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1 Introduction

Large Language Models (LLMs) represent a sophisticated application of machine learn-
ing algorithms, showing a capacity to create original content and thus underscoring
their status as generative Artificial Intelligence (AI) (Bubeck et al., 2023). Despite their
relatively recent emergence, the full extent of the rapid effects of generative and trans-
formative AI in science, policy, and society remains to be experienced (Frank et al.,
2019; Zhang et al., 2021; Bommasani et al., 2022). This includes the field of economics
(Brynjolfsson and Mcafee, 2017; Manning et al., 2022; Acemoglu and Johnson, 2023;
Korinek, 2023). A natural venue in economics is to generate data for causal inference
in experimental settings, for example, online. While once an academic curiosity, online
experiments have become a bona fide contributor to causal estimates in the social sci-
ences (Athey, 2015; Brynjolfsson et al., 2019a). With the burgeoning digital economy,
researchers believe that the generation of causal insights using online experiments will
continue to increase (Fréchette et al., 2022).

However, one key feature of online experiments that tempers the optimism of even
its most enthusiastic supporters is the violation of the four exclusion restrictions, call-
ing into question the internal validity of the received estimates. For example, com-
pliance, one of the four identification assumptions that underlie the experimental ap-
proach (List, 2023), is often questioned in online experiments because it is usually as-
sociated with high measurement errors (Gillen et al., 2019). Checking whether individ-
ual participants understand the experiment’s instructions is often tricky, particularly
in an online experiment, where people cannot usually ask questions and receive live
responses. While one remedy might involve incorporating real-time human support to
address participant inquiries, it would require at least one of these conditions: 1) hav-
ing a sizable skilled labor force to accommodate simultaneous questions from many
participants, and 2) providing extended availability to cover the protracted timelines
with online experiments.

Although machine learning algorithms have improved causal inference analysis
methods in economics (Athey and Imbens, 2019), we expect these new models LLMs
to radically improve critical areas of scientific knowledge production, in particular to
overcome these issues related to online experiments. LLMs can be fine-tuned as chat
assistants to simulate sophisticated human interactions while reducing labor costs.
Given their inherent scalability and versatility, such integration could become stan-
dard practice for future online experiments, revolutionizing the field and fostering
unprecedented advancements across various online experiments, including surveys,
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incentivized individual decisions, and game-theoretical experiments. In addition, this
approach can be deployed without prerequisite or minimal coding knowledge and is
compatible with many experimental online platforms familiar to researchers, such as
Qualtrics, oTree, and Z-tree. By ensuring consistency of treatment within and across
these settings, another of the exclusion restrictions, the stable unit treatment value as-
sumption (SUTVA), will be more likely to hold. Similarly, observability, a third ex-
clusion restriction, is more likely to hold by minimizing the experimental burden on
subjects by maintaining participant focus and engagement.

While this example highlights one key area of improvement of generative AI for
experimentation, other areas are also open for similar enhancements. For example,
specific fine-tuned language models could homogenize and carry out randomization
and re-randomization techniques, lending more credibility to the fourth exclusion re-
striction, statistical independence. Furthermore, integrating them into the develop-
ment and analysis of experimental research can address the challenges researchers
commonly face, such as optimizing the wording of tasks, improving comprehension
(Ouyang et al., 2022), and streamlining data analysis, especially coding and data vi-
sualizations (Wang et al. (2023)). Using the capabilities of this technology, we can cre-
ate more immersive online experiences, facilitate real-time monitoring of participant
participation, and improve the quality and replicability of experiments. In addition,
its use can promote open science opportunities, fostering increased collaboration, and
this technique can promote open science among researchers.

