of the core tensor 𝓖𝓖𝓖 on a
log-scale. The first core element with index (1, 1, 1) is the largest element, with a value of 9.15. The
next two largest values are 1.19 and 0.86 for the elements with indices (1, 2, 2) and (1, 3, 3), respec-
tively, followed by six elements with values between 0.1 and 0.03. Recall the Tucker decomposition
is a generalization of the SVD decomposition for matrices. In many economic and finance-related
applications, the first eigenvalue is often significantly larger than the other eigenvalues. Even though
the core tensor is not related to eigenvalues, the spectrum of the core elements is similar to typical
eigenvalue spectrums. Furthermore, the five largest and seven of the nine largest core elements have
a mode-1 index of one. In other words, the core tensor is dominated by elements from the first (time)
index, suggesting that the first (time) dimension plays a particularly important role. This explains the
earlier result that Tucker models with a single mode-1 time component can have surprisingly good
fits (recall Figure 4).

Next, I analyze the structures of the loading matrices 𝗩(𝑇),𝗩(𝑁),𝗩(𝐶). Recall that the loading matrices
of the Tucker decomposition are similar to the loading matrices of eigenvectors in the SVD matrix de-
composition and can be interpreted accordingly. I have also shown in (20)-(22) that the 3-dimensional
Tucker decomposition implies three 2-dimensional factor representations in which 𝗩(𝑇),𝗩(𝑁),𝗩(𝐶) are
loading matrices for appropriately defined factors.

Panel A of Figure 8 shows the heatmap of the (3×34)-dimensional matrix 𝗩(𝑇). Rows correspond
to the 34 time series observations, and columns correspond to the three mode-1 components of the

23The properties of the other specifications considered in this section are similar. For example, the first three 𝑇-factors of
the (8,12,12) and (10,25,15) models are close to the three 𝑇-factors of the (3,10,10) model. The same is true for the first 10
𝑁 and 𝐶-factors.
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Tucker model. The first row represents the first quarter in the sample, 2010Q3, and the last quarter,
2018Q4, is in the bottom row. All elements of the first column of the heatmap are between 0.51 and
0.52, suggesting that the first component has the interpretation of a mean, or “level” factor, similar
to many PCA applications. All other columns have positive and negative elements and have the same
interpretation as higher-order eigenvectors as “long/short” factors. For example, the values of the
second component are negative over the first part of the sample and positive in the latter part and
thus can be interpreted as a “slope” component. The loadings of the third component are positive at
the beginning and end of the sample and negative in the middle and are akin to a “curvature” factor.”

The loading matrix for the second mode, 𝗩(𝑁), in Panel B has 934 rows and 12 rows and is more
difficult to visualize. To make the heatmap readable, I plot only the first 10 columns and sort each col-
umn from high to low. Hence, each of the 934 rows plots different mutual funds. The first component
has only positive values and represents a “level” factor. All higher-order components are “long/short”
factors with positive and negative values.

Finally, the first five columns of (25×10) loading matrix of the characteristic mode, 𝗩(𝐶), are dis-
played in Panel C. As for 𝗩(𝑇) and 𝗩(𝑁), the elements of the first column of 𝗩(𝐶) are positive so that
the first component has the interpretation of a “level” factor. The second and third components are
related to cross-characteristic correlation patterns, which were shown in Figure 1. The most obvious
correlation blocks are price multiples and growth rates of fundamentals (plus INV) that are positively
correlated within but negatively correlated with each other. The elements of the second column of 𝗩(𝐶)

bear this pattern out. The nine largest elements of the second component for the characteristics are
related to price multiples, while the six smallest (and negative) elements are related to growth-related
characteristics (plus INV). Therefore, the second component can be interpreted as a “value/growth”
factor. The two characteristics with the largest elements of the third column, ME and VOL, are highly
correlated, and both are strongly negatively correlated with BIDASK, which has the lowest weight in
the third column. The fourth and fifth factors also have pairs of either positively or negatively corre-
lated characteristics. For example, (DP, TURN) and (BM, OP) are pairwise negatively correlated, while
(ME, VOL) and (MOM, REV) are positively correlated.

4.3. Implications for 2-dimensional Factor Representations

In Section 3.4 I showed that the 3-dimensional Tucker model implies interconnected 2-dimensional
factor representations, see (20)-(22). For simplicity, I explain the properties of these representations
in a “small” estimated Tucker model with (𝐾𝑇,𝐾𝑁,𝐾𝐶)= (2,3,3) model. The results for larger models
with a better fit are almost identical. Consider first the representation in (21). Since 𝐾𝑁=3, the Tucker
model can be written as the sum of three outer products of the three columns of the loadingmatrix 𝗩(𝑁)

and 2-dimensional factor models 𝙵(𝑘𝑁)
𝑇𝐶 that capture the time series correlations across characteristics.

Since �̃�𝑇𝐶 =min(𝐾𝑇,𝐾𝐶) = 2, the three 𝙵(𝑘𝑁)
𝑇𝐶 (�̃�𝑇𝐶) models have two factors. Each 𝙵(𝑘𝑁)

𝑇𝐶 is a (𝑇×𝐶)=
(34×25)-dimensional matrix that is constructed from the (2×3×3)-dimensional core tensor 𝓖𝓖𝓖 and the
time and characteristic loading matrices 𝗩(𝑇) and 𝗩(𝐶) that are of dimensions (𝑇×𝐾𝑇)= (34×2) and
(𝐶×𝐾𝐶)=(25×3). Rows and columns of 𝙵(𝑘𝑁)

𝑇𝐶 correspond to quarters and characteristics, respectively.
Figure 9 compares the first factor matrices 𝙵(1)

𝑇𝐶,𝙵(1)
𝑁𝐶 and 𝙵(1)

𝑇𝑁 to the corresponding means of the
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data. The dashed line in the left figure of Panel A plots the means of characteristics across all mutual
funds in 2018Q4. For example, the means of BM and ME across funds in 2018Q4 are 2.38 and 4.13,
respectively. The solid line shows the 2018Q4 row of the first factor matrix, 𝙵(𝑘𝑁)

𝑇𝐶 ,𝑘𝑁 =1. The first
factor is close to characteristic means suggesting that it can be interpreted as a mean, or “level”, factor.
Although the figure shows only one quarter, this pattern is true across the sample, as we will see below.
The right panel has the same format but shows two columns of 𝙵(1)

𝑇𝐶, BM in blue and MOM in orange.
The dashed lines are the BM and MOM means in each quarter. The mean BM ratio across mutual funds
is close to 2.5 throughout the sample while the mean MOM varies between 3.0 and 3.6. As in the left
panel, the corresponding columns of 𝙵(1)

𝑇𝐶 are close to the characteristic means. Hence the rows and
columns of the first factor matrix 𝙵(1)

𝑇𝐶 are closely related to time series and characteristic means across
mutual funds of the data tensor.

Panels B and C show that this result is also true for the implied factor models in the other two
dimensions, 𝙵(1)

𝑁𝐶 and 𝙵(1)
𝑇𝑁. The rows and columns of first (𝑁×𝐶) factor matrix 𝙵(1)

𝑁𝐶 are related to means
across quarters of funds (rows) and characteristics (columns), see Panel B. Finally, Panel C shows the
first (𝑇×𝑁) factor matrix 𝙵(1)

𝑇𝑁 and means across characteristics. Hence, the first components of the
Tucker factor model have the familiar property of 2-dimensional PCA models that the first factor can
be interpreted as a mean, or “level”, factor.

While Figure 9 focused on the first components, Figure 10 shows the first three components of the
factor matrices 𝙵(𝑘𝑁)

𝑇𝐶 ,𝑘𝑁=1,2,3. Panel A has the same format as Panel A of Figure 9, however, it shows
all 𝑇=34 rows of 𝙵(1)

𝑇𝐶 instead of only the row corresponding to 2018Q4. Note that the lines are close
to each other implying that the factor representation is stable over time. The rows of the second factor
matrix 𝙵(2)

𝑇𝐶 are plotted in Panel B. While the elements of the first factor matrix are positive, the second
factor matrix has positive and negative elements and is thus a “long/short” factor. Note that the
positive (long) elements are related to price multiples while the negative (short) elements are related
to growth rates suggesting that the second factor is a “value/growth” factor. The third component
matrix, shown in Panel C, is also a “long/short” factor that is long in ME and VOL and short in BIDASK.

As shown in (21), the Tucker factor model is the sum of the outer product of the 𝙵(𝑘𝑁)
𝑇𝐶 ,𝑘𝑁 =1,2,3

matrices and the three column vectors of the (𝑁×𝐾𝑁)=(934×3) loading matrix 𝗩(𝑁) =[𝘃(𝑁)
1 ,𝘃(𝑁)

2 ,𝘃(𝑁)
3 ].

Each 𝙵(𝑘𝑁)
𝑇𝐶 is (𝑇×𝐶)= (34×25)-dimensional so that the outer products 𝘃(𝑁)

𝑘𝑁 ∘𝙵(𝑘𝑁)
𝑇𝐶 yield tensors that

have the same dimensions as the data tensor, (𝑇×𝑁×𝐶)=(34×934×25).
The three column vectors 𝘃(𝑁)

𝑘𝑁 are shown in Panel D of Figure 10. Each vector is sorted from small
to large. The elements of the first vector 𝘃(𝑁)

1 are close to one so that the first factor for all mutual
funds is almost identical and equal to 𝙵(𝑘𝑁)

𝑇𝐶 , i.e. 𝘃(𝑁)
1,𝑚∘𝙵(1)

𝑇𝐶 ≈𝙵(1)
𝑇𝐶,∀𝑚. Since 𝙵(1)

𝑇𝐶 has the interpretation
as a “level” factor, the first 𝑘𝑁 =1 factor is a “level” factor for all mutual funds. The first columns of
the other two loading matrices, 𝘃(𝑇)

1 and 𝘃(𝐶)
1 , are also close to one, so that the first factors in all three 2-

dimensional representations of the 3-dimensional Tucker model, (20)-(22), represent “level” factors. In
contrast to the first column, the second and third columns of 𝗩(𝑁) have positive and negative elements.
Hence, loadings on 𝙵(2)

𝑇𝐶 and 𝙵(3)
𝑇𝐶 are positive for some mutual funds and negative for others.
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4.4. Subsample stability

Next, I investigate the stability of the Tucker decomposition over time. First, I split the sample
into two subsamples of equal length: 2010Q3-2014Q4 and 2015Q1 to 2018Q4. Second, I estimate the
model of recursive 10-year windows. I compare the fit across subsamples, the estimated core tensors
𝓖𝓖𝓖, and the loading matrices 𝗩(𝑖). Since the variance of the subsample data varies, I report the 𝑅2

instead of the MSE(𝓧𝓧𝓧). Since the subsamples have shorter time spans, I reduce the number of mode-1
components from 8 to three so that (𝐾𝑇,𝐾𝑁,𝐾𝐶)=(3,12,12). In addition to splitting the sample, I also
estimate the Tucker decomposition in recursive 10-year subsamples. The results are similar to those
in the split sample and are reported in the Appendix.

The overall fits in the split samples are similar to the fit in the complete data set. The 𝑅2 for the two
subsamples are similar, 0.94 compared to 0.93. Panel A of Figure 11 shows the largest 25 elements of
the core tensors 𝓖𝓖𝓖 for the whole sample (black), the first half (orange), and the second half (blue) on a
log-10 scale. The pattern of core values is remarkably stable across the samples. In all three cases, the
(1,1,1) elements of 𝓖𝓖𝓖 are by far the largest core values followed by the (1,2,2) and (1,3,3) elements
while the remaining core values are considerably smaller.

Figure 12 plots the first three columns of the three loading matrices in each subsample. The first
row shows the mode-1 (time) loading matrices. Note, that the time spans in the split samples do not
overlap, while the mutual fund and characteristic indices are identical. Despite the lack of overlap,
the estimated loading matrices 𝗩(1) in the two subsamples are similar. The first column vectors of
𝗩(1) are long-only “mean” factors and are almost identical. The second and third factors differ more
significantly across subsamples but have the familiar “slope” and “curvature” patterns. The modest
instability of higher-order “time” components has only a second-order effect on the fit of the model
since the elements of the core tensor associated with higher-order factors are an order of magnitude
smaller than the values of the first component. The 𝗩(2) and 𝗩(3) loadings matrices of the second and
third modes in rows 2 and 3 are almost identical in both subsamples. I also consider the fit in rolling
subsamples of 10 quarters. The results are in Figures E.11 and E.12 in the Appendix and confirm the
stability of the results even in short subsamples.

5. Mutual fund returns

In this section, I construct asset pricing factors from the estimated Tucker model. The pricing
factors can be used in the estimation of linear factor models for the cross-section of mutual fund
returns. Note that there is a fundamental difference between factors derived from the 3-dimensional
Tucker model and factors constructed from 2-dimensional PCA factor models as in Kelly et al. (2019),
Pelger (2019), Lettau and Pelger (2020a), Lettau and Pelger (2020b), Giglio and Xiu (2021)), among
others. Such models are based on panels of time series of returns of portfolios that are constructed
from sort on a large set of characteristics. Hence PCA factors capture the dependence across portfolio
returns. In contrast, the Tucker factors summarize the information of a large set of characteristics of
many assets and thus depend on the dependence of characteristics rather than returns. The dimension
reduction is performed in the characteristics space rather than the return space. Furthermore, the
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construction of the Tucker factors uses only information in characteristics and is independent of
returns.

