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open science opportunities and foster a culture of policy and industry experimentation at scale.
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1 Introduction

Large Language Models (LLMs) represent a sophisticated application of machine learn-
ing algorithms, showing a capacity to create original content and thus underscoring
their status as generative Artificial Intelligence (AI) (Bubeck et al., 2023). Despite their
relatively recent emergence, the full extent of the rapid effects of generative and trans-
formative AI in science, policy, and society remains to be experienced (Frank et al.,
2019; Zhang et al., 2021; Bommasani et al., 2022; Brynjolfsson and Mcafee, 2017; Man-
ning et al., 2022; Acemoglu and Johnson, 2023; Korinek, 2023).

This observation brings us to a pivotal question: How can we harness AI’s full po-
tential at a societal scale? At the forefront of this quest stands the Human-AI Interface
(HAI), a paradigmatic shift in the interaction between human cognition and artificial
intelligence. This interface symbolizes a melding of worlds, where human decision-
making processes and AI algorithms unite to create a synergistic exchange of insights
and learning. The HAI represents a technological advancement and a fundamental
reimagining of how humans and AI can collaborate. This paper explores this inter-
face’s potential, envisioning a future where AI’s latent capabilities are fully realized,
transforming scientific inquiry and societal applications.

A natural venue in economics is to generate data for causal inference in experimen-
tal settings, for example, online. While once an academic curiosity, online experiments
have become a bona fide contributor to causal estimates in the social sciences (Athey,
2015; Brynjolfsson et al., 2019). With the burgeoning digital economy, researchers be-
lieve that the generation of causal insights using online experiments will continue to
increase (Fréchette et al., 2022).

However, one key feature of online experiments that tempers the optimism of even
its most enthusiastic supporters is the violation of the four exclusion restrictions, call-
ing into question the internal validity of the received estimates. For example, com-
pliance, one of the four identification assumptions that underlie the experimental ap-
proach (List, 2023), is often questioned in online experiments because it is usually as-
sociated with high measurement errors (Gillen et al., 2019). Checking whether individ-
ual participants understand the experiment’s instructions is often tricky, particularly
in an online experiment, where people cannot usually ask questions and receive live
responses. While one remedy might involve incorporating real-time human support to
address participant inquiries, it would require at least one of these conditions: 1) hav-
ing a sizable skilled labor force to accommodate simultaneous questions from many
participants, and 2) providing extended availability to cover the protracted timelines
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with online experiments.
Although machine learning algorithms have improved causal inference analysis

methods in economics (Athey and Imbens, 2019), we expect these new models LLMs
to radically improve critical areas of scientific knowledge production, in particular to
overcome these issues related to online experiments. LLMs can be fine-tuned as chat
assistants to simulate sophisticated human interactions while reducing labor costs.
Given their inherent scalability and versatility, such integration could become stan-
dard practice for future online experiments, revolutionizing the field and fostering
unprecedented advancements across various online experiments, including surveys,
incentivized individual decisions, and game-theoretical experiments. In addition, this
approach can be deployed without prerequisite or minimal coding knowledge and is
compatible with many experimental online platforms familiar to researchers, such as
Qualtrics, oTree, and Z-tree. By ensuring consistency of treatment within and across
these settings, another of the exclusion restrictions, the stable unit treatment value as-
sumption (SUTVA), will be more likely to hold. Similarly, observability, a third ex-
clusion restriction, is more likely to hold by minimizing the experimental burden on
subjects by maintaining participant focus and engagement.

While this example highlights one key area of improvement of generative AI for
experimentation, other areas are also open for similar enhancements. For example,
specific fine-tuned language models could homogenize and carry out randomization
and re-randomization techniques, lending more credibility to the fourth exclusion re-
striction, statistical independence. Furthermore, integrating them into the develop-
ment and analysis of experimental research can address the challenges researchers
commonly face, such as optimizing the wording of tasks, improving comprehension
(Ouyang et al., 2022), and streamlining data analysis, especially coding and data vi-
sualizations (Wang et al. (2023)). Using the capabilities of this technology, we can cre-
ate more immersive online experiences, facilitate real-time monitoring of participant
participation, and improve the quality and replicability of experiments. In addition,
its use can promote open science opportunities, fostering increased collaboration, and
this technique can promote open science among researchers.

