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1. INTRODUCTION 

Many economic outcomes are nonnegative in nature. These typically include income, wealth, 

consumption expenditures, and utilizations of commodities. The empirical distribution of these 

outcomes is usually skewed to the right (i.e., long tails) and often kurtotic (i.e., fat tails). Several 

statistical approaches (e.g., transformation models, nonlinear method of moments, generalized 

linear models, etc.) have been developed to deal with these features (see Jones 2000 for a 

review of related statistical models).  However, special attention is sometimes needed to deal 

with another common part of such distributions – a spike in zeros. Often, alternate behavioral 

assumptions may be required to understand the economic rationale for why zeros were 

generated in the data, how they should be modeled, how the model parameters should be 

estimated, and how the results should be interpreted. In this chapter, I briefly review some of 

these questions. 

 

2. OVERVIEW OF STATISTICAL MODELING OF NON-NEGATIVE OUTCOMES 

To simplify concepts, let us focus on understanding the effect of one binary treatment variable, 

D, on a non-negative outcome, Y. For now, I assume that D was assigned (pseudo-) randomly 

across individuals, conditional on a set of observed covariates X.  Let the potential outcomes 

(Yj, j=0,1) associated with each level of D be given as: 

𝑌𝑗 = 𝜇(𝑋; 𝛼𝑗) + 𝑈𝑗 , 𝑗 = 0,1,       Eq. 1 

where αj represents the parameter of the potential outcome models. These potential outcomes 

can be considered consumption outcomes generated based on some generic utility 

maximization process conditional of D and X.  An example would be understanding the effect of 

genetic therapy on emergency department use expenditures or the impact of insurance 



coverage of nicotine patches on smoking. In both cases, assume that the choices of treatments 

(genetic theory or the coverage) were based on selection on a set of observed covariates X.  

The potential outcomes, being non-negative in nature, could include zeros. These zeros are 

considered corner solutions for maximization of consumption utility (Jones 1989a; 1989b). 

Statistically, having zeros in these outcomes is nothing special. They can usually be treated as 

any other value in the distribution of these outcomes. The observed outcome is given as follows: 

𝑌 = 𝐷 ∙ 𝑌1 + (1 − 𝐷) ∙ 𝑌0        Eq. 2 

The expectation of the observed outcome is typically nonlinear with respect to D as long as µ() 

is a non-linear function and can be modeled as a function of D, allowing Y to follow any 

standard non-negative probability distribution functions such as Poisson, Gamma, or 

Exponential. Since Y is non-negative, its expectation is strictly positive, and hence, the typical 

mean function is given as:  

𝐸(𝑌|𝐷, 𝑋) = ℎ(𝛽0 + 𝛽1 ∙ 𝐷 + 𝛽2 ∙ 𝑋)       Eq. 3   

and model parameters estimated via full-information maximum likelihood (FIML) or Quasi-

likelihood (QL) maximization approaches (McCullagh 1983; McCullagh and Nelder 1989). 

To under the difference between FIML and QL, a quick review of distribution theory is needed. 

The shape of a distribution of random variables is characterized by a series of moments (m) 

(sometimes expressed as standardized moments by scaling with a power of the variance). For 

example, the first moment is the expected value, the second central moment is the variance, 

and the third and fourth standardized moments are the skewness and kurtosis, respectively. 

There can be an infinite number of moments. A parametric distribution consists of one or a 

vector of parameters defined at the population level that completely specifies these moments. 

For example, a gamma distribution has two parameters, {a,b}, which in turn defines the 



moments, e.g., m1 = a/b, m2 = a/b2, m3 = 2/a, m4 = 6/a, and so on.  A statistical model 

expresses functional forms for the first and second sample moments using a set of model 

parameters (e.g.,  in Eq. 3, distinct from the distribution parameters). These model parameters 

or their functionals are typically the targets for inference.  When we estimate these model 

parameters from the data at hand using a FIML approach, where a parametric distribution is 

specified, we link these model parameters to the structural parameters of the specified 

parametric distribution that specifies all the population moments. For example, in a log-linear 

model, one specifies an exponential mean model for the sample mean.   For a FIML approach 

with, say, a log-normal distribution, this mean-model specification is followed to impose the full 

structure for all the moments of the parametric distribution onto the data at hand. When the data 

follows such a structure, we get a maximum likelihood estimator (MLE) for our statistical model 

parameters, generating the minimum variance estimator. However, if the data deviates 

considerably from the structure of the parametric distribution, then even when our mean (and 

variance model) may be correctly specified, MLE could be inconsistent. 

