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1 Introduction

The frequency of price adjustment is a key determinant of the speed with which shocks

transmit through the economy in New Keynesian models. For example, Gopinath and It-

skhoki (2010) document that a higher frequency of price changes is associated with a higher

pass-through of exchange rate shocks, attributing the cross-sectional differences to primitives

affecting the curvature of the profit function (see also Devereux and Yetman (2010)). Many

empirical studies use micro data to document a large cross-sectional heterogeneity in the fre-

quency of price adjustments, but there have been few attempts to study what causes changes

in this frequency over time.1 In this paper we focus on a key determinant of the frequency

of price changes, and therefore the speed of shock propagation: the size of the shock. We

document that large shocks result in an increased frequency of price adjustment, leading to

higher rates of cost pass-through and boosting the propagation speed of the shock. In short

we demonstrate that large shocks travel fast.

The cause of the result is the state-dependence of the firm’s price setting decisions: the

probability that a firm resets its price depends on the benefits of the adjustment. A large

cost shock shrinks the profit margins, inciting firms to adjust prices. Such a swift “extensive

margin” response is the hallmark of state-dependent models where the probability of price

adjustment depends on the firm’s state. We argue that time-dependent models, which are

widely used by central bankers today, are ultimately unfit to study inflation dynamics after

large shocks like the ones experienced in 2022.2

We base the analysis on a rich granular dataset on price setting behavior by retailers from

several countries, before and after the large energy shocks that occurred in 2022. We interpret

the data using a generalized Ss model, following the seminal work of Caballero and Engel

(1993a,b). This model nests a broad class of State-Dependent (SD) models, such as Golosov

1Cavallo (2019) found that online competition led to an increase in the frequency of price changes for US
multi-channel retailers between 2008 and 2017. See Gautier et al. (2022) for recent extensive evidence on the
frequency of price changes across the industries of European countries.

2The extensive margin is also emphasized by Gagnon et al. (2012), who argue that models that abstract
from variation in the timing of price changes miss an important channel of macroeconomic adjustment.
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and Lucas (2007) or Nakamura and Steinsson (2010), as well as several Time-Dependent (TD)

models, such as the well-known Calvo (1983) model. We parametrize the model by mapping

it to three cross-sectional moments of price setting behavior, measured before 2022, a period

over which aggregate shocks were arguably small. These moments, shown to characterize the

economy’s response to a small aggregate shock by Alvarez, Lippi, and Oskolkov (2022), are:

(i) the frequency of price changes, (ii) the standard deviation of the size of price changes and

(iii) the kurtosis of the size of price changes. The quantitative exercise clearly reveals that

the price setting decisions feature state-dependence: the probability that a price is adjusted

increases as the distance between the actual and ideal price grows. This result confirms

the seminal findings of Eichenbaum, Jaimovich, and Rebelo (2011) and the recent ones by

Gautier et al. (2022); Karadi et al. (2023); Dedola et al. (2023) on the empirical relevance of

state-dependent pricing.

It has been shown that the distinction between TD and SD models may be irrelevant in

the presence of small aggregate shocks, see e.g. Gertler and Leahy (2008) and Alvarez, Lippi,

and Passadore (2016).3 The main message of this paper is that in the presence of a large shock

these models are quite different: firms are responsive to a large shock in SD models, while

pricing behavior is unresponsive to economic conditions in TD models.4 Our main finding is

that large cost shocks induce firms to react faster than in normal times. This can be seen

in Figure 1, which uses data on the frequency of price changes in the food and beverages

sectors in several countries (top panel), and in the manufacturing and services sector in

France (bottom panel). After several years of overall stationary behavior, the frequency of

price changes increased significantly in 2022 and 2023, more than doubling across all sectors

and countries. We show that such a pattern can be matched by a generalized Ss model with

3The equivalence, established by proposition 1 and 2 in Alvarez, Lippi, and Passadore (2016), states that
the propagation of a small aggregate shock in a TD model coincides with the propagation in a SD model
provided these models have the same frequency and kurtosis of price changes. See Klenow and Kryvtsov
(2008) for an early analysis of shocks in state- versus time- dependent models.

4The size of the shock is measured relative to the standard deviation of price changes. Small cost shocks,
such as those normally considered in VAR analyses, change marginal costs by less than 1%, which corresponds
to less than 1/10 of the standard deviation of price changes. We will consider marginal costs shocks that are
in the order of 10%, which corresponds to more than 1/2 of the standard deviation of price changes.
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a non-negligible degree of state dependence.