This paper often refers to LLMs and their capabilities.1 But,this does not imply
that users can simply input our suggested directions and some experiment details into
ChatGPT and expect satisfactory results. Generative AI, a rapidly transforming tech-
nology, is sensitive to inputs and can produce unpredictable outputs (Ganguli et al.,

1We do so with ’foundation models’ and ’fine-tuned models’ in mind under the umbrella of genera-
tive AI (Bommasani et al., 2022).

2



2022) and, as a result, working out which inputs lead to the most desired outputs,
known as prompt engineering, is becoming a growing part of the industry. Further-
more, the stochastic nature of generative AI means that results can be further improved
by researchers taking multiple draws for the same prompt and selecting the best result
ex post (Davies et al., 2021) or by launching A/B tests and other types of experiment
to determine which prompt is the most effective.

In their best light, based on up-and-coming research and development done by
leading AI labs, we envision these language models as the wise sage always available
at the experimentalist’s beck and call. Within this framework, we explore their imple-
mentation more generally in Section 2, focusing on their role in comprehension and
immersive experiences. Section 3 examines their capacities in data collection, includ-
ing real-time monitoring, preprocessing, and cleaning, while Section 4 considers data
analysis. The final section discusses the broader risks and benefits of the proliferation
of generative AI in behavioral and experimental economics and implications for open
science and scaling a culture of experimentation in business and policy-making. It
gives some speculative pointers on how to manage these.

2 Design with AI

Figure 1: AI can help in the 5 different phases of design
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Finding the Right Research Question. By enhancing researcher productivity, LLMs
free up resources during the design phase of investigations, broadening the scope of
potential research questions and allowing researchers to focus on ensuring validity.
LLMs can be instrumental in generating research ideas, offering hypotheses drawn
from the existing literature, current economic trends, and seminal problems in a field.
By evaluating research objectives, these models can recommend appropriate exper-
imental designs, including economic games, decision tasks, or market simulations,
guiding the best structure for control and treatment groups to isolate causal relation-
ships effectively. Generative AI also presents opportunities to design policy experi-
ments, RCT design, and predictive models. It helps to formulate and test policy hy-
potheses by analyzing vast amounts of data, which helps to determine the plausibil-
ity of policy assumptions and predict possible outcomes. Generative AI has already
succeeded in guiding mathematicians by generating conjectures, using feedback from
mathematicians to narrow down the space of significant relationships between vari-
ables to those that might be relevant (Davies et al., 2021). Similar capabilities could
encourage a more experimental and evidence-based approach to policymaking. LLMs
also have a role in the design of Randomized Controlled Trials (RCTs), a standard in
policy experimentation. An essential critique of RCTs in economics is their frequent
inability to meet the ”double-blind” standards of medicine (Deaton and Cartwright,
2018). However, if LLMs supervise an experiment, neither human participants nor re-
searchers interacting with the data need to know the specific treatment administered
to each group.

Choosing the Ideal Treatments, Hypothesis and Settings. Moreover, such models
can assist in selecting the ideal experimental setting, laboratory, field, or online – con-
tingent on the research question and context – and determine the appropriate sam-
ple size for the experiment, considering factors such as effect size, adequate statistical
power, and resource constraints based on the previous literature and state-of-the-art
statistical prowess. In particular, they can ensure balanced and comparable groups
using random assignment, stratification, or matching. Their extensive training data
also allows them to suggest relevant variables to manipulate and measure, provid-
ing optimal operationalization methods such as monetary incentives and real-effort
tasks. In the limit, they can also guide relevant ethical considerations, such as decep-
tion, informed consent, and potential harm to participants, helping researchers design
scientifically rigorous and ethically sound studies.

Furthermore, any potential bias introduced by LLMs can be tested cheaply and rig-
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orously and addressed before implementation, in contrast to human experts. These
models can generate various experimental design options, reducing the amount of
human labor required. Predictive modeling is the third area of interest of social sci-
entists (Hofman et al., 2021), where generative AI can make significant contributions.
By developing and refining predictive models, LLMs allow government and nonprofit
agencies to simulate the effects of policy experiments, anticipating the consequences of
policy changes before full implementation and thus informing the design and adjust-
ments of iterative policy interventions.

