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ABSTRACT

Climate change is generating demonstrable harm around the world. Political and legal efforts 
have sought to associate climate impacts with specific emissions, including in recent international 
policy discussion of Loss and Damage (L&D). However, no quantitative definition of L&D 
exists, nor does there exist a framework for linking specific emissions to specific damages. Here 
we develop such a framework, linking it explicitly to recent efforts to calculate the social cost of 
carbon dioxide (SC-CO2), and demonstrate its use in a variety of applications. We calculate that 
future damages from past emissions, one component of L&D, are at least an order of magnitude 
larger than historical damages from the same emissions, a more commonly discussed component 
of L&D: 1 ton of CO2 emitted in 1990 causes $4 in global cumulative discounted damages 
by 2020 and an additional $327 in discounted damages through 2100 (2% discount rate). 
These estimates of past and future damages from marginal emissions can be used to calculate 
L&D for a range of specific emitting activities: for instance, an individual taking one long-haul 
flight every year for the past decade will generate ~$5500 in damages through 2100, the 
emissions associated with multiple oil majors between 1988-2015 have already caused $50-200B 
of cumulative global economic damage by 2020, and CO2 emissions in the US since 1990 have 
caused  ~$2T in global damage through 2020, with India ($293B) and Brazil ($167B) being 
harmed the most. Carbon removal offers an alternative to transfer payments for settling L&D, 
but we show that it becomes increasingly ineffective in limiting damages as the delay 
between emission and recapture increases.
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1 Introduction

Decades of scientific advances make clear that human activities are substantially changing the
climate, these changes are negatively impacting a range of human outcomes, and that those ex-
periencing the most harm are responsible for a small fraction of historical emissions1,2. These
intersecting insights have prompted calls for compensation from emitting entities for ”loss and
damage”, or the damages from climate change that harmed parties were neither able to adapt to
nor mitigate. Similar claims have been made in ongoing litigation around the world, in which
claimants in a given location assert damages as a result of emissions from specific (and often dis-
tant) emitters.

However, unlike the large body of empirical work which explores how global climate change will
affect global and local economic outcomes, the question of whether and how emissions by spe-
cific entities (e.g. countries, companies, or individuals) can be linked to specific damages has re-
ceived less formal and empirical attention. A central empirical challenge in making progress has
been that emissions come from many sources and are well mixed in the atmosphere. As a result,
damages from these emissions must be inferred relative to a counterfactual (a world with fewer
emissions) that is unobserved.

Drawing from multiple fields, we show how existing approaches used to quantify future aggregate
climate damages can be re-purposed to also quantify bilateral, attributable loss and damage from
historical emissions. The calculation is developed in a basic accounting framework that mirrors
how damages are calculated in other legal contexts where one individual or group is liable for
damages (or benefits) to another group.

Specifically, we develop an approach to compute compensation owed by an emitter for emissions
that caused harm external to the emitter and which will continue to generate future harm. The
basic idea is to consider emission of a unit of GHG (we focus on CO2) to be the creation of an
“asset” that produces a subsequent stream of value. Unlike typical assets, however, this asset gen-
erates a flow of future value that might be negative, and this flow accrues to individuals that did
not create the asset. These features are not unique to GHG-assets, and assets with these features
are commonly traded in markets. For example, household garbage generates a flow of costs for
whoever takes ownership of it. For this reason, households must compensate – and expect that
they will be obligated to compensate – another entity (e.g. a waste disposal firm) to take it and
store it on their premises. Here, we compute an analog to the value of unpaid garbage collection
bills that would be owed, i.e. debt, for past GHG emissions if individuals were compensated for
the costs imposed by this waste. The total sum of these costs are the residual loss and damages
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suffered by populations due to climate change. We emphasize that our use of “debt” and “com-
pensation” is in an accounting sense, and does not address the challenging ethical question of
actual legal obligation, which has not yet been determined.

2 Aligning Loss and Damage with the Social Cost of Greenhouse
Gases

Our approach to computing L&D is designed to integrate seamlessly with calculations for the
“Social Cost of Carbon Dioxide” (SC-CO2), which is the net-present value of total additional
net harm (or benefit) that accrues to society as a result of one additional unit of CO2 emissions
(equivalent concepts exist for other greenhouse gases; our focus here will be on CO2). Such an
integration is attractive, as SC-CO2 is now a well-defined concept with consensus guidelines on
its computation3. Since the language of L&D was agreed to in the establishment of the Warsaw
International Mechanism in 20134, there have been multiple interpretations of what this language
means in practice5, including that L&D is indistinguishable from adaptation efforts and costs,
that L&D is a focus on the deployment of tools (e.g. insurance) to reduce risk, or that L&D is the
residual harm net of any adaptation effort. No formal definition of L&D has yet to be adopted6,
contributing to both conceptual and practical disagreements about how damages from climate
change should be addressed.

Building on IPCC documents7,8 and a growing academic literature9,10, we propose that L&D
be computed as the net present value of economic and non-economic impacts attributable to the
emissions of greenhouse gases through their impact on the climate, net of any adaptation that was
undertaken. Equivalently, L&D is the compensation schedule that would be required to make all
individuals “whole” for the damages (or benefits) that they have experienced or will experience
from climate change, paid for by the individuals that caused these impacts via emissions. We
show how L&D from CO2 emissions can then be computed from three components: the histor-
ical damages that have already occurred due to a past marginal CO2 emission (which we denote
HD-CO2), the future damages expected to occur from this same past emission (FD-CO2), and the
future damages expected to occur from a present or future marginal emission (the SC-CO2). Total
L&D is then the discounted sum of each of these components multiplied by corresponding total
past and future CO2 emissions. It can be written in its simplest form as:
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Loss and damage = historical damages + future damages + future damages

from historical emissions from historical emissions from future emissions
(1)

This approach enables decomposition of L&D into past and future damages, and aligns the finan-
cial accounting framework of L&D with the existing framework for SC-CO2. Achieving align-
ment between L&D and SC-CO2 has at least three important practical benefits. First, alignment
in how these measures are defined and computed can harmonize their legal interpretation. World-
wide, many courts are grappling with the question of whether and how individuals should be
compensated for past and/or future loss from climate change and the related question of whether
emitters should be held liable or otherwise accountable for those payments11. Given the concep-
tual challenges of clarifying and establishing the legal frameworks for climate-induced damages,
harmonizing both L&D and SC-CO2 applications may expedite legal progress.

Second, alignment between L&D and SC-CO2 is essential to ensure alignment of financial incen-
tives, in any situation where charges and/or compensation for past and future damages is realized.
Failure to align L&D and SC-CO2 financially may result in market distortions (even if emissions
markets are not explicitly implemented) or may incentivize agents to undermine one system in
favor of the other. For example, if agents believe it will be cheaper to pay for past damages (via
HD-CO2) compared to future damages (via SC-CO2) then they may be incentivized to delay fi-
nancial settlement as long as possible, in order to maximize the quantity of emissions that are
categorized as historical. Harmonization of these concepts is necessary, albeit not sufficient, to
develop systems that achieve fair compensation but do not create such distortions.

Lastly, alignment between these two concepts enables the direct application of much of the scien-
tific machinery used to compute the SC-CO2, which was developed over the last several decades3,12,
to the calculation of L&D. The remainder of this paper explains how this calculation can be im-
plemented and then implements it in a variety of applications.

2.1 Loss and Damage as Unpaid Fair Compensation

Our approach to computing L&D treats CO2 emissions as an “asset” that generates a flow of rev-
enue for population 𝑖, which may be negative, after it is created (Figure 1a). We then compute the
net present value of that revenue flow that would be capitalized into the price of the asset, if the
asset were traded in markets that fully and fairly valued this revenue flow. We consider this price
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“fair” if, in the hypothetical world where 𝑖 had the ability to refuse the flow of value from the CO2

asset, this price is what 𝑖 would need to be compensated in order for 𝑖 to be indifferent between
accepting this flow and rejecting it. Of course, historically, no population had the ability to refuse
this flow of value.

2.1.1 Discounting historical damages

Time plays a key role in the calculation of L&D. Of particular importance are four time-points:
the time “responsibility” for past emissions begins, which we denote 𝑡0, the time each unit of
emissions occurs 𝑡𝑒, the year(s) in which damage occurs 𝑡, and the time “settlement” occurs for
damages from these emissions 𝑡𝑠. We define 𝑡𝑠 as the time when a transfer occurs such that 𝑖 is
made whole for the cumulative damages (past or future) resulting from the emission at 𝑡𝑒.

We propose that damages which occurred in the past, prior to settlement, are “discounted” similar
to how damages in the future are discounted13,14. In essentially all financial or decision-making
systems, future damages (or benefits) are discounted when they are weighed against damages oc-
curring in the present using a per-period “discount rate” 𝑟 that behaves similarly to an interest
rate. As damages occur further in the future, they are valued relatively less in comparison to cur-
rent damages when they are transformed into net present value terms. The selection of an appro-
priate discount rate for climate change policy has generated substantial controversy15, although
it is widely understood and agreed that a nonzero discount rate is crucial to the stability and con-
sistency of inter-temporal decision-making13,14,16. We consider multiple potential discounting
approaches.

Discounting damages that have occurred in the past means that their value is larger at the time
of settlement than at the time when they occurred (Figure 1b). Analogous to the effect of an in-
terest rate on unpaid debt, the inter-temporal discount rate causes the value of past damages to
grow exponentially until settlement occurs. This interpretation is conceptually and mathemati-
cally identical to how discounting future damage is understood (Figure 1c), the only difference
is whether settlement occurs before or after damages are experienced (Figure 1d). The applica-
tion of discounting to historical damages is consistent with standard practice in financial or legal
systems, where unpaid costs accrue interest until they are settled.

Discounting of past harm is important for two practical reasons. First, the costs imposed on the
harmed party 𝑖 have an impact that grows with time, since the resources allocated to cope with
the harm, or directly lost as a result of the harm, could have otherwise been applied productively
(e.g. invested). Second, if discounting is not applied, then an emitting party 𝑗 is always incen-
tivised to delay settlement, since the resources that would be transferred in settlement can be pro-
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ductively utilized until settlement. Therefore, achieving fair compensation for 𝑖 and alignment of
intertemporal incentives for 𝑗 require discounting of past damages.

2.1.2 Computing Losses

Here, we consider damages in the form of foregone income due to climate change caused by CO2

emissions. This approach can be extended to other forms of non-market damage, but we restrict
our attention in this analysis to the effects of annual average temperatures on income, which thus
implicitly embeds the net costs and benefits of all adaptations17. Our focus on average temper-
ature helps overcome concerns regarding the use of extreme event attribution in L&D assess-
ments18; unlike many extreme events, average temperatures are well measured throughout the
world (including in developing countries experiencing substantial harm), the science relating
changes in average temperature to anthropogenic forcing is well established, and multiple exist-
ing analyses relate changes in average warming to economic losses.