Figure 1: Frequency of price changes
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Note: The top panel uses data from PriceStats (see Section 3). The data source for the bottom panel
is the Banque de France Monthly Business Survey (see Dedola et al. (2023)); we map the original data
(share of firms changing prices per month) into number of price changes per year.

Other papers have shown that firms tend to adjust fast following a large shock: Bona-

dio, Fischer, and Sauré (2019) offer empirical evidence on the swift adjustment of currency

invoicing after the large 2015 Swiss appreciation. Karadi and Reiff (2019) use a menu cost

model to analyze the large increase of the VAT tax in Hungary in 2004 and 2006, showing

that the aggregate price level responded quickly to the shock. The closest to our analysis is

Alvarez and Neumeyer (2020), who study price dynamics in Argentina after large increases

in the cost of utilities in 2014 and 2016 and a sharp exchange rate devaluation in 2018. They

show that such large cost shocks make the economy behave like one with flexible prices.

They use a menu cost model, specialized to an economy with a very high average inflation,
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to interpret the result as a manifestation of state-dependent behavior. Our paper differs

from the above in terms of the data, the context, and the model used to interpret the facts.

Our data cover several countries with a low average inflation. On the modeling side, we

employ a parsimonious generalized Ss model, characterized by 3 parameters, which allows us

to fit the price-setting patterns observed before 2022, accurately capturing the shape of the

size-distribution of the price changes (hence the standard deviation and the kurtosis) as well

as the frequency of price changes. Alvarez and Neumeyer (2020) uses a canonical menu cost

model where the distribution of price changes features no small adjustments.5

The paper is organized as follows. The next section outlines the model. Section 3 derives

the model’s predictions for observables, compares them to the data, and presents a steady-

state calibration of the model. Section 4 uses the model to analyze the propagation of a

large energy shock, and discusses the issue of asymmetric impulse responses (cost increases

vs decreases). Section 5 concludes.

2 A generalized setup for NK models

This section presents a New Keynesian setup that nests several models. The firm’s price

setting decision is described by a generalized hazard function, as in Caballero and Engel

(2007), relating the probability of price adjustment to the firm’s state, measured by the

distance between the firm’s current price from the profit maximizing price. The notion

of a generalized hazard function was developed in seminal papers by Caballero and Engel

(1993a,b), a derivation from first principles based on random adjustment costs was provided

in Caballero and Engel (1999) and Dotsey et al. (1999), and later revisited using information

theoretical foundations by Woodford (2009) and Costain and Nakov (2011).

5Price adjustments only occur at the boundary of the inaction region, and hence kurtosis is 1.
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Household Preferences. Time is continuous and t ∈ [0,∞) and the preferences of the

representative agent are given by the discounted present value

∫ ∞
0

e−ρtU (C(t), H(t)) dt where U(C,H) ≡ C1−ε

1− ε
− αH, (1)

where C(t) is an aggregate of i ∈ [0, 1] goods and H(t) is the labor supply. Let ci(t) be the

consumption of product i at time t. The Dixit-Stiglitz consumption composite C(t) is

C(t) ≡
[∫ 1

0

Ai(t)
1
η ci(t)

η−1
η di

] η
η−1

(2)

where Ai(t) is a preference shock associated with good i at time t, which acts as a multi-

plicative shifter for the demand of each good. Labor supply is an aggregate of the labor that

each firm hires so that H(t) =
∫ 1

0
hi(t)di. Households maximize preferences in equation (1)

subject to a budget constraint choosing consumption and labor for each good i and time t.

There is a distortionary labor subsidy to allow the flexible price equilibrium to coincide with

the efficient allocation.

The supply side. We consider an economy populated by a unit mass of firms, indexed by

i ∈ [0, 1], and each of them produces one good. For firm i to produce ci(t) of the good i at

time t requires both labor (hi) and energy (mi) inputs, according to the production function

ci(t) =

(
hi(t)

Zi(t)

)1−β

mi(t)
β (3)

where β ∈ (0, 1) is the energy share in production and firm i’s marginal cost of production

at time t is: mci(t) = KE(t)β (W (t)Zi(t))
1−β where W (t) is the nominal wage, E(t) is

the price of the energy input, Zi(t) is a firm-specific process affecting productivity, and