A distinct advantage of the 3-dimensional Tucker decomposition is that it exploits dependence
in all three dimensions. In particular, factors derived from the Tucker model capture dependencies
among all 𝐶 characteristics. In contrast, portfolios based on sorts on univariate or bivariate character-
istic sorts can only capture the correlations among the characteristics that are chosen by the econo-
metrician. Higher-order sorts are infeasible because the number of firms in each portfolio decreases
geometrically in the sort dimension. Tucker models do suffer from this curse of dimensionality and
can capture dependencies across a large number of characteristics.

The intuition of the construction of Tucker factors is as follows. Suppose we want to summarize
the information in all 𝐶 characteristics of each mutual fund 𝑛 in a small number of factors 𝐾𝐶. One
possibility is to estimate a 2-dimensional SVD-PCA model with 𝐾𝐶 factors for each mutual fund 𝑛=
1,...,𝑁. Each factor model is estimated using the (𝑇×𝐶)-dimensional matrix of 𝐶 characteristics of
fund 𝑛 observed over 𝑇 periods. This approach has several drawbacks. First, each fund factor model
uses only information from one mutual fund, which is inefficient since characteristics are correlated
across funds. Second, each factor model is subject to estimation error, especially if 𝑇 is small and 𝐶
is large. Third, the factor models are potentially inconsistent across funds. For example, the order of
factors might differ. Suppose there is one “value”/“growth” factor and one profitability factor. For one
fund, the “value”/“growth” factor might be the second factor and the profitability factor the second,
while this order could be reversed for another fund.

The Tucker factor model offers an alternative method to construct characteristic factors for each
mutual fund that do not suffer from these issues. In section 3.3, I showed that the Tucker model
implies 2-dimensional factor models for each dimension. The representation for the characteristic
dimension is given in (9)-(11). (11) shows that the Tucker model implies a 2-dimensional factor model
for the characteristics of each mutual fund. 𝗙(𝐶)

𝑡(𝑛) is the (𝑇×𝐾𝐶)-dimensional matrix whose columns
are the time series of the 𝐾𝐶 characteristic factors of fund 𝑛. The advantage of the Tucker model is
that 𝗙(𝐶)

𝑡(𝑛) of all mutual funds can be computed from its 3-dimensional representation, see (9) and (10),
rather than having to estimate the factors separately for each fund. Moreover, since all 𝗙(𝐶)

𝑡(𝑛),𝑛=1,...,𝑁
factor matrices stem from the same model, they are mutually consistent.

The standard approach is to form portfolios based on sorts of the𝐶 original characteristics. Instead,
I compute portfolios using sorts of the 𝐾𝐶 characteristic factors 𝗙(𝐶)

𝑡(𝑛) . For each of the 𝐾𝐶 factors, I
sort mutual funds into 10 deciles according to the characteristic factor in quarter 𝑡. Hence, the 10% of
funds with the lowest (highest) characteristic factors in period 𝑡 are in the first (tenth) deciles. Next,
I compute equally-weighted returns in the next quarter 𝑡+1 of the mutual funds in each portfolio.24

I repeat this procedure for 𝑡=1,...,𝑇−1 and each of the 𝐾𝐶 Tucker components to obtain 10𝐾𝐶 time
series of portfolio returns. Given the decile portfolios, I form “long/short” pricing factors, denoted
𝐟Tck,𝑡, by subtracting the returns of the decile-1 portfolios from the returns of the decile-10 portfolios

24I use equal-weighted portfolios throughout the paper since value-weighted returns would be dominated by a small number
of very large mutual funds. However, the main results of the paper are robust to the weighting scheme in the construction of
portfolios.
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yielding 𝐾𝐶 Tucker characteristic factors.25

Since the Tucker model is estimated using the entire sample, there is a look-ahead bias in the
construction of the portfolios. I, therefore, also consider a recursive specification that uses only past
data in the construction of portfolio returns. I estimate the Tucker model for expanding subsamples
using data from 𝑡=1,...,𝑇′ for 𝑇′=𝐾𝑇,...,𝑇−1. For the subsample ending in 𝑇′, I form decile portfolios
in period 𝑇′ and compute the returns of decile portfolios in 𝑇′+1. This procedure yields portfolio
returns for periods 𝐾𝑇+1,...,𝑇 that are based only on past information and thus not subject to a look-
ahead bias. As for in-sample portfolios, I form 𝐾𝐶 “high-minus-low” pricing factors. It turns out that
the correlations of out-of-sample portfolios with the corresponding in-sample portfolios are above
0.95 for all specifications studied below indicating that the Tucker model is stable over time.

5.1. Properties of Tucker characteristic factors

Next, I study the properties of the characteristic factors implied by the Tucker model. The results
in the remainder of this section are for the Tucker model of order (3,10,10). Since the recursive
model uses data with shorter time series, I choose the Tucker(2,10,10) model as a benchmark for the
out-of-sample specification. Results for higher-order models are similar. First, I compute the average
characteristics of the mutual funds that are in a particular portfolio. Figure 13 plots the average
(net) characteristics of the first five factors. Since characteristics are measured in an [1,5] interval
and factors are the difference between two portfolios, the possible range of long/short portfolios is
[-4,4]. ME and VOL characteristics of the first factor are close to minus two implying that ME and VOL
of the decile-1 portfolio are substantially higher than ME and VOL of the decile-10 portfolio. Hence
the first characteristic factor is long (short) in mutual funds that hold small (large) stocks with low
(high) volume. By the same token, it is long (short) in funds with low (high) price multiples and high
(low) bid-ask spreads. The second factor, shown in Panel B, is related to price multiples (negative)
and growth rates (positive) and has therefore the interpretation of a “value/growth” factor. The third
factor is positively related to ME and VOL while the fourth factor is negatively related to TURN, VOL,
and ME and positively related to OP and QUAL.

Note that the characteristics of the Tucker factors are consistent with the composition of the char-
acteristics loading matrix in Panel C of Figure 8 and the factors of the 2-dimensional representation in
Figure 10. For example, the loadings of growth rates and price multiples of the second factor are posi-
tive and negative, respectively, which is also true for the second factor, 𝙵2

𝑇𝐶, in Panel B of Figure 10 and
the characteristic factor in Figure 13. The interpretation of the third factor is also consistent across
representations.26

The factors also vary in terms of the types of funds that are in their underlying portfolios. For
example, 60% and 79% of the funds in the decile-10 portfolio of the second and third factors are
“growth” funds while 65% and 48% of the funds in their decile-1 portfolios are “value” funds. On the

25To distinguish characteristic factors derived from the Tucker model and pricing factors, I use lower case 𝐟𝑡 for the latter.
Since the signs of Tucker components are not identified, I normalize the pricing factors so that their means are positive.

26The interpretation of the first factor is slightly different since it is related to means so that its loadings in Figures 8 and
10 are positive, unlike those of the higher order factors. Since the first Tucker factor is nevertheless a long/short factor, its
characteristics are not directly related to its loadings.
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other hand, less than 7% of the funds in the tenth deciles are “value” funds and less than 2% of the
funds in the first decile portfolio are “growth” funds. The differences between the compositions of
the decile-1 and decile-10 portfolios of the other factors are less pronounced. For the first factor, 45%
(15%) of funds in the tenth (first) deciles are cap-based while 30% (6%) of the first (tenth) decile of the
fourth factor are “sector”funds.

Table 5 shows descriptive statistics of excess returns of in-sample (Panel A) and out-of-sample
(Panel B) Tucker factors of the five factors with the highest mean returns. For comparison, I compute
decile portfolios based on univariate sorts on each of the 𝐶=25 individual characteristics. The results
for the five characteristics with the largest mean returns are in Panel C. The fifth in-sample Tucker
factor has the highest mean excess return of 5.52% (annualized) and a Sharpe ratio of 0.89. The alphas
from time-series regressions on the market (CAPM) and the 3-factor Fama-French model are 4.88% and
5.23%, respectively, and statistically significant at the 5% level.27 The mean returns of the next four
factors range from 2.56% to 3.66% with Sharpe ratios between 0.42 and 0.72. All CAPM alphas are
statistically significant at least at the 10% level and three of five FF3 alphas are statistically significant.
The pattern for out-of-sample factors in Panel B is similar but somewhat weaker. Mean returns and
Sharpe ratios are slightly lower and three of five CAPM and FF3 alphas are statistically significant.

Compared to the returns of Tucker factors, the returns of portfolios based on traditional char-
acteristic sorts are substantially lower. The long/short portfolio constructed from sorts on expected
long-term growth (ELTG) yields the highest mean return, followed by portfolios based on reversal (REV)
and the growth index (GR). Except for the quality (QUAL) portfolio, Sharpe ratios are lower than those
of Tucker factors. Among all 25 characteristic portfolios, only two (QUAL and OP) have significant
CAPM alphas while only the QUAL FF3-alpha is significant.

5.2. Tucker factors and the cross-section of mutual fund returns

Next, I study whether the characteristic factors of the tensor model are relevant for the cross-section
of mutual fund returns. First, I investigate whether Tucker characteristic factors are directly linked to
mutual fund returns. Second, I use the returns of long/short factors that are derived from the Tucker
model as factors in linear cross-sectional asset pricing models.

To assess whether characteristics are related to returns, the standard approach is to regress excess
returns on lagged characteristics. Instead, I use lagged Tucker characteristic factors 𝗙(𝐶)

𝑡,(𝑛) as indepen-
dent variables. There are several methods to estimate such regressions. The most popular approach
is due to Fama and MacBeth (Fama and MacBeth (1973)), which estimates cross-sectional regressions
in each time period. Coefficient estimates are obtained by sample means of the 𝑇 regression coeffi-
cients. This method allows for time variation in betas but requires a large time series dimension for a
reliable second-stage estimation. The data set used in this paper has a relatively short time series di-
mension 𝑇=34 but a large cross-section of 𝑁=934 mutual funds. I, therefore, use a panel regression

27Note that the time series is relatively short since 𝑇=34. Since the 𝑡-statistnc of a sample mean of an i.i.d. time series of
returns is 𝑡-stat=𝑅𝑡/𝜎(𝑅𝑡)=√𝑇𝑅𝑡/𝜎(𝑅𝑡)=√𝑇SR, statistical significance at 1%, 5%, and 10% levels require SR of at least 0.29,
0.35, and 0.45, respectively.
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to estimate the model and include time fixed effects to capture variation across quarters:

𝑅𝑒
𝑚,𝑡+1 =𝛼+𝛃⊺𝗙(𝐶)

𝑡,(𝑛)+𝛾𝑡+𝑒𝑚,𝑡+1, (26)

where 𝑅𝑒
𝑚,𝑡+1 is the excess return of fund 𝑛 in quarter 𝑡+1 and 𝗙(𝐶)

𝑡,(𝑛). 𝛾𝑡 are time fixed effects. The 𝗙(𝐶)
𝑡,(𝑛)

factors are normalized to a unit standard deviation to make the regression coefficients comparable.
The results are reported in Table 6 for in-sample (Panel A) and out-of-sample (Panel B) Tucker

characteristic factors. The table shows the regression coefficients of the 𝐾𝐶 =10 Tucker factors and
three 𝑡-statistics in parentheses based on heteroskedasticity-corrected HAC, time-clustered, and entity-
clustered standard errors. The between-𝑅2 in the last column measures the fit across funds after all
time effects are removed.

Consider first the results for in-sample factors. Recall that factors are scaled such that the mean
returns of the associated long/short factors are positive. Although there is no mechanical link be-
tween long/short factors and regression coefficients in (26), nine out of 10 regression coefficients are
positive. The HAC 𝑡-statistics and 𝑡-statistics based on entity-clustered standard errors are similar for
most factors. Time-clustered 𝑡-statistics are significantly smaller suggesting that the identification
stems from the mutual fund dimension rather than the time dimension, which is not surprising given
the short sample span. Eight out of 10 coefficients are statistically significant using HAC and entity-
clustered 𝑡-statistics and three are significant using time-clustered standard errors. The between-𝑅2 is
50%, which implies that Tucker factors capture half the variation in returns across mutual funds. The
results for out-sample factors in Panel B are comparable to those for in-sample factors. Seven out of
10 coefficients are statistically significant using HAC and entity-clustered 𝑡-statistics. The between-𝑅2

is 37%. For comparison, I run the panel regression (26) using original characteristics as independent
variables. The coefficients and 𝑡-statistics for the 10 characteristics with the largest coefficients are
reported in Panel C. The regression coefficients have similar magnitudes as those for Tucker factors
but, except for REV, the 𝑡-statistics are smaller. Note that the between-𝑅2 of the regression with 25
characteristics is lower than that of the regression with 10 Tucker factors.

