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ABSTRACT

Seasonal allergies affect over 400 million people globally, yet the broader economic consequences 
of pollen exposure remain understudied. Evidence from Japan’s ambulance records suggests that 
high-pollen days are associated with increases in accidents, including traffic accidents and work-
related injuries, which may reflect impaired cognitive performance. Retail scanner data and 
cellphone mobility records indicate that individuals already engage in avoidance behaviors, such as 
purchasing allergy products and limiting outdoor activities on weekends. This suggests that relying 
on individual self-protection may be insufficient to offset these risks, and thus greater government 
intervention may be warranted to mitigate pollen-related harm.
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1. Introduction 
“Hay fever,” also known medically as seasonal allergic rhinitis (SAR), is a common chronic 

disease triggered by exposure to airborne allergens, such as pollen and dust. These allergens 
cause various allergic symptoms, including a runny nose, nasal congestion, sneezing, and itchy 
eyes. It is estimated that up to 30% of the population in developed countries suffers from SAR, 
with approximately 400 million sufferers worldwide (Greiner et al. 2011). For instance, in 2021, 
1 in 4 adults and 1 in 5 children in the U.S. experienced seasonal allergies (CDC 2023).1  

The number of SAR sufferers is expected to rise as a warming climate accelerates pollen 
production, increasing pollen concentrations. From 1990 to 2018, pollen concentrations in the 
US increased by 21%, with the pollen season starting 20 days earlier than in 1990 and lasting 8 
days longer (Anderegg et al. 2021). Figure 1 illustrates a strong positive correlation between 

pollen counts and maximum temperature (panel A) and the number of hot days above 30℃ 

(panel B) during the previous summer in Japan—our study area. This suggests that human-
induced climate change may exacerbate the potential damage caused by pollen production. 

Despite its widespread and increasing global prevalence, there is limited understanding of 
how pollen exposure affects outcomes beyond the obvious adverse health effects. Given the non-
acute and less life-threatening physiological nature of SAR symptoms, people may have 
overlooked the potential negative consequences and costs of pollen exposure. Clinical studies 
have shown that pollen exposure can detrimentally affect cognitive performance—reducing 
attention span and increasing reaction time, suggesting that any daily activity requiring normal 
cognitive alertness and decision-making abilities may be affected. However, little is known about 
whether such cognitive stress translates into negative economic consequences, such as reduced 
labor productivity, in field settings. 

To address this gap in the literature, we conduct the first investigation of the effects of acute 
and short-term pollen exposure on the incidence of accidents. These include traffic accidents and 
work-related injuries, which are arguably some of the most extreme consequences of cognitive 
impairment. Traffic accidents are the leading cause of accidental deaths globally, and hence, any 
factor influencing the risk of traffic accidents is of great relevance to social welfare.2 Work-
related injuries also warrant investigation, as they result in substantial productivity losses in the 
labor market. Furthermore, these accidents can cause negative externalities for individuals not 

 
1 Media coverage of seasonal allergies is on the rise. See, for example, Ramirez (2023) “Your pollen allergies are 
overwhelming? This might be why” in CNN, Agrawal (2024) “Spring allergy season is getting worse. Here’s what 
to know” in the New York Times, and Jarvis (2024) “You’re not imagining it. Your allergies are getting worse” in 
Bloomberg Opinion. 
2 Traffic accidents are the second leading cause of accidental death (after asphyxia), with an average of more than 
4,000 deaths and 700,000 injuries per year for the period 2008 to 2019 (MHLW 2009; NPA 2022), in a total 
population of 127 million in Japan. 
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suffering from seasonal allergies but involved in the accidents.  
Our analysis is facilitated by a comprehensive database we have compiled, which combines 

pollen counts, accidents, public awareness of pollen exposure, consumption, and mobility. Our 
primary data combines pollen counts with newly available administrative ambulance records, 
covering all ambulance calls related to accidents that occurred in Japan from 2008 to 2019. 
These accidents were particularly severe, requiring ambulance transport to hospitals. The dataset 
includes a wealth of information about each accident, including its location, date and time of the 
ambulance call, type and severity of injuries, and the age and gender of those involved. To 
examine whether individuals engage in avoidance behaviors, we use retail scanner data on 
allergy-related products and cellphone mobility records from 85 million users of Japan’s largest 
mobile phone carrier. 

Japan provides an ideal empirical setting for this study for several reasons. First, pollen 
monitoring stations are densely distributed nationwide—an uncommon feature in most countries. 
Second, pollen concentrations vary widely in space and time, allowing us to measure exposure 
with high precision and investigate potential nonlinear dose–response relationships. Third, pollen 
exposure in Japan is driven almost entirely by a particular species—Japanese cedar and hinoki 
cypress—enabling clean identification based primarily on pollen intensity.3 This feature is 
important because individuals’ sensitivity to an allergen, their reactions to related allergens, and 
their ability to develop tolerance all vary depending on the pollen source. By contrast, in 
numerous other regions, including North America and Europe, a small number of taxa dominate 
overall pollen counts (Lo et al. 2019), substantially limiting the usefulness of variation for 
identification. Finally, unlike prior studies restricted to a few schools or neighborhoods near 
monitoring sites, our analysis provides nationally representative estimates, alleviating concerns 
about external validity. We leverage daily levels of spatial and temporal variation in pollen 
counts of differing magnitudes to identify the effect of pollen on accidents. 

There are five main findings. First, we present evidence that people are more likely to 
experience seasonal allergy symptoms on high pollen days than on low pollen days. This is based 
on data from internet search activity (Google Trends) and social media posts (Twitter data). We 
find that people tend to search and tweet about symptoms using keywords such as “runny nose,” 
“nasal congestion,” “sneezing,” and “itchy eyes” as pollen levels increase. Similarly, we observe 
results for keywords related to sleep, such as “having a hard time falling asleep” and “feeling 
sleepy,” indicating the negative impact of SAR on cognitive performance. 

Second, we find that high daily pollen counts are associated with increased accidents. A 
 

3 The large-scale planting of Japanese cedar and hinoki cypress was initiated by the government to offset wartime 
and postwar overharvesting and accommodate the sharp increase in timber demand during the post–World War II 
high-growth period. Consequently, the species now comprise approximately 70% of the nation’s 10.09 million 
hectares of planted forests (Forest Agency 2022). 
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100% increase in the daily pollen count leads to an increase in the number of daily accidents of 
0.231 per million people. The relationship between pollen counts and the number of accidents is 
concave, suggesting that even low levels of pollen—which occur more frequently than higher 
levels—can have a significant negative impact on cognitive performance and thus on the 
incidence of accidents. 

Third, we explore how the effects may vary by type of accident, severity of accident, and 
characteristics of the people involved. Interestingly, the effects are observed for all types of 
accidents, including traffic accidents, work-related injuries, sports injuries, and fire accidents. 
Using a unique measure of accident severity based on the initial clinical assessment by 
physicians at the time of hospital admission, we find that while the effects are more pronounced 
for less severe accidents, elevated pollen exposure also increases fatal accidents. Furthermore, 
consistent with the widespread prevalence of SAR, the effects are nearly universal across all age 
groups and both sexes. 

These findings suggest that pollen exposure has a broad impact on “non-health” outcomes, 
such as cognition, productivity, and activities of daily living. For example, an increase in 
workplace injuries implies a detrimental effect on labor productivity and long-term earnings.4 
Therefore, current estimates of the costs of exposure to airborne allergens, primarily based on 
health outcomes, missed school days, and work absenteeism, may severely underestimate the 
true costs to society. 

Fourth, we find that people are actively engaging in avoidance behaviors to reduce the risk 
of pollen exposure and alleviate allergy symptoms. Using retail scanner data, we show that 
people increase their spending on products that protect against seasonal allergies, such as 
medications, eye drops, and masks. Furthermore, using cellphone mobility records, we also show 
that some people even limit outdoor activities on weekends to reduce the risk of outdoor pollen 
exposure. To the extent that such behaviors are effective, we may be underestimating the true 
magnitude of pollen-induced accidents. 

These results suggest that the status quo of relying on individual self-protection is 
insufficient to mitigate pollen-related harm. Considering the negative externalities of accidents 
and substantial social costs, additional government intervention appears warranted. One practical 
approach is a public information campaign, including a “pollen alert” system, that provides 
timely guidance tailored to forecasted pollen levels and offers standardized recommendations for 
the general public and firms. For the public, clear behavioral recommendations aligned with 
pollen forecasts—such as wearing masks, using air purifiers, relying on public transportation, or 
avoiding nonessential travel—could improve avoidance behavior. For firms, the guidelines could 

 
4 Broten et al. (2022) find that workers who are injured on the job face an average earnings penalty of 8%, which 
increases to 30% for those who are permanently disabled. 
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clarify when sick leave or remote work is appropriate for employees with severe seasonal 
allergies, recognizing that many are willing to avoid high-pollen environments but face work-
related opportunity costs.  

Finally, we combine our estimates of the impact of pollen on accidents with projections of 
future climate and the temperature-pollen count relationship shown in Figure 1 to illustrate the 
magnitude of the social costs of anthropogenic climate change. The “business-as-usual” scenario 

of the Intergovernmental Panel on Climate Change (IPCC)—predicting a 4.1℃ increase in 

summer temperature in Japan from 2076 to 2095—would result in an additional 1,823 pollen-
induced accidents per year. By multiplying the resulting number of accidents by the average 
accident cost, we obtain an expected annual social cost of pollen-induced accidents of about 
$236 million. This estimated social cost is likely to be a lower bound because it does not include 
minor cases that do not require ambulance transport to a hospital. 

While much of the existing literature on climate change has focused on the effects of rising 
temperatures on direct outcomes such as aggregate income, mobility, mortality, and agricultural 
outcomes (Carleton and Hsiang 2016; Dell et al. 2014), the increase in the number of seasonal 
allergy sufferers and the associated impairment in performance may be the indirect and 
undiscovered cost of anthropogenic climate change. Consequently, any action to mitigate the risk 
of a warming climate could have substantial societal benefits by preventing temperature-driven 
increases in airborne pollen. 

It is important to note that the estimates presented here only begin to address the potentially 
significant social costs associated with rising pollen levels. If pollen exposure impairs cognitive 
function, it could significantly affect various daily human activities that require sustained 
cognitive attention. This research represents a first step toward understanding the full societal 
impact of pollen exposure, not just within a specific setting and country, but on a more global 
scale. 

The remainder of the paper is organized as follows: Section 2 briefly describes the 
background, Section 3 describes the data, Section 4 presents the econometric model, Section 5 
reports the main findings of this study, and Section 6 examines avoidance behavior. Section 7 
reports the results of the projection of future climate change. Section 8 presents the discussion 
and conclusions. 

 

2. Background 
2.1. Pollen and seasonal allergies 

SAR, a common chronic condition, arises when an individual’s immune system reacts to 
airborne allergens like pollen and dust. This reaction prompts the immune system to generate 
antibodies, such as histamines and cytokines, to combat the perceived threat of pollen grains. 
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Consequently, the antibodies cause inflammation in the airways, leading to various allergic 
symptoms like a runny nose, nasal congestion, sneezing, and itchy eyes (Greiner et al. 2011). 

SAR poses a global health concern as it can affect otherwise healthy individuals. Prevalence 
rates vary across countries, typically ranging between 10% and 30% in developed nations 
(Greiner et al. 2011; Schmidt 2016). However, this figure likely underestimates the true 
prevalence rate, as some individuals may not seek medical assistance for the condition. An 
increasing prevalence is driven by factors such as urbanization, adoption of Western lifestyles, 
and climate change (Schmidt 2016). 

In Japan, the Japan Society of Immunology and Allergology in Otolaryngology has 
conducted a comprehensive epidemiological survey every ten years among otolaryngologists 
and their families since 1998. According to this survey, the prevalence rate of SAR has 
increased by approximately 10 percentage points each decade, rising from 19.6% in 1998 to 
29.8% in 2008 and 42.5% in 2019, slightly exceeding the 10–30% prevalence reported in other 
developed countries. Although the prevalence rate peaks around middle age, a significant 
number of both young and older individuals also suffer from SAR (Matsubara et al. 2020).5 

Because SAR is relatively mild and chronic, its economic costs are often underestimated. 
Apart from direct medical expenses such as medication and emergency room visits (Xing et al. 
2023), as well as physician consultations and hospital admissions (Steinbach 2022), previous 
studies indicate that pollen allergies significantly contribute to absenteeism from work and 
school (Hellgren et al. 2010; Lamb et al. 2006). 

Of particular relevance to this study, clinical research has demonstrated the adverse effects 
of SAR on cognitive performance. These effects often manifest indirectly through decreased 
sleep quality (Craig et al. 2004; Santos et al. 2006) and directly through the antibodies 
themselves affecting brain function (McAfoose and Baune 2009). For instance, Wilken et al. 
(2002) discovered that allergic adults randomly exposed to pollen exhibit poorer performance 
across various cognitive measures compared to non-exposed individuals. These measures 
include longer reaction times, reduced working memory, divided attention, and slower 
calculation. Unfortunately, medical studies have indicated that allergy medications such as 
antihistamines can also impair cognitive function due to side effects like drowsiness, dry mouth, 
and lethargy (Jáuregui et al. 2009; Kay 2000). 

Previous studies examining the effects of seasonal allergies on non-health outcomes such as 
cognition in real-world settings have primarily focused on their impact on children’s test 
performance (Bensnes 2016; Marcotte 2015, 2017). However, it remains unclear whether the 
negative effects of pollen on cognitive function extend to a substantially larger population of 

 
5 The prevalence rates of SAR in 2019 are 30.1% (age 5–9), 49.5% (10–19), 47.5% (20–29), 46.8% (30–39), 47.5% 
(40–49), 45.7% (50–59), 36.9% (60–69), and 20.5% (70–) (Matsubara et al. 2020). 
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prime-aged adults and, importantly, whether this potential cognitive stress could lead to adverse 
economic outcomes. This paper focuses on accidents, including traffic collisions and work-
related injuries, as they represent the most severe forms of performance impairment. For 
instance, it is well-established that cognitive function is inversely correlated with the likelihood 
of motor vehicle accidents (Anstey et al. 2005, 2012).6 Vuurman et al. (2014) contend that the 
impairing effects of allergic rhinitis on driving are comparable to those of a blood alcohol 
content of 0.05%, the legal limit in many countries. Similarly, most workplace injuries result 
from distraction (European Commission 2009). Nonetheless, we acknowledge that cognition is 
not the sole underlying mechanism, as pollen exposure is also clinically associated with mood, 
fatigue, and emotion (Dowlati et al. 2008; Kronfol and Remick 2000). 

 
2.2. Warming climate and pollen 

Higher temperatures and carbon dioxide (CO2) concentrations have been found to increase 
pollen production, implying that climate change is expected to significantly affect pollen 
concentrations and the duration of pollen seasons. Anderegg et al. (2021) tracked pollen trends at 
60 pollen stations in the United States from 1990 to 2018. They found increases of 20.9% and 
21.5% in annual and spring (February–May) pollen concentrations, respectively. The pollen 
season started 20 days earlier and lasted eight days longer. Further, they conducted a model 
selection analysis to identify the main drivers of pollen proliferation. They found that the mean 
annual temperature is the strongest predictor of the above pollen metrics among eight climate 
variables, which include temperature, precipitation, frost days, and CO2 concentrations. 
Increased pollen abundance, earlier onset of the pollen season, and longer duration of the pollen 
season have also been observed in Europe (D’Amato et al. 2007; Ziello et al. 2012; Hamaoui-
Laguel et al. 2015). 

This pattern also appears in our Japan data. Using station-year observations from 120 pollen 
monitoring stations (2008—2019), we find that higher maximum temperatures and more days 

above 30℃ in July and August of the previous summer correlate with higher average daily 

pollen counts from February to May (Appendix Figure A1).7  
Figure 1, mentioned in the introduction, shows the relationships between pollen counts and 

temperatures in the previous summer using the same data. The binscatter plot exploits the 
variation in pollen counts within the same pollen monitoring station over time by controlling for 
station fixed effects (FEs). The linear slope of 167.4 (t-stats= 11.2) in panel A indicates that a 

 
6 Smith (2016) shows that one hour of sleep loss increases the likelihood of being involved in a fatal drowsy driving 
crash by 46%. 
7 For instance, the relatively cool summer of 2009 was followed by low pollen counts in spring 2010, whereas the 
hot summer of 2010 preceded high counts in spring 2011. 
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1℃ increase in maximum temperature in the previous summer is associated with an additional 

167 grains/m3 of daily pollen on average in the following spring. As the mean and median daily 
pollen counts of 120 stations in the same period are 955 and 712 grains/m3, respectively, such an 
increase can be sizable. Similarly, the slope in panel B is 23.7 (t-stats= 11.2), indicating that ten 

more hot days above 30℃ in the previous summer could increase the daily pollen count by 237 

grains/m3 in the following spring. 
In summary, the evidence to date suggests that human-induced climate change has increased 

the intensity of pollen seasons in different parts of the world. Expected temperature increases due 
to global warming are likely to amplify and accelerate this trend in the coming decades (Ziska et 
al. 2019). For example, Zhang and Steiner (2022) project that climate change will further 
accelerate the arrival of the pollen season (by up to 40 days), increase the duration of the pollen 
season (by about 19 days), and consequently increase the total annual pollen load (from 24% to 
40%) in the United States. 

