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1 Introduction

Ensuring public safety is a central function of the state. To that end, policy regimes specify

sanctions for socially undesirable behaviors (Becker, 1968). However, beyond the set of offi-

cial policies, the state also relies on bureaucrats tasked with allocating sanctions in practice.

As in much of the public sector, these actors typically wield significant discretion (Lip-

sky 1980; Wilson 1989). For example, patrolling police officers can overlook minor crimes,

prosecutors can reduce criminal charges, and judges can issue a wide range of sentences.

Permitting this type of discretion can have important benefits if agents internalize the goals

of the state and can effectively discern the allocation of sanctions that maximizes public

safety (e.g., Banfield 1975; Kang & Silveira 2021). On the other hand, these decision-makers

may have poor information, attend to alternative objectives such as personal gain, or hold

competing notions of the optimal allocation when making decisions (e.g., Prendergast 2007).

A critical question raised by the pervasive discretion practiced by criminal justice agents,

then, is the extent to which that discretion improves public safety. We study this question in

the context of traffic enforcement, focusing on highway patrol officers who exercise discretion

over speeding sanctions by deviating from statutory fine rules. To start, we document that

these discretionary choices have important implications for public safety: harsher fines reduce

a motorist’s future traffic offending and likelihood of future crash involvement. Next, we show

that officer discretion reduces public safety by estimating reoffending rates in a counterfactual

scenario without discretion. We find that officer choices of whom to sanction harshly play

an important role in explaining the net safety costs of discretion. In particular, eliminating

discretion results in harsh fines for motorists who typically see lenience when officers use

their discretion, and deterrence effects are particularly large in the subsample. We conclude

by exploring potential explanations for this officer behavior, including officer preferences and

imperfect information.

Speeding enforcement is a high stakes setting in terms of public safety. In 2020, there

were nearly twice as many traffic fatalities (∼ 39,000) as homicides (∼ 22,000) in the United

States. Economic costs associated with motor vehicle accidents have been estimated at

nearly $250 billion per year, higher than annual costs of crime victimization (Blincoe et al.

2015; Chalfin 2016). Standard estimates suggest that at least one third of fatal crashes

are caused by speeding and existing studies have found strong associations between average

driving speeds and traffic fatalities (NHTSA 2014; Ashenfelter & Greenstone 2004).

While speeding sanctions are statutorily based only on a driver’s speed relative to the

posted limit, officers can manipulate fines by writing down a slower speed than was observed

on the actual citation, resulting in a discounted fine (Anbarci & Lee 2014; Goncalves &

Mello 2021). In Florida, the setting of our study, nearly one third of all speeding citations
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are issued for exactly nine miles per hour (MPH) over the limit, just below a $75 increase

in the statutory fine amount. Less than one percent are issued for either eight or ten MPH.

Officers patrolling the same beat-shifts vary considerably in the degree of bunching in their

charged speed distributions, highlighting that officer discretion, rather than driver behavior,

explains the bunching in cited speeds (Goncalves & Mello, 2021).

Our empirical approach leverages this variation across officers in the propensity to bunch

motorists below fine increases. We use an instrumental variables (IV) framework where

the treatment and outcome of interest are whether a driver receives a harsh (versus dis-

counted) fine and whether a cited driver commits a new traffic offense in the following year.

Our instrument is the citing officer’s propensity not to bunch other drivers, which we call

stringency. Our design mirrors a growing literature leveraging randomly assigned judges for

identification (e.g., Kling 2006; Maestas et al. 2013; Dahl et al. 2014; Dobbie & Song 2015,

Mueller-Smith 2015), with the caveat that, in our setting, citing officers are not randomly

assigned to drivers. An important concern for our approach, then, is whether an officer’s

bunching propensity is correlated with the characteristics of her sample of cited drivers. We

show that, conditional on beat-shift fixed effects, stringency is uncorrelated with an officer’s

ticketing frequency, driver characteristics that predict reoffending, and past traffic offending.

First, we use this IV framework to study the deterrence effects of sanctions. We estimate

the local average treatment effect (LATE) of harsher fines on the future driving behavior of

cited drivers, instrumenting harsh fines with officer stringency. We find that a 125 dollar

increase in fine amounts reduces the likelihood of any new traffic offense in the following year

by 1.6 percentage points (󰂃 = −0.07). We document a stronger effect on speeding offenses

(󰂃 = −0.13) and a statistically significant, but less precise, effect on the likelihood that a

driver is involved in a traffic accident in the next year (󰂃 = −0.04).

In this setting, motorists receiving harsh and lenient fines face identical sanctions for

future offenses. Hence, the ex-post response we document represents a specific deterrence

effect, or the impact of the experience of punishment on offending (Nagin, 2013). Our

fine elasticity estimates advance a literature focused on isolating specific deterrence effects

(Gehrsitz 2017; Hansen 2015, Dusek & Traxler 2021, Finlay et al. 2022) and the broader

literature on the deterrence effects of traffic enforcement efforts (e.g., Makowsky & Stratmann

2011; DeAngelo & Hansen 2014; Luca 2014; Traxler et al. 2018). Our ability to measure

individual-level impacts on crash involvement, an outcome clearly associated with social costs

and not subject to enforcement-based measurement, also adds to the literature on specific

deterrence.

Next, we quantify the overall contribution of officer discretion to public safety by esti-

mating the reoffending rate in a counterfactual scenario without officer discretion. Because

the specific type of discretion we study takes the form of officers departing from fine rules by
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reducing charges, our aim is to estimate the reoffending rate if all cited drivers were instead

issued harsh fines. The empirical challenge we face is that this counterfactual is not identified

by the LATE when treatment effects are heterogeneous, especially if officers strategically use

their discretion. For example, suppose that officers allocate harsh fines to maximize public

safety. In this case, the motorists currently facing harsh fines should be the most responsive

to those harsh fines in terms of driving behavior, and the safety gains associated with issuing

harsh fines to those currently not receiving them could be much smaller than suggested by

the LATE. Note that this is a pervasive issue in the program evaluation literature, where ex-

trapolating beyond the LATE is an important step in assessing the effects of counterfactual

policy changes (e.g., Heckman & Vytlacil 2007, Cornelissen et al. 2016, Brinch et al. 2017).

Hence, our desired counterfactual requires a dedicated estimate of the average treat-

ment effect on the untreated (ATU). While this parameter can be recovered from estimates

of marginal treatment effects (e.g., Bjorklund & Moffitt 1987; Heckman & Vytlacil 2007;

Mogstad & Torgovitsky 2018), identification of the MTE requires a strict monotonicity

assumption, which implies that all officers share a common ranking of motorists when allo-

cating harsh sanctions. Instead, we estimate the ATU using a novel two-step procedure that

does not require any monotonicity assumptions. We first extend our IV framework using

an identification at infinity approach (e.g., Heckman 1990; Hull 2020; Arnold et al. 2022).

Specifically, examining the reoffending rates of motorists cited by officers who always and

never issue harsh fines identifies the average treated and untreated potential outcomes. We

use parametric extrapolation techniques as in Arnold et al. (2022), but our setting is unique

in that we actually observe officers in the tails of the stringency distribution. As such, our

extrapolation-based estimates of the average treated and untreated potential outcomes are

insensitive to functional form assumptions. We then combine these estimates of average

potential outcomes with observed reoffending rates in the data in the data to estimate the

average treatment effect (ATE), average treatment effect on the treated (ATT), and average

treatment effect on the untreated (ATU).

Our approach indeed reveals important differences between the LATE and the ATU. We

find that motorists who currently face lenient fines exhibit treatment effects which are 40

percent larger (more negative) than the estimated LATE. Our estimated ATU implies that

the overall reoffending rate would decline by 2.2 percent in a counterfactual scenario without

officer discretion. To put this number in perspective, we estimate that switching all drivers

from lenient to harsh fines would reduce the reoffending rate by 3.4 percent. Eliminating

discretion thus achieves over sixty percent of the feasible deterrence on this margin.

The safety gains from removing officer discretion can be decomposed into two channels.

The first, which we call the average component, is the safety gains associated with increasing

the likelihood of harsh fines for the average motorist. The second, which we call the sorting
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component, is the relative safety gain from issuing harsh fines to the specific subgroup of

motorists who typically face lenience when officers exercise discretion. The second component

captures differences in treatment effects for the average motorist (ATE) and the subset of

motorists whose treatment status is changed without discretion (ATU). We find that each

channel explains about half of the overall safety gains from eliminating officer discretion.

In other words, increasing the harshness rate for the average driver improves safety, and

allocating harsh fines to motorists who typically receive lenience when officers use discretion

further reduces the reoffending rate, because these motorists are especially responsive to

harsh fines. Note that this is exactly the opposite of what would be expected under safety

maximization by officers, which would predict the smallest treatment effects for the motorists

typically issued lenient fines.

We find similar patterns when considering alternative measures of safety. Examining a

motorist’s number of new traffic offenses in the following two years, those issued lenient fines

represent over 80 percent of the feasible deterrence. In terms of future crash involvement,

untreated motorists comprise nearly all the feasible deterrence. For this group of drivers,

we estimate that each additional dollar in fines issued from counterfactually imposing harsh

sanctions yields a public safety gain of nearly two dollars in the form of lower social costs

attributable to traffic accidents.

Finally, we consider potential explanations for the officer behavior we document. Along

with the reverse selection on gains discussed above, we find striking positive selection on

levels : if issued a lenient fine, the motorists who face harsh sanctions would reoffend about 15

percent more often than motorists who receive lenience. We find that both reverse selection

on gains and selection on levels persist when examining patterns within motorist covariates

or focusing only on first-time offenders and cannot be explained by officer decisions based

on the underlying stopped speed. We also find similar selection patterns when examining

experienced officers. Hence, the available evidence is consistent with the view that the

current allocation of fines reflects the goals of officers. In particular, these patterns align

well with an intuitive notion of fairness, with officers allocating harsh fines to the “worst”

drivers in terms of recidivism risk. These motorists are the least deterred by harsh fines, and

hence eliminating these “sorting” decisions by officers has important public safety benefits.

Our central contribution is to a large literature on the implications of bureaucratic dis-

cretion for state effectiveness (e.g., Prendergast 2007; Ash & MacLeod 2015; Best et al.

2017; Bandiera et al. 2021) and to a rapidly growing literature on the role of discretion in

the criminal justice system (e.g., Weisburst 2017; Ba et al. 2021; Chalfin & Goncalves 2021;

Goncalves & Mello 2021; Abrams et al. 2021; Feigenberg & Miller 2022; Norris 2022; An-

gelova et al. 2023). We quantify the net effect of officer discretion over sanctions on public

safety and show that a misalignment between the deterrence objectives of the state and the
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discretionary behavior of police officers has important implications for road safety.

Our findings on this dimension also speak to a largely theoretical literature on fairness-

efficiency tradeoffs in the design of legal institutions (e.g, Polinsky & Shavell 2000; Kaplow &

Shavell 2006; O’Flaherty & Sethi 2019; Moore 2019) by documenting the empirical relevance

of a tradeoff between efficiency and other potential law enforcement objectives, such as the

targeting of sanctions to the “worst” offenders. Importantly, we do not take a firm stand

on the overall welfare implications of this officer behavior, as this behavior could reflect a

legitimate law enforcement goal or the desired allocation of the state.

We also contribute to a broad literature on the allocation choices of economic agents. A

common practice in this literature is to examine selection patterns in settings where efficient

allocations should exhibit selection on gains (e.g., Carneiro et al. 2011; Abaluck et al. 2016;

Van Dijk 2019; Chandra & Staiger 2020). Several such studies have nonetheless found sorting

based on levels, such as parents choosing school districts for their children (Abdulkadiroglu

et al., 2020) and hospitals opting into a Medicare reform (Einav et al., 2022). We document

similar behavior in a new setting, law enforcement, and we do so using a novel method that

can characterize selection patterns under minimal assumptions.

Our paper proceeds as follows. Section 2 describes our data and setting. We lay out

our empirical framework in section 3 and estimate the causal effect of sanctions in section

4. Section 5 quantifies and decomposes the net contribution of officer discretion to public

safety and section 6 considers potential explanations for the officer behavior we find. Section

7 concludes.

2 Data and setting

2.1 Data sources

The Florida Clerks and Comptrollers provided administrative records of the universe of

traffic citations issued in Florida for the years 2005–2018 from Florida’s Uniform Traffic

Citation (UTC) database. These records include the date and county of the citation as

well as information on the cited violation. When the violation is speeding, this information

includes the charged speed and posted speed limit (e.g., 74 MPH in a 65 MPH zone). The

UTC data also include all information provided on a stopped motorist’s driver license (DL):

name, date of birth, address, race, gender, as well as DL state and number. Using the

driver license number, we are able to link drivers across citations and construct our primary

measures of past and future traffic offending.

We augment the motorist information in the UTC data with four auxiliary data sources.

First, we match drivers on zip code of residence to estimated per-capita income at the zip

code level from the IRS Statistics of Income files. Second, we construct estimated vehicle
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values based on a database of online vehicle resale values. Third, we recode a motorist’s race

as Hispanic if, based on census records, their surname is associated with Hispanic status for

more than 80 percent of individuals.1 Finally, we link drivers on full name and date of birth

to prison spell records from the Florida Department of Corrections to construct a measure

of prior incarceration.

In the citations data, the ticketing officer is identified by name. We construct a consistent

officer identifier by linking the officer name with data on Florida Highway Patrol (FHP)

employment spells provided by the Florida Department of Law Enforcement. We focus on

tickets issued by the FHP both because we can more consistently the citing officer and

because speeding enforcement is a central duty of the FHP. However, we measure past and

future offending using all citations, not just the FHP-issued citations in our focal sample.

We also obtained administrative crash reports covering the universe of automobile ac-

cidents known to police over the period 2006–2018 from the Florida Department of Trans-

portation (FDOT). These data are collected during a police response or investigation and

include the date and county of the incident and include the DL numbers of involved drivers,

which we use to link drivers with the citations data.

The Florida Clerks and Comptrollers provided records from the Traffic Citation Account-

ing Transition System (TCATS) database, which includes information on the traffic court

disposition associated with about 80 percent of the citations in our sample. We use these

records to construct a measure of whether a citation was contested in traffic court and, based

on the disposition, to construct measures of accrued, rather than statutory, sanctions. For

additional details, see appendix D.

2.2 Sample construction

To construct our sample of focal citations, we first restrict attention to tickets written by the

Florida Highway Patrol over 2007–2016 where the citing officer is identified.2 We further re-

strict the sample to include tickets where speeding is the only violation, no crash is indicated,

and the charged speed is between nine and twenty-nine miles per hour over the posted speed

limit. We choose twenty-nine as our upper limit because (i) the available evidence suggests

that motorists are still bunched with positive probability when their true speed is as high

1As discussed in Goncalves & Mello (2021), there are clear inconsistencies in the recording of
Hispanic status in the UTC data. Officers frequently write down race = H (for Hispanic). But
in Miami-Dade county, where the population is over 60 percent Hispanic, less than one percent of
citations are coded as being issued to a Hispanic motorist.

2We focus on 2007–2016 so that we can measure other offending (including crash activity) for
least one full year prior and one full year after the focal citation. Over this period, the ticketing
officer is identifiable for 85 percent of FHP-issued speeding tickets.
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as twenty-nine MPH over the limit (see figure 1) and (ii) thirty MPH over the limit is the

threshold for criminal speeding.

We also restrict to drivers with a valid Florida driver license number, so that we can

reliably measure past and future offending, and require that officers have at least fifty cita-

tions meeting the above criteria to compute our instrument. Ultimately, our focal sample

is comprised of 1,693,457 speeding citations issued by 1,960 FHP officers. There are 1.4M

unique drivers in the sample. Table 1 presents summary statistics.

