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ABSTRACT

We investigate the potential for Large Language Models (LLMs) to enhance scientific practice 
within experimentation by identifying key areas, directions, and implications. First, we discuss 
how these models can improve experimental design, including improving the elicitation wording, 
coding experiments, and producing documentation. Second, we discuss the implementation of 
experiments using LLMs, focusing on enhancing causal inference by creating consistent 
experiences, improving comprehension of instructions, and monitoring participant engagement in 
real time. Third, we highlight how LLMs can help analyze experimental data, including pre-
processing, data cleaning, and other analytical tasks while helping reviewers and replicators 
investigate studies. Each of these tasks improves the probability of reporting accurate findings.
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 1.      Introduction 
 Large Language Models (LLMs) represent a sophisticated application of machine-learning 
algorithms, showing a generative capacity for creating original content and their status as 
generative Artificial Intelligence (AI) (Bubeck et al., 2023). Even with their recent emergence 
and already-proven advancements, researchers believe that the full extent of the rapid effects of 
generative AI in science, policy, and society remains to be experienced (Bommasani et al., 
2022), including in economics (Acemoglu and Johnson 2023, Korinek 2023). Hence, although 
machine-learning algorithms have improved analysis methods for causal inference in economics 
(Athey 2019), these new models may also radically improve all critical areas of scientific 
knowledge production. A natural venue in economics is to generate data for causal inference in 
experimental settings. And, while once an academic curiosity, online experiments have become a 
bona fide contributor to causal estimates in the social sciences (Athey 2015; Brynjolfsson et al. 
2019a). With the burgeoning digital economy, researchers believe that generating causal insights 
using online experiments will continue to increase (Fréchette et al., 2022). 

However, one key feature of online experiments tempering the optimism of even the most 
enthusiastic supporters is the violation of the four exclusion restrictions, calling into question the 
internal validity of the received estimates. For example, compliance, one identification 
assumption underlying the experimental approach (List 2023), is often questioned in online 
experiments because it is usually associated with high measurement errors (Gillen et al., 2019). 
Checking whether individual participants understand the experimental instructions is often tricky 
in an online experiment, since people cannot usually ask questions and receive live responses. 
While one remedy might involve incorporating real-time human support, this would require 
satisfying either having a sizable skilled labor force to accommodate simultaneous questions 
from many participants or providing extended availability to cover the protracted timelines with 
online experiments. 

LLMs can be fine-tuned as chat assistants to simulate sophisticated human interactions 
while reducing labor costs. Given the inherent scalability and versatility, such integration could 
become standard practice for future online experiments, revolutionizing the field and fostering 
unprecedented advancements across online experiments and surveys. In addition, this approach 
requires only minimal coding knowledge and is compatible with many online experimental 
platforms familiar to researchers, such as Qualtrics, oTree, and Z-tree. By ensuring consistency 
of treatment within and across these settings, another of the exclusion restrictions, the stable unit 
treatment value assumption (SUTVA), will be more likely to hold. Similarly, observability, a 
third exclusion restriction, is more likely to hold when minimizing the burden on subjects by 
maintaining participant focus and engagement.  

Other areas are also open for similar enhancements.  For example, specific fine-tuned 
language models could homogenize and carry out randomization and re-randomization 
techniques, lending more credibility to the fourth exclusion restriction, statistical independence. 
Furthermore, integrating them into the development and analysis of experimental research can 
address the challenges researchers commonly face, such as optimizing the wording of tasks, 
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improving comprehension (Ouyang et al., 2022), and streamlining data analysis, especially 
coding and data visualizations (Chen et al., 2023). Using this technology, we can create more 
immersive online experiences, facilitate real-time monitoring of participant engagement, and 
improve the quality and replicability of experiments. Furthermore, its use can promote open 
science opportunities, fostering increased collaboration. 
 We often refers to LLMs and what they can do, having foundational and fine-tuned 
models in mind under the umbrella of generative AI (Bommasani et al., 2022). However, users 
need to do more than just copy our suggested directions and details of the experiment into 
ChatGPT to obtain satisfactory results. Generative AI is a fast-moving technology that 
susceptible to inputs and produces unpredictable outputs (Ganguli et al., 2022).  And working 
out which inputs lead to the most desired outputs is a growing section of the industry. 
Furthermore, the stochastic nature of generative AI means that results can be further improved 
by researchers taking multiple draws for the same prompt and selecting the best ex-post (Davies 
et al., 2021) or could launch A/B tests to determine which prompt is the most effective in 
delivering the expected result.  
 In their best light, we envision these language models as becoming the wise sage always 
available at the experimentalist's beck and call. Within this framework, we explore their 
implementation more generally in Section 2, focusing on their role in comprehension and 
immersive experiences. Section 3 examines their capacities in data collection, including real-
time monitoring, pre-processing, and cleaning, while Section 4 considers data analysis. The final 
section discusses the broader risks and benefits of generative AI in behavioral and experimental 
economics, as well as implications for open science and for scaling a culture of experimentation 
in business and policy-making. We offer some speculative pointers on managing these. 