 

3. Data  
We have assembled a comprehensive dataset to examine the impact of pollen exposure on 

accident rates. In our primary analysis, we merge daily airborne pollen counts with newly 
available ambulance records documenting accidents that occurred between 2008 and 2019 in 
Japan. To our knowledge, this is the first study to use this dataset in economic research. For 
greater clarity, supplementary data used to examine symptoms (Google Trends and Twitter data, 
detailed in Section 5.1) and avoidance behaviors (retail scanner data and cellphone mobility 
records, discussed in Sections 6.2 and 6.3) will be described later. For more information on the 
data sources, see Appendix H. 

 
3.1. Airborne pollen 

We obtain airborne pollen data from the Japanese Ministry of Environment’s pollen 
monitoring system, known as “Hanako-san.” This system provides hourly measurements of 
pollen counts (grains/m3) for Japanese cedar and hinoki cypress. Pollen season calendars for 
major plant species (Appendix Figure A2) indicate that most pollen is released between February 
and May, when these two species constitute the dominant sources. Comprehensive pollen count 
data have been available since 2008, published on the Ministry of the Environment’s website. 
Moreover, during the pollen season, weather forecasts in Japan routinely include information on 
pollen levels alongside temperature and precipitation. Television broadcasts typically report both 
current-day and weekly pollen forecasts; an example is provided in Appendix Figure A3. Thus, 
the cost of accessing such information is nearly negligible. 
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Throughout Japan, there are a total of 120 pollen monitoring stations. Panel A of Figure 2 
displays the locations of all monitoring stations as of 2019.8 On average, each of the 46 
prefectures has two to three monitoring stations, primarily situated in urban areas with high 
population densities (Wakamiya et al. 2019).9 The number of pollen monitoring stations is 
remarkably high considering the country’s size. For instance, the United States, which is 26 
times larger than Japan, only has 74 pollen monitoring stations nationwide.  

Panel B of Figure 2 plots the cumulative distribution of the distance from the nearest pollen 
station to the centroid of each emergency response unit, our regional unit of analysis, as 
described in Section 3.2. The mean and median distances from pollen stations are 25.4 and 17.5 
kilometers, respectively. Even with a conservative threshold of 48 kilometers (30 miles) for 
pollen measurements to be valid (Chalfin et al. 2019), 90.2% of all units fall within this 
threshold.10 

The high density of stations across the country enables us to: (i) accurately measure pollen 
exposure, (ii) provide nationally representative estimates of pollen exposure (unlike previous 
studies limited to a few schools or districts near pollen stations), and (iii) include the continuous 
variable of pollen exposure at various levels as a regressor to examine potential nonlinearity in 
the dose-response (unlike previous studies that only included a dichotomous variable defining 
high pollen days). 

Pollen counts are monitored from February to May each year to cover the blooming season 
of Japanese cedar and cypress (as shown in Appendix Figure A2). The exception is Hokkaido 
Prefecture in the far north, where monitoring occurs at four stations and the observation period is 
delayed by one month, from March to June. We aggregate the monitor readings to obtain the 
daily level by summing the hourly observations to calculate the accumulated number of pollen 
grains counted within 24 hours. Additionally, weather covariates from nearby weather stations 
are included in the same dataset. Specifically, hourly temperature, precipitation, and wind speed 
are recorded. Likewise, we aggregate these variables to obtain daily levels. 

As pollen in Japan typically disperses over 100 kilometers and remains airborne for more 
than 12 hours, nearly all regions, including sparsely forested cities, can be contaminated by 
airborne pollen (Yamada et al. 2014). Figure 3 illustrates the average pollen counts by 
municipality for the period 2008 to 2019. The figure demonstrates that while the entire country is 

 
8 The number of pollen stations has remained at 120 since 2008, so our estimates are not affected by changes in the 
number of stations. The movement of stations is limited to a handful of stations, and the distance of movement is 
minimal. 
9 Okinawa prefecture, the southernmost remote island in Japan with a different climate than the rest of the country, 
has no pollen station because little pollen is observed. We exclude Okinawa from the entire analysis. 
10 Chalfin et al. (2019) examine the effect of pollen on crime in US cities using criminal records from stations within 
30 miles (48 kilometers) of the city center, while the National Allergy Bureau suggests that pollen measurements are 
valid within a 20-mile (32 kilometers) radius of each station. 
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exposed to pollen, there is considerable spatial variation across the nation, even within narrowly 
defined areas. The source of the identifying variation is discussed in detail in Section 4.2. 

 
3.2. Ambulance records 

Our comprehensive administrative data on accidents and injuries are sourced from the Fire 
and Disaster Management Agency (FDMA) of the Ministry of Internal Affairs and 
Communications, Japan. This dataset encompasses all ambulance calls, except those from the 
Tokyo metropolitan,11 from 2008 to 2019 that required ambulance transport. Registration of all 
ambulance records in the FDMA’s online system became mandatory in 2008. Because 
ambulance service in Japan is free for the public, there is no differential sample selection based 
on socioeconomic status, unlike in countries such as the United States, where ambulance use 
varies by health insurance status (Meisel et al. 2011). 

In total, 14.7 million accidents were recorded between 2008 and 2019, averaging 1.2 million 
accidents annually.12 The dataset provides detailed information for each accident, including the 
accident’s location, the date and time of the ambulance call, the accident type, the severity of 
injuries, and the age and gender of the individuals involved. 

Two features of this dataset are particularly valuable for our study. First, it records the type 
of accident involved, including traffic accidents, work-related injuries, sports injuries, and fire 
accidents. Second, it provides information on the severity of the injuries sustained. This measure 
is highly reliable because it is based on the initial clinical assessment conducted by physicians 
upon the patient’s admission to the hospital. Injury severity is classified as fatal or near-fatal, 
severe, moderate, or minor, where “severe” cases require more than three weeks of 
hospitalization and treatment, “moderate” cases require less than three weeks, and “minor” cases 
do not require hospitalization. 

Ambulance records offer two key advantages over vital statistics: they capture non-fatal but 
severe injuries that vital statistics may miss, and they record accidents on the exact day they 
occur, avoiding the measurement error associated with the reporting delays sometimes present in 
vital statistics. 

The geographical unit in ambulance records is an emergency response unit (referred to as 
“unit”), which constitutes the primary level of ambulance service in Japan. While many units 

 
11 Tokyo is excluded from the sample because (i) metropolitan Tokyo (23 wards of central Tokyo and most cities in 
Tokyo) falls under a single ambulance operating system (the Tokyo Fire Department), which is likely to introduce 
substantial measurement error in assigning pollen counts, and (ii) data from metropolitan Tokyo are only publicly 
available from 2016 onwards. Nevertheless, we later include data from Tokyo for the period 2016–2019 to verify 
that our results are robust to its inclusion in Table 3. 
12 Ambulance records also include medical emergencies (72.3% of all records). As our focus is on accidents, we 
extract data on five types of accidents from the ambulance archives: traffic accidents, work-related injuries, sports 
injuries, fire accidents, and other accidents, which account for 25.9% of all records. The remaining records are self-
injury, assault, drowning, natural disasters, and other categories (1.8%). 
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represent municipalities themselves, some small municipalities combine to form a unit, 
enhancing the efficiency of ambulance service. As of 2019, 1,700 municipalities (equivalent to 
counties in the United States) across 46 prefectures (equivalent to states in the United States) 
form 705 units. We aggregate accident records to the unit-day level by adding hourly 
observations within the units.13 

 
3.3. Sample construction and summary statistics 

To form our primary sample, we merge ambulance records by unit-day with corresponding 
pollen counts from nearby monitoring stations, recorded on the same day. Consequently, the 
primary sample encompasses records from February to May, the peak pollen seasons, for all 
prefectures except Hokkaido, in which records span from March to June, covering 2008 to 2019. 

Table 1 presents summary statistics for our primary estimation sample, comprising 970,309 
unit-day observations. On average, there are 33 daily accidents per million people. Traffic 
accidents emerge as the most prevalent type, constituting 37.6% of all incidents, followed by 
work-related injuries (3.5%), sports injuries (2.6%), and fire accidents (0.5%). Other accidents, 
not categorized within these categories, account for more than half of all incidents (55.8%).14 
The average daily concentration of airborne pollen is 984 grains/m3, with a standard deviation of 
2,135.15 

 

4. Econometric model 
4.1. Estimating equation 

We estimate the effect of short-term pollen exposure on accident rates, net of any 
potentially confounding factors:  

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑙𝑙𝑙𝑙𝑙𝑙 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) + 𝛾𝛾𝑋𝑋𝑖𝑖𝑖𝑖
′ + 𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜀𝜀𝑡𝑡, [1] 

where the dependent variable 𝑌𝑌𝑖𝑖𝑖𝑖 represents the number of accidents per million people in unit 𝑖𝑖 
on date 𝑡𝑡. Taking the logarithm of pollen counts aligns with the nonlinearity observed in clinical 
studies (Erbas et al. 2007) and addresses the right skewness of pollen count distributions.16 Later, 

 
13 The timestamp of each accident reflects the time it was reported to emergency response units, not the actual time it 
occurred. This may introduce some measurement error with respect to the hour (more likely) than the date. 
Consequently, we aggregate accidents at the daily level, following the approach used in literature (e.g., Park et al. 
2021). 
14 These accidents range from minor to major and include: (i) slipping and falling on a step, (ii) slipping and falling 
on a snowy road, (iii) spilling a pot and getting burned, and (iv) slamming a finger in a screen door. 
15 We truncated the pollen counts at the 99.9th percentile (55,104 grains/m³) to account for outliers. 
16 Appendix Figure A4 presents a histogram of daily pollen counts and their logged values for the period 2008–
2019. We add one to account for zero pollen counts (0.83%) before taking the log. In Table 3, we show that our 
results are robust to dropping these observations and taking the log without adding one. Bensnes (2016) and 
Marcotte (2017) also take the log form of pollen counts. 
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we present results from alternative specifications, such as level-level or “dose-response,” and 
estimate the Poisson model to explicitly accommodate the non-negative discrete nature of 
accident counts and to gauge the sensitivity of our findings to zero observations. The parameter 
of interest, 𝛽𝛽, quantifies the change in the outcome associated with a 100% increase in pollen 
counts. The unit FE (𝛼𝛼𝑖𝑖) controls for geographic disparities in health and pollen concentrations. 

The high granularity of our data enables us to incorporate multiple sets of high-dimensional 
time FEs (𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). The baseline specification includes prefecture-by-month (𝛼𝛼𝑝𝑝𝑝𝑝), month-by-year 

(𝛼𝛼𝑚𝑚𝑚𝑚), and day-of-week FEs (Deryugina et al. 2019). Prefecture-by-month FE controls for any 

seasonal correlation between pollen counts and accidents, allowing this correlation to vary across 
prefectures. Month-by-year FE flexibly controls for nationwide time-varying shocks during our 
sample period. Finally, day-of-week FEs account for within-week variation in accidents. This 
approach enables us to compare days within the same month and unit that differ in pollen 
concentration across years, thereby mitigating concerns that other seasonal trends in accidents 
might bias the results. 

The 𝑋𝑋𝑖𝑖𝑖𝑖′  flexibly controls for daily variations in weather covariates. We include seven 
indicators for 5°C intervals of daily average temperatures, ranging from 0°C or less to 25°C or 
more. For daily precipitation, we include four indicators (no rain, less than 1 mm of rain, 1 mm 
to 2 mm of rain, and more than 2 mm of rain). We also control for the average wind speed and 
duration of darkness, the time between dusk and dawn, which is an important factor for traffic 
accidents (Bünnings and Schiele 2021). Finally, we control for the logged population, which is 
related to population density and congestion (once with the unit FE included), potentially 
affecting the risk of accidents (Abouk and Adams 2013). 

We cluster all standard errors at the pollen monitoring station (N= 120)—the level of 
underlying variation in our treatment variable (Abadie et al. 2023)—to account for possible serial 
correlation and weight all estimates by the relevant population in cases where the dependent 
variable is expressed in per capita terms. 

 
4.2. Identifying variation 

We leverage daily variations in pollen counts to identify the impact of pollen on accidents. 
The underlying assumption for 𝛽𝛽 in equation [1] to reflect the causal impact of pollen is that the 
temporal, seasonal, and geographic variations in daily pollen counts, net of confounding factors, 
would be considered exogenous. While it is not feasible to directly test this assumption, it is 
broadly plausible, as discussed below. First, we demonstrate that there remains substantial 
residual variation in pollen concentrations even after controlling for location and time FEs, along 
with comprehensive sets of weather controls. Subsequently, we discuss the arguably 
“exogenous” determinants of such daily pollen count variations. 
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We start with documenting significant spatial and temporal variation in pollen counts even 
within relatively narrow regions and periods (i.e., after controlling for prefecture-by-month and 
month-by-year FEs). As an example, Figure 4 displays the daily pollen counts from 2017 to 2019 
at three monitoring stations in Ibaraki Prefecture, located northeast of Tokyo (part of the Kanto 
region, as depicted in Appendix Figure A2). Temporal variations in pollen exposure occur within 
each station, along with spatial variations across the three stations within the short time window. 
Furthermore, this pattern is not systematic; while Station C recorded the highest pollen counts in 
most months in 2017 and 2018, Station A recorded the highest pollen counts in 2019.17 This 
observation illustrates that areas experiencing high pollen exposure in certain years encounter 
low pollen exposure in others, suggesting substantial idiosyncratic variation in pollen across 
areas over time. 

Obviously, such patterns could be partially explained by contemporaneous local weather 
conditions. Therefore, adequate control for weather covariates, as in equation [1], is important to 
mitigate concerns that “naturally occurring” processes of pollen production may contribute to 
accidents independent of pollen counts. For example, car accidents increase on rainy days, and 
rain is clearly negatively correlated with pollen counts, potentially introducing downward bias in 
our estimates. However, pollen counts are only weakly correlated with local weather covariates; 
a regression of the logged pollen counts on granular weather controls included in the main 
specification (temperature, precipitation, wind speed, and darkness) yields an R-squared value of 
only 14.5%,18 and adding the aforementioned location and time FEs raises it to at most 40.1%. 

Why do these “intuitive” weather covariates have limited explanatory power for daily 
pollen variations? According to the Ministry of Environment in Japan (MOE 2022), cedar pollen 
becomes more abundant about 7 to 10 days after it begins to shed. About four weeks after that is 
the peak pollen period, and within this period, pollen levels are particularly high when the 
weather is warm, dry, and windy, while pollen levels are low when the weather is rainy and/or 
cool. To visualize these relationships, Figure 5 extracts data from Station A in 2019 from Figure 
5, adds the average temperature, and indicates days with any precipitation. The figure shows that 
pollen concentrations are high on warm days and low on rainy days during the peak season, 
while this relationship is much weaker during the off-peak season, partly explaining the low R-
squared value. 

 
17 This observation is not specific to this particular prefecture. The same pattern of reversal can be observed in 
another example from Niigata Prefecture, as depicted in Appendix Figure A5. 
18 This low R-squared does not result from how precipitation and temperature are coded. For example, changing 
both to dummies for deciles of precipitation and temperature changes it to 16.8%, and further interacting these 
temperature and precipitation dummies increases it only to 17.4%. Moreover, it is not attributable to long distances 
between weather stations and pollen monitoring stations, as presented in Table 3. 
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The natural question that follows is what factors determine the peak of the pollen season. 
Pollen studies have historically been popular in Japan, and there is accumulated scientific 
evidence to guide us in answering this question. It is widely documented that the peak of the 
pollen season is influenced by the preceding winter temperature (e.g., Kishikawa 1988). This 
makes biological sense because summer temperature determines the growth of pollen-bearing 
trees and, thus, pollen quantity, as shown in Figure 1, while winter temperature determines the 
timing of pollen onset and peak shedding.19  

Indeed, we find a clear negative relationship between winter temperatures and the timing of 
the pollen season peak. Specifically, warmer January temperatures are associated with fewer 
days from the start of the year until the first day when pollen counts exceed 5,000 grains/m³ 
(approximately the 96th percentile), after controlling for monitoring station FEs (Appendix 
Figure A6). This pattern indicates that warm winters trigger earlier pollination and accelerate the 
seasonal peak. 

Therefore, the interaction of the peak determinant and daily weather fluctuations, even 
conditional on very granular daily weather controls, can be a source of plausibly exogenous 
variation in daily pollen counts that is not correlated with other time-varying local determinants 
of accident risk. Another exogenous source of pollen variation is daily wind patterns (Iwaya et al. 
1995). Because pollen can travel long distances (Yamada et al. 2014), wind direction on a given 
day provides us with nonlocal pollen variation that can be used to identify the effect of pollen 
exposure independent of local weather conditions.20 

In summary, factors determined long before the start of the pollen season (i.e., winter 
temperature) that interact with contemporaneous weather conditions, as well as a component of 
contemporaneous local weather conditions that drives the idiosyncratic movement of pollen (i.e., 
wind direction), are some (but of course not all) of the sources of exogenous variation that we 
exploit to credibly identify a causal effect of pollen on accidents. We also illustrate the 
robustness of our results by estimating alternative specifications that include more or less 
stringent FEs to ensure that our results cannot be explained by specific unobserved seasonal or 
regional patterns, as well as stricter controls for weather conditions. 