Damage from marginal emissions Let 𝑌𝑖𝑡 represent income for population 𝑖 in year 𝑡 which
depends on the climate realization 𝐶𝑖𝑡 in that year, which in turn depends the entire history of
anthropogenic CO2 emissions E. We wish to compute the change of income Δ𝑌𝑖𝑡 that would re-
sult (at an arbitrary ”damage year” 𝑡) from perturbing this history of emissions to some alternate
trajectory E′. Here, the “damage year” 𝑡 could be any year including and subsequent to the emis-
sions year 𝑡𝑒; a unit of emitted carbon dioxide – and the associated heat added to the climate sys-
tem – can remain in the atmosphere for centuries19,20, causing warming and subsequent damage
in many future years.

We initially consider a marginal (one year) perturbation at a specific time 𝑡𝑒 ≤ 𝑡 in the past, which
we denote Δ𝐸𝑡𝑒 . For this marginal emissions case, E′ and E only differ in year 𝑡𝑒; in other settings
of interest, for instance eliminating an entire country’s recent history of emissions, trajectories
will differ in multiple years.

Because CO2s are well-mixed in the atmosphere, impacts of this marginal unit of emission do not
depend on who emitted it. Damage at a specific moment in time (a flow) from the marginal emis-
sions perturbation Δ𝐸𝑡𝑒 is then the difference between the income expected under the perturbed
emissions relative to counterfactual emissions history:

Δ𝑌𝑖𝑡 (Δ𝐸𝑡𝑒) = 𝑌𝑖𝑡 (𝐶𝑖𝑡 (E′)) − 𝑌𝑖𝑡 (𝐶𝑖𝑡 (E)) (2)

This change could be either positive or negative depending on the time scale and population ex-
posed. However, as we will show, Δ𝑌𝑖𝑡 (Δ𝐸𝑡𝑒) is typically positive – that is, in the exposed popu-
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lation, income is higher in the counterfactual setting with lower emissions – and so we use ”dam-
age” as shorthand for the change in income.

Cumulative damage from marginal emissions We introduce two more time-points, 𝑡1 and 𝑡2,
which represent the beginning and end years over which damages are cumulated. The cumulative
damage to population 𝑖 from a unit of emission in year 𝑡𝑒 is the sum of damages experienced in
that country between 𝑡1 and 𝑡2, discounted to their value at an arbitrary time of settlement 𝑡𝑠.

𝐷𝑖,𝑡𝑒,𝑡𝑠 ,𝑡1,𝑡2 (Δ𝐸𝑡𝑒) =
𝑡2∑︁
𝑡=𝑡1

(1 + 𝑟)−(𝑡−𝑡𝑠) · Δ𝑌𝑖𝑡 (Δ𝐸𝑡𝑒) (3)

Discounting is done as a function of the difference between the year of damage 𝑡 and the settle-
ment year. Equation 3 can be used to decompose damages from historical and future emissions
into three additively separable components of damage, which is helpful both for mapping differ-
ent popular conceptualizations of ”loss and damage” into an aggregate measure of total L&D,
and for distinguishing loss and damage that has already occurred from that which is likely to oc-
cur in the future, as approaches to liability and compensation could differ across these damage
types.

First is the historical damage that has already occurred due to a past marginal emission cumulated
through the present day, which we term HD-CO2. In this setting, the settlement time 𝑡𝑠 equal to
the present day (denoted 𝑡𝑝), damages begin cumulating in the emissions year (𝑡1 = 𝑡𝑒) and end
in present day (𝑡2 = 𝑡𝑝), emissions are in the past (𝑡𝑒 < 𝑡𝑝), and damages are aggregated over
populations globally:

𝐻𝐷-𝐶𝑂2,𝑡𝑒 =
∑︁
𝑖

𝐷𝑖 (Δ𝐸𝑡𝑒) (4)

This is the quantity depicted in Fig 1e, aggregated over populations. Because the damage year is
prior to the year of settlement, the exponent on the discount rate is positive in Eq 3, which means
a higher discount rate will amplify the value of past damages and raise estimates of HD-CO2, as
described above.

A past emission will continue to cause damage in future years. This occurs for two reasons. First,
carbon dioxide emissions remain in the atmosphere for decades or centuries and will continue to
cause warming, and thus damage, unless removed. Second, and somewhat more subtly, past dam-
ages drive a wedge between the observed size of the economy and how large the economy would
have been without the warming; damage from future warming further expands the size of this
existing wedge. Together, these effects create a stream of expected future damages from a past
unit of emission, which we term FD-CO2, or the future damage from historical emissions. This
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is the quantity depicted in Fig 1f, aggregated over populations. Calculation is as for HD-CO2,
but impacts of a historical emission are cumulated beginning present day (𝑡1 = 𝑡𝑝) and contin-
ued until some distant future year, which in practice is typically 2100 or 2300. See Appendix for
mathematical representation. Here discounting works in the typical way, with higher discount
rates reducing the value of cumulative damages and lowering FD-CO2. Empirically, as we show,
FD-CO2 damages are very large relative to HD-CO2, given the long timescales over which green-
house gases and associated heat remain in the climate system. The implication is that even if
a large historical emitter were to rapidly achieve net-zero, its past emissions would continue to
cause substantial uncompensated damage.

The final component is the cumulative future damages expected expected to occur for a marginal
emission in the present year or in future years, discounted to present day. Emissions are now or in
the future (𝑡𝑒 ≥ 𝑡𝑝), damages start cumulating in the year of emission (𝑡1 = 𝑡𝑒) and end in some
distant future year as above, and settlement is the present day (𝑡𝑠 = 𝑡𝑝). Because this matches how
the SC-CO2 is typically computed, for simplicity we denote this component the SC-CO2. This is
the quantity depicted in Fig 1g, aggregated over populations.

Total L&D Total L&D from CO2, or the compensation required to make all parties whole for
cumulative damages from all past and future CO2 emissions, is then the sum of these three com-
ponents multiplied by total current past and future CO2 emissions. Summation of damages be-
gins in starting year 𝑡0, or time at which parties begin to be held accountable for their emissions.
Emissions may have occurred before 𝑡0, but it is not necessary to track the resulting damage if
parties agree not to hold the emitters responsible for those impacts. Existing agreements have not
yet defined 𝑡0, so in our analysis below, we present multiple calculations that vary 𝑡0. We note
that in many legal contexts, analogs to 𝑡0 are set to the earliest time when it can be shown that a
polluting party became aware that their actions could cause damage to other parties.

The above components correspond to damages from the marginal emission of one ton of carbon
dioxide at different points in time. Given total global CO2 emissions 𝐸𝑡𝑒 in each past and future
year, then total L&D can be written as:

𝐿𝑡0 =

∞∑︁
𝑡𝑒=𝑡0

𝐸𝑡𝑒 · (𝐻𝐷-𝐶𝑂2𝑡𝑒 + 𝐹𝐷-𝐶𝑂2𝑡𝑒 + 𝑆𝐶-𝐶𝑂2𝑡𝑒) (5)

which represents the cumulative present value of all past and future damages from past (since
𝑡0) and future emissions, net of adaptation, discounted to the present day. Here the summation is
over damages from each year of emissions, where HD- and FD-CO2 are non-zero for past emis-
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sions and SC-CO2 is non-zero for future emissions. Again in practice, summation typically stops
in some chosen future year (e.g 2100 or 2300).

This definition makes clear the direct link between our definition and computation of L&D and
the widely understood concept of the SC-CO2

3,12. Most proposals that incorporate the SC-CO2

charge the emitter the sum total of future damages at the time of emission, equivalent to our defi-
nition of SC-CO2. Full compensation for total L&D would additionally require compensation for
past and future damages from emissions that occurred in the past, calculated analogously.

Unit-specific L&D, and bilateral attribution to a single emitter The above approach also
enables calculation of total damages experienced by a specific population 𝑖, as well as attribution
of these damages to a specific emitting party 𝑗 (e.g. a person, or a firm, or a country). As in total
L&D, L&D for population 𝑖 is the sum of three bilateral components (cumulative past damage in
𝑖 from a marginal past emission, cumulative future damage in 𝑖 from that marginal emission, and
future damage in 𝑖 from a future marginal emission), multiplied by past and future global emis-
sions in each year. The component of these damages attributable to emitter 𝑗 instead multiplies
damages from past and future marginal emissions by yearly emissions from 𝑗 (see Appendix for
derivation).

There are multiple considerations in the calculation bilateral attributable L&D. First, both 𝑗 and
𝑖 are likely emitters, and emissions from 𝑖 can cause damage in 𝑗 just as emissions from 𝑗 can
damage 𝑖. The net compensation from 𝑗 to 𝑖 should then plausibly reflect the net damage flows.
For country emitters, we report gross flows (impact of emissions from 𝑗 on 𝑖, impact of emissions
from 𝑖 on 𝑗) from which net flows can readily be calculated.

A second consideration is if emissions from 𝑗 caused estimated benefits in 𝑖, either in gross or
net terms. While there is no theoretical reason why external damages should be compensated but
external benefits not compensated, existing policy discussions regarding loss and damage appear
to have only focused on damages – likely because aggregate damages are thought to be substan-
tially larger than benefits, and countries experiencing damage tend to be substantially poorer than
either emitting countries or high-latitude countries that might benefit from warming21. Neverthe-
less, we again report gross damage flows between 𝑗 and 𝑖, and we do not constrain damages to be
positive.

2.2 Ethical and legal considerations

Our proposed approach to computing L&D inherits three key challenges that embody ethical and
legal principles that we cannot resolve here.
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Selecting a discount rate The discount rate 𝑟 embodies trade-offs in economic valuation be-
tween different time periods, and it plays an important role in our proposed calculation of L&D.
Different approaches to selecting a discount rate have been widely debated in the context of com-
puting the SCCO2

13,14. To summarize that discussion, at one end of the spectrum, some argue22

for a low discount rate (e.g. 0.1-2% per year) on ethical grounds because it treats sequential gen-
erations more fairly; at the other end, some argue23 for a higher discount rate (e.g. 4-6% per year)
because it more closely reflects how inter-temporal tradeoffs are made in financial markets. We
do not present a favored discount rate for calculation of L&D here, but instead present results
across the range of values expressed in the literature. These include both fixed discount rates as
well as so-called ”Ramsey” discounting, which links discount rates to future economic growth
(Appendix). However, importantly, we again note that altering the discount rate changes how past
and future climate damages are valued (in the present) in opposite ways (Figure 1D): A lower dis-
count rate increases the present value of future damages, but decreases the present value of his-
torical damages; conversely, a higher discount rate decreases the present value of future damages,
but increases the present value of historical damages.

When is 𝑡0? It remains widely debated when to begin counting emissions that parties should
be held accountable for. GHG emissions rose rapidly beginning in the mid-20th century, and
these emissions were usually the result of activities that benefited the emitters and their descen-
dants. However, many legal systems do not hold parties accountable for generating damages if
the party did not know their actions caused harm. Following this logic, previous analyses have
worked to establish when some major emitters first understood that GHGs would cause harm.
For example, scientists at Exxon warned company executives about potentially damaging global
warming beginning in at least 1977, and multiple utilities and car companies were also aware
of anthropogenic warming by the 1970s24; widely-publicized hearings on the science of anthro-
pogenic climate change were held in US Congress by the mid-1980s. Here, we do not resolve
what the correct value of 𝑡0 is, but instead present results for a range of values. For country-level
L&D estimates, we set our baseline estimate of the ”year of knowledge” as 1990, or a year af-
ter the establishment of the IPCC. Using text-based analysis of United Nations documents, other
analyses set the date a decade earlier25, and we thus compute estimates using 1980 as an alternate
start year.