K ≡ β−β(1 − β)β−1 is a constant. The technology exhibits constant returns to scale. We

assume that Zi(t) = exp(σ zi(t)) where {zi} are standard Brownian motions independent

across i. We assume that Ai(t) = Zi(t)
η−1 so the (log of) marginal cost and the preference
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shock are perfectly correlated.6

We consider the profit maximization problem for a firm in steady state using the gen-

eralized hazard function of Caballero and Engel (1999). The setup embeds a broad class

of sticky-price models, including well known cases such as the canonical Golosov and Lucas

(2007), the pure Calvo (1983) model and the hybrid Calvo-Plus model by Nakamura and

Steinsson (2010). The state of the firm x is given by its “price gap”, defined as the price

currently charged by the firm relative to the price that maximizes current profits:

P ∗i (t) =
η

η − 1
mci(t)

namely the marginal cost times the constant markup η
η−1 , implied by the CES demand

system. Note that P ∗(t) depends on time because productivity is stochastic and because the

marginal costs can change due to, for instance, an energy cost shock.

More precisely, the price gap xi(t) for firm i is the time t wedge between the actual price

P (t) and the desired price P ∗i (t):

xi(t) ≡ logPi(t)− logP ∗i (t) (4)

Absent pricing frictions the gap is identically zero, i.e. each firm charges the optimal price

Pi(t) = P ∗i (t). If the price is not adjusted, the price gap changes due to trend inflation

(increasing nominal costs) and the idiosyncratic productivity shocks, so that the law of

motion of the price gap for each i is

dxi(t) = −µdt+ σdzi(t), (5)

where zi is a standard Brownian motion and µ is the growth rate of nominal wages per unit

6This assumption, also used in Woodford (2009); Bonomo et al. (2010); Midrigan (2011), allows the
problem to be described by a scalar stationary state variable, the price gap x. This is used to write the
dynamic programming problem of the firm as well as to keep the expenditure shares stationary across goods
in the presence of permanent idiosyncratic shocks.
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of time i.e. the inflation rate.7

The price-setting problem. The firm’s value function v(x) solves the following problem:

ρ v(x) =
η(η − 1)

2
x2 − µv′(x) +

σ2

2
v′′(x) + min

`≥0
{` · (v(x∗)− v(x)) + (κ `)γ} (6)

where the quadratic term represents a second order expansion of the profit function around

the profit-maximizing price, and x∗ is the profit maximising reset price-gap that satisfies

v′(x∗) = 0.8 At every moment the firm chooses an optimal effort rate ` for price resetting, so

that with probability ` per unit of time the firm is able to adjust its price, i.e., to control x.9

The optimal choice balances the benefit of a price reset, given by v(x∗)−v(x), with the cost of

effort, given by the convex power function (κ `)γ, with γ > 1 and κ > 0. The firm’s problem is

equivalent to profit maximization, aiming to minimize the deviations between realized profits

and frictionless profits. We note that the units of the cost function are expressed as a fraction

of forgone (steady state) profits.

Policy Rules. The price setting behavior implied by equation (6) is summarized by a

generalized hazard function (GHF), Λ : R → R+. The function gives the probability (per

unit of time) that a firm with price gap x will change its price. The first order condition

gives the generalized hazard function Λ(x) = `∗, that is the optimal value of ` for a given

value of x, namely:

Λ(x) = κ
γ

1−γ

(
v (x)− v (x∗)

γ

) 1
γ−1

, for each x ∈ (−∞,∞) . (7)

As in Caballero and Engel (2007) the policy rule implies that price changes occur prob-

7This is can be rationalized by assuming the money supply grows at an exogenous rate µ.
8The term η(η−1)

2 in the flow cost is related to the curvature of the profit function, see Proposition 1 in
Alvarez, Lippi, and Souganidis (2023).

9We could enrich the model by assuming the firm can also change its price by paying the menu cost Ψ > 0.
We ignore this possibility for simplicity but we note that little is lost in generality, as proven in Proposition
3 in Alvarez, Lippi, and Oskolkov (2022).
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abilistically, with a probability that is governed by the GHF. Compared to the workhorse

Calvo (1983) model, where the adjustment probability is constant, a generalized hazard func-

tion Λ(x) allows it to depend on the state x, the firm’s desired adjustment. A large number

of models are nested by this framework, including the canonical Calvo model with a constant

hazard Λ (x) = 1/κ as γ ↑ ∞, and a canonical Ss model as γ ↓ 1, where the hazard is flat

(near zero) over a range of x and diverges at a critical threshold point. Intermediate cases

cover the so called Calvo-Plus model by Nakamura and Steinsson (2010) and the random

menu cost problem of Dotsey and Wolman (2020).

