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I. Introduction

Consider the prospect of winning $25 with 5% probability and winning $0 otherwise. Under

expected utility theory, valuation of the lottery should be linear in the probability of winning the

$25 outcome. For decades, however, experimental evidence points to decision-making that is non-

linear in probability. For example, subjects report a larger increase in lottery valuation as the

experimenter increases the probability of winning the $25 from 5% to 10%, compared to when she

increases it from 30% to 35% (Tversky and Kahneman, 1992; Camerer and Ho, 1994; Gonzalez and

Wu, 1999; Bernheim and Sprenger, 2020). The nonlinearity gives rise to probability distortions,

which in turn, have been used to explain fundamental puzzles in risky choice such as the simultane-

ous demand for gambling and insurance. Probability distortions have also been invoked to explain

a wide array of anomalies in financial markets (Barberis, 2018).

In this paper, we ask a basic question: why do humans distort probabilities? We explore whether

the distortion can be traced to fundamental properties about how the brain processes information.

Our hypothesis is that valuation is linear in perceived probability, which differs from objective

probability due to information processing constraints. We are by no means the first to investigate

the psychological underpinning of probability weighting (Gonzalez and Wu, 1999; Bordalo, Gen-

naioli, and Shleifer, 2012; Khaw, Li, and Woodford, 2021, 2024; Enke and Graeber, 2023).1 But

the mechanism we test—which is called efficient coding—is novel in the sense that it generates

new testable hypotheses about the source and instability of probability weighting. To assess the

empirical validity of our proposed mechanism, we develop a theory and present an experimental

test. The data largely confirm the idea that probability weighting derives, at least in part, from

the efficient allocation of cognitive resources.

The basic premise of our theory is that, when faced with a risky prospect, the decision maker

(henceforth DM) bases her decision on a noisy perception of state probabilities; in general, the

DM ’s perception does not coincide with the objective probability. This wedge between reality and

perception stems from errors in encoding the state probability. That is, we assume that the DM

does not have the capacity to form a precise perception of each probability that she could potentially

1See also important earlier work by Viscusi (1989), Tversky and Kahneman (1992), Rottenstreich and Hsee
(2001), Stewart, Chater, and Brown (2006), Zhang and Maloney (2012), Steiner and Stewart (2016), and Zhang,
Ren, and Maloney (2020).
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be presented with. While the DM cannot form a precise perception of every probability, she can

efficiently allocate cognitive resources towards accurately perceiving those probabilities that she

expects to encounter in a given class of situations.

For example, consider someone who is often faced with binary lotteries that have probabilities

that fall in the range from say, 45% to 55%. We argue that, when faced with two novel lotteries,

one with 50-50 odds and another with 51-49 odds, this person will be better able to discriminate

between the two lotteries, compared to someone who is often faced with skewed lotteries that have

extreme odds such as 90-10 or 95-5. Our model formalizes how the DM ’s prior belief about the

probabilities she expects to encounter will optimally distort her perception of the probabilities that

she actually encounters.

Our theoretical contribution builds on our own previous work in which we demonstrated that

risk taking depends on the prior distribution of monetary outcomes to which the DM is adapted

(Frydman and Jin, 2022). In that model, we made the simplifying assumption that probabilities

are encoded without noise. Here, we show how noisy and efficient coding can generate probability

distortions. In this regard, our work is closely related to recent theory by Steiner and Stewart

(2016), Zhang et al. (2020), and Khaw et al. (2021, 2024). However, an important difference is

that, in our model, we show how the shape of the prior distribution over probabilities pins down

the degree of probability distortion.

The model works as follows. The DM encodes a single probability p subject to a capacity

constraint. We assume her objective is to choose an encoding function that maximizes the mutual

information between the true probability p and the encoded signal Rp. The model predicts that

the DM will encode with more precision those probabilities that she expects to encounter more

often according to her prior belief. Thus, a key input to the model is the DM ’s prior belief about

probability p.