Again, reoffending and past offending are measured using all citations issued in the state

rather than just the citations that comprise our sample of focal FHP tickets. Worth noting

here is the fact that our main outcome measure will capture whether a motorist is caught

and ticketed for a new traffic offense, which itself could be subject to officer discretion. If

anything, we expect that officer discretion at the recidivism stage will bias our specific deter-

rence effect estimates towards zero. We compare reoffending rates for individuals (randomly)

receiving harsh and lenient fines and find that those receiving harsh fines differentially re-

duce their offending rates. If officers are more likely to let drivers with less severe offending

histories off with formal or informal warnings, that would bias our estimates towards zero

by deflating the reoffending rates of those who are issued lenient sanctions.

2.3 Florida highway patrol

State-level patrols are the primary enforcers of traffic laws on interstates and many highways,

especially those in unincorporated areas. On patrol, officers are given an assigned zone over

which they can combine roving patrol and parked observation patrol. Florida Highway Patrol

(FHP) officers are divided into one of nine assigned troops, almost all of which patrol six to

eight counties each. Officer assignments operate on eight-hour shifts and cover an assignment

region that roughly corresponds to a county, though the size of a “beat” can vary based on

an area’s population density. In practice, we use counties to proxy for assignment regions.

The FHP is comprised of approximately 1,500 full-time officers. Speeding enforcement is

a primary duty of FHP officers and the FHP collectively issues between 150,000 and 200,000

speeding citations each year. Other responsibilities include enforcing a wide array of other

traffic laws, investigating crashes, and responding to and assisting with highway emergencies.

The FHP officer handbook reads “Members should take the enforcement action they deem

necessary to ensure the safety of the motoring public, reduce the number and severity of

traffic crashes, and reduce the number of criminal acts committed on highways of this state,”

highlighting that officers are explicitly given discretion over enforcement decisions.

In Florida, speeding sanctions are based on an offender’s speed relative to the posted

speed limit. Speeding 1-5 MPH over the limit carries a statutory warning but no sanctions,

7



while speeding 30 or more MPH over the limit is a misdemeanor offense requiring the offender

to appear in court. Between 6 and 29 MPH over the limit, the statutory fine is a step function,

plotted as a red dotted line in figure 1.

Speeding offenses are also associated with “points” on an offender’s driver license (DL).

Point assessments are also based on speed; speeding 6-15 MPH over the limit is associated

with 3 points while speeding 16+ MPH over the limit is associated with 4 points. Points

are used by car insurers to adjust premiums and offenders that collect a sufficient number of

points (12 points in 12 months; 18 points in 18 months; 24 points in 36 months) have their

license suspended for 30 days (6 months; 1 year).

After a citation has been issued, a driver can either submit payment to the county clerk

or request a court date to contest the ticket. If the ticket goes to court, a judge or hearing

officer typically decides either to uphold the original charge, reduce the charge, or dismiss

the citation. At the time of payment, a subset of drivers can elect to attend an optional

traffic school, completion of which combined with on-time payment will remove the citation

from a driver’s record and prevent the accrual of the associated DL points.

2.4 Discretion over sanctions

Panel (a) of figure 1 shows the speeding fine schedule in Florida and a histogram of charged

speeds on FHP-issued speeding citations. Over one third of all citations are issued for exactly

9 MPH over the posted limit, just below a $75 increase in the associated fine. Less than

one percent of all citations are issued for eight or ten MPH over the limit. The dramatic

bunching in the speed distribution suggests systematic manipulation by officers. Specifically,

the distribution implies the practice of speed discounting, where officers observe drivers

traveling at higher speeds but write down nine MPH on the citation as a form of lenience

(Anbarci & Lee 2014; Goncalves & Mello 2021). An officer’s decision whether to bunch a

driver, resulting in either a discounted or full fine, is the focus of our study.

We rely on several pieces of evidence to demonstrate that bunching in the speed distri-

bution is generated by the behavior of officers rather than drivers (e.g., Traxler et al. 2018).

First, following Goncalves & Mello (2021), figure 1 shows that all bunching is attributable

to a subset of lenient officers.3 About 25 percent of officers, whom we term the non-lenient

officers, almost never write tickets for nine MPH. In appendix A, we further document the

variation across officers in bunching propensity, show that an officer’s bunching propensity

3See appendix D-2 for details on the classification of officers as lenient versus non-lenient, which
is based on the manipulation test from Frandsen (2017). To ensure that the pattern in figure 1
is not mechanical and to avoid the reflection problem in IV estimates, we randomly partition an
officer’s stops into two groups, classify each officer × partition as lenient versus not, and then use
the officer’s classification in the other partition.
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is strongly correlated across space and time, and find that the identity of the stopping officer

is significantly more predictive of a bunched ticket than locations or motorist characteristics.

A natural question here is why do officers bunch drivers? First, we note that fine revenue

is routed to the county government where the citation was issued. Hence, neither the officers

themselves, nor the FHP or state government, have any financial stake in fine amounts.

Officers may have a promotion incentive to write a certain number of tickets, as the number

of tickets they write appears on their performance evaluations. We believe these set of

institutional factors contribute to an environment in which officers are encouraged to write

tickets but also have the freedom to write reduced charges, which is ideal for our research

design (Goncalves & Mello, 2021).

Based on the available evidence, our view is that distaste for traffic court best explains

officer lenience in this context. After receiving a traffic ticket, the cited driver has the

option to contest the citation in traffic court, with the citing officer expected to attend the

associated court hearing. Using the same identification strategy that we exploit to assess the

causal effect of sanctions on offending, we find that a 125 dollar increase in fine (causally)

increases the likelihood that a driver contests a ticket in court by about 40 percent (see table

2). Hence, distaste for appearing in traffic court generates an incentive to bunch drivers and

heterogeneity in distaste for traffic court could explain the observed variation in lenience

across officers.

3 Empirical framework

Our empirical approach leverages the variation across officers in the propensity to bunch

drivers within an instrumental variables framework. The outcome of interest, Yi, is whether

cited driver i commits a new traffic offense in the following year. The treatment of interest

is whether driver i receives a harsh fine (as opposed to a lenient one), which we denote by

Di = 1[speedi ≥ 10]. The instrument, which we call officer stringency, is computed as:

Zij = 1−
󰀣

1

Nj − 1

󰁛

k ∕=i

1[speedkj = 9]

󰀤
≡ stringency

where i indexes motorists and j indexes officers. In words, Di is an indicator for whether a

motorist is not bunched at 9 MPH over and Zij is the fraction of officer j’s citations issued

to all other drivers that are for speeds of 10 MPH or more over the limit; or in other words,

the fraction of citations that are not bunched at 9 MPH.

To adjust for differential exposure of officers to groups of motorists based on patrol

shift assignments, we condition on detailed beat-shift fixed effects, denoted by ψs, in all

our analyses. These beat-shift effects are at the level of the county × 1[highway] × year

9



× month × 1[weekend] × shift. A county is approximately a patrol area for each officer.

Officers rotates shift (day of week and time of day) monthly.

Our empirical framework requires that the stringency instrument satisfy the local average

treatment effect (LATE) assumptions of Imbens & Angrist (1994):

1. Relevance. D(Z) is a nontrivial function of Z.

2. Exogeneity. {Yi1, Yi0, Di(Z)} ⊥ Z | ψ

3. Exclusion. Yi(D,Z) = Yi(D)

4. Monotonicity. ∀w, j ∈ J , either Di(w) ≥ Di(h) ∀i or Di(w) ≤ Di(h) ∀i

where J denotes the set of officers and {Yi1, Yi0} are the potential outcomes of driver i when

sanctioned harshly (D = 1) and leniently (D = 0).

The relevance assumption requires a statistical relationship between stringency and harsh

fines, which is empirically testable. Panel (c) of figure 2 plots the probability of harsh fines

against officer stringency, conditional on beat-shift fixed effects, laid over a histogram of

stringency, net of beat-shift effects. The figure documents a linear and statistically precise

relationship, with an estimated first stage coefficient of β̂ = 0.944 (se = 0.006) and associated

F ≈ 22, 000. In figure A-3, we show the first stage estimates for other sanction measures. In

terms of fine amounts, shown in panel (a), the estimated first stage is β̂ = $122. We further

discuss the exogeneity, exclusion, and monotonicity assumptions in turn below.

Exogeneity . Existing studies using examiner designs (e.g., Kling 2006, Dobbie & Song

2015, Maestas et al. 2013, Bhuller et al. 2020) have appealed to the institutional quasi-

random assignment of examiners (e.g., bail judges) to satisfy the exogeneity assumption.

Citing officers in our setting are, of course, not randomly assigned to drivers. Instead,

officers can select their own samples by choosing (i) whom to pull over versus whom to let

pass and (ii) whom to cite versus whom to issue a formal or informal warning. We cannot

observe formal or informal warnings in our data and cannot observe the full population of

drivers passing by an officer during a given shift.

An especially salient threat to our empirical design would be a correlation between strin-

gency on the citing margin (whom to cite versus not) and the charging margin (whom to

bunch versus not). To help illustrate this point, suppose there were two officers, j ∈ {a, b},
with a an officer who bunches most drivers and b an officer who bunches fewer drivers. Sup-

pose that a is also very lenient on the citing margin; that is, she lets most motorists pass

with no citation, while b is very stringent on the ticketing margin, citing most drivers. If a

restricts her sample by only citing “worse” drivers, then E(Yi0 | j = a) > E(Yi0 | j = b),

violating exogeneity.
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There are two testable implications of the hypothesis that lenience on the intensive (bunch

versus not) and extensive (ticket versus not) margins are correlated. First, our instrument

Z should be correlated with an officer’s citation frequency. Holding constant the supply of

offenders, officers with higher ticketing thresholds should have “missing” tickets relative to

officers with lower ticketing thresholds. Second, Z should be correlated with driver charac-

teristics that predict reoffending. We test both these predictions in figure 2. Panel (a) plots

the relationship between officer stringency and an officer’s average monthly citations, both

adjusted for beat-shift fixed effects. For both all citations and speeding citations, regres-

sion coefficients are quantitatively small and statistically indistinguishable from zero. Panel

(b) illustrates that there is no relationship between stringency and either past offending or

predicted reoffending based on driver covariates.4

Hence, the evidence suggests that exogeneity violations generated by sample selection are

unlikely. Nonetheless, we take sample selection concerns seriously and subject our treatment

effect estimates to a series of associated robustness checks, described further in section 4.

Exclusion . The exclusion restriction requires that officer stringency affects future of-

fending only through sanctions. Note that our strategy allows other (non-sanction) officer

behaviors to affect drivers as long as those behaviors are uncorrelated with our stringency

measure (Frandsen et al., 2019). On the other hand, features of the officer-driver interaction

other than the sanction that cause a driver to change behavior would violate exclusion if

those features are correlated with stringency.

Another plausible source of exclusion violations is downstream involvement in the traffic

court system. As previously mentioned, stringency increases the likelihood that a driver

contests a ticket in court and might influence traffic school elections. If anything about the

court experience changes driver behavior, that could be considered an exclusion violation.

However, whether traffic court involvement constitutes a violation of exclusion or simply a

mechanism for the fine’s impact is subject to interpretation. When viewed from the officer’s

perspective, downstream events that are (i) caused by harsher sanctions and (ii) reduce

reoffending still could be interpreted as a causal effect of sanctions themselves.5

Finally, the choice to bunch a driver indirectly affects the statutory “points” a driver

4Appendix table A-2 shows the relationship between all driver characteristics and recidivism,
charged fines, and officer stringency. Driver covariates have substantial joint predictive power over
reoffending (F = 1734) and reduced charges (F = 29), but considerably less power to predict
officer stringency (F = 2.7). While our test rejects the null hypothesis of no statistical relationship
between observables and officer stringency, a joint F = 2.7 is remarkable small in a setting without
institutional random assignment and N ≈ 1.7M.

5Moreover, the evidence is largely inconsistent with the court system playing an important role
in generating the treatment effects. As shown in figure B-4, treatment effects are very similar for
local and non-local drivers. Because drivers need to travel to the citation county to attend court,
local drivers are more likely to contest citations.
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receives on their license, as discussed in section 2.3. Appendix figure A-3 illustrates that

officer stringency slightly affects statutory points (βFS = 0.7). However, drivers can mitigate

their point exposure through the court system, and we find that, taking into account those

downstream behaviors, there is almost no relationship between stringency and points, again

shown in figure A-3. Hence, the burden of accrued license points cannot explain the effects

we observe.

Monotonicity . Monotonicity violations are a natural concern in our setting given evi-

dence of racial bias in officer leniency decisions (e.g., Goncalves & Mello 2021). Importantly,

Frandsen et al. (2019) show that 2SLS estimates in examiner designs recover the appropriate

local average treatment effect under a weaker average monotonicity condition, which requires

only that counterfactual reassignment to a more stringent officer increases the probability of

harsh sanctions in expectation. In table A-3, we provide evidence for average monotonicity

by showing that the first stage is statistically strong and similar in magnitude across motorist

subsamples.6

To assess the overall impact of discretion, we estimate a set of treatment effect parameters

beyond the LATE. Our method for recovering these parameters, described in section 5, does

not rely on a monotonicity assumption.

4 Deterrence effects

Given our interest in the safety implications of discretion, characterizing the average causal

effect of sanctions on motorist behavior is an important first step in our analysis. Our

approach follows directly from the empirical framework discussed above. We estimate the

regression Yijs = βDij+ψs+uijs by two-stage least squares, instrumenting for Di with officer

stringency Zij. Given the assumptions discussed in section 3, our deterrence IV estimate

will recover a local average treatment effect (LATE), which is a positive weighted average of

treatment effects for individuals whose treatment status is shifted by the instrument (Imbens

& Angrist, 1994).

Note that our stringency instrument solves an important identification challenge arising

from the nonrandom assignment of punishments. Not only do statutory sanctions increase

with offense severity, as shown in figure 1, but officers further manipulate fines, as discussed

in section 2.4. Naive OLS estimates, presented in table B-1, illustrate both dimensions of

the identification challenge well. A regression of one-year reoffending on the charged fine

(in $100’s) and beat-shift fixed effects gives β̂ = 0.043 (se = 0.002), suggesting that harsher

fines increase reoffending. Adding officer fixed effects increases the estimate to β̂ = 0.055

(se = 0.002), highlighting the nonrandom sorting of motorists into sanctions by officers.

6See appendix B-1 for additional discussion of monotonicity concerns.
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4.1 Results

In figure 3, we show the dynamic relationship between officer stringency and traffic offending.

Specifically, we plot estimated coefficients (and confidence bands) from regressions of the

form:

Yijsτ = βτZij + ψs + uijs

where Yijsτ is an indicator for whether driver i receives a traffic citation in quarter τ , which

are quarters relative to the focal FHP citation. In the figure, τ = 0 corresponds to the

exact date of the focal FHP citation and τ = k corresponds to k quarters before or after

the focal citation. The figure illustrates that the stringency of the citing officer at τ = 0 has

no ability to predict offending over the previous eight quarters but predicts a stark decline

offending immediately after the focal citation. Impacts persist over the first four quarters

and fade out thereafter. Over the year following the focal citation, the reduced form estimate

is β̂ = −0.017 (se = 0.005).

Table 2 presents 2SLS estimates for the full set of one-year offending outcomes.7 Column

1 reports the lenient officer mean of the outcome, while columns 2 and 3 report IV estimates

excluding and including controls for driver characteristics. To help interpret magnitudes,

column 4 reports the implied fine elasticity, which is computed by regressing the outcome on

the (continuous) fine amount, driver controls, and beat-shift fixed effects, instrumenting the

fine amount with stringency, and then scaling the IV estimate by the ratio of the average

fine and average reoffending rates.

We find that harsh fines reduce the likelihood of a new traffic offense in the following year

by about 1.6 percentage points (󰂃 = −0.07). The majority of this effect is attributable to

reductions in speeding offenses; a harsh fine reduces the likelihood of a new speeding offense

in the next year by about 1.4 percentage points. The 2SLS estimate is precisely estimated,

with a 95 confidence interval of (−0.017,−0.012). Our point estimate for speeding offenses

represents an 8.5 percent decline relative to the lenient officer mean and implies a fine

elasticity of −0.13. In other words, our estimate implies that a doubling of the fine amount

would reduce the likelihood of speeding recidivism by 13 percent.