Consumption or production-based emissions Should emitting parties be held responsi-
ble for the emissions associated with production decisions made by the party, or should they be
held accountable for the emissions associated with the goods and services consumed by the en-
tity? This question is relevant for assigning emissions to countries, whose ability to trade means
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that production- and consumption-based emissions can differ26. It is also relevant for assigning
emissions to companies, who emit during the production process but who also produce products
whose consumption is associated with emissions27,28. Views differ on to whom emissions re-
sponsibility, and thus damages, should be assigned. Our approach, where possible, is to simply
report both production- and consumption-based emissions and their associated damages.

3 Empirical implementation

To implement our proposed framework, we build on previous work25,29 and combine emissions
inventories, reduced- and full-complexity climate models, empirical damage functions, and ob-
served and projected changes in socioeconomic conditions to estimate past and future economic
damages from many observed or projected emissions perturbations (see Appendix for additional
details). Figure A1 demonstrates the empirical approach to estimating historical L&D between a
population 𝑖 experiencing damage and an emitting entity 𝑗 , using damages imposed on the Brazil-
ian economy by US emissions from 1980 through 2020 as an example. We use the reduced com-
plexity model FaIR to first calculate the estimated change in global mean surface temperature
(GMST) from the removal of US emissions from global emissions totals between 1980 and 2020
(Fig A1a-b). We then use the CMIP6 ensemble of global climate models30 to “pattern scale”
GMST changes to country-level changes, subtracting country-specific estimated annual temper-
ature changes from the observed time series of annual temperature in each country (Fig A1c-d).
Next, using an updated statistical model trained on 60 years of global data that relates country-
level economic growth rates to variation in average temperature31, we estimate what GDP would
have been in each country had US emissions not caused warming in each year (Fig A1e). The
temperature-GDP damage function is robust across statistical models; has not changed apprecia-
bly in last 60 years (Fig A2) indicating limited adaptation to date; and provides strong evidence
that temperature is affecting the growth rate of GDP, not just the level (Fig A3; Appendix). We
show that an existing critique of these estimated temperature-growth relationships32 uses an ap-
proach to model selection that can yield highly biased estimates of the relationship of temperature
to economic output (see Appendix). Finally, we cumulate discounted damages between initial
emissions year (here, 1990) and settlement year (here, 2020) (Fig A1f), using a range of discount-
ing approaches including fixed discount rates and Ramsey discounting (see Appendix for addi-
tional description).

The approach is generalizable to the calculation of cumulative damages, for individual popula-
tions or globally, through 2020 and after 2020 for any marginal emission or sequence of emis-
sions prior to (or including) 2020. Our focus is on CO2 but could easily be extended to any other
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GHG for which their existed the analogous computational components (i.e. emissions invento-
ries and methods to estimate global and local warming from marginal emissions). We show how
uncertainty can be propagated from each step in the process, including ”climate sensitivity un-
certainty” regarding the translation of marginal emissions to changes in GMST, ”climate pattern
uncertainty” in the translation of GMST to local warming, and ”regression uncertainty” in the
translation of local warming to damages. We distinguish these sources of uncertainty from other
analytic choices (e.g. the discount rate or the last future year in which impacts occur) over which
there is also not certainty but where probability distributions are poorly defined.

4 Results

4.1 Marginal damages

Figure 2 shows estimates of HD-CO2, FD-CO2, and SC-CO2, under different discount rates and
different emission years from 1990-2020 (numeric values are given in Figure A4). In general,
earlier emissions pulses tend to generate larger estimated cumulative damages. This pattern oc-
curs for two reasons. First, earlier emission means warming is acting on an economy for more
years, and thus will generate larger cumulative damages under most damage functions. Second,
our damage function links GDP growth to annual temperature, and growth effects cumulate: the
marginal effect of warming in one year on total GDP is a function of past cumulative impacts.
The use of other damage functions (e.g. for mortality) will have this first feature but not the sec-
ond.

However, damages are not monotonically decreasing as a function of the year of the emissions
pulse, at least for past damages. Cumulative discounted damages through 2020 are highest for
emissions pulses in the mid-1990s, as early-90s emissions pulses generate initial marginal ben-
efits because the majority of global GDP is still below the estimated temperature optimum (Fig
A5). For future cumulative damages between 2021-2100 from these historical emissions, earlier
emission years generate uniformly higher cumulative damages, as by 2020 the majority of global
GDP is beyond the historical optimum temperature.

Importantly, we estimate that FD-CO2, the present value of future damages from a marginal past
emission is at least an order of magnitude larger than the present value of past damage from the
same emission (HD-CO2), at least for emissions since 1990. The differences are larger the lower
the discount rate. For instance, under a 2% discount rate, 1Gt CO2 emitted in 1990 causes $4 per
ton in cumulative discounted global damages by 2020 and $327 per ton in cumulative damages
between 2021 and 2100, a 80-fold difference; at a 3% discount rate the difference is 54-fold, and
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at 5% it is 28-fold. The implication is that under most discount rates, L&D settlements equivalent
to estimated past damages will only account for a very small subset of the anticipated total dam-
ages that a historical emission will cause. Settling debts for past damages will not settle debts for
past emissions.

Aggregate past and future damages from historical emissions are a mix of modest benefits in
high-latitude countries, where we find warming increases GDP growth, and widespread dam-
age in mid-latitude and tropical countries, where warming harms growth (Fig 2b-c). This geo-
graphic pattern is consistent with previous studies that have used an earlier version of the damage
function to quantify the country-level impacts of historical21 and future31,33 warming. It is also
broadly consistent with the spatial pattern of estimated climate damages from other damage func-
tions, including heat-related mortality34 and crop productivity35.

As depicted in Fig 1, higher discount rates reduce future damages from historical emissions but
tend to amplify historical damages from these emissions. The effect is larger on the former than
the latter, given the longer time period over which future damages are aggregated. For instance, a
1Gt emission in the year 2000 generates $4.2 in cumulative global damages per ton by 2020 un-
der a 2% discount rate versus $5.3 in cumulative global damages per ton by 2020 under a 7% dis-
count rate. By contrast, the same emission generates $294 in damages per ton after 2020 (through
2100) under a 2% discount rate versus $48/ton under a 7% discount rate. The effect of discount-
ing on historical damages is less consistent for emission years early in our sample (pre-1995), as
many large economies initially benefit from warming and those benefits get large weight under
a high discount rate, reducing damages (see Fig A5; after 1995, higher discount rates generate
larger historical damages.

Social cost of carbon dioxide Given its policy salience, we report SC-CO2 values under a
broad range of analytic choices, including different discounting schemes, assumed counterfactual
future growth rates (the rate at which economies would grow absent warming), whether growth
effects or damages occur past 2100, and which statistical model is used for a damage function.
See Figure A6 for a schematic depiction of how damages are computed under alternate time hori-
zons.

Under relatively conservative assumptions (2% discount rate, slow counterfactual growth, no
temperature impacts on growth past 2100) we estimate a SC-CO2 of $471/ton, substantially larger
than recent ”bottom up” estimates proposed by the US EPA36 (Fig 2e), but comparable to past es-
timates using a similar approach33. However, cumulating impacts through 2300, assuming lower
fixed discount rates or using Ramsey discounting, and/or assuming higher counterfactual growth
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rates – all choices consistent with recent guidance – yield substantially higher estimates (Fig A8).
See Appendix for additional details on these choices.

For a set of analytic choices regarding discounting, time horizon of impacts, counterfactual growth
rates, and the statistical model used for the damage function, we can calculate uncertainty in the
estimated SC-CO2 resulting from quantifiable uncertainties in our empirical pipeline. We find
that the two largest sources of uncertainty are uncertainty in the historical relationship between
temperature and growth (as estimated by our regression analysis), and uncertainty in the sensi-
tivity of GMST to a marginal emission (as estimated by FaIR; Fig A9). Less important is uncer-
tainty across the climate model ensemble in the mapping of GMST to local warming. We do not
consider uncertainty in emissions inventories.

4.2 L&D attributable to specific emitters

We show how these estimates of HDCO2, FDCO2, and SCCO2 can be used to calculate compo-
nents of L&D from three types of emitters: individuals, companies, and countries. Building on
multiple recent efforts to calculate average emissions reductions that would result from changes
in individual behavior37,38, we estimate the reduction in global damage that would occur if mul-
tiple of these behaviors had been sustained by an individual over the last decade (2010-2020).
We find that taking one additional long-haul airline flight (8000km, or roughly round trip from
San Francisco to New York) per year for the last decade would have generated $20 in discounted
global damages through 2020 and would be expected to generate $5500 in discounted damages
between 2021 and 2100 (2% discount rate; Fig 3a and Fig A10a). Switching to a vegetarian diet
from a representative non-vegetarian diet, installing and using a heat pump, or reducing driv-
ing by 10% would have each resulted in $1-2k of global economic benefits (reduced damages)
through 2100 if undertaken for the past decade, and recycling or eating 1 fewer serving of beef
per month over the same period would generate ∼$100 in global discounted future benefits. As
with marginal emissions, the cumulative past damages from these past emissions are about two
orders of magnitude smaller than the future damage from these past emissions, indicating the last-
ing impact of even relatively small changes in individual behavior.

Given the high estimated costs of airline travel in particular, we extend our analysis to settings
in which individuals utilize private rather than commercial travel, a topic that has been debated
widely in public forums39. Using public data on private jet flights and associated emissions by
numerous American celebrities for a single year (see Appendix for details on the data), we calcu-
late the future discounted damage of flights these celebrities (or their aircraft) took in 2022. We
calculate that emissions from private flights taken by Bill Gates, Jeff Bezos, Floyd Mayweather,
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Elon Musk, Jay-Z, and Taylor Swift in 2022 will each generate more than $200k in discounted
aggregate damages by 2100, or between 0.05% (Mayweather) and 0.00002% (Gates, Musk) of
each individual’s net worth (Fig 3b). These estimates highlight the substantial, and perhaps un-
recognized, social cost of particular individual consumption choices.