Tailoring the Wording and Generating Instructions. Critically, LLMs can write clear,
concise instructions and comprehension checks. Researchers can minimize measure-
ment errors and increase the chance of compliance by ensuring that participants un-
derstand the experimental setup and tasks. Models such as GPT-4, trained on billions
of data points, possess a deep understanding of language patterns and so can tailor
instructions’ language, tone, and complexity to participants with varying language
proficiency, education, or familiarity with economic concepts. To illustrate key issues,
they could even generate relevant examples, such as textual descriptions, hypotheti-
cal scenarios, or visual representations of economic concepts or analogies. By having
LLMs generate multiple versions of instructions and comprehension checks and itera-
tively provide feedback from researchers or pilot study participants to AI, interactions
with participants can be optimized for clarity. LLMs can effectively assist in critiquing
human- or AI-generated concise instructions against lengthy but precise benchmarks
provided by the researcher (Saunders et al., 2022).

Generating the Experimental Code and Documentation. Language models offer
versatile and efficient solutions for implementing experiments in various program-
ming languages. LLMs can convert experimental setups, desired variable manipu-
lations, and data collection, plain English, into complete code of Python, JavaScript,
HTML, or R scripts (Chen et al., 2021). In addition, they can adapt the generated
code to specific experimental platforms, ensuring seamless integration and adapting
the code to the requirements of a platform. In the same vein, they can reason through
experiments, detect design coding errors, and even simulate participants (Horton,
2023). By simulating demographic characteristics, backgrounds and language profi-
ciency, these virtual participants can ’interact’ with experiment materials and highlight
confusion or misunderstanding with respect to the wording of the instructions, logical
errors, or unexpected results in the experimental code, all of which may be harmless
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to researchers but crucial to the validity of the results (Charness et al., 2004). By in-
vestigating how simulated participants interact, researchers can examine these issues
in a controlled experimental setting while maintaining a high degree of ecological and
external validity. Researchers can also generate multiple versions of instructions and
comprehension checks by providing feedback from other researchers or pilot study
participants with LLM that helps evaluate concise human or AI-generated instructions
against lengthy but precise benchmarks provided by the researcher (Saunders et al.,
2022). This iterative approach enables researchers to refine instructions, optimizing
them for clarity and effectiveness.

Finally, LLMs can help researchers create replication packages in the same or dif-
ferent settings, including the necessary materials to reproduce a study. Given the ob-
served differences between online and offline samples (Snowberg and Yariv, 2021),
such abilities are valuable for the field. They can also assist in developing other doc-
umentation (for example, IRB submissions) to more effectively explain the design of
the experiment and its impact on the design of the experiment. If given access through
plugins, they could automate the use of ML tools designed to make pre-registration
less restrictive and calculate the lost power from such tools (Ludwig et al., 2019). Sim-
ilarly, LLMs can be crucial in standardizing approaches since the literature suggests
that design flexibility and associated experimental decisions are inversely related to ac-
tual research findings (Ioannidis (2005). Overall, such standardization of experimental
design templates could go further and be made through a public library of standard
experimental design templates, ready-to-use, scaling an approach developed manu-
ally in different languages, to name a few, in Qualtrics (Molnar, 2019) and oTree (Chen
et al., 2016).

3 Implementing Experiments with AI

Incorporating AI agents into online experiments can streamline aspects of the imple-
mentation of experiments while enhancing data quality collection. They could help
with participant recruitment, provide real-time assistance, increase engagement, live
monitor data quality, and facilitate follow-up surveys.

Supporting Participants. Chatbots demonstrate significant potential to provide de-
tailed, instant responses to inquiries. Recent evidence from Eloundou et al. (2023), Noy
and Zhang (2023) and Brynjolfsson et al. (2023) show in different settings that granting
humans access to AI-powered chat assistants can significantly increase their productiv-
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Figure 2: How AI Can Help Increase Data Quality During Implementation

ity. AI assistance allows human support to provide faster and higher quality responses
to a more extensive customer base. This technique can be imported to experimen-
tal research, where participants might need clarification of the instructions or have
other questions. In its most scalable version, we imagine having fully autonomous
chatbots providing simultaneous support to hundreds of participants with few or no
live support human agents. Consequently, these new generative AI models can repre-
sent a highly scalable solution with significant potential to improve the viability of the
compliance assumption. This, in turn, may improve causal inference of data collected
broadly in online experiments. As in the discussion of instruction comprehension in
Section 2, chat assistants can answer questions and personalize their interaction ac-
cording to the communication and comprehension style of each participant during the
experiment. This is important to ensure that participants understand the experimental
instructions before performing tasks, a necessary step to ensure compliance and avoid
construct validity concerns.