This paper often refers to LLMs and their capabilities.1 But,this does not imply
that users can simply input our suggested directions and some experiment details into
ChatGPT and expect satisfactory results. Generative AI, a rapidly transforming tech-
nology, is sensitive to inputs and can produce unpredictable outputs (Ganguli et al.,
2022) and, as a result, working out which inputs lead to the most desired outputs,
known as prompt engineering, is becoming a growing part of the industry. Further-
more, the stochastic nature of generative AI means that results can be further improved
by researchers taking multiple draws for the same prompt and selecting the best result
ex post (Davies et al., 2021) or by launching A/B tests and other types of experiment
to determine which prompt is the most effective.

In their best light, based on up-and-coming research and development done by
leading AI labs, we envision these language models as the wise sage always available
at the experimentalist’s beck and call. Within this framework, we explore their imple-

1We do so with ’foundation models’ and ’fine-tuned models’ in mind under the umbrella of genera-
tive AI (Bommasani et al., 2022).
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mentation more generally in Section 2, focusing on their role in comprehension and
immersive experiences. Section 3 examines their capacities in data collection, includ-
ing real-time monitoring, preprocessing, and cleaning, while Section 4 considers data
analysis. The final section discusses the broader risks and benefits of the proliferation
of generative AI in behavioral and experimental economics and implications for open
science and scaling a culture of experimentation in business and policy-making. It
gives some speculative pointers on how to manage these.

2 Designing Experiments with LLMs

By enhancing researcher productivity, LLMs free up resources during the design phase
of investigations, broadening the scope of potential research questions and the focus
that can be dedicated to ensuring validity. LLMs can be instrumental in generating
research ideas, offering hypotheses drawn from the existing literature, current eco-
nomic trends, and seminal problems in a field. By evaluating research objectives, these
models can recommend appropriate experimental designs, including economic games,
decision tasks, or market simulations, guiding the best structure for control and treat-
ment groups to isolate causal relationships effectively.

Moreover, such models can assist in selecting the ideal experimental setting, labora-
tory, field, or online – contingent on the research question and context – and determine
the appropriate sample size for the experiment, considering factors such as effect size,
adequate statistical power, and resource constraints based on the previous literature
and state-of-the-art statistical prowess. In particular, they can ensure balanced and
comparable groups using random assignment, stratification, or matching. Their ex-
tensive training data also allows them to suggest relevant variables to manipulate and
measure, providing optimal operationalization methods such as monetary incentives
and real-effort tasks. In the limit, they can also guide relevant ethical considerations,
such as deception, informed consent, and potential harm to participants, helping re-
searchers design scientifically rigorous and ethically sound studies.

Critically, LLMs can write clear, concise instructions and comprehension checks.
Researchers can minimize measurement errors and increase the chance of compliance
by ensuring that participants understand the experimental setup and tasks. Models
such as GPT-4, trained on billions of data points, possess a deep understanding of lan-
guage patterns and so can tailor instructions’ language, tone, and complexity to par-
ticipants with varying language proficiency, education, or familiarity with economic
concepts. To illustrate key issues, they could even generate relevant examples, such
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as textual descriptions, hypothetical scenarios, or visual representations of economic
concepts or analogies. By having LLMs generate multiple versions of instructions and
comprehension checks and iteratively provide feedback from researchers or pilot study
participants to AI, interactions with participants can be optimized for clarity. LLMs
can effectively assist in critiquing human- or AI-generated concise instructions against
lengthy but precise benchmarks provided by the researcher (Saunders et al., 2022).