  2.      Designing Experiments with LLMs 

By enhancing researcher productivity, LLMs free resources during the design phase, 
broadening the scope of potential research questions and the focus dedicated to ensuring validity. 
LLMs can generate ideas for research, offering hypotheses drawn from the existing literature, 
current economic trends, and seminal problems in a field. By evaluating research objectives, 
these models can recommend appropriate experimental designs, including economic games, 
decision tasks, or market simulations, guiding the best structure for control and treatment groups 
to isolate causal relationships effectively. 
 Moreover, LLMs can assist in selecting the ideal experimental setting – contingent on the 
research question and context – and determine the appropriate sample size for the experiment, 
considering factors such as effect size, adequate statistical power, and resource constraints. In 
particular, they can ensure balanced and comparable groups using random assignment, 
stratification, or matching. Their extensive training data allow them to suggest relevant variables 
to manipulate and measure, providing optimal operationalization methods such as monetary 
incentives and real-effort tasks. In the limit, they could also guide ethical considerations, such as 
deception, and potential harm to participants, helping researchers design rigorous and ethically-
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sound studies.  
 Critically, LLMs can write clear, concise instructions and comprehension checks. 
Researchers can obtain more meaningful data by ensuring that participants understand the 
experimental setup and tasks. Models such as GPT-4, trained on billions of data points, can tailor 
instructions’ language, tone, and complexity to participants with varying language proficiency, 
education, or familiarity with economic concepts. They could even generate relevant examples, 
such as textual descriptions, hypothetical scenarios, or visual representations of economic 
concepts or analogies to illustrate key issues. By having LLMs generate multiple versions of 
instructions and comprehension checks and iteratively providing feedback from researchers or 
participants, interactions with participants can be optimized for clarity. LLMs can effectively 
assist in critiquing human- or AI-generated concise instructions against lengthy but precise 
benchmarks provided by the researcher (Saunders et al., 2022).  
 Language models offer versatile and efficient solutions for implementing experiments in 
various programming languages. LLMs can convert experimental setups, desired variable 
manipulations, and data collection, plain English, into complete code of Python, JavaScript, 
HTML, or R scripts (Chen et al., 2023).  In addition, they can adapt the generated code to 
specific experimental platforms, ensuring seamless integration with the requirements of a 
platform.  
 In the same vein, they can reason through experiments, detect coding errors in the design, 
and even simulate participants (Horton, 2023). By simulating demographic characteristics, 
backgrounds, and language proficiency, these virtual participants can 'interact' with the 
experiment materials and highlight confusion or misunderstanding related to the wording of the 
instructions or logical errors in the experimental code, which may be innocuous to researchers 
but crucial to the results (Charness et al., 2004).  By investigating how simulated participants 
interact, researchers can examine these topics in a controlled experimental setting while 
maintaining a high degree of ecological and external validity. Researchers can generate multiple 
versions of instructions and comprehension checks by providing feedback from researchers or 
participants, with LLMs assisting in critiquing human- or AI-generated concise instructions 
against lengthy but precise benchmarks provided by the researcher (Saunders et al., 2022). This 
iterative approach enables researchers to refine the instructions, optimizing them for clarity and 
effectiveness.  
 Furthermore, LLMs can help researchers create replication packages, including the 
necessary materials to reproduce a study. Given the observed differences between online and 
offline samples (Snowberg and Yariv, 2021), such abilities are valuable for the field. They can 
also help develop other documentation (e.g., IRB submissions) to more effectively explain the 
experimental design. If given access through plug-ins, they could automate the use of ML tools 
designed to make pre-registration less restrictive and calculate the lost power from such tools 
(Ludwig et al., 2019, Sargent 2023).  Similarly, LLMs can be crucial in standardizing approaches 
since the literature suggests that design flexibility and associated experimental decisions are 
inversely related to actual research findings (see Ionannides, 2005). Overall, such standardization 
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of experimental design templates could go further and be made through a public library of 
standard experimental design templates, ready-to-use, scaling an approach developed manually 
in different languages, such as Qualtrics (Molnar 2019) and oTree (Chen et al. 2016). 
 Predictive modeling is social scientists' third area of interest (Hofman et al., 2021), where 
generative AI can make significant contributions. It can formulate and test policy hypotheses by 
analyzing vast amounts of data and determining the plausibility of policy assumptions. By 
developing and refining predictive models, LLMs enable governmental and nonprofit agencies to 
simulate the effects of policy experiments, anticipating the consequences of policy changes 
before full implementation and thus informing iterative policy interventions design and 
adjustments.  Similar capabilities could encourage a more experimental, evidence-based 
approach to policymaking. LLMs also have a role in the design of Randomized Controlled Trials 
(RCTs), a standard in policy experimentation. An essential critique of RCTs in economics is 
their frequent inability to meet the “double-blind” standards of medicine (Deaton and Cartwright, 
2018). However, this issue is addressed when LLMs supervise the experiment. 
 Finally, any bias LLMs introduce can be inexpensively and rigorously tested and before 
implementation, unlike with human experts.  