Building on recent efforts to estimate firm-level emissions over time40, we estimate the cumula-
tive historical and future damage associated with emissions from the production and use of fossil
fuels (i.e. combined ”Scope 1” and ”Scope 3” emissions) produced by global “carbon majors”, or
large state-owned, publicly-owned or private companies that are substantial producers of oil, gas,
or coal. We estimate that emissions between 1988-2015 from the largest single company emitter,
Saudi Aramco, resulted in $240B in cumulative global economic damages by 2020 (Figure 3c,
Fig A10c). This damage estimate is equivalent to roughly 0.6years of revenue from the company,
using revenue data from 2021. We estimate future damages from these past emissions to be >50x
larger, totaling $13T in cumulative discounted damages through 2100. Cumulative damages from
the largest non-state-owned emitter, ExxonMobil, equalled $120B over the same period, cumu-
lated through 2020, or roughly equivalent to 36% of annual revenue in 2021. We estimate that
future damages through 2100 from ExxonMobil’s past emissions equal $5.9T. Historical dam-
ages from other carbon majors are equivalent to between 17% of current annual revenue (China
National Petroleum Corp) to 143% of annual revenue (Gazprom). Excluding ”Scope 3” emis-
sions from this calculation (emissions associated with the use of sold products) and restricting
attributed damages to ”Scope 1” emissions from carbon majors (the emissions resulting directly
from the production of the products sold) yields damage estimates an order of magnitude smaller
(Figure A11).

Finally, we calculate country-level bilateral estimates of historical damages from past emissions,
i.e. the country-level cumulative damages to date from historical emissions from other coun-
tries, for emissions between 1990-2020 (Fig 4). The existence and magnitude of such damages
are common focal point of recent policy discussions on L&D, and have been estimated in a small
body of recent work25,29. US CO2 emissions over the period were the largest source of damages,
resulting in $1.97T cumulative damages by 2020 (2% discount rate). ∼15% (or $293B) of these
damages occurred in India and an additional ∼8% ($167B) in Brazil from US emissions, the
two countries that we calculate have suffered the largest total damages to GDP. Emissions from
China were the second largest source of damages over the period ($1.7T), followed by emissions
from the EU countries ($1.24T). Estimates are roughly twice as large for emissions starting in
1980 rather than 1990 (Fig A12), highlighting the importance of clarifying 𝑡0 in historical L&D
calculations. Estimates without land-use emissions are roughly similar (if slightly smaller) for
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most emitters, and differ most substantially for countries for whom land use emissions are a large
fraction of historical emissions (e.g. Brazil, Fig A14). Computing loss and damage estimates
from consumption-based rather than production-based emissions (neither accounting for land use
products) results in a roughly similar ranking of countries responsible for the largest damages, al-
though estimates for China and Russia are roughly 14-37% smaller and estimates for other large
importers (e.g. Japan) are 16% higher (Fig A13).

While compensation for economic benefits experienced as a result of warming is not currently
a focus of L&D policy discussions, we estimate that a smaller set of high-latitude countries ex-
perienced substantial negative damages – i.e. benefits – from historical global emissions. We
calculate that EU countries’ economies were in aggregate $3.62T larger due to warming from
other (and own) countries emissions since 1990, and that Canadian and Russian economies were
both $1.33T and $1.24T larger (bottom panel, Fig 4). In principle, these countries could com-
pensate the emitting countries that generated the warming, which include all the top emitters that
also generated the damages already described. We calculate that US emissions since 1990 caused
$1.97T in aggregate damages to one set of countries but $1.46T in aggregate benefits to another.

4.3 Paying down damages

Direct monetary compensation offers one approach for an emitting entity to address damages
caused by its emissions, and is perhaps the only reasonable approach to address damages that
have already occurred (HD-CO2). However, for the future damages from past or current emis-
sions (FD-CO2, SC-CO2), emitting entities could instead consider greenhouse gas removal (or
specifically carbon dioxide removal, CDR) as a way to limit future damages, particularly if the
per-ton cost of permanent and verifiable CDR fell below HD-CO2 or SC-CO2.

We abstract from the critically important and largely unresolved issues of feasibility, scale, and
economics of CDR41, and consider a simple scenario that assumes a CDR technology exists that
can remove a desired quantity of CO2 permanently from the atmosphere. We find that the effec-
tiveness of using CDR for reducing future damages from past emissions declines with the time
elapsed between emissions and capture (Fig A15). For a ton of CO2 emitted in 2020, an imme-
diate removal of an equivalent ton fully eliminates damages. Delaying removal for 10 years re-
sults in a roughly 80% reduction in damages relative to no removal, considering cumulative dam-
ages through 2100 only, and a 25 year delay results in a 50% reduction in damages through 2100.
Damages increase with delay length both because (1) additional warming (and thus damage) that
occurs during the years in which the extra ton of CO2 is in the atmosphere and (2) because of the
widening wedge between the emissions-perturbed economy versus the counterfactual economy
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during these years – a wedge that is sustained (but does not further grow) even as the perturbed
economy returns to its counterfactual growth rate after the ton is removed (see Fig A15c for a
schematic representation of this effect). As a consequence, damages do not stop when an emis-
sion is re-captured and the magnitude of these continuing damages increase with the delay be-
tween emission and capture. Thus, use of CDR as a tool to redress future damages from past or
current emissions requires careful attention to the timing of removal.

5 Discussion

We propose a formal definition for quantifying L&D that is grounded in economic principles and
in recent advances in the measurement of climate change damages. We also develop a framework
for its estimation and an empirical implementation of that framework. Our resulting estimates of
damages caused by emitting entities to receiving entities do not necessarily equal what is “owed”
by the former to the latter, as that is a moral and legal question. However, our estimates do offer a
set of quantitative benchmarks for the size of transfer needed to make the recipient party “whole”.

Multiple avenues exist for addressing damages that have already occurred (HD-CO2), including
lump sum payments through the international system, or ”debt-for-climate” swaps that have been
proposed to fund mitigation or adaptation42. Challenges in these aggregated approaches include
whether those who have been harmed, which includes individuals and households, would receive
meaningful compensation. Well-developed opportunities for transfer payments also exist outside
the international system, such as bilateral, low-cost transfer payments to the mobile phones of
low-income households in developing countries, which have been shown to have substantial eco-
nomic benefits for recipient households and communities43,44. Our results, however, do not speak
to who within countries is deserving of, or entitled to, such transfers.

For the future flow of damages from these same historical emissions (FD-CO2), a suite of options
could in principle be used to limit or eliminate these damages beyond direct compensation, in-
cluding CDR, solar radiation management, or investments in adaptation in the harmed country
to reduce future damages. All face substantial challenges. CDR could have advantages relative
to monetary compensation in the setting in which direct compensation is difficult, for instance if
there is no feasible way to transfer resources to those who have been harmed (e.g households with
no access to financial services) or a concern that aggregate transfers at the country level will not
appropriately benefit parties within the country who were harmed. However, as we show, even if
it were cost-effective and feasible at scale, using CDR to remove past emissions only eliminates a
portion of ongoing damages, with that portion declining the greater the delay between emissions
and capture. Regarding solar radiation management, the benefits and costs of possible approaches
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remain poorly understood, with important sectors in developing-country economies unlikely to
benefit from some proposed approaches45,46, and its deployment remains highly controversial. Fi-
nally, investments in adaptation are a critical approach for limiting future damages, but there ex-
ists scant quantitative evidence that identifies specific investments that are able to reduce risk and
limit damages at scale47, and limited evidence that adaptation has been happening in the aggre-
gate in recent decades (Fig A2b). Credible use of these alternate strategies to compensate future
harm from past or current emissions will likely require a stronger evidence base than currently
exists. Providing this evidence base is a critical area for future research.

Our framework cannot resolve difficult legal, ethical, and empirical questions related to the extent
to which an emitting entity ”owes” another entity for damages caused by emissions related to its
activities. We do not take a stand on whether a party is responsible for the emissions associated
with its production or consumption activities, or whether they are responsible for the emissions
resulting from the use of products they produce. At the country level, using production-based or
consumption-based emissions results in relatively minor differences in bilateral attributed L&D
for historical damages. However, choices over whether to attribute emissions resulting from the
use of a company’s product (”Scope 3” emissions) rather than just the emissions from producing
the product has large implications for attributable damages among fossil fuel companies. Our ap-
proach also focuses on the (typically negative) externality that emissions from an emitting entity
creates for other entities, due to the warming and subsequent economic impact from these emis-
sions. We do not consider the potential for related externalities, both positive and negative, that
could occur as a result of the economic activity in the emitting entity that generated the emis-
sions. These could include, for instance, the development of technologies or practices with ben-
efits in the “receiving” entity (e.g. new vaccines), or conversely any economic advantage that is
gained by the emitting entity that harms the receiving entity (e.g., the utilization of a inexpensive
coal resource giving one region an advantage in low-cost manufacturing at the expense of an-
other). We know of no empirical work that addresses the relevant bi-lateral magnitudes of these
additional externalities.

Our quantitative estimates capture an important aggregate channel – GDP – through which cli-
mate damages have occurred, and likely subsume a large class of microeconomic channels through
which warming can have negative economic impacts, including changes in agricultural productiv-
ity, labor supply and labor productivity, and energy use. Other channels that are poorly captured
in GDP data (e.g. heat related mortality34) or that are not highly correlated with interannual vari-
ation in country level temperatures (e.g. sea level rise48) will not be reflected in our current esti-
mates. To the extent that these channels are quantitatively important, our damage estimates will
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understate the total damages associated with historical emissions. Similarly, our approach does
not account for the impact of pollutants that are co-emitted with CO2; these pollutants (e.g. par-
ticulates) tend to be less well-mixed than GHGs and thus their damages depend on the location of
emission49. However, our basic approach could be amended to include these other channels.

More broadly, our framework for computing loss and damage should be applicable in any setting
where there exists the following ingredients: accurate baseline measurements of some outcome
of interest (GDP, health, etc), a credible damage function linking that outcome to a measured cli-
mate variable, a modeling approach able to estimate local changes in that climate variable as a
function of emissions perturbations, and accurate estimates of emissions from an emitting entity
of interest. Given rapid scientific progress on damage estimation50, climate attribution51, and
emissions measurement (e.g.52), opportunities for a substantially expanded quantitative under-
standing of loss and damage appear close at hand.
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Figure 1: Framework for emissions damage accounting. a. A unit of emissions in year 𝑡𝑒 cre-
ates an emitted asset which generates a flow of damages in future year(s) 𝑡 in population 𝑖. These
damages can be compensated (i.e. paid for in transfer payment the emitter to 𝑖) in settlement year
𝑡𝑠. If settlement year is after damage year (𝑡𝑠 > 𝑡), then the damage accrues interest (b). If the
settlement is in advance of anticipated future damage (𝑡𝑠 < 𝑡), then future damage is discounted
back to the settlement year (c). d. A higher discount rate amplifies present value of past dam-
ages, and decreases present value of future damages, relative to a lower discount rate. e Payment
owed for multiple periods of uncompensated past damage (HD-CO2) is additive. f Past emission
can continue to create future damage even if past damage is compensated (emissions remain in
atmosphere), requiring additional compensation (FD-CO2). g The social cost of carbon dioxide
(SC-CO2) is a special case where settlement for future damages occurs at the time of emission.
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Figure 2: Estimated damage from a marginal unit of past or future emissions. a. Estimates
of HD-CO2, calculated as per tonne cumulative impacts through 2020 of a 1Gt pulse of CO2
emitted in a given year, starting in 1990, under different fixed discount rates. b. Estimates of
FD-CO2, or the cumulative damages after 2020 of each of these pre-2020 emission pulses. Here
we assume damages end in 2100. The post 2020 damage estimates for a pulse in 2020 are esti-
mates of the SC-CO2 in 2020. Numeric values are provided in Figure A4. c-d. Spatial distribu-
tion of HD-CO2 and FD-CO2 from 1990 1t CO2 emission, under a 2% discount rate. Countries
with blue colors have cumulative benefits, countries with red colors have cumulative damages,
countries in grey have no data. e. Estimate of the SC-CO2, here a 1t CO2 pulse in 2020, under
three sets of analytic choices: impacts end in 2100, comparable to estimates in (b); temperature
has no effect on economic growth after 2100 but impacts cumulate through 2300 (see Fig A6 for
schematic); and growth impacts continue through 2300. For each, SC-CO2 is computed under
two discounting schemes: a fixed 2% discount rate (red) and Ramsey discounting calibrated to a
near-term rate of 2% (purple).