Estimated impacts of harsh fines on non-speeding offenses are also statistically significant

but less pronounced (󰂃 = −0.06). The finding that speeding sanctions reduce other traffic

offenses is consistent with Gehrsitz (2017), who finds specific deterrence effects of short-term

license suspensions imposed on speeders in Germany on all forms of traffic offending.

Consistent with reductions in traffic offending implying a true behavioral response on

7In the appendix, we present graphical versions of the reduced form estimates (figure B-1),
dynamic versions of the reduced form for other outcomes (figure B-2), and the full set of first stage
and reduced form estimates with and without controls (table B-2).
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the part of drivers, we also find that harsh fines reduces the likelihood of crash involvement

over the following year by between 0.2 and 0.3 percentage points (󰂃 = −0.04). While less

precisely estimated than the effects on traffic offenses, the IV estimates for crash involvement

are statistically significant at the 10 percent level.

Finally, following our discussion in section 2.4, the last row of table 2 reports IV estimates

of the impact of harsh fines on the likelihood that a driver contests a ticket in court. Relative

to a lenient officer mean of 0.26, we find that a harsh fine increases the likelihood of a

contested citation by about 11 percentage points, or about 42 percent, consistent with our

hypothesis that court aversion motivates officer lenience.

4.2 Robustness

In the appendix, we present results from a battery of robustness checks. Table B-3 shows that

estimated deterrence impacts are robust to alternative methods for computing the stringency

instrument. Figure B-3 illustrates that our findings cannot be explained by differential

selection of motorists across officers. We also show that results are similar when further

interacting our beat-shift effects with stretch-of-road fixed effects, constructed by mapping

the subset of geocoded tickets (N = 244, 858) to Florida roads. In section B-1, we discuss

additional robustness tests to address concerns about monotonicity.

4.3 Interpretation

As highlighted in section 2, motorists issued harsh and lenient fines face the same sanctions

for future offenses. Hence, our estimates capture a pure specific deterrence effect (e.g., Nagin

2013), or a behavioral responses to the experience of punishment, rather than the effects of

statutorily higher sanctions for future offenses.

In figure B-4, we show that treatment effects are similar for local residents and out-of-

county drivers, suggesting a minimal role for the traffic court system in explaining treatment

effects, since drivers need to travel to the citation county to attend traffic court. Figure B-4

also illustrates that offending responses are nearly identical for motorists with higher and

lower incomes, proxied by the zip code of residence, which runs counter to a financial distress

mechanism based on Mello (2021).

A mechanism that seems particularly consistent with the dynamic patterns in figure 3

is drivers updating their beliefs about sanctions (Dusek & Traxler, 2021). In figure B-5,

we show that offending responses are stronger in the county of the focal ticket and larger

for motorists that have been exposed to stringent officers in the past, both of which are

consistent with a learning hypothesis.
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5 The impact of discretion

Having shown that officer’s discretionary choices of sanctions matter for public safety by

estimating the local average treatment effect of harsher fines on reoffending, we now examine

the overall implications of officer discretion over sanctions for public safety. Our approach is

to compare the observed reoffending rates with reoffending rates in a counterfactual scenario

without officer discretion. In other words, our aim is to identify reoffending rates were all

motorists issued harsh fines. This counterfactual reoffending rate is identified by an estimate

of the average treatment effect for motorists currently issued lenient fines.

Our strategy for estimating average treatment effects for treated and untreated motorists

again exploits across-officer variation in stringency and proceeds in two steps. First, we

rely on an identification at infinity approach to identify the average treated and untreated

potential outcomes for the entire sample of cited motorists. Second, we combine these

estimates with the observed reoffending outcomes for treated and untreated motorists to

identify average treatment effects on the treated (ATT) and untreated (ATU).

5.1 Estimating treated and untreated potential outcomes

To build intuition for our first step, consider a supremely stringent officer j who always

issues harsh fines, Zij = 1. Motorists cited by such an officer always receive the harsh

fine, Dij = 1. Hence, the observed reoffending rates for motorists stopped by officer j

represent the average treated potential outcomes for that subset of motorists, E(Yi|J = j) =

E(Yi1|J = j). Assuming that officers are as-good-as-randomly assigned, the average treated

potential outcomes for this group of motorists are the same as those for the entire sample

of motorists, E(Yi1|J = j) = E(Yi1). By the same logic, the outcomes of motorists stopped

by a supremely lenient officer with Zij = 0 can identify E(Yi0). This reasoning follows Hull

(2020) and Arnold et al. (2022) and is in the spirit of identification at infinity in selection

models (e.g., Chamberlain 1986; Heckman 1990; Andrews & Schafgans 1998).

In terms of implementing this idea in practice, we face two relevant issues. First, although

our data indeed include supremely stringent and lenient officers who always and never issue

harsh fines (as shown in panel a of figure A-1), our sample size is greatly reduced when

focusing only on these extreme officers. In particular, only 1,245 citations, or 0.07 percent

of our sample, are issued by supremely lenient officers. Hence, as our baseline approach,

we follow Arnold et al. (2022) and rely on extrapolation from the data away from the tails,

described further below.

The second practical issue is that as-good-as-random assignment of officers holds only

within beat-shifts, ψs, and hence, only within-ψ variation should be used for extrapolation.

Our baseline approach is to simply include these fixed effects in our extrapolation regressions.
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In other words, we estimate regressions of the form:

E(Yi|Zij,ψs) = αψs + f(Zij) + uijs (1)

and then compute the conditional expectation at the values Zij = 0 and Zij = 1 at the

average value of the beat-shift effects, E(Yi0) = α̂ψ̄i+ f(0) and E(Yi1) = α̂ψ̄i+ f(1). Below,

we consider various functional forms for f(·), including polynomials, splines, and a fully non-

parametric specification that relies only on the (ψ-adjusted) average outcomes for officers

with Zij < 0.01 and Z > 0.99 to estimate E(Yi0) and E(Yi1).

Including the beat-shift fixed effects in this way requires an auxiliary linearity assump-

tion, discussed in detail in Arnold et al. (2022). As robustness, we consider alternative

approaches to adjusting our extrapolation estimates for differences across beat-shifts. First,

we estimate the above regression separately by troop, and then aggregate up the troop-level

estimates. We also estimate a version of the extrapolation based on the within-locations

approach of Feigenberg & Miller (2022), described further in section E-1. Both approaches

directly address the concern that our estimates of E(Yi0) and E(Yi1) are identified off officers

patrolling different beats by relying only on comparisons between officers patrolling the same

locations to estimate both.

5.2 Recovering treatment effect parameters

After identifying average potential outcomes, our second step notes that the potential out-

comes of treated and untreated groups must average to the sample-wide average potential

outcomes. For the average treated outcome,

E(Yi1) = pE(Yi1|Di = 1) + (1− p)E(Yi1|Di = 0)

= pE(Yi|Di = 1) + (1− p)E(Yi1|Di = 0)

We estimate the left-hand side via extrapolation in the first step. The first term on the

right-hand side can be estimated directly from the data. Rearranging gives an expression for

the final term, the treated outcome for untreated motorists, E(Yi1|Di = 0) = 1
1−p

E(Yi1)−
p

1−p
E(Yi|Di = 1). Combined with the observed outcomes for untreated motorists, we can

identify the average treatment effect on the untreated:

ATU =E(Yi1|Di = 0)− E(Yi0|Di = 0)

=
1

1− p
E(Yi1)−

p

1− p
E(Yi|Di = 1)− E(Yi|Di = 0)

=
1

1− p
[E(Yi1)− E(Yi)] (2)
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where the last equation uses the identity pE(Yi|Di = 1) + (1− p)E(Yi|Di = 0) = E(Yi).

The final equation provides useful intuition for how we identify the ATU. Once we have

estimated the average treated potential outcome, the difference between that value and

the observed average reoffending outcome E(Yi) reflects the difference in outcomes due to

individuals who have not been treated, and the division by (1− p) scales this difference for

the share of individuals who are untreated.

By the same logic, we can identify the untreated potential outcome for treated drivers

from the relationship E(Yi0|Di = 1) = 1
p
E(Yi0)− 1−p

p
E(Yi|Di = 0), which gives us the average

treatment effect on the treated,

ATT =E(Yi1|Di = 1)− E(Yi0|Di = 1)

=E(Yi|Di = 1)− 1

p
E(Yi0) +

1− p

p
E(Yi|Di = 0)

=
1

p
[E(Yi)− E(Yi0)] (3)

Again, the final equation makes clear how the ATT is identified. The difference between

the average reoffending rate and the untreated potential outcome reflects the difference in

outcomes due to individuals who have been treated, and the division by p scales this difference

for the share of individuals who are treated.

To compute standard errors, we rely on a Bayesian bootstrap (Rubin, 1981), clustering at

the officer-level and bootstrapping the entire procedure (both steps). The Bayesian bootstrap

is a special case of the standard bootstrap procedure, where instead of resampling with

replacement, random weights are drawn in each iteration. This procedure has the advantage

of preserving support of the stringency instrument and the beat-shift fixed effects in each

iteration.

Notice that, while our procedure for recovering treatment effect parameters of interest

continues to rely on the assumptions of officer instrument relevance, exogeneity, and exclu-

sion discussed in section 3, our approach does not require making a monotonicity assumption

about the treatment behavior of officers. In that sense, our estimation of the ATE, ATT, and

ATU requires fewer assumptions than were needed to recover the LATE above. Implemen-

tation of the extrapolation procedure for estimating the sample average potential outcomes

requires specifying a functional form for the conditional expectation function, E(Y |Z,ψ),
but our setting permits nonparametric specifications, and none of the conclusions we discuss

below are sensitive to functional form assumptions.
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5.3 Extrapolation results

Panel (a) of figure 4 illustrates our extrapolation-based estimation of the sample average

potential outcomes. The figure plots the probability of reoffending on the vertical axis

against officer stringency on the horizontal axis. We show both a nonparametric binscatter,

adjusted for beat-shift effects using the method of Cattaneo et al. (2021), as well as the

fitted line from an estimate of equation 1. We begin with a simple quadratic specification,

which fits the data quite well, especially in the tails of the stringency distribution, and

discuss sensitivity to functional form assumptions below. The value of the quadratic fit at

Z = 0 and Z = 1 provide estimates of the average potential outcomes, E(Yi0) = 0.355 and

E(Yi1) = 0.343, as well as an estimate of the average treatment effect, −0.012.

In panel (b) of figure 4, we present our estimates of the ATT and ATU, which are

obtained by combining our extrapolation estimates of E(Yi0) and E(Yi1) with treatment-

specific observed outcomes, as described above. The vertical axis plots, for each group of

motorists, the untreated potential outcome, E(Yi0), which we refer to as the “reoffending

rate,” as well each group’s treatment effect, E(Yi1−Yi0). Although treated motorists reoffend

at the highest rates, E(Yi0|Di = 1) = 0.371, they exhibit small and statistically insignificant

treatment effects, E(Yi1 − Yi0|Di = 1) = −0.006 (se = 0.007). On the other hand, untreated

motorists reoffend significantly less often, E(Yi0|Di = 0) = 0.325 and exhibit sizable and

statistically significant treatment effects, E(Yi1 − Yi0|Di = 0) = −0.023 (se = 0.009). To

summarize, we find positive selection on levels and reverse selection on gains: relative to

untreated motorists, treated individuals reoffend more often but are less responsive to harsh

fines.

Notice that the treatment effect for currently untreated motorists is about twice as large

(more negative) as the ATE and forty percent larger than the LATE estimate from section 4,

highlighting the importance of our approach for assessing the overall impacts of discretion.

Relative to the untreated (potential) reoffending levels, untreated motorists reduce their

reoffending by 7.1 percent when issued harsh fines, whereas the comparable figures for the

average motorist and treated motorists are 3.4 percent and 1.6 percent, respectively.

Given the specific feature of our setting, where officers deviate from fine rules by giving

breaks to a subset of motorists, the ATU identifies the impact of removing officer discretion

over sanctions. Currently, the probability of a harsh fine is p = E(Di) = 0.657 and the

reoffending rate is E(Yi) = 0.351. Without discretion, the probability of a harsh fine would

become one and the reoffending rate would decline by (1−p) ·ATU = 0.78 percentage points,

or about 2.2 percent. In a typical year in our data (N = 172, 000 citations), this corresponds

to about 4,000 additional traffic offenses attributable to officer discretion. Note that these

are additional offenses due to just one margin of discretion in one police department. We
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discuss some alternative interpretations of this magnitude below.

5.4 Decomposing safety gains

Conceptually, we can think of safety gains from eliminating discretion as working through

two distinct channels. The removal of discretion increases the share of harsh fines from

p = 0.657 to p = 1, which we would expect to reduce reoffending based on our analyses in

section 4, but also changes which drivers face harsh fines. A simple decomposition based

on estimated treatment effect parameters can shed light on the quantitative importance of

these two channels.

Specifically, the net safety gain from eliminating discretion is given by:

∆Y = (1− p) · ATU
= (1− p) · ATE󰁿 󰁾󰁽 󰂀

average

+(1− p) · (ATU− ATE)󰁿 󰁾󰁽 󰂀
sorting

The first term captures the safety gains from increasing the likelihood that the average

motorist faces harsh fines, which we call the average component. The second term captures

additional safety gains (or losses) attributable to the differences in treatment effects for the

average motorist and currently untreated motorists, which we call the sorting component.

The sorting component equals zero if the ATT and ATU are equal. This would be the case

with homogeneous treatment effects or if, for example, officers randomized motorists into

sanctions. With selection on gains, the average and sorting components are opposite-signed.

The realized safety gain from eliminating discretion is less than would be predicted by the

ATE only, because the newly punished motorists are less-responsive than the average driver.

With reverse selection on gains, the two components work in the same direction. There is a

safety benefit from increasing harshness for the average driver, and then an additional safety

benefit from reallocating fines to a particularly responsive group of motorists.

As mentioned above, we find reverse selection on gains, with treatment effects larger

among the currently untreated motorists. Our estimates indicate that eliminating discre-

tion would reduce the recidivism rate by 0.78 percentage points. The decline explained by

increasing fine harshness for the average driver is given by (1 − p)·ATE = 0.41 percentage

points (53 percent of the total), while the decline explained by the reallocation of fines is

given by (1 − p)·(ATU−ATE) = 0.37 percent points (47 percent of the total). Hence, we

find that each channel is equally important in explaining reduced reoffending rates without

discretion.

This is an especially important point that warrants further discussion. Our decomposition

reveals that officer discretion is actually more harmful to public safety than it might otherwise
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be, specifically because of which motorists are currently sorted into harsh sanctions. A useful

way to see this point is to note that the total feasible deterrence in this setting is given by

the ATE = −0.012, which is the per-person decline in reoffending induced by harsh fines if

every driver were issued a harsh fine. Currently, officers achieve just p · ATT = −0.004 in

deterrence, or only about one third of the total feasible deterrence.

We can also note that, based on the ATT and ATU, safety improvements are feasible

even holding the share of harsh fines constant at the current rate. Specifically, consider

a counterfactual reallocation of harsh fines which holds constant the share of harsh fines

at p = 0.657 but reallocates harsh fines to all currently untreated motorists. Under this

reallocation, currently untreated motorists would comprise 52 percent of the treated sample,

with the remainder a random sample of the currently treated motorists. The achieved

deterrence in this reallocation is p · (0.52 · ATU + 0.48 · ATT) = −0.0098, or 83 percent

of the feasible deterrence. If officers had instead sorted motorists in this way, the safety

gain from eliminating discretion would amount to just a 0.22 percentage point decline in the

reoffending rate.