  3.      Implementing Experiments with LLMs 

        Incorporating AI agents into online experiments can streamline aspects of the 
implementation of experiments while enhancing data quality collection. They could help with 
participant recruitment, provide real-time assistance, increase engagement, monitor data quality 
in live time, and facilitate follow-up surveys. 

Chatbots demonstrate significant potential to provide detailed, instant responses to 
inquiries. Recent evidence from Noy and Zhang (2023) and Brynjolfsson et al. (2023) show in 
different settings that granting humans access to AI-powered chat assistants can significantly 
increase their productivity.  AI assistance allows human support to provide faster and higher 
quality responses to a more extensive customer base. This technique can be imported to 
experimental research, where participants might have questions or need clarification of the 
instructions. In its most scalable version, perhaps fully-autonomous chatbots could provide 
simultaneous support to hundreds of participants with few or no live support human agents. 

Consequently, these new generative AI models can represent a highly-scalable solution 
with significant potential to improve the viability of the compliance assumption; this, in turn, 
may enhance causal inference of data collected broadly in online experiments.  As in the 
discussion of instruction comprehension in Section 2, chat assistants can answer questions and 
personalize their interaction to each participant's communication and comprehension style during 
the experiment. This helps ensure that participants understand the experimental instructions 
before performing tasks, a necessary step to ensure compliance and avoid construct validity 
concerns.  

Additionally, providing all necessary guidance within the chat interface maintains 
participant focus and engagement, preventing participants from feeling overwhelmed or 
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confused and minimizing distractions that could introduce noise. Thus, observability, the third 
exclusion restriction, is more likely to hold by lessening the experimental burden on subjects. 
One can even learn why a participant failed a comprehension question, so researchers can decide 
how to proceed in real-time. Finally, AI agents can automate the administration of follow-up 
surveys or debrief questionnaires, collecting additional data cost-effectively. 

AI agents can also be fine-tuned to monitor (at scale) cheating in several ways. For 
example, they can, with relevant plug-ins, automatically implement different techniques already 
done through JavaScript: tracking participant browser activity by opening new tabs, switching 
between windows, or spending excessive time away from the experiment (Jabarian and Sartori, 
2023). With systemic monitoring, AI agents can detect potential cheating and remind participants 
to focus on the task. Second, they can analyze real-time participant responses for patterns 
suggesting cheating, repeating answers, or providing contradictory information. Researchers can 
then review these flagged cases in real-time and determine whether further action is necessary. 