In contrast, analysts often use the method of moments estimators (popular in economics) or 

quasi-likelihood estimators (popular in statistics) that relax the stringent FIML requirements 

(McCullagh, 1983; McCullagh and Nelder, 1989); Blough et al. (1999). A full parametric 

distribution is not explicitly specified for the dependent variable in these approaches. Instead, 

the sample moment models are set up to directly reflect a finite set of population moments 

following a specific distribution.  Estimation of the model parameters then follows minimizing 

some form of weighted least-squares (Wedderburn 1974). The advantage of these approaches 

is that if the specified sample moments models are correct, one will get consistent estimates for 

our model parameters. Therefore, these approaches are robust to misspecification of the 

underlying distribution function of the dependent variable. However, there are no free lunches. 

QL estimators are often inefficient compared to well-specified MLEs. 



The quasi-likelihood approach was developed to estimate parameters linked to the exponential 

family of distributions, e.g., Exponential, Gamma, Poisson, etc. One characteristic of this 

distribution family is that the second moment can often be expressed as a function of a 

dispersion parameter and the first moment. Therefore, if we specify a mean model for the data, 

the QL approach uses this specification to define the population mean and variance. It then only 

imposes this mean-variance relationship to the data at hand, but not any structural relationships 

with the higher order moments that would be defined under a specific parametric distribution.  

 

2.1 Least squares 

Sometimes researchers use transformation models to avoid running non-linear specifications for 

Eq. (3). For example, a common practice in economics is to log-transform a non-negative 

outcome so that the transformed outcome can then be modeled linearly as a function of D, X, 

and possible their interactions.  

   Ln⁡(𝑌) = 𝛽0 + 𝛽1 ∙ 𝐷 + 𝛽2 ∙ 𝑋 + ⁡𝜀      Eq. 4   

Estimation can proceed following FIML or QL. For example, in FIML, one can assume 

𝜀~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) and carry out a log-likelihood maximization. Alternatively, one can use 

minimize Ordinary Least Squares (OLS), which represents a QL approach.  

The challenges of interpreting the parameters of log-transformed outcomes have been widely 

reported (Manning 1998; Manning and Mullahy 2001). Specifically, such a model represents the 

conditional mean of the Log(Y), i.e., E(Ln(Y) | D, X). This formulation represents the conditional 

geometric mean for the distribution of Y, not the arithmetic mean, which is the target for 

inference in Eq(3). Consequently, the marginal effects of D on the geometric mean of Y are 

directly obtained from the regression parameters. Still, the marginal effect of D on the arithmetic 



mean requires complex transformation processes (e.g., Duan’s smearing estimate, Duan 

(1983)) that can fundamentally rely on modeling all dependence of all the higher-order moments 

of Y on both D and X. Similar challenges arises with other transformation approaches such as 

inverse hyperbolic sine. 

Transformation models become even more challenging in the presence of zeros in the data for 

Y. Typically, authors use an inverse transformation in the presence of zeros. Alternatively, they 

add an arbitrary constant to Y and then take a log transformation.  A recent paper by Mullahy 

and Norton (2022) shows that these transformation models have an extra parameter generally 

not determined by theory but whose values have enormous consequences for point estimates. 

As these parameters go to extreme values, estimated marginal effects on outcomes' natural 

scales approach those of either an untransformed linear regression or a normed linear 

probability model.  The paper suggests that if the goal of the analysis is to obtain consistent 

estimates for the marginal effects of, say, D on the conditional arithmetic mean, as in Eq. (3), 

then one should not rely on transformations, especially in the presence of zeros. 