Given the important role of the prior, our experimental test of the model involves both ma-

nipulating and directly measuring the prior. In particular, we exogenously manipulate a sub-

ject’s prior belief about probabilities and then elicit certainty equivalents for lotteries of the form:

($25, p; $0, 1 − p). Efficient coding predicts that, when the DM is adapted to a distribution of

probabilities that is concentrated near intermediate probabilities, she should have less difficulty

discriminating between probabilities over this range compared to someone who is adapted to ex-
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treme probabilities. Crucially, because the DM does not have access to the objective probability p,

she must rely only on her perceived value of p when forming a lottery valuation. These observations

lead to a testable prediction: given a risky lottery, valuation depends systematically on the prior

distribution to which a subject is adapted.

We find strong evidence in favor of this prediction. The slope of the measured probability weight-

ing function over intermediate probabilities is significantly higher for subjects who are adapted to

intermediate probabilities, compared to those who are adapted to extreme probabilities. Specifi-

cally, for subjects who are adapted to extreme probabilities, increasing an intermediate probability

of winning $25 by 1% causes only a $0.18 increase in their certainty equivalent. In contrast, for

subjects who are adapted to intermediate probabilities, the same 1% increase of an intermediate

probability of winning $25 leads to a $0.30 increase in their certainty equivalent. Thus, the causal

effect of a 1% increase in probability on valuation is about 66% larger for subjects who are adapted

to intermediate probabilities. We find that the effect of the prior on valuation carries a similar

magnitude for lotteries associated with small probabilities of winning $25. Finally, the effect is of

a smaller magnitude for lotteries associated with high probabilities of winning $25.

A novel feature of our experimental design is that we also directly measure prior beliefs after

adaptation. To our knowledge, all previous tests of efficient coding have treated the prior as

unobservable and have assumed that it coincides with the empirical distribution of the relevant

environment. By directly measuring the prior, we can test whether subjects have adapted to the

distribution that is assumed in the theory. Furthermore, even if subjects have not perfectly adapted

to the environment, we can still use their measured priors to test the model. After all, the model

predicts that it is the subjective prior that distorts perception—regardless of whether that prior

matches the statistical properties of a given adaptation condition.

We find that prior beliefs do not differ across conditions at the beginning of the experiment—

the average subject in each condition reports a prior belief that puts more weight on intermediate

probabilities compared to extreme probabilities. Yet, after only fifteen trials, we find a strong

separation in beliefs across conditions, in a manner that reflects the distribution of probabilities

that subjects have recently encountered. In other words, a subject’s forward-looking beliefs about

the next lottery’s state probabilities tend to closely match the distribution of probabilities that she

has recently encountered.
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Importantly, we find there is also substantial heterogeneity in prior beliefs, even within an

adaptation condition. According to our model, this heterogeneity in prior beliefs should lead to

systematic differences in perception of probabilities and hence valuations. To test this prediction,

we examine each of three ranges of probabilities: low, intermediate and high. For the low range

probabilities, we compute the density that a subject attaches to this range under their elicited prior.

We find that subjects who attach a higher weight to low probabilities do indeed exhibit valuations

that are more sensitive to a change in probability over this range. We find similar results for the

intermediate and high ranges of probabilities: subjects who state a higher likelihood of observing

a given range of probabilities also report lottery valuations that are more sensitive to a change in

probability over this range. These results indicate that measured priors about a given lottery are

predictive of the valuation of the lottery. To be clear, even after the lottery is presented to the

subject, beliefs measured 15 trials in the past are still predictive of valuations, conditional on the

lottery’s state probabilities.

Overall, our results suggest that probability weighting stems in part from people’s imprecision

in forming a cognitive representation of probability. Our key experimental finding is that valuation

depends not only on objective properties of a given lottery, but also on the ex-ante beliefs about

the lottery probabilities. This finding is inconsistent with a broad class of models that assume

a nonlinear but stable probability weighting function (Quiggin, 1982; Yaari, 1987; Tversky and

Kahneman, 1992). The fact that valuation depends systematically on prior beliefs also separates

our efficient coding model from other candidate explanations for probability weighting that may

also be active in the decision process. For example, the salience theory of Bordalo et al. (2012)

proposes that probability weighting arises from limited attention, where distortions depend on the

salience of lottery payoffs.2 Enke and Graeber (2023) propose that agents are cognitively uncertain

about valuations, which leads to a compressed linear probability weighting function. Although

salience theory and cognitive uncertainty both generate context-dependent weighting functions,

neither can deliver the systematic dependence on prior beliefs that we observe in our data.3

2In our baseline model, probability weighting does not depend on lottery payoffs. Khaw et al. (2024) propose a
model in which the imprecision in representing a monetary amount is tied to the probability of winning that amount.
In their model, fewer resources are devoted to processing payoffs that are less likely to be delivered. In Section IV.1,
we sketch an extension of our model in which we investigate the implications of efficient coding over both payoffs and
probabilities.