Currently, chat assistants can effectively handle unexpected scenarios and technical 
issues to ensure a smooth experimental process. They contribute to a more controlled 
environment by providing real-time reminders, reducing participants' chance of forgetting critical 
information. Additionally, chat assistants could engage participants in dynamic and interactive 
conversations. This real-time interaction facilitates higher-quality data: More engaged 
participants are less likely to make errors or random responses. AI agents and chat assistants 
create a more efficient and reliable experimental setup, balancing strict supervision of participant 
behavior with real-time assistance and participant participation. Finally, they can select 
participants for eligibility criteria, ensuring a representative and appropriate sample. By 
automating this process, researchers can save time and reduce the risk of human error. 

Chat assistants can dynamically tailor an experiment's design to enhance data collection. 
For example, in a cognitive-ability experiment, if a task is too easy or difficult for a participant, a 
chatbot could adjust the difficulty of subsequent tasks accordingly, allowing better identification 
of the type of participants. This maintains engagement and accurately measures the participant's 
abilities. Similarly, chatbots could prioritize questions based on a participant's earlier responses 
in a personality assessment. This personalized approach, made possible by chatbots, allows for 
more nuanced data collection, offering a more effective and customized experimental process. 
 In addition, depending on the research question and design, providing immediate 
feedback can improve motivation when appropriate. Chat assistants can simulate social 
interactions such as negotiations or group decision-making to study complex social phenomena. 
Thus, researchers can examine these topics in a controlled experimental setting while 
maintaining a high degree of ecological and external validity. 

Finally, automating the data-collection process through chat assistants reduces the risk of 
experimenter bias or demand characteristics that influence participant behavior, resulting in a 
more reliable evaluation of research questions (Fréchette, 2012). Finally, chat assistants offer 
scalability by handling multiple participants simultaneously, facilitating large-scale data 
collection cost-effectively and timelessly, and allowing greater control over time-of-day-caused 
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session effects. This generates more robust and generalizable findings by accessing diverse and 
representative samples. 

  4.      Analyzing Experimental Data with LLMs 
LLMs can substantially augment the analysis of experimental data in two ways: First, by 

automating data-analysis tasks such as sanitization, examining relationships within data, and 
streamlining data visualization using the Code Interpreter on ChatGPT. Second, and less 
obviously, by creating data unexplored so far in standard economic experiments. Leveraging 
natural-language processing (NLP) techniques with live-chat logs from experiments can yield 
insights into participant behavior, uncertainty, and cognitive processes. Such insights open a 
window to scrutinize new variables for statistical tests and identify factors that could influence 
results. Understanding these variables can illuminate the correlation between participant 
behavior and experimental results, offering a more nuanced comprehension of the factors 
shaping outcomes. This “under-the-hood” perspective can spark novel hypotheses and insights. 

During data pre-processing, language models can distill pertinent details from chat logs, 
organize the data into an analytical-friendly format, and manage any incomplete or missing 
entries. Beyond these tasks, such models can undertake content analysis — identifying and 
categorizing frequently-expressed concerns from participants, analyzing emotions conveyed, and 
gauging the efficacy of instructions, responses, and interactions. Models of this nature can also 
pinpoint areas of confusion. This would aid in enhancing experimental designs, instructions, and 
training protocols for chatbots. It could also be used in the final data analysis for new types of 
behavioral heterogeneity analysis. Participant characteristics such as demographics and cognitive 
abilities, and their influence on chat interactions and experimental outcomes, can also be 
explored through these models. 

Regarding automating data-analysis tasks, specific LLMs such as Code Interpreter can 
help at different stages of the knowledge-production chain by conducting statistical tests, 
developing econometric models, determining causal relationships, and performing robustness 
checks using state-of-the-art techniques. Automating these tasks has a two-fold benefit. On one 
hand, it saves researchers time, which can be allocated to other tasks in knowledge production. 
On the other hand, it maximizes research flexibility across all tasks, bolstering the likelihood that 
reported findings represent genuine associations (Ionannides, 2005). Besides, they can generate 
data visualizations in concert with other features. This aids researchers in both understanding 
their results and communicating their findings effectively.   
 Second, after the analysis is complete, LLMs can aid researchers and the broader 
scientific community in comparing the finished work and pre-registration plans. In particular, 
these tools could pinpoint and highlight significant divergences, including the unexpected 
introduction of new variables, the omission of pre-determined variables, or modifications in the 
specified data-acquisition methods. Furthermore, these models can be fine-tuned to distinguish 
between confirmatory and exploratory analysis. Confirmatory analysis aims to validate pre-
determined hypotheses. In contrast, exploratory analysis, devoid of a rigid plan, allows a more 
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flexible approach to data interpretation. These models can meticulously scrutinize the manuscript 
for sections indicating a diversion from the pre-registered schema towards exploratory analysis, 
useful not only for the authors, but also for referees and editors. 