a   Cumlative damage through 2020 (HD-CO2) b   Cumlative damage 2021-2100 (FD-CO2)

c  Impacts through 2020 of 1t pulse in 1990 d  Impacts 2021−2100 of 1t pulse in 1990

e  SC-CO2 estimates under different analytic scenarios
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Figure 3: Estimated damages from emissions related to individual behaviors or firm out-
put over varying time periods. Estimates show cumulative past (through 2020) and/or expected
future damages (through 2100) from estimated emissions resulting from different choices by in-
dividuals or firms. Cumulative damages are discounted at 2%. a. Estimated past or future cu-
mulative global damages from emissions associated with individual behaviors, under the as-
sumption that each was carried out by one individual for the 2010-2020 decade (for instance,
one fewer long-haul flight per year for a decade); future damages exceed past damages by two or-
ders of magnitude (note log scale). b. Cumulative damages through 2100 from emissions flights
taken in 2022 by celebrities’ private jets. Damage as a percentage of net worth of each individual
shown in parentheses. c. Cumulative damages through 2020 and from 2021 through 2100 from
the emissions associated with the production and use (Scope 1 + 3) of products produced by dif-
ferent large oil and gas companies (“carbon majors”) between 1988-2015. Numerical values are
provided in Fig A10.



Figure 4: Bilateral attribution of historical damages or benefits due to country-level emis-
sions since 1990. Emissions include both fossil fuel and land use emissions. Emitting countries
shown in left column, ”receiving” countries shown in right column. Bar widths are proportional
to damages or benefits. Total cumulative damages attributable to each emitter, or experienced by
each recipient, are in parentheses. Flows above the zero line are damages, flows below the zero
line are benefits; for instance, US emissions since 1990 generated $2.07T in damages in one set
of countries, and $1.46T in benefits in another set of countries. All estimates are under a fixed
2% discount rate.
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A Appendix

A.1 Concept definitions

Here for completeness we write out the definitions for HD-CO2, FD-CO2, SC-CO2, as well as for
total and bilateral L&D. HD-CO2, or the cumulative global historical damage from a marginal
emission in past year 𝑡𝑒 cumulated and discounted to present day 𝑡𝑝, is:

𝐻𝐷-𝐶𝑂2𝑡𝑒 =
∑︁
𝑖

𝑡𝑝∑︁
𝑡=𝑡𝑒

(1 + 𝑟)−(𝑡−𝑡𝑝) · Δ𝑌𝑖𝑡 (Δ𝐸𝑡𝑒) (6)

where Δ𝑌𝑖𝑡 (Δ𝐸𝑡𝑒) is damage in year 𝑡 for population 𝑖 from this marginal emission as defined in
Equation 2 above. In this calculation, 𝑡𝑒 < 𝑡𝑝 and 𝑡𝑝 is the present day (2020 in our calculations).

Damages from this past emission continue into the future. The discounted cumulative global total
of damages from this past emission, i.e. FD-CO2, beginning in present day and ending in some
distant future year, is:

𝐹𝐷-𝐶𝑂2𝑡𝑒 =
∑︁
𝑖

∞∑︁
𝑡=𝑡𝑝

(1 + 𝑟)−(𝑡−𝑡𝑝) · Δ𝑌𝑖𝑡 (Δ𝐸𝑡𝑒) (7)

Emissions are again in the past (𝑡𝑒 < 𝑡𝑝) but damage years 𝑡 begin in the present year and go into
the future. Discounted global damages from a marginal present or future emission, i.e. SC-CO2,
are written identically to FD-CO2 but are only defined when 𝑡𝑒 ≥ 𝑡𝑝:

𝑆𝐶-𝐶𝑂2𝑡𝑒 =
∑︁
𝑖

∞∑︁
𝑡=𝑡𝑝

(1 + 𝑟)−(𝑡−𝑡𝑝) · Δ𝑌𝑖𝑡 (Δ𝐸𝑡𝑒) (8)

Total L&D is then the cumulative sum of each of these components multiplied by total CO2 emis-
sions in each year starting in some year 𝑡0, as shown in Equation 5. Bilateral attributable L&D for
damages experienced by population 𝑖 due to emissions from emitter 𝑗 , which we write 𝐿 𝑗→𝑖,𝑡0 , is
the analogous sum of population-specific historical and future damage components, multiplied by
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emissions from 𝑗 and cumulated:

𝐿 𝑗→𝑖,𝑡0 =

𝑡𝑝∑︁
𝑡𝑒=𝑡0

( 𝑡𝑝∑︁
𝑡=𝑡𝑒

(1 + 𝑟)−(𝑡−𝑡𝑝) · Δ𝑌𝑖𝑡 (Δ𝐸𝑡𝑒)︸                                ︷︷                                ︸
𝐻𝐷-𝐶𝑂2,𝑖,𝑡𝑒

·𝐸 𝑗 ,𝑡𝑒 +
∞∑︁
𝑡=𝑡𝑝

(1 + 𝑟)−(𝑡−𝑡𝑝) · Δ𝑌𝑖𝑡 (Δ𝐸𝑡𝑒)︸                                ︷︷                                ︸
𝐹𝐷-𝐶𝑂2,𝑖,𝑡𝑒

·𝐸 𝑗 ,𝑡𝑒

)
+

∞∑︁
𝑡𝑒=𝑡𝑝

∞∑︁
𝑡=𝑡𝑝

(1 + 𝑟)−(𝑡−𝑡𝑝) · Δ𝑌𝑖𝑡 (Δ𝐸𝑡𝑒)︸                                ︷︷                                ︸
𝑆𝐶-𝐶𝑂2,𝑖,𝑡𝑒

·𝐸 𝑗 ,𝑡𝑒

(9)

In each term, the outer summation is over emission years, and the inner summation is over the
subsequent years in which each emission year creates damages in 𝑖.

A.2 Calculating damages from an emissions perturbation

To estimate Equations 6-9, we seek to quantify how a given quantity of greenhouse gas emitted
in an initial year 𝑡0, or a sequence of GHG emissions in multiple years, affects local and global
climate in subsequent years, and how these climate changes shape economic output relative to a
counterfactual where emissions were unchanged.

To translate any emissions history into a change in local climate, we first use a reduced-complexity
climate model to translate emissions into a change in global mean surface temperature (ΔGMST),
and then use the CMIP6 ensemble of fully-coupled global climate models30 to translate global
temperature changes into local changes. Specifically, for the first step, we use v2 of the Finite
Amplitude Impulse Response model (FaIR)53, a reduced complexity climate model with a carbon
cycle that is able to simulate equilibrium and impulse-response behavior of more complex global
climate models. For any emission pulse in time 𝐸𝑡0 , FaIR returns estimates of ΔGMST in years
𝑡 > 0, which we denote 𝛿𝑇𝑡 = 𝑣(𝐸𝑡0). In such a pulse experiment, we note that this estimate will
represent the amount of warming in year 𝑡 that occurred due to emissions starting in 𝑡0, which
will not be equal to the amount of warming since 𝑡0, since the latter is substantially affected by
any prior emissions. Similarly, we can use FaIR to compute the change in temperature in any year
from a perturbed history of emissions, by differencing estimates run under perturbed versus coun-
terfactual trajectories: 𝛿𝑇𝑡 = 𝑣(E∗) − 𝑣(E). Following previous work, we calculate uncertainty in
estimates of 𝛿𝑇𝑡 by resampling key parameters in FaIR, including the transient climate response,
the realized warming fraction used to calculate the equilibrium climate sensitivity, the short ther-
mal adjustment time and the timescale of rapid carbon uptake by the ocean mixed layer, using
parameter values from previous work54.
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To map this GMST change to local temperature changes for population 𝑖 (typically a country, in
our applications), we use a pattern scaling approach based on FAQ4.3 of the IPCC WGI AR655

to compute, using the CMIP6 ensemble of global climate models (GCMs), the ratio of location-
specific warming to area-weighted GMST. Following the IPCC, we calculate the forced temper-
ature response as the difference between temperature projected in the late 21st century of the
SSP3-7.0 future climate forcing scenario and the early-industrial historical period, for each of
the 30 GCMs for which we are able to match a historical and SSP3-7.0 realization in the CMIP6
archive. For each GCM, we calculate the forced temperature response separately for each model
grid cell and for the latitude-weighted average across all grid cells globally. Then, for each grid
point, we compute the ratio of the grid-specific warming to the global-average warming. These
grid-specific ratios are then applied to the FaIR-estimated change in GMST, and aggregated to the
spatial unit of interest (e.g. country).

Specifically, denoting each CMIP6 model as 𝑚 and grid cell as 𝑔, we compute grid- and model-
specific warming as the difference in temperature between projected temperature under SSP3-7.0
averaged over 2080-2100 ( ¯

𝑇
𝑓
𝑔𝑚) and model-estimated temperature in the early-industrial period

averaged over 1850-1900 ( ¯𝑇 ℎ
𝑔𝑚)

¯𝛿𝑇𝑔𝑚 =
¯

𝑇
𝑓
𝑔𝑚 − ¯𝑇 ℎ

𝑔𝑚 (10)

¯𝛿𝑇𝑚 =
1
𝑔

∑︁
𝑔

𝜆𝑔 ¯𝛿𝑇𝑔𝑚 (11)

𝑟𝑔𝑚 =
¯𝛿𝑇𝑔𝑚

¯𝛿𝑇𝑚
(12)

We then apply this ratio of grid-to-global average warming to the estimate of GMST from FaIR
to arrive at grid-specific estimates of warming due to the emissions perturbation of interest, and
then we calculate warming in spatial unit 𝑖 as the population-weighted average of warming in
each grid cell that falls into 𝑖:

𝛿𝑇∗
𝑔𝑚𝑡 = 𝛿𝑇𝑡 ∗ 𝑟𝑔𝑚 (13)