These results suggest that the Tucker characteristic factors are linked to mutual fund returns.
Moreover, this link appears stronger than the relationship between original characteristics and returns.
Next, investigate whether the associated long/short factors 𝐟Tck,𝑡 are also related to returns of mutual
funds. Since the 𝐟Tck,𝑡 factors are excess returns, they can be used as factors in cross-sectional asset
pricing models. In the remainder of this section, I compare the cross-sectional fit of 𝐟Tck,𝑡 factors to
the fit of Fama-French portfolios. I also construct traditional PCA-cased factors as follows. For each
characteristic, I construct decile-sorted portfolios in quarter 𝑡 and compute their returns in quarter
𝑡+1 yielding time series of 10𝐾𝐶 =250 portfolios. I then estimate the principal components for this
panel of portfolio returns that represent SVD-PCA factors. As for Tucker factors, I consider an in-
sample estimation as well as a recursive estimation using expanding windows. I use the first 10 in-
sample SVD-PCA factors in the further analysis. Since the first 𝐾 observations are lost in the recursive
estimation of a SVD-PCA model with 𝐾 factors, I use only the first five recursive SVD-PCA factors.

Since all pricing factors under consideration are excess returns, I run time series regressions of
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excess returns of mutual funds on a set of candidate pricing factors for each fund 𝑛=1,...,𝑁:

𝑅𝑒
𝑛𝑡 =𝛼𝑛+𝛃⊺

𝑛 𝐟𝑡+𝑒𝑛𝑡, (27)

where 𝐟𝑡 are (excess return) pricing factors. 𝐟𝑡 includes the excess return of the CRSP-VW index as
proxy for the market in all specifications. Let 𝐿 be the number of factors in (27) including the market
return but excluding the constant. The pricing error of fund 𝑛 is 𝛼𝑚. I evaluate models by their root-
mean-squared pricing error (RMSPE) and the mean-absolute pricing errors (MAPE) across all mutual
funds:

RMSPE=
√√√
⎷

1
𝑁

𝑁

∑
𝑛=1

𝛼2
𝑛, MAPE= 1

𝑁

𝑁

∑
𝑛=1

|𝛼𝑛|. (28)

I also compute the mean pricing error (MPE) as a measure of the average over or under-performance
of mutual funds with respect to 𝐟𝑡. The results for the in-sample and out-of-sample portfolios are in
Tables 7 and 8, respectively. Given the relatively short sample, I consider models with no more than
four factors.28 For each set of factors, I add individual factors recursively to avoid searching over many
combinations. In other words, I start by adding the factor that improves the RMSE the most. Then I
search over the remaining factors to find the one with the lowest RMSE. I continue until the number
of factors reaches 𝐿=4.

Panel A of Table 7 shows the results for the CAPM and Fama-French models as benchmarks. The
RMSPE and MAPE of the CAPM are 3.27% and 2.45%, respectively. For comparison, the average mean
return of the mutual funds in the sample is 10.58%. The average CAPM alpha is -1.66% indicating that
mutual funds underperform on average relative to the CAPM. The alphas of 709 of the 934 funds in
the sample are negative. Adding SMB, HML, and MOM as factors lowers pricing errors substantially.29

For example, the pricing errors of the 4-factor model are reduced by about one-third relative to the
CAPM. Alphas of 125 mutual funds are individually statistically significant but only four funds have
significantly positive alphas.30

Panel B reports the results of the in-sample factors derived from the Tucker model with (3,10,10)
components. The Tucker models outperform the Fama-French models with comparable numbers of
factors. For example, the RMSPE of the specification with three factors (the market and the fourth
and 10th factors) is 1.90% compared to 2.59% for the 3-factor Fama-French model. The RMSPE of the
respective models with four factors are 1.87% and 2.35%. The pattern for the MAPE is similar. Note
that the pricing errors are small compared to the average mean fund return of 10.58% suggesting that
the specifications with 𝐿=3,4 capture the cross-section of mean mutual fund returns. For the model
with 𝐿=3 factors, 46 (6) funds have individually significant (positive) alphas.

It turns out that more parsimonious Tucker models perform almost as well as the Tucker(3,10,10)

28Moreover, models with more than 𝐿=4 factors do not improve the results in any of the specifications.
29Including the CMA and INV profitability and investment factors increase the RMSE and their results are, therefore, not

reported.
30Using the GRS-test, the null hypothesis that all alphas are jointly zero is rejected well below the 1% level for all models

considered in this section. I, therefore, do not include the GRS statistnc but report the number of individually significant pricing
errors instead.
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specification. Panel C shows results for a Tucker model of degree (1,4,4). The RMSPE and MAPE of the
models with three or four are almost identical to those of the larger model. I conclude, therefore, that
a model with the market, as well as the second and fourth factors of the parsimonious Tucker(1,4,4)
model, successfully captures the cross-section of mean mutual returns.

Finally, the results for SVD-PCA factors are in Panel D. Models with SVD-PCA factors perform better
than comparable Fama-French models but worse than models with Tucker factors. For example, the
RMSPE of the 𝐿=3model is 2.22% compared to 2.59%, 1.90% and 1.91% the corresponding Fama-French
and Tucker models. The results for the model with four SVD-PCA factors are similar. Hence, factors
derived from the 3-dimensional Tucker representations outperform SVD-PCA factors even though SVD-
PCA models are estimated using time series of mutual fund returns and thus exploit the co-movement
in the return space. In contrast, Tucker models are estimated using only characteristics of mutual
funds and exploit the 3-dimensional co-movements of characteristics of mutual funds observed over
time. In contrast to the SVD-PCA factors, the Tucker characteristic factors are constructed without
any information about returns.

So far, I have only considered models that use only factors of one type. Next, I investigate the fit of
models that combine different factor types. Given the relatively short time series span of the sample,
I do not run horse races with a large number of factors. Instead, I add two factors of a different type
to the specifications in Table 7. Consider, for example, the CAPM, which has an RMSPE of 3.27%. When
the fourth and 10th Tucker factors are added to the model, the RMSPE is reduced to 1.90%, see the
RMSPE*-Tucker column. When the third and sixth SVD-PCA factors are included instead, the RMSPE
shrinks to 2.22% (RMSPE*-PCA column). By the same token, the RMSPE of the 𝐿= 3 Tucker model
increase from 1.90% to 2.24% and 1.91%, respectively, when SMB and HML, and the third and sixth
SVD-PCA factors are added (RMSPE*-FF and RMSPE*-PCA columns). Without exception, adding Tucker
factors to Fama-French and SVD-PCAmodels reduces the pricing errors, while adding Fama-French and
SVD-PCA factors to Tucker factors does not lower the RMSPE, confirming that Tucker factors contain
more relevant information about the cross-section of fund returns than Fama-French and SVD-PCA
factors.

Table 8 reports the pricing errors for out-of-sample Tucker and SVD-PCA factors. The results for
Tucker factors resemble those of the in-sample factors, confirming that the Tucker model yields con-
sistent results even for short samples. In contrast, pricing errors for out-of-sample SVD-PCA factors
are substantially higher than corresponding in-sample factors. For example, the RMSPE of the model
with four out-of-sample factors is 2.74% compared to 2.06% for the in-sample model.

I conclude that the characteristic factors derived from the Tucker decomposition price the cross-
section of mutual fund returns better than popular benchmark models, whether the factors are based
on full-sample or recursive out-of-sample estimations. A parsimonious specification with two Tucker
factors in addition to the market excess return outperforms standard benchmark models with Fama-
French factors and factors based on SVD-PCA estimation of panels of mutual fund returns even when
these models include more factors. Adding Fama-French-type factors or SVD-PCA factors to the 2-
factor Tucker model increases the pricing errors. In contrast, the pricing errors of Fama-French and
SVD-PCA specifications decrease when Tucker factors are added.
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5.3. Pricing errors

Next, I investigate the properties of pricing errors of some of the Tucker factor models studied
above. I focus on models with 𝐿=3 factor but the results for the other models are similar. Table 9
reports root-mean-square pricing errors by fund type: cap-based (C), growth (G), value (V), balanced
(B), and “sector”(S), other (O). First, consider the fit by fund type. Sector funds are associated with the
highest pricing errors for all models with a mean RMSPE across models of 4.20%, followed by “cap-
based” funds with a mean of 2.36%. Leaving “other” funds aside, growth and “balanced” funds have
the smallest pricing errors with means of 1.82% and 1.88%, respectively.

Consider next the fit by model. Without exception, RMSPE are the smallest for Tucker factors
across all categories showing that the fit of these models is not due to a specific type of fund. Except
for “sector” funds, the RMSPE are well below 2% for all categories. The differences in fit compared
to the other models are particularly large for “sector”and “cap-based” funds and relatively small for
“growth” funds. The in-sample PCA factor model yields a reasonably good fit while the pricing errors
for the CAPM, the 3-factor Fama-French model, and the specification with out-of-sample PCA factors
are substantially higher.

How are pricing errors related to the properties of mutual funds? To answer this question, I regress
pricing errors on observable mutual fund properties. Let 𝘇𝑛 be a vector of observable properties of
fund 𝑛. I consider two specifications. First, I regress pricing errors 𝛼𝑛 of a model on 𝘇𝑛, and, second,
I use absolute pricing errors as dependent variables:

𝛼𝑛 =𝛾0+𝛄⊺𝘇𝑛+𝑒𝑛, (29)

|𝛼𝑛|=𝛿0+𝛅⊺𝘇𝑛+𝑣𝑛. (30)

To make the regression coefficients comparable, I standardize the independent variables to have zero
means and unit standard deviations. I consider two sets of independent variables.

First, I use time series means of the 25 characteristics as independent variables. If an asset pricing
model captures a possible link between a characteristic and returns correctly, its pricing errors should
not depend on the characteristic itself. In other words, this regression is a specification test of a factor
model.31 The results are in Table 10. The table does not report standard errors for brevity but indicates
statistical significance at the 1%, 5%, and 10% levels. The first column shows the results when mean
fund returns (net of the grand mean) are used as dependent variables. For this sample period, 18 out
of 25 characteristics are significantly related to mean returns at the 5% level. The largest and most
negative coefficients are those of ME and MS, and VOL and BM, respectively. The mean of the absolute
values of all coefficients is 1.48.

With few exceptions, the coefficients for the alphas of the in-sample Tuckermodels are substantially
smaller. The three largest coefficients are 1.60 (INV), 1.42 (MOM), and 1.41 (BIDASK) and the three
smallest are -1.55 (REV), -1.09 (EPPROJ), and -1.08 (SG). Note that patterns of regression coefficients
are related to the fit of the Tucker model (See Panel C of Figure 5). For example, the MSE of the
Tucker model are highest for MOM and REV, which are the characteristics with the largest coefficients

31The regression using absolute alphas is of less interest but is reported in Table D.2.
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in absolute value. The mean of the absolute values of the coefficients is 0.68, which is substantially
smaller than the mean of mean returns in the first column. The results for the model with out-of-
sample Tucker in column 3 are similar to those for in-sample factors.

The coefficients of the CAPM, the 3-factor Fama-French, and the PCA models in columns 4 to 7
are generally larger (in absolute value) and more statistically significant than the coefficients for the
Tucker models. The respective numbers of statistically significant (5% level) coefficients are 19, 16, 15,
and 19; similar to the 16 significant coefficients for raw mean returns. The means of (absolute) values
of the coefficients are 1.46, 1.26, 1.09, and 1.62, which is also close to 1.48 for raw returns. While the
Tucker models do not capture the link between characteristics and returns perfectly, the pricing errors
of the CAPM, the 3-factor Fama-French model, as well the PCA models inherit many of the properties
of raw returns, suggesting that the models do not capture the relationships of characteristics and fund
returns.

Next, I regress pricing errors on other observable fund variables. The regressors are time series
means of the log of total net assets (TNA), the log of the number of stocks in the fund’s portfolio,
portfolio turnover, the expense ratio, and the active share. Table 11 reports the results of regressions
(29) and (29) in Panels A and B, respectively. As a benchmark, I first regress the difference of mean
returns of individual funds, 𝑅𝑚, and the grandmean of fund returns, 𝑅𝑚 on characteristics, see the first
column of Table 11. The expense ratio coefficient is the largest in absolute value and is significant at
the 1% level. Since it is negative, funds with higher expense ratios have on average lower mean returns
(net of expenses). Similarly, the negative and significant coefficient on active share implies that funds
with a higher active share tend to have lower returns. On the other hand, mutual funds with high
turnover and a larger number of stocks in their portfolios have higher mean returns. The coefficient
on the log of TNA is positive but statistically insignificant.

Pricing errors, or alphas, reflect the performance of a mutual fund after removing the exposure
of fund returns to the factors of the asset pricing model under consideration. Hence regressions of
pricing errors on characteristics reveal patterns in alphas that are not accounted for by the factors.
Coefficients of some characteristics are consistent across models. For example, funds with high ex-
pense ratios have lower alphas for all models. The log(TNA) coefficients are all positive and mostly
significant implying that larger funds tend to have high alphas. Turnover has a positive coefficient
for the three models with the best fits (the two Tucker models and the in-sample PCA model) but neg-
ative coefficients for the other three models. Recall that firms with high active shares are associated
with low mean returns. In contrast, the coefficients on Tucker models are positive and statistically
significant.