 
19 Already in 1988, Kishikawa (1988) wrote: “The sum of these pollen counts correlated with the mean temperature 
in July of the previous year (r = 0.878, p<0.001) and the beginning of the pollination season correlated with the 
mean temperature in January (r = –0.765, p<0.001).” 
20 To minimize measurement error due to local pollution transport (e.g., from traffic or local power plants), 
Deryugina et al. (2019) restrict the influence of wind directions (their instrumental variable) on pollution to be the 
same for all monitors within the same geographic regions, mainly to exploit variations in nonlocal pollution from 
other regions. We do not adopt this approach because 1) the variation in pollen concentrations is mainly due to 
nonlocal transport (i.e., pollen-emitting trees in the mountains), while the monitors are mostly located in urban areas 
with high population densities, 2) technically, with only 120 pollen monitors across the country, the geographic 
regions containing multiple monitors become too large to adequately capture even nonlocal transport, and 3) more 
fundamentally, the wind directions affect the levels of pollen and pollution simultaneously. 
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To directly visualize the identifying variation underlying the baseline specification, we 
display the distribution of residuals from a regression of logged daily pollen counts on all the 
controls in equation (1), namely unit, month-by-year, month-by-prefecture, and day-of-week 
FEs, as well as weather covariates (precipitation, temperature, wind speed), darkness, and logged 
population. We summarize this residual variation using the interquartile and interdecile ranges 
across prefectures and years (Cabral and Dillender 2024). Both measures indicate substantial 
within-prefecture and within-year variation, confirming that our estimates are not driven by any 
single prefecture or any particular year (Appendix Figure A7). 

 

5. Main results 
5.1. Symptoms of seasonal allergies 

Before presenting our main findings, we first examine whether individuals are more prone 
to experiencing seasonal allergy symptoms on high pollen days than on low pollen days. This 
analysis is based on data sourced from both Internet search activity (Google Trends) and social 
media posts (Twitter data). 

We use publicly available Google Trends data focusing on two broad categories: (1) pollen-
related keywords and (2) symptom-related keywords spanning from 2016 to 2019 at the 
prefecture-day level (N= 21,551). The Google search index reflects the popularity of search 
terms, ranging from 0 to 100 within a given prefecture and on a specific day, relative to the total 
searches within the specified period.21 

Figure 6 illustrates the outcomes for symptom-related keywords such as “runny nose,” 
“nasal congestion,” “sneezing,” and “itchy eyes” (see Appendix Table B1 for the comprehensive 
list of search terms employed). Panel A shows the time series of the Google search index for 
these keywords alongside the daily pollen counts (grains/m3), using data from 2018 as an 
example. These variables exhibit close alignment over time. Panel B confirms this positive 
relationship in the binscatter plots, which show the relationship between logged daily pollen 
counts and the search index after adjusting for prefecture-by-month, month-by-year, and day-of-
week fixed effects, as well as weather covariates, darkness, and logged population. A 100% 
increase in daily pollen counts leads to a 3.6-point rise in the search index on a scale of 0–100, 
with a mean of 30.4 (p-value<0.01). Similar patterns are observed for pollen-related keywords, 
such as “pollen,” “pollen allergy,” and “Japanese cedar pollen,” as displayed in Appendix Figure 
B1. 

We replicated the relationship between pollen counts and keywords using public Twitter 

 
21 The 2016 cutoff is motivated by data completeness and the fact that Google changed its data collection system on 
January 1, 2016. We follow Brodeur et al. (2021) to construct Google Trends data at the daily level over multiple 
years, using overlapping periods of daily and weekly data. 
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data spanning from 2016 to 2019 at the prefecture day level.22 The sole distinction from the 
previous analysis is that the dependent variable now represents the number of tweets containing 
the same two keyword sets. Individuals tend to tweet these keywords more frequently on days 
with high pollen levels (Appendix Figure B2). 

An advantage of Twitter data compared to Google Trends data is that, while the sample is 
biased towards younger cohorts, individuals often express emotional states in tweets (Baylis 
2020; Burk et al. 2022). Therefore, we collected data on sleep-related tweets (Heyes and 
Mingying 2019), specifically those mentioning “having a hard time falling asleep” and “feeling 
sleepy,” to gauge decreased sleep quality and daytime sleepiness. Individuals seem to encounter 
more sleep-related issues as pollen levels rise (Appendix Figure B3). This “first-stage” evidence 
suggests that individuals are experiencing typical seasonal allergy symptoms, and some are 
evidently aware of their exposure. 

 
5.2. Basic results 

Figure 7 displays binscatter plots illustrating the relationship between logged daily pollen 
counts (grains/m3) and the number of accidents per million people. It encompasses all accidents 
(panel A), followed by specific accident types by frequency, excluding “other” accidents: traffic 
accidents (panel B), work-related injuries (panel C), and other accidents (panel D). These plots 
account for unit, prefecture-by-month, month-by-year, and day-of-week FEs, alongside weather 
covariates (precipitation, temperature, wind speed), darkness, and logged population. Each figure 
presents a generally linear relationship with logged pollen counts, with a slight flattening at very 
high pollen concentrations. This simple plot demonstrates a robust connection between pollen 
concentration and accident occurrences, a relationship we formally examine below. 

Table 2 presents the key estimates from equation [1]. Column (1) shows that a 100% 
increase in daily pollen count is associated with a 0.231 increase in daily accidents per million 
people. This result is precise and highly statistically significant (p-value<0.001, t-stats= 14.0). 
Relative to the average daily accident rate of 33.03, this represents a 0.7% increase, implying an 
elasticity of 0.0070 (= 0.231/33.03). To contextualize our findings, Sager (2019) reports that the 
elasticity of road traffic accidents with respect to PM2.5 in the UK is about 0.06. While a direct 
comparison requires considerable caution, as Sager (2019) includes all traffic crashes with any 
personal injury (not always associated with ambulance transport), our elasticity is approximately 
one-tenth of that figure.23 As shown in the heterogeneity analysis in Section 5.4, our elasticity is 
even higher for severe accidents (e.g., 0.033). 

 
22 We assign a prefecture based on the location at the time of the tweet. 
23 If we focus only on traffic accidents, column (2) of Table 2 shows that the elasticity is 0.0063 (0.079/12.41), 
which is very similar to the overall elasticity. 
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Columns (2)–(5) of Table 2 demonstrate that, although the magnitude varies by accident 
type, elevated pollen concentration is associated with increased occurrences across all types. For 
instance, the rise in the incidence of work-related injuries, albeit constituting a small share 
(3.5%), underscores the substantial health risk pollen exposure poses to workers and its potential 
adverse impact on labor productivity. We discuss the monetary values of pollen-induced 
accidents in Section 7, where we project potential damages from climate change. 

Importantly, our estimates provide a lower bound on pollen’s impact on accidents because 
the ambulance records analyzed exclude minor accidents that do not require ambulance transport. 
Furthermore, injury severity is evaluated upon hospital admission, potentially leading to an 
underestimation of eventual fatalities.24 

Dose-response—. We also examine dose responses more flexibly by estimating a 
nonparametric binned regression in which the logged daily pollen counts in equation [1] are 
replaced with indicator variables for each decile of the daily pollen levels. The estimates reveal a 
clear concave relationship, indicating that even relatively low pollen levels—substantially more 
common than extreme levels—can meaningfully affect the incidence of accidents (Appendix 
Figure C1). Importantly, this concave dose–response pattern also highlights the potential benefits 
of reducing pollen concentrations, even in countries/settings where overall pollen levels are 
lower than those observed in our study. Furthermore, the shape of the function explains why the 
level-log specification in equation [1] fits the data well. 
 
5.3. Robustness 

Our findings regarding the impact of pollen on accidents remain robust to a battery of 
specification checks. These checks include variations in location and time FEs, different ways of 
constructing regressors and outcomes, alternative specifications, and placebo exercises. 

Robustness—. Table 3 presents the results of robustness checks and extensions. Our 
findings remain robust across various ways of constructing pollen concentration measures 
including an inverse distance-weighted average of three nearby stations (columns 2 and 3), 
incorporating pollution covariates (SO2, NO2, CO, OX, PM10) as potential confounders (column 
4),25 and introducing the full interaction of temperature and rain dummies to further control for 

 
24 For example, the number of work-related injuries, including injuries of all severity levels, captured by our 
ambulance records in 2019 is 50,578, while the total number of work-related injuries resulting in either death or at 
least four days of absence from work reported to the Ministry of Health, Labour and Welfare (MHLW) is 125,611 
(MHLW 2020). Similarly, the number of traffic accidents captured by our ambulance records in 2019 is 368,680, 
while the total number of traffic accidents resulting in death or injury reported to the National Police Agency (NPA) 
in the same year is 464,990 (NPA 2022). Thus, approximately 40% and 80% of all work-related injuries and traffic 
accidents, respectively, are captured by our ambulance records. 
25 Pollen seems to exert an independent effect from pollution, as the correlation between pollen counts and other 
pollutants is extremely low (0.02–0.12). This is likely because pollen grains are relatively large (≈30 𝜇𝜇𝜇𝜇) compared 
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weather influence (column 5). Columns (6) and (7) address potential measurement errors in 
pollen counts—our key regressor—and in weather variables, which serve as key controls. Our 
results remain robust when the sample is restricted to units located within 48 kilometers of pollen 
monitoring stations, minimizing measurement error due to spatial misalignment between 
measurement points and exposure locations (column 6). Likewise, restricting the sample to 
observations linked to pollen stations located within 8 kilometers (0.5 miles) of weather stations 
(column 7) addresses concerns that weak correlations between weather and pollen may arise 
from greater station distance.26 Our results remain robust when including data from Tokyo for 
the years 2016–2019 (column 8). The unweighted OLS estimates are larger than those from the 
weighted OLS specification (weighted by population in each emergency response unit), 
suggesting that the effects are stronger in less populated and rural regions (column 9). 

To address the possibility that the effect of pollen may appear with a lag or temporal 
displacement, we estimate the following distributed lag model: 

𝑌𝑌𝑖𝑖𝑖𝑖 = ∑ 𝛽𝛽𝑘𝑘𝑘𝑘∈𝐾𝐾 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡−𝑘𝑘) + 𝛾𝛾𝑋𝑋𝑖𝑖𝑖𝑖−𝑘𝑘
′ + 𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜀𝜀𝑡𝑡, [2] 

where we include logged pollen counts and weather covariates (precipitation, temperature, wind 
speed) for the observation date and adjacent days within the time horizon 𝐾𝐾 to mitigate concerns 
about autocorrelation. Our parameter of interest is the sum of coefficients (= ∑ 𝛽𝛽𝑘𝑘𝑘𝑘∈𝐾𝐾 ) from 
equation [2] with varying windows from 𝐾𝐾 = 0 to 14.27  

We find that the same-day effect (𝐾𝐾 = 0) effectively captures the bulk of the overall impact, 
with cumulative effects remaining relatively stable when the window is extended up to two 
weeks (Appendix Figure C3). This pattern is unsurprising and consistent with the short-lived 
nature of pollen-induced symptoms: although allergic reactions can occur within minutes of 
exposure, their effects typically last no longer than four to eight hours (Skoner 2001). Another 
approach to capturing dynamic effects is to temporally aggregate data at coarser intervals (Burke 
et al. 2018). Column (10) of Table 3 reports estimates using data aggregated to the weekly level 
to capture pollen effects that may persist over the week, such as those arising from deteriorated 
sleep quality. It is reassuring that this estimate closely aligns with the baseline estimate in 
column (1). 

 
with pollutants such as PM10, which are approximately 10 𝜇𝜇𝜇𝜇. Further, we examine the interaction of pollen with 
the arguably most harmful pollutant (PM10). We find minimal evidence substantiating that pollen’s effect is 
amplified on days with higher air pollution, likely because pollution levels in Japan are relatively low (Appendix 
Table C1 and Figure C2). Note that PM₂.₅ data are available only from 2014 onward, and the results are robust to 
replacing PM₁₀ with PM₂.₅ (not shown), as the two measures are highly correlated (correlation = 0.84). 
26 Owing to the dense network of weather stations across the country (over 840 weather stations compared with 120 
pollen monitoring stations), the distance between the two types of stations is generally short: Over 78% are located 
within 8 kilometers (0.5 miles) of each other. 
27 This approach is econometrically similar to a widely used alternative specification in the literature that estimates 
equation [1] with an extension of the outcome window to subsequent days (e.g., Deryugina et al. 2019). 
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We find that our estimates are robust to alternative specifications with more or less stringent 
FEs, including date FEs, ensuring that our results are not driven by specific unobserved seasonal 
or regional patterns (Appendix Figure C4). Additionally, our conclusions remain unchanged 
under different clustering choices, including two-way clustering by monitoring stations and dates 
to additionally account for potential spatial correlation, clustering at the broader prefecture level 
(46 prefectures) rather than only at pollen monitoring stations (120 stations), and the use of 
spatially clustered standard errors following Conley (1999) (Appendix Table C2). The results 
likewise remain stable under alternative functional-form assumptions: Both a log–log 
specification and a Poisson pseudo-maximum likelihood (PPML) model, which accommodates 
the count nature of accident outcomes, yield estimates consistent with the baseline (Appendix 
Table C3).28 

Placebo—. We conduct two placebo exercises to assess whether unobserved seasonal or 
regional patterns drive our results. First, when pollen counts are falsely assigned to the same 
calendar day in the previous or subsequent year, the resulting estimates become substantially 
smaller and statistically insignificant (Appendix Table C4). Second, when we relate logged daily 
pollen counts to the daily number of emergency ambulance transports for cancer cases—a 
condition unrelated to short-term pollen exposure—we find no discernible pattern (Appendix 
Figure C5).29 Collectively, these exercises reinforce that our main findings are not driven by 
specific unobserved seasonal or regional trends. 

Replication—. Traffic accidents are recorded separately in police records, encompassing 
those causing personal injury, and reported to the National Police Agency from 2019 to 2020 
(see Appendix D for data specifics). We compare mortality estimates from traffic accidents using 
ambulance records—our main data source—with estimates based on police records and find that 
the two are similar in magnitude (Appendix Table D1). Although the estimate using police data 
appears slightly larger, they are not statistically distinguishable from each other.30 This 
underscores the robustness of the pollen effect across various samples gathered by distinct 
government agencies with differing crash definitions, thereby strengthening the internal validity 
of our findings. Furthermore, this suggests that selection into the ambulance records—arising 
from factors such as distance to hospitals, or individuals’ preferences—may not be substantial. 

 
5.4. Heterogeneity 

Severity—. Figure 8 illustrates the estimates along with a 95% confidence interval for each 

 
28 PPML estimate converted to the level is similar to the baseline estimate, reassuring us that our results are not 
sensitive to zeros in the outcome. 
29 Ambulance records include detailed diagnostic information (equivalent to ICD10) starting in 2015. 
30 One possible reason for this observation is that police records include all deaths from traffic accidents within 24 
hours, unlike ambulance records, which only include deaths occurring at hospital admission. 
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severity level. The estimates diminish as the severity level rises, yet remain positive and 
statistically significant across all levels, including death/fatality. The estimates for more severe 
accidents exhibit a larger magnitude relative to the lower baseline compared to those for less 
severe accidents, indicating higher elasticities for more severe accidents. Specifically, the 
elasticity for death/fatality (0.013) is roughly double that of minor accidents (0.006). 

Other heterogeneity—. The ambulance records contain additional details regarding the 
accidents and the individuals involved. Figure 9, using all accident samples, investigates the 
heterogeneous treatment effects apart from severity. Panels A and B explore demographic 
heterogeneity, focusing on age and gender. Across all age groups and genders, statistically 
significant effects are observed, with magnitudes relatively similar to the means shown on the far 
right of the figure. The only deviation is a slightly larger effect observed in the elderly (>65), 
even when compared to the high baseline mean. This observation aligns with the heightened 
vulnerability of the elderly to environmental externalities, such as the relationship between heat, 
cold, pollution, and mortality (Carleton and Hsiang 2016; Cohen and Dechezleprêtre 2022; Jia 
and Ku 2019; Barwick et al. 2024). 

Panel C of Figure 9 investigates heterogeneity by accident location. Accidents at home are 
also increasing, indicating the challenge of completely avoiding outdoor pollen, which can cling 
to clothing (e.g., wool coats) and easily enter indoor spaces. This may also reflect the prolonged 
impact of outdoor pollen exposure. Panel D illustrates that pollen’s effect is more pronounced on 
weekends compared to weekdays. While individuals have greater flexibility to stay home and 
evade exposure on weekends by postponing non-essential trips, those going out might be less 
experienced drivers who typically refrain from weekday commutes or individuals taking 
recreational trips to unfamiliar destinations, rendering them potentially more susceptible to 
heightened pollen exposure risks. Our findings suggest that the latter scenario outweighs the 
former in this context. 

Over time—. Finally, we divide the 12-year sample period (2008–2019) into four three-year 
intervals. Panel E of Figure 9 reveals a slight decrease in sensitivity to pollen-related accidents in 
the later periods compared with the earlier ones, likely reflecting advances in medication, as 
newer seasonal allergy drugs cause less drowsiness31 and may, therefore, mitigate the risk of 
unsafe driving (Appendix Table A1). Nevertheless, the magnitude of this decline is small, and 
none of the estimates across the four intervals are statistically distinguishable from one another. 
 

 
31 Consequently, manufacturers appear less likely to include driving-related restrictions—such as “Driving not 
allowed”—a trend that is evident among medications introduced from 1994 to 2017 (Appendix Table A1). 
Consistent with this trend, retail scanner data indicate a substantial rise in the proportion of spending on allergy 
drugs that do not prohibit driving—from 25.2% in 2012 to 45.6% in 2019 (Appendix Figure A9). 
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6. Avoidance behaviors 
Following the persistent negative effect of pollen on accidents discussed in the previous 

section, the next natural question is whether this effect already reflects people’s engagement in 
avoidance behavior. If people do indeed engage in avoidance behavior and if such behavior 
proves effective, we may be understating the true magnitude of pollen-induced accidents, which 
would have occurred in the absence of such behavioral responses. 