5.5 Robustness

Table 3 explores the robustness of our extrapolation-based estimates. In panel (a), we present

results based on polynomial versions of equation 1, with the first row corresponding to our

baseline quadratic specification. In panel (b), we show estimates based on non-parametric

specifications, which take the ψ-adjusted average reoffending rate for officers in the left

and right tails of the stringency distribution as our estimates of E(Yi0) and E(Yi1), using

different bandwidths to define these “extreme” officers. In panel (c), we replicate our baseline

quadratic specification, replacing our measure of officer stringency with a propensity score,

estimated by regressing harsh fines on stringency and beat-shift effects and constructing

predicted values.8

The key parameter for computing our no-discretion counterfactual, the average treatment

effect on the untreated (ATU), is shown in column 7. Our baseline estimate is −0.023

(se = 0.009) and the estimates from the various specifications range from−0.015 (se = 0.008)

to −0.28 (se = 0.009). Importantly, the estimate from our most flexible specification, which

8See appendix figure C-2 for a graphical depiction of extrapolation-based estimates of E(Yi0)
and E(Yi1) under various functional form assumptions. An important takeaway from figure C-
2 is that our estimate of E(Yi1) is completely insensitive functional form assumptions because
we observe many officers who treat all motorists harshly. Many fewer officers treat all motorists
leniently and, accordingly, our estimates of E(Yi0) vary more across specifications (although nearly
all estimates are within the 95 percent confidence interval of our baseline quadratic estimate). This
fact, combined with equations 2 and 3, explains why our estimates of the ATU are much more
consistent across specifications than our estimates of the ATT.
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uses the ψ-adjusted average outcomes for officers with Z < 0.01 and Z > 0.99 and is shown

in the third row of panel (c), is nearly identical to our baseline estimate (ATU = −0.024;

se = 0.009).

Table 3 also illustrates the robustness of the broader selection patterns discussed above.

In particular, column (8) summarizes the degree of reverse selection on gains by reporting the

ATT−ATU difference, our estimates of which range from 0.009 to 0.029 and are statistically

significant in some, but not all, specifications. In our most flexible specification, the asso-

ciated p-value is 0.106, just outside of conventional significance levels. Note that in section

5.7 below, we briefly discuss estimates of this difference based on an alternative marginal

treatment effects approach, which requires additional assumptions but delivers meaningful

precision gains.

Column 4 summarizes the degree of positive selection on levels across specifications by

reporting the difference in untreated reoffending rates for treated and untreated motorists

These estimates are quite consistent across approaches, ranging from 0.032 to 0.046, and are

statistically significant at conventional levels in all specifications.

In panel (d) of table 3, we report estimates from variations of our baseline quadratic

specification which use alternative approaches for adjusting for beat-shift effects. In the first

(second) row, we estimate our baseline quadratic specification, including beat-shift effects,

separately for troops (counties), and then aggregate up the estimates, weighting by sample

shares. In the third row, we replicate the within-locations approach of Feigenberg & Miller

(2022), described in detail in appendix E-1. In all three specifications, we obtain similar

estimates for the ATU and observe comparable degrees of selection on levels and reverse

selection on gains.

5.6 Other offending outcomes

In table 4, we present extrapolation-based estimates from our baseline quadratic specification

for other safety outcomes of interest. Focusing first on panel (a), the second row shows that

patterns are similar when we focus only on reoffenses for speeding, a subset of our baseline

outcome. While reoffending rates for speeding alone are slightly lower, the treatment effect

on speeding recidivism for untreated motorists is actually even larger than the ATU in our

baseline estimate when rescaled by the untreated reoffending rate. In the third row, we again

find similar patterns for crash involvement. When issued lenient fines, motorists treated

harshly are involved in a crash with probability 0.081, whereas motorists receiving lenient

fines are involved in a crash with probability 0.77 (difference = 0.004; se = 0.002). The

treatment effect on treated drivers is a small and statistically insignificant 0.001 (se = 0.002).

For untreated drivers, the effect is −0.005 (se = 0.003), which is marginally significant
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but represents a sizable decline, about 6.5 percent, relative to their overall rate of crash

involvement.9

Crash involvement has two key strengths as an outcome measure. First, as highlighted

in section 4, this measure does not depend on police enforcement activity, so there is no

concern that the outcome is sensitive to reporting. And second, car crashes carries direct

social costs. A large literature has sought to identify the monetary cost from various forms

of injury, using data from labor markets and other settings (see Viscusi & Aldy 2003 for

an extensive review). We use the value of a statistical injury (VSI) to get a sense of the

monetary benefit of these abated car accidents. We borrow a recent VSI estimate from

Guardado & Ziebarth (2019) of $45,000, and multiplying this estimate with our ATU gives

$225. To put this dollar value in perspective, giving a harsh ticket to the average untreated

driver would increase their fine by approximately $125. So each additional dollar in fines

issued to this group yields over one dollar and eighty cents in social value from reduced car

accidents.

In panel (b) of table 4, we replace these binary outcome measures with counts of each

type of incident for each driver over the two years following the focal FHP citation. In all

cases, selection patterns are similar when using counts instead of binary outcomes. Focusing

on the first row, columns 2–4 illustrate that selection on levels is comparable when using this

alternative notion of reoffending: when issued lenient fines, treated motorists commit 0.24

(se = 0.038) more traffic offenses over the following two years than untreated motorists. As

a percentage of the recidivism rate for untreated motorists (22 percent), this difference is

slightly larger than the difference in our baseline specification (14 percent).

Columns 6–8 illustrate that reverse selection on gains is significantly more pronounced

when examining the number of future traffic offenses. Here, the ATT is nearly identical to

that when using the binary measure (first row), but the ATU is four times larger. Repeating

our baseline counterfactual calculation, we find that eliminating discretion would result in

(1 − p) · ATU = 0.095 fewer offenses per cited motorist in the following two years. Based

on the average number of traffic citations annually in our sample, this amounts to about

16,000 fewer expected traffic offenses over the next two years when removing discretion for

all tickets in a single year.

5.7 Comparison with marginal treatment effects

An alternative approach to identifying treatment effect parameters beyond the LATE is to

utilize the marginal treatment effects framework (Bjorklund & Moffitt, 1987; Heckman &

9In the appendix, figure C-5 graphically depicts the extrapolations underlying these estimates
and and table C-1 reports the corresponding estimates when using local means to estimate E(Yi0)
and E(Yi0) instead of the quadratic specification.

22



Vytlacil, 2007). In our setting, this approach supposes that selection into treatment can be

modeled as a threshold crossing rule, D = 1[µD(Z) > UD], which depends on characteristics

Z, including both X and our stringency instrument, and unobservable UD. Each individual

has a fixed value of UD, their resistance to treatment. The higher one’s value of UD, the

greater their realization of µ(Z) must be for that individual to take up treatment. Without

loss of generality, we can assume UD has a uniform distribution, so that µD(Z) reflects the

probability of treatment at Z (i.e., the propensity score).

The marginal treatment effect is defined as MTE(u) = E(Y1−Y0|UD = u), the treatment

effect for individuals who are induced into treatment at propensity score u. In this framework,

the ATU is defined as a weighted average of MTE’s, ATU =
󰁕 1

0
MTE(u)hUT (u)du, where

the weights, hUT (u) =
Pr(µD(Z)≤uD)
E(1−µD(Z))

, reflect the probability that an individual at resistance to

treatment u has a sufficiently low propensity score to avoid treatment. The ATT is defined

analogously, with weight hTT = Pr(µD(Z)>uD)
E(µD(Z))

, and the ATE is defined with a uniform weight

across MTE’s.

The key assumption of the marginal treatment effects approach is that treatment is

characterized by the threshold crossing rule: individuals have a fixed resistance to treatment

UD, and their propensity score µD(Z) depends only on observables and the instrument but

is otherwise invariant across individuals. This rule implies the strict monotonicity of Imbens

& Angrist (1994), since all individuals who take up treatment at a given value of µD(Z)

would also take up treatment at greater values (Vytlacil, 2002). However, a strength of

the marginal treatment effects approach is that, with assumptions on the functional form

for MTE(u), various treatment effects can be identified beyond LATE without necessarily

having full support of the instrument (Mogstad et al., 2018; Mogstad & Torgovitsky, 2018).

In appendix figure C-9, we present estimated MTE curves for the effect of fines on

reoffending. We show both polynomial parametric specifications for the marginal treatment

effect, MTE =
󰁓K

k=0 θkv
k, as well as a non-parametric specification.10 In all cases, we find

a pattern of reverse selection on gains, consistent with our extrapolation estimates: drivers

with higher levels of resistance to treatment (i.e., a lower likelihood of facing harsh fines)

exhibit more negative treatment effects.

In appendix table C-4, we use these MTE curves to construct estimates of the ATE,

ATT, and ATU, based on the formulas above. The estimates are remarkably similar to

the extrapolation-based estimates. In particular, the ATU estimates range from −0.023

to −0.027, aligning with our extrapolation estimate of −0.023. While the MTE approach

10We estimate the MTE as follows: we first estimate a first-stage regression of D on X, Z, and
beat-shift fixed effects W , and then construct an estimated propensity score p̂ for each driver. We
then estimate a conditional expectation of Y on X, W , and a polynomial in p̂. The derivative of
the polynomial in p̂ is the marginal treatment effect (Carneiro et al., 2011). We calculate standard
errors using the officer-level bootstrap procedure described in Section 5.2.
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requires a potentially strong assumption of strict monotonicity, our results offer reassurance

that this approach provides reasonable estimates for a wide range of important treatment

effects.

Moreover, table C-4 highlights a consequential benefit of imposing the additional assump-

tions required for the MTE approach: statistical precision. While ATU estimates based on

extrapolation and MTE approaches are remarkably similar, standard errors are about half

as large for the MTE-based estimates. These precision benefits are even more pronounced

when examining our summary measure of reverse selection on gains (the ATT−ATU differ-

ence). While the p-values associated with this parameter hover between 0.1 and 0.2 in some

extrapolation specifications (see table 3), this difference is statistically significant at the one

percent level in all MTE specifications.

5.8 General deterrence effects

Our analysis of counterfactual reoffending rates without officer discretion focuses only on

the specific deterrence effects of changing sanctions for cited motorists, holding that sample

of cited motorists constant. An important caveat associated with our calculations, then, is

that eliminating discretion may also have effects on offending through a general deterrence

channel. Specifically, eliminating officer lenience would increase the expected fine associated

with speeding, which may deter potential speeders.

General deterrence effects associated with eliminating officer lenience should, if anything,

increase public safety, further increasing the net social benefit of eliminating discretion that

we discuss above. Unfortunately, our data and setting do not permit credible identification of

general deterrence effects associated with changing fine amounts. Moreover, as discussed in

section 5.4, our findings imply that safety gains are feasible even holding general deterrence

effects constant.

Importantly, the literature on criminal deterrence suggests that general deterrence effects

associated with modest increases in fine amounts may be negligible. While a large litera-

ture has documented that potential offenders are deterred by increases in the probability

of apprehension (e.g., Makowsky & Stratmann 2011, Mello 2019), evidence on the deter-

rence effects of changes in sanctions is considerably more mixed (Chalfin & McCrary, 2017).

Even dramatic and highly salient changes in sanctions, such as the increased probability of

carceral punishment at the age of majority or changes in capital punishment regimes have

been shown to have minimal general deterrence effects (e.g., Lee & McCrary 2017; Chalfin

& McCrary 2017).
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6 Understanding officer behavior

Our analyses above yield the clear takeaway that current officer behavior generates reverse

selection on gains: motorists who currently face harsh fines are less responsive to those harsh

sanctions than those who currently receive lenient fines. We also find stark selection on

levels: treated motorists reoffend at much higher rates than untreated motorists when issued

lenient fines. In this section, we consider potential explanations for this officer behavior.

Importantly, our central conclusion that officer discretion over sanctions harms public safety

does not depend on the underlying reasons for this officer behavior. However, the potential for

alternative policy tools, other than the altogether removal of trooper discretion, to improve

safety could depend on the rationale underlying officer decisions.

6.1 Driver characteristics

One possibility is that the selection patterns we observe are driven by officers making sanction

decisions based on salient driver characteristics, such as offending history or race, that are

incidentally positively correlated with reoffending levels and negatively correlated with de-

terrability. Evidence that officers consider driver characteristics when making discretionary

sanction choices can be seen easily in column 2 of table A-2, which illustrates that our full

set of driver covariates are jointly predictive of a harsh charge (F = 28.8) after conditioning

on beat-shift effects. Hence, a natural question is to what extent decisions based on driver

observables can explain the patterns of selection on levels and reverse selection on gains that

we document.

Figure 5 explores this question. We split motorists into 32 cells based on gender ×
race × 1[age ≥ 35] × 1[any citation in the past year] and, within each cell, compute the

average reoffending level E(Yi0) and average treatment effect E(Yi1 − Yi0) using a quadratic

extrapolation. We then explore the relationship between these estimated group-specific

parameters and the group-specific harshness rate (the rate at which motorists with those

characteristics face harsh fines). As shown in panels (a) and (b), the types of motorists

who are punished harshly more often also exhibit significantly higher reoffending rates and

slightly less negative treatment effects. These patterns are consistent with our main findings

and suggest that easily observable motorist characteristics can explain at least some share

of the positive selection on levels and reverse selection on gains that we observe.

However, panel (c) of figure 5 also presents extrapolation-based estimates which are

computed within these 32 covariate cells, with our baseline estimates also shown for com-

parison. The figure clearly illustrates that selection on levels and reverse selection on gains

persist in these within-covariate specifications, although both are attenuated slightly, con-

sistent with the discussion above. In our baseline specification, the difference in E(Yi0) for
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treated and untreated motorists is 0.046, while the corresponding within-covariate difference

is 0.033. Moving from our baseline specification to a within-covariate specification reduces

the ATT−ATU difference from 0.016 to 0.1. Hence, officer sanction decisions based on driver

characteristics can only explain about 30-35 percent of the overall selection patterns.11

Considering that offending history is likely an especially salient characteristic for offi-

cers when making their sanction decisions, figure 6 further explores heterogeneity based on

driving history. Specifically, we compute extrapolation-based estimates of average potential

outcomes and treatment effects for motorists with and without at least one traffic citation

in the past two years (because we can observe at least two years of driving history for every

motorist in our sample). Panel (a) plots the group-specific quadratic extrapolations and

panel (b) plots the associated group-specific untreated offending levels and treatment effects

by treatment status.

Note that, in both panels, we adjust the level of the axes, but keep the scale the same,

because those with prior offenses reoffend at significantly higher rates. Despite these differ-

ences in the level of offending, however, we find strikingly similar selection patterns across

groups.12 Interestingly, this figure suggests that even among motorists without prior offenses,

officer treatment decisions select motorists with a higher likelihood of reoffending but who

are less deterrable.

6.2 The importance of stopped speed

Another possible explanation for the observed selection patterns is that officers may punish

drivers based primarily on offense severity, or, in this case, the true rather than manipulated

speed.. If driving speed were positively correlated with the likelihood of reoffending but

negatively correlated with treatment effects, punishments based on speed could explain the

selection patterns that we document.

While we can observe the true stopped speed of drivers who are given the harsh fine, this

information is not directly observed for drivers given the lenient fine. However, we can adapt

our extrapolation approach to estimate the average stopped speed of these drivers (which

we explain in more detail in appendix E-2). While the average driver issued a harsh fine is

stopped and ticketed for a speed of 19.1 MPH over the limit, we estimate that drivers given

11Appendix figures C-7 and C-8 probe the robustness of panels (a) and (b) of 5. See appendix
figure C-3 for graphical depictions of the within-cell extrapolations underlying the treatment effect
estimates in panel (c) of figure 5.

12In section 4.3, we discuss suggestive evidence that driver learning can partly explain the de-
terrence effects of harsh fines. However, figure 6 rules out that the observed selection patterns can
be explained solely by a learning story, whereby untreated motorists are more responsive because
of less information from prior citations. Reverse selection on gains persists even among motorists
with the same citation history and thus similar access to information about speeding fines.
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a lenient fine were stopped on average at 18.2 MPH over. We interpret this difference as

evidence that, at least to some extent, officers exhibit retributivist preferences (e.g., Kaplow

& Shavell 2006). In other words, officers prefer to issue harsher sanctions to more serious

offenders.