The dependent variable in (30) is the absolute pricing error, hence this regression asks how the
degree of mispricing is related to fund properties. First, the coefficients on the log of the average
number of stocks in fund portfolios are strongly and significantly negatively linked to absolute pricing
errors. Hence, funds that hold portfolios with many stocks are better priced by all models than funds
with few stocks in their portfolios. In contrast, mutual funds with high (low) turnover have large (small)
absolute pricing errors. Expense ratios are positively linked to pricing errors and are statistically
significant for the three models with the best overall fits. The coefficients for log TNA are positive but
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economically and statistically insignificant while the signs on the active share coefficients can have
either sign.

6. Conclusion

This paper makes two contributions. First, I use tensor factor models (TFM) to summarize the in-
formation in a 3-dimensional data set of characteristics of mutual funds observed over time. TFM
exploit dependencies in all three dimensions simultaneously and allow for complex patterns across
characteristics. I find that parsimonious TFM capture over 90% of the variation in the data while com-
pressing the data by over 95%. The factors of the tensor model share many of the familiar properties
of 2-dimensional factor analysis. The estimation is stable over time and yields reliable results in short
samples.

Second, I propose an alternative approach to resolving the “factor zoo” conundrum in asset pricing
using TFM. The standard approach first sorts assets into characteristic portfolios and then addresses
the “factor zoo” puzzle using panels of portfolio returns using dimension reduction methods. Instead,
I first reduce the dimensionality of the data in the characteristic space using TFM and then form portfo-
lios based on a small number of TFM characteristic factors. This methodology allows for dependencies
across all characteristics and uses information across mutual funds and across time. I find that the
TFM characteristic factors are related to the returns of mutual funds and capture about 50% of the
cross-sectional variation in returns. Mean returns and Sharpe ratios of the TFM pricing factors are
higher than those of pricing factors obtained from PCA estimations of returns of portfolios based on
the original characteristics. Moreover, the TFM factors capture the cross-section of mean mutual fund
returns better than Fama-French models and PCA-based pricing factors.
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Table 1: Mutual Fund Characteristics

Category Characteristics

Multiples Book-to-market (BM)
Earnings-to-price (EP)
Projected ep (EPPROJ)
Cash flow-to-price (CFP)
Sales-to-price (SP)
Dividend-to-price (DP)
Industry-adjusted book-to-market (ADJBM)

Growth rates Earnings (EG)
Long-term earnings (LTEG)
Book value (BG)
Cash flow (CFP)
Sales (SG)

Morningstar Value/growth (MS)
Multiples (MULT)
Growth rates (GR)

Momentum/reversal Cumulative return 𝑡−7 to 𝑡−2 (MOM)
Cumulative return 𝑡−12 to 𝑡−7 (REV)

Liquidity Bid-ask spread (BIDASK)
Pastor-Stambaugh (PSLIQ)
Turnover (TURN)
Volume (VOL)

Other Market cap (ME)
Operating profitability (OP)
Investment (INV)
Quality (QUAL)

Note: The table lists the mutual fund characteristics used in the paper. See Lettau et al. (2021) for a detailed description of the data.



Table 2: Sample Statistncs

No. Mean Std. Dev. 25% pct. 50% pct. 75% pct.

Panel A: Properties of Mutual Funds
TNA ($ mil.) 1909.70 4477.82 254.04 676.82 1789.74
No. of stocks 120.22 186.07 56.43 80.72 120.90
Mean Excess Return (% p.a.) 11.67 2.93 10.56 11.84 13.20
Std. Dev. (% p.a.) 14.40 2.17 13.20 14.36 15.65
CAPM 𝛽 1.00 0.15 0.95 1.03 1.10
CAPM 𝛼 (% p.a.) -1.59 2.77 -3.01 -1.71 -0.06

Panel B: Mean Returns by Fund Type
Growth 346 12.75 1.87 11.64 12.89 14.05
Cap-based 213 11.23 3.44 10.14 11.80 12.99
Value 202 10.68 1.20 10.03 10.85 11.53
Sector 116 11.21 5.28 9.44 11.87 14.78
Balanced 45 11.14 1.64 10.84 11.65 12.17
Other 12 11.86 0.72 11.72 11.89 12.29

Note: The table reports summary statistics of the distributions of means by mutual fund. The sample period is 2010Q3 to 2018Q4.



Table 3: Monte Carlo Simulation

(𝐾𝑇,𝐾𝑁,𝐾𝐶) (𝑇,𝑁,𝐶) 𝜎𝑒/𝜎𝑥
0 0.1 0.25 0.5 1

(2, 4, 4) (100, 100, 100) 0.00% 0.00% 0.00% 0.00% 0.01%
(100, 500, 20) 0.00% 0.00% 0.00% 0.01% 0.02%
(50, 1000, 20) 0.00% 0.00% 0.01% 0.01% 0.02%
(25, 2000, 20) 0.00% 0.00% 0.01% 0.01% 0.03%

(5, 10, 5) (100, 100, 100) 0.00% 0.00% 0.01% 0.02% 0.04%
(100, 500, 20) 0.00% 0.01% 0.02% 0.03% 0.07%
(50, 1000, 20) 0.00% 0.01% 0.02% 0.05% 0.09%
(25, 2000, 20) 0.00% 0.01% 0.03% 0.06% 0.13%

(10, 10, 10) (100, 100, 100) 0.00% 0.01% 0.03% 0.06% 0.11%
(100, 500, 20) 0.00% 0.02% 0.04% 0.08% 0.15%
(50, 1000, 20) 0.00% 0.02% 0.05% 0.10% 0.20%
(25, 2000, 20) 0.00% 0.03% 0.07% 0.13% 0.27%

(10, 20, 10) (100, 100, 100) 0.00% 0.02% 0.05% 0.10% 0.19%
(100, 500, 20) 0.00% 0.03% 0.07% 0.15% 0.29%
(50, 1000, 20) 0.00% 0.04% 0.10% 0.19% 0.39%
(25, 2000, 20) 0.00% 0.05% 0.13% 0.26% 0.53%

(20, 40, 20) (100, 100, 100) 0.00% 0.11% 0.27% 0.54% 1.10%
(100, 500, 20) 0.00% 0.14% 0.35% 0.70% 1.46%
(50, 1000, 20) 0.00% 0.17% 0.43% 0.87% 1.83%
(25, 2000, 20) 0.00% 0.22% 0.56% 1.14% 2.41%

(20, 60, 20) (100, 100, 100) 0.00% 0.15% 0.39% 0.77% 1.58%
(100, 500, 20) 0.00% 0.20% 0.51% 1.04% 2.20%
(50, 1000, 20) 0.00% 0.25% 0.64% 1.30% 2.80%
(25, 2000, 20) 0.00% 0.34% 0.84% 1.73% 3.73%

Note: This table reports results from a Monte Carlo simulation for estimations of Tucker models for different dimensions of the
data tensor and orders of the factor models. For a given size (𝑇,𝑁,𝐶), I simulate 1,000 samples of Tucker factor models with order
(𝐾𝑇,𝐾𝑁,𝐾𝐶), 𝓧𝓧𝓧𝑖 and estimate the Tucker model for the true model plus noise, 𝓧𝓧𝓧𝑒 =𝓧𝓧𝓧+𝜎𝑒𝓔𝓔𝓔. The table reports the mean RMSE of
𝓧𝓧𝓧−𝓧𝓧𝓧. The columns correspond to different values of the standard deviation of the noise tensor, 𝜎𝑒, relative to the standard devia-
tion of the true factor tensor, 𝜎𝑥.



Table 4: Distributions of Errors of Tucker Models

(𝐾𝑇,𝐾𝑁,𝐾𝐶)
(1,4,4) (3,10,10) (8,12,12) (10,20,15)

Panel A: Moments
MSE 0.08 0.05 0.04 0.03
𝑅2 0.85 0.90 0.93 0.95
Mean −0.00 0.00 0.00 −0.00
Median 0.00 0.00 0.00 −0.00
Std. Dev. 0.29 0.23 0.20 0.17
Skew −0.06 0.10 0.04 0.05
Kurt. 4.05 4.98 4.04 4.44

Panel B: Percentiles
Min −2.41 −2.40 −2.24 −2.20
0.005 −0.98 −0.74 −0.63 −0.53
0.05 −0.45 −0.36 −0.31 −0.26
0.25 −0.16 −0.13 −0.11 −0.09
0.75 0.16 0.13 0.11 0.09
0.95 0.45 0.36 0.31 0.27
0.995 0.91 0.75 0.64 0.53
Max 2.87 2.98 2.89 2.83

Note: The table reports summary statistics of the distributions of errors of Tucker models with (𝐾𝑇,𝐾𝑁,𝐾𝐶) components. The sample
period is 2010Q3 to 2018Q4.



Table 5: Returns of Tucker Factors

A: In-sample Tucker Factors
5 9 4 3 10

Mean 5.52 3.66 3.30 3.19 2.56
Std. Dev. 6.23 7.96 4.60 7.62 6.08
SR 0.89 0.46 0.72 0.42 0.42
CAPM 𝛼 4.88∗∗ 5.38∗ 5.20∗∗∗ 5.58∗∗ 5.09∗∗

(2.04) (1.80) (3.25) (2.01) (2.41)
FF3 𝛼 5.23∗∗ 3.60 4.04∗∗ 1.44 4.11∗∗

(2.18) (1.49) (2.57) (1.22) (2.07)

B: Out-of-sample Tucker Factors
5 2 10 1 4

Mean 4.00 3.27 2.84 2.80 2.74
Std. Dev. 6.03 8.17 4.14 5.35 5.24
SR 0.66 0.40 0.69 0.52 0.52
CAPM 𝛼 4.66∗∗ 0.84 4.18∗∗∗ 1.26 5.13∗∗∗

(2.02) (0.28) (2.79) (0.64) (2.89)
FF3 𝛼 3.67 0.89 4.02∗∗∗ 3.34∗∗∗ 3.58∗∗

(1.57) (0.45) (2.62) (2.93) (2.13)

C: PCA Factors
ELTG REV GR QUAL INV

Mean 2.92 2.39 2.04 1.98 1.72
Std. Dev. 8.72 6.36 8.56 4.32 7.79
SR 0.34 0.38 0.24 0.46 0.22
CAPM 𝛼 −0.78 0.53 −1.64 3.67∗∗ 0.34

(−0.26) (0.23) (−0.56) (2.41) (0.11)
FF3 𝛼 −0.18 0.05 −1.11 1.87∗ −0.28

(−0.08) (0.03) (−0.51) (1.78) (−0.13)

Note: This table reports annualized means, standard deviations, Sharpe ratios, CAPM alphas, and alphas of the 3-factor Fama-French
model of excess returns of in-sample and out-of-sample Tucker factors (Panels A and B, respectively), factors based on fund charac-
teristics (Panel C), and factors derived from in-sample and out-of-sample PCA estimations of the panel of decile portfolios of all 25
characteristics. In-sample Tucker factors are derived from a Tucker(3,10,10) and out-of-sample factors are based on a Tucker(2,20,10)
model. 𝑡-statistics of alphas are in parentheses. The sample period is 2010Q3 to 2018Q4.



Table 6: Panel Regression with Tucker Factors

1 2 3 4 5 6 7 8 9 10 𝑅2

Panel A: In-sample Factors

𝛃 0.36 0.10 0.34 0.26 0.30 0.29 0.35 −0.05 0.09 0.22 0.50
𝑡-HAC (6.29) (3.61) (7.94) (7.83) (9.13) (7.36) (8.47) (−1.81) (3.04) (5.62)
𝑡-entity (6.49) (3.51) (9.08) (8.77) (10.47) (8.26) (14.37) (−1.92) (3.28) (6.87)
𝑡-time (2.27) (0.42) (1.71) (2.27) (1.73) (2.19) (1.56) (−0.45) (0.35) (0.92)

Panel B: Out-of-sample Factors

𝛃 0.07 0.29 0.04 0.19 0.27 0.13 0.14 0.10 −0.02 0.03 0.37
𝑡-HAC (1.87) (11.41) (1.18) (6.22) (8.73) (4.25) (4.93) (3.43) (−0.60) (1.28)
𝑡-entity (2.12) (13.76) (1.12) (4.27) (6.47) (4.79) (5.39) (4.10) (−0.57) (1.72)
𝑡-time (0.40) (1.09) (0.19) (1.73) (2.32) (1.21) (1.13) (1.21) (−0.18) (0.53)

Panel C: Characteristics

MS MULT REV EP ELTG BIDASK ADJBM CFG OP VOL 𝑅2

𝛃 0.61 0.47 0.44 0.33 0.28 0.18 0.14 0.13 0.08 0.04 0.45
𝑡-HAC (2.33) (1.73) (9.04) (4.10) (2.00) (2.46) (1.92) (2.51) (1.36) (0.18)
𝑡-entity (2.48) (1.57) (8.66) (4.94) (1.97) (2.17) (2.39) (2.14) (1.48) (0.18)
𝑡-time (1.04) (0.64) (2.24) (1.37) (0.51) (0.71) (0.63) (0.81) (0.64) (0.08)

Note: This table shows the results of panel regressions of mutual fund excess returns on Tucker factors:

𝑅𝑒
𝑛,𝑡+1 =𝛼+𝛃⊺𝗙(𝐶)

𝑡,(𝑛)+𝛾𝑡+𝑒𝑛,𝑡+1,

where 𝑅𝑒
𝑛,𝑡+1 is the excess return of fund 𝑛 in quarter 𝑡+1 and 𝗙(𝐶)

𝑡,(𝑛). 𝛾𝑡 are time fixed effects. The 𝗙(𝐶)
𝑡,(𝑛) factors are normalized to a

unit standard deviation to make the regression coefficients comparable. The between 𝑅2 measures the fit across funds after all time
effects are removed. Results for in-sample factors are reported in Panel A and Panel B reports results for out-of-sample factors. The
table shows 𝑡-statistics based on heteroskedasticity-corrected HAC, time-clustered, and entity-clustered standard errors. The sample
period is 2010Q3 to 2018Q4.