Language models offer versatile and efficient solutions for implementing experi-
ments in various programming languages. LLMs can convert experimental setups,
desired variable manipulations, and data collection, plain English, into complete code
of Python, JavaScript, HTML, or R scripts (Chen et al., 2021). In addition, they can
adapt the generated code to specific experimental platforms, ensuring seamless inte-
gration and adapting the code to the requirements of a platform. In the same vein,
they can reason through experiments, detect design coding errors, and even simulate
participants (Horton, 2023). By simulating demographic characteristics, backgrounds
and language proficiency, these virtual participants can ’interact’ with experiment ma-
terials and highlight confusion or misunderstanding with respect to the wording of the
instructions, logical errors, or unexpected results in the experimental code, all of which
may be harmless to researchers but crucial to the validity of the results (Charness et al.,
2004). By investigating how simulated participants interact, researchers can examine
these issues in a controlled experimental setting while maintaining a high degree of
ecological and external validity. Researchers can also generate multiple versions of in-
structions and comprehension checks by providing feedback from other researchers or
pilot study participants with LLM that helps evaluate concise human or AI-generated
instructions against lengthy but precise benchmarks provided by the researcher (Saun-
ders et al., 2022). This iterative approach enables researchers to refine instructions,
optimizing them for clarity and effectiveness.

Furthermore, LLMs can help researchers create replication packages in the same or
different settings, including the necessary materials to reproduce a study. Given the
observed differences between online and offline samples (Snowberg and Yariv, 2021),
such abilities are valuable for the field. They can also assist in developing other doc-
umentation (for example, IRB submissions) to more effectively explain the design of
the experiment and its impact on the design of the experiment. If given access through
plugins, they could automate the use of ML tools designed to make pre-registration
less restrictive and calculate the lost power from such tools (Ludwig et al., 2019). Sim-
ilarly, LLMs can be crucial in standardizing approaches since the literature suggests
that design flexibility and associated experimental decisions are inversely related to ac-
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tual research findings (Ioannidis (2005). Overall, such standardization of experimental
design templates could go further and be made through a public library of standard
experimental design templates, ready-to-use, scaling an approach developed manu-
ally in different languages, to name a few, in Qualtrics (Molnar, 2019) and oTree (Chen
et al., 2016).

Besides, generative AI also presents opportunities to design policy experiments,
RCT design, and predictive models. It helps to formulate and test policy hypotheses
by analyzing vast amounts of data, which helps to determine the plausibility of policy
assumptions and predict possible outcomes. Generative AI has already succeeded in
guiding mathematicians by generating conjectures, using feedback from mathemati-
cians to narrow down the space of significant relationships between variables to those
that might be relevant (Davies et al., 2021). Similar capabilities could encourage a more
experimental and evidence-based approach to policymaking. LLMs also have a role in
the design of Randomized Controlled Trials (RCTs), a standard in policy experimen-
tation. An essential critique of RCTs in economics is their frequent inability to meet
the ”double-blind” standards of medicine (Deaton and Cartwright, 2018). However, if
LLMs supervise an experiment, neither human participants nor researchers interacting
with the data need to know the specific treatment administered to each group.

Finally, any potential bias introduced by LLMs can be tested cheaply and rigorously
and addressed before implementation, in contrast to human experts. These models can
generate various experimental design options, reducing the amount of human labor
required. Predictive modeling is the third area of interest of social scientists (Hof-
man et al., 2021), where generative AI can make significant contributions. By develop-
ing and refining predictive models, LLMs allow government and nonprofit agencies
to simulate the effects of policy experiments, anticipating the consequences of policy
changes before full implementation and thus informing the design and adjustments of
iterative policy interventions.

3 Implementing Experiments with LLMs

Incorporating AI agents into online experiments can streamline aspects of the imple-
mentation of experiments while enhancing data quality collection. They could help
with participant recruitment, provide real-time assistance, increase engagement, live
monitor data quality, and facilitate follow-up surveys.

Chatbots demonstrate significant potential to provide detailed, instant responses
to inquiries. Recent evidence from Eloundou et al. (2023), Noy and Zhang (2023) and
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Brynjolfsson et al. (2023) show in different settings that granting humans access to
AI-powered chat assistants can significantly increase their productivity. AI assistance
allows human support to provide faster and higher quality responses to a more exten-
sive customer base. This technique can be imported to experimental research, where
participants might need clarification of the instructions or have other questions. In its
most scalable version, we imagine having fully autonomous chatbots providing simul-
taneous support to hundreds of participants with few or no live support human agents.
Consequently, these new generative AI models can represent a highly scalable solution
with significant potential to improve the viability of the compliance assumption. This,
in turn, may improve causal inference of data collected broadly in online experiments.
As in the discussion of instruction comprehension in Section 2, chat assistants can an-
swer questions and personalize their interaction according to the communication and
comprehension style of each participant during the experiment. This is important to
ensure that participants understand the experimental instructions before performing
tasks, a necessary step to ensure compliance and avoid construct validity concerns.