During our sample period, both forecasts and real-time pollen information were widely 
available via television, newspapers, and various mobile phone apps, giving people ample 
information and time to adopt avoidance behaviors if they wished. Several inexpensive and 
effective methods to reduce the risk of temporary pollen exposure and alleviate allergy 
symptoms are frequently mentioned on television and in other media. These methods include 
wearing particle-filtering masks and glasses, washing hands, avoiding clothing that easily attracts 
pollen, taking medication, and refraining from going outdoors (Japan Society of Immunology 
and Allergology in Otolaryngology 2021). 

 
6.1. Conceptual framework 

Here, we present a simple framework for considering the role of avoidance behaviors. Let 
us assume that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴), where the number of accidents is a function of 
sickness level (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) and avoidance behaviors (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴), or what Deschênes et al. (2017) refer to 
as “defensive investment.” Given that the sickness level is influenced by ambient pollen 
concentration (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) and avoidance behavior, i.e., 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑔𝑔(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴),32 substituting it 
yields the following equation: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑓𝑓(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) 
Then, the total derivative can be written as follows (Moretti and Neidell 2011; Neidell 2009; 
Deschênes et al. 2017):  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

, [2] 

 “𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎” 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒      “𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏” 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

where the “behavioral” effect (what we have estimated so far) of pollen on accidents consists of 
the “biological” effect of pollen (the first component of the right-hand side (RHS) variable) and 
the effect of avoidance behavior (the second component of the RHS variable). The latter is the 

 
32 More precisely, the level of sickness is a function of the dose of pollen one is exposed to, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑔𝑔(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), and 
the dose is determined by the ambient pollen concentration (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) and avoidance behavior (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴), i.e., 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
ℎ(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). Substituting this into the first equation gives 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑔𝑔(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴), as shown in the main 
text. 
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product of the marginal return to avoidance behavior �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

< 0� and the magnitude of 

avoidance behavior in response to pollen levels �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

> 0�. Because the second component of 

the RHS variable is supposed to be negative, the total derivative, which already incorporates 
avoidance behavior, is smaller (i.e., underestimated) than the desired partial derivative.33 

Among the many avoidance behaviors, we specifically examine two types that can be 
observed using existing data, as complete data on these behaviors are typically not available 
(Deschênes et al. 2017). First, using retail scanner data, we examine the purchase of products that 
protect against seasonal allergies, such as medications and masks. Second, using cellphone 
mobility records, we examine whether people, including allergy sufferers, curtail outdoor 
activities, which mainly reduces the risk of outdoor accidents. Further, staying indoors limits the 
possible infiltration of pollen and thus simply averts the onset of symptoms; because pollen 
grains are relatively large (≈30 𝜇𝜇𝜇𝜇) compared to much smaller particles, such as PM2.5, they are 
less likely to enter homes if windows and doors are properly closed. In the following, we 

investigate the extent of these two types of selective avoidance behavior (𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

) in our 

context.34 
 

6.2. Purchase of allergy products 
Data—. We use retail scanner data, referred to as the “Quick Purchase Report” (QPR), 

provided by Macromill, Inc., a marketing firm that possesses one of the largest research panels 
on consumer purchasing behavior in Japan (Kuroda 2022). The QPR collects data from 
approximately 30,000 monitors to construct a nationally representative panel dataset.35 These 
monitors scan all bar-coded items they purchase daily, providing information on the name and 
code, price, and quantity of products bought. Additionally, it incorporates certain demographic 
details about the monitors, such as zip code, age, gender, family structure, and income category, 
which are updated annually. We compare the key features of the widely used Nielsen Homescan 
Panel for the United States with those of the QPR and find that the two datasets are highly 
comparable (Appendix Table E1). Both are nationally representative household-level consumer 

 
33 For example, Neidell (2009) finds that the “reduced form” effect of ozone for the elderly and children is 40% and 
160% smaller, respectively, than the purely “biological” effect. 
34 Purchasing allergy products corresponds to the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 term in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑔𝑔(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴), which lowers the level 
of illness and thus indirectly reduces the risk of accidents. By contrast, limiting outdoor activities mainly 
corresponds to the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 term in 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴), which directly reduces the likelihood of outdoor 
accidents (Heft-Neal et al. 2023).  
35 QPR monitors are selected in each region to represent the gender, age group, and family structure (marital status 
and presence of cohabitants) of the country. To maintain data quality, if unusual scans are detected or if scans are 
not observed for several weeks, the monitor is replaced by another monitor with similar characteristics. Thus, the 
number of active QPR monitors at any given time is maintained at approximately 30,000, and the total number of 
unique QPR monitors during our sample period is 70,795. 
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panels collected using Homescan technology and contain similar purchase information, including 
online transactions.36  

We extract purchase records for three items: allergy-related medications, allergy-related eye 
drops, and masks.37 The dataset comprises over 28 million individual-day observations, 
encompassing days both with and without purchases, spanning from February to May for the 
years 2012 to 2019. To accommodate the potential for stockpiling these products, we aggregate 
the data to the person-week level.38 See Appendix Table E2 for the sample’s summary statistics. 

Several limitations of this dataset merit acknowledgment. First, while we monitor purchases 
of over-the-counter (OTC) medications (e.g., antihistamines and decongestants), prescription 
medications are not tracked.39 Second, individuals may purchase these goods in advance of the 
pollen season or use leftover medication from prior seasons. Last, information regarding actual 
usage is unavailable, a common issue across all retail scanner data. 

Results—. We find that weekly spending on allergy-related products rises steadily with 
higher average daily pollen levels. This pattern holds for both overall allergy spending and 
specific categories, such as medications, eye drops, and masks, each demonstrating a roughly 
linear relationship with logged pollen counts (Appendix Figure E1). 

Table 4 reports estimates from a variant of equation [1] modified to weekly data. Column 
(1) demonstrates that a 10% increase in pollen counts leads to an additional $4.40 (in 10-3$) in 
weekly spending on allergy products. At the national level, this translates to $9.6 million (= 
4.40×10-3×120/7×127.4 million) per season, where 120 days represent a typical pollen season, 
and 127.4 million is the total population of Japan. Columns (2)–(4), which describe individual 
products, indicate that the largest increase (relative to the mean) comes from purchases of 
medicines.40  

Supplementary analysis—. We also complement the above analysis by using Google 
Trends/Twitter data containing the keywords “mask,” “air purifier,” and leading brand names of 
allergy medications in Japan to examine whether people are searching for information about 
specific protective products. Previous studies show that such searches closely track actual 

 
36 The main differences concern product coverage and detail—while the Nielsen data include some manually 
reported non-barcode items and coupon/deal flags, the QPR data cover only JAN-coded goods and lack coupon 
information. However, because our analysis focuses on drug purchases, which are very likely barcode-based, the 
two datasets can be regarded as essentially equivalent for our purposes. 
37 While medications are intended to relieve symptoms (e.g., stop a runny nose), they may not always reduce the risk 
of accidents because they cause drowsiness in some people (i.e., the sign of 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
 is unclear for them). 

38 The weekly analysis provides larger estimates than would be implied by a linear scaling of the daily estimate (not 
shown). 
39 According to the latest government statistics (MHLW 2022), expenditure on OTC drugs and prescription drugs 
for allergies (including SAR) was $0.39 and $1.73 trillion, respectively, suggesting that OTC drugs account for 
about 20% of the total expenditure on allergy drugs. An exchange rate of 100 yen/$ is used for simplicity. 
40 These results are consistent with previous studies documenting a similar relationship between pollen counts and 
OTC allergy medication sales in New York City, United States (Ito et al. 2015) and Japan (Kuroda 2022). 
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purchases (Goel et al. 2010). Compared to purchase data, these measures are more likely to 
capture contemporaneous behavior, which should be more directly affected by daily fluctuations 
in pollen counts. Consistent with this expectation, we find a strong positive relationship between 
pollen counts and both search activity and tweet volume for these keywords (Appendix Figure 
F1). 

 
6.3. Avoiding going out 

Data—. We use cellphone mobility records, referred to as “Mobile Spatial Statistics” 
(MSS), provided by NTT DOCOMO, Inc., Japan’s largest mobile phone carrier. MSS provides 
hourly population estimates for 500×500-meter mesh cells across Japan, based on location data 
from approximately 85 million NTT DOCOMO users (as of March 2022), out of Japan’s total 
population of 127 million (Terada et al. 2013).41 While physical mobility data have received 
considerable attention in the social sciences since the onset of the COVID-19 pandemic (e.g., 
Google’s COVID-19 Community Mobility Reports), such data have not yet been extensively 
utilized for studying avoidance behavior in response to environmental stressors (see Burke et al. 
2022). 

One potential concern is whether population estimates derived from cell-phone data 
accurately reflect actual human mobility. To evaluate this, following Neidel (2009), we obtain 
daily admission data from 2008–2019 for three major zoos operated by the Tokyo Metropolitan 
Government—namely, Ueno Zoo, Tama Zoological Park, and Inokashira Park Zoo—and 
compare these counts with cell-phone–based population estimates for the 500×500-meter mesh 
cells adjacent to each zoo’s entrance.42 Across all three facilities, the logged daily attendance is 
highly positively correlated with the logged daily population estimates from cellphone mobility 
records, indicating that the cell-phone–based measure closely tracks real movement (Appendix 
Figure G1).43 

Our primary mobility metrics capture the estimated population of a mesh with the highest 
number of customer service establishments in the municipality, aiming to identify bustling areas 
(e.g., business districts, shopping, and dining areas) that are more likely to reflect the population 
engaged in outdoor activities. We opt for the estimated population at 2 p.m. as commercial area 

 
41 Given the sample’s representativeness and the long-time span, this dataset has been widely used, especially for 
measuring human mobility during the COVID-19 pandemic (e.g., Kondo 2021; Kuroda et al. 2025). 
42 To ensure consistency with the subsequent analysis, we employ the mobility data measured at 2 p.m. 
43 Although geographical variation is limited because all three facilities are located within Tokyo, we find that 
admissions decline on days with higher pollen levels. However, these results should be interpreted with caution, 
considering the limited spatial variation in exposure (based on three monitoring stations) and the limited 
representativeness of the sample (Appendix Figure G2 and Table G2). 
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populations typically peak around this time (Seike et al. 2015).44 We collapse the estimated 
population at the emergency response unit level by averaging across all municipalities within the 
unit for the period from February 2014 to May 2019. We consider this measure a proxy for 
engaging in outdoor activities, termed “outdoor population” hereafter. See Appendix G for 
details on the data construction of our mobility metrics.45 

Before examining the relationship between pollen load and mobility metrics, we aim to 
verify the effectiveness of limiting outdoor activities in reducing the risk of accidents.46 
Specifically, we regress the number of accidents (our primary outcome) on our mobility metric 
using the same FEs and controls as in equation [1] (excluding the logged number of pollen 
counts). We find that outdoor population is highly positively correlated with the number of 
accidents, indicating that reducing outdoor activity can meaningfully lower accident risk 

(𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

< 0), consistent with Heft-Neal et al. (2023), as presented in Appendix Table G2. 

Results—. We find no clear association between logged pollen counts and logged outdoor 
population on weekdays; however, on weekends, the relationship becomes modestly negative, 
suggesting that individuals engage in some avoidance behavior by staying indoors when pollen 
levels are high (Appendix Figure G3). 

Table 5 presents estimates from equation [1], with the outcome being the logged outdoor 
population. Columns (1) and (2) indicate negligible and statistically insignificant estimates for all 
days and weekdays. By contrast, column (3) reveals that people tend to avoid crowded areas on 
high pollen weekends when they have more flexibility in canceling or rescheduling non-urgent 
trips. The elasticity of outdoor population with respect to pollen counts appears non-trivial: –
0.0021 (p-value<0.01), indicating that a 10% increase in pollen concentration results in a 0.021% 
decrease in outdoor population.47  

We examine heterogeneity using two key demographic characteristics—namely, age and 
sex—and find minimal differences by gender (Appendix Table G4). By contrast, older 
individuals do not seem to reduce outdoor activities even on weekends, consistent with the larger 
pollen-related effects on accidents observed in Figure 9. This pattern suggests scope to promote 

 
44 We also explore alternative methods for constructing measures of outdoor mobility, specifically focusing on the 
disparity between the daytime (2 p.m.) and nighttime (4 a.m.) populations, as well as the ratio of daytime to 
nighttime populations. The results are qualitatively similar (not shown), primarily because nighttime population 
remaining relatively stable over time, therefore adds little information after controlling for unit fixed effects. 
45 As in other studies of physical activity, we cannot distinguish between two possibilities for staying indoors: 
people may be extremely ill and need to stay home, or they may show some form of avoidance. 
46 Similarly, we cannot test whether the purchase of allergy products effectively reduces accidents because the 
regional sampling units in the retail scanner data are only ten divisions (albeit nationally representative) and do not 
correspond to the detailed regional units in the ambulance records (N= 705). 
47 Estimates for other weather covariates align with expectations: Outdoor population rises with higher temperatures 
and falls with stronger winds and longer duration of darkness (Appendix Table G3).  



26 

avoidance behaviors within this subgroup.48 
In summary, our findings suggest that people indeed engage in avoidance behaviors by 

purchasing allergy products and limiting outdoor activities, particularly on weekends. These 
behaviors might lead to an underestimation of the true impact of pollen-induced accidents if they 
prove effective. 
 

7. Projecting damages due to climate change 
This section projects the estimated effects forward to predict increases in allergy-induced 

accidents under future climate change.49 Table 6 summarizes the projected damages based on the 
“business as usual” scenario (RCP 8.5), which predicts a 4.1°C increase in summer temperatures 
in Japan from 2076 to 2095 (MEXT and JMA 2020). According to the relationship between 
summer temperature and pollen counts (panel A of Figure 1), this temperature rise could result in 
an additional daily pollen count of 686 grains/m3 (= 167.4×4.1), corresponding to a 0.529 
increase in logged pollen counts from the mean of 984 grains/m3. We then multiply the estimates 
from panel A of Figure 8 for each severity level by 0.529, then by 120 (days per pollen season), 
and finally by 127.4 (the total population) to calculate the additional annual accidents, as shown 
in row (1). Row (1) indicates that a 4.1°C increase in the mean summer temperature is expected 
to raise the number of pollen-induced deaths/fatalities, severe, moderate, and minor accidents by 
30, 216, 541, and 1,036, respectively, totaling 1,823 additional annual accidents. 

We convert additional accidents into monetary terms by multiplying the resulting accident 
counts in row (1) by the average accident costs from Bünnings and Schiele (2021) in the United 
Kingdom, as reported in row (2).50 Row (3) displays pollen-induced accidents resulting in fatal, 
severe, moderate, and minor injuries, corresponding to actual monetary costs of $96.3 million, 
$79.1 million, $20.6 million, and $39.6 million, respectively. This results in a total annual 
societal cost of $236 million, as shown in row (4).51 Interestingly, this figure far exceeds the 
budget for the Japanese Forestry Agency’s pollen reduction program, which is currently $1.1 

 
48 By contrast, when examining the purchase of allergy products, we find no meaningful differences in pollen’s 
effect across age or gender groups (Appendix Table E3). 
49 We acknowledge that we are making two strong assumptions here: (i) the level of protective technologies remains 
the same; (ii) the marginal treatment effect of an unanticipated “weather” shock documented so far is identical to the 
marginal effect of an anticipated “climate” shift. Previous studies have taken a similar approach when projecting the 
impact of these gradual changes on income (Deryugina and Hsiang 2014), mortality (Deschênes and Greenstone 
2011), amenity values (Baylis 2020), and other outcomes. 
50 We determine the expected additional costs to be $3.2 million for fatal accidents (those resulting in death), 
$365,000 for accidents resulting in serious injury, and $38,000 for accidents resulting in both moderate and minor 
injuries (Bünnings and Schiele 2021). For simplicity, an exchange rate of 1.5 $/£ is used. Unfortunately, to the best 
of our knowledge, there are no appropriate estimates of accident costs at each severity level in Japan. 
51 Panel B of Table 6, which uses the number of days with temperatures above 30°C in the previous year (panel B of 
Figure 1), yields estimates of social costs that are about 40% larger than those in panel A of Table 6, which uses 
maximum temperature. 
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million (Forest Agency 2021).52 
We acknowledge that our simple damage projection calculation is likely a conservative 

estimate because (i) we exclude potential extension of the pollen season driven by hotter 
summers, (ii) we limit the analysis to approximately four months of peak pollen season, (iii) we 
cannot capture accidents occurring at both extremes of severity (i.e., minor cases not requiring 
ambulance transport and immediate deaths), and (iv) we use a relatively conservative value of a 
statistical life (Bünnings and Schiele 2021) rather than a more commonly used value.53 

Finally, to the extent that expenditures on allergy products can be considered defensive 
expenditures rather than just another health expenditure (i.e., a transfer from individuals to 
firms), such expenditures should be included in the social cost (Deschênes et al. 2017). Based on 
the calculation in Section 6.2, a 0.529 (instead of 0.1) increase in recorded pollen counts because 
of elevated temperatures leads to $50.8 million (= $9.6 million ×0.529/0.1) in additional 
spending on allergy products. This figure is not trivial compared to the $236 million associated 
with pollen-induced accidents calculated above, suggesting the empirical importance of 
defensive spending. 