The value function v(·) and the generalized hazard function Λ(·) have a minimum at x∗

and are increasing in |x− x∗|. Intuitively, the optimally chosen probability of adjustment is

increasing in the distance between x and the optimal reset gap x∗ (near zero due to a small

drift and a symmetric return function): a larger distance increases the incentives to adjust,

as shown in the first panel of Figure 2 for three model calibrations designed to fit Germany,

the UK and the US (described below). The hazard functions in the figure show that the

adjustment probability increases in the (absolute value) of |x− x∗|. This feature emerges for

all calibrations and is the hallmark of state dependence. Our findings complement previous

evidence on the relevance of state-dependent pricing, see e.g. Eichenbaum et al. (2011);

Gautier et al. (2022); Karadi et al. (2023); Dedola et al. (2023).

Aggregation of the firm’s decisions. Focusing on a steady state, the hazard Λ(x) and

the law of motion of price gaps in equation (5) uniquely determine the steady state distribu-

tion of firm’s price gaps. Let us define this distribution by the density function f : R→ R+

that solves the Kolmogorov forward equation:

Λ(x) · f(x) = µf ′(x) +
σ2

2
f ′′(x), for each x 6= x∗. (8)

with boundary conditions limx↓x∗ f(x) = limx↑x∗ f(x); 1 =
∫∞
−∞ f(x)dx, and limx→∞ f(x) =

limx→−∞ f(x) = 0, see Alvarez and Lippi (2022) for details. The density function f , pictured
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in the second panel of Figure 2 (in dotted blue), depicts the steady state distribution of price

gaps.

3 Price setting behavior: data vs theory

This section derives the model’s prediction for the frequency and the distribution of the size

of price changes. We calibrate the model’s steady state using data for price setting behavior

observed before 2021. We show that the GHF model is able to account for several key

patterns observed in the data.

Frequency of price changes. The frequency of price adjustments N is given by

N =

∫ ∞
−∞

f(x)Λ(x) dx (9)

The equation counts the total number of price adjustments in a time period (say a year), by

weighting the rate at which firms adjust at each x, Λ(x), with the density of firms f(x).

Distribution of the size of price changes. Recall that upon any price change the firm

resets its gap from x to the optimally chosen return point x∗, hence the size of the adjustment

is ∆x = x∗−x. This occurs with probability Λ(x) per unit of time. Recall also that at steady

state, there is a density f(x) of firms with price gap x. The distribution of the size of price

changes has the following density:

q(∆x) ≡ Λ(x)f(x)

N
. (10)

Below we present a calibration of the model parameters that yields a distribution of

price changes q(∆x) that approximately matches the data. The panels of Figure 2 show

data from the European countries and the US which align to the predictions of the model, in

particular the model ability to replicate a small mass of tiny price changes and the bimodality
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of the distribution, a feature that is visible for most countries and that is crucial for state

dependence, as we further discuss below.10

Figure 2: Hazard function Λ(x), distribution f(x), and distribution q(∆x)

Note: The first panel shows the calibrated hazard function (expressed as a monthly probability) for the US,
Germany and the UK. The second panel shows the steady state distribution of price gaps before and after
a large shock; it uses the model calibration for the food and beverages sector of all countries in our sample.
The rest of the panels show the distribution of the size of the price changes, q(∆x), standardized at the
COICOP level along with the calibrated model-implied distribution. See Table 1 for more information on
the calibration.

A brief description of the dataset. We base our analysis on granular data on price

setting behavior, as in Cavallo (2018). These data contain detailed information on the fre-

quency and size of daily price changes for a large number of firms, and provide the necessary

information to solve the inverse inference problem mentioned above. Our data was provided

10We remark however that the calibrated model distribution and the data histogram use two different
methods to handle unobserved heterogeneity in the size of productivity shocks: the histograms use data
standardized at the COICOP level that retain unobserved heterogeneity within the same-COICOP firms.
The model calibration uses a firm-level control method that provides a more accurate estimate of the shape
(kurtosis) of the distribution.
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by PriceStats, a private company related to the The Billion Prices Project (see Cavallo and

Rigobon (2016)). It is generated using a technology known as web scraping, which automat-

ically scans the code of publicly available webpages to gather and store relevant data. The

dataset consists of product-level information, such as product id, price, category, and sale

status, collected on a daily basis from various retailers’ websites. The data is uncensored

and detailed, covering the entire lifespan of all products sold by these retailers, and provides

prices that are similar to those obtained in offline stores (Cavallo et al., 2018). The data

is comparable across countries, collected using identical techniques for similar categories of

goods over the same time period. We use a subset of data from several European countries

and the US, from January 1st 2019 to July 22nd 2023. We use a v-shape filter to identify

sales and perform the analysis using regular prices as it is standard in the literature.