Furthermore, providing all necessary guidance within the chat interface helps to
maintain participant focus and engagement, thus preventing participants from feeling
overwhelmed or confused, and minimizing distractions or multitasking that could in-
troduce noise. Thus, observability, the third exclusion restriction, is more likely to hold
by lessening the experimental burden on subjects. One can even learn why a partici-
pant failed a comprehension question so that researchers can decide how to proceed in
real time. Finally, AI agents can automate the administration of follow-up surveys or
debrief questionnaires, collecting additional data cost-effectively.

AI agents can also be fine-tuned to monitor (at scale) cheating in several ways.
For example, they can, with relevant plugins, automatically implement different tech-
niques done through JavaScript so far: tracking participant browser activity by open-
ing new tabs, switching between windows, or spending excessive time away from the
experiment, as was done by (Jabarian and Sartori, 2020). By systemically monitoring
these actions, AI agents can detect potential cheating and remind participants to fo-
cus on the task. Second, they can analyze real-time participant responses for patterns
suggesting cheating, repeating answers, or providing contradictory information. Re-
searchers can then review these flagged cases in real time and determine whether fur-
ther action is necessary. Currently, chat assistants can effectively handle unexpected
scenarios and technical issues to ensure a smooth experimental process. They con-
tribute to a more controlled environment by providing real-time reminders, reducing
participants’ chances of forgetting critical information. Additionally, chat assistants
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could reduce attrition by engaging participants in dynamic and interactive conversa-
tions. This real-time interaction facilitates higher-quality data, as more engaged partic-
ipants are less likely to make errors or random responses. AI agents and chat assistants
create a more efficient and reliable experimental setup, balancing strict supervision of
participant behavior with real-time assistance and participant engagement. Finally,
they can select participants for eligibility criteria, ensuring a representative and appro-
priate sample. By automating this process, researchers can save time and reduce the
risk of human error.

Chat assistants can dynamically tailor the design of an experiment to enhance data
collection. For example, in a cognitive-ability experiment, if a task is too easy or dif-
ficult for a participant, a chatbot could adjust the difficulty of following tasks accord-
ingly, allowing better identification of the type of participants. This maintains partic-
ipation and accurately measures the participant’s abilities. Similarly, the chatbot can
prioritize or deprioritize questions based on a participant’s earlier responses in a per-
sonality assessment. This personalized approach, made possible by chatbots, allows
for more nuanced data collection, offering a more effective and customized experi-
mental process.

In addition, depending on the research question and design, providing immedi-
ate feedback can improve motivation and understanding of tasks when appropriate.
Chat assistants can simulate social interactions, such as negotiations, group decision
making, or trust building exercises, in the study of complex social phenomena. Thus,
researchers can examine these topics in a controlled experimental setting while main-
taining a high degree of ecological and external validity. Automating the data collec-
tion process through chat assistants reduces the risk of experimenter bias or demand
characteristics that influence participant behavior, resulting in a more reliable evalua-
tion of research questions (Fréchette et al., 2022).

Finally, chat assistants offer scalability by handling multiple participants simulta-
neously, facilitating large-scale data collection cost-effectively and timelessly, and al-
lowing greater control over time-of-day-caused session effects. This generates more
robust and generalizable findings by accessing diverse and representative samples.