𝛿𝑇∗
𝑖𝑚𝑡 =

1
𝑔

∑︁
𝑔∈𝑖

𝛾𝑔𝛿𝑇
∗
𝑔𝑚𝑡 (14)

where 𝛾𝑔 are grid-cell populations56. This is computed separately for each year in which the
emissions perturbation led to warming, with 𝑟𝑔𝑚 held fixed, and repeated for each spatial unit 𝑖
and climate model 𝑚.
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To translate changes in temperature into economic impacts, let 𝑓 () represent a damage function
that maps changes in temperature to changes in an outcome of interest. Because many outcomes,
including agricultural productivity, mortality, energy use, and aggregate economic output, exhibit
a non-linear response to warming, we calculate impacts in a desired location 𝑖 and year 𝑡 as the
difference in outcomes between a counterfactual temperature in that year 𝑇𝑖𝑡 and perturbed tem-
perature in that year 𝑇𝑖𝑡 + 𝛿𝑇∗

𝑖𝑚𝑡
:

𝛿𝑦𝑖𝑚𝑡 = 𝑓 (𝑇𝑖𝑡 + 𝛿𝑇∗
𝑖𝑚𝑡) − 𝑓 (𝑇𝑖𝑡) (15)

When damages are being assessed historically – i.e. where 𝑡 < 2020 – counterfactual temperature
𝑇𝑖𝑡 is simply the observed population-weighted annual average temperature in unit 𝑖, using data
from ERA557; the perturbed temperature then adjusts this temperature by the pattern-scaled 𝛿𝑇∗

𝑖𝑚𝑡

as computed above, to reflect the warming effect of the emissions perturbation of interest. When
𝑡 is a future year, we construct counterfactual temperatures for a given location by again using the
FaIR + pattern-scaling approach described above. Specifically, for each country 𝑖, future coun-
terfactual temperature in years after 2020 is the average of observed temperature over the last ten
years of the historical dataset (2010-2020) plus the projected change in temperature in each future
year relative to 2020, based on historical emissions and projected future emissions following the
SSP3-7.0 trajectories. As above, we use FaIR to calculate the change in GMST from these emis-
sions and the GCMs to pattern-scale this global warming to local warming. In this setting, future
warming is affected both by all past (observed) and all future (projected) global emissions. Per-
turbed future temperature in future years 𝛿𝑇∗

𝑖𝑚𝑡
is calculated similarly, but with the desired emis-

sions perturbation added or subtracted from the ”baseline” SSP3-7.0 trajectory before recomput-
ing GMST change and pattern-scaled local warming.

To estimate the damage function 𝑓 (), we focus on an existing empirically-derived damage func-
tion that links temperature fluctuations to GDP growth rates, updating previous work31 with data
through 2019, as described below. Because growth is a cumulative process, the effect of a given
year’s temperature fluctuation on economic output depends on the previous year’s temperature
fluctuation and its effect on output. In this setting, damage in a given year is then a function of
temperature in both current and past years. Relative to a counterfactual with no warming, hot
temperatures can reduce output in a given year because growth in that year is slowed due to con-
temporaneous hot temperatures, but also because contemporaneous growth rates are acting on an
economy that was already smaller due to previous hot temperatures.

To capture these dynamics, we amend equation 15 and compute the change in year- and location-
specific growth rates resulting from the change in temperature, and then adjust the observed time
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series of growth in location 𝑖 and re-calculate damages in each year as:

𝛿𝑔𝑖𝑡,𝑚 = 𝑓 (𝑇𝑖𝑡 + 𝛿𝑇∗
𝑖𝑚𝑡) − 𝑓 (𝑇𝑖𝑡) (16)

𝐷𝑖𝑡,𝑚,𝑘 = 𝑌𝑖𝑘

𝑡∏
𝑡=𝑘

(𝑔𝑖𝑡 + 𝛿𝑔𝑖𝑡,𝑚) − 𝑌𝑖𝑘

𝑡∏
𝑡=𝑘

𝑔𝑖𝑡 (17)

where 𝑌𝑖𝑘 is GDP in initial year 𝑘 and 𝑔𝑖𝑡 is the growth rate in country 𝑖 and year 𝑡. For histori-
cal years, we take growth rates from World Bank data58. For future years, we use SSP3 projected
growth rates as our main estimates through 2100. For calculations that require growth rates past
2100, our main estimates fix post-2100 rates at SSP-predicted levels in 2100. We check sensitiv-
ity by prescribing either 1% or 2% growth rates for all future years; these values are roughly at
the 17th percentile or median projected growth rates by 2100 in an independent recent analysis59.

To calculate the present value of cumulative damages, we compute the discounted sum of dam-
ages in each year between the emissions year and a chosen end year. Both the emissions year
and end year differ by application, as described below. For the discount rate 𝑟, we follow ear-
lier work and either use constant discount rates between 1% and 5%, or use time-varying “Ram-
sey” discounting. In the latter approach, discount rates are calculated using the Ramsey equation
𝑟𝑡 = 𝛿 + 𝜂𝑔𝑡 , where 𝛿 is the pure rate of time preference, 𝜂 is the elasticity of the marginal utility
of consumption, and 𝑔𝑡 is the growth rate in consumption in year 𝑡. We fix 𝛿 and 𝜂 at values used
in similar recent exercises that were calibrated to near-term 2% discount rate60 and estimate 𝑔𝑡

using the global average annual rate of growth in per capita GDP in the perturbed emissions sce-
nario, as described above. Under Ramsey discounting, higher per capita growth rates thus have
two competing effects: faster growth leads to larger economies for impacts to act upon, yield-
ing higher total damages, but faster growth also yields higher discount rates, because a society
quickly becoming richer would prefer to consume more today at the expense of their wealthier fu-
ture selves or descendants. In our empirical exercise, we find that these competing factors roughly
balance (Fig A8).

For settings where we wish to calculate the present value of damages that have already occurred,
we note that discounting in this setting serves to amplify the present cost of past damages, as
opposed to the more conventional setting where it reduces the present value of future damages.
However, the reasoning is similar. From the time value of money perspective, a given dollar
amount yesterday is worth more today, because of generally positive market returns. Similarly,
from the perspective of time preference, a later-consumed good is still worth less than an equiv-
alent earlier-consumed good, because of our dislike of having to wait to consume things; some-
thing that is worth $100 to an individual today is worth less than that to her yesterday if she has to
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wait to today to consume it.

A.3 Estimating temperature-output damage function

To estimate the relationship between location-specific warming and output ( 𝑓 () in equation 17)
we follow earlier work31,61 and use panel fixed effects regression to isolate the contribution of
annual temperature fluctuations to variation in growth in real per capita GDP, using national ac-
counts data on country-level GDP from 1961-2019. We estimate distributed lag models of the
form:

𝑦𝑖𝑡 =

𝑛∑︁
𝑘=0

𝑓 (𝑇𝑖,𝑡−𝑘 , 𝑃𝑖,𝑡−𝑘 ) + 𝛼𝑖 + 𝛿𝑡 + 𝜃𝑖 ∗ 𝑡 + 𝜃𝑖 ∗ 𝑡2 + 𝜀𝑖𝑡 (18)

where 𝑦𝑖𝑡 is the first difference of the natural log of real per capita GDP in country 𝑖 and year 𝑡, 𝛼𝑖
is a vector of country-specific intercepts (country fixed effects) that account for any time-invariant
differences between countries, such as differences in average incomes, average temperatures, or
in any other time-invariant factor that could be correlated with both differences in average tem-
perature between countries and differences in average growth rates; 𝛿𝑡 is a vector of year-specific
intercepts that account for any shocks or trends in either temperature or growth that are common
across countries, such as macroeconomic shocks; 𝜃𝑖 ∗ 𝑡 and 𝜃𝑖 ∗ 𝑡2 are country-specific quadratic
time trends that additionally flexibly control for locally-trending variables correlated with both
temperature and growth. For 𝑓 (), we follow earlier work31 and use parsimonious quadratic func-
tion to allow growth to respond nonlinearly to temperature and precipitation:

𝑓 (𝑇𝑖,𝑡−𝑘 , 𝑃𝑖,𝑡−𝑘 ) = 𝛽1,𝑘𝑇𝑖,𝑡−𝑘 + 𝛽2,𝑘𝑇
2
𝑖,𝑡−𝑘 + 𝜆1,𝑘𝑃𝑖,𝑡−𝑘 + 𝜆2,𝑘𝑃

2
𝑖,𝑡−𝑘 (19)

We test robustness to alternate approaches for controlling for time-trending unobservables, in-
cluding region-by-year fixed effects or linear rather than quadratic country time trends; to a re-
stricted sample of countries with at least 20 years of climate and growth data; and to the use of
alternate historical climate data from the Climate Research Unit.

Figure A2 shows the updated pooled response function using the 1961-2019 data. Estimates are
largely similar under alternate specification choices and inputs, including using CRU rather than
ERA, using only countries with at least 20 years of data, the addition of region x year FE rather
than just year FE, using linear country time trends rather than quadratic, and fitting a cubic rather
than quadratic polynomial.

35



Growth versus level effects To distinguish between “level effects”, in which output returns to
its previous trajectory in the years following a temperature shock, or “growth effects”, in which
output is permanently lower following a temperature shock, we again follow path-breaking earlier
work61 and estimate distributed lag models where growth is modeled as a function of contempo-
raneous and lagged values of temperature. The sum of contemporaneous and lagged effects offers
insight into whether the effects of temperature on output are persistent or transitory. Because we
are estimating non-linear relationships, we evaluate this sum of marginal effects at different points
in the temperature distribution, i.e.:

𝛿𝑦𝑖𝑡

𝛿𝑇𝑖𝑡
=

𝑛∑︁
𝑘=0

(𝛽1,𝑘 + 2𝑇𝑖𝛽2,𝑘 ) (20)

A sum of marginals that is significantly different than zero suggests growth effects; a sum not dis-
tinguishable from zero suggests level effects. In contrast to earlier work31, in which the sum of
contemporaneous and lagged effects were negative but not statistically different than zero, our up-
dated data provide clear evidence of negative growth effects for most of our sample, with the sum
of contemporaneous and lagged effects (up to 5 lags) statistically different than zero for countries
with current average temperatures above roughly 14C (Fig A3).

As in BHM, and consistent with recent subnational evidence62, positive marginal effects in the
zero-lag model at the cold end of the temperature distribution get less positive as more lags are
added and are no longer statistically significant. This suggests that, with additional warming, we
should be much more confident in negative growth effects in hotter regions than we should be in
positive growth effects in cooler regions. For nearly all countries on the planet, point estimates on
cumulative effects are negative.

Has the pooled response to temperature changed over time? No. We interact our tempera-
ture polynomial with dummies for three periods: 1960-1979, 1980-1999, and 2000-2020. If any-
thing, the response curve shifts slightly to the left over time, and shows no signs of flattening - see
Figure A2. This rules out the most obvious income or time-driven adaptation stories, as tempera-
tures have warmed +1C during the period, and average per capita incomes have increased nearly
three-fold.

Model selection in estimating damage functions Our work builds on earlier results pub-
lished in Burke Hsiang Miguel31, which itself built on pathbreaking earlier work by Dell Jones
and Olken61. Since the publication of both of these articles, many other articles have revisited the
question of the aggregate economic impacts of climate change, using alternate panel data or al-
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ternate statistical approaches. Many find evidence of non-linear effects of temperature on growth
effects that are qualitatively consistent with our findings62,63.