We focus on the “Food and Beverages” category which has experienced one of the highest

rates of inflation during this period and has the largest weight in the goods CPI basket for

most countries. Importantly, other sectors, such as industry and services, also record a similar

increase in the frequency of price revisions, as depicted in the bottom panel of Figure 1. We

stress that the higher steady-state frequency of price changes in the “Food and Beverages”

category, as compared to other sectors, does not tilt our results towards estimating larger

state dependence. Obviously, a time-dependent model can also capture a higher steady state

frequency (e.g., through a smaller κ), but it cannot capture a change of the frequency after

an aggregate shock.

In Table 1 we present summary statistics of price setting behavior for several European

countries, the US and comparable statistics from related studies. The standard deviation of

price changes varies from 15% to 31% across countries. This highlights the significant role of

idyosincratic productivity shocks. The kurtosis measure is very similar across all countries

and ranges between 2 and 3.

The measurement of kurtosis. To measure kurtosis in Table 1 we follow Alvarez, Lippi,

and Oskolkov (2022) in accounting for unobserved heterogeneity. Kurtosis is a scale-free

11



Table 1: Price Setting Behavior before 2022

Price-Setting Statistics Model Calibration
Mean St. Dev. Kurtosis Frequency # obs. σ γ κ
of ∆x of ∆x of ∆x N (thousands)

Food and Beverages data (PriceStats data, period 2019-21)

France -0.002 0.15 2.4 2 503 0.21 2.65 0.10
Germany 0.011 0.16 2.6 1.2 177 0.18 2.95 0.20
Italy 0.007 0.26 2.2 1.5 93 0.32 2.36 0.19
Netherlands 0.009 0.13 2.3 2.3 330 0.20 2.50 0.07
Spain 0.011 0.16 2.9 2.1 350 0.23 3.52 0.14
UK 0.007 0.31 2.1 0.8 95 0.28 2.23 0.39
US 0.012 0.31 2.2 2.1 282 0.45 2.37 0.16
Average 0.010 0.27 2.3 1.9 - 0.37 2.51 0.16

Euro area CPI data (PRISMA data, period 2005-19, Gautier et al. 2022)

0.025 0.10 2.8(a) 1.0 - 0.10 3.25 0.20

Euro area supermarket data (IRI data, period 2013-17, Karadi et al. 2023)

- 0.13 3.2 1.1 - 0.14 4.17 0.28

Notes: The PriceStats data uses a sample of daily changes in regular prices (excluding sales). The statistics
are computed over the distribution of the size of price changes after dropping price changes larger than 1.50
log points in absolute value and products with less than 3 price spells for the period 2019-2021. Kurtosis is
computed using equation (11), a correction for unobserved heterogeneity discussed in the text. Frequency is
annualized. The Average statistics are weighted by 2019 consumption at current USD. The statistics from
the Price-setting Microdata Analysis (PRISMA) network are from Table 7 in (Gautier et al., 2022). These
data covers the period from 2005 to 2019. Standard deviation and kurtosis figures were obtained in private
exchanges with the authors. (a) The matched value of kurtosis for the PRISMA data of 4.1 is corrected for
heterogeneity using a multiple from Alvarez et al. (2021) who perform the correction for French CPI data.
The statistics from Karadi et al. (2023) are from their Table 2 and correspond to the average of 4 Euro Area
countries; Germany, France, Italy and the Netherlands between 2013 and 2017. The parameters σ, γ, κ are
calibrated using a GMM estimator to match the frequency and the kurtosis of price changes. The drift of
price gaps is µ = 2%. The additional parameters are set to standard values: η = 6, ρ = 0.05.
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statistic that can be largely affected by the mixing of distributions with different scales. For

instance mixing normal distributions with different variances can yield a kurtosis much higher

than 3 in spite of the fact that each of the underlying distribution is normal. In particular

we assume that each product i within a category has a product-specific scale bi, such that