3Steiner and Stewart (2016) provide an alternative explanation of probability weighting that is also based on
noisy perception of probability. In particular, they show that a nonlinear probability weighting function can arise as
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Our model also shares similarities with the decision by sampling model proposed by Stewart

et al. (2006). In that model, when the DM is presented with a probability, she draws samples of

previously encountered probabilities from memory and compares the currently presented probability

with these randomly drawn samples. The similarities between the two models are natural given the

insight from Bhui and Gershman (2018) that efficient coding can serve as an optimizing foundation

for decision by sampling. As such, we interpret our experimental results as providing novel evidence

for both efficient coding and decision by sampling.

The rest of this paper is organized as follows. Section II presents a theory of efficient coding

and shows theoretically that the slope of different portions of the weighting function changes as the

DM ’s prior changes. Section III presents an experiment which uses data on lottery valuations to test

whether the weighting function is malleable in the manner predicted by efficient coding. Section IV

provides additional discussion, and Section V concludes.

II. The Model: Instability of Probability Weighting

In this section, we apply the efficient coding model of Heng, Woodford, and Polańıa (2020) to

study the DM ’s mental representation of probability. The model works as follows. Consider a

probability p that is associated with a given lottery payoff. Before the DM is presented with the

probability p, she holds a prior belief about it, denoted by f(p). Then, upon presentation of p, the

DM generates a noisy cognitive signal Rp; specifically, Rp is randomly drawn from a conditional

distribution—or, in the language of Bayesian inference, a likelihood function—denoted by f(Rp|p).

The likelihood function captures the idea that the DM encodes information about probability with

cognitive noise, even if the probability p is clearly presented to the DM .

Following Heng et al. (2020), we assume that the DM encodes probability p through a finite

number of n “neurons,” where the output state of each neuron takes the value of 0 or 1. The output

states of these n neurons are assumed to be mutually independent, and each neuron takes the value

1 with probability θ(p) and 0 with the remaining probability 1− θ(p).4 The encoded value of p is

an optimal response to perceptual noise. Khaw et al. (2021, 2024) also propose a model that derives a probability
weighting function based on an optimal response to noisy coding of probabilities. One difference is that the encoding
function in our model also arises from an optimization process; Section IV.3.3 shows that this is crucial in generating
the model’s key implications. See also McGranaghan, Nielsen, O’Donoghue, Somerville, and Sprenger (2024) for
recent experimental work that motivates the development of new theories of context-dependent weighting functions.

4We interpret the neurons in the model as basic information processing units that emit a binary signal, rather
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therefore represented by an output vector of 0s and 1s, with length n. Given that the neurons are

mutually independent, a sufficient statistic for the output vector is the sum across the n output

values, which is defined as the noisy signal Rp. Taken together, the likelihood function is given by

f(Rp|p) =
(

n

Rp

)
(θ(p))Rp(1− θ(p))n−Rp , (1)

where the noisy signal Rp can take on integer values from 0 to n.

A signature feature of efficient coding is that the DM endogenously chooses the likelihood

function f(Rp|p) as a function of the prior f(p). We assume that the DM chooses θ(p) in (1) to

maximize the mutual information between probability p and its noisy signal Rp

max
θ(p)

I(p;Rp), (2)

where the mutual information I(p;Rp) is defined as the difference between the marginal entropy

of Rp and the entropy of Rp conditional on p.5 Intuitively, the objective function in (2) leads

the DM to better discriminate between probability values that she expects to encounter more

frequently given her prior belief. A large literature in sensory perception documents strong support

for this objective function (Laughlin, 1981; Girshick, Landy, and Simoncelli, 2011; Wei and Stocker,

2015). Heng et al. (2020) show that the optimal coding rule that maximizes I(p;Rp) is given by

θ(p) =
(
sin
(π
2
F (p)

))2
, (3)

where F (p) is the cumulative distribution function of the prior belief f(p).