In the same vein, while these models may still struggle to indentify AI versus human-
generated text, they are becoming rapidly proficient in accurately detecting AI-generated code, 
anomalies, or red flags within code analysis. In a specific application, we could imagine 
presenting models with a pair – the result and its corresponding interpretation – to determine the 
fidelity of the interpretation relative to the actual result. Far from being merely speculative, this 
task could rapidly be implemented since LLMs have been shown to improve significantly at 
coding challenges if repeated sampling is allowed (Chen et al., 2021). This capability could be 
pivotal in identifying instances of overclaiming, where interpretations may exceed the 
implications of the results, or conversely, underclaiming, where the interpretation fails to capture 
the full potential of the results. Anomalies such as misalignment between the quantitative 
findings and their qualitative exposition or significant findings that are overlooked could be 
flagged by LLMs for further examination. 

Generative AI also offers significant opportunities for peer review, replication, and 
dissemination of research. Tasks, such as comparison with pre-registration plans, checking for 
tampering, and analysis of code and supplemental text, that would be highly time intensive for 
human researchers become far less so. 

Generative AIs can cross-compare claims in the body of a paper with the code, ensuring 
the implementation matches the theory. It can examine datasets and highlight irregularities like 
outliers driving results, text, ordering, or meta-data that do not fit the implicit patterns it can 
identify. Furthermore, it can summarize appendencies, allowing reviewers and replicators to 
quickly see if their concerns are addressed. Given the experimental setup and treatment, it can 
check whether appropriate tests for main results and robustness have been carried out. In the 
limit, we even envisage simulated replications using existing code and information in the paper 
that could help highlight coding errors or irregular results. Any such endeavor would be fraught 
with difficulties, especially with more novel results relaying on behaviors LLMs are unlikely to 
internalize. However, this idea could hold promise with the ability of independent participant 
simulation and the capacity for many simulations. These various abilities can boost the speed of 
review and rate of replication, two common concerns in the field, and benefit research efficiency. 

  5.      Discussion: Risks and Opportunities 
Using LLMs in economic research may pose risks (Bommasani et al., 2021), including 

intellectual-property (IP) concerns, digital-privacy issues, user deception, scientific fraud by 
fabricating data or strategies to hide data manipulation, and challenging creativity by 
excessively-homogenizing the human-AI interface. For example, generative AI can effectively 
be unintentional plagiarism or copyright infringement; relying on technologies explicitly citing 
their sources, such as PerplexityAI or Elicit, seems desirable. Such possible drawbacks call for 
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increased scrutiny from the scientific community and a more transparent process. Beyond IP 
concerns, other potential issues remain.  