4 Analyzing Experimental Data with LLMs

LLMs can substantially increase the analysis of economic experiments by assisting with
data analysis in two primary ways. First, they could automate data analysis tasks
such as sanitization, examining relationships within the data, and analyzing the data
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using the Code Interpreter on ChatGPT. Second and less obvious, they could create
and explore new data unexamined so far in standard economic experiments.

Regarding exploring new data, the use of natural language processing (NLP) tech-
niques with live chat logs from experiments can yield insights into participant behav-
ior, uncertainty, and cognitive processes. Such insights provide opportunities to ob-
serve and scrutinize new variables for statistical tests and identify factors that could
influence conventional results. Variables of potential interest that emerge from chat
logs encompass the frequency of questions posed, the degree of engagement in con-
versation, or sentiments expressed by participants. Understanding these variables can
illuminate the correlation between participant behavior and experimental results, of-
fering a more nuanced understanding of the factors shaping outcomes. This “under-
the-hood” perspective can spark novel hypotheses and insights.

During data pre-processing, language models can distill pertinent details from chat
logs, organize the data into an analytical-friendly format, and manage any incomplete
or missing entries. Beyond these tasks, such models can perform content analysis -
identifying and categorizing frequently expressed concerns of participants, analyz-
ing sentiments and emotions conveyed, and gauging the efficacy of instructions, re-
sponses, and interactions. Models of this nature are also equipped to pinpoint areas of
confusion. This ability can help improve experimental designs, instructions, and train-
ing protocols for chatbots covered in Section 2. It could also be used in the final data
analysis for new types of behavioral heterogeneity analysis. Participant characteristics
such as demographics and cognitive abilities, and their influence on chat interactions
and experimental outcomes, can also be explored through these models.

With respect to automating data analysis tasks, specific LLMs, such as Code Inter-
preter, can help at different stages of the knowledge production chain. First, it can help
authors conduct statistical tests, develop econometric models, determine causal rela-
tionships, and perform robustness checks by harnessing state-of-the-art techniques.
Automating these tasks offers dual benefits. First, it saves researchers’ time, which can
be allocated to other tasks in knowledge production. Second, it minimizes research
flexibility across all tasks and strengthens the likelihood that reported research find-
ings represent genuine associations (Ioannidis, 2005). In addition, they can generate
data visualizations in concert with other features. This helps researchers understand
both their results and communicate their findings effectively.

Second, after authors have conducted their analysis, LLMs can aid them and the
broader scientific community in comparing the finished work and pre-registration
plans. In particular, these tools would be adept at pinpointing and highlighting signif-
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icant divergences, including the unexpected introduction of new variables, the omis-
sion of predetermined variables, the application of alternative econometric paradigms,
or modifications in the specified data acquisition methods. Furthermore, these lan-
guage models can be fine-tuned to distinguish between confirmatory and exploratory
analysis. Confirmatory analysis, anchored to a pre-registered plan, aims to validate
predetermined hypotheses. In contrast, exploratory analysis allows for a more flexi-
ble approach to data interpretation. These models can scrutinize the manuscript for
sections indicating a diversion from the pre-registered schema towards exploratory
analysis, valid not only for the authors in their submission process but also for referees
and editors in the review process.

In the same vein, although these models may still encounter difficulties discern-
ing between AI versus human-generated text, they are becoming rapidly proficient
in readily and accurately detecting AI-generated code, anomalies, or red flags within
code analysis and using LLMs under the impulse of OpenAIs classifiers (Kirchner et al.,
2023). In a specific application, we could imagine presenting models with a pair – the
result and its corresponding interpretation – to determine the fidelity of the interpre-
tation relative to the actual result. Far from being merely speculative, this task could
rapidly be implemented since, when aiding a human expert, LLMs have been shown to
improve significantly at coding challenges if repeated sampling is allowed (Chen et al.,
2021). This capability could be pivotal in identifying instances of overclaiming, where
interpretations may exceed the implications of the results or, conversely, underclaim-
ing, where the interpretation fails to capture the full potential of the results. Anomalies
such as 1) misalignment between the quantitative findings and their qualitative expo-
sition or 2) significant findings that are overlooked due to suboptimal communication
or missing facts could be flagged by LLMs for further examination.