Table 7: Pricing Errors for In-sample Factors

Factors L MPE MAPE RMSPE RMSPE*
Tucker FF PCA

Panel A: CAPM and Fama-French Factors

MKT 1 -1.66% 2.45% 3.27% 1.90% 2.22%
MKT, SMB 2 -0.77% 2.09% 2.85% 2.02% 2.71%
MKT, SMB, HML 3 -0.83% 1.87% 2.59% 2.24% 2.48%
MKT, SMB, HML, MOM 4 -0.73% 1.75% 2.35% 2.23% 2.39%

Panel B: Tucker(3,10,10) Factors

MKT, 10 2 -1.34% 1.89% 2.44% 2.21% 1.94%
MKT, 4, 10 3 -0.17% 1.46% 1.90% 2.24% 1.91%
MKT, 4, 10, 1 4 -0.41% 1.43% 1.87% 2.26% 1.88%

Panel C: Tucker(1,4,4) Factors

MKT, 4 2 -0.29% 2.18% 2.80% 2.47% 2.73%
MKT, 2, 4 3 -0.65% 1.48% 1.91% 2.46% 1.88%
MKT, 2, 3, 4 4 -0.53% 1.45% 1.87% 2.44% 1.87%

Panel D: PCA Factors

MKT, 3 2 -0.75% 1.88% 2.58% 1.90% 2.64%
MKT, 3, 6 3 -0.36% 1.66% 2.22% 1.91% 2.48%
MKT, 3, 6, 2 4 -0.48% 1.53% 2.06% 1.88% 2.22%

Note: This table shows the results of time series estimations of linear asset pricing models. The factors are Fama-French factors (Panel
A), factors derived from Tucker(3,10,10) and Tucker(1,4,4) models (Panels B and C, respectively), and PCA factors (Panel D). 𝐿 is the
number of factors, MPE is the mean pricing error, MAPE is the mean absolute pricing error, and RMSE is the root-mean-square pricing
error. RMSPE* is the root mean square pricing error when Tucker factors (“Tucker” column), SMB and HML (column “FF”), or PCA fac-
tors (column “PCA”) is added to the specification. The sample period is 2010Q3 to 2018Q4.



Table 8: Pricing Errors for Out-of-sample Factors

Factors L MPE MAPE RMSPE RMSPE*
Tucker FF PCA

Panel A: Tucker(2,20,10) Factors

MKT, 4 2 -0.38% 1.87% 2.40% 2.42% 2.28%
MKT, 2, 4 3 -0.63% 1.39% 1.79% 1.80% 2.12%
MKT, 2, 4, 3 4 -0.52% 1.40% 1.78% 1.77% 2.13%

Panel B: Tucker(1,4,4) Factors

MKT, 4 2 -0.44% 2.04% 2.62% 2.55% 2.47%
MKT, 2, 4 3 -0.76% 1.45% 1.87% 1.83% 2.28%
MKT, 2, 3, 4 4 -0.59% 1.42% 1.83% 1.85% 2.28%

Panel C: PCA Factors

MKT, 3 2 -1.02% 2.10% 2.92% 2.42% 2.80%
MKT, 3, 4 3 -0.97% 2.01% 2.76% 2.53% 2.73%
MKT, 3, 4, 5 4 -0.94% 1.98% 2.74% 2.56% 2.72%

Note: See note of Table 7 but for out-of-sample factors. The sample period is 2010Q3 to 2018Q4.



Table 9: RMSPE by Fund Type

C B G V S O

Tucker IS 1.85% 1.53% 1.65% 1.82% 2.80% 0.99%
Tucker OOS 1.72% 1.63% 1.68% 1.49% 2.66% 0.86%
CAPM 3.37% 2.25% 2.05% 3.06% 5.84% 1.19%
FF3 2.54% 2.04% 1.85% 1.92% 4.86% 1.20%
PCA IS 2.12% 1.77% 1.81% 1.92% 3.73% 1.42%
PCA OOS 2.55% 2.09% 1.89% 2.22% 5.31% 1.31%

Note: This table shows average RMSPE of the factor models with 𝐿=3 factors in Tables 7 and 8 by fund types: cap-based (C), growth
(G), value (V), balanced (B), and “sector”(S), other (O). The sample period is 2010Q3 to 2018Q4.



Table 10: Pricing Errors and Fund Characteristics

𝑅𝑛−𝑅𝑛 Tucker IS Tucker OOS CAPM FF3 PCA IS PCA OOS

const −0.00 −0.17∗∗∗ −0.63∗∗∗ −1.66∗∗∗ −0.83∗∗∗ −0.36∗∗∗ −0.97∗∗∗

ADJBM 1.02∗∗∗ −0.58∗∗∗ −0.13 0.59∗∗∗ 0.37∗ 0.28 0.40∗

BG −1.23∗∗∗ −0.66∗∗ −0.92∗∗∗ −1.11∗∗∗ −1.01∗∗∗ −1.05∗∗∗ −0.95∗∗∗

BIDASK 0.54∗ 1.41∗∗∗ 1.78∗∗∗ 1.63∗∗∗ 1.36∗∗∗ 1.86∗∗∗ 1.60∗∗∗

BM −3.02∗∗∗ 0.42 −0.19 −1.99∗∗∗ −2.03∗∗∗ −0.70∗∗ −1.60∗∗∗

CFG 0.70∗∗ −0.25 −0.24 −0.31 −0.21 0.47∗ −0.39
CFP −2.07∗∗∗ 0.28 −0.46 −2.16∗∗∗ −1.73∗∗∗ −1.43∗∗∗ −1.86∗∗∗

DP −1.45∗∗∗ −0.48∗∗ −0.66∗∗∗ −1.21∗∗∗ −1.12∗∗∗ −0.62∗∗∗ −1.32∗∗∗

EG −0.98∗∗ 0.51 0.52∗ 0.93∗∗∗ 0.41 0.33 1.23∗∗∗

ELTG 0.80 0.63 −0.44 0.75 −0.21 −0.68 1.68∗∗

EP 1.15∗∗∗ −0.38 −0.01 0.68∗∗ 0.58∗∗ 1.19∗∗∗ 0.48
EPPROJ −1.04 −1.09∗ −1.09∗∗ −3.12∗∗∗ −2.98∗∗∗ −1.07∗ −3.35∗∗∗

GR −0.23 −0.61 −0.94 −4.31∗∗∗ −1.41 0.92 −6.74∗∗∗

INV 1.85∗∗∗ 1.60∗∗∗ 1.67∗∗∗ 1.35∗∗∗ 1.36∗∗∗ 1.42∗∗∗ 1.21∗∗∗

ME 4.82∗∗∗ 0.97∗ 1.88∗∗∗ 3.13∗∗∗ 2.92∗∗∗ 4.28∗∗∗ 3.45∗∗∗

MOM −0.46 1.42∗∗∗ 0.91∗∗∗ 0.56 0.56 0.97∗∗∗ 0.95∗∗

MS 4.53∗∗∗ 0.80 0.13 1.86 3.20∗∗ 2.57∗∗ −0.66
MULT 0.52 0.64 1.38 3.25∗∗ 2.69∗ −0.55 4.83∗∗∗

OP 0.41∗∗ 0.10 0.07 0.76∗∗∗ 0.44∗∗ 0.40∗∗ 0.53∗∗∗

PSLIQ 1.07∗∗∗ 0.33∗ 0.63∗∗∗ 0.93∗∗∗ 1.02∗∗∗ 0.69∗∗∗ 0.81∗∗∗

QUAL −0.90∗∗∗ 0.21∗∗ −0.00 −0.45∗∗∗ −0.55∗∗∗ −0.09 −0.47∗∗∗

REV 1.52∗∗∗ −1.55∗∗∗ −0.72∗∗ 0.12 0.04 −0.56 −0.51
SG 0.41 −1.08∗∗∗ −0.54 1.99∗∗∗ 1.11∗∗ −0.45 2.09∗∗∗

SP 0.33 0.02 −0.01 0.20 0.10 0.54∗∗∗ 0.00
TURN −0.21∗ 0.50∗∗∗ 0.22∗∗ −0.48∗∗∗ −0.30∗∗ 0.33∗∗∗ −0.30∗∗

VOL −5.79∗∗∗ −0.55 −1.14∗∗ −2.51∗∗∗ −3.77∗∗∗ −3.74∗∗∗ −3.11∗∗∗

𝑅2 0.62 0.30 0.23 0.66 0.52 0.46 0.52

This table reports the results of regressions of pricing errors from factor models on the average expense ratio (Exp. ratio), the average
number of stocks (No. stocks), and the average active share. The variables are standardized to have means of zero and unit standard
deviations. The factors in the models are those listed in Tables 7 and 8 for 𝐿=3. Statistical significance at the 1%, 5%, and 10% levels is
indicated by three, two, and one star, respectively. The sample period is 2010Q3 to 2018Q4.



Table 11: Pricing Errors and Fund Properties

𝑅𝑛−𝑅𝑛 Tucker IS Tucker OOS CAPM FF3 PCA IS PCA OOS

Panel A: Pricing Errors

const 0.10 −0.14∗∗ −0.60∗∗∗ −1.59∗∗∗ −0.74∗∗∗ −0.30∗∗∗ −0.91∗∗∗

(0.09) (0.06) (0.06) (0.09) (0.08) (0.07) (0.09)
log(TNA) 0.12 0.23∗∗∗ 0.16∗∗ 0.20∗∗ 0.09 0.14∗ 0.21∗∗

(0.11) (0.07) (0.07) (0.10) (0.09) (0.08) (0.10)
log(No. stocks) 0.19∗ −0.03 0.04 −0.39∗∗∗ 0.44∗∗∗ 0.13 −0.01

(0.11) (0.07) (0.07) (0.11) (0.10) (0.09) (0.10)
Turnover 0.27∗∗ 0.64∗∗∗ 0.17∗∗ −0.25∗∗ −0.31∗∗∗ 0.40∗∗∗ −0.28∗∗∗

(0.11) (0.07) (0.07) (0.10) (0.09) (0.08) (0.10)
Exp. ratio −0.34∗∗∗ −0.24∗∗∗ −0.28∗∗∗ −0.28∗∗ −0.23∗∗ −0.25∗∗∗ −0.22∗∗

(0.12) (0.07) (0.07) (0.11) (0.10) (0.09) (0.11)
Active share −0.28∗∗ 0.29∗∗∗ 0.19∗∗∗ −0.64∗∗∗ 0.51∗∗∗ 0.03 0.09

(0.12) (0.08) (0.07) (0.11) (0.10) (0.09) (0.11)
Adjusted 𝑅2 0.05 0.17 0.05 0.12 0.05 0.02 0.06

Panel B: Absolute Pricing Errors

const 1.84∗∗∗ 1.46∗∗∗ 1.39∗∗∗ 1.84∗∗∗ 1.84∗∗∗ 1.63∗∗∗ 1.98∗∗∗

(0.07) (0.04) (0.04) (0.07) (0.05) (0.05) (0.06)
log(TNA) 0.18∗∗ 0.02 0.03 0.18∗∗ 0.02 0.07 0.11

(0.08) (0.05) (0.04) (0.08) (0.06) (0.05) (0.07)
log(No. stocks) −0.33∗∗∗ −0.32∗∗∗ −0.25∗∗∗ −0.33∗∗∗ −0.32∗∗∗ −0.43∗∗∗ −0.28∗∗∗

(0.08) (0.05) (0.04) (0.08) (0.07) (0.05) (0.07)
Turnover 0.59∗∗∗ 0.21∗∗∗ 0.12∗∗∗ 0.59∗∗∗ 0.21∗∗∗ 0.29∗∗∗ 0.18∗∗∗

(0.08) (0.05) (0.04) (0.08) (0.06) (0.05) (0.07)
Exp. ratio 0.06 0.14∗∗∗ 0.19∗∗∗ 0.06 0.09 0.10∗ 0.11

(0.08) (0.05) (0.05) (0.08) (0.07) (0.06) (0.08)
Active share 0.12 −0.08∗ −0.03 0.12 0.10 −0.15∗∗∗ 0.26∗∗∗

(0.08) (0.05) (0.05) (0.08) (0.07) (0.06) (0.08)
Adjusted 𝑅2 0.08 0.10 0.10 0.14 0.08 0.10 0.09

This table reports the results of regressions of pricing errors from factor models on the average log TNA, log of numbers of stocks in a
fund’s portfolio, turnover, expense ratio, and the average active share. The variables are standardized to have means of zero and unit
standard deviations. The factors in the models are those listed in Tables 7 and 8 for 𝐿= 3. Statistical significance at the 1%, 5%, and
10% levels is indicated by three, two, and one star, respectively. The sample period is 2010Q3 to 2018Q4.