 

3. THE WORLD OF EXCESS ZEROS 

3.1. True Zeros 

An important feature of non-negative outcomes in specific applications is the presence of a 

significant density spike at zeros. These zero-inflated data arise from many individuals 

reporting/recording, for some reason, no consumption. Econometric modeling of this feature of 

the Y distribution often requires understanding the structural data-generating process (DGP) 

and specifying the target parameter of interest in the context of such a structure. The simplest 

assumption regarding such a data-generating process is that these zeros are all due to the 



results of a corner solution of a maximization process, as described above. Under a DGP where 

the observed zeros are the “true” zeros, the sample data can be modeled using the ML and QL 

methods described above. In some cases, a two-part model (TPM) may be used that 

conditionally separates the expectation of the dependent variable as: 

 𝐸(𝑌|𝐷, 𝑋) = Pr⁡(𝑌 > 0|𝐷, 𝑋) ∙ 𝐸(𝑌|𝐷, 𝑋, 𝑌 > 0)      Eq. 5   

As the name suggests, this model can be estimated using two parts - the first part consists of a 

binary outcome of whether Y>0 (Mullahy 1998). A logistic or a probit model can be used for the 

first part, and either can be estimated following FIML or QL techniques.  The second part 

models the expectation of Y given Y>0.  This part can be modeled with any of the FIML or QL 

approaches described in Section 2. 

One FIML approach to this estimation involves estimating parameters for both parts of the 

models jointly. Based on Tobin’s (1958) work, a Tobit model was formulated where one 

explicitly considers the utility function underlying the observed choices. This latent utility function 

(Y*) is assumed to follow a Gaussian distribution, Normal (𝜇∗, 𝜎2 ).  The corner solutions arise 

as follows: 

 

Y  = 0  if Y* ≤ 0 

     = Y* if Y* > 0        Eq. 6   

Under this formulation, one can directly maximize a likelihood for Y*, following observed data Y. 

Specifically, consider a linear mean model for Y*: 𝜇∗ = 𝐸(𝑌∗|𝐷, 𝑋) = 𝛽0 + 𝛽1 ∙ 𝐷 + 𝛽2 ∙ 𝑋, and  

𝑍0 = −
𝜇∗

𝜎
.  Then,  



𝑃𝑟(𝑌 > 0|𝐷, 𝑋) = 𝑃 𝑟(𝑌∗ > 0) = (1 −⁡Φ(𝑍0)),  

𝐸(𝑌|𝑌∗ > 0,𝐷, 𝑋) = [𝜇∗ + 𝜎 ∙ λ(𝑍0)], and 

𝐸(𝑌|⁡𝐷, 𝑋) = (1 −⁡Φ(𝑍0)) ∙ [𝜇∗ + 𝜎 ∙ λ(𝑍0)],      Eq. 7   

where λ(𝑍0) = ⁡−⁡
∅(𝑍0)

(1−⁡Φ(𝑍0))
 is the inverse Mills Ratio, ∅()is a standard normal density function, 

and Φ() is a standard normal cumulative distribution function. It is helpful to note that the Tobit 

model mirrors the principle of a TPM (as in (5)). Still, its estimation is based on a Gaussian 

likelihood function, accounting for the truncation of zeros in the second part.  

There are primarily three advantages of a TPM over a Tobit model. One can specify different 

functional forms for the mean models of the two parts. These mean models can be nonlinear in 

D, and X. One does not have to formally deal with the truncation of zeros in the second part 

while using a QL approach.  

 

3.2. Richer Behavioral Assumptions for Zeros 

Zeros can often comprise richer behavioral assumptions than corner solutions for consumption 

decisions. Given the substantive context of the data, one must conceptualize and defend a 

richer DGP. Following Jones's work (1989a; 1989b), I describe data on cigarette smoking 

behavior where zeros may camouflage other underlying behaviors. 

A survey of smoking behavior often collects data using the question “How many cigarettes have 

you smoked in the past 30 days?” or “On how many of the PAST 30 DAYS did you smoke a 

cigarette?”. Of course, most national surveys of cigarette consumption will ask other related 

questions to fully understand the dynamic nature of cigarette behavior. However, suppose one 



wants to model the above question in silo. In that case, one can easily perceive that some 

reported zeros may result from alternate data-generating processes rather than a corner 

solution of a consumption decision. Let’s consider those alternative DGPs. 