∆xit = bi ∆x, kurtosis can be computed accounting for unobserved heterogeneity using

Kurt(∆xt) =
E[(∆xit)

4]

E[(∆xit)2(∆xis)2]
, (11)

where the empirical counterparts are estimated with

Ê[(∆xit)
4] =

1

#I

∑
i∈I

1

#T (i)

∑
t∈T (i)

(∆xit)
4,

Ê[(∆xit)
2(∆xis)

2] =
1

#I

∑
i∈I

1

#T (i)(#T (i)− 1)

∑
t,s∈T (i),t6=s

(∆xit)
2(∆xis)

2,

where #I are the number of products, T (i) is the set of times where product i changes prices

and #T (i) are the number of price changes for product i. The unobserved heterogeneity in

our data also informs the standardization of price changes in the histograms of Figure 2 since

our model assumes equal size of idiosyncratic shocks across all firms (see footnote 10).

Calibration. We calibrate the model to match three cross sectional moments measured

before 2022: the standard deviation and the kurtosis of the size of price changes, as well as

the frequency of price changes. Our choice of moments is guided by theory: the frequency of

price changes gives general information about price flexibility and thus the level of the cost of

price management κ. Moreover, when analysed together with the standard deviation of price

changes, they allow us to infer the size of idiosyncratic productivity shocks affecting firms

using the fact that σ2 = N · V ar(∆x) as this relationship holds for a wide variety of models

when µ ≈ 0, see Alvarez, Lippi, and Oskolkov (2022). In turn, kurtosis has been shown to

reveal key information about state dependence and the response of an economy to aggregate
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shocks. In our model, this is captured by the curvature of the hazard function controlled by

γ. Kurtosis encodes information about state dependence and the “selection” effect: the idea

that the observed price changes come from firms who need it the most and not from a random

sample. A large kurtosis indicates a large mass of late adjusters, which implies weaker state-

dependence and more persistent effects of a cost shock. The Calvo model, with a kurtosis of

6, does not feature selection nor state dependence since the adjusters are a random sample

each period. In contrast, a pure menu cost model, with a kurtosis of 1, features selection and

maximal state dependence since all price changes share the same (absolute) size, and they

stem from the sample of firms that are the furthest from their optimal price.

We use standard values for the parameters of the elasticity of substitution and intertem-

poral preferences: η = 6 (which implies a markup of 20%), a time discount ρ = 0.05 and an

inflation rate of µ = 2% consistent with inflation at steady state. Then the three moments

discussed above are used to calibrate {σ, κ, γ}. We use the frequency and the variance of

price changes to calibrate σ2 and we use a GMM estimator to calibrate κ and γ from the

effort cost function. In short, the calibration consists of choosing these two parameters to

match the kurtosis and the frequency of price changes. The calibrated parameters are shown

in the last three columns of Table 1. We find a non-negligible degree of state dependence,

represented by (a small value of) the parameter γ, identified by a relatively small kurtosis

of price changes. This finding is robust across countries. The first panel of Figure 2 depicts

this fact: the calibrated shape of the hazard function is similar across countries, displaying

a comparable curvature (the parameter γ) and somewhat differing levels (the parameter κ)

to match the different mean frequency of price changes.

Figure 2 shows that the calibrated model is able to capture some key features of the data:

the fact that the distribution of price changes q(∆x) is bimodal, with a small mass of tiny

price changes. Intuitively, when x is close to the optimal return gap x∗, the losses from the

suboptimal price are low and hence the incentives to change prices are small. The small mass

of tiny price changes is a major difference compared to the prediction of the Calvo model
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where the constant hazard implies a mode near zero, i.e. that the most frequently observed

price change has a tiny size. This prediction is counterfactual and is a telltale of the fact that

price setting behavior displays state dependence: prices are adjusted only when the benefits

of doing so are large enough. Indeed, we note that the bimodality of the distribution of the

size of price changes cannot be produced by a time-dependent model. The bimodality implies

that the GHF is not constant i.e. it implies state dependence.11

4 The propagation of an aggregate cost shock

In Figure 1 we observed that the frequency of price adjustments rose quickly after a large

energy shock. In this section, we provide a thought experiment that rationalizes this fact

using the model. Namely, we consider an economy at steady state and study the dynamics

that follow an aggregate shock to the firms’ marginal cost. We use the calibration to the

food and beverages sector of all countries in our sample to study the propagation of large

and small shocks. We will illustrate that, under a calibrated GHF model, large and small

shocks have different implications for pass-through and the frequency of price adjustments.