First, the vast amounts of data these language models process can create privacy concerns 
(sensitive participant information). Researchers fine-tuning such models should follow best 
practices such as anonymizing data, obtaining informed consent, and implementing secure data 
access controls and storage methods to protect data. Second, deception may occur since, as 
mentioned in the previous section, it may require help distinguishing AI-generated content from 
human-generated content, particularly in high-frequency information settings such as social 
media. Citations to academic publications can look so natural and even more so with fakes of 
authoritative figures speaking false scientific claims on social media. Evidence shows that this 
shrinks as models grow (Brown et al., 2020). Specifically, it is lessened (Ouyang et al., 2022) by 
not only focusing on training AI to recognize errors but also by training/fine-tuning the model 
based on its thought process, not just its outcome (Lightman et al., 2023).  
 Given the rapid spread of misinformation on social media (Lazer et al., 2018; Pennycook 
et al., 2021), attention manipulation is a severe risk. The manipulation of human attention 
compounds this challenge. Regardless of its veracity, directing attention toward certain 
information can significantly influence decision-making, heightening the necessity for rigorous 
scrutiny of AI-generated content. Such manipulation is facilitated by the fact that directing 
attention to a particular item increases its selection likelihood, regardless of its quality (Gossner 
et al., 2023). Hence, this underlines the necessity for a relentless focus on information quality 
and credibility, particularly amidst the surge of AI-generated content that seems a pressing 
societal issue; the quality of the propaganda is increasing with “scientific troll farms”, where 
agents strategically rely on sophisticated scientific fakes to serve specific manipulative goals.  
Research efforts have gravitated toward using AI to automate fact-checking (Guo et al., 2021). 
However, detecting and mitigating AI-generated misinformation remains a daunting task not 
only due to the ease of its creation (Gupta et al. 2022) but also because its low-cost propagation 
at high frequency poses clear challenges to standard slow and costly fact-checking methods 
(Goldstein et al., 2023). To re-imagine fact- or authenticity-checking methods, we could rely on 
experimentation in the economics of networks (Jackson 2009) to strategically allocate GPU-
limited energy resources of generative AI to accurately predict and anticipate sources of 
misinformation given different treatments, for instance, the reputation of the information emitter.  
 The emergence of this new technology raises new challenges in education sciences 
regarding which tools future economists should learn. Prompt engineering (how to use existing 
string-input generative AI) is a quickly-growing section of the industry, since the quality of AI’s 
output is highly sensitive to the prompts fed into it; this makes discovering the best prompt 
technique an intensive task. The output quality is highly sensitive to the prompts fed into it, 
making discovering the best prompt techniques an intensive task. However, to our knowledge, 
this investigation has been unsystematic, an oversight solvable using the behavioral- and 
experimental-economist toolkit, mainly relying on the roles of nudges (Thaler 2018) to build an 
effective human-AI interface or “UAI” (User-AI-interface) and “UAIX” (User-AI-experience). 
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Furthermore, interactions during the knowledge production between the researcher and the 
machine could be recorded while adhering to standards of replicability. 
 Vigilance in identifying biases during model training and data analysis is also essential 
(Luca et al., 2016. Kleinberg et al., 2018). The accuracy-fairness tradeoff of algorithms has been 
researched (Lang et al., 2023), leading some to claim that the optimal approach could not directly 
tamper with algorithmic bias but factor it in during later analysis (Rambachan et al., 2020). Such 
adjustments still require producers and consumers of research to understand the possible biases 
involved, motivating the need for detail and transparency in training, fine-tuning, and use of any 
models. Researchers may consider using these models as supportive tools rather than a complete 
replacement for human expertise.  
 One final negative externality is that the broader use of generative AI could affect 
research by homogenizing thought, relying only on standardized prompts when interacting with 
AI.  This new technology could potentially create research drones by taking the art and creativity 
out of the research and thought process, leading to decreased research quality. This would 
undoubtedly lead to lost opportunities for new wisdom, thought, hypotheses, and scholarship 
needed in the face of every new societal challenge. We should recognize this trade-off and 
continue to reward such creativity in the marketplace for ideas; without incentives, significant 
contributions that come about via critical thinking, creativity, and out-of-the-box ideas might be 
sacrificial lambs to this sophisticated standardizing of knowledge production.  
 One essential role of LLMs is generating standardized documentation, which follows best 
practices and established guidelines for open-science norms. Consistent formats and content 
reduce barriers to replication by people or generative AIs. They can analyze the scientific 
literature, helping researchers identify relevant studies for replication.  Researchers can replicate 
essential and influential studies by prioritizing novelty, impact, or methodological rigor, which 
increases our knowledge creation immensely (see Maniadis et al., 2014, for the inferential power 
of replications). Trained on specific and small datasets, we could imagine LLMs predicting 
whether a submitted paper is likely replicable or even helping to replicate it before publishing it 
rather than letting the replication as a hoped-for positive externality later performed by other 
researchers. Hence, in addition to working on better aligning professional incentives with 