Monitoring Comprehension. Chat assistants can dynamically tailor the design of an
experiment to enhance data collection. For example, in a cognitive-ability experiment,
if a task is too easy or difficult for a participant, a chatbot could adjust the difficulty of
following tasks accordingly, allowing better identification of the type of participants.
This maintains participation and accurately measures the participant’s abilities. Simi-
larly, the chatbot can prioritize or deprioritize questions based on a participant’s earlier
responses in a personality assessment. This personalized approach, made possible by
chatbots, allows for more nuanced data collection, offering a more effective and cus-
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tomized experimental process. In addition, depending on the research question and
design, providing immediate feedback can improve motivation and understanding of
tasks when appropriate. Chat assistants can simulate social interactions, such as ne-
gotiations, group decision making, or trust building exercises, in the study of complex
social phenomena. Thus, researchers can examine these topics in a controlled experi-
mental setting while maintaining a high degree of ecological and external validity. Au-
tomating the data collection process through chat assistants reduces the risk of experi-
menter bias or demand characteristics that influence participant behavior, resulting in
a more reliable evaluation of research questions (Fréchette et al., 2022).

Monitoring Engagement. Furthermore, providing all necessary guidance within the
chat interface helps to maintain participant focus and engagement, thus preventing
participants from feeling overwhelmed or confused, and minimizing distractions or
multitasking that could introduce noise. Thus, observability, the third exclusion re-
striction, is more likely to hold by lessening the experimental burden on subjects. One
can even learn why a participant failed a comprehension question so that researchers
can decide how to proceed in real time. Finally, AI agents can automate the adminis-
tration of follow-up surveys or debrief questionnaires, collecting additional data cost-
effectively.

Monitoring Cheating. AI agents can also be fine-tuned to monitor automatically at
scale cheating in several ways. For example, they can, with relevant plugins, automat-
ically implement different techniques done through manual JavaScript so far: track-
ing participant browser activity by opening new tabs, switching between windows,
or spending excessive time away from the experiment, as was done by (Jabarian and
Sartori, 2020). By systemically monitoring these actions, AI agents can detect poten-
tial cheating and remind participants to focus on the task. Second, they can analyze
real-time participant responses for patterns suggesting cheating, repeating answers,
or providing contradictory information. Researchers can then review these flagged
cases in real time and determine whether further action is necessary. Currently, chat
assistants can effectively handle unexpected scenarios and technical issues to ensure
a smooth experimental process. They contribute to a more controlled environment
by providing real-time reminders, reducing participants’ chances of forgetting critical
information. Additionally, chat assistants could reduce attrition by engaging partici-
pants in dynamic and interactive conversations. This real-time interaction facilitates
higher-quality data, as more engaged participants are less likely to make errors or
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random responses. AI agents and chat assistants create a more efficient and reliable
experimental setup, balancing strict supervision of participant behavior with real-time
assistance and participant engagement. Finally, they can select participants for eligi-
bility criteria, ensuring a representative and appropriate sample. By automating this
process, researchers can save time and reduce the risk of human error.

4 Analyzing Experimental Data with AI

Figure 3: How AI Can Help Up Experimental Analysis

LLMs can substantially increase the analysis of economic experiments by assisting
with data analysis in two primary ways. First, they could automate data analysis tasks
such as sanitization, examining relationships within the data, and analyzing the data
using the Code Interpreter on ChatGPT. Second and less obvious, they could create
and explore new data unexamined so far in standard economic experiments.

Regarding exploring new data, the use of natural language processing (NLP) tech-
niques with live chat logs from experiments can yield insights into participant behav-
ior, uncertainty, and cognitive processes. Such insights provide opportunities to ob-
serve and scrutinize new variables for statistical tests and identify factors that could
influence conventional results. Variables of potential interest that emerge from chat
logs encompass the frequency of questions posed, the degree of engagement in con-
versation, or sentiments expressed by participants. Understanding these variables can
illuminate the correlation between participant behavior and experimental results, of-
fering a more nuanced understanding of the factors shaping outcomes. This “under-
the-hood” perspective can spark novel hypotheses and insights.