Given the prior belief and the noisy signal, the DM follows Bayes’ rule to generate a posterior

belief about p

f(p|Rp) =
f(Rp|p)f(p)∫ 1

0
f(Rp|p)f(p)dp

. (4)

For a given objective probability value p, the DM draws the noisy signal Rp according to the

likelihood function f(Rp|p) from equation (1). Then, for each noisy signal Rp, the DM forms a

than literally as cells in the brain that have more complex properties.
5We discuss an alternative performance objective, namely maximizing expected payoff, in Section IV.3.1.
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posterior distribution about p given by equation (4). Together, these two steps imply that the

average subjective valuation of p is

v(p) =
∑n

Rp=0
f(Rp|p) · E[p̃|Rp], (5)

where

E[p̃|Rp] ≡
∫ 1

0
f(p|Rp)pdp =

∫ 1

0
f(Rp|p)f(p)pdp∫ 1

0
f(Rp|p)f(p)dp

(6)

is the posterior mean of p conditional on Rp. Note that v(p) in (5) represents the DM ’s subjective

valuation of p averaged across different values of Rp, and in general, v(p) is a nonlinear function

that maps objective probabilities into distorted, decision-relevant probabilities.6

It is important to note that, in an efficient coding model, the DM ’s subjective valuation of

probability v(p) depends on her prior belief f(p) through two channels. First, the posterior belief

f(p|Rp) is directly affected by the prior belief f(p), as shown in equation (4). Second and more

importantly, f(p) indirectly affects the posterior belief f(p|Rp) through the coding rule θ(p). In

particular, equation (3) shows that the coding rule takes the prior as an input, so that the same

value of p is encoded differently depending on the prior. Thus, the prior continues to play its

traditional and direct role in Bayesian inference, but it also affects information processing through

the endogenously determined likelihood function given by equations (1) and (3). Taken together,

the efficient coding model described by equations (1) to (6) shows that the DM ’s prior belief f(p)

affects her perception of probability and hence her subjective valuation v(p). In other words, if the

DM ’s prior belief f(p) changes, v(p) will change accordingly.

Below, we formally show how efficient coding generates a probability weighting function that is

malleable. We begin by assuming that the DM ’s prior belief takes the following form

f(p) = ξ · f1(p)︸ ︷︷ ︸
a stable component

+(1− ξ) · f2(p)︸ ︷︷ ︸
a fast-moving component

. (7)

We now refer to f(p) as a “mixed” prior, which captures the principle that adaptation can take

6For the rest of the paper, we focus on the implications of our model for the case when 0 < p < 1. We remain
agnostic about whether the same noisy coding machinery operates for the cases of impossibility (p = 0) and certainty
(p = 1).
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place at multiple timescales (Wark, Fairhall, and Rieke, 2009; Weber, Krishnamurthy, and Fairhall,

2019). The mixed prior contains two components. The first component is stable and denoted

as f1(p). This component represents the prior that the DM has formed based on encountering

different probability values with different frequencies over a long timescale. The second, fast-moving

component is denoted as f2(p); it captures transient changes in statistics of the local environment.

For example, f2(p) can correspond to the empirical distribution of probabilities that we present in

the lab experiment in Section III.7 The parameter ξ in equation (7) represents the weight the DM

puts on the stable component; this weight may depend on the rate at which the statistics of the

environment change.

For the stable component f1(p), we assume, for simplicity, that it takes the form of a uniform

distribution between 0 and 1. The model’s main implications for the malleability of the probability

weighting function are robust to alternative specifications of f1(p). For the fast-moving component

f2(p), our main goal is to demonstrate how shocks to this component drive differences in valuation.

As such, we consider two specifications of the fast-moving component that have very different

shapes. We investigate an “intermediate” prior component, which has density only in the center of

the unit interval. Formally, for this “intermediate” prior component, we assume

f2(p) =


1

ph − pl
pl ≤ p ≤ ph

0 otherwise

, (8)

where pl and ph take intermediate values and 0 < pl < ph < 1.