 

8. Discussion and Conclusion 
This study represents the first assessment of the impact of pollen exposure on accident 

likelihood, using Japanese archived ambulance records spanning from 2008 to 2019. We find 
that exposure to heightened pollen levels escalates the incidence of all accident types. Our 
findings align with established clinically based studies, which have documented the adverse 
cognitive effects of pollen exposure. The long-term implications of these effects have not been 
previously evaluated in real-world settings, except in the realm of children’s academic 
performance. Moreover, the nearly ubiquitous effect of pollen exposure across various observed 
demographics, coupled with its relatively enduring effects over time, suggests a potentially 
generalizable underlying mechanism linking pollen exposure to accidents across contexts. 

Our analysis of internet search activities and social media posts for pollen-related topics 
indicates that individuals have a good awareness of daily pollen levels. Additionally, further 
analysis of retail scanner data and cellphone mobility records reveals that people actively engage 
in avoidance behaviors. These behaviors include purchasing products like medications and 
masks to safeguard against seasonal allergies, and in some cases, curtailing outdoor activities 
during weekends to mitigate the risk of pollen exposure and associated allergy symptoms.  

 
52 Because of the growing demand for government intervention, the current administration has decided to increase it 
to $61 million in fiscal year 2024. 
53 For example, the central estimate of the value of statistical life used by the Environmental Protection Agency in 
the United States is $9.8 million in 2021, and Smith (2016) similarly uses $4 million to $10 million per fatality, both 
of which are larger than the $3.2 million figure we use. 
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These results suggest that reliance on individual self-protection alone may fall short of 
mitigating pollen-related harm. This study is, to the best of our knowledge, the first to document 
a causal relationship between pollen exposure and accident risk in a real-world setting; hence, 
individuals may not fully appreciate this risk or incorporate it into their decision-making, 
resulting in suboptimal avoidance behavior.54 Accordingly, clearly disseminating information 
about these risks—including the evidence presented in this study—constitutes a critical first step, 
particularly considering the abundance of pollen-related information already available in various 
forms in Japan.55 

Furthermore, considering the negative externalities associated with accidents and the 
substantial social costs of pollen-induced incidents, additional government involvement may be 
warranted. Broadly, government interventions can be classified into the following two types: ex-
post interventions (adaptation) and ex-ante interventions (mitigation). Ex-post measures aim to 
reduce individuals’ exposure to pollen or lessen the harm associated with exposure, whereas ex-
ante measures target the source of pollen “production,” such as trimming pollen-emitting trees or 
replacing them with low-pollen-emitting varieties. 

A feasible, rapidly implementable ex post intervention is the provision of medication 
subsidies. Although recently released allergy medications tend to contain fewer ingredients that 
cause drowsiness (Appendix Table A1), time-series patterns of spending on seasonal allergy 
drugs (Appendix Figure A8) reveal that such medications accounted for less than 50% of total 
allergy-related expenditures in 2019. This suggests substantial scope for increasing the use of 
less drowsy medications by offering subsidies or reducing prices.56 

Another promising ex-post strategy is to launch a public information campaign to reduce 
exposure to high pollen levels, for example, by issuing pollen alerts to notify the public when 
pollen dispersal is high. On days with an active alert, the government could provide standardized 
guidance to firms and the public on appropriate responses. For the public, this guidance might 
include behavioral recommendations, such as wearing masks, using air purifiers, taking public 
transportation, and avoiding nonessential outdoor activities. As older adults—who are at greater 
risk of pollen-related accidents—are less likely to engage in avoidance behaviors, providing 

 
54 Thus, the current state of protective behavior is unlikely to reflect people’s revealed preferences, which already 
incorporate potential risk (Leard and Roth 2019). 
55 This distinction is important for policy design. When access to information is limited, governments should focus 
on expanding the dissemination of pollen information (Barwick et al. 2024; Jha and Nauze 2022). When access is 
already widespread, as in our setting, the challenge instead lies in capturing attention. In such cases, policy should 
emphasize more effective ways to raise awareness of risks and encourage behavioral change. Prior studies show that 
smog and ozone alerts can successfully induce precautionary behaviors that reduce exposure (e.g., Anderson et al. 
2022; Cutter and Neidell 2009). 
56 For example, Kohou Logistics (Tokyo), a transportation firm, has distributed over-the-counter tablets and other 
medications at no cost to truck drivers affected by hay fever since fiscal year 2019 (Yomiuri Shimbun 2023). See 
also Inuma and Lee (2024) “Japan’s answer to seasonal allergies: A subsidized tropical escape” in the Washington 
Post. 
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timely alerts along with clear recommendations seems to be a particularly effective way to 
reduce accidents. 

Furthermore, governments may issue guidelines encouraging firms to implement adaptive 
measures for their employees, thereby helping mitigate productivity losses associated with pollen 
exposure. For example, on days when a pollen alert is in effect, firms could allow temporary 
remote work or grant short-term sick leave to employees with clinically significant symptoms. 
Our findings indicate that individuals substantially curtail outdoor activities only on weekends, 
suggesting a latent willingness to avoid high-pollen environments during weekdays as well. The 
primary barrier may be the opportunity cost of missing work, highlighting the importance of 
employer-supported flexible work arrangements in enabling effective adaptation. 

Ex-ante interventions instead aim to curb pollen production at the source.57 A negative 
externality emerges when pollen-producing trees are planted for industrial or commercial reasons 
by decision-makers who do not bear the resulting health damages. This misalignment provides a 
clear rationale for government intervention. One approach is to mandate the use of low-pollen 
tree species and levy a surcharge on planting agents and landowners who do not comply, thereby 
inducing them to internalize the social costs of pollen emissions.58 

In sum, noteworthily, the social costs that we estimate likely represent only the tip of the 
iceberg of the broader societal burdens associated with rising pollen counts. Although we remain 
agnostic regarding the underlying mechanisms, to the extent that pollen exposure impairs 
cognitive function, any daily activity requiring normal cognitive alertness and decision-making 
capabilities may be affected. Therefore, quantifying these potential damages is essential for 
developing a comprehensive understanding of the full social costs associated with elevated 
pollen concentrations.  

 
57 However, implementing these measures may take considerable time and entail costs associated with reductions in 
forests’ water conservation functions, including water storage, flood mitigation, and water purification. 
Consequently, ex-post interventions can function as effective second-best remedies in the short run. 
58 For example, Germany has issued guidelines encouraging the use of low-allergenic tree species (Bergmann et al. 
2025) 
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Figure 1—Pollen count and temperature from the previous summer 
A. Maximum temperature of the previous year B. Number of days above 30℃ in the previous year 

  
Notes: The sample comprises station years (N=1,440) from all pollen monitoring stations (N=120) over the period 2008 to 
2019 (12 years). The graphs display binscatter plots illustrating the relationship between the average (24-hour cumulative) 
daily pollen counts (grains/m3) from February to May (on the x-axis) and the average maximum temperature (in ℃) in panel 
A, and the number of days the temperature exceeded 30℃ in July and August of the previous summer in panel B (on the x-
axis). These relationships are shown after controlling for the fixed effects of the pollen monitoring stations. In panel A, the 
slope is 167.4 (t-stats=11.16), indicating that a one-degree increase in the maximum temperature in the previous summer 
corresponds to a 167.4 grains/m3 increase in daily pollen counts. Similarly, in panel B, the slope is 23.7 (t-stats=11.18), 
suggesting that for every ten additional hot days above 30℃ in the previous summer, daily pollen counts increase by 237 
grains/m3. The mean and median daily pollen counts from February to May during 2008 to 2019 across 120 monitoring stations 
are 955.6 and 712.5 grains/m3, respectively. 
 

Figure 2—Pollen monitoring stations 
A. Location of pollen monitoring stations B. Distance to the pollen monitoring stations 

  
Notes: Panel A displays the locations of all pollen monitoring stations as of 2019. Japan hosts 120 pollen stations. On average, 
each of Japan’s 46 prefectures has 2 to 3 stations, except for Okinawa. Due to its distinct climate, Okinawa, the southernmost 
prefecture, lacks any monitoring stations as pollen is not observed there. Panel B illustrates the cumulative distribution of the 
distance from the centroid of the units (N=705) to the nearest pollen monitoring station (N=120). The vertical dotted line 
represents 48 km (30 miles), a distance referenced by Chalfin et al. (2019). Notably, 90.2% of the stations (636 out of 705) 
fall within this threshold. 
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Figure 3—Spatial variation in pollen counts 

 
Notes: This figure presents the average pollen counts (grains/m3) from 2008 to 2019 across municipalities. Notably, 
Okinawa Prefecture, the southernmost island in Japan with a distinct climate, lacks a pollen station due to minimal pollen 
observed.
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Figure 4—Temporal variation in pollen counts from Ibaraki Prefecture 

 

 

 
Notes: The graphs show daily variations in pollen counts (grains/m3) from 2017 to 2019 at three monitoring stations 
in Ibaraki Prefecture, located northeast of Tokyo within the Kanto region (see Appendix Figure A2). 
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Figure 5—Daily pollen counts and weather conditions 

 
Notes: This figure extracts data from Station A in 2019 from Figure 4, supplements it with the average temperature, 
and color-codes days with any recorded precipitation. 
 
 

Figure 6—Pollen and symptom-related Google search index 
A. Time series B. Binscatter plot 

  
Notes: The sample is derived from Google Trends data, with observations at the prefecture-per-day level. Panel A 
illustrates time-series patterns of average daily pollen counts (grains/m3) and the Google search index for symptom-
related keywords in 2018 on a national scale. Symptom-related keywords include “runny nose,” “nasal congestion,” 
“sneezing,” and “itchy eyes.” June is omitted because only 4 stations in Hokkaido (Japan’s northernmost island) were 
still active in June. Panel B displays binscatter plots illustrating the relationship between logged daily pollen counts 
(grains/m3, on the x-axis) and the Google search index for the mentioned keywords (on the y-axis), after controlling 
for month-by-year, month-by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation, 
temperature, wind speed), darkness, and logged population. Estimates are weighted by the population in each 
prefecture per year. See Appendix Figure B1 for similar plots regarding pollen allergy-related keywords, exhibiting 
similar patterns. 
  

-10

0

10

20

30

G
oo

gl
e 

se
ar

ch
 in

de
x

0 1 2 3 4 5 6
ln(daily pollen counts)



39 
 

Figure 7—Pollen and the number of accidents 
A. All accidents B. Traffic accidents 

  
C. Work-related injuries D. Other accidents 

  
Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per 
day level (N=970,309). A total of 705 units are available. The graphs display binscatter plots illustrating the 
relationship between logged daily pollen counts (grains/m3, on the x-axis) and the daily cases per million people for 
all accidents (panel A) and specific accident types in panels B to D (on the y-axis): traffic accidents (panel B), work-
related injuries (panel C), and other accidents (panel D), after controlling for unit, month-by-year, month-by-
prefecture, and day-of-week FEs, alongside weather covariates (precipitation, temperature, wind speed), darkness, 
and logged population. The shares of traffic accidents (panel B), work injuries (panel C), and other accidents (panel 
D) are 37.6%, 3.5%, and 55.8%, respectively. Estimates are weighted by the population in each unit.  
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Figure 8—Treatment effects by severity 

 
Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per 
day level (N=970,309). A total of 705 emergency response units are available. The plots exhibit estimates and 95% 
confidence intervals of treatment effects of logged daily pollen counts from equation [1]. Standard errors are clustered 
at the pollen monitoring station level. The dependent variables are the number of daily cases per million people 
categorized by severity level. Severity is assessed by physicians upon hospital admission, with “severe” accidents 
requiring over three weeks of hospitalization and treatment, “moderate” necessitating hospitalization under three 
weeks, and “minor” not requiring hospitalization. The mean represents the daily accident cases per million population. 
Elasticity (x100) measures the change in outcome associated with a 100% increase in pollen counts divided by the 
mean times 100. Estimates are weighted by the population in each unit.  



41 
 

Figure 9—Other heterogeneous treatment effects 

 
Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per 
day level (N=970,309). A total of 705 emergency response units are available. The plots exhibit estimates and 95% 
confidence intervals of heterogeneous treatment effects of logged daily pollen counts from equation [1]. Standard 
errors are clustered at the pollen monitoring station level. The dependent variables are the number of daily accident 
cases per million people using all accident data. The mean represents the daily cases per million population. Elasticity 
(x100) measures the change in outcome associated with a 100% increase in pollen counts divided by the mean times 
100. Estimates are weighted by the population in each unit. 
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Table 1—Summary statistics 

Variables 
Share 
within 

category 
Obs Mean Std. dev. Min Max 

                 
A. Outcomes (per 1,000,000 per day)            
 All accidents    970,309 33.03  28.23  0  5,091  
  Type: Traffic accidents 37.6% 970,309 12.41  16.09  0  5,091  
 Type: Work-related injuries 3.5% 970,309 1.15  3.87  0  1,367  
 Type: Sports injuries 2.6% 970,309 0.86  3.24  0  1,195  
 Type: Fire accidents 0.5% 970,309 0.17  2.10  0  2,612  
 Type: Other accidents 55.8% 970,309 18.44  17.77  0  2,447  
  Severity: Death/Fatal  0.9% 970,309 0.30  2.11  0  943  
  Severity: Severe 6.2% 970,309 2.05  6.07  0  1,572  
  Severity: Moderate  27.4% 970,309 9.05  11.90  0  1,958  
  Severity: Minor  65.4% 970,309 21.58  20.65  0  4,570  
  Ages: 0–24 years 20.5% 970,309 6.34  9.44  0  2,112  
  Ages: 25–44 years 15.0% 970,309 4.61  7.64  0  2,186  
  Ages: 45–64 years 18.8% 970,309 5.81  8.90  0  2,637  
  Ages: 65 years and older  45.7% 970,309 14.09  15.98  0  2,695  
  Gender: Male  53.3% 970,309 15.88  17.55  0  4,769  
  Gender: Female  46.7% 970,309 13.91  15.82  0  2,366  
 Location: Roads 44.9% 970,309 8.73  12.66  0  198  
 Location: Home 34.0% 970,309 6.61  9.90  0  82  
 Location: Public space 18.1% 970,309 3.51  5.73  0  51  
 Location: Workplace 3.0% 970,309 0.58  1.14  0  58  
        
B. Regressors (per day)            
  Pollen counts (grains/m3)  970,309 984.34  2135.26  0  55,104  
 Logged (Pollen counts)  970,309 0.16  0.43  0  10  
  Precipitation (mm)  970,309 11.90  6.14  0  28  
  Average temperature (℃)  970,309 2.93  1.39  0  16  
  Average wind speed (m/s)  970,309 10.48  1.28  7  13  
  Darkness (hours)  852,948 2.20  2.16  0  521  
  SO2 (ppb)  846,719 6.14  10.07  0  307  
  NO2 (ppb)  846,659 15.11  9.60  0  88  
  CO (0.1ppm)  848,798 4.02  1.84  0  61  
  OX (ppb)  850,847 36.76  11.51  0  120  
  PM10 (μg/m3)   850,577 20.04  11.14  0  299  

Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per 
day level. A total of 705 emergency response units are available, with population weights applied. The sum of shares 
within each category should equal 100%. Pollution data have been available since 2009. 
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Table 2—Main results: Accidents 

  
A. All  

accidents 

  B. By type 

    Traffic 
accidents 

Work-
related 
injuries 

Sports 
injuries 

Fire 
accidents 

Other 
accidents 

  (1)   (2) (3) (4) (5) (6) 

ln(pollen counts) 0.231***   0.079*** 0.012*** 0.007** 0.006*** 0.127*** 
  (0.020)   (0.012) (0.002) (0.003) (0.002) (0.016) 

              

R-squared 0.46   0.24 0.06 0.08 0.00 0.37 
N 970,309    970,309  970,309  970,309  970,309  970,309  
N of units 705  705 705 705 705 705 
N of clusters 120  120 120 120 120 120 
Mean of dep. var 33.03   12.41  1.15  0.86  0.17  18.44  
Elasticity (x100) 0.70    0.64  1.04 0.81 3.53  0.69 
Share 100%   37.6% 3.5% 2.6% 0.5% 55.8% 
Unit FE X   X X X X X 
Day-of-week FE X   X X X X X 
Month-by-year FE X   X X X X X 
Prefecture-by-month FE X   X X X X X 

Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per 
day level (N=970,309). A total of 705 emergency response units are available. The dependent variable is the number 
of daily cases per million people for each type of accident. Estimates from equation [1] are reported along with 
standard errors clustered at the pollen monitoring station level in parentheses. In addition to the fixed effects listed 
in the table, weather covariates (precipitation, temperature, wind speed), darkness, and logged population are 
included. Estimates are weighted by the population in each unit. The mean represents the number of daily accident 
cases per million population. Estimates are weighted by the population in each unit. Elasticity (x100) measures the 
change in outcome associated with a 100% increase in pollen counts divided by the mean times 100. Significance 
levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Table 3—Robustness: Accidents 
  (1)   (2) (3)   (4) (5)   (6) (7)   (8) (9)   (10) 
      Pollen measures   Additional controls   Measurement errors   Others   

Collapse 
data at the 

weekly 
level 

  Baseline   

Weighted 
average of 

nearby 
three 

stations 

Drop zero 
pollen 

observations 
  (1)+Add 

pollution 

(1)+Add 
temperature 

& rain 
interactions 

  

Units 
within 48 

km of 
stations 

Limit 
stations 
within 8 
km of 

weather 
stations 

  
Add 2016-

2019 
Tokyo 

Unweighted   

ln(pollen counts) 0.231***   0.234*** 0.249***   0.220*** 0.205***   0.229*** 0.233***   0.216*** 0.402***   0.213*** 
  (0.020)   (0.021) (0.021)   (0.022) (0.020)   (0.020) (0.024)   (0.023) (0.066)   (0.036) 
                                