We consider an economy in a steady state that is hit by an unexpected once-and-for-all

shock to marginal cost that displaces the distribution of states δ percentage points “to the

left”, as shown by the red distribution in the second panel of Figure 2. The firms would then

like to increase their prices to “close their price gap”. This incentive shapes the dynamic

response of the price level and the frequency of price changes after the shock. For simplicity

we develop the dynamic analysis assuming that firms use the steady state decision rule,

Λ(x).12 We let f̂(x, t) : R × [0,∞) → R+ be the distribution of price gaps t periods after

the shock. Intuitively, the distribution depends on the time elapsed because the initial shock

places the distribution away from the invariant. The distribution f̂(x, t) solves a Kolmogorov

11Notice that the equation (8) for µ = 0 shows that f is unimodal at 0 and strictly convex. Since q is the
product of f and Λ, a constant GHF would imply a unimodal q.

12This assumption is often used in the literature, see Baley and Blanco (2021). Solving the full problem,
with feedback from the aggregates to the individual firm’s decision can be done using the methods in Alvarez,
Lippi, and Souganidis (2023).
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forward equation with initial condition f̂(x, 0) = f(x+ δ), for each x ∈ R. We will describe

the transition of these variables back to steady state for small and large shocks (see Section

4 of Alvarez and Lippi (2022) for details).

In the second panel of Figure 2 we plot the distribution of price gaps f , centered around

the vertical line x = x∗, and the distribution of firms’ price gaps after the shock f̂(x, 0). We

note that since inflation is small, namely 2%, the value of x = x∗ is about zero. We see that

the distribution after the shock places most firms’ prices in a region far from their desired

prices (at around −20% price gap). In this region the probability of adjustment, Λ(x), is

larger, so a large shock triggers an increase in number of price adjustments.

Using f̂(x, t) we can describe the path for the price level and the frequency of price

changes after an aggregate shock, as

P (t) ≈ P (0) +

∫ ∞
−∞

x · f̂(x, t) dx − (Xss − δ), (12)

N(t) =

∫ ∞
−∞

Λ(x) · f̂(x, t) dx (13)

where Xss =
∫
R x · f(x) dx. The right hand side of equation (12) can be written more

succinctly as P (0) + X(t) − (Xss − δ) where X(t) denotes the mean price gap at time t.

Notice that the change in the price level is computed as deviations from Xss− δ because that

is the aggregate price gap right after the shock occurs, so that P (0) on impact (before any

price change happens) does not jump.

The left panel of Figure 3 displays a sharp increase in the frequency of price changes

after a large shock, reaching a magnitude comparable to the average frequency of 4.3 price

changes per year in 2022-2023 for all countries in our sample. In the model this is due to many

firms lying in a region far from their desired gap x∗, i.e. a region where the hazard, Λ(x),

is relatively high. This yields a persistent increase in the frequency of price adjustments.

These results are robust in our sample of countries and appear as long as the GHF is far

from constant. Obviously this effect is not present in the Calvo model, where the frequency
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Figure 3: Propagation of Large vs Small Cost Shock

Frequency of price changes: N(t) CPI response to the shock
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Note: The model uses the calibration for the food and beverages sector of all countries in our sample, see
Table 1. The calibration matches a frequency of N = 1.9 price changes a year, the kurtosis and standard
deviation of price changes of 2.3 and 27% respectively. Time is depicted in months after the shock.

is constant by assumption.

Inflation dynamics. The right panel of Figure 3 shows that the propagation of a large

shock features a faster pass-through than one predicted by a Calvo model matching the same

frequency (and size) of price changes. This result mirrors the observation about frequency.

Upon a large shock the calibrated model is characterized by more firms adjusting prices

upwards resulting in faster passthrough. Inspecting the slope of the price path, the figure

illustrates that failing to account for the large increase in the frequency of price revisions,

as would occur in a time-dependent model, leads to a substantial initial underestimation of

inflation followed by a subsequent overestimation.

We note that one feature that is not properly captured by our simple model is the half-life

of the shock, which is faster than observed in the data. Enriching the model to have strategic

complementarities in price setting would slow down the propagation of the shock, while

retaining the state dependence of the firms’ decision and thus preserve a sizable response
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along the extensive margin, as shown in Alvarez, Lippi, and Souganidis (2023). Such an

extension, however, would come at the cost of a substantially more involved model and we

leave it for future work.