Generative AI also offers significant opportunities to help facilitate peer review,
replication, and dissemination of research. Previous tasks, such as comparison with
pre-registration plans, analysis of data for tampering, analysis of code and supple-
mental text, and new tasks, such as separating human and AI work, that would be
highly time intensive for human researchers are now far less so. These models can
cross-compare claims in the body of a paper with the code, ensuring that the imple-
mentation matches the theory. It can examine datasets and highlight irregularities like
outliers driving results, text, ordering, or meta-data that do not fit the implicit pat-
terns it can identify. Furthermore, it can write summaries of the appendices, allowing
reviewers and replicators to see if their concerns are addressed quickly. Given the ex-
perimental setup and treatment, it can be checked whether appropriate tests for the
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main results and robustness have been carried out in the main text or the supplemen-
tary material. At the limit, we even envisage simulated replications using existing code
and information in the paper and appendix that could help highlight coding errors or
irregular results. Any such endeavor would be fraught with difficulties; especially
with more novel results relaying on behaviors that it is less likely that LLMs will have
internalized. However, this idea could hold promise with the possibility of simulat-
ing independent participants and the capacity for many simulations. These various
abilities can help boost the speed of review and the rate of replication (two common
concerns in the field) and benefit research efficiency.

5 Discussion: Risks and Opportunities

Using LLMs in economic research can pose several risks (Bommasani et al., 2022), in-
cluding concerns about intellectual property (IP), digital privacy issues, user decep-
tion, scientific fraud by fabricating data or strategies to hide data manipulation, hal-
lucinations, and challenging creativity by homogenizing the human-AI interface too
much. For example, generative AI not citing its sources can be unintentional pla-
giarism or copyright infringement, and relying on technologies explicitly citing their
sources, such as PerplexityAI or Elicit, seems desirable. Such possible drawbacks call
for increased scrutiny from the scientific community and more transparent scientific
practice, from collecting data to publishing the papers. Beyond IP concerns, several
other potential issues remain. First, the vast amounts of data these language models
process can create privacy concerns, especially since these data may contain sensitive
participant information. Researchers fine-tuning such models should follow best prac-
tices such as anonymizing data, obtaining informed consent, and implementing secure
data access controls and storage methods to protect data.

Second, deception may occur since, as mentioned in the previous section, it may
require help distinguishing AI-generated content from human-generated content, par-
ticularly in high-frequency information settings such as social media. Such deception
can occur in two main ways: hallucination and manipulation. For example, citations
to academic publications can look so natural, even with deep voice and face fakes of
authoritative figures speaking false scientific claims on social media. Evidence shows
that hallucination decreases as models grow (Brown et al. (2020)). Specifically, it is
reduced by fine-tuning (Ouyang et al. (2022)) not only by focusing on training AI to
recognize erroneous outcomes but also, and even more promising, by training/fine-
tuning the model based on its thought process, not only its outcome (Lightman et al.
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(2023)).
Furthermore, attention manipulation is a serious global social risk, given the rapid