R-squared 0.46   0.46 0.46   0.47 0.46   0.48 0.37   0.46 0.33   0.85 
N 970,309   970,309 962,255   814,578 970,309   872,227 733,552   970,789 970,309   147,066  
Unit FE X   X X   X X   X X   X X   X 
Day-of-week FE X   X X   X X   X X   X X     
Month-year FE X   X X   X X   X X   X X     
Month-prefecture FE X   X X   X X   X X   X X     
Year-prefecture FE                             X 
Week-unit FE                             X 

Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day level. A total of 705 emergency response units are 
available. Estimates from the variant of equation [1] are reported along with standard errors clustered at the pollen monitoring station level in parentheses. Column (1) 
replicates the results from Table 2 (baseline) for ease of comparison. Column (2) employs daily pollen counts constructed by the inversely weighted average of three nearby 
stations as the main regressor. Column (3) excludes zero pollen counts (0.83%) and takes a logarithm without adding 1. Column (4) introduces air pollution covariates (SO2, 
NO2, CO, OX, PM10) for the period spanning April 2009 to April 2019, if such data are available, and column (5) includes the full interaction of temperature and precipitation. 
Column (6) limits to units located within 48 kilometers of pollen monitoring stations. Column (7) limits the sample to observations linked to pollen stations located within 8 
kilometers of weather stations. Column (8) includes data from Tokyo for the years 2016–2019. Column (9) employs unweighted ordinary least squares (OLS). Column (10) 
aggregates the data to the weekly level. All specifications include unit, month-by-year, month-by-prefecture, and day-of-week fixed effects, weather covariates (precipitation, 
temperature, wind speed), darkness, and logged population, except for column (10), which includes year-by-prefecture and week-by-unit fixed effects. Estimates are weighted 
by the population in each unit. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.  
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Table 4—Avoidance behaviors: Purchasing allergy products 

 A. Total 
 B. By category 

 Medications Eye drops Masks 

  (1)   (2) (3) (4) 

ln(pollen counts) 44.002***   24.521*** 13.143*** 6.429*** 
  (2.545)   (1.428) (0.969) (0.824) 

          

R-squared 0.006   0.004 0.003 0.002 
N 4,303,417   4,303,417  4,303,417  4,303,417  
N of individuals 70,795  70,795 70,795 70,795 
Mean of dep. var (in 10-3$) 295.78   109.94 103.41 82.52 
Share 100%   37% 35% 28% 
Municipality FE X   X X X 
Year-prefecture FE X   X X X 
Week FE X   X X X 

Notes: The sample is derived from retail scanner data from February to May for the period 2012 to 2019, with 
observations at the person per week level (N= 4,303,417). The dependent variable is the weekly expenditure (in 10-3 

$) for each allergy product. An exchange rate of 100 yen/$ is applied. Estimates from the variant of equation [1] are 
reported with standard errors clustered at the pollen monitoring station level in parentheses. In addition to the fixed 
effects listed in the table, weather covariates (precipitation, temperature, wind speed), and darkness are included. 
Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
    
  



46 
 

Table 5—Avoidance behaviors: Avoiding going out 
Outcome: logged outdoor population 

    A. All   B. By type of day 
      Weekdays Weekends 

    (1)   (2) (3) 

ln(pollen counts) -0.0005   0.0000 -0.0021*** 
    (0.0006)   (0.0006) (0.0007) 

Rainfall (base: no rainfall)     

  <1 mm -0.0061***   -0.0059*** -0.0047** 
    (0.0013)   (0.0011) (0.0019) 

  1 mm≤ & < 2 mm -0.0167***   -0.0144*** -0.0208*** 
    (0.0035)   (0.0024) (0.0080) 

  ≥ 2 mm -0.0167***   -0.0150*** -0.0249*** 
    (0.0045)   (0.0041) (0.0082) 

            

R-squared 0.98   0.99 0.99 
N 478,853    343,454  135,399  
Unit FE X   X X 
Day-of-week FE X   X X 
Month-by-year FE X   X X 
Prefecture-by-month FE X   X X 

Notes: The sample is derived from cellphone mobility records from February to May for the period 2014 to 2019, 
with observations at the unit per day level. See Appendix G for the data construction. A total of 705 emergency 
response units are available. Estimates from equation [1] are reported along with standard errors clustered at the 
pollen monitoring station level in parentheses. The dependent variable is the logged daily outdoor population at 2 
p.m. In addition to the FEs and weather covariates in the table, we include mean wind speed, darkness, and logged 
population. Estimates are weighted by the population in each unit. See Appendix Table G3 for estimates of all other 
weather covariates. Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Table 6—The impact of climate change under the “business as usual” scenario 
  A. Maximum temperature  B. Number of days above 30 ℃ 
  (+4.1 ℃)  (+48.6 days) 

  Severity level Death/fatal  Severe  Moderate  Minor    Death/fatal  Severe  Moderate  Minor  

(1) Increase in accidents per year 30.1  216.3  540.5  1,036.5    44.1  316.8  791.6  1,518.1  

(2) Social cost per case (in $) 3,196,383 365,453 38,177 38,177   3,196,383 365,453 38,177 38,177 

(3) Social cost per year (in million $) 96.34 79.06 20.63 39.57   141.11 115.79 30.22 57.95 

(4) Total social cost per year (in million $) 235.6    345.1 

Notes: Panel A uses the relationship between pollen counts and maximum temperature (panel A of Figure 1), while panel B employs the relationship between 
pollen counts and the number of days with a temperature above 30°C (panel B of Figure 1). The total social cost per year in row (4) for panel A is calculated as 
follows: A 4.1°C increase in mean temperature from the “business as usual” scenario (RCP 8.5) results in a daily increase in pollen counts of 686.3 (calculated as 
167.4×4.1), where 167.4 is derived from panel A of Figure 1. This leads to a logged increase in pollen counts of 0.529 from the mean (calculated as log(984.34 + 
686.3) - log(984.34)). Row (1) is the product of each severity level estimate from Figure 8 and 0.529, then multiplied by 120 days (February to May) of the typical 
pollen season in Japan, and finally multiplied by 127.4, which represents the average population (in millions) in Japan during the period 2008 to 2019. The values 
in row (2) are sourced from Bünnings and Schiele (2021) in the United Kingdom, using an exchange rate of 1.5 $/£. Row (3) is the product of row (1) and row 
(2). Row (4) is the summation of row (3) across all severity levels. Similarly, for panel B, increasing the number of days with a temperature above 30°C by 48.6 
days from the “business as usual” scenario (RCP 8.5) leads to a daily increase in pollen counts of 1151.8 (calculated as 23.7×48.6), where 23.7 comes from panel 
B of Figure 1. This results in a logged increase in pollen counts of 0.775 (calculated as log(984.34+1151.8)- log (984.34)). The calculations for rows (1), (3), and 
(4) follow the same procedure. 
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Appendix A: Additional figures and tables 
 

Figure A1—Time series of pollen counts and maximum temperature 
A. Maximum temperature of the previous year B. Number of days above 30℃ in the previous year 

  
Notes: The graphs illustrate the relationship between the average daily pollen counts (grains/m3) from February to May 
and the average maximum temperature (in ℃) in panel A and the number of days the temperature exceeded 30℃ in panel 
B during July and August of the preceding summer. Data were collected from 120 pollen monitoring stations for the 
period 2008 to 2019. 
 

Figure A2—Pollen season calendar in Japan 

 
Notes: The figure displays the pollen dispersal season in Japan, for five selected pollen types: Japanese cedar, cypress, 
white birch, Poaceae, and ragweed—across six regions (Hokkaido, Tohoku, Kanto, Tokai, Kansai, and Kyushu). The 
height of the bars signifies the average pollen quantity. 
Source: Kishikawa, R., E. Koto, C. Oshikawa, N. So, A. Sugiyama, A. Saito, et al. 2020. “Pollen Calendar of Important 
Allergenic Airborne Pollen in Japan.” Japanese Journal of Palynology, 65(2): 55–66. 
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Figure A3—Pollen forecast for the current day and week  
A. Current day’s pollen levels  B. Forecast of the week’s pollen levels 

  
Notes: The graphs display pollen levels as reported on television and a website (https://tenki.jp/) on a typical day during 
Japan’s pollen season. Panel A illustrates the current day’s pollen levels at various locations, while panel B presents the 
forecasted pollen levels for the week (March 1 to March 6, as of February 28, 2021) at different locations from south to 
north Japan, indicating varying magnitudes. We have obtained permission to translate the original Japanese content into 
English. 
Sources: Japan Weather Association (2022). https://tenki.jp/ (in Japanese) 
 

Figure A4—Distribution of the daily pollen counts 
A. Raw B. Logged 

  
Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day 
level (N=970,309). A total of 705 emergency response units are available. Panel A displays the daily pollen counts, while 
panel B illustrates their logged values (grains/m3). To accommodate zero pollen counts, we add one (0.83%) before taking 
the logarithm in panel B. In panel A, any daily pollen count exceeding 6,000 (3.06%) is excluded from the graph. 
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Figure A5—Temporal variation in pollen counts from Niigata Prefecture 

 

 

 

 
Notes: The graphs display the daily variation in pollen counts (grains/m3) for the period 2017 to 2019 at three 
monitoring stations in Niigata Prefecture, situated on the northern coast of Honshu, the main island of Japan. 
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Figure A6—Winter temperature and the peak of pollen seasons 

 
Notes: The sample encompasses all pollen monitoring stations from 2008 to 2019. The figure displays binscatter plots 
illustrating the relationship between the number of days from January 1st to the peak of the pollen season (on the y-axis) 
and the average maximum temperature (in ℃) in January of each year (on the x-axis), after controlling for the pollen 
monitoring station fixed effects. The peak is determined as the initial day of the year when pollen counts exceed 5,000 
grains/m3, roughly corresponding to the 96th percentile of pollen counts.  
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Figure A7—Identifying variation in pollen counts 
A. Residual variation in logged daily pollen counts, by prefecture 

 
B. Residual variation in logged daily pollen counts, by year 

 
Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day 
level (N=970,309). A total of 705 emergency response units are available. The graphs display the interquartile range and 
interdecile range of residual variation in logged daily pollen counts (grains/m3) by prefecture (panel A) and by year (panel 
B). With a total of 46 prefectures (excluding Okinawa Prefecture, lacking a pollen monitoring station), residuals are 
computed after regressing logged daily pollen counts on all controls in equation (1), including unit, month-by-year, 
month-by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation, temperature, wind 
speed), darkness, and logged population. Estimates are weighted by the population in each unit. 
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Figure A8—Time series of expenditures for seasonal allergy medications (by type) 

 
Notes: The sample is derived from retail scanner records from February to May for the period 2012 to 2019. The figure 
displays the weekly expenditure (in 10-3 $) per individual for two categories of seasonal allergy medications: “No specific 
mention of driving” and “Driving not allowed,” showcased on the left y-axis. Concurrently, the proportion of the former 
type is illustrated on the right y-axis throughout the period from 2012 to 2019. See Appendix Table A1 for the subsets 
corresponding to the two drug types. An exchange rate of 100 yen/$ is applied. 
 

Table A1—List of medications for seasonal allergies 
Brand name 
in Japanese 

Brand name 
in English 

Year of 
release Mention of driving 

アレジオン Alesion 1994 Driving not allowed 
エバステル Evastel 1996 Driving not allowed 
ジルテック Zyrtec 1998 Driving not allowed 
タリオン Talion 2000 Driving not allowed 
アレグラ Allegra 2001 No specific mention of driving 
アレロック Allelock 2001 Driving not allowed 
クラリチン Claritin 2002 No specific mention of driving 
ザイザル Xyzal 2010 Driving not allowed 
ディレグラ Dellegra  2013 No specific mention of driving 
ビラノア Bilanoa 2016 No specific mention of driving 
デザレックス Desalex 2016 No specific mention of driving 
ルパフィン Rupafin 2017 Driving not allowed 

Notes: The table presents brand names of allergy medications utilized for seasonal allergy treatment, indicating the year 
of release and any special advisories regarding driving post-medication consumption. Medications shaded in gray lack 
explicit instructions regarding driving. Note that our accident data primarily covers the period from 2008 to 2019.

25.2

35.4 37.0 37.1 35.3

44.1 43.9 45.6

20

40

60

80

100
W

ee
kl

y 
sp

en
di

ng
pe

r p
er

so
n 

(1
0-3

$)

25
30
35
40
45

Sh
ar

e 
(%

)  

2012 2013 2014 2015 2016 2017 2018 2019

(1) No specific mention of driving

(2) Driving not allowed

Share of (1)

Year



A8 
 

Appendix B: Symptoms of seasonal allergies 
 
 

Figure B1—Daily pollen counts and Google Trends 
A. Time series B. Binscatter plot 

Pollen allergy Pollen allergy 

  
Symptoms Symptoms 

  
Notes: The sample is derived from Google Trends data, with observations at the prefecture-per-day level. Panel A 
illustrates the time-series patterns of average daily pollen counts (grains/m3) and Google search index for pollen allergy-
related and symptom-related keywords in 2018 on a national scale. See Appendix Table B1 for the list of search terms 
within each category. June is omitted because only four stations in Hokkaido (the northernmost island of Japan) were 
still active in June. Panel B presents the binscatter plots illustrating the relationship between logged daily pollen counts 
(grains/m3, on the x-axis) and the Google search index for the same keywords (on the y-axis), after controlling for month-
by-year, month-by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation, temperature, 
wind speed), darkness, and logged population for the period 2016 to 2019 (N= 21,551). Estimates from the variants of 
equation [1], where unit fixed effects are replaced by prefecture fixed effects, are reported in the box. Standard errors 
clustered at the prefecture level are reported in parentheses. Estimates are weighted by the population in each prefecture 
per year. Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
 
  

0

2000

4000

6000

8000

D
ai

ly
 p

ol
le

n 
co

un
ts

0

20

40

60

80

100

G
oo

gl
e 

se
ar

ch
 in

de
x

Feb01 Mar01 Apr01 May01 Jun01

Google search index
Daily pollen counts

-10

0

10

20

30

G
oo

gl
e 

se
ar

ch
 in

de
x

0 1 2 3 4 5 6
ln(daily pollen counts)

0

2000

4000

6000

8000

D
ai

ly
 p

ol
le

n 
co

un
ts

40

60

80

100

G
oo

gl
e 

se
ar

ch
 in

de
x

Feb01 Mar01 Apr01 May01 Jun01

Google search index
Daily pollen counts

20

30

40

50

G
oo

gl
e 

se
ar

ch
 in

de
x

0 1 2 3 4 5 6
ln(daily pollen counts)

5.716*** 
(0.233) 

Mean: 16.37 

3.545*** 
(0.229) 

Mean: 30.40 



A9 
 

Figure B2—Daily pollen counts and tweets 
A. Time series B. Binscatter plot 
Pollen allergy Pollen allergy 

  
Symptoms Symptoms 

  
Notes: The sample is derived from Twitter data, with observations at the prefecture-per-day level. Panel A presents the 
time series patterns of the average daily pollen counts (grains/m3) and the number of tweets for pollen allergy-related 
and symptom-related keywords in 2018 on a national scale. See Appendix Table B1 for the list of search terms within 
each category. June is omitted because only four stations in Hokkaido (the northernmost island of Japan) were still active 
in June. Panel B displays the binscatter plots illustrating the relationship between logged daily pollen counts (grains/m3, 
on the x-axis) and the number of tweets for the same keywords (on the y-axis), after controlling for month-by-year, 
month-by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation, temperature, wind 
speed), darkness, and logged population for the period 2016 to 2019 (N= 21,551). Estimates from the variants of equation 
[1], where unit fixed effects are replaced by prefecture fixed effects, are provided in the box. Standard errors clustered at 
the prefecture level are enclosed in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.  
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Figure B3—Binscatter plot of pollen counts and tweets: Sleep-related 
Sleeplessness  

(“Having a hard time falling asleep”) 
Sleepiness  

(“Feeling sleepy”) 

  
Notes: The sample is derived from Twitter data for the period 2016 to 2019, with observations at the prefecture per day 
level (N=21,551). The graphs display binscatter plots illustrating the relationship between logged daily pollen counts 
(grains/m3, on the x-axis) and the frequency of tweets containing the terms “Hard time falling asleep” and “Feeling sleepy” 
(on the y-axis), after controlling for month-by-year, month-by-prefecture, and day-of-week fixed effects, alongside 
weather covariates (precipitation, temperature, wind speed), darkness, and logged population. See Appendix Table B1 
for the categorized list of search terms. Estimates from the variants of equation [1], where unit fixed effects are replaced 
by prefecture fixed effects, are provided in the box. Standard errors clustered at the prefecture level are enclosed in 
parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
 

Table B1—List of search terms for symptoms  
 Category # Categories Japanese English 
Common for Google Trends and Tweets 
 1 Pollen allergy 花粉 Pollen 

 花粉症 Pollen allergy 
 スギ花粉  Japanese cedar pollen 

 2 Symptoms 
 

鼻水 Runny nose 
 鼻づまり Nasal congestion 
 くしゃみ Sneezing 
 目のかゆみ Itchy eyes 

Only for Tweets (sleep-related) 
 3 Sleeplessness 寝付けない, ねつけない Having a hard time  

falling asleep   寝れない, ねれない 

  眠れない, ねむれない 

 4 Sleepiness 眠い, ねむい Feeling sleepy 

  眠たい, ねむたい 

  眠すぎる, ねむすぎる 

Notes: The table lists the keywords for each category in both Japanese and English (for reference).  
  