One paper by Newell, Prest, and Sexton32 (henceforth NPS) was more skeptical of a tempera-
ture/growth link. NPS revisited BHM data and propose to use cross-validation (i.e. training a
model on one dataset and evaluating on held out data the model was not trained on) to make key
specification choices. Cross-validation is a common statistical approach to evaluating models’
predictive performance; its properties are less well known when the goal is causal inference. It
is straightforward to show using simulation that, in our panel setting, a model that performs bet-
ter on a prediction task can perform worse on a causal inference task, and thus that the approach
to model selection used by NPS can select models that yield substantially biased estimates of the
effect of temperature on aggregate output.

Specifically, consider a data generating process where a location’s time series of annual temper-
atures 𝑇𝑖𝑡 is composed of a location specific mean 𝑇𝑖, a long term location-specific linear trend
𝜃𝑖 ∗ 𝑦𝑒𝑎𝑟𝑡 , and a mean-zero interannual fluctuation 𝜖𝑖𝑡 ∼ 𝑁 (0, 𝜎):

𝑇𝑖𝑡 = 𝑇𝑖 + 𝜃𝑖 ∗ 𝑦𝑒𝑎𝑟𝑡 + 𝜖𝑖𝑡 (21)

Suppose that per capita growth in each country is a quadratic function of annual temperature,
a country specific mean growth rate 𝛼𝑖, a country-specific growth trend (𝜆𝑖 ∗ 𝑦𝑒𝑎𝑟), and other
(unobserved) time-varying sources of growth (𝜈𝑖𝑡).

𝑦𝑖𝑡 = 𝛽1𝑇𝑖𝑡 + 𝛽2𝑇
2
𝑖𝑡 + 𝑦𝑖 + 𝜆𝑖 ∗ 𝑦𝑒𝑎𝑟 + 𝜈𝑖𝑡 (22)

The econometric challenge is to identify 𝛽1 and 𝛽2 in a setting where mean growth rates and
mean temperatures could be correlated (𝑐𝑜𝑣(𝑇𝑖, 𝑦𝑖) ≠ 0, e.g. if high income countries tend to
be cooler) or where temperature trends could be correlated with growth trends (𝑐𝑜𝑣(𝜃𝑖, 𝜆𝑖) ≠ 0,
e.g if high latitude countries have warmed more quickly but grown more slowly). Given these po-
tential confounds, a standard approach for identifying 𝛽1 and 𝛽2 is to estimate panel models that
flexibly account for time-invariant differences at the country level (typically using unit fixed ef-
fects) as well as for time-varying differences that could be country-specific (typically through the
inclusion of time fixed effects and/or unit-specific time trends). The goal of these models is not
to maximize the accuracy of predicted growth 𝑦𝑖𝑡 , but instead to isolate the effect of temperature
fluctuations from other correlated factors that could affect growth, i.e. come up with unbiased es-
timates of 𝛽1 and 𝛽2. A model that accurately predicts income growth need not generate unbiased
estimates of the impact of temperature, and a model designed to estimate the impact of tempera-
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ture might not explain the most variation in income growth.

To show how these prediction and causal inference goals can be in conflict, we simulate a setting
where country-specific trends in income growth and temperature are positively and spuriously
correlated, and then estimate 𝛽1 and 𝛽2 and evaluate models predicted values of 𝑦𝑖𝑡 , using panel
models that do or do not include country-specific time trends in the regression. Following NPS
we evaluate the predictive performance of models using “forecast” cross-validation, where for a
panel of length 𝑡 years, models are trained on the first 𝑥 years in each country and then evaluated
on the final 𝑡 − 𝑥 years. We set 𝑡 = 50 and 𝑥 = 40, set values of 𝛽1 and 𝛽2 to match the earlier
point estimates in BHM, and choose the variance of 𝜈𝑖𝑡 to yield signal-to-noise ratios (as proxied
by “within” r-squared values in the panel regressions) similar to what was reported in BHM. We
then estimate two models:

𝑦𝑖𝑡 = 𝛽1𝑇𝑖𝑡 + 𝛽2𝑇
2
𝑖𝑡 + 𝛾𝑖 ∗ 𝑦𝑒𝑎𝑟 + 𝛼𝑖 + 𝜀𝑖𝑡 (23)

𝑦𝑖𝑡 = 𝛽1𝑇𝑖𝑡 + 𝛽2𝑇
2
𝑖𝑡 + 𝛼𝑖 + 𝜀𝑖𝑡 (24)

We note that neither model includes year FE, because (as in NPS), the years in the test sample
will not have an estimated year intercept and so predictions cannot be made out of sample; in our
setting, the lack of year FE do not affect inference as we do not bake in common time-varying
sources of bias. We then evaluate recovered marginal effects of temperature on growth from the
models with and without trends, as well as calculate RMSE between predicted and observed
growth rates in the held out years; we run this simulation 1000 times. Consistent with NPS, we
find that the model without time trends (Equation 24) consistently have lower prediction error in
held out data (Fig A16a, p=0.04 on a one-sided test), which is presumably because time trends
are fit in-sample on limited amounts of data in each country and provide a noisy estimate of how
both income growth and temperature will continue to trend out of sample. However, the model
without time trends is substantially biased: marginal effects are too positive across the temper-
ature distribution, which is because income growth and temperature (by design) are spuriously
trending together. Estimates in the model with time trends, which again would be rejected by
NPS in favor of the no time trends model, are unbiased. These results indicate that using predic-
tive performance for model selection in our context can undermine inference.

Nevertheless, as NPS would argue, it might still appear odd to then select the model that does
worse in predicting income growth in future years, if our goal is predicting income growth in fu-
ture years. Critically, however, neither BHM nor the current analysis use estimated time trends
from these models to project forward either trends in temperature or trends in income growth,
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precisely because past trends might be a poor guide for future trends. Instead, we rely on decades
of research in climate science embedded in global climate models to project future temperature
changes, and we rely on output from multiple modeling teams to project future secular growth
in income. We do not need our historical models to accurately predict future trends in either of
these variables; instead, we need them to credibly isolate temperature from other time-invariant
or time varying factors that could affect income growth.

A.4 Non-marginal emissions

Finally, emissions perturbations from large emitters (e.g. the US) are non-marginal: the impact
of emissions changes in one year could meaningfully depend on emissions and damages from
previous years, for instance because the damage from warming in one year is enough to affect
the size of the economy that the next year’s warming acts upon. In this case, estimating total or
bilateral L&D damages by summing up marginal damages could misstate total damages by not
accounting for this dependence. However, we show that errors are likely small: our benchmark
approach of estimate per-ton marginal damage using a 1Gt pulse is a close approximation per-ton
damages from much smaller or much larger emissions pulses (Fig A7). Nevertheless, to compute
the impact of large, multi-year emissions perturbations (e.g. removal of decades of country emis-
sions or carbon major emissions), we calculate damages by feeding the full multi-year emissions
perturbation to FaIR rather than estimating marginal damages from pulses in different years and
multiplying by tons emitted. Differences between these approaches are likely only a few percent.

A.5 Sensitivity of damage estimates to analytic choices

Estimates of past and future damage are potentially sensitive to analytic choices about how dam-
ages are calculated. For historical damages, we compute damages under a range of fixed discount
rates. For future damages, and in particular for estimation of the SC-CO2, we compute sensitivity
to a larger set of analytic choices, including the discount rate, for which we use either fixed dis-
count rates (1,2, or 3%) or ”Ramsey” discounting calibrated to a near-term rate of 2%, following
ref60; different time horizons after which impacts cease, using either 2100 or 2300, or alterna-
tively assuming that there are no impacts of temperature on growth after 2100 but the wedge be-
tween the economy with the perturbed temperature and the counterfactual temperature remains
after 2100; different econometric models, including either the 0-lag model or the 5-lag model;
or different baseline growth rates, including a counterfactual rate of 1% or 2% for every country,
the use of country-specific growth projections from SSP3, or the latter combined with a ”clamp-
ing” approach that does not allow future growth rates under climate change to exceed (in absolute
value) growth rates in our historical data.
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Estimated values of the SC-CO2 are shown under these choices in Fig A8. Under fixed discount
rates, assuming higher baseline growth rates yields much higher estimates of the SC-CO2, as cli-
mate change is acting on a much larger future economy; Ramsey discounting undoes this effect,
because higher growth in consumption raises discount rates, limiting the present value of future
damages. The time horizon of aggregation also has a large impact on estimates, with damages
through 2300 many fold higher than damages aggregated through 2100, depending on the dis-
count rate.

A.6 Estimating unit-specific emissions

To calculate damages caused by specific emitters, we collect emissions data from various sources.
For country-level emissions, we use the Global Carbon Budget 2022 datasets. The datasets calcu-
late country-year-level CO2 emissions (1850-2021) and are divided into data on fossil fuel emis-
sions (with production and consumption emissions) and land use change emissions64. For carbon
majors, we use data on Scope 1 and Scope 3 emissions (emissions from direct operations and
from the use of sold products, respectively) published by the Carbon Disclosure Project (CDP) in
2017 and spanning the years (1988-2015)40. The CDP builds on earlier efforts collecting data on
emissions by carbon majors28. The CDP utilize company-reported scope 1 emissions when dis-
closed. In cases where companies do not disclose their emissions, the CDP uses production data
to estimate emissions. Emissions estimates are reported in carbon dioxide equivalent (CO2e).

To compare loss and damage associated with company emissions to company revenues, we col-
lected data on company revenues in 2021 from company annual reports or macrotrends.net. Fi-
nally, for private jet emissions, we estimate emissions from the flight duration of trips taken by
individuals, data on which was scraped from public flight records and posted on Twitter by user
Jack Sweeney. We used Twitter’s API to collect data on the each flight’s duration and used it to
estimate emissions, using a constant 503 gallons/hr to calculate fuel burned during a flight. We
utilized Ninja API to collect celebrities net worth. We emphasize that flights taken by private jets
associated with an individual do not necessarily represent flights taken by that individual.

A.7 Estimating emissions and damages from individual actions

Recent papers have sought to quantify the amount of GHG emissions associated with individ-
ual actions37,38. To estimate the damages associated with a selected list of individual actions’
emissions, we utilize estimates reported by recent studies to calculate the cumulative and fu-
ture damages (through 2100) of a decade of individual behaviors (2010-2020). Estimates are
reported in carbon dioxide equivalent (CO2e). The list of behaviors includes taking a long-haul
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flight (2tCO2e/yr), installing heat pump (-0.8tCO2e/yr), switching to a vegetarian diet from an
average American diet (-0.8tCO2e/yr), eating one serving of beef a month (0.08tCO2e/yr), and
recycling (-0.06tCO2e/yr). For comparability, for each of these actions we express damages as a
result of doing the more emitting action (taking an additional flight, not eating vegetarian, not in-
stalling a heat pump, etc). For emissions associated with driving we utilize the US EPA’s estimate
of average annual emissions for passenger vehicles. An increase of 10% in driving is associated
with an additional 0.5tCO2/yr emitted.