During data pre-processing, language models can distill pertinent details from chat
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logs, organize the data into an analytical-friendly format, and manage any incomplete
or missing entries. Beyond these tasks, such models can perform content analysis -
identifying and categorizing frequently expressed concerns of participants, analyz-
ing sentiments and emotions conveyed, and gauging the efficacy of instructions, re-
sponses, and interactions. Models of this nature are also equipped to pinpoint areas of
confusion. This ability can help improve experimental designs, instructions, and train-
ing protocols for chatbots covered in Section 2. It could also be used in the final data
analysis for new types of behavioral heterogeneity analysis. Participant characteristics
such as demographics and cognitive abilities, and their influence on chat interactions
and experimental outcomes, can also be explored through these models.

With respect to automating data analysis tasks, specific LLMs, such as Code Inter-
preter, can help at different stages of the knowledge production chain. First, it can help
authors conduct statistical tests, develop econometric models, determine causal rela-
tionships, and perform robustness checks by harnessing state-of-the-art techniques.
Automating these tasks offers dual benefits. First, it saves researchers’ time, which can
be allocated to other tasks in knowledge production. Second, it minimizes research
flexibility across all tasks and strengthens the likelihood that reported research find-
ings represent genuine associations (Ioannidis, 2005). In addition, they can generate
data visualizations in concert with other features. This helps researchers understand
both their results and communicate their findings effectively.

Second, after authors have conducted their analysis, LLMs can aid them and the
broader scientific community in comparing the finished work and pre-registration
plans. In particular, these tools would be adept at pinpointing and highlighting signif-
icant divergences, including the unexpected introduction of new variables, the omis-
sion of predetermined variables, the application of alternative econometric paradigms,
or modifications in the specified data acquisition methods. Furthermore, these lan-
guage models can be fine-tuned to distinguish between confirmatory and exploratory
analysis. Confirmatory analysis, anchored to a pre-registered plan, aims to validate
predetermined hypotheses. In contrast, exploratory analysis allows for a more flexi-
ble approach to data interpretation. These models can scrutinize the manuscript for
sections indicating a diversion from the pre-registered schema towards exploratory
analysis, valid not only for the authors in their submission process but also for referees
and editors in the review process.

In the same vein, although these models may still encounter difficulties discern-
ing between AI versus human-generated text, they are becoming rapidly proficient
in readily and accurately detecting AI-generated code, anomalies, or red flags within
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code analysis and using LLMs under the impulse of OpenAIs classifiers (Kirchner et al.,
2023). In a specific application, we could imagine presenting models with a pair – the
result and its corresponding interpretation – to determine the fidelity of the interpre-
tation relative to the actual result. Far from being merely speculative, this task could
rapidly be implemented since, when aiding a human expert, LLMs have been shown to
improve significantly at coding challenges if repeated sampling is allowed (Chen et al.,
2021). This capability could be pivotal in identifying instances of overclaiming, where
interpretations may exceed the implications of the results or, conversely, underclaim-
ing, where the interpretation fails to capture the full potential of the results. Anomalies
such as 1) misalignment between the quantitative findings and their qualitative expo-
sition or 2) significant findings that are overlooked due to suboptimal communication
or missing facts could be flagged by LLMs for further examination.

Generative AI also offers significant opportunities to help facilitate peer review,
replication, and dissemination of research. Previous tasks, such as comparison with
pre-registration plans, analysis of data for tampering, analysis of code and supple-
mental text, and new tasks, such as separating human and AI work, that would be
highly time intensive for human researchers are now far less so. These models can
cross-compare claims in the body of a paper with the code, ensuring that the imple-
mentation matches the theory. It can examine datasets and highlight irregularities like
outliers driving results, text, ordering, or meta-data that do not fit the implicit pat-
terns it can identify. Furthermore, it can write summaries of the appendices, allowing
reviewers and replicators to see if their concerns are addressed quickly. Given the ex-
perimental setup and treatment, it can be checked whether appropriate tests for the
main results and robustness have been carried out in the main text or the supplemen-
tary material. At the limit, we even envisage simulated replications using existing code
and information in the paper and appendix that could help highlight coding errors or
irregular results. Any such endeavor would be fraught with difficulties; especially
with more novel results relaying on behaviors that it is less likely that LLMs will have
internalized. However, this idea could hold promise with the possibility of simulat-
ing independent participants and the capacity for many simulations. These various
abilities can help boost the speed of review and the rate of replication (two common
concerns in the field) and benefit research efficiency.
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Figure 4: Main Opportunities Offered from AI-Enhanced Experimentation