spread of misinformation on social networks (Lazer et al., 2018; Pennycook et al., 2021).
Manipulation of human attention compounds this challenge. Regardless of its veracity,
directing attention to specific information can significantly influence decision-making,
increasing the need for rigorous scrutiny of AI-generated content. Such manipulation
is made more accessible by directing attention to a particular item, regardless of its
quality, and increases its likelihood of selection, as shown by Gossner et al. (2021).
Hence, focusing finding underlines the necessity for a relentless focus on information
quality and credibility, particularly amidst the surge of AI-generated content seems a
pressing societal issue, in particular when the quality of the propaganda is about in-
creasing with what we name scientific troll farms, where agents strategically rely on
sophisticated scientific hallucinations to serve specific manipulative goals. Research
efforts have gravitated toward the use of artificial intelligence to automate fact check-
ing (Guo et al., 2022). However, detecting and mitigating AI-generated misinformation
remains a daunting task not only due to the ease of its creation (Gupta et al., 2022) but
also because its propagation at high frequency and low cost pose clear challenges to
standard slow and costly fact-checking methods (Goldstein et al., 2023). To reimag-
ine fact- or authenticity-checking methods, we could rely on experimentation in the
economics of networks (Jackson, 2009) to strategically allocate GPU-limited energy re-
sources of generative AI to accurately predict and anticipate sources of misinformation
given different treatments, for instance, the reputation of the information emitter, the
process used to produce information, which could all be encapsulated in a blockchain,
serving as an authentificator of expertise authenticity.

The emergence of this new technology raises new challenges in the education sci-
ences regarding which tools future economists should learn. Prompt engineering,
which is finding the optimal way to input commands into generative AI, is a rapidly
growing industry sector, as the quality of an AI’s output is susceptible to its prompts.
which makes discovering the best prompt technique an intensive task. The quality of
AI’s output is highly sensitive to the prompts fed into it, which makes discovering the
best prompt techniques an intensive task. However, to our knowledge, this investiga-
tion has been unsystematic, an oversight that could be solved with the behavioral and
experimentalist economist toolkit, based mainly on the roles of nudges (Thaler, 2018) to
build an effective human-AI interface or “UAI” (User-AI interface) and “UAIX” (User-
AI experience). Furthermore, to maintain trust and standards of replicability, interac-
tions during the knowledge production between the researcher and the machine could
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be recorded and attached to submissions in the appendix.
Vigilance in identifying biases during model training and data analysis is also es-

sential (Luca et al., 2016; Kleinberg et al., 2018). Research on the accuracy-fairness
trade-off of algorithms has led some to claim that the optimal approach could not
directly tamper with algorithmic bias (Xian et al., 2023), but factor it in during later
analysis (Kleinberg et al., 2018). Such adjustments still require researchers and con-
sumers to understand the possible biases involved, motivating the need for detail and
transparency in the training, fine-tuning, and use of models. Researchers may consider
using these models as supportive tools rather than a complete replacement for human
expertise.

One final negative externality is that the broader use of generative AI could chal-
lenge our conception of creativity and homogenize too much thought by relying only
on standardized prompts when interacting with AI. In its worst light, this new tech-
nology could, in principle, create research drones by taking the art and creativity out
of the research and thought process, leading to decreased research quality. This would
undoubtedly lead to lost opportunities for new wisdom, thought, hypotheses, and
scholarship needed in the face of every new societal challenge. We should recognize
this trade-off and continue to reward such creativity in the marketplace for ideas; with-
out incentives, significant contributions that come about via critical thinking, creativity,
and out-of-the-box ideas might be sacrificial lambs to this sophisticated standardizing
of knowledge production.