Two distinct behaviors could lead to zeros in reported data. An individual may be a never 

smoker, i.e., the reported zero is a manifestation of a distinct decision process on whether to 

smoke at all. Alternatively, an individual may be a smoker, but their consumption decision 

reached a corner solution of zero cigarettes last month for various reasons. For example, the 

individual may take a break and quit smoking for some time. These behaviors can be 

represented formally as: 

Reported/Observed outcomes (Y) represents Y = P ·Y**, where P is the smoking participation 

decision, and Y** is the latent potential consumption for everyone, irrespective of their smoking 

status.  

Participation Decision (driven by latent utility U) 

 𝑈 = 𝑔(𝐷, 𝑍; ⁡𝛼) + 𝑢 = ⁡𝛼0 + 𝛼1 ∙ 𝐷 + 𝛼2 ∙ 𝑍 + ⁡𝑢     Eq. 8   

Such that P = 1 if U > 0, P = 0 otherwise. Z is a set of covariates affecting participation, which 

may or may not be different from X. 

 

Among those who chose to participate, Consumption Decision (following (6)): 

Y**  = 0  if Y* ≤ 0 

    = Y* if Y* > 0, and 

Y* = ℎ(𝐷, 𝑋; ⁡𝛽) + 𝑣 = ⁡𝛽0 + 𝛽1 ∙ 𝐷 + 𝛽2 ∙ 𝑋⁡ + ⁡𝑣.      Eq. 9   



 

A joint likelihood for the data under these DGPs is given as follows: 

For data representing zeros: 

𝐿0 = ∏ [𝑃𝑟(𝑈 ≤ 0) ∙ Pr⁡(𝑌∗ ≤ ⁡0⁡|𝑈 > 0)]0  = ∏ [Pr⁡(𝑢 ≤ −𝑔(𝐷, 𝑍; ⁡𝛼)) ∙ Pr⁡(𝑣 ≤0

−ℎ(𝐷, 𝑋; ⁡𝛽)⁡|𝑢 > −𝑔(𝐷, 𝑍; ⁡𝛼))]        Eq. 10   

 For data representing non-zeros: 

𝐿+ = ∏ [Pr⁡(𝑃 = 1) ∙ Pr⁡(𝑌∗ > ⁡0⁡|P = 1) ∙ f(𝑌∗|𝑌∗ > 0, 𝑃 = 1)]+ = ∏ [Pr⁡(𝑢 > −𝑔(𝐷, 𝑍; ⁡𝛼)) ∙+

Pr⁡(𝑣 > −ℎ(𝐷, 𝑋; ⁡𝛽)⁡|𝑢 > −𝑔(𝐷, 𝑍; ⁡𝛼)) ∙ f(𝑌∗|𝑣 > −ℎ(𝐷, 𝑋; ⁡𝛽), 𝑢 > −𝑔(𝐷, 𝑍; ⁡𝛼))]  

 Eq. 11   

This setup gave rise to the double-hurdle model in consumption economics (Blundell and 

Meghir, 1987; Jones,1989a; Jones and Yen, 2000), where the first hurdle represented the 

participation decision while the second hurdle represented the corner solution to the 

consumption decision. It is immediately clear from (10) and (11) that the joint distribution of 

errors 𝑢 and 𝑣 is unknown, and additional information is required to identify the parameters of 

this likelihood function. However, certain behavioral assumptions can help restrict the 

dependence between errors 𝑢 and 𝑣, and simply the likelihood, which can facilitate 

identification. I describe three such behavioral assumptions below.  

 

3.3. Hidden Figures Behind Zeros 

There is an additional layer of complexity when one believes that the observed zeros are 

masking hidden quantities. This usually arises in the context of the first hurdle. Even though the 



first hurdle represents the participation decision, a researcher may ask about potential 

consumption decisions by those who never smoke. The main reason why such questions 

become relevant and modeling the observed outcomes would produce biased results relates to 

self-selection bias.  