Figure 1: Cross-correlations of Characteristics
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Notes: The figure shows the heatmap of pairwise correlations of mutual fund characteristics. First, I compute times-series correlations
of characteristics by mutual funds and then average across funds, Second, I compute cross-sectional correlations of characteristics by
quarter and then average across quarters. The lower left triangle shows cross-sectional correlations and the upper right triangle shows
time series correlations. The sample period is 2010Q3 to 2018Q4.



Figure 2: 2-dimensional Correlations
A: Characteristics
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Notes: This figure shows averages of 2-dimensional correlations implied by the data tensor 𝓧𝓧𝓧. For each dimension, I compute mean
correlations grouped by the other two dimensions. For characteristics, I compute mean times-series correlations by mutual fund as
well as mean cross-sectional correlations by quarter. For mutual funds, I compute mean times-series correlations by characteristic as
well as mean cross-sectional correlations by quarter. For the time dimension, I compute mean correlations by mutual fund as well as
mean correlations by characteristic. The top panel plots mean time series (blue) and cross-sectional (orange) correlations for each char-
acteristic. The middle panel plots mean time series (blue) and cross-sectional (orange) correlations for 20 randomly selected mutual
funds. The bottom panel plots mean correlations across funds (blue) and across characteristics (orange) for each quarter.



Figure 3: Tucker Decomposition 𝓧𝓧𝓧=𝓖𝓖𝓖×1𝗩1×2𝗩2×3𝗩3

≈

𝓧𝓧𝓧∶ (6×5×4)

𝗩1∶ (6×3)

𝗩2∶ (5×2)

𝗩3∶ (4×2)

𝓖𝓖𝓖∶ (3×2×2)



Figure 4: MSE of Tucker(𝐾𝑇,𝐾𝑁,𝐾𝐶) models
A: 𝐾𝑇
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Notes: The figure plots mean-squared errors of the Tucker(𝐾𝑇,𝐾𝑁,𝐾𝐶) model as a function of 𝐾𝑇 (Panel A), 𝐾𝑁 (Panel B), and 𝐾𝐶 (Panel
C). The sample period is 2010Q3 to 2018Q4.



Figure 5: Fit of Tucker models by Dimension
A: MSE by quarters
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Notes: The figure plots the means of mean-squared errors (MSE) by quarters, mutual funds, and characteristics, respectively. The sam-
ple period is 2010Q3 to 2018Q4.



Figure 6: Fit of Tucker(10,20,15) Model of Individual Funds
A: BM

2011 2012 2013 2014 2015 2016 2017 2018 2019
1

2

3

4

5 75th MSE
BM (500625)
Tucker (0.16)

2011 2012 2013 2014 2015 2016 2017 2018 2019
1

2

3

4

5 90th MSE
BM (410221)
Tucker (0.24)

2011 2012 2013 2014 2015 2016 2017 2018 2019
1

2

3

4

5 Max MSE
BM (105664)
Tucker (0.45)

B: MOM

2011 2012 2013 2014 2015 2016 2017 2018 2019
1

2

3

4

5 75th MSE
MOM (108148)
Tucker (0.25)

2011 2012 2013 2014 2015 2016 2017 2018 2019
1

2

3

4

5 90th MSE
MOM (101359)
Tucker (0.37)

2011 2012 2013 2014 2015 2016 2017 2018 2019
1

2

3

4

5 Max MSE
MOM (240432)
Tucker (0.58)

C: REV

2011 2012 2013 2014 2015 2016 2017 2018 2019
1

2

3

4

5 75th MSE
REV (410889)
Tucker (0.25)

2011 2012 2013 2014 2015 2016 2017 2018 2019
1

2

3

4

5

90th MSE
REV (106085)
Tucker (0.40)

2011 2012 2013 2014 2015 2016 2017 2018 2019
1

2

3

4

5 Max MSE
REV (101064)
Tucker (0.83)

Notes: The figures show time series plots of the observed data and fitted values of the Tucker(10,20,15) model of the book-to-market
ratio (Panel A), momentum (Panel B), and reversal (Panel C) of individual mutual funds. The funds in the left, middle, and right
columns are the mutual funds that represent the 75th and the 90th percentiles, and the highest MSE of the MSE distribution of funds
for a given characteristic. The legends include the wficn of the plotted fund and the mean square error in parentheses. The sample pe-
riod is 2010Q3 to 2018Q4.



Figure 7: Core Tensor of Tucker(3,10,10) Model
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Notes: The figure plots the 20 largest elements by the absolute value of the 3-dimensional core tensor 𝓖𝓖𝓖 of the Tucker(8,12,12) model
on a log scale. The 𝑥-axis shows the indices of 𝓖𝓖𝓖. The sample period is 2010Q3 to 2018Q4.



Figure 8: Loading Matrices of Tucker(3,10,10) Model
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Notes: The figure shows heatmaps of the Tucker component matrices 𝗩𝑖 of the Tucker(3,10,10) model. Positive values are shown in
blue and negative values in red. Panel A shows the (34×3) component matrices 𝗩(𝑇), Each row corresponds to a quarter starting in
201Q3 at the top to 2018Q4 at the bottom. The columns correspond to the 𝐾𝑇 =3 mode-1 components. The second component matrix
𝗩(𝑁) has 934 rows and 10 columns. Panel B shows the heatmap of the first five columns of 𝗩(𝑁). To visualize 934 rows, I sort each
column of 𝗩(𝑁)so that the first row of each column plots the funds with the largest values at the top and the funds with the smallest
values at the bottom. Panel C shows the heatmap of the first five columns of the (25×10)-dimensional matrix 𝗩(𝐶). The sample period
is 2010Q3 to 2018Q4.



Figure 9: 2-dimensional Factor Representations and Data Means
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Figure 10: 2-dimensional Factor Representation 𝙵𝑘𝑁
𝑇𝐶
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𝑇𝐶 . The sample period is 2010Q3 to 2018Q4.



Figure 11: Subsamples - Core Tensors
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Notes: The figure plots the 20 largest elements by the absolute value of the 3-dimensional core tensors 𝓖𝓖𝓖 of subsample
Tucker(3,12,12) models on a log scale. The Tucker models are estimated over two subsamples consisting of 17 quarters: 2010Q3-
2014Q4 and 2015Q1-2018Q4. The blue lines correspond to the first half of the sample and the orange lines to the second half.



Figure 12: Subsamples - Loading Matrices
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Notes: This figure plots the first three loading vectors of mode 𝑖,𝗩(𝑖)
𝑗 ,𝑖 = 𝑇,𝑁,𝐶,𝑗 = 1,2,3 of Tucker models that are estimated over

two subsamples consisting of 17 quarters: 2010Q3-2014Q4 and 2015Q1-2018Q4. The Tucker models have (𝐾𝑇,𝐾𝑁,𝐾𝐶) = (3,12,12)
components. The blue lines correspond to the first half of the sample and the orange lines to the second half.



Figure 13: Mean Characteristics of Tucker Factors
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Notes: This figure shows the characteristics of the first five pricing factors 𝐟Tck,𝑡 implied by the Tucker(3,10,10) model.



Appendix A. Tensor operations

Let 𝓧𝓧𝓧 be a (𝑇×𝑁×𝐶)-dimensional tensor. A 3-dimensional tensor can expressed as collections
of one-dimensional fibers and 2-dimensional slices. Fibers are vectors and correspond to rows and
columns of a matrix, while slices are matrices. Fibers are defined by fixing every index but one so that
𝓧𝓧𝓧 has fibers along each mode, denoted by 𝘅(𝑛𝑐)𝑡,𝘅(𝑡𝑐)𝑛, and 𝘅(𝑡𝑛)𝑐, respectively.32 Slices are created by
fixing all but two indices and are written as 𝗫(𝑡)𝑛𝑐,𝗫(𝑛)𝑡𝑐,𝗫(𝑐)𝑡𝑛.33

A tensor can be written as a matrix by unfolding one dimension. For example, unfolding 𝓧𝓧𝓧 along
the first dimension arranges the dimension-1 fibers as columns of the unfolded matrix 𝗫(1), which is
of dimension (𝑇×𝑁𝐶). Correspondingly, unfolding 𝓧𝓧𝓧 along the second and third dimensions yields
a (𝑁×𝑇𝐶)-matrix 𝗫(2) and a (𝐶×𝑇𝐼)-matrix 𝗫(3), respectively.

The inner product of two tensors of equal dimensions is the sum of the products of the individual
tensor elements as follows:

⟨𝓧𝓧𝓧,𝓨𝓨𝓨⟩= ∑
𝑡,𝑛,𝑐

𝗑𝑡𝑛𝑐𝗒𝑡𝑛𝑐

and the norm of 𝓧𝓧𝓧 is ‖𝓧𝓧𝓧‖=⟨𝓧𝓧𝓧,𝓧𝓧𝓧⟩1/2. The outer product ∘ of two vectors 𝗮∈ℝ𝑇 and 𝗯∈ℝ𝑁 is defined
as34

𝗫=𝗮∘𝗯=𝗮𝗯⊺ ∈ℝ𝑇×ℝ𝑁,

so that 𝗫 is a (𝑇×𝑁) matrix. The outer product of three vectors, 𝗮∈ℝ𝑇,𝗯∈ℝ𝑁,𝗰 ∈ℝ𝐶, yields a 3-
dimensional (𝑇×𝑁×𝐶) tensor

𝓧𝓧𝓧=𝗮∘𝗯∘𝗰∈ℝ𝑇×ℝ𝑁×ℝ𝐶. (A.1)

Tensors can be multiplied by vectors and matrices of appropriate dimensions. Since tensors have
arbitrary dimensions, the mode that is multiplied by the matrix has to be explicitly specified. The
product of a tensor 𝓧𝓧𝓧 and a matrix 𝗔𝑛 is called 𝑛-mode multiplication, where 𝑛 specifies the mode
that is multiplied by 𝗔𝑛. For example, the mode-1 product of the (𝑇×𝑁×𝐶) tensor 𝓧𝓧𝓧 and the (𝑆×𝑇)
matrix 𝗔1 is equal to a (𝑆×𝑁×𝐶) tensor 𝓨𝓨𝓨 given by

𝓨𝓨𝓨=𝓧𝓧𝓧×1 𝗔1.

The 𝑛-mode product tensor is constructed by multiplying each mode-𝑛 fiber by each row vector of 𝗔1.
In general, the 𝑛-mode is written as 𝓧𝓧𝓧×𝑛𝗔𝑛. The number of columns of 𝗔𝑛 must equal the 𝑛-mode
dimension of 𝓧𝓧𝓧 while the 𝑛-mode dimension of 𝓧𝓧𝓧×𝑛𝗔𝑛 is equal to the number of rows of 𝗔𝑛. The
𝑛-mode product can be chained:

𝓨𝓨𝓨=𝓧𝓧𝓧×1 𝗔1 ×2 𝗔2 ×3 𝗔3

32See Panels B, C, and D of Figure E.2.
33See Panels E, F, and G of Figure E.2.
34Panel A of Figure E.4 shows an example for 𝑇=5,𝑁=4,𝐶=3.



where 𝗔2 and 𝗔3 are conforming matrices. The order of the multiplications in the chain is irrelevant.
The 1-mode product of a (2×2×3) tensor with a (5×2) matrix is illustrated in Panel A of Figure E.4.

Each mode-1 fiber of 𝓧𝓧𝓧 is a vector of length 2 and is multiplied by each of the row vectors of 𝗔1 so
that 𝓧𝓧𝓧 with mode-1 dimension 𝑇 is transformed into the product tensor 𝓨𝓨𝓨 with mode-1 dimension 𝑆.
All other dimensions are the same. Panel C shows an example of a mode-2 product. Note that 𝗔2 is
a (2×4) matrix but is displayed as a (4×2) matrix. It is standard practice to rotate tensors, matrices,
and vectors in illustrations so that the mode dimensions match.35

The standardmatrix products can be written in𝑛-mode tensor notation. Let 𝗫,𝗔1, and𝗔2 be (𝑇×𝑁),
(𝑆×𝑇), and (𝑈×𝑁) matrices, respectively. Then 𝗔1𝗫=𝗫×1 𝗔1 is a (𝑆×𝑁) matrix, 𝗫𝗔⊺

2 =𝗫×2 𝗔2 is a
(𝑇×𝑈) matrix, and 𝗔1𝗫𝗔⊺

2 =𝗫×1 𝗔1 ×2 𝗔2 is a (𝑆×𝑈) matrix.
The tensor operations are summarized in Table D.1.