5 Circles of Opportunities

Standardized Scientific Documentation with LLMs An essential role for LLMs is
to generate standardized documentation that follows best practices and established
guidelines for open science norms. Consistent formatting and content reduce barriers
to replication by human agents or generative AIs. Furthermore, LLMs can analyze the
scientific literature, helping researchers identify relevant studies for replication. Re-
searchers can replicate essential and influential studies by prioritizing novelty, impact,
or methodological rigor, which greatly increases our knowledge creation (Maniadis
et al. (2014) for the inferential power of replications).

Enhancing Replicability and Promoting Institutional Change We can envisage a
scenario where Large Language Models (LLMs), trained on specialized and concise
datasets, are employed to predict the likelihood of a submitted academic paper being
replicable. They could even assist in the replication process prior to its acceptance for
publication. This approach would shift the emphasis from relying on post-publication
replication by researchers, which is currently seen as a beneficial but uncertain out-
come, to a more proactive model. Such a strategy could significantly contribute to the
developing field of forecasting markets in the social sciences (DellaVigna et al. (2020)).

Therefore, in addition to working to better align professional incentives with trans-
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parent scientific behavior, a concrete and fully operational institutional change through
AI engineering assistance at the journal level can make a difference in the desired
change in scientific culture.

LLMs in Collaborative Research and Enhancing Credibility Such fine-tuned mod-
els can also facilitate collaboration by managing collaborative replication projects by
generating project management tools, coordinating communication, and maintaining
version control for shared documentation. They have successfully coordinated large
groups for communication (Small et al., 2023) and could present an opportunity for
more extensive collaborations between academics. These opportunities help to ad-
vance the credibility revolution, which has recently taken on a more critical role in
the social sciences (Jennions and Møller, 2002; Nosek et al., 2012; Bettis, 2012; Dreber
et al., 2015; Butera et al., 2020; Dreber and Johannesson, 2023). By supporting the peer
review process with standardized guidelines, these models can ensure that published
studies adhere to the highest standards of scientific integrity. They can also develop
training materials, online courses, or educational workshops for conducting and re-
porting replication studies. Making these resources widely available demonstrates to
researchers the importance of replication and transparency in scientific research. Ad-
ditionally, they can facilitate communication between researchers, editors, and other
stakeholders by generating standardized correspondence templates and streamlining
the submission and review process.

Impacts Beyond Academia These opportunities extend beyond academia, fostering
a standardized scientific culture of experimentation in technology, artificial intelligence
firms, and government agencies. It has already been argued that ML could help with
pre-registration, creating a flexible compromise between the ideal open science pre-
registration requirements (such as the AEAs RCT registry) for applied experimental
microeconomic work and the current exploratory nature of the work by suggesting
additional variables of interest (Ludwig et al., 2019).

The potential of generative AI to foster a culture of systematic experimentation in
technology companies can significantly mitigate associated labor expenses related to
human expertise (Berg et al., 2023). A rising trend of technology corporations actively
recruiting Ph.D. economists demonstrates their pivotal role in resolving multifaceted
business challenges (Athey and Luca, 2019). These economists engaged in strategic
decision-making and design choices navigate various issues, including pricing, auc-
tions, matching, market design, consumer behavior, product design, and strategic decision-

13



making. They tackle issues relevant to management by employing company-specific
data, often working in business-centric roles. Illustrative of this trend are tech gi-
ants like Microsoft and Amazon. Microsoft’s business-oriented chief economist leads
a team actively recruiting Ph.D. economists to address diverse issues ranging from
cloud computing to search advertising. Similarly, Amazon employs economists to
solve business-specific challenges in its multiple divisions, including e-commerce plat-
forms, digital content, and platforms designed to evaluate changes and innovations.