An essential role for LLMs is to generate standardized documentation that follows
best practices and established guidelines for open science norms. Consistent format-
ting and content reduce barriers to replication by human agents or generative AIs.
LLMs can analyze the scientific literature, helping researchers identify relevant studies
for replication. Researchers can replicate essential and influential studies by prioritiz-
ing novelty, impact, or methodological rigor, which greatly increases our knowledge
creation (Maniadis et al. (2014) for the inferential power of replications). Trained on
specific and small datasets, we could imagine LLMs predicting whether a submitted
paper is likely replicable or even helping to replicate it before accepting it as publica-
tion rather than letting the replication as a hoped-for positive externality performed by
researchers after publication, which could contribute to the emerging forecasting mar-
kets in social sciences (DellaVigna et al., 2020). Therefore, in addition to working to
better align professional incentives with transparent scientific behavior, a concrete and
fully operational institutional change through AI engineering assistance at the journal
level can make a difference in the desired change in scientific culture.
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Such fine-tuned models can also facilitate collaboration by managing collaborative
replication projects by generating project management tools, coordinating communi-
cation, and maintaining version control for shared documentation. They have suc-
cessfully coordinated large groups for communication (Small et al., 2023) and could
present an opportunity for more extensive collaborations between academics. These
opportunities help to advance the credibility revolution, which has recently taken on a
more critical role in the social sciences (Jennions and Møller, 2002; Nosek et al., 2012;
Bettis, 2012; Dreber et al., 2015; Butera et al., 2020; Dreber and Johannesson, 2023). By
supporting the peer review process with standardized guidelines, these models can en-
sure that published studies adhere to the highest standards of scientific integrity. They
can also develop training materials, online courses, or educational workshops for con-
ducting and reporting replication studies. Making these resources widely available
demonstrates to researchers the importance of replication and transparency in scien-
tific research. Additionally, they can facilitate communication between researchers,
editors, and other stakeholders by generating standardized correspondence templates
and streamlining the submission and review process.

These opportunities extend beyond academia, fostering a standardized scientific
culture of experimentation in technology, artificial intelligence firms, and government
agencies. It has already been argued that ML could help with pre-registration, creat-
ing a flexible compromise between the ideal open science preregistration requirements
(such as the AEAs RCT registry) for applied experimental microeconomic work and
the current exploratory nature of the work by suggesting additional variables of inter-
est (Ludwig et al., 2019).

The potential of generative AI to foster a culture of systematic experimentation in
technology companies can significantly mitigate associated labor expenses related to
human expertise (Berg et al., 2023). A rising trend of technology corporations actively
recruiting Ph.D. economists demonstrates their pivotal role in resolving multifaceted
business challenges (Athey and Luca, 2019). These economists engaged in strategic
decision making and design choices navigate various issues, including pricing, auc-
tions, matching, market design, consumer behavior, product design, and strategic de-
cision making. They tackle issues relevant to management by employing company-
specific data, often working in business-centric roles. Illustrative of this trend are
tech giants like Microsoft and Amazon. Microsoft’s business-oriented chief economist
leads a team actively recruiting Ph.D. economists to address diverse issues ranging
from cloud computing to search advertising. Similarly, Amazon employs economists
to solve business-specific challenges in its multiple divisions, including e-commerce
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platforms, digital content, and platforms designed to evaluate changes and innova-
tions.

The increasing prominence of economists in technology companies underscores
their crucial role in creating a culture of experimentation. They draw on their expertise
to conduct changes and innovations evaluations. This process echoes the pioneering
work of Paul Milgrom, Al Roth and Robert Wilson and in auctions (Wilson, 2020). His
groundbreaking efforts blended novel theoretical insights with empirical work and ex-
periments to address real-world problems. With the advent of foundation models, it
is now possible for technology corporations to instill a comprehensive culture of ex-
perimentation across departments. This approach echoes the rigor and originality of
academia, paving the way for even more business decisions to be grounded in scien-
tific principles. Building such a culture of experimentation within government agen-
cies requires a more systematic approach to policy making. This approach relies on a
continuous low-cost cycle of tests, trials, and pilots to explore policy options, evaluate
their impacts, and make informed, data-driven decisions.

Finally, by generating standardized documentation for experiments, LLMs can pro-
mote transparency, build public trust, and contribute to technology literacy for differ-
ent stakeholders. For example, LLMs can help create educational materials and tools
that instruct government personnel about experimental methods, data analysis, and
evidence-based policymaking. This step is critical in fostering a culture that values
and understands the importance of experimentation. Effective communication is cru-
cial for accepting and institutionalizing an experimental culture. Incorporating LLMs
into policy development can help governmental agencies promote systematic experi-
mentation, fostering a culture of evidence-based policymaking. However, it remains
vital to ensure their ethical use and strike a balance between automated insights and
human expertise.
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