2.4

2.6

2.8

3

N
um

be
r o

f t
w

ee
ts

0 1 2 3 4 5 6
ln(daily pollen counts)

5.8

6

6.2

6.4

6.6

N
um

be
r o

f t
w

ee
ts

0 1 2 3 4 5 6
ln(daily pollen counts)

0.138** 
(0.057) 

Mean: 3.18 

0.171* 
(0.089) 

Mean: 6.49 



A11 
 

Appendix C: Ambulance records 
 

Figure C1—Dose responses 

 
Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day 
level (N= 970,309). A total of 705 emergency response units are available. The plots exhibit estimates and 95% 
confidence intervals of the treatment effects of daily pollen counts (in levels), using a variant of equation [1] where the 
logged daily pollen is replaced by dummies for each decile of daily pollen levels (grains/m3). The dependent variable is 
the number of daily cases per million people. Standard errors are clustered at the pollen monitoring station levels. All 
specifications include unit, month-by-year, month-by-prefecture, and day-of-week fixed effects, alongside weather 
covariates (precipitation, temperature, wind speed), darkness, and logged population. Estimates are weighted by the 
population of each unit. The histogram at the bottom displays the distribution of daily pollen counts (grains/m3). 
 
 

Figure C2—Pollen and the number of accidents by the level of PM10 

 
Notes: The sample is derived from ambulance records for the period 2009 to 2019, with observations at the unit per day 
level (N= 806,839). A total of 705 emergency response units are available. The figure displays binscatter plots illustrating 
the relationship between logged daily pollen counts (grains/m3, on the x-axis) and the number of daily cases per million 
people for all accidents (on the y-axis), categorized as below and above the daily median of PM10, after controlling for 
unit, month-by-year, month-by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation, 
temperature, wind speed), darkness, and logged population. Estimates are weighted by the population of each unit. 
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Figure C3—Varying window for the sum of coefficients in the distributed lag model 

 
Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day 
level (N= 970,309). A total of 705 emergency response units are available. The plots depict the estimates and 95% 
confidence intervals of the sum of coefficients (= ∑ 𝛽𝛽𝑘𝑘𝑘𝑘∈𝐾𝐾 ) in the distributed lag model derived from equation [2], with 
varying windows of up to 14 days. The dependent variable is the daily number of cases per million people. All 
specifications include fixed effects for unit, month-by-year, month-by-prefecture, and day-of-week. Additionally, logged 
pollen counts and weather covariates (precipitation, temperature, wind speed) for the days preceding and following the 
observation date within the specified time horizon are included. Estimates are weighted by the population of each unit. 
 

Figure C4—Different time FE 

 
Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day 
level (N= 970,309). A total of 705 emergency response units are available. The plots display estimates and 95% 
confidence intervals of treatment effects on logged daily pollen counts from equation [1] under various specifications 
with high-dimensional unit and time fixed effects. Standard errors are clustered at the pollen monitoring station level. 
The dependent variables are the number of daily cases per million people. The baseline model includes fixed effects for 
unit, month-by-year, month-by-prefecture, and day-of-week. All specifications additionally include weather covariates 
(precipitation, temperature, wind speed), darkness, and logged population. Estimates are weighted by the population of 
each unit. 
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Figure C5—Pollen counts and emergency ambulance transports due to cancer 

 
Notes: The sample is derived from ambulance records for the period 2015 to 2019, with observations at the unit per day 
level (N= 407,463). A total of 705 emergency response units are available. These ambulance records encompass detailed 
diagnosis information, equivalent to ICD10, starting from 2015. The figure displays binscatter plots illustrating the 
relationship between the logged daily pollen counts (grains/m3, on the x-axis) and the frequency of daily emergency 
ambulance transports due to cancer per million people (on the y-axis), after controlling for unit, month-by-year, month-
by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation, temperature, wind speed), 
darkness, and logged population. Estimates are weighted by the population of each unit. 
 

Table C1—Pollen and pollution interactions 
  (1) (2) 

ln(pollen counts) 0.230*** 0.267*** 
  (0.021) (0.027) 

1(PM10 ≥ median)   0.068 
    (0.222) 

ln(pollen) × 1(PM10 ≥ median)   -0.053 
    (0.036) 
      

R-squared 0.46 0.46 
N 806,839  806,839  
Unit FE X X 
Day-of-week FE X X 
Month-by-year FE X X 
Prefecture-by-month FE X X 

Notes: The sample is derived from ambulance records for the period 2009 to 2019, with observations at the unit per day 
level (N= 806,839). Pollution data are available starting from 2009. A total of 705 emergency response units are available. 
The dependent variable is the daily number of cases per million people for all accidents. Column (1) replicates the 
baseline estimates presented in Table 2 for the subset with available pollution data. Column (2) presents estimates derived 
from the variation of equation [1], where a dummy variable, which takes a value of 1 when the daily PM10 level exceeds 
the median, and 0 otherwise, and its interaction with logged pollen counts is also included. Standard errors clustered at 
the pollen monitoring station level are reported in parentheses. In addition to the fixed effects listed in the table, weather 
covariates (precipitation, temperature, wind speed), darkness, and logged population are included in the estimation. 
Estimates are weighted by the population of each unit. Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Table C2—Different levels of clustering 
Clustering variables N of clusters SE 
    0.231    
Monitoring stations (baseline) 120 (0.020) *** 
Monitoring stations and date 120 + 1,796 (0.028) *** 
Monitoring stations and month-year 120 + 60 (0.030) *** 
Unit 705 (0.019) *** 
Unit and date 705 + 1,796 (0.028) *** 
Unit and month-year 705 + 60 (0.031) *** 
Prefecture 47 (0.016) *** 
Prefecture and date 47 + 1,796 (0.025) *** 
Prefecture and month-year 47 + 60 (0.028) *** 
Conley (50 km) - (0.018) *** 
Conley (100 km) - (0.019) *** 
Conley (150 km) - (0.020) *** 

Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day 
level (N= 970,309). A total of 705 emergency response units are available. The dependent variable is the number of daily 
cases per million people. Estimates from equation [1] are reported. All specifications include unit, month-by-year, month-
by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation, temperature, wind speed), 
darkness, and logged population. The numbers of pollen monitoring stations, units, and prefectures are 120, 705, and 46, 
respectively. The last three rows present spatially clustered standard errors following the methodology outlined in Conley 
(1999), employing distance cutoffs of 50, 100, and 150 km, respectively. Estimates are weighted by the population in 
each unit. Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
 

Table C3—Alternative specifications 
  (1) (2) (3) 

  
level-log  

OLS 
(Baseline) 

log-log 
OLS 

Poisson 
pseudo-

maximum 
likelihood 
(PPML) 

ln(pollen counts) 0.231*** 0.0054*** 0.030*** 
  (0.020) (0.0006) (0.003) 
      

 

R-squared 0.46 0.90 - 
N 970,309  970,309  970,309  
Unit FE X X X 
Day-of-week FE X X X 
Month-by-year FE X X X 
Prefecture-by-month FE X X X 

Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day 
level (N=970,309). A total of 705 emergency response units are available. Column (1) reports the results from Table 2 
(baseline) for ease of comparison. Column (2) reports estimates from the variant of equation [1], wherein the dependent 
variable takes the logarithm of the number of daily cases per million people. Estimates are weighted by the population 
in each unit in columns (1) and (2). Column (3) reports the marginal effect of Poisson pseudo-maximum likelihood 
(PPML) using the dydx command in Stata. The estimate in column (3) can be converted to 0.222 cases per million people 
(= 0.030/0.135), where 0.135 is the average population in a million, which is comparable to the baseline estimate in 
column (1). The standard errors clustered at the pollen station level are reported in parentheses. Significance levels: *** 
p<0.01, ** p<0.05, * p<0.10. 
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Table C4—Placebos 
  (1) (2) (3) 

  Baseline 
Assigning last 
year’s pollen 

counts 

Assigning next 
year’s pollen 

counts 

ln(pollen counts) 0.231*** 0.008 0.021 
  (0.020) (0.022) (0.022) 
        

R-squared 0.46 0.47 0.46 
N 970,309  879,777  881,226  
Mean of dep. var 33.03 33.21  32.89  
Unit FE X X X 
Day-of-week FE X X X 
Month-by-year FE X X X 
Prefecture-by-month FE X X X 

Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day 
level. A total of 705 emergency response units are available. The dependent variable is the number of daily cases per 
million people. The estimates from equation [1] are reported. All specifications include fixed effects for unit, month-by-
year, month-by-prefecture, and day-of-week, alongside weather covariates (precipitation, temperature, wind speed), 
darkness, and logged population. Column (1) replicates the estimates from Table 2 (baseline) for ease of comparison. 
Columns (2) and (3) falsely assign the pollen levels of the corresponding day from the previous and subsequent years, 
respectively (for instance, for March 3, 2018, in unit X, columns (2) and (3) assign the pollen levels of March 3, 2017, 
and March 3, 2019, within the same unit X). Estimates are weighted by the population in each unit. Significance levels: 
*** p<0.01, ** p<0.05, * p<0.10.  
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Appendix D: Police records 
The police records encompass all 690,415 traffic accidents (or 106,533 during the pollen season) 

occurring between 2019 and 2020. These data are compiled at the individual accident level, detailing 
information such as location, date, and time of occurrence. Unlike the ambulance service, which operates at a 
unit level (N=705), the police service is administered at the municipal level (N=1,700). Consequently, we 
aggregate casualty figures to the municipal-day level by consolidating hourly observations within 
municipalities. 

Figure D1 illustrates the binscatter plots depicting the relationship between the logged average daily 
pollen count (grains/m3) and the number of traffic fatalities per million people, while controlling for 
municipality, month-by-year, month-by-prefecture, and day-of-week fixed effects, alongside weather 
covariates (precipitation, temperature, wind speed), darkness, and logged population. The figure clearly 
demonstrates the positive relationship between these variables. 

Table D1 presents the estimates from equation [1], wherein the unit fixed effect is replaced by the 
municipality fixed effect. For ease of comparison, column (1) shows the death/fatal estimates for traffic 
accidents recorded between 2008 and 2019, sourced from ambulance records. Column (2) displays the 
mortality estimates derived from the 2019 to 2020 police records. The estimate of 0.0040 (p-value < 0.01) in 
column (2) surpasses the 0.0026 estimate from column (1), suggesting a potential underestimation of the 
impact of pollen exposure on traffic accident fatalities.1 However, at conventional levels, the two estimates 
are not statistically distinguishable. 

 

 
1 One plausible explanation for this observation is that police records encompass all deaths resulting from traffic accidents 
within 24 hours, unlike ambulance records, which solely encompass deaths occurring upon hospital admission. Notably, the 
count of traffic accidents resulting in death recorded in our ambulance records for 2019 is 1,771, whereas the corresponding 
figure reported to the National Police Agency (NPA) is 3,215 (NPA 2022). 
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Figure D1—Pollen and mortality due to traffic accidents (police records) 

 
Notes: The sample is derived from police records for the period 2019 to 2020, with observations at the municipality per 
day level (N= 399,749). A total of 1,700 municipalities exist. The figure displays binscatter plots illustrating the 
relationship between logged daily pollen counts (grains/m3, on the x-axis) and the number of deaths per million people 
within 24 hours resulting from traffic accidents (on the y-axis), after controlling for municipality, month-by-year, month-
by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation, temperature, wind speed), 
darkness, and logged population. 
 

Table D1—Mortality due to traffic accidents  
(ambulance records vs. police records) 

 Ambulance    Police 
  records   records 

  (1)   (2) 

ln(pollen counts) 0.0026***   0.0040*** 
  (0.0007)   (0.0015) 
        

R-squared 0.01   0.01 
N 970,309    399,749  
N of unit/municipality 705  1,700 
N of clusters 120  120 
Mean of dep. var 0.077   0.125 
Unit/municipality FE X   X 
Day-of-week FE X   X 
Month-by-year FE X   X 
Prefecture-by-month FE X   X 

Notes: The sample for column (1) is derived from ambulance records for the period 2008 to 2019, while the sample for 
column (2) is derived from police records for the period 2019 to 2020. The level of observation is units per day for 
column (1) and municipality per day for column (2). There are a total of 705 emergency response units and 1,700 
municipalities. The dependent variable is the number of deaths due to traffic accidents per million people. Estimates from 
equation [1] are reported along with standard errors clustered at the pollen monitoring station level in parentheses. In 
addition to the fixed effects listed in the table, we include weather covariates (precipitation, temperature, wind speed), 
darkness, and logged population. Estimates are weighted by the population in each unit in column (1) and by the 
population in each municipality in column (2). Significance levels: *** p<0.01, ** p<0.05, * p<0.10.  
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Appendix E: Avoidance behavior from retail scanner data 
 

Figure E1—Pollen count and weekly expenditure on allergy products 
A. Total B. Medications 

  
C. Eye drops D. Masks 

  
Notes: The sample is derived from retail scanner data from February to May for the period 2012 to 2019, with 
observations at a weekly per-person level (N= 4,303,417). The graphs display binscatter plots illustrating the relationship 
between logged daily mean pollen counts (grains/m3, on the x-axis) and weekly expenditure per person (in 10-3$, on the 
y-axis) for all allergy products in panel A, and individually for each product in panels B to D: medications (panel B), eye 
drops (panel C), and masks (panel D), after controlling for municipality, month-by-year, month-by-prefecture, and day-
of-week fixed effects, alongside weather covariates (precipitation, temperature, wind speed), darkness, and logged 
population. The shares of medications (panel B), eye drops (panel C), and masks (panel D) are 35%, 37%, and 28%, 
respectively. An exchange rate of 100 yen/$ is applied.  
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Table E1—Nielsen Panel Data vs. Quick Purchase Report 
  Nielsen Homescan Panel Quick Purchase Report (QPR)  
Feature (U.S.) by Macromill 
Country United States Japan 
Unit of Observation Household Household 
Method Homescan  Homescan 
    + manual report (partly)   
Target Product UPC-coded packaged goods JAN-coded packaged goods 

    + some non-barcode items 
 (manual report)   

Coverage Period 2004- 2011- 
Sample Size 40,000–60,000 Approximately 35,000 
Panel Structure Yes Yes 
Nationally Representative Yes Yes 
Information Included:     
  Purchase Date Yes Yes 
  Retailer/Channel Type Yes Yes 
  Online Purchase Yes Yes 
  Price Paid Yes Yes 
  Coupon/Deal Flag Yes No 

Sources: 
Nielsen: https://www.chicagobooth.edu/research/kilts/research-data/nielseniq?utm_source=chatgpt.com 
Macromill: https://www.e-stat.go.jp/bigdataportal/dataintro/253  
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Table E2—Summary statistics of retail scanner data 
Variables Obs Mean Std. dev. Min Max 
                
A. Outcomes (weekly per person in $10-3) 
  Spending: Total 4,303,417 295.78  2343.95  0  2,141,620  
  Spending: Medications 4,303,417 109.94  1528.34  0  227,200  
  Spending: Eye drops 4,303,417 103.41  1018.20  0  104,000  
  Spending: Masks 4,303,417 82.52  1324.56  0  2,141,620  
                
B. Individual characteristics 
  Ages: 0–24 4,303,417 0.13  0.33  0  1  
  Ages: 25–44  4,303,417 0.38  0.48  0  1  
  Ages: 45–64  4,303,417 0.38  0.49  0  1  
  Ages: 65 years and older  4,303,417 0.11  0.32  0  1  
  Female 4,303,417 0.50  0.50  0  1  
  Student 4,303,417 0.11  0.31  0  1  
  Household head 4,303,417 0.46  0.50  0  1  
  Have kids 4,303,417 0.55  0.50  0  1  
  Own house 4,303,417 0.58  0.49  0  1  
  Annual salary category 4,303,417 2.61  2.22  1  13  
                

C. Regressors (daily average in a week) 
  Pollen counts (grains/m3) 4,303,417 843.2  1337.4  0  22,812  
  Logged (Pollen counts) 4,303,417 0.1  0.2  0  3.9  
  Precipitation (mm) 4,303,417 12.0  6.0  -8  26  
  Average temperature (℃) 4,303,417 2.8  0.9  0  11.6  
  Average wind speed (m/s) 4,303,417 10.5  1.3  7  13  

Notes: The sample is derived from retail scanner data from February to May for the period 2012 to 2019, with 
observations at a weekly per-person level. Expenditure is measured in units of 10-3 $. An exchange rate of 100 yen/$ is 
applied. 
 