The increasing prominence of economists in technology companies underscores
their crucial role in creating a culture of experimentation. They draw on their expertise
to conduct changes and innovations evaluations. This process echoes the pioneering
work of Paul Milgrom, Al Roth and Robert Wilson in auctions (Wilson, 2020). Their
groundbreaking efforts blended novel theoretical insights with empirical work and ex-
periments to address real-world problems. With the advent of foundation models, it
is now possible for technology corporations to instil a comprehensive culture of ex-
perimentation across departments. This approach echoes the rigor and originality of
academia, paving the way for even more business decisions to be grounded in scien-
tific principles. Building such a culture of experimentation within government agen-
cies requires a more systematic approach to policymaking. This approach relies on a
continuous low-cost cycle of tests, trials, and pilots to explore policy options, evaluate
their impacts, and make informed, data-driven decisions.

Transparency and Impacts on Policy-Making Finally, by generating standardized
documentation for experiments, LLMs can promote transparency, build public trust,
and contribute to technology literacy for different stakeholders. For example, LLMs
can help create educational materials and tools that instruct government personnel
about experimental methods, data analysis, and evidence-based policymaking. This
step is critical in fostering a culture that values and understands the importance of
experimentation. Effective communication is crucial for accepting and institution-
alizing an experimental culture. Incorporating LLMs into policy development can
help governmental agencies promote systematic experimentation, fostering a culture
of evidence-based policymaking. However, it remains vital to ensure their ethical use
and strike a balance between automated insights and human expertise.
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Figure 5: Main Risks Posed from AI-Enhanced Experimentation

6 Pyramid of Risks

Using LLMs in experimental research can pose several risks (Bommasani et al., 2022),
including concerns about intellectual property (IP), digital privacy issues, user decep-
tion, scientific fraud by fabricating data or strategies to hide data manipulation, hallu-
cinations, and challenging creativity by overly homogenizing the human-AI interface.

Intellectual Property and Privacy Concerns in AI Experimentation Generative AI
not citing its sources can be unintentional plagiarism or copyright infringement, and
relying on technologies explicitly citing their sources, such as PerplexityAI or Elicit,
seems desirable. Such possible drawbacks call for increased scrutiny from the scien-
tific community and more transparent scientific practice, from collecting data to pub-
lishing the papers. Beyond IP concerns, several other potential issues remain. First,
the vast amounts of data these language models process can create privacy concerns,
especially since these data may contain sensitive participant information. Researchers
fine-tuning such models should follow best practices such as anonymizing data, ob-
taining informed consent, and implementing secure data access controls and storage
methods to protect data.

Deception and Misinformation in AI-driven Research The use of AI in experimen-
tation can lead to deception and misinformation. Firstly, AI can be intentionally ma-
nipulated to produce desired outcomes, whether due to commercial interests, political
biases, or individual agendas. Such manipulation can lead to the creation of deceptive
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research findings. This is made possible by the fact that AI, especially sophisticated
models, can generate entirely fabricated data or research outcomes. While this already
takes place in instances of academic fraud, the use of AI may make the fabricated data
more convincing and capable of evading detection. This can be particularly deceptive
if not properly checked.

Secondly, researchers using AI in experimentation may unintentionally produce
false results. This is because AI’s understanding is limited to the information it has
been trained on and it lacks real-world experience and common sense reasoning. Fur-
thermore, AI models, despite their complexity, may lack the nuanced understanding
of context that human researchers possess. This can result in AI misinterpreting or
oversimplifying complex issues, leading to misinformation. This is especially risky
in fields where context and nuance are crucial, like the social sciences. Additionally,
AI might identify patterns or correlations in data that don’t actually exist, leading to
false positives and skewed or biased data. These problems can be accentuated by re-
searchers becoming overly reliant on AI-generated data or analysis, assuming it to be
infallible. This over-reliance can overshadow critical human judgment and lead to the
acceptance of flawed conclusions.

The potential for deception and misinformation arising from AI use in experimen-
tation extends beyond academic circles, manifesting significantly in societal contexts,
particularly through social media. One critical aspect is the challenge in distinguishing
between AI-generated and human-generated content. This difficulty is pronounced in
high-frequency information environments like social media, where rapid dissemina-
tion and wide reach can amplify the impact of false information.

Two primary ways this deception occurs are through hallucination and manipu-
lation. Hallucination in AI refers to instances where systems generate plausible yet
erroneous information, such as fabricating citations or creating convincing but false
representations of authoritative figures using advanced technologies like deep voice
and face fakes. Although evidence suggests that hallucination tends to decrease as AI
models grow and are fine-tuned (Brown et al. (2020), Ouyang et al. (2022)), the risk per-
sists, especially when AI is trained on its thought process, not just outcomes (Lightman
et al. (2023)).