How important is this preference for punishment based on “guilt” to the overall selection

patterns we document? To answer this question, we first simulate a simple counterfactual

under the assumption that, within each county, officers consider only stopped speed when

issuing harsh sanctions, holding constant average harshness. Under this counterfactual, the

average stopped speed for harshly and leniently treated drivers would be 21.5 and 14.8 MPH

over, respectively, a much more pronounced difference than we empirically observe. Hence,

speed alone can only partially explain how officers set punishment levels.

Next, we ask whether decisions based on offense severity can explain the fact that harshly

treated drivers reoffend at higher rates. To do so, we use the supremely stringent officers to

identify the reoffending rates of drivers at different speeds. We then estimate the distribution

of stopped speeds for leniently treated drivers, using a variation of our baseline extrapolation

approach. We find that while harshly treated drivers have a predicted reoffending rate of

0.362 based on their stopped speeds, this figure is 0.355 for leniently treated drivers. This

gap is only about 15 percent of the estimated true difference in reoffending, shown in table 3.

Overall, these estimates suggest that, while stopped speed is an important factor in officer’s

punishment decisions, it can only explain a small portion of the overall selection patterns.

6.3 Information

Another potential explanation for the patterns we document is that officers attempt to

allocate harsh sanctions to more deterrable motorists but have poor information about how

to achieve that goal. Under this hypothesis, we might expect selection patterns to change as

officers acquire more information, and we present a simple test of this hypothesis in panels

(a) and (b) of appendix figure C-6. We split officers based on experience as of January 2007,

the start of our sample (officers who begin after 2007 are included in the low experience

group), and estimate the ATE, ATT, and ATU for more and less experienced officers using

our extrapolation-based approach. Although the figure suggests slightly weaker selection on

levels among more experienced officers, the extent of reverse selection on gains is, if anything,

more extreme among officers with at least five years of experience. We should note, however,

that officers are not explicitly provided information on the reoffending outcomes associated

with their citations, so this test yields only suggestive evidence at best.

On the other hand, officers receive explicit feedback on whether their citations are con-

tested in court and, as discussed in section 2.4, we posit a distaste for traffic court as a
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central motivation for issuing lenient citations. Hence, a natural question is whether officers

seem to allocate sanctions strategically to minimize their time in traffic court. Panels (c)

and (d) of figure C-6 replicates the analysis in panel (a) and (b), replacing the outcome with

whether the citation was contested in court. Note that harsh fines increase the likelihood

that a citation is contested, hence the treatment effects go in the opposite direction of those

in panel (b). This figure shows minimal evidence of selection on gains in either direction and

no evidence of differential selection on gains by officer experience.

6.4 Discussion

Above, we show that that selection patterns cannot be explained away by officers making

sanction decisions based on salient observables or guilt. We also find suggestive evidence

against the hypothesis that officers allocate sanctions to maximize other objectives or that

officers strive for safety maximization but act on poor information. This leaves two potential

explanations for the allocation of hash fines that we observe.

First, officers may allocate harsh fines based on unobservable characteristics which are

(incidentally) positively correlated with the likelihood of recidivism and negatively correlated

with deterrability. For example, troopers likely issue harsh sanctions to motorists who behave

confrontationally during the traffic stop. If these motorists tend to reoffend at higher rates

and are undeterred by harsh fines, this would explain the selection patterns we find. Or

alternatively, officers may explicitly prioritize issuing harsh sanctions to the offenders they

perceive as having the highest risk of recidivism. These two explanations are observationally

equivalent from the perspective of the econometrician and thus cannot be distinguished. But

in either case, the current allocation of sanctions, which results in harsh fines for high-risk

but undeterred motorists, likely reflects the desired allocation of officers.

On one hand, we might conclude that a mismatch between the deterrence objectives of

the state and the goals of the police is an important reason why officer discretion harms

public safety. On the other hand, we should acknowledge that the goal of allocating harsh

sanctions to the highest-risk offenders may be a legitimate law enforcement goal or may, in

fact, reflect the preferences of the state. In particular, this objective accords well with an

intuitive notion of fairness: the “worst” drivers “deserve” the most severe punishments.

To the extent that the state values this notion of fairness, a key takeaway from our

empirical analyses is the existence of a tradeoff between fairness and efficiency. Because

the subgroup of motorists with the highest recidivism risk are the least responsive to harsh

fines, officers face a tradeoff between achieving fairness and maximizing safety when sorting

some, but not all, motorists into harsh sanctions. While the literature has discussed the

potential importance of this tradeoff for the design of legal and criminal justice institutions
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from a theoretical perspective (e.g., Kaplow & Shavell 2006), we are the first to document

its empirical relevance.

7 Conclusion

In this paper, we study the public safety implications of police discretion over sanctions for

speeding offenses. First, relying on variation across officers in the propensity to issue harsh

fines, we show that sanctions decisions have important deterrence effects. Comparing mo-

torists cited in the same beat-shifts by officers of varying stringency, we find that higher fines

reduce the likelihood of a new traffic offense, a new speeding offense, and crash involvement

in the following year.

We then assess the overall contribution of discretion to public safety by comparing ob-

served reoffending rates to those in a counterfactual scenario without officer discretion. This

counterfactual is identified by the average treatment effect for motorists currently issued

lenient fines (i.e., the average treatment effect on the untreated or ATU), which may differ

from the local average treatment effect recovered by our 2SLS estimates. We rely on a novel,

two-step approach to estimate the ATU which leverages identification at infinity (e.g., Hull

2020) and, importantly, does not require an instrument monotonicity assumption.

Based on our estimated ATU, eliminating officer discretion would reduce the reoffending

rate by about two percent. We show that about half of this safety improvement can be

attributed to increasing fine harshness for the average driver, while the other half can be

attributed to changing which motorists receive harsh fines. The importance of the second

channel stems from the fact that current officer decisions generate reverse selection on gains :

the average treatment effect for motorists that currently receive lenient fines are nearly four

times larger than those for motorists currently issued harsh fines. A back-of-the-envelope

calculation suggests that every $125 in fines issued to the population of currently untreated

motorists results in $225 in social welfare gains from reduced auto accidents.

We conclude by discussing some potential explanations for the officer behavior we doc-

ument. To accompany the reverse selection on gains we find, we also show stark, positive

selection on levels: motorists facing harsh fines reoffend at significantly higher rates than

those facing lenient fines. These selection patterns (both levels and gains) persist within

driver covariates, cannot be explained by motorist “guilt,” and are present among expe-

rienced officers. Though not definitive, the preponderance of evidence aligns well with the

view that the current allocation reflects the goals of officers. Specifically, officers target harsh

sanctions to motorists with high recidivism risk, which accords with an intuitive notion of

fairness. These motorists are also the least deterrable, and hence the “undoing” of this

sorting when removing discretion gives rise to meaningful safety gains.
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Table 1: Summary Statistics

By Fines
(1) (2) (3)
All Discounted Harsh

Panel A: Demographics

Female 0.384 0.415 0.368

Age 36.47 36.98 36.20

Age Missing 0.0002 0.0002 0.0002

Race = White 0.474 0.525 0.448

Race = Black 0.154 0.157 0.152

Race = Hispanic 0.187 0.144 0.209

Race = Other 0.041 0.034 0.044

Race = Unknown 0.144 0.140 0.147

Panel B: Socioeconomic Status

Zip Income 57962 56459 58745

Zip Income Missing 0.101 0.107 0.097

Vehicle Value 17807 17297 18073

Vehicle Info Missing 0.143 0.139 0.145

Panel C: Offending History

Prior Prison Spell 0.009 0.009 0.009

Citation Past Year 0.350 0.317 0.368

Speeding Past Year 0.179 0.158 0.189

Other Past Year 0.253 0.226 0.268

Crash Past Year 0.071 0.067 0.074

Panel D: Offense Characteristics

MPH Over Posted 15.62 9.00 19.06

Fine Amount 207.70 123.00 251.79

Contest in Court 0.289 0.222 0.323

Observations 1,693,457 579,760 1,113,697

Notes: This table reports means for the analysis sample. See table A-1 for officer characteristics.
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Figure 1: Fine Schedule and Charged Speed Distribution
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Notes: This figure plots the distribution of charged speeds on FHP-issued speeding citations in
Florida. Dashed red line shows the fine schedule (right axis). Solid line and circles shows the
aggregate distribution. Dashed lines with hollow diamonds and triangles plot the distribution for
lenient and stringent officers, respectively, using the method described in section D.
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Figure 2: Instrument Validity

(a) Ticketing Frequency
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(b) Predicted and Past Offending

β = -0.00157 (0.0023)

β = -0.00003 (0.0042)

.3
4

.3
45

.3
5

.3
55

.3
6

.3
65

Pr
(O

ffe
ns

e)

-.5 -.25 0 .25 .5
Officer Stringency

Predicted Reoffending
Offense Past Year

(c) First stage estimate

β = 0.944 (0.006)
F =  21966
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Notes: Panel (a) reports the relationship between officer stringency, residualized of beat-shift effects,
and an officer’s average monthly number of citations, adjusted for beat-shift effects. Blue circles
report the relationship for all citations and green diamonds report the relationship for only speeding
citations. Panel (b) reports the relationship between officer stringency, residualized of beat-shift
effects, and predicted reoffending based on covariates and past offending, both residualized of beat-
shift effects. Predicted reoffending is computed in opposite sample partitions using only tickets
issued by non-bunching officers (see section D-3 for further details). Panel (c) shows the first stage
relationship between stringency and the probability of a harsh fine, both residualized of beat-shit
fixed effects (left axis). Local binscatter means are denoted by blue circles and the green line
shows a non-parametric fit, with a 99 percent confidence interval indicated by the shaded region.
Figure also illustrates a histogram of the officer stringency instrument, residualized of beat-shit
fixed effects (right axis). Figure reports the linear first stage estimate and associated F -statistic.
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Figure 3: Reduced Form Over Time
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Notes: This figure reports coefficients on officer stringency from regressions where the outcome of
interest is an indicator for whether the driver received a traffic citation in each quarter relative to
the date of their focal FHP citation. τ = 0 denotes the exact date of the focal FHP citation (one day
only, where all motorists receive a citation so the effect of stringency is zero by construction). Re-
gressions also include beat-shift fixed effects. Shaded region denotes 95 percent confidence intervals,
constructed from standard errors clustered at the officer-level. Identical figures for other outcomes
are shown in figure B-2. Figure reports the reduced form coefficient for one-year reoffending as well
as the mean one-year reoffending rate for lenient officers.
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Table 2: Effect of Harsh Fines, LATE Estimates

IV Estimates
(1) (2) (3) (4)

Lenient Mean βIV βIV 󰂃

Any Violation 0.347 -0.0177 -0.0159 -0.069
(0.0017) (0.0016) (0.007)

Speeding Violation 0.170 -0.0146 -0.0144 -0.127
(0.0013) (0.0013) (0.012)

Other Violation 0.256 -0.0119 -0.0097 -0.057
(0.0016) (0.0015) (0.009)

Crash Involvement 0.080 -0.0029 -0.0021 -0.040
(0.0010) (0.0010) (0.018)

Contest in Court 0.262 0.1125 0.1093 0.626
(0.0014) (0.0014) (0.008)

Controls No Yes Yes
Beat-Shift FE Yes Yes Yes
Observations 1693457 1693457 1693457

Notes: This table reports 2SLS estimates of the impact of receiving a harsh fine on one-year
reoffending. Standard errors clustered at the officer -level are in parentheses. First stage estimates
are β = 0.944 (0.006) without controls and β = 0.943 (0.006) with controls. See table B-2 for the
full set of first stage and reduced form estimates with and without controls. Implied elasticities
are computed as β̂IV × ¯fine/ȳ, where β̂IV is estimated using the statutory fine as the treatment
variable and the means are the lenient officer means.
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Figure 4: Extrapolation and treatment effect estimates

(a) Extrapolation Estimates

Extrapolation Estimates:
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.3
3

.3
4

.3
5

.3
6

.3
7

.3
8

Pr
(R

eo
ffe

nd
)

0 .2 .4 .6 .8 1
Officer Stringency

Local Mean
Quadratic Fit

(b) Treatment Effects

Treated:
E(Y0) = 0.371 (0.006)
ATT = -0.006 (0.007)

Unreated:
E(Y0) = 0.325 (0.003)
ATU = -0.023 (0.009)
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Notes: Panel (a) plots the relationship between officer stringency and driver reoffending, adjusted
for beat-shift effects. Circles illustrate a binscatter, adjusted for beat-shift effects using the method
of Cattaneo et al. (2021) and solid line denotes the quadratic fit. Solid circles indicate the implied
estimates of the sample average potential outcomes, E(Yi0) and E(Yi1), with associated 95 con-
fidence intervals. Panel (b) illustrates estimated of the untreated reoffending levels, E(Yi0), and
treatment effects, E(Yi1 − Yi0), for all motorists, harshly treaed motorists and untreated (leniently
treated) motorists, constructed from the extrapolation estimates in panel (a).
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Table 3: Robustness of extrapolation estimates

Y0 Y1 − Y0

(1) (2) (3) (4) (5) (6) (7) (8)
All D = 1 D = 0 Diff All D = 1 D = 0 Diff

(ATE) (ATT) (ATU)

Panel A: Polynomials

q = 2 0.355 0.371 0.325 0.046 -0.012 -0.006 -0.023 0.016
(0.004) (0.006) (0.003) (0.007) (0.005) (0.007) (0.009) (0.012)

q = 3 0.350 0.363 0.325 0.038 -0.006 0.001 -0.019 0.021
(0.006) (0.009) (0.003) (0.009) (0.008) (0.009) (0.010) (0.012)

q = 4 0.346 0.357 0.325 0.032 -0.002 0.008 -0.021 0.029
(0.007) (0.011) (0.003) (0.011) (0.008) (0.012) (0.010) (0.016)

q = 8 0.351 0.364 0.325 0.039 -0.008 0.001 -0.024 0.025
(0.013) (0.019) (0.003) (0.019) (0.014) (0.019) (0.012) (0.023)

Panel B: Local means
bw = 0.1 0.355 0.370 0.325 0.045 -0.009 -0.006 -0.015 0.009

(0.003) (0.005) (0.003) (0.005) (0.004) (0.006) (0.008) (0.010)
bw = 0.05 0.355 0.371 0.325 0.046 -0.011 -0.006 -0.019 0.013

(0.005) (0.007) (0.003) (0.007) (0.006) (0.008) (0.009) (0.012)
bw = 0.01 0.353 0.367 0.325 0.042 -0.010 -0.003 -0.024 0.021

(0.006) (0.009) (0.003) (0.009) (0.007) (0.010) (0.009) (0.013)

Panel C: Polyomials in propensity score

q = 2 0.355 0.370 0.325 0.045 -0.013 -0.005 -0.028 0.022
(0.004) (0.006) (0.003) (0.006) (0.006) (0.007) (0.009) (0.011)

Panel D: Within-locations
Troops 0.358 0.375 0.330 0.045 -0.011 -0.010 -0.022 0.012

(0.006) (0.008) (0.003) (0.009) (0.006) (0.009) (0.010) (0.014)
Counties 0.366 0.382 0.333 0.049 -0.019 -0.016 -0.028 0.012

(0.009) (0.010) (0.003) (0.010) (0.009) (0.011) (0.024) (0.028)
FM (2022) 0.355 0.371 0.326 0.045 -0.012 -0.004 -0.026 0.021

(0.006) (0.007) (0.003) (0.007) (0.006) (0.007) (0.008) (0.009)

Notes: This table reports estimated untreated reoffending levels E(Yi0) and treatment effects E(Yi1 − Yi0) for all motorists,
treated motorists, and untreated motorists, using different specifications for obtaining extrapolated estimates of E(Yi0) and
E(Yi1). In panel (a), we show estimates from estimating equation 1 with different polynomials in Z. In panel (b), we estimate
equation Z using a piecewise linear specification with rule-of-thumb bandwidth = 0.2. In panel (c), we show estimates that use
the beat-shift adjusted average Y for officers in the tails of the stringency distribution, with bw denoting the bandwidth used
to define the tails. In panel (d), we present estimates from polynomial specifications of 1 that replace Z with the estimated
propensity score. Graphical analogues for the underlying extrapolation estimates are shown in figure C-2.
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Table 4: Extrapolation estimates for other outcomes