Table E3—Purchasing allergy products: Heterogeneity 
 A. By age groups  B. By gender 
 Non-elderly Elderly  Male Female 
  (1) (2)  (3) (4) 

ln(pollen counts) 46.686*** 43.916***   38.994*** 49.415*** 
  (3.122) (3.417)   (2.325) (3.604) 

            

R-squared 0.008 0.005   0.008 0.007 
N 3,147,182  934,660    2,137,760  2,165,657  
Mean of dep. var (in 10-3 $) 306.88 316.50    248.98 341.97 
Municipality FE X X   X X 
Year-prefecture FE X X   X X 
Week FE X X   X X 

Notes: The sample is derived from retail scanner data from February to May for the period 2012 to 2019, with 
observations at a weekly per-person level. The dependent variable is the weekly expenditure (in 10-3 $) on all allergy 
products, using an exchange rate of 100 yen/$. Estimates from the variant of equation [1] are reported along with standard 
errors clustered at the pollen monitoring station level in parentheses. In addition to the fixed effects listed in the table, 
weather covariates (precipitation, temperature, wind speed), and darkness are included. The elderly category comprises 
individuals aged 60 years and older, while the non-elderly category encompasses everyone else. Significance levels: *** 
p<0.01, ** p<0.05, * p<0.10. 
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Appendix F: Avoidance behavior from Google Trends/Tweets 
 

Figure F1—Pollen and Google Trends/Tweets 
A. Google Trends B. Tweets 

Medications Medications 

  
Mask Mask 

  
Air purifier Air purifier 

  
Notes: The samples are derived from Google Trends data for panel A and Twitter data for panel B for the period 2016 to 
2019. The level of observation is at the prefecture level per day. The graphs display binscatter plots illustrating the 
relationship between logged daily pollen counts (grains/m3, on the x-axis) and the Google search index in panel A, and 
the number of tweets in panel B for keywords related to medications (on the y-axis), masks, and air purifiers, after 
controlling for month-by-year, month-by-prefecture, and day-of-week fixed effects, alongside weather covariates 
(precipitation, temperature, wind speed), darkness, and logged population. See Appendix Table F1 for the list of search 
terms within each category. Estimates from the variant of equation [1], wherein unit fixed effects are replaced by 
prefecture fixed effects, are presented in the box. Standard errors, clustered at the prefecture level, are reported in 
parentheses. Estimates are weighted by the population in each prefecture per year. Significance levels: *** p<0.01, ** 
p<0.05, * p<0.10.
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0.038*** 
(0.013) 

Mean: 0.11 

3.763*** 
(0.294) 

Mean: 12.32 

0.601*** 
(0.222) 

Mean: 27.70 

0.106*** 
(0.038) 

Mean: 1.35 

0.794*** 
(0.177) 

Mean: 11.57 

0.012** 
(0.004) 

Mean: 0.08 
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Table F1—List of search keywords 
Category # Categories Japanese English 
1 Medications 

(product name of 
popular allergy 
medications) 

アレジオン Alesion 

アレグラ Allegra 

クラリチン Claritin 

2 Mask マスク Mask 

3 Air purifier 空気清浄機 Air purifier 
Notes: The table lists the keywords for each category in both Japanese and English (for reference).  
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Appendix G: Avoidance Behavior from Cellphone Mobility Records 
Our geolocation data, referred to as “Mobile Spatial Statistics” (MSS), is provided by NTT 

DOCOMO, Inc., Japan’s largest mobile phone carrier. MSS utilizes the location information of 85 
million NTT DOCOMO users (as of March 2022) to provide population estimates at a 500×500 meter 
mesh on an hourly basis across Japan. For detailed procedures on constructing these population 
estimates, see Terada et al. (2013). 

Our dataset on mobility measures is structured as follows: Firstly, for each municipality, we select 
a 500×500 meter mesh with the highest number of establishments in the customer service industry 
(e.g., accommodations, restaurants, and entertainment) based on information from the 2016 Economic 
Census (MIC 2019).2 This choice of the service industry aims to capture bustling areas such as 
business districts, shopping, and dining areas, which are more likely to represent the population 
engaged in outdoor activities. Secondly, we provide the list of these meshes to NTT DOCOMO, Inc., 
which returns the estimated population at each mesh for the period from February 2014 to May 2019. 
Thirdly, we aggregate the estimated population at the unit level by calculating the average across all 
municipalities within the unit. We specifically use the estimated population at 2 p.m. as the daily 
population in commercial areas tends to peak around this time (Seike et al. 2015). This measure serves 
as a proxy for engaging in outdoor activities, hereafter referred to as the “outdoor population,” which 
we analyze to examine avoidance behavior. 

Finally, we briefly discuss the advantages and disadvantages of this dataset. There are two types 
of geolocation data in Japan: the first originates from the leading smartphone mapping application in 
Japan, “Docomo Chizu NAVI,” which collects GPS coordinates of each smartphone device whenever 
the device is turned on. A notable feature of this application is its ability to effectively track individuals 
over time (albeit only for recent years). Researchers can identify individuals’ “home” locations as the 
most frequent locations of geographically contiguous stays (Miyauchi et al. 2021) and measure whether 
individuals leave their homes. However, the drawback is that the sample is limited to individuals who 
have granted permission to share their location information, leading to selection biases in both 
application users and those who consent, resulting in a relatively small sample size (545,000 users as of 
2019). The second type of data, including ours, is based on the transmission of information from each 
mobile terminal (in our case, 85 million users) to base stations when mobile devices are turned on. This 
type of data offers a more nationally representative sample with broad spatial coverage of the entire 
country, albeit providing only hourly estimated population data for each area. 

Given that the primary objective of this study is to provide nationally representative estimates of 
the effects of pollen exposure on accidents and corresponding avoidance behaviors over an extended 
period, we have chosen to analyze the latter dataset. Due to its representativeness and the extensive 
time span covered by the sample, this dataset has been widely utilized, particularly for measuring 
people’s mobility during the COVID-19 pandemic (e.g., Kondo 2021; Kuroda et al. 2022). 

 
2 Due to budgetary constraints, our dataset comprises one mesh per municipality. Nevertheless, we affirm that our mobility 
measure effectively encompasses overall daytime outdoor activity, utilizing the 2019 data, wherein we possess outdoor 
population statistics for all meshes. Notably, our mobility measure derived from the representative mesh exhibits a 
correlation as high as 0.889 with the summary measure, which aggregates data from all meshes hosting at least one service 
establishment. 
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Figure G1—Actual Zoo attendance and  
population estimate from cellphone mobility records 

A. Ueno Zoo B. Tama Zoological Park C. Inokashira Park Zoo 

   
Notes: The sample is derived from attendance records from the three major zoos operated by the Tokyo Metropolitan 
Government and corresponding population estimates from cellphone mobility records for the period 2014 to 2019, with 
observations at the zoo per day level. The graphs display scatter plots illustrating the relationship between the logged 
daily attendance from admission records (on the x-axis) and the logged daily number of cell-phone–based population 
estimates at 2 p.m from location data (on the y-axis). Panels A–C present results for Ueno Zoo, Tama Zoological Park, 
and Inokashira Park Zoo, respectively. The correlations between the two variables in Panels A–C are 0.839, 0.756, and 
0.673, respectively. 
 

Figure G2—Pollen and zoo attendances in Tokyo 

 
Notes: The sample is derived from admission records from the three major zoos operated by the Tokyo Metropolitan 
Government (Ueno Zoo, Tama Zoological Park, and Inokashira Park Zoo) for the period 2008 to 2019, with observations 
at the zoo per day level. The graphs display binscatter plots illustrating the relationship between the logged daily pollen 
counts (grains/m3, on the x-axis) and the logged daily attendance (on the y-axis). The specification control for zoo and 
date fixed effects, alongside weather covariates (precipitation, temperature, wind speed), darkness, and the logged 
average daily admissions for each zoo. Estimates are weighted by the average daily admissions in each zoo.  
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Figure G3—Pollen and avoiding going out 
A. Weekdays B. Weekends 

  
Notes: The sample is derived from cellphone mobility records for the period 2014 to 2019, with observations at the unit 
per day level (N= 343,454 for panel A and 135,399 for panel B). There are a total of 705 emergency response units. 
The graphs display binscatter plots illustrating the relationship between the logged daily pollen counts (grains/m3, on 
the x-axis) and the logged daily number of people outdoors at 2 p.m. (on the y-axis). Panels A and B examine weekdays 
and weekends, respectively, controlling for month-by-year, month-by-prefecture, and day-of-week fixed effects, 
alongside weather covariates (precipitation, temperature, wind speed), darkness, and logged population. Estimates are 
weighted by the population in each unit. 
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Table G1—Avoid attending zoos 
  (1)   (2) (3)   (4) (5) 
  All   Weekdays Weekends   Paid Free 

ln(pollen counts) -0.0332***   -0.0222* -0.0473***   -0.0175 -0.0705*** 
  (0.0095)   (0.0120) (0.0130)   (0.0161) (0.0124) 
                

R-squared 0.95  0.95 0.96  0.90 0.93 
N 3,474  2,333 1,141  3,425 3,474 
Zoo FE X   X X   X X 
Date FE X   X X   X X 

Notes: The sample is derived from admission records from the three major zoos operated by the Tokyo Metropolitan 
Government (Ueno Zoo, Tama Zoological Park, and Inokashira Park Zoo) for the period 2008 to 2019, with observations 
at the zoo per day level. The dependent variable is the logged daily attendance. Column (1) encompasses all days, while 
Columns (2) and (3) separately report estimates for weekdays and weekends. Columns (4) and (5) distinguish between 
paid and free admissions. The specification control for zoo and date fixed effects, alongside weather covariates 
(precipitation, temperature, wind speed), darkness, and the logged average daily admissions for each zoo. The average 
daily admissions in each zoo weight estimate. Robust standard errors are reported in parentheses. Significance levels: 
*** p<0.01, ** p<0.05, * p<0.10.  
 

Table G2—Avoiding going out and accidents 
  All Weekdays Weekends 

  (1) (2) (3) 

ln(outdoor population) 0.960** 0.465 2.007** 
  (0.418) (0.441) (0.775) 

        

R-squared 0.49 0.48 0.51 
N 478,853  343,454  135,399  
Unit FE X X X 
Day-of-week FE X X X 
Month-by-year FE X X X 
Prefecture-by-month FE X X X 

Notes: The sample is derived from the ambulance records for the period 2014 to 2019, which are matched with “Mobile 
Spatial Statistics” data provided by NTT DOCOMO, Inc. at the unit-day level (N= 478,853). A total of 705 emergency 
response units are available. We present estimates from regressing daily accidents per million people (our primary 
outcome) on the logged outdoor population, employing the same sets of fixed effects and controls as in equation [1], 
except for the logged number of pollen counts. Standard errors clustered at the pollen monitoring station level are reported 
in parentheses. Columns (2) and (3) restrict the samples to weekdays and weekends, respectively. Estimates are weighted 
by the population in each unit. Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Table G3—Avoiding going out with full covariates 
Outcome: logged outdoor population 

   A. All   B. By type of day 

    Weekdays Weekends 
    (1)   (2) (3) 

ln(pollen counts) -0.0005   0.0000 -0.0021*** 
    (0.0006)   (0.0006) (0.0007) 
Rainfall (base: no rainfall)      
  <1 mm -0.0061***   -0.0059*** -0.0047** 
    (0.0013)   (0.0011) (0.0019) 
  1 mm≤ & <2 mm -0.0167***   -0.0144*** -0.0208*** 
    (0.0035)   (0.0024) (0.0080) 
  ≥2 mm -0.0167***   -0.0150*** -0.0249*** 
    (0.0045)   (0.0041) (0.0082) 
Mean temperature (base: <0 ℃)       
  [0, 5) ℃ 0.0018   0.0068** 0.0096 
    (0.0033)   (0.0034) (0.0064) 
  [5, 10) ℃ 0.0111***   0.0139*** 0.0189*** 
    (0.0036)   (0.0037) (0.0067) 
  [10, 15) ℃ 0.0089**   0.0120*** 0.0160** 
    (0.0043)   (0.0043) (0.0070) 
  [15, 20) ℃ 0.0061   0.0094* 0.0172** 
    (0.0045)   (0.0049) (0.0068) 
  [20, 25) ℃ 0.0120***   0.0165*** 0.0200*** 
    (0.0043)   (0.0046) (0.0069) 
  ≥ 25 ℃ 0.0273***   0.0264*** 0.0319*** 

    (0.0057)   (0.0066) (0.0079) 

Mean wind speed -0.0022***   -0.0021*** -0.0023*** 
    (0.0005)   (0.0005) (0.0007) 

Darkness -0.0084***   -0.0090*** -0.0073*** 
    (0.0014)   (0.0012) (0.0023) 

ln(population) 1.3108***   1.2630*** 1.4497*** 
    (0.1975)   (0.1997) (0.2074) 

      

R-squared 0.98   0.99 0.99 
N 478,853    343,454  135,399  
Unit FE X   X X 
Day-of-week FE X   X X 
Month-by-year FE X   X X 
Prefecture-by-month FE X   X X 

Notes: The sample is derived from cellphone mobility records from February to May for the period 2014 to 2019, with 
observations at the unit per day level. There are a total of 705 emergency response units. Estimates from the variant of 
equation [1] are reported along with standard errors clustered at the pollen monitoring station level in parentheses. The 
dependent variable is the logged daily outdoor population at 2 p.m. Estimates are weighted by the population in each 
unit. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.  
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Table G4—Avoiding going out: Heterogeneity 
Outcome: logged outdoor population 

  A. Weekdays   B. Weekends 
  Non-elderly Elderly Male Female   Non-elderly Elderly Male Female 
  (1) (2) (3) (4)   (5) (6) (7) (8) 

ln(pollen counts) -0.0007 0.0005 -0.0005 -0.0000   -0.0029*** -0.0013 -0.0025*** -0.0025*** 
    (0.0007) (0.0006) (0.0007) (0.0006)   (0.0009) (0.0009) (0.0008) (0.0009) 
Rain (base: no rain)                   
  <1 mm -0.0050*** -0.0121*** -0.0026** -0.0104***   -0.0032 -0.0111*** -0.0019 -0.0086*** 
    (0.0011) (0.0016) (0.0011) (0.0013)   (0.0020) (0.0027) (0.0019) (0.0023) 
  1 mm≤ & < 2 mm -0.0089*** -0.0283*** -0.0051** -0.0220***   -0.0170** -0.0365*** -0.0115 -0.0317*** 
    (0.0020) (0.0040) (0.0023) (0.0027)   (0.0077) (0.0122) (0.0073) (0.0094) 
  ≥ 2 mm -0.0095** -0.0334*** -0.0043 -0.0271***   -0.0162* -0.0466*** -0.0144** -0.0332*** 
    (0.0042) (0.0057) (0.0041) (0.0048)   (0.0086) (0.0095) (0.0072) (0.0100) 
           

R-squared 0.97 0.97 0.98 0.98   0.97 0.97 0.98 0.98 
N 341,433  340,495  341,093  341,343    134,450 134,140 134,409  134,387  
Unit FE X X X X   X X X X 
Day-of-week FE X X X X   X X X X 
Month-by-year FE X X X X   X X X X 
Prefecture-by-month FE X X X X   X X X X 

Notes: The sample is derived from cellphone mobility records from February to May for the period 2014 to 2019, with observations at the unit per day level. 
There are a total of 705 emergency response units. Estimates from equation [1] are reported along with standard errors clustered at the level of pollen monitoring 
station in parentheses. The dependent variable is the logged daily outdoor population at 2 p.m. In addition to the FEs and weather covariates outlined in the table, 
average wind speed, darkness, and logged population are also included. The elderly category comprises individuals aged 60 years and older, while the non-elderly 
category encompasses everyone else. Estimates are weighted by the population in each unit. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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Appendix H: Data Appendix 
Data Source 
Ambulance 
records 

Years: 2008–2019 (detailed diagnosis information is available from 2015 onwards) 
Data description: ambulance records archive  
Source: Fire and Disaster Management Agency (FDMA) of the Ministry of Internal Affairs 
and Communications 
https://www.fdma.go.jp/en/post1.html  
 

Police 
records 

Years: 2019–2020 
Data description: traffic accident records of accidents involving injuries or deaths 
Source: National Policy Agency (NPA) 
https://www.npa.go.jp/publications/statistics/koutsuu/opendata/index_opendata.html 
 

Pollen Years: 2008–2019 
Data description: hourly pollen counts from 120 stations, as well as hourly rainfall, 
temperature, wind speed, and wind direction from nearby weather stations during the 
pollen season (February to May except for Hokkaido, where the pollen season is March to 
June). 
Source: Ministry of the Environment (MOE), Pollen Monitoring System “Hanako-san” 
https://tenki.jp/pollen/  
Note: MOE terminated data collection of pollen counts in 2021. 
 

Temperature Years: 2008–2019 
Data description: hourly temperature (outside of the pollen season) 
Source: Japan Automated Meteorological Data Acquisition System (AMeDAS)  
operated by the Japan Meteorological Agency (JMA) 
https://www.data.jma.go.jp/obd/stats/etrn/ 
 

Pollution Years: 2009 April–2019 March 
Data description: hourly SO2, NO, NO2, CO, OX, PM10 
Source: National Institute for Environmental Studies 
https://www.nies.go.jp/igreen/index.html 
 

Google 
Trends data  
 

Years: 2016–2019 
Data description: Google search index reflecting search term popularity for selected 
keywords, ranging from 0 to 100 in a given prefecture and day, proportional to total 
searches within the period. 
 
 

Twitter data Years: 2016–2019 
Data description: the number of tweets that contain the selected keywords 
 
 

Retail 
scanner data 
  

Years: 2012–2019  
Data description: called “Quick Purchase Report,” which is the daily panel of purchase 
records from roughly 30,000 monitors 
Source: Macromill, Inc 
https://www.macromill.com/service/digital-data/consumer-purchase-history-data/ (in 
Japanese) 
 

Cellphone 
mobility 
records 
 

Years: 2014–2019  
Data description: called “Mobile Spatial Statistics” data, which are estimates based on the 
location information of 85 million NTT DOCOMO cellphone users (as of March 2022) 
Source: NTT DOCOMO, Inc 
https://mobaku.jp/ (in Japanese) 

 

https://www.fdma.go.jp/en/post1.html
https://www.npa.go.jp/publications/statistics/koutsuu/opendata/index_opendata.html
https://tenki.jp/pollen/
https://www.data.jma.go.jp/obd/stats/etrn/
https://www.nies.go.jp/igreen/index.html
https://www.macromill.com/service/digital-data/consumer-purchase-history-data/
https://mobaku.jp/
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