transparent scientific behavior, a concrete and fully-operational institutional change through AI-
engineering assistance could make a difference in a desired change in the scientific culture.   
 Such fine-tuned models can also facilitate collaboration by managing collaborative 
replication projects through generating project-management tools, coordinating communication, 
and maintaining version control for shared documentation. They have successfully coordinated 
large groups for communication (Small et al., 2023) and could present an opportunity for more 
extensive collaborations. These opportunities aid in the “credibility revolution”, which has 
recently taken on a more critical role in the social sciences (see, e.g., Jennions and Moller 
(2002); Moonesinghe et al. (2007); Nosek et al. (2012), Bettis (2012); Dreber et al. (2015); 
Butera et al. (2020); Dreber and Johannesson (2023)). By supporting the peer-review process 
with standardized guidelines, these models can ensure that published studies adhere to the 
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highest standards of scientific integrity. They can develop training materials, online courses, or 
educational workshops for conducting replication studies. Making these resources widely 
available demonstrates to researchers the importance of replication and transparency in scientific 
research. Additionally, this can facilitate communication between researchers, editors, and others 
by generating standardized correspondence templates and streamlining the review process.  
 These opportunities can trickle down beyond the academic world, helping to standardize 
a scientific culture of experimentation in technology, artificial-intelligence companies, and 
government agencies. It has already been argued that ML could help with pre-registration, 
creating a flexible compromise between the ideal open-science pre-registration requirements for 
experimental work and the current exploratory nature of some research by suggesting additional 
variables of interest (Ludwig et al., 2019). 
 Generative AI might foster a culture of systematic experimentation in technology firms 
that could significantly mitigate associated labor expenses related to human expertise (Berg et 
al., 2023). A rising trend of technology corporations actively recruiting Ph.D. economists 
demonstrates these individuals' pivotal roles in resolving multi-faceted business challenges 
(Athey et al., 2019). These economists navigate various issues, including pricing, auctions, 
matching, market design, consumer behavior, product design, and strategic decision-making. 
They tackle managerially-relevant issues by employing company-specific data. Illustrative of 
this trend are tech giants like Microsoft and Amazon. Microsoft's business-oriented chief 
economist leads a team recruiting Ph.D. economists to address issues ranging from cloud 
computing to search advertising. Similarly, Amazon employs economists to resolve business-
specific challenges across its multiple divisions, including e-commerce platforms, digital 
content, and platforms designed to evaluate innovations. 
 The rising prominence of economists in technology firms underscores their crucial role in 
creating a culture of experimentation. They draw upon their expertise to conduct evaluations of 
changes and innovations. This process echoes the Bob Wilson’s pioneering work in auctions 
during the 1970s (Wilson, 1969 and 1977). His groundbreaking efforts blended novel theoretical 
insights with empirical work and experiments to address real-world problems. With the advent of 
foundation models, technology corporations could now instill a comprehensive culture of 
experimentation. This approach echoes the rigors and originality of academia, paving the way to 
ground business decisions more on scientific principles. Building such a culture of 
experimentation within governmental agencies involves a more systematic approach to 
policymaking. This approach relies on a continuous low-cost cycle of tests, trials, and pilots to 
explore policy options, evaluate their impacts, and make informed, data-driven decisions. 
 Finally, by generating standardized documentation of experiments, LLMs can promote 
transparency, build public trust and contribute to technology literacy for different stakeholders. 
This step is critical in fostering a culture that values and understands the importance of 
experimentation. This effective communication is crucial for accepting and institutionalizing an 
experimental culture. Incorporating LLMs into policy development can help governmental 
agencies promote systematic experimentation, fostering a culture of evidence-based 
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policymaking. However, it remains vital to ensure these tools' ethical use and to strike a balance 
between automated insights and human expertise. 

6. Conclusion  
We have explored the diverse benefits of AI across all stages of experimental work: 

design, execution, and analysis.  LLMs can profoundly impact experimental science if used 
carefully with appropriate scientific governance and recognition of potential negative 
externalities. By standardizing templates, guidelines, and other resources to help harmonize good 
research practices among scientists, LLMs will ultimately be a critical advance that enhances 
science by promoting greater scientific research transparency, rigor, and reproducibility.  In the 
best light, knowledge creation will rapidly advance with LLMs.  
 We also explore these advancements' potential impacts on academia, policy, and 
industry. Generative AI's societal application is still confined to speculative or non-standard 
experimental work. The significance of the societal opportunities posed by generative AI 
warrants a more systematic approach. This is where behavioral theory and experimental 
economics can, in turn, contribute to refining AI by improving both research related to the 
societal implications of upcoming transformative technologies and research related to improving 
these technologies by relying on the culture of theory and experimentation laid out in our last 
section. This more global approach to technology shifts can provide better guidance on 
effectively combining AI and humans in diverse policy and industry sectors. 
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