Self-selection bias arises through many channels. One way it appears is when the observed 

outcomes represent a selected population segment, but we want to make an inference about 

the entire population. For example, suppose our (young adults) smoking data were collected by 

interviewing young adults in colleges. However, we would like to make inferences about the 

smoking levels of all young adults in the population, some of whom may not go to college. In 

such cases, even though one can infer the participation rate among any observably identical 

group of individuals in the sample, this quantity may not reflect the participation rate for an 

observably identical group in the population. One reason is that some of the zeros at the first 

hurdle in the sample may not be zeros at the population level. Consequently, even if one 

invokes the richer behavioral models in Section 3.2 and applies certain behavioral restrictions, 

modeling the observed outcome versus the potential outcome beneath the self-selection would 

require different empirical strategies.  

Another way self-selection bias arises is during the evaluation of the effect of a treatment or 

policy, even when the treatment or policy was allocated in a random or pseudo-random manner 

in the sample. This is often known as the generalizability issue of randomized experiments.  

In the previous two examples, the self-selection bias can affect not just zeros but every outcome 

level. In contrast, sometimes self-selection occurs even when we can obtain a representative 

population sample, mainly affecting zeros. Such self-selection bias can arise if outcomes for 

certain groups of people are censored due to endogenous selection into those groups. For 

example, one wants to evaluate the effect of a smoking cessation program assigned randomly 



to a representative group of individuals. However, some individuals reside in counties with 

stringent public and workplace smoking bans. Compared to counties without such prohibitions, 

individuals living in the ban-counties must have higher smoking inertia to overcome the shadow 

price of smoking and smoke the marginal cigarette. Consequently, we expect a larger spike in 

zeros in the smoking data for individuals residing in the ban counties. This does not invalidate 

the treatment effect estimate of the cessation policy, as the policy was randomly assigned. 

However, this treatment effect reflects the impact on the observed outcomes in the context of 

the current policies in place. Suppose the analyses aimed to estimate the full impact of the 

cessation policy without the encumbrance of other complementary policies. In that case, we 

must acknowledge that some of the observed zeros would represent non-zero quantities without 

these complementary policies. 

 

3.4. Empirical Strategies with Behavioral Restrictions 

(1) First-Hurdle Dominance 

The dominance restriction implies that individuals always smoke once the first hurdle is passed. 

Consequently, the second hurdle is irrelevant, and none of the zeros are generated via a 

consumption decision. This results in a simplification of the likelihood function in (10) and (11): 

For data representing zeros: 

𝐿0 = ∏ [Pr⁡(𝑈 ≤ 0)]0  = ∏ [Pr⁡(𝑢 ≤ −𝑔(𝐷, 𝑍; ⁡𝛼))]0       Eq. 12   

 For data representing non-zeros: 

𝐿+ = ∏ [Pr⁡(𝑈 > 0) ∙ f(𝑌∗|⁡𝑃 = 1)]+ = ∏ [Pr⁡(𝑢 > −𝑔(𝐷, 𝑍; ⁡𝛼)) ∙ f(𝑌∗|⁡𝑢 > −𝑔(𝐷, 𝑍; ⁡𝛼))]+  Eq. 13   



If the goal is to estimate the effect of a covariate on the observed outcomes, then a two-part QL 

model or a Tobit model can be employed (See Section 3.1). 

If the goal is to estimate potential consumption after accounting for certain self-selection 

behaviors, i.e., what would have the consumption levels of certain non-smokers if a smoking 

ban had not been in effect, a Heckman selection model can be employed (also known as the 

“Heckit” model, Heckman 1976, 1979). This model is identical to the standard Tobit model in (7) 

under the Gaussian distributional assumptions (except that the original Heckman model was 

conceptualized as a two-step estimator). The only difference is that the Tobit model is used for 

modeling the corner solution of a consumption decision. In contrast, the Heckit model is used to 

model participation and consumption decisions, where the latter does not have a corner 

solution. More importantly, Heckit recovers parameters for the potential consumption decisions 

if everyone had participated.  