We also investigate an “extreme” prior component, which has density only near the endpoints

of the unit interval. For this “extreme” prior component, we assume

f2(p) =



1

(ph,2 − ph,1) + (pl,2 − pl,1)
pl,1 ≤ p ≤ pl,2

1

(ph,2 − ph,1) + (pl,2 − pl,1)
ph,1 ≤ p ≤ ph,2

0 otherwise

, (9)

7A growing literature has argued that people adapt, at least in part, towards the local context that changes
over the course of an experimental session (Burke, Baddeley, Tobler, and Schultz, 2016; Zimmermann, Glimcher, and
Louie, 2018; Conen and Padoa-Schioppa, 2019; Payzan-LeNestour and Woodford, 2022; Frydman and Jin, 2022).
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where pl,1 and pl,2 take low values, ph,1 and ph,2 take high values, and 0 ≤ pl,1 < pl,2 < 0.5 < ph,1 <

ph,2 ≤ 1.

The two different specifications of the fast-moving component give rise to two different mixed

priors, which we refer to as the intermediate prior and the extreme prior. We specify the parameter

values for these two priors as follows. As stated before, the stable component f1(p) of each mixed

prior is assumed to be a uniform distribution between 0 and 1. For the fast-moving intermediate

prior component f2(p), we set pl = 0.38 and ph = 0.62. For the fast-moving extreme prior compo-

nent, we set pl,1 = 0.1, pl,2 = 0.21, ph,1 = 0.79, and ph,2 = 0.9. Finally, we set ξ, the weight on the

stable component in the mixed prior, to 0.5.

Armed with two specific mixed priors, we now use them as inputs to our efficient coding model

and assess the differences in perception of probability. For each mixed prior f(p), we substitute

it into the coding rule in equation (3). The two different coding rules—one for each specification

of the mixed prior—give rise to a distinct set of efficient likelihood functions. Then, each prior,

together with its corresponding likelihood functions, generates the probability weighting function

v(p). Figure I summarizes these results: it plots, for both the intermediate prior and the extreme

prior, the prior distribution f(p), its coding rule θ(p), and the implied weighting function v(p).

Figure I demonstrates the malleability of probability weighting: as the DM ’s prior beliefs

change (the upper graph), the coding function θ(p) (the middle graph) and the implied probability

weighting function v(p) (the lower graph) change significantly. Importantly, the way in which the

weighting function changes is governed by efficient coding. For intermediate probabilities, the slope

of the weighting function is steeper when the fast-moving prior component increases the density for

intermediate probabilities; however, for extreme probabilities, the slope of the weighting function

is steeper when the fast-moving prior component puts extra mass on the extreme portions of the

unit interval, near 0 and 1.

To understand these results, we first note that, by construction, intermediate probabilities occur

much more frequently under the intermediate prior, compared to the extreme prior. Thus, under

the intermediate prior, the coding rule θ(p) has a much steeper slope for intermediate probabilities,

causing the likelihood function f(Rp|p) to shift substantially as p varies over the intermediate range.

This greater separation of likelihood functions for nearby probabilities gives rise to the higher slope

of the probability weighting function under the intermediate prior.
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Figure I
Prior distribution, coding function, and value function: Efficient coding and mixed prior

The upper graph plots two mixed prior distributions in the form of (7). For each mixed prior,
the first, stable component takes the form of a uniform distribution between 0 and 1. The second,
fast-moving component takes the form of (8) for the intermediate prior and the form of (9) for the
extreme prior; the parameter values are: pl = 0.38, ph = 0.62, pl,1 = 0.1, pl,2 = 0.21, ph,1 = 0.79,
and ph,2 = 0.9. The weight ξ the DM assigns to the stable component is 0.5. The middle graph
plots, for both the intermediate prior and the extreme prior, the corresponding coding rule θ(p) in
the form of (3). The lower graph plots, for both priors, the subjective valuation implied by efficient
coding, v(p). We set the parameter n to 10. The green dash-dot line is the forty-five degree line.
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The same intuition holds when examining perception of probabilities closer towards the bound-

aries of the unit interval. By construction, low or high probabilities occur more frequently under

the extreme prior, compared to the intermediate prior. Therefore, as p varies over the low or high

range of probability, the likelihood function shifts to a greater extent under the extreme prior,

generating a steeper slope of the probability weighting function.8

In the next section, we design an experiment that exogenously manipulates the fast-moving

component of a subject’s prior. The particular specifications of the fast-moving component follow

closely from the intermediate and extreme priors we have theoretically considered above. Using

data on lottery valuations and prior beliefs, the experiment will allow us to test whether the slope

of different portions of the probability weighting function is malleable in the manner predicted by

our theory of efficient coding.