Appendix B. The Singular Value Decomposition (SVD) of a matrix

Let 𝗫 be a (𝑇×𝑁) data matrix with 𝑇𝑁 observations 𝗑𝑡𝑛.36 The SVD of 𝗫 is given by

𝗫=𝗨(1)𝗛𝗨(2)⊺ (B.1)

=
𝗆𝗂𝗇(𝑀,𝑁)

∑
𝑖=1

ℎ𝑖 𝘂(1)
𝑖 𝘂(2)⊺

𝑖 , (B.2)

where 𝗨(1) is a (𝑇×𝑇) matrix of eigenvectors 𝘂(1)
𝑡 of 𝗫𝗫⊺ as columns, 𝗨(2) is a (𝑁×𝑁) matrix of eigen-

vectors 𝘂(2)
𝑡 of 𝗫⊺𝗫 as columns, and 𝗛 is a diagonal (𝑇×𝑁) matrix with diagonal elements ℎ𝑖 that are

the squares roots of non-zero eigenvalues of 𝗫𝗫⊺. The eigenvalues are in descending order and the
eigenvectors in 𝗨(1) and 𝗨(2) are ordered accordingly.

The SVD of 𝗫 implies a factor representation

𝗫=𝗙𝑁𝗕⊺
𝑁, (B.3)

where 𝗙𝑁=𝗫𝗨(𝟮)=𝗨(1)𝗛 and 𝗕𝑁=𝗨(2) are of dimensions (𝑇×𝑁) and (𝑁×𝑁), respectively. The columns
of 𝗙𝑁 are factors, and the columns of 𝗕𝑁 are factor loadings. The isomorphic factor representation for
𝗫⊺ is given by 𝗫⊺ =𝗙𝑇𝗕⊺

𝑇, where 𝗙𝑇 =𝗫⊺𝗨(𝟭) =𝗨(2)𝗛⊺ and 𝗕𝑇 =𝗨(1). Hence, the interpretations of factor
and loading matrices are reversed in the two representations.

Factor models (B.3) are not unique and can be rotated by any nonsingular (𝑁×𝑁) matrix 𝗦: 𝗫=
𝗙𝑁𝗦𝗦−1𝗕⊺

𝑁. Note that it is also possible to compute the SVD of the (𝑁×𝑁) matrix 𝗫⊺ instead of 𝗫. The
representations are equivalent, but the roles of 𝗨(1) and 𝗨(2) are reversed so that factors of the SVD of
𝗫 become factor loadings in the SVD of 𝗫⊺, and vice versa.

Suppose we want to approximate 𝗫 by amatrix �̂�𝐾 that can be written in terms of lower-dimensional

35There is no “transpose” operator for tensors, and it may be helpful to think about tensor multiplications without the notion
of a matrix transpose.

36The row index 𝑡 is generic and does not necessarily have to be a “time” index.



matrices such that

𝗫=�̂�𝐾+𝗘𝐾, (B.4)

where �̂�𝐾 =�̃�(1)
𝐾 �̃�𝐾�̃�(2)⊺

𝐾 , (B.5)

and �̃�𝐾,�̃�(1)
𝐾 ,�̃�(2)

𝐾 are (𝐾×𝐾),(𝑇×𝐾),(𝑁×𝐾) matrices. The optimal �̂�𝐾 minimizes the mean-squared-
error (MSE)

MSE(�̂�𝐾)=
1

𝑀𝑁‖𝗘𝐾‖2,

where ‖𝗘‖=√∑𝑡,𝑛𝑒2
𝑡𝑛 is the Frobenius matrix norm. Eckart and Young (1936) showed that the solution

is given by the truncated SVD, i.e., setting �̃�𝐾 to the first 𝐾 rows and columns of 𝗛 and �̃�(1)
𝐾 ,�̃�(2)

𝐾 to the
first 𝐾 columns of 𝗨(1),𝗨(2):

�̂�𝐾 =𝗨(1)
𝐾 𝗛𝐾𝗨(2)⊺

𝐾 . (B.6)

The truncated SVD (B.6) is equivalent to the 𝐾-factor model

𝗫=𝗙𝐾𝗕⊺
𝐾+𝗘𝐾, (B.7)

where 𝗙𝐾=𝗨(1)
𝐾 𝗛𝐾 and 𝗕𝐾=𝗨(2)

𝐾 are (𝑇×𝐾) and (𝑁×𝐾)matrices, respectively. Thus, the truncated SVD
is equal to the first 𝐾 principal components of 𝗫⊺𝗫. I will refer to this model as SVD-PCA throughout
the paper.

The truncated SVD has an alternative representation that is useful for understanding tensor decom-
positions. 𝗨(1)

𝐾 𝗛𝐾𝗨(2)⊺
𝐾 is equivalent to the weighted sum of the outer products of the column vectors

of 𝗨(1)
𝐾 and the row vectors of 𝗨(2)⊺

𝐾 . This can be seen by writing (B.6) as

�̂�𝐾 =
𝐾

∑
𝑡=1

𝐾

∑
𝑛=1

ℎ𝑡𝑛 𝘂(1)
𝑡 𝘂(2)⊺

𝑛⏟⏟⏟⏟⏟⏟⏟
𝑇×𝑁

(B.8)

=
𝐾

∑
𝑘=1

ℎ𝑘𝑘 𝘂(1)
𝑘 𝘂(2)⊺

𝑘 . (B.9)

The second equality follows from the fact that 𝗛𝑘 is a diagonal matrix. �̂�𝐾 is the weighted sum of
𝐾 matrices with dimensions (𝑇×𝑁), which are the outer vector product of the eigenvectors 𝘂(1)

𝑘 and
𝘂(2)⊺

𝑘 of 𝗫𝗫⊺ and 𝗫⊺𝗫, respectively. Each 𝑘 in the summation corresponds to a factor in the 𝐾-factor
representation (B.7). The advantage of representation (B.8) is that it shows the contribution of each
of the 𝐾 factors in the fit of the model. Since the eigenvectors are normalized, the 𝐾 outer vector
products 𝘂(1)

𝑘 𝘂(2)⊺
𝑘 are of the same magnitude, so the weight of the contribution of each factor 𝑘 is

approximately equal to the 𝑘-th eigenvalue.
In the truncated SVD (B.4)-(B.6) the number of factors is𝐾. Note that we could define an asymmetric

SVD that has different numbers of factors for the two dimensions:

�̂�(𝐾1,𝐾2) =𝗨(1)
𝐾1 𝗛𝐾1,𝐾2𝗨

(2)⊺
𝐾1 , (B.10)



where 𝗛𝐾1,𝐾2 ,𝗨
(1)
𝐾1 ,𝗨

(2)
𝐾2 are (𝐾1×𝐾2),(𝑁×𝐾1),(𝑁×𝐾2) matrices. However, since 𝗛𝐾1,𝐾2 is diagonal, the

asymmetric SVD reduces to a 𝐾-factor SVD where 𝐾=min(𝐾1,𝐾2). In contrast to the 2-dimensional
matrix SVD, the core tensor 𝓖𝓖𝓖 in the Tucker decomposition is not diagonal. Consequently, the number
of factors can differ by dimension.37

Appendix C. Higher-Order Orthogonal Iteration (HOOI)

The objective is to find 𝓖𝓖𝓖 and orthonormal 𝗩(𝑇),𝗩(𝑁),𝗩(𝐶) such that

‖𝓔𝓔𝓔‖=‖𝓧𝓧𝓧−𝓖𝓖𝓖×1 𝗩(𝑇) ×2 𝗩(𝑁) ×3 𝗩(𝐶)‖

is minimized. Given the loading matrices 𝗩(𝑖), the optimal core tensor 𝓖𝓖𝓖 satisfies

𝓖𝓖𝓖=𝓧𝓧𝓧×1 𝗩(𝑇)⊺ ×2 𝗩(𝑀)⊺ ×3 𝗩(𝐶)⊺. (C.1)

Since the 𝗩(𝑖) matrices are orthonormal, the squared norm of the approximation error 𝓔𝓔𝓔=𝓧𝓧𝓧−�̂�𝓧𝓧 can
written as

‖𝓔𝓔𝓔‖2 =‖𝓧𝓧𝓧‖2−2⟨𝓧𝓧𝓧,𝓖𝓖𝓖×1 𝗩(𝑇) ×2 𝗩(𝑁) ×3 𝗩(𝐶)⟩+‖𝓖𝓖𝓖×1 𝗩(𝑇) ×2 𝗩(𝑁) ×3 𝗩(𝐶)‖2 (C.2)

=‖𝓧𝓧𝓧‖2−2⟨𝓧𝓧𝓧×1 𝗩(𝑇)⊺ ×2 𝗩(𝑀)⊺ ×3 𝗩(𝐶)⊺,𝓖𝓖𝓖⟩+‖𝓖𝓖𝓖‖2 (C.3)

=‖𝓧𝓧𝓧‖2−2⟨𝓖𝓖𝓖,𝓖𝓖𝓖⟩+‖𝓖𝓖𝓖‖2 (C.4)

=‖𝓧𝓧𝓧‖2−‖𝓖𝓖𝓖‖2 (C.5)

=‖𝓧𝓧𝓧‖2−‖𝓧𝓧𝓧×1 𝗩(𝑇)⊺ ×2 𝗩(𝑀)⊺ ×3 𝗩(𝐶)⊺‖2. (C.6)

Suppose we know 𝗩(𝑇) and 𝗩(𝑁). Then 𝗩(𝐶) can be obtained as

max
𝗩(𝐶)

‖𝓧𝓧𝓧×1 𝗩(𝑇)⊺ ×2 𝗩(𝑀)⊺ ×3 𝗩(𝐶)⊺‖. (C.7)

This maximization problem can be rewritten in matrix form as

max
𝗩(𝐶)

‖𝗩(𝐶)⊺𝗪𝐶‖ (C.8)

where 𝗪𝐶 =𝗫(𝐶)(𝗩(𝑇)⊗𝗩(𝑁)), (C.9)

The matrix 𝗫(𝐶) is the unfolded tensor 𝓧𝓧𝓧 in the 𝐶-dimension, and ⊗ is the Kronecker matrix product.
The optimal 𝗩(𝐶) is given by the first 𝐾𝐶 eigenvectors of 𝗪𝐶𝗪⊺

𝐶, or, equivalently, by the first 𝐾𝐶 left
singular vectors of 𝗪𝐶.

Since one 𝗩(𝑖) can be computed if the other two are known, we can use the following recursive
algorithm known as Higher-Order Orthogonal Iteration (HOOI):

1. Pick initial values for 𝗩(𝑇),𝗩(𝑁).

37The CP tensor decomposition is a special case of the Tucker decomposition and imposes the restriction that the core tensor
𝓖𝓖𝓖 is diagonal, which implies that the number of factors is the same, 𝐾𝑖 =𝐾.



2. Compute 𝗩(𝐶) as the first 𝐾𝐶 left singular vectors of 𝗫(𝐶)(𝗩(𝑇)⊗𝗩(𝑁)).
3. Compute 𝗩(𝑇) as the first 𝐾𝑇 left singular vectors of 𝗫(𝑇)(𝗩(𝑁)⊗𝗩(𝐶)).
4. Compute 𝗩(𝑁) as the first 𝐾𝑁 left singular vectors of 𝗫(𝑁)(𝗩(𝑇)⊗𝗩(𝐶)).
5. Repeat Steps 2. to 4. recursively until a convergence criterion is satisfied.

6. Compute 𝓖𝓖𝓖=𝓧𝓧𝓧×1 𝗩(𝑇)⊺ ×2 𝗩(𝑀)⊺ ×3 𝗩(𝐶)⊺.

The literature has developed numerous numerical improvements of the HOOI estimator, see, for exam-
ple, Andersson and Bro (1998). Several other algorithms exist, including nonlinear Newton-Grassmann
optimization (Elden and Savas (2009)). Starting values of the 𝗩(𝑖) matrices are determined by apply-
ing 2-dimensional SVD to unfolded matrices of the 𝓧𝓧𝓧 tensor. For example, unfold 𝓧𝓧𝓧 along the first
dimension, which yields a (𝑇×𝑁𝐶)-dimensional matrix 𝗫(𝑇). The initial 𝗩(𝑇) can be chosen as the first
𝐾𝑇 left singular vectors of 𝗫(𝑇). Initial 𝗩(𝑁) and 𝗩(𝐶) can be set accordingly.

For the data set used in this paper, the HOOI estimator converges after 20 to 40 iterations. In addi-
tion to setting the initial 𝗩(𝑖) using the method described above, I also choose initial values randomly.
The numerical computations are robust and converge to the same optimum.