It is important to note that the identification in the Heckit model relies entirely on distributional 

assumptions. One needs sufficient variability of D and X, independent of the inverse Mills ratio, 

to consistently identify the regression parameters. Alternatively, the identification in the Heckit 

model can be much improved if one has an exclusion restriction (e.g., an instrumental variable) 

in the first stage model for participation (Manning et al. 1987).  

 

(2) Independence 

The Independence assumption implies independence between the participation and 

consumption equations (technically, 𝑢⁡ ⊥ 𝑣, where ⊥ signifies statistical independence). 

However, unlike the dominance assumption, corner solutions for consumption are allowed 

beyond participation. Here the likelihood functions in (10) and (11) simplifies to: 



For data representing zeros: 

𝐿0 = ∏ [Pr⁡(𝑈 ≤ 0) ∙ Pr⁡(𝑌∗ ≤ ⁡0)]0  = ∏ [Pr⁡(𝑢 ≤ −𝑔(𝐷, 𝑍; ⁡𝛼)) ∙ Pr⁡(𝑣 > −ℎ(𝐷, 𝑋; ⁡𝛽)⁡]0  Eq. 14   

 For data representing non-zeros: 

𝐿+ = ∏ [Pr⁡(𝑈 > 0) ∙ Pr⁡(𝑌∗ > ⁡0⁡) ∙ f(𝑌∗|𝑌∗ > 0)]+ = ∏ [Pr⁡(𝑢 > −𝑔(𝐷, 𝑍; ⁡𝛼)) ∙ Pr⁡(𝑣 >+

−ℎ(𝐷, 𝑋; ⁡𝛽) ∙ f(𝑌∗|𝑣 > −ℎ(𝐷, 𝑋; ⁡𝛽))]        Eq. 15   

When inferring observed outcomes, one can also use a two-part QL model or a Tobit model 

(See Section 3.1). However, these models alone cannot distinguish between the participation 

and consumption zeros from the corner solutions. One needs additional information to 

decompose the observed zeros into these two parts. For example, if one obtained data on 

whether individuals have ever smoked, they can use that as a proxy for the participation 

equation. In such a case, a three-part QL model, or a two-part model, with the participation 

model being a binary model and the consumption equation being a Tobit model (also known as 

the Cragg Model), can be used. To an extent, this is a double-hurdle model, but the 

independence assumption helps to identify the model using the data at hand.  

 

(3) Complete Dominance (Independence and Dominance) 

Finally, if one assumes both independence and dominance, the outcomes can be modeled 

directly using any single equation model, as in (3), and using a TPM. The zeros are deemed 

true, and no separate potential consumption decisions exist. 

 

3.4. Marginal Effects 



One of the challenges of using non-linear and multi-step estimators is calculating the marginal 

effects of covariates. These are no longer apparent by looking at the coefficients of any one or 

multiple regressions. Here, we focus on incremental effects (ξ) of a binary variable (D), which is 

the difference in the expected value of the target outcome between two levels of D, 

marginalized over the distribution of all other X in the model. Similar discussions for computing 

the average marginal effects for continuous variables can be found in Dow and Norton (2003).  

Let the hat ( ̂ ) on a parameter or a functional of parameters indicate that those parameters 

have been estimated from the data at hand. Following (3) for a single equation model, an 

estimator for the incremental effect of D is given as: 

𝜉 = ℎ̂(𝛽̂0 + 𝛽̂1 ∙ 1 + 𝛽̂2 ∙ 𝑋) ⁡−⁡ ℎ̂(𝛽̂0 + 𝛽̂1 ∙ 0 + 𝛽̂2 ∙ 𝑋)⁡      Eq. 16 

This approach is also known as the method of re-cycled predictions, where one turns on and off 

the D indicator for everyone in the sample and predicts the expected outcomes for all, takes the 

sample average of the predictions and calculates a difference.  