In summary, the state-dependent model features dynamic responses to large cost shocks

that resemble the data on the increase in the frequency of adjustments for the recent surge

in inflation. Furthermore, as we have shown, the forecast of the frequency of price changes

and the path of inflation can be very different depending on the model that the analyst is

using. The implications of a purely time-dependent model are counterfactual because they

miss the extensive margin response documented in Figure 1.

Asymmetric responses to large shocks. Starting in the last quarter of 2022, there

has been a rapid decrease in energy prices, prompting the question of how swiftly firms

will respond by adjusting consumer prices downward – a crucial consideration for predicting

inflation dynamics.

Figure 4: Asymmetries: Impulse response to negative vs. positive cost shock

Hazard Λ(x) and distributions f(x) and f̂(x, 0) Frequency of price changes N(t)
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Note: The model uses the calibration for the food and beverages sector of all countries in our sample, see
Table 1, and the exact profit-loss function. The left panel has a dual scale: the left axis gives the density of
price gaps; the right axis gives the hazard rate of a price gap (as the probability per month).
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Many features of the economic environment may induce an asymmetric response to in-

creasing and decreasing cost shocks, such as sizable trend inflation or variable markups. In

this section we will focus on the asymmetry of the firms’ profit function. The asymmetry

implies that having a price that is x% above the ideal price is better than having a price that

is x% below the ideal. Such an asymmetric profit function arises in several standard models,

such as in a CES demand system. Intuitively, having a “high price” is preferable to having a

“low one” because in the latter case the firm is selling many units at close or below marginal

cost. Thus, low prices give rise to a higher incentive to adjust negative price gaps.

The left panel of Figure 4 depicts the above observation by means of the generalized

hazard function. This GHF is obtained by solving the firm problem using the exact profit

function, rather than the second order approximation (which is symmetric by construction)

described in equation (6). Recall that the GHF is an increasing function of the incentive to

adjust prices υ(x)−υ(x∗). Therefore the left panel of Figure 4 shows that the firm’s incentive

to adjust prices is smaller when the prices are above the target (decrease prices) compared

to when prices are below (increase prices). The asymmetric profit function also affects the

optimal reset price chosen by firms. The left panel shows that the reset price is located above

the ideal price (x∗ > 0), in order to hedge against productivity shocks that could quickly

lead to negative gaps.

We study the propagation of a cost shock decrease of 20%, a negative shock henceforth,

and we calibrate using food and beverages data for all countries, differing only in using the

profit-loss function instead of its second-order approximation. The right panel of Figure 4

shows the asymmetric response of the frequency of price changes to a large positive vs a

large negative shock to marginal costs. Unlike a positive shock (thick line), a negative shock

(dotted line) leads to a less pronounced rise in the frequency of price changes due to lower

probabilities of adjustments for positive price gaps, stemming from lesser profit losses at

higher prices. Although the passthrough of a negative shock is relatively slower than its

positive counterpart, it continues to be faster than the passthrough predicted by a purely
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time-dependent model.

In short, our model with asymmetries shows that prices are more flexible upon a cost

increase than upon a cost decrease. This result might contribute to understanding the recent

price setting behavior where energy prices have started to subside. It is also consistent with

the reduction in the frequency of price changes for some countries (see Figure 1), implying a

slower passthrough of the cost decrease to consumers.

5 Conclusions

We use a tractable New Keynesian model, calibrated using granular data from several coun-

tries, to study the propagation of a large supply shock. The model matches some key features

of the data, including the (pre-shock) bi-modal distribution of the size of price changes and

the significant increase in the frequency of price changes following a large shock. The findings

underscore the state-dependent nature of price setting decisions, where the probability of a

price adjustment increases as the gap between the actual and ideal price widens.

The main implication of our research is that large shocks lead to a rapid pass-through from

costs to prices causing a temporary surge in inflation, i.e., we show that large shocks travel

fast. Understanding the different firm-level reactions to large and small shocks is crucial to

predict inflation dynamics following a large shock. Our findings highlight the limitations

of time-dependent models, commonly used by central banks. By failing to account for the

increased frequency of price changes, the time-dependent models are unable to capture the

fast inflation run up after the shock, as well as the subsequent quick slowdown.

Future research should extend the analysis to more categories of goods, and explore the

role of strategic complementarities in shaping the speed of pass-through of large shocks.
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