Table D.1: Summary of tensor notation and operations

Operation 2-dimensional matrix 3-dimensional tensor 𝑛-dimensional tensor

𝗫=[𝗑𝑖𝑗] 𝓧𝓧𝓧=[𝗑𝑖𝑗𝑘] 𝓧𝓧𝓧=[𝗑𝑖1,...,𝑖𝑗 ]

Fibers 𝘅(𝑖)𝑗,𝘅(𝑗)𝑖 𝘅(𝑗𝑘)𝑖,𝘅(𝑖𝑘)𝑗,𝘅(𝑖𝑗)𝑘 𝘅(𝑗≠𝑖)𝑖

Slices 𝗫(𝑖)𝑗𝑘,𝗫(𝑗)𝑖𝑘,𝗫(𝑘)𝑖𝑗 𝗫(𝑖)𝑖≠𝑗

Matricization 𝗫(1)∶ 𝐼×𝐽×𝐾→ 𝐼×𝐽𝐾 𝗫(𝑝)∶ (𝐼1×⋯×𝐼𝑗)→ 𝐼𝑝×(∏𝑖≠𝑝𝐼𝑖)
𝗫(2)∶ 𝐼×𝐽×𝐾→𝐽×𝐼𝐾
𝗫(3)∶ 𝐼×𝐽×𝐾→𝐾×𝐼𝐽

Inner product 𝗑⊺𝗒=⟨𝗫,𝗬⟩=∑𝑖𝑗𝗑𝑖𝑗𝗒𝑖𝑗 ⟨𝓧𝓧𝓧,𝓨𝓨𝓨⟩=∑𝑖,𝑗,𝑘𝗑𝑖𝑗𝑘𝗒𝑖𝑗𝑘 ⟨𝓧𝓧𝓧,𝓨𝓨𝓨⟩=∑𝑖1,...,𝑖𝑗𝗑𝑖1,...,𝑖𝑗 𝗒𝑖1,...,𝑖𝑗

Outer product 𝗑𝗒⊺ =𝗑∘𝗒 𝗑∘𝗒∘𝗓 𝗑1∘⋯∘𝗑𝑗

Norm ‖𝗫‖=⟨𝗫,𝗫⟩=√∑𝑖𝑗𝗑2
𝑖𝑗 ‖𝓧𝓧𝓧‖=⟨𝓧𝓧𝓧,𝓧𝓧𝓧⟩=√∑𝑖𝑗𝑘𝗑2

𝑖𝑗𝑘 ‖𝓧𝓧𝓧‖=⟨𝓧𝓧𝓧,𝓧𝓧𝓧⟩=√∑𝑖1,...,𝑖𝑁𝗑2
𝑖1,...,𝑖𝑗

𝑛-mode multiplication 𝗔1𝗫𝗔⊺
2 =𝓧𝓧𝓧×1𝗔1×2𝗔2 𝓧𝓧𝓧×1𝗔1×2𝗔2×3𝗔3 𝓧𝓧𝓧×1𝗔1×2⋯×𝑛𝗔𝑛

Decompositions 𝗨1𝐾𝗛𝐾𝗨⊺
2𝐾 =𝗛𝐾×1𝗨1𝐾×2𝗨2𝐾 𝓖𝓖𝓖×1𝗩1×2𝗩2×3𝗩3 𝓖𝓖𝓖×1𝗩1×2⋯×𝑛𝗩𝑛

=∑𝐾
𝑘=1ℎ𝑘 𝘂1𝑘𝘂⊺

2𝑘 =∑𝐾
𝑘=1𝑔𝑘𝘄1𝑘∘𝘄2𝑘∘𝘄3𝑘 =∑𝐾

𝑘=1𝑔𝑘𝘄1𝑘∘⋯∘𝘄𝑛𝑘



Table D.2: Absolute Pricing Errors and Fund Characteristics

𝑅𝑚−𝑅𝑚 Tucker IS Tucker OOS CAPM FF3 PCA IS PCA OOS

const 1.89∗∗∗ 1.46∗∗∗ 1.39∗∗∗ 10.73∗∗∗ 1.87∗∗∗ 1.66∗∗∗ 2.01∗∗∗

ADJBM −1.03∗∗ 0.06 0.33∗∗∗ −0.46∗∗ −0.35∗∗ −0.26∗ 0.25
BG 0.45 −0.34∗ 0.33∗ −0.62∗∗ 0.81∗∗∗ 0.35 0.56∗∗

BIDASK 0.99∗∗∗ 0.39∗∗ 0.20 1.51∗∗∗ 0.09 0.64∗∗∗ −0.26
BM −0.69∗∗ 0.32 0.14 −0.33 0.88∗∗∗ 0.42∗ 0.69∗∗

CFG −1.79∗∗∗ 0.36∗ 0.01 −0.69∗∗ −0.84∗∗∗ −0.31 −0.41
CFP 0.85∗∗∗ −0.02 0.12 −2.46∗∗∗ 0.81∗∗∗ 0.60∗∗ 1.31∗∗∗

DP −0.34 0.04 0.06 −1.33∗∗∗ −0.10 0.47∗∗∗ 0.15
EG 0.95∗∗∗ 0.03 0.02 0.71∗∗ −0.31 −0.16 −1.11∗∗∗

ELTG −2.97∗∗∗ 0.86∗ 0.38 1.11 −2.14∗∗∗ −0.85 −3.69∗∗∗

EP −0.82∗∗∗ −0.13 −0.43∗∗ 0.32 −1.46∗∗∗ −0.44∗∗ −1.94∗∗∗

EPPROJ −2.40∗∗∗ −0.72∗ −0.55 −1.06∗ −1.36∗∗∗ −0.24 −0.14
GR 1.03 −1.95∗∗ −1.39∗ −3.56∗∗∗ 0.56 1.29 4.75∗∗∗

INV −0.91∗∗∗ 0.72∗∗∗ 0.34 0.77∗∗ −0.08 −0.01 0.61∗

ME 4.76∗∗∗ −0.94∗∗ −0.99∗∗∗ 0.60 −2.81∗∗∗ −2.11∗∗∗ −1.57∗∗∗

MOM 1.06∗∗∗ 0.08 −0.81∗∗∗ 0.32 −0.08 0.16 −0.32
MS −6.23∗∗∗ −2.23∗∗ −2.10∗∗ 0.32 −5.86∗∗∗ −1.14 −2.51∗∗

MULT 6.08∗∗∗ 2.01∗∗ 1.82∗ 2.88∗ 5.32∗∗∗ 0.80 1.97
OP −0.56∗∗∗ 0.05 0.33∗∗∗ 0.54∗∗∗ 0.22 −0.16 0.15
PSLIQ −0.57∗∗∗ 0.02 −0.09 0.13 −0.39∗∗ −0.28∗ −0.27
QUAL −0.81∗∗∗ 0.04 0.07 −0.02 0.40∗∗∗ 0.30∗∗∗ 0.37∗∗∗

REV −1.39∗∗∗ −0.24 0.73∗∗∗ 0.61 −0.03 −0.44 0.19
SG −0.07 −0.32 −0.42 1.27∗∗∗ −0.87∗∗ −0.19 −1.69∗∗∗

SP −0.70∗∗∗ −0.02 −0.21 −0.07 −0.72∗∗∗ −0.13 −0.47∗∗∗

TURN −0.10 0.12 0.04 −0.21∗ −0.01 0.03 0.04
VOL 6.86∗∗∗ 1.41∗∗∗ 1.43∗∗∗ 0.42 3.96∗∗∗ 3.34∗∗∗ 2.32∗∗∗

𝑅2 0.49 0.14 0.10 0.49 0.41 0.28 0.39

This table reports the results of regressions of pricing errors from factor models on the average expense ratio (Exp. ratio), the average
number of stocks (No. stocks), and the average active share. The variables are standardized to have means of zero and unit standard
deviations. The factors in the models are those listed in Tables 7 and 8 for 𝐿=3. Statistical significance at the 10%, 5%, and 1% levels is
indicated by one, two, and three stars, respectively. The sample period is 2010Q3 to 2018Q4.



Figure E.1: Time-series and cross-sectional correlations
A: Time-series correlations across mutual funds
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B: Cross-correlations over time

2011 2012 2013 2014 2015 2016 2017 2018 20191.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
BM,ME BM,EP BM,MOM BM,OP BM,INV

Notes: Panel A shows the distributions of pairwise time series correlations of (BM, ME), (BM, EP), (BM, MOM), (BM, OP), and (BM, INV)
across mutual funds. Panel B shows the corresponding pairwise cross-sectional correlations over time. The sample period is 2010Q3
to 2018Q4.



Figure E.2: Tensor fibers and slices

A: Tensor 𝓧𝓧𝓧∶ (5×4×3)

B: Mode-1 fibers 𝘅(𝑛𝑐)𝑡 C: Mode-2 fibers 𝘅(𝑡𝑐)𝑛 D: Mode-3 fibers 𝘅(𝑡𝑛)𝑐

E: Horizontal slices 𝗫(𝑡)𝑛𝑐 F: Lateral slices 𝗫(𝑛)𝑡𝑐 G: Frontal slices 𝗫(𝑐)𝑡𝑛



Figure E.3: Tensor as matrices

A: Tensor 𝓧𝓧𝓧∶ (5×4×3)

B: 𝗫(1)∶ (5×12)

C: 𝗫(𝑁)∶ (4×15)

D: 𝗫(𝐶)∶ (3×20)



Figure E.4: Tensor multiplication

A: Outer product 𝓧𝓧𝓧=𝗮∘𝗯∘𝗰

=𝗮∶ (5×1)

𝗯∶ (4×1)

𝗰∶ (3×1)

𝓧𝓧𝓧∶ (5×4×3)

B: 1-mode product

𝓧∶ (2×4×3)

𝓧×1𝗔1∶ (5×4×3)𝗔1∶ (5×2)

C: 2-mode product

𝓧∶ (2×4×3)

𝗔2∶ (2×4)

𝓧×2𝗔2∶ (2×2×3)



Figure E.5: Tucker model as 2-dimensional factor model

A: 𝓖𝓖𝓖×1𝗩1×2𝗩2→ 𝓢𝓢𝓢12

𝓖𝓖𝓖 ×1 𝗩1 ×2 𝗩2
(3×2×2)×2(6×3) ×3(5×2)

=

𝓢𝓢𝓢12∶ (6×5×2)

B: �̂�⊺
(𝐶) =𝗦⊺

(12)𝗩⊺
3

⋮

𝗦⊺
(12)∶ (30×2)

𝗩⊺
3∶ (2×4)

⋮

�̂�⊺
(1)∶ (30×4)



Figure E.6: Tucker model: Intuition
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Figure E.7: MSE Histograms of Tucker(10,25,15) Model
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Notes: The figure shows histograms of errors of the Tucker(10,20,15) model for the book-to-market ratio, momentum, and reversals.
The sample period is 2010Q3 to 2018Q4.



Figure E.8: Fit of Tucker(1,4,4) Model of Individual Funds
A: BM
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Notes: The figures show time series plots of the observed data and fitted values of the Tucker(1,4,4) model of the book-to-market ratio
(Panel A), momentum (Panel B), and reversal (Panel C) of individual mutual funds. The funds in the left, middle, and right columns are
the mutual funds that represent the 75th and the 90th percentiles, and the highest MSE of the MSE distribution of funds for a given
characteristic. The legends include the wficn of the plotted fund and the mean square error in parentheses. The sample period is
2010Q3 to 2018Q4.



Figure E.9: Fit of Tucker(3,10,10) Model of Individual Funds
A: BM
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Notes: The figures show time series plots of the observed data and fitted values of the Tucker(3,10,10) model of the book-to-market ra-
tio (Panel A), momentum (Panel B), and reversal (Panel C) of individual mutual funds. The funds in the left, middle, and right columns
are the mutual funds that represent the 75th and the 90th percentiles, and the highest MSE of the MSE distribution of funds for a
given characteristic. The legends include the wficn of the plotted fund and the mean square error in parentheses. The sample period is
2010Q3 to 2018Q4.



Figure E.10: Fit of Tucker(8,12,12) Model of Individual Funds
A: BM
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Notes: The figures show time series plots of the observed data and fitted values of the Tucker(8,12,12) model of the book-to-market
ratio (Panel A), operating profitability (Panel B), investment (Panel C), and momentum (Panel D) of individual mutual funds. The funds
in the left, middle, and right columns are the mutual funds that represent the 75th and the 90th percentiles, and the highest MSE of
the MSE distribution of funds for a given characteristic. The legends include the wficn of the plotted fund and the mean square error
in parentheses. The sample period is 2010Q3 to 2018Q4.



Figure E.11: Recursive 10-Year Subsamples
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Notes: This figure plots the first three loading vectors of mode 𝑖,𝗩(𝑖)
𝑗 ,𝑖 =𝑇,𝑁,𝐶,,𝑗 = 1,2,3 of Tucker models that are estimated over

sliding windows. Each window consists of 10 quarters so there are 23 subsamples. The Tucker models have (𝐾𝑇,𝐾𝑁,𝐾𝐶)= (3,12,12)
components. Panel B plots 23 lines corresponding to a subsample core tensor 𝓖𝓖𝓖.



Figure E.12: Recursive 10-Year Samples - 𝗩(𝑖)
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Notes: This figure plots the first three loading vectors of mode 𝑖,𝗩(𝑖)
𝑗 ,𝑖 = 𝑇,𝑁,𝐶,𝑗 = 1,2,3 of Tucker models that are estimated over

sliding windows. Each window consists of 10 quarters so there are 23 subsamples. The Tucker models have (𝐾𝑇,𝐾𝑁,𝐾𝐶)= (3,12,12)
components. Each panel plots 23 lines corresponding to a subsample loading vector 𝗩(𝑖)

𝑗 . The sample period is 2010Q3 to 2018Q4.
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