Y0 Y1 − Y0

(1) (2) (3) (4) (5) (6) (7) (8)
All D = 1 D = 0 Diff All D = 1 D = 0 Diff

(ATE) (ATT) (ATU)

Panel A: Any offense in following year

Any Offense 0.355 0.371 0.325 0.046 -0.012 -0.006 -0.023 0.016
(0.004) (0.006) (0.003) (0.007) (0.005) (0.007) (0.009) (0.012)

Speeding 0.179 0.188 0.161 0.028 -0.013 -0.011 -0.015 0.004
(0.003) (0.004) (0.002) (0.004) (0.004) (0.005) (0.005) (0.007)

Crash 0.080 0.081 0.077 0.004 -0.001 0.001 -0.005 0.006
(0.001) (0.002) (0.001) (0.002) (0.002) (0.002) (0.003) (0.004)

Panel B: Number of offenses in following two years

Any Offense 1.278 1.361 1.118 0.243 -0.035 -0.005 -0.095 0.090
(0.025) (0.036) (0.016) (0.038) (0.027) (0.039) (0.046) (0.066)

Speeding 0.399 0.421 0.355 0.067 -0.025 -0.020 -0.035 0.015
(0.007) (0.011) (0.004) (0.011) (0.008) (0.011) (0.013) (0.018)

Crash 0.157 0.160 0.151 0.009 0.001 0.004 -0.005 0.009
(0.002) (0.004) (0.002) (0.004) (0.003) (0.004) (0.005) (0.007)

Notes: This table reports estimated untreated reoffending levels E(Yi0) and treatment effects
E(Yi1 − Yi0) for all motorists, treated motorists, and untreated motorists, based on quadratic
extrapolations using equation 1. In panel (a), we show estimates for binary outcomes indicating
whether a motorist commits any new traffic offense, a new speeding offense, and is involved in an
auto accident in the following year (the first row of panel (a) is identical to the first row of table
3). In panel (b), we replace the outcomes with counts of the number of offenses over the following
two years. See appendix figure C-5 for graphical depictions of the underlying extrapolations and
appendix table C-1 for estimates which alternatively use a local mean estimator for E(Yi0) and
E(Yi1).
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Figure 5: Reoffending levels and treatment effects by motorist characteristics
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(c) Levels and gains within covariates

Treated:
E(Y0) = 0.370 (0.005)
ATT = -0.012 (0.005)

Unreated:
E(Y0) = 0.337 (0.003)
ATU = -0.022 (0.006)
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Notes: This figure explores selection patterns between and within motorist covariates. We divide
motorists into 32 covariate cells at the level of gender × race × 1[age≥ 35] × 1[past offense]
and estimate a quadratic extrapolation within each cell. Panel (a) plots the estimated E(Yi0) in
each cell against the cell-level harshness rate (the share of motorists in that cell that face harsh
fines, adjusted for beat-shift fixed effects). Panel (b) plots the estimated cell-level treatment effect,
E(Yi1 − Yi0) against the same cell-level harshness rate. Both panels report an estimated linear
slope and associated bootstrapped standard error. Panel (c) replicates panel (b) of figure 4 and
then additionally shows estimated reoffending levels and treatment effects which are estimated
within covariate cells, obtained by estimating parameters via extrapolation for each group and
then aggregating up, weighting each group by its sample share. See appendix figure C-3 for a
graphical depiction of the within-group extrapolations underlying the treatment effect estimates in
panel (c).
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Figure 6: Extrapolation estimates by offending history

(a) Extrapolation estimates
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(b) Treatment effect estimates
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Notes: Same as figure 4 except estimates are shown separately for motorists with (51.3 percent)
and without (48.7 percent) at least one traffic citation in the past two years. As described in the
text, we use a two-year lookback period because two years of pre-stop data are available for all
citations in our main sample. Note that the estimates for motorists with and without past offenses
are shown using different axes for ease of exposition (because reoffending rates are much higher
for those with past offenses). The estimates illustrated in panel (b) are also reported in appendix
table C-2, and alternative versions of these estimates using a local mean estimator for E(Yi1) and
E(Yi0) are presented in appendix table C-3.
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FOR ONLINE PUBLICATION: APPENDICES

A Stringency Instrument

A-1 Evidence that bunching represents officer behavior

Here we discuss additional evidence that the bunching in the distribution of charge speeds
presented in figure 1 is the result of discretionary behavior by officers. Figure 1 shows that
about 25 percent of officers almost never write tickets for exactly nine MPH over the limit.
Moving beyond a binary split of officers, figure A-1 illustrates significant variation across
officers in the propensity to bunch drivers. Panel (a) demonstrates full support across officers
in bunching propensity, while panel (b) shows that this variation persists after netting out
location and time fixed effects. Such variation is inconsistent with bunching due to driver
behavior; if drivers systematically bunch below fine increases, then officers patrolling the
same beat-shift should exhibit a similar degree of bunching.

However, this across-officer variation could alternatively be due to noise or estimation
error. To confirm that the across-officer variation in bunching propensity is “true” variation
(in a statistical sense), we estimate the following regression:

1[bunchijs] = γXi + ψs + αj + uijs

where i indexes citations, j indexes officers, and s indexes beat-shifts; Xi is a vector of driver
covariates, ψs is a beat-shift fixed effect, and αj is an officer fixed effect.13 This regression
has an R2 = 0.55, with 0.32 (58 percent) attributable to the officer effects, 0.22 (41 percent)
attributable to the beat-shift effects, and less than one percent attributable to the driver X’s.
In other words, the identity of the citing officer is significantly more predictive of a bunched
citation than the beat-shift of the stop or the full set of driver characteristics. Moreover,
there is significant variation in the estimated α̂j’s (σ

2 = 0.076). Applying Empirical Bayes
shrinkage (Morris, 1983) to adjust for estimation error has minimal impact on the dispersion
of the estimated officer effects (σ2 = 0.71). See panel (c) of figure A-1 for further details.

Finally, we show in figure A-2 that an officer’s bunching propensity is highly correlated
across space and time. First, we randomly partition an officer’s citations into two location
(county) groups and regress an officer’s bunching propensity, adjusted for beat-shift fixed
effects, in one set of locations on the same officer’s adjusted bunching propensity in the
other set of locations. This regression yields β̂ = 0.68 (se = 0.02). Next, we split an officer’s
citations in half temporally and perform the same exercise, which gives β̂ = 0.85 (se = 0.01).

13The ψ’s are the same fixed effects we use in our main analysis, described in section 3. They
are at the level of county × 1[highway] × year × month × 1[weekend] × shift.
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Figure A-1: Across-Officer Distribution of Bunching Propensity

(a) Raw Bunching Propensity
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(b) Adjusted Bunching Propensity
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(c) Estimated Officer Effects
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Notes: Panel (a) plots the officer-level distribution of the share of tickets bunched. Panel (b) plots
the officer-level distribution of bunching propensity, residualized of beat-shift fixed effects. Panel
(c) reports estimated officer effects from a regression of 1[bunchijs] on officer fixed effects, beat-
shift fixed effects, and the full set of driver covariates, as described in section 2.4. The solid blue
illustrates the distribution of raw officer effects and the dashed green line illustrates the distribution
of effects after applying Empirical Bayes shrinkage (Morris, 1983).
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Figure A-2: Within-Officer Correlation in Bunching Propensity

(a) Locations
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(b) Time Periods
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Notes: Each circle corresponds to an officer. Dashed red line is the 45-degree line. This figure splits
each officer’s sample of citations into two groups and illustrates the correlation in (residualized)
bunching propensity across groups. In panel (a), the groups are constructed as location partitions,
with each partition comprised of half of an officer’s patrol locations. In panel (b), the groups are
constructed as time partitions, with the x and y-axes corresponding to the officer’s first and second
half of tickets over time, respectively. Each figure reports the raw linear regression coefficient as
well as the linear regression coefficient when weighting by the total number of citations. Another
way to note the stability over time in an officer’s bunching propensity is to regress 1[bunchijs] on
beat-shift fixed effects, officer fixed effects, and a quadratic in officer experience (in months). The
p-value on each experience term is > 0.45 and the joint test p-value = 0.7855. In other words, after
conditioning on officer identity, there is no experience profile in the likelihood of a bunched ticket.
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Table A-1: Relationship between Lenience and Officer Characteristics

Binary Continuous

(1) (2) (3) (4) (5)
Mean Lenient Raw Adjusted Weighted

Female 0.0893 -0.0704 -0.0508 -0.0356 -0.00340
(0.0366) (0.0266) (0.0161) (0.00388)

Race = Black 0.143 -0.0916 -0.0289 -0.00799 0.00550
(0.0297) (0.0231) (0.0142) (0.00291)

Race = Hispanic 0.169 -0.0933 -0.0771 0.0117 0.00921
(0.0693) (0.0564) (0.0359) (0.00707)

Race = Other 0.191 -0.0120 -0.0193 -0.0186 -0.00135
(0.0655) (0.0544) (0.0350) (0.00724)

Age 34.06 -0.0203 -0.0236 0.00982 0.00741
(0.0561) (0.0478) (0.0288) (0.00631)

Experience 7.09 -0.117 -0.0778 -0.0345 -0.000936
(0.0388) (0.0324) (0.0214) (0.00616)

Any College 0.319 -0.00798 -0.0114 -0.00229 0.00490
(0.0213) (0.0171) (0.0108) (0.00279)

Mean — 0.753 0.353 0.005 0.006
Officers 1960 1960 1960 1960 1958

Notes: Robust standard errors in parentheses. Age and experience are in years/10 and are com-
puted as of January 2007. Raw lenience is the fraction of an officer’s tickets that are bunched and
adjusted lenience is the fraction of an officer’s tickets that are bunched, residualized of location-time
fixed effects. In column 4, the regression is weighted by one over the variance of adjusted lenience.
Regressions also included quadratic terms in age and experience, which are are statistically insignif-
icant in all cases.
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Table A-2: Randomization Test

(1) (2) (3) (4)
Reoffend Harsh Fine Stringency 1[Stringent]

Female -0.0645 -0.0233 -0.00119 -0.00161
(0.000840) (0.00173) (0.000928) (0.00130)

Age -0.00631 -0.00229 0.000280 0.000540
(0.000151) (0.000273) (0.000172) (0.000257)

Age Squared 0.0000190 0.0000151 -0.00000303 -0.00000586
(0.00000168) (0.00000268) (0.00000166) (0.00000259)

Race = Black 0.0710 0.0202 -0.000326 -0.00407
(0.00127) (0.00270) (0.00176) (0.00242)

Race = Hispanic 0.0324 0.0345 0.00633 -0.000643
(0.00117) (0.00290) (0.00212) (0.00295)

Race = Other 0.000888 0.0348 0.00581 -0.00101
(0.00202) (0.00274) (0.00176) (0.00250)

Race = Unknown 0.0120 0.00505 0.00377 -0.00131
(0.00299) (0.00550) (0.00266) (0.00374)

Prior Prison Spell 0.139 0.0107 -0.00315 -0.000259
(0.00393) (0.00359) (0.00207) (0.00275)

County Resident 0.00583 -0.0186 -0.00586 0.00310
(0.00127) (0.00309) (0.00265) (0.00441)

Log Zip Income -0.0161 0.0103 0.00486 0.00180
(0.000992) (0.00211) (0.00164) (0.00194)

Log Vehicle Price -0.00846 0.0199 0.00487 0.00159
(0.000992) (0.00160) (0.00122) (0.00191)

Speeding Past Year 0.127 0.0247 0.000948 -0.000595
(0.00103) (0.00157) (0.000653) (0.00110)

Other Past Year 0.154 0.0149 -0.000758 -0.00201
(0.00103) (0.00115) (0.000727) (0.00118)

Crash Past Year 0.0393 0.00736 0.000990 -0.000721
(0.00148) (0.00132) (0.000769) (0.00113)

Mean .351 .658 .658 .763
F-Stat 5883.84 28.8 2.7 .92
F-test <.0001 <.0001 .0002 .5484
Beat-Shift FE Yes Yes Yes Yes
Officers 1960 1960 1960 1960
Observations 1693457 1693457 1693457 1693457

Notes: Standard errors clustered at the officer-level in parentheses. Regressions also include indi-
cators for missing age (<1%), missing zip code income (≈ 10%), and missing vehicle information
(≈ 14%); joint significance tests include these variables.
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Table A-3: First Stage Estimates Across Subsamples

Subgroup
(1) (2)
= 1 = 0

Female 0.970 0.928
(0.007) (0.007)

Age > 30 0.957 0.927
(0.007) (0.007)

Race = White 0.954 0.934
(0.008) (0.007)

Race = Black 0.922 0.948
(0.010) (0.006)

Race = Hispanic 0.923 0.948
(0.008) (0.007)

Race = Other 0.916 0.945
(0.015) (0.006)

Race = Unknown 0.964 0.941
(0.016) (0.007)

County Resident 0.972 0.925
(0.007) (0.007)

Zip Income > $50,000 0.946 0.942
(0.007) (0.007)

Vehicle > $20,000 0.916 0.953
(0.009) (0.006)

Citation Past Year 0.913 0.961
(0.007) (0.007)

Notes: This table reports first stage estimates for subsamples. Each coefficient is from a separate
regression of 1[harsh] on the stringency instrument and beat-shift fixed effects using only the
denoted subgroup of drivers, where the subgroups are the groups for which the denoted indicator
variable = 1 (column 1) and = 0 (column 2). Standard errors clustered at the officer-level in
parentheses. For reference, the first stage estimate in the full sample is β = 0.944 (0.006).
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Figure A-3: First Stage Estimates, Sanction Measures

(a) Statutory Fine Amount
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(b) Paid Fine Amount

β = 0.958 (0.014)
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(c) Statutory DL Points

β = 0.715 (0.014)
F =   2611
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(d) Accrued DL Points

β = -0.036 (0.016)
F =      5
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Notes: Each panel shows an identical to panel (c) of figure 2 but replaces the outcome variable with
a different sanctions measure. In panel (a), the outcome is the statutory fine based on the charged
speed. In panel (b), the outcome is the effective fine amount, taking into account the ex-post court
outcomes of offenders. In panel (c), the outcome is statutory driver license points based on the
points schedule. In panel (d), the outcome is accrued DL points, taking into account the ex-post
court outcomes of offenders. See appendix section D-1 for details on the computation of effective
sanction measures (paid fines and accrued points).
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B Deterrence effects

Table B-1: Naive OLS Estimates

(1) (2) (3) (4)
Reoffend Reoffend Reoffend Reoffend

Fine ($100s) 0.0426 0.0548 0.0228 0.0286
(0.00241) (0.00178) (0.00160) (0.00127)

Mean 0.325 0.325 0.325 0.325
Controls No No Yes Yes
Officer FE No Yes No Yes
Beat-Shift FE Yes Yes Yes Yes
Observations 1693457 1693457 1693457 1693457

Notes: Standard errors clustered at the officer-level in parentheses. Dependent variable is an
indicator for a new traffic offense in the next year. The reported mean is the mean for drivers cited
at 9 MPH over the limit.
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Figure B-1: Reduced Form Estimates

(a) Any Violation

βRF = -0.0167 (0.0053)
μ = 0.347

-.0
15

-.0
1

-.0
05

0
.0

05
.0

1
.0

15

-.5 -.25 0 .25 .5
Officer Stringency

Local Mean Linear Fit
Nonparametric Fit 95% CI

(b) Speeding Violation

βRF = -0.0138 (0.0034)
μ = 0.170
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(c) Crash Involvement

βRF = -0.0027 (0.0014)
μ = 0.080

-.0
04

-.0
02

0
.0

02
.0

04

-.5 -.25 0 .25 .5
Officer Stringency

Local Mean Linear Fit
Nonparametric Fit 95% CI

(d) Contested Citation

βRF = 0.1062 (0.0063)
μ = 0.262
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Notes: Same as figure A-3 except for reduced form outcomes.
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Figure B-2: Dynamic Reduced Form Estimates
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Notes: Same as figure 3 using any moving violation in a given quarter (blue circles), any speeding
violation in a given quarter (green diamonds), and any crash involvement in a given quarter (purple
x’s) as the outcome variable. Shaded regions denote 95 percent confidence intervals obtained from
standard errors clustered at the officer-level.
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Table B-2: First Stage and Reduced Form Estimates