Moreover, the manipulation of attention on social networks is a significant global
risk. The deliberate direction of user attention towards specific, potentially misleading
content can greatly influence public opinion and decision-making (Lazer et al. (2018),
Pennycook et al. (2021)). This is exacerbated by the fact that AI can easily generate
and spread misinformation at a high frequency and low cost, presenting challenges to
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traditional, slower fact-checking methods (Gupta et al. (2022), Goldstein et al. (2023)).
In response to these challenges, there’s a pressing need to focus relentlessly on the

quality and credibility of information, particularly in the face of increasingly sophis-
ticated ’scientific troll farms’. These entities use AI to create and propagate scientific
misinformation for manipulative purposes. To counter this, innovative approaches
are required. One potential avenue is the use of AI in automating fact-checking pro-
cesses (Guo et al. (2022)). Additionally, leveraging the economics of networks could
provide strategies to anticipate and mitigate sources of misinformation by allocating
AI resources strategically (Jackson (2009)). This approach could include evaluating the
reputation of information sources or the processes used to generate information, po-
tentially integrating blockchain technology as a means to authenticate the credibility
and authenticity of information sources.

Such integrative and forward-thinking solutions are vital in addressing the perva-
sive issue of AI-induced deception and misinformation in society, particularly as we
increasingly rely on AI for information generation and dissemination.”

Maintaining Standards of Trust and Mitigating Biases The advent of generative AI
technologies brings to the forefront new challenges in educational sciences, particu-
larly for economists. A critical area of focus is prompt engineering – the art of crafting
optimal prompts to elicit high-quality outputs from AI systems. The effectiveness of
an AI’s response is greatly influenced by the nature of the prompts it receives, making
the mastery of prompt techniques a crucial skill. However, current efforts to optimize
prompt engineering lack a systematic approach. This gap can be addressed using the
tools of behavioral and experimental economics, particularly the concept of nudges
(Thaler (2018)). By applying these principles, we can develop a more effective User-AI
Interface (UAI) and enhance the User-AI Experience (UAIX).

Ensuring the integrity of knowledge production in this field also necessitates main-
taining trust and replicability standards. One approach to achieve this is by recording
interactions between researchers and AI during the knowledge production process and
attaching these records as appendices in research submissions.

Another crucial aspect is the need for vigilance against biases in model training
and data analysis (Luca et al. (2016), Kleinberg et al. (2018)). While some research
suggests that addressing algorithmic bias should not involve direct tampering with
the algorithms themselves (Xian et al. (2023)), it’s imperative to consider these biases
during the analysis phase (Kleinberg et al. (2018)). This approach necessitates a deep
understanding of potential biases and a commitment to transparency in the training,
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fine-tuning, and application of AI models. It is essential for researchers and users to
view these AI models as tools that complement, rather than completely replace, human
expertise.

Creativity Loss and Cognitive Homogenization One final negative externality is
that the broader use of generative AI could challenge our conception of creativity and
homogenize too much thought by relying only on standardized prompts when inter-
acting with AI. In its worst light, this new technology could, in principle, create re-
search drones by taking the art and creativity out of the research and thought process,
leading to decreased research quality. This would undoubtedly lead to lost opportuni-
ties for new wisdom, thought, hypotheses, and scholarship needed in the face of every
new societal challenge. We should recognize this trade-off and continue to reward
such creativity in the marketplace for ideas; without incentives, significant contribu-
tions that come about via critical thinking, creativity, and out-of-the-box ideas might
be sacrificial lambs to the sophisticated standardization of knowledge production.

7 Conclusion

In conclusion, the integration of Large Language Models (LLMs) into scientific experi-
mentation represents a pivotal shift in research methodologies. LLMs not only stream-
line the design and implementation of experiments but also bring a new depth to data
analysis. This evolution promises to accelerate scientific innovation while underscor-
ing the need for robust ethical guidelines and governance frameworks. As we embrace
this technological leap, it is imperative to balance the pursuit of knowledge with re-
sponsible stewardship, ensuring that AI serves as a catalyst for credible, ethical, and
groundbreaking scientific discoveries.
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