A.8 Using carbon dioxide removal to alleviate future damages

For a marginal ton of CO2 emitted in year 𝑡 = 0 (which we set to 2020, as in the SC-CO2 calcu-
lation), we estimate the resulting global damage if the emitting entity uses CDR to remove that
ton at some year 𝑡 ≥ 0. To do this, we use FaIR to estimate the combined effect on warming of
an initial marginal emission in 2020 and then a symmetric removal of the same quantity of emis-
sions in some year after 2020, relative to the same counterfactual emissions pathway described
for marginal emissions above; this is depicted in Figure A15. Our approach could overstate the
benefits of CDR for reducing global temperature given the asymmetry in carbon cycle response
to removing CO2 as opposed to adding it, but estimates suggest that this asymmetry is modest for
small emissions perturbations65.
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Figure A1: Multi-step approach for attributing damages to emissions. Damages to the Brazil-
ian economy from US emissions since 1990 are used as an example. a Total CO2 emissions from
1900 to 2020 before and after shutting off USA’s emissions starting in 1990, b temperature re-
sponse from USA emissions (1990-2020), calculated using FaIR. Black line is median response.
Grey interval is temperature response under varying parameters in FaIR. c change in temperature
in 2020 as a result of US emissions, median estimate from ”pattern scaling” the temperature in-
crease using 30 global climate models. d Observed Brazil population-average temperature time
series (black) and counterfactual temperature absent USA emissions (red), e Observed Brazil real
GDP 1990-2020 (black) and estimated counterfactual GDP absent USA emissions, calculated us-
ing empirical temperature-GDP damage function, f) cumulative damages owed by USA to Brazil
(1990-2020).
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Figure A2: Nonlinear response of growth to temperature is robust to alternate specifica-
tions and data, and is stable over time. a Dark line and blue shaded area are point estimate and
95% bootstrapped confidence interval using ERA-Land climate data. Other lines are estimates
under alternate data, FE, or functional forms, as described by the labels. Dotted black line is orig-
inal pooled estimate from BHM 2015. b Global temperature response function has not changed
since 1960, despite average per capita incomes nearly tripling during this period. Colors rep-
resent period-specific response functions for 1961-1979 (red), 1980-1999 (orange), 2000-2020
(blue). Shaded regions are bootstrapped 95% confidence intervals (1000 bootstraps). Rug plots at
bottom show estimated temperature optima for each period and bootstrap.

temperature (C)

gr
ow

th

0 5 10 15 20 25 30

−0.20

−0.15

−0.10

−0.05

0.00

0.05

RegionYrFE

linear TT
>20yrs data

CRU clim

cubic

BHM 2015

temperature (C)

gr
ow

th
 ra

te

0 5 10 15 20 25 30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

| ||| ||||| | || | || || || || | ||||| |||| | | || || |||| || || |||| || | || || ||| || | || |||||| | ||| | || ||||| ||| |||| ||| || || |
| ||| ||| || ||| | || || |||| | ||| || |||| | | || | | |||| || | |||||| || | | | || ||| || | || ||| ||| | ||| | || ||||| ||| ||| || | || || |

| || |||| || ||| | || || | |||| ||| || |||| | | || | | || || || | ||||||||| | || ||| ||| || ||| ||| | ||| ||| ||||| | || ||| || | ||| || |
1961−79
1980−99
2000−20

a b

43



Figure A3: Distributed lag models show robust evidence of growth effects. Panels show esti-
mated marginal effects from global pooled regression with 0, 1, 3, or 5 lags of temperature, using
ERA-Land data. Light shaded regions are bootstrapped 95% confidence intervals, darker regions
are 90% CI (1000 bootstraps). Dotted vertical lines show average temperatures at end of the sam-
ple (2016-2020) for select economies globally.
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Figure A4: Total global damages from 1Gt pulse of CO2 emitted in different years, begin-
ning in 1990. Numbers correspond to estimates in Figure 2a,b. Left columns show damage accu-
mulated through 2020 under different fixed discount rates, right columns show damage from that
same emission between 2021-2100.
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Figure A5: Understanding the impact of marginal emissions in different years. a. GDP-
weighted global average temperature is below the estimated temperature/growth optimum in the
early 1990s (indicating that warming would be net beneficial at that time), but exceeds the opti-
mum by the late 1990s (indicating warming would be net harmful); vertical colored lines show
the GDP-weighted global average temperature (ERA-Land) every 5 years since 1990, black line is
the estimated temperature-growth response function used throughout the paper and shown in Fig
A2, zoomed in to show the shape of the function between 12-18C. GDP-weighted global average
temperature rises rapidly over time both because the globe is warming and in particular because
lower-income countries are on average warmer and are growing faster than higher-income coun-
tries, and thus receive increasing weight in GDP-weighted global temperature over time. b-c An-
nual discounted damages from 1Gt CO2 emissions pulses beginning in 1990, under either a 2%
or 7% discount rate. For example, darkest blue line shows the annual global damages (or benefits)
from a 1Gt CO2 pulse in 1990. Annual benefits switch to damages as the GDP-weighted global
temperature exceeds the global optimum in (a).
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Figure A6: Schematic of SC-CO2 calculation under different time horizons. A marginal
emission in year 2020 generates subsequent warming and slows growth in a hypothetical econ-
omy, relative to a counterfactual where that emission did not occur. Slower growth through 2100
generates a ”wedge” of damages to total GDP shown in black. In our first scenario, where we as-
sume no damages after 2100, the SC-CO2 is the black wedge, discounted back to 2020. We then
consider two additional scenarios where damages occur past 2100. The first of these, ”no growth
impacts after 2100”, assumes that growth returns to its counterfactual rate in 2100 and thereafter
(for instance, because a new technology is invented or practice adopted that eliminates the impact
of temperature on growth), but this resumed growth is now acting on an economy that is smaller
in 2100 than it would have been without the emission; this generates the blue shaded regions of
damages. The SC-CO2 in this scenario is then the discounted sum of the black and blue wedges.
In the last scenario, ”growth impacts through 2300”, we assume warming continues to affect the
growth rate through 2300 and impacts end in that year. That generates the additional damages
shown in green, and the SC-CO2 in this scenario is the discounted sum of the black, blue, and
green regions. The black lines provide the trajectory of GDP under each scenario. The drawing
is schematic and the relative size of the wedges is not to scale. Quantitative estimates of the SC-
CO2 under these different scenarios are provided in Fig 2e.
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No growth impacts after 2100
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Figure A7: Estimated damages per ton of CO2 vary only slightly with the size of the emis-
sions pulse. Our baseline approach to calculating marginal damages is with a 1Gt emissions
pulse. Using the same 1990 emissions year, estimated per-ton damages using pulses of dramati-
cally smaller or larger size yield damages that differ by only a few percent, both for HDCO2 dam-
ages (left two columns) and for FDCO2 (right two columns). All estimates assume a 2% discount
rate, and FDCO2 estimates assume impacts end in 2100.
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Figure A8: SC-CO2 under different discounting schemes, baseline growth scenarios, and
time horizons. Scenarios with ”Growth at 2100 rate” use SSP3 estimates of country-year-level
growth through 2100 as the baseline growth rate, extending the estimates in 2100 through 2300 to
estimate impacts during that time period. ”Clamping” scenarios do not allow future growth rates
to exceed (in absolute value) observed historical growth rates for any country. ”No impacts >
2100” assumes impacts stop in 2100, and ”No growth effects > 2100” assumes that temperature
does not impact the growth rate after 2100 but that the accumulated wedge by 2100 in the per-
turbed versus baseline GDP level is sustained. See Fig A6 for a schematic. Ramsey discounting
uses values calibrated to a 2% near term rate, following ref60. The column ”post-2100 growth”
indicates the counterfactual growth rate assumed for economies after 2100. Reported SC-CO2
estimates in this table do not precisely match those in Fig 2e, as Fig 2e estimates are median es-
timates from a distribution that considers full climate and regression (damage function) uncer-
tainty. For computational tractability, the values reported here combine median estimates from
the climate model ensemble with regression point estimates.
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Figure A9: Sources of uncertainty in estimation of SC-CO2. Estimates show influence of dif-
ferent estimation components on uncertainty in estimates of SC-CO2, fixing other components at
their median.

.
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Figure A10: Estimated damages from emissions related to individual behaviors or firm out-
put over varying time periods

.
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Figure A11: Carbon debt estimates for scope 1 emissions of carbon majors. Estimates show
cumulative historical damages (through 2100) from carbon majors’ emissions occurring between
1988 and 2015. Cumulative damages are discounted at 2%. Estimates for Scope 1+3 are given in
Fig 3.
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Figure A12: Attribution of climate damages or benefits since 1980 to specific emitters (Fossil
fuel + LUCF emissions).
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Figure A13: Attribution of climate damages or benefits since 1990 to specific emitters (con-
sumption emissions) excluding LUCF emissions
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Figure A14: Attribution of climate damages or benefits since 1990 to specific emitters (pro-
duction emissions) excluding LUCF emissions
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Figure A15: Effectiveness of carbon removal for reducing damages declines as a function
of time between emissions and capture. a. Example of pulse experiment, where 1t pulse of
CO2 is emitted in 𝑡𝑒=2020 and 1t removed with CDR in future year 𝑡𝐶𝐷𝑅 (here, 2030). b. FaIR
estimate of warming as a result of this pulse and subsequent capture. c. Schematic of impact
on GDP in a hypothetical economy. Warming from initial pulse makes the economy grow more
slowly, driving a wedge between GDP without the emission and GDP with the emission, up
through time of removal. Damage between 𝑡𝑒 and 𝑡𝐶𝐷𝑅 is represented by orange triangle. If a
ton is removed at time 𝑡𝐶𝐷𝑅, the economy resumes growing at its original pace but from a lower
initial value in 𝑡𝐶𝐷𝑅, and the wedge is sustained into the future, creating the damage in the yellow
polygon. Put simply, damage continues to occur after removal, due to the wedge that was created
before removal. If the ton was never removed, the additional damages is in blue. The SC-CO2 is
the sum of the colored triangles (discounted annually back to 2020). Increasing delay between
𝑡𝑒 and 𝑡𝐶𝐷𝑅 increases both the orange and yellow triangles. Drawing is schematic and for visual
clarity, polygon sizes are not to scale. d. Quantitative estimates of the percent of damage averted
through 2100, for a 2020 emissions year and a 𝑡𝐶𝐷𝑅 > 2020, assuming all damages end in 2100.
Removal in 2030 reduces damages by 80%. Removal in 2050 reduces damages by roughly half.
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Figure A16: Selecting regression controls based on model predictive performance can bias
estimates of parameters of interest. Simulation results of estimating regression models with
and without time local time trends in a setting where both outcomes (growth) and independent
variable (temperature) are spuriously trending. Left panel: model with trends has higher RMSE
than model without trends on temporally-held-out outcome data. Center panel: model with trends
correctly estimates the marginal effect of temperature on growth. Right panel: model without
trends has a bias estimate of the marginal effect of temperature on growth, because it did not re-
move the spurious unit-specific trends. Black link in both panels is the true effect, colored lines
are 100 bootstrapped estimates of the two regression models.
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