(1) (2) (3)
Lenient Mean β β

Panel A: First Stage

Harsh Fine 0.5573 0.9441 0.9432
(0.0064) (0.0064)

Fine Amount 194.308 122.340 122.210
(1.206) (1.190)

Fine Amount (Paid) 167.187 95.819 96.066
(1.414) (1.406)

DL Points 3.416 0.7152 0.7142
(0.0140) (0.0138)

DL Points (Accrued) 1.684 -0.0362 -0.0273
(0.0164) (0.0154)

Panel B: Reduced Form
Any Violation 0.3471 -0.0167 -0.0150

(0.0053) (0.0034)

Speeding Violation 0.1702 -0.0138 -0.0136
(0.0034) (0.0025)

Other Violation 0.2563 -0.0112 -0.0092
(0.0045) (0.0028)

Moving Violation 0.2801 -0.0135 -0.0128
(0.0047) (0.0031)

Non-Moving Violation 0.1602 -0.0117 -0.0097
(0.0035) (0.0022)

Crash Involvement 0.0799 -0.0027 -0.0020
(0.0014) (0.0011)

Contest in Court 0.2620 0.1062 0.1031
(0.0063) (0.0060)

Controls No Yes
Beat-Shift FE Yes Yes
Officers 1960 1960
Observations 1693457 1693457

Notes: Standard errors clustered at the officer-level in parentheses. This table reports first stage
and reduced form regression estimates with and without covariates. Each coefficient is from a
separate regression of the denoted outcome on the stringency instrument and beat-shift effects,
with (column 2) and without (column 3) controls
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Figure B-3: Robustness, Sample Selection

(a) Trimming Officers
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(b) Selection Correction

βIV = -0.0177 (0.0018)
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(c) GPS FE

βIV = -0.0140 (0.0069)
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Notes: For comparison, our main IV estimate is βIV = −0.0177 (0.0017). Panel (a) shows the
sensitivity of our IV estimate to trimming officers with the most selected samples. Panel (b) plots
the reduced form and reports the IV estimate using a Heckman (1979) selection correction based on
officer ticketing frequency. Panel (c) plots the reduced form and reports the IV estimate using GPS
road segment fixed effects for the subset of citations including GPS coordinates (N = 244, 858).
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Table B-3: Robustness, Alternative Instruments

F -Stat
(1) (2) (3) (4)

Instrument N Balance FS βIV
Leave-out 1693457 2.702 21966 -0.0159

0.0016

Leave-Out (Residualized) 1693457 2.691 25278 -0.0191
0.0016

Leave-County-Out 1500479 1.475 626 -0.0176
0.0024

Binary 1693457 0.921 289 -0.0268
0.0039

Officer Dummies 1693404 2.778 323 -0.0183
0.0016

Within Demographics

Race 1689414 5.111 24453 -0.0168
0.0016

Race × Gender × Age 1651212 4.579 21505 -0.0176
0.0016

Race × Gender × Age × History 1587971 5.175 18469 -0.0182
0.0017

Race × Gender × Age × History × Income 1471826 3.884 14912 -0.0189
0.0017

Notes: This table shows how results vary under different computations of the stringency instrument.
Columns 2 and 3 report F-statistics associated with a joint balance test and the first stage; column
4 reports the IV estimate for one-year speeding recidivism. Row 1 reports results corresponding
to the main instrument. In row 2, the instrument is the leave-out-mean after residualizing out
beat-shift effects (e.g., Dobbie et al. 2018). Row 3 computes the instrument as the leave-county-
out mean. Row 4 uses a binary instrument and row 5 uses the full set of officer dummies as
instruments. Rows 6-9 show results when the instrument is computed as the leave-out mean within
demographic cells, defined according to four race groups (white, Black, Hispanic, other/unknown),
gender, 1[age≥ 35], 1[any citation in past year] and 1[zip code income ≥ $50,000]. Regressions
using the by-group instrument also include fixed effects at the relevant demographic cell-level.
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Figure B-4: IV Estimate Heterogeneity by Driver Characteristics

Lenient Mean

IV Estimate
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Notes: This figures shows heterogeneity in IV estimates for one-year recidivism by driver charac-
teristics. Each characteristic is denoted as a binary category; the x’s plot lenient means for the
category = 1 subgroup and the o’s plot lenient means for the category = 0 subgroup. Arrows point-
ing away from the means indicate the IV estimate, and shaded region around the arrow denotes
the 95 percent confidence interval. Vertical dashed line denotes the lenient officer mean recidivism
rate for the full sample.
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Figure B-5: Evidence of Driver Learning

(a) Exposure to Stringent Officers
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(b) Reoffense Locations
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Notes: Panel (a) illustrates reduced form relationships and reports IV estimates for motorists
with and without past exposure to stringent (non-bunching) officers. To mitigate selection issues
resulting from the fact that past exposure to stringency reduces the likelihood a driver reappears
in the data, we focus on exposure at least one year in the past because treatment effects fade out
after one year (see figure 3) . Specifically, we take the subset of drivers with an FHP-issued citation
at least one year prior and compare treatment effects for those with and without past tickets issued
by stringent officers. In panel (b), we report treatment effects of harsh fines on the likelihood that
drivers reoffend in the same county they were ticketed and in different counties from the one they
were ticketed in. Both panels report the estimated difference (and associated standard error) in
treatment effects.
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B-1 Additional robustness: monotonicity

In addition to the result that average monotonicity is sufficient for 2SLS estimates in ex-
aminer designs, Frandsen et al. (2019) also provide a test for the joint assumptions of strict
monotonicity and exclusion. We were unable to use their code due to computing constraints,
but here we provide an ad-hoc version of their test. Specifically, our version replicates the
“fit” component of their test by flexibly fitting reoffending rates to the stringency instrument
(conditional on beat-shift effects), computing residuals, and then testing the ability of officer
effects to explain the residuals. We focus only on the “fit” component of the test at the
suggestion of the authors, who note that the “slope” component is unpowered with many
judges (as there are in our setting, N = 1, 960).

Because we do not account for estimation error in the construction of the residuals, our
ad-hoc version of the test yields a p-value which is biased towards zero. In other words,
we will over-reject the joint null hypothesis of monotonicity and exclusion. Hence, while
qualitatively useful, our version of the test is somewhat challenging to interpret. We depict
the results of this Frandsen et al. (2019) test graphically below. The joint test statistic,
which summarizes the ability of officer fixed effects to explain the residuals, is F = 2.3. On
the one hand, this test statistic is reassuringly small; on the other hand, the (biased) p-value
suggests that deviations from exclusion and strict monotonicity could be a salient concern
for our empirical results.

The above figure also notes that the outcome of this test hinges on a relatively small share
of officers. Specifically, if we drop the top 12 percent of officers in terms of their associated
t-statistics in the second stage regression of the residuals on the officer fixed effects, the joint
F -statistic falls to F = 1.03, with a biased-downward p = 0.172. To that end, in table B-4
below, we replicate our main specific deterrence estimate using only the subsample of officers
passing the Frandsen et al. (2019) test, finding similar 2SLS estimates.

In table B-4, we also show 2SLS estimates which recompute officer stringency within 32
motorist covariate cells in column 2 (same as row 8 of table B-3), which estimate effects
separately for 16 officer covariate cells (gender × 1[white] × 1[any college] × 1[experienced])
and then aggregates up, weighting by sample shares in column 3, and a combined version of
columns 2 and 3 in column 4. The specification in column 4 only requires monotonicity to
hold within each combination of motorist and officer characteristics.
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Figure B-6: Fit Test from Frandsen et al. (2019)

Full Sample:
F = 2.288 (p < 0.001)
Drop 12% of Officers:
F = 1.032 (p = 0.172)
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Notes: This figure illustrates results of the joint test of monotonicity and exclusion from Frandsen
et al. (2019). Each circle (or square) represents an officer (N = 1, 960) and plots the officer’s average
stringency and reoffending rates, residualized of covariates and beat-shift fixed effects. Green line
denotes a non-parametric fit and the figure reports the results of computing residuals from the
non-parametric fit, regressing the residuals on officer dummies, and performing a joint significance
test.
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Table B-4: Monotonicity robustness for IV estimates

(1) (2) (3) (4)
Baseline Driver Cells Officer Cells Both

Full Sample -0.0177 -0.0183 -0.0164 -0.0179
(0.0056) (0.0038) (0.0038) (0.0037)

FLL Officers -0.0152 -0.0164 -0.0152 -0.0166
(0.0037) (0.0026) (0.0025) (0.0025)

Notes: This table reports 2SLS estimates. The outcome variable is any new traffic offense in the
following year. In column 1, we use our baseline leave-out stringency measure. In column 2, we
use a stringency measure which is computed separately for each of 32 motorist covariate cells. In
column 3, we estimate a 2SLS coefficient separately for each of 16 officer cells and then compute
the weighted average of the coefficients, weighting by sample shares. In column 4, we repeat the
exercise in column 3 using the cell-specific stringency instrument from column 2. In the second
row, we drop the 12 percent of officers indicated in table B-6 (N officers = 1, 725, N = 1, 314, 635).
In columns 3 and 4, we compute standard errors using a Bayesian bootstrap, clustered at the
officer-level.
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C Extrapolation estimates

Figure C-1: Common Support of Officer Stringency Instrument

Pr(D | p=1) = 0.995Pr(D | p=0) = 0.021
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Notes: Figure plots the distribution of propensity scores for the treated (66%) and untreated (34%)
subsets of sample, where treatment is defined as 1[harsh]. Following the text, the propensity score
is estimated from a linear regression of 1[harsh] on officer stringency and beat-shift fixed effects.
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Figure C-2: Extrapolation under different functional forms
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Notes: This figure illustrates extrapolation estimates of the sample E(Yi0) and E(Yi1) under differ-
ent functional forms. Gray circles illustrates a binscatter and green solid line shows the quadratic
fit (both are the same as figure 4). Orange dotted line presents a quartic fit, maroon dashed line
shows an 8th order polynomial, and purple long-dashed line shows a piecewise linear fit based on a
bin width of 0.2. Gold triangles, maroon diamons, and pink squares show the beat-shift adjusted
averages for officers with Z < 0.1 and Z > 0.9, Z < 0.05 and Z > 0.95, and Z < 0.01 and Z > 0.99,
respectively.
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Figure C-3: Within-group extrapolation estimates

(a) By driver covariates
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(b) By stop locations
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(c) Treatment effects
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Notes: In both panels, gray dots and green solid line represent our baseline binscatter
and baseline quadratic fit, as in figure 4. Panel (a) illustrates extrapolation estimates ad-
justed for driver covariates, parameterized as 32 categories (gender × race × 1[age ≥ 35] ×
1[any citation in the past year]). Red circles and dashed line show the binscatter and quadratic fit
when also conditioning on these cell fixed effects, while the purple diamonds and dashed line show
the binscatter and quadratic fit when estimating separately for each driver group and then aggre-
gating up, weighting by sample shares. Panel (b) illustrates extrapolation estimates constructed
within-locations. Red circle and dashed line show the binscatter and quadratic fit when estimating
separately by troop and then aggregating up, weighting by sample shares. Purple dots and dashed
line show the binscatter and quadratic fit when using the within-locations approach of Feigenberg
& Miller (2022), described in appendix E-1. Orange squares illustrate the binscatter corresponding
to the within-location quantiles approach of Feigenberg & Miller (2022). Panel (c) replicates panel
(b) of figure 4, illustrating treatment effects based on the within-group extrapolations depicted in
panels (a) and (b).
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Figure C-4: Extrapolation via local linear regression, Arnold et al. (2022) approach

Extrapolation Estimates:
E(Y0) = 0.363 (0.013)
E(Y1) = 0.342 (0.007)
ATT = -0.018 (0.019)
ATU = -0.025 (0.019)
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Notes: This figure illustrates extrapolated estimates of E(Yi0) and E(Yi1), as well as reports the
associated ATT and ATU estimates, when using the local linear regression approach to extrapola-
tion from Arnold et al. (2022). Specifically, for outcome Y=1[one year reoffending], we estimate the
regression Yijs = αj +ψs+uijs and construct officer-level estimates θYj = α̂j +E(ψ̂s). We then do

the same procedure, replacing the outcome with D = 1[harsh fine] to get officer level estimates θDj .

The figure plots the estimated θYj ’s (vertical axis) against the estimated θDj ’s (horizontal axis) in

the small gray dots. We then fit the θYj ’s to the θDj ’s using a local linear regression with a guassian
kernel and rule-of-thumb bandwidth = 0.1, weighting by each officer’s number of stops, and use
the fitted values at θDj = 0 and θDj = 1 as our estimates of E(Yi0) and E(Yi1). For inference, we
use a bootstrap clustered at the officer-level.
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Figure C-5: Extrapolation estimates for other outcomes

(a) Any offense
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(b) Any speeding offense
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(c) Any crash
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(d) Number offenses
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(e) Number speeding
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(f) Number crashes
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Notes: This figure graphically depicts the extrapolation estimates underlying tables 4 and C-1.
Each panel is the same as panel (a) of figure 4 for a different outcome. In panels (a)-c(c), the
outcome is whether a motorist reoffends in the following year. In panels (d)-(f), the outcome is
the number of offenses in the following two years. Red diamonds depict the 5 percent tail mean
estimates of E(Yi0) and E(Yi1) used to construct the estimates reported in table C-1.
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Table C-1: Extrapolation estimates for other outcomes
(using 5 percent tail mean estimates)

Y0 Y1 − Y0

(1) (2) (3) (4) (5) (6) (7) (8)
All D = 1 D = 0 Diff All D = 1 D = 0 Diff

(ATE) (ATT) (ATU)

Panel A: Any offense in following year

Any Offense 0.353 0.367 0.325 0.042 -0.010 -0.003 -0.024 0.021
(0.006) (0.009) (0.003) (0.009) (0.007) (0.010) (0.009) (0.013)

Speeding 0.179 0.188 0.161 0.027 -0.013 -0.011 -0.017 0.006
(0.004) (0.006) (0.002) (0.006) (0.005) (0.007) (0.005) (0.008)

Crash 0.078 0.078 0.077 0.001 0.001 0.004 -0.005 0.009
(0.002) (0.003) (0.001) (0.003) (0.002) (0.003) (0.003) (0.004)

Panel B: Number of offenses in following two years

Any Offense 1.275 1.357 1.118 0.239 -0.037 -0.000 -0.107 0.107
(0.027) (0.040) (0.016) (0.044) (0.031) (0.043) (0.051) (0.072)

Speeding 0.395 0.416 0.355 0.061 -0.023 -0.014 -0.039 0.024
(0.008) (0.013) (0.004) (0.014) (0.010) (0.014) (0.014) (0.021)

Crash 0.155 0.157 0.151 0.006 0.003 0.007 -0.005 0.012
(0.003) (0.005) (0.002) (0.005) (0.004) (0.005) (0.005) (0.008)

Notes: Same as table 4 except that we use the beat-adjusted average outcomes for officers with
Z < 0.05 and Z > 0.95 as our estimates of E(Yi0) and E(Yi1) instead of our baseline quadratic
extrapolation specification of equation 1.
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Figure C-6: Extrapolation estimates by officer experience

(a) Extrapolation: reoffending
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(b) Treatment effects: reoffending
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(c) Extrapolation: contest in court
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(d) Treatment effects: contest in court
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Notes: Same as figure 4 except estimates are shown separately for officers with at least five years
experience as FHP patrol officers as of January 1, 2007 (the start of our sample). In panels (a) and
(b), the outcome of interest is whether a motorist commits a new traffic offense in the following year
and in panels (c) and (d), the outcome of interest is whether a motorist contests a citation in traffic
court. Treatment effect estimates shown in panels (b) and (d) are constructed from the quadratic
extrapolations of E(Yi0) and E(Yi1) shown in panels (a) and (c). The estimates illustrated in panels
(b) and (c) are also reported in appendix table C-2, and alternative versions of these estimates using
a local mean estimator for E(Yi1) and E(Yi0) are presented in appendix table C-3.
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Table C-2: Extrapolation estimates by subgroup