For TPM, the method of recycled predictions can be used to estimate incremental effects for 

each part of the model. However, to obtain the incremental effects for the overall consumption, 

one must first compute the predictions for overall consumption for everyone in the sample under 

the two levels of D and then take the difference: 

𝜉 = 𝑔(𝛼̂0 + 𝛼̂1 ∙ 1 + 𝛼̂2 ∙ 𝑋) ⁡ ∙ ⁡ ℎ̂(𝛽̂0 + 𝛽̂1 ∙ 1 + 𝛽̂2 ∙ 𝑋)⁡ 

−⁡𝑔(𝛼̂0 + 𝛼̂1 ∙ 0 + 𝛼̂2 ∙ 𝑋) ⁡ ∙ ⁡ ℎ̂(𝛽̂0 + 𝛽̂1 ∙ 0 + 𝛽̂2 ∙ 𝑋)⁡   Eq. 17 

Interestingly, after accounting for participation, the Tobit and the Heckit models follow the same 

principle in computing the average incremental effects of D on overall (or potential) 

consumption.   



Inference on these incremental effects is based on computing their variances, which can follow 

standard Taylor series approximations (e.g., Delta method) or non-parametric bootstrap 

approaches.  

 

4. SELECTED EMPIRICAL APPLICATIONS 

There is a large literature demonstrating the application of these methods. I highlight a few 

applications here. Blundell and Meghir (1987) used the double-hurdle model to estimate the 

Engel curve for clothing, the first hurdle arises from the observation that purchases of 

clothing are infrequent and that many households will not record any during the 2 weeks of 

the survey. Jones (1989a) applied double-hurdle models to study cigarette consumption 

data from the General Household Survey in the UK and separated participation from 

consumption decisions. He later used these models to panel data on cigarette consumption 

(Jones 1989b). Yen and Jones (1996) expand on these models to incorporate the effect of 

addiction on participation and consumption.  Grootendorst (1995) invoked both the 

dominance and the independence assumptions in modeling healthcare utilization data using 

a two-part model. Similar models were used by Street et al. (1999) to model pharmaceutical 

expenditures in Russia, by Laporte et al. (2008) to model healthcare utilization in Canada, 

and by Parente and Evans (1998) to model medical care use in the US.  Maciejewski et al. 

(2012) used a correlated two-part model on specialty care expenditure data to relax the 

independence assumption between participation and consumption. However, they did not 

explicitly assume dominance.  Deb et al. (2014) model healthcare expenditure dynamically, 

allowing for contemporaneous interdependence between the participation and the 

consumption equations through a copula model.  However, they invoke the dominance 

option and use a single hurdle model, which they implement using a two-part specification. 



Green et al. (2018) modeled the demand for illegal drugs using a double-inflated double-

hurdle model that differentiated between nonparticipants, participant misreporters, and 

infrequent consumers. They assume independence across these three equations. 

Zweifel et al. (1999) modeled healthcare cost data using a two-step Heckman model and 

concluded that the main demographic driver of healthcare costs was time to death rather 

than age. Using similar data, Seshamani and Gray (2004) replicated Zweifel et al.’s results 

and showed that, when using a two-part model, both time to death and age were significant 

predictors of healthcare costs.  These analyses highlight the importance of proper 

interpretation of results from these models. The Heckman two-step is used to solve a self-

selection issue where only those with longer time to death are likely to have non-zero 

expenditures. On the other hand, the TPM model observed costs without trying to correct 

for self-selection.  Which model is correct would depend on the relevant question at hand. 

Another example of the use of the Heckman selection model is by Porterfield and DeRigine 

(2011), which examined whether medical home use affected out-of-pocket expenditures in 

a special population. They appear to correct for a self-selection mechanism where some 

families used medical homes but reported zero expenditures in the self-reported data, and 

the authors intended to uncover the hidden figures behind these zeros. A similar approach 

was adopted by Wirtz et al. (2012) to model the effect of health insurance in Mexico on self-

reported out-of-pocket expenditures on medicines.  

 

5. CONCLUSIONS 

Zeros in consumption data have rich economic content. Structural approaches to understanding 

the data-generating processes for these zeros, especially those driven by behavioral criteria, 

dictate the choice of econometric modeling and the role of hidden figures behind the zeros. 



Applied researchers should articulate the behavioral assumptions made and the target outcome 

for inference when selecting their econometric approach to modeling these data.  
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