Y0 Y1 − Y0

(1) (2) (3) (4) (5) (6) (7) (8)
All D = 1 D = 0 Diff All D = 1 D = 0 Diff

(ATE) (ATT) (ATU)

Panel A: By motorist offense history (prior two years)

No offense 0.246 0.258 0.225 0.033 -0.018 -0.013 -0.026 0.013
(0.004) (0.006) (0.002) (0.006) (0.005) (0.006) (0.007) (0.010)

Any offense 0.463 0.476 0.435 0.041 -0.010 -0.007 -0.018 0.011
(0.004) (0.006) (0.003) (0.006) (0.005) (0.007) (0.008) (0.011)

Panel B: By officer experience

Low 0.355 0.375 0.319 0.055 -0.017 -0.012 -0.024 0.012
(0.005) (0.008) (0.004) (0.008) (0.006) (0.009) (0.011) (0.016)

High 0.358 0.370 0.333 0.037 -0.008 -0.002 -0.019 0.017
(0.006) (0.009) (0.005) (0.010) (0.007) (0.010) (0.012) (0.017)

Panel B: By officer experience (Y = Pr(contest))

Low 0.235 0.243 0.221 0.023 0.096 0.090 0.106 -0.015
(0.006) (0.011) (0.013) (0.022) (0.006) (0.018) (0.031) (0.047)

High 0.210 0.204 0.223 -0.019 0.110 0.107 0.115 -0.008
(0.008) (0.015) (0.014) (0.025) (0.009) (0.021) (0.033) (0.051)

Notes: This table reports estimated untreated reoffending levels E(Yi0) and treatment effects
E(Yi1 − Yi0) for all motorists, treated motorists, and untreated motorists, using different specifica-
tions for obtaining extrapolated estimates of E(Yi0) and E(Yi1). In panel (a), we show estimates
from estimating equation 1 with different polynomials in Z. In panel (b), we estimate equation
Z using a piecewise linear specification with rule-of-thumb bandwidth = 0.2. In panel (c), we
show estimates that use the beat-shift adjusted average Y for officers in the tails of the stringency
distribution, with bw denoting the bandwidth used to define the tails. In panel (d), we present
estimates from polynomial specifications of 1 that replace Z with the estimated propensity score.
Graphical analogues for the underlying extrapolation estimates are shown in figure C-2.
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Table C-3: Extrapolation estimates by subgroup
(using 5 percent tail mean estimates)

Y0 Y1 − Y0

(1) (2) (3) (4) (5) (6) (7) (8)
All D = 1 D = 0 Diff All D = 1 D = 0 Diff

(ATE) (ATT) (ATU)

Panel A: By motorist offense history (prior two years)

No offense 0.247 0.260 0.225 0.035 -0.020 -0.015 -0.029 0.014
(0.005) (0.008) (0.002) (0.008) (0.006) (0.008) (0.007) (0.010)

Any offense 0.458 0.468 0.435 0.032 -0.004 0.002 -0.017 0.019
(0.007) (0.009) (0.003) (0.009) (0.007) (0.010) (0.008) (0.013)

Panel B: By officer experience

Low 0.347 0.363 0.319 0.043 -0.009 -0.000 -0.024 0.023
(0.006) (0.010) (0.004) (0.010) (0.008) (0.010) (0.013) (0.016)

High 0.361 0.374 0.333 0.042 -0.011 -0.007 -0.020 0.013
(0.009) (0.013) (0.005) (0.014) (0.010) (0.014) (0.013) (0.020)

Panel B: By officer experience (Y = Pr(contest))

Low 0.242 0.254 0.221 0.033 0.087 0.080 0.101 -0.021
(0.007) (0.013) (0.013) (0.023) (0.008) (0.019) (0.031) (0.047)

High 0.218 0.215 0.223 -0.008 0.102 0.096 0.115 -0.019
(0.008) (0.015) (0.014) (0.026) (0.010) (0.022) (0.033) (0.052)

Notes: Same as table C-2 except that we use the beat-adjusted average outcomes for officers with
Z < 0.05 and Z > 0.95 as our estimates of E(Yi0) and E(Yi1) instead of our baseline quadratic
extrapolation specification of equation 1.
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Figure C-7: Reoffending levels and treatment effects by motorist characteristics
(Alternative estimates)

(a) Lenient officer mean
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Notes: Same as figure 5 except that the untreated reoffending rate, reported in panel (a) is estimated
by taking the average reoffending rate for lenient (bunching) officers; in panel (b), we show the
group-specific LATE, estimated by 2SLS, rather than the extrapolation-based ATE estimate.
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Figure C-8: Reoffending levels and treatment effects by motorist characteristics
(Partition-based estimates)

(a) Within officers: E(Y0)
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(b) Within officers: ATE
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(c) Across officers: E(Y 0)
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Notes: Same as figure 5 except that the harshness rate (horizontal axis) and the reoffending rate
or treatment effect are estimated in separate partitions of the data. In panels (a) and (b), we
construct partitions within officer and estimate the harshness rate, as well as E(Yi0) and E(Yi1) in
each partition, and show correlations across partitions. In panels (c) and (d), we instead construct
partitions across officers. Each figure shows the cross-partition correlations for one partition with
blue circles and the other with green diamonds. Each figure reports the average of the linear slope
in each partition and the boostrapped standard error.
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Figure C-9: Marginal treatment effect estimates
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Notes: Marginal treatment effect estimates of impact of harsh fine on any reoffending in following
year, as described in Section 5.7. Legend reports the order of polynomial used for the MTE
specification. The non-parametric specification estimates the MTE separately across bins of the
propensity score via the binscatter approach.
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Table C-4: Treatment effect estimates based on
marginal treatment effect (MTE) curves

Average Treated Untreated
MTE Specification (ATE) (ATT) (ATU) Diff

Linear -0.013 -0.005 -0.027 0.021
( 0.004) ( 0.004) ( 0.004) ( 0.004)

Quadratic -0.007 0.001 -0.023 0.024
( 0.004) ( 0.005) ( 0.004) ( 0.004)

Cubic -0.006 0.005 -0.026 0.031
( 0.004) ( 0.005) ( 0.004) ( 0.005)

Quartic -0.007 0.004 -0.026 0.030
( 0.004) ( 0.005) ( 0.004) ( 0.005)

Quintic -0.007 0.003 -0.026 0.029
( 0.004) ( 0.005) ( 0.004) ( 0.005)

Non-Parametric -0.008 0.002 -0.027 0.029
( 0.004) ( 0.005) ( 0.005) ( 0.005)

Notes: Estimates of the Average Treatment Effect (ATE), Treatment Effect on the Treated (ATT),
and Treatment Effect on the Untreated (ATU), based on the MTE curves presented in Figure
C-9. ATE is defined as E(Y1 − Y0) and is estimated by summing equally across a uniform grid
of MTE estimates from resistance to treatment points u = 0.01, 0.02, ..., 0.99. ATT is defined
as E(Y1 − Y0|UD < µD(Z)) and is estimated by summing across the same grid of points and
weighting by Pr(u < p̂), the probability of having a propensity score greater than that resistance
to treatment. ATU is defined as E(Y1−Y0|UD ≥ µD(Z)) and is estimated by the same summation
but with weights Pr(u ≥ p̂).
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D Data Appendix

D-1 Traffic courts data

Traffic court dispositions associated with the citations from the TCATS database were also
shared by the Florida Clerk of Courts. Citations were matched to disposition information
using county codes and alphanumeric citation identifiers (which are unique within counties).
Some citations have no associated disposition in the TCATS database, while others have
multiple associated entries. Disposition verdicts can take on the following values:

1 = guilty ; 2 = not guilty ; 3 = dismissed ; 4 = paid fine or civil penalty ; 6 = estreated
or forfeited bond ; 7 = adjudication withheld (criminal); 8 = nolle prosequi ; 9 = adjudged
delinquent (juvenile); A = adjudication withheld by judge; B = other ; C=adjudication with-
held by clerk (school election); D = adjudication withheld by clerk (plea nolo and proof of
compliance); E = set aside or vacated by court.

In practice, the verdicts 1, 3, 4, A, and C account for the vast majority of citations. More-
over, as confirmed in a phone conversation with Beth Allman at the Florida Clerk of Courts
on July 24, 2018, several of the violation codes are difficult to interpret. In particular, it is
very difficult in practice to infer the precise outcome of tickets with disposition codes 1, 3,
A, or those with multiple dispositions in the TCATS database.

To construct an approximate measure of court contesting, we use any disposition not
equal to 4 or C, which both imply that the individual paid their fine without contest, as an
indicator that the driver contested a citation. To construct measures of effective sanctions,
termed paid fines and accrued points in figure A-3, we adjust the statutory sanctions as
follows:

• Replace fine = fine/2 if verdict = A

• Replace fine = 0 if verdict = 3

• Replace points = 0 if verdict ∈ {3,A,C}

Note that our measure of paid fines is likely conservative as it ignores court fees. Drivers
contesting their tickets in court face a $75 court fee in addition to their fine (the court fee can
also be waived during the court process). See Goncalves & Mello (2021) and Mello (2021)
for further discussion of the issues associated with working with the TCATS data.

D-2 Binary stringency measure

To identify officers who do not bunch, we use the Frandsen (2017) test for manipulation.
In our setting, this test implies that, under the null hypothesis of no manipulation, the
conditional probability of being found at the bunching speed is in a range around one third,
Pr(X = 9|x ∈ [8, 10]) ∈ [(1 − k)/(3 − k), (1 + k)/(3 + k)] where k is a restriction on the
second finite difference, ∆(2)Pr(S = 9) ≡ Pr(S = 8) − 2Pr(S = 9) + Pr(S = 10), such
that |∆(2)Pr(S = 9)| ≤ k(Pr(S = 9) − Pr(S = 10)). Intuitively, if the distribution of
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ticketed speeds is unmanipulated, the share of tickets at 9 MPH among those between 8 and
10 MPH should be approximately one-third, where the deviation k is due to curvature in
the distribution of speeds. We calculate k by assuming the distribution Pr(S) is Poisson
and estimating the mean parameter λ using the empirical mean of ticketed speeds. We say
that an officer is stringent (non-bunching) if we fail to reject that Pr(S = 9|S ∈ [8, 10]) ≤
(1 + k)/(3 + k) at the 99 percent confidence level.

To avoid the reflection problem, we randomly partition an officer’s stops into two halves
and compute the binary measure separately for each half of the sample. We then use the
officer’s binary measure in the other half as our binary stringency measure.

D-3 Predicted recidivism

At a few points in our analysis, we rely on a predicted reoffending measure based on covariates
(e.g., figure 2). An important concern in constructing this measure is the possibility of
contamination from treatment effects (e.g., if certain covariates are highly correlated with
receiving harsh fines, the predicted recidivism for these covariate groups will be too low
because of the treatment effect of harsh fines on future offending). To circumvent this
concern, we construct our predicted recidivism index as follows. First, we randomly partition
each officer’s stop into halves. Each officer × partition is coded as lenient or nonlenient using
the Frandsen (2017) described above. In each partition, we regress 1[any new traffic offense]
on driver covariates using only stops made by non-lenient (non-bunching) officers. We then
use the coefficients from this regression to construct our Ŷ measure in the other partition.
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E Technical Appendix

E-1 Within-locations approach from Feigenberg & Miller (2022)

Let j index officers, ℓ index counties, and τ index time categories, defined as shift ×
1[weekend]. Let t index time, defined as calendar year × month. We construct an adjusted
stringency measure for each officer × location by estimating the regression:

Dijℓτ = φjℓτ + γXijℓτ + δτ + uijℓτ

where the φ’s are fixed effects for each officer × location × shift category and D = 1[harsh
fine]. We estimate this regression separately for each location. We then aggregate to the
officer × location level as follows:

D̃jℓ =
󰁛

τ

󰀓
φ̂jℓτ + E[γ̂Xijℓτ + δ̂|ℓ, τ ]

󰀔
P (τ |ℓ)

We then repeat the exact same procedure, replacing D with Y = 1[reoffend] to obtain an
adjusted probability of reoffending for each officer × location, Ỹjℓ.

Following Feigenberg & Miller (2022), we document the relationship between Ỹjℓ and
D̃jℓ in two ways. First, we show a simple binscatter, conditional on location fixed effects
and weighting each officer × location by number of stops via the binsreg command. We
also estimate a linear slope corresponding to this approach by regressing Ỹjℓ on D̃jℓ and
location fixed effects, weighting by the number of stops. Second, we construct location-
specific quantiles of each and plot the relationship between quantiles.

In figure C-3, we show a version of our extrapolation based on this Feigenberg & Miller
(2022) approach. Specifically, we fit the relationship between Ỹjℓ and D̃jℓ using a quadratic,
conditioning on location fixed effects, and use the fitted values at D̃ = 0 and D̃ = 1 as our
estimates of E(Yi0) and E(Yi1). As shown in figure C-3, this quadratic approximates both
the binscatter and the quantiles estimates quite well.

E-2 Calculating stopped speed for lenient tickets

We will use a version of the extrapolation approach to identify the stopped speed of drivers
who are given a lenient ticket (D = 0). Denoting stopped speed by S∗

i and ticketed speed
by Si, we know by design that Si(D = 1) = S∗

i and Si(D = 0) = 9.
We first estimate a version of Equation 1, where stopped speed is on the left-hand side:

E(Si|Wi, Zij) = αWi+f(Zij). The extrapolation for the treated outcome gives us the average
stopped speed, α̂W̄i + f(1) = E(Si1) = E(S∗

i ). Next, we know that the stopped speeds of
harshly and leniently ticketed drivers have to weight to the average, E(S∗

i ) = pE(S∗
i |D =

1) + (1 − p)E(S∗
i |D = 0) = pE(Si|D = 1) + (1 − p)E(S∗

i |D = 0). Rearranging gives us the
stopped speed of leniently ticketed drivers, E(S∗

i |D = 0) = 1
1−p

E(S∗
i )− p

1−p
E(S∗

i |D = 1).
Next, we want to understand whether the observed positive selection on levels can be

explained by officers’ preference for punishing drivers stopped at faster speeds. In other
words, if we let E(Y1|S∗

i ) be the expected offending of a driver (when treated harshly)
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stopped at speed S∗, what are E(E(Y1|S∗
i )|Di) for Di = 0 and 1 and how does the difference

compare with the true difference E(Y1i|Di) for Di = 0 and 1?
There are two steps to this estimation. First, we need to estimate E(Y1i|S∗

i ), which
is the predicted reoffending rate for drivers stopped at a given speed. We can do this by
examining supremely stringent officers, so that S = S∗ for practically all drivers. So we
estimate E(Y1i|S∗

i ) = E(Yi|Zi ≈ 1).
The second step is to identify the distribution of stopped speeds separately by treatment

status, Pr(S∗ = s|Di). This distribution is directly observed for drivers treated harshly, and
we can directly calculate E(E(Y1i|S∗

i )|Di = 1) by taking the average of E(Y1i|S∗
i ) over those

drivers.
For drivers with Di = 0, we need to estimate the distribution of stopped speeds. For

each speed s, we run a version of our extrapolation where equation 1 is estimated with the
left-hand side replaced with an indicator for whether the driver is ticketed at Si = s. The
extrapolation from the most stringent officers gives us an estimate of Pr(S∗ = s), the overall
probability a driver is stopped at this speed. We can then infer the frequency of this speed
for the leniently treated drivers from Pr(S∗ = s|Di = 0) = 1

1−p
Pr(S∗ = s) + p

1−p
Pr(S∗ =

s|Di = 1).
Our estimate for the predicted reoffending rate for leniently treated drivers is then

E(E(Y1i|S∗
i )|Di = 0) =

󰁓
s Pr(S∗ = s|Di = 0)E(Y1i|S∗

i ).
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