III. Experimental Manipulation of Probability Distortions

III.1. Design

III.1.1. Manipulation of prior

Our experimental design is intended to test whether subjects’ prior beliefs about probability

causally affect their valuations of risky lotteries. For simplicity, here we assume that subjects in

our experiment only have noise when encoding probability; their encoding of lottery payoffs is

noiseless. To justify this assumption, we consider only binary lotteries with two possible payoffs,

and crucially, the two possible payoffs are kept constant across all trials. As such, any noise arising

during the encoding of lottery payoffs should be minimal. In Section IV.1, we discuss the more

general case in which subjects encode both probability and lottery payoffs with noise.

We now turn to the details of our design. On each trial, a subject is presented with a risky

lottery of the following form

($25, p; $0, 1− p). (10)

The subject is then asked to provide her certainty equivalent for the lottery by using a slider

8The malleability of probability weighting presented in Figure I uses the coding rule of (3) and sets the capacity
constraint parameter n to 10. We note that Heng et al. (2020) derive the coding rule of (3) when n is asymptotically
large. However, the consequence of this apparent inconsistency is small: Appendix 7 of Heng et al. (2020) shows
that, with any finite n that is greater than or equal to 5, the coding rule of (3) remains approximately optimal.
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bar. Importantly, information about the probability p is displayed to the subject through both a

numerical and a graphical representation; see Online Appendix D Figure D.1 for a screenshot of an

example trial. We choose to use the slider method rather than the commonly used multiple price

list, as it allows us to elicit an exact valuation instead of a switching interval. Khaw et al. (2024)

also adopt the slider method for similar reasons.

Each subject in the experiment completes a total of thirty-seven trials, and thus submits a total

of thirty-seven certainty equivalents for various values of probability p. Subjects are incentivized to

report their certainty equivalents using a Becker-Degroot-Marschak mechanism (Becker, DeGroot,

and Marschak, 1964). We define the first thirty trials as “adaptation trials,” and the subsequent

six trials are “test trials.”9 The core of our design is to exogenously manipulate the distribution of

p on the adaptation trials and test the impact on valuation in the test trials. The distribution of

p on adaptation trials plays the role of the fast-moving component of the subject’s mixed prior, as

we previously described in Section II. Importantly, for different sets of adaptation trials, we hold

constant the set of test trials. In this way, the only feature of the experiment that varies is the

distribution of p that subjects experience before they provide their valuations on the six test trials.

When constructing our design, we face a tradeoff in choosing the number of test trials per

subject. On the one hand, more test trials provide us with a greater number of data points on

which to estimate the treatment effect of the prior. On the other hand, the more test trials we use,

the weaker the treatment effect will be for the final few test trials. This is because early test trials

will begin to contaminate the prior that we attempt to induce with the adaptation trials. Thus,

while we would ideally like to construct a large set of test trials that sample p across the entire unit

interval, we are constrained by the number of test trials that we can use per subject.

Because this design constraint operates only at the subject level, we choose to construct three

separate test trial ranges, and randomly assign subjects to one of the three ranges. In this manner,

we can span a large range of the unit interval while minimizing the number of test trials needed

per subject. Specifically, we define a low range for which p ∈ {0.11, 0.15, 0.19, 0.23, 0.27, 0.31},

an intermediate range for which p ∈ {0.38, 0.42, 0.47, 0.53, 0.58, 0.62}, and a high range for which

p ∈ {0.69, 0.73, 0.77, 0.81, 0.85, 0.89}.

9The final and thirty-seventh trial serves as an attention check. Footnote 12 in Section III.3 describes it in more
detail.
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After subjects are randomized into one of the three test trial ranges, we further randomize

them into an adaptation condition. Each test trial range is associated with one of two possible

adaptation conditions. Table D.1 in Online Appendix D provides the exact values of p that we use

in each adaptation condition.10 For the low test trial range, we adapt subjects to either a low

or intermediate range of adaptation trials. The intuition is that, for a subject who is adapted to

low values of p, she should be able to easily discriminate between low values of probability once

the low range test trials arrive. In contrast, for a subject who is adapted to intermediate values

of p, she should be less able to discriminate between low values of probability. Thus, conditional

on being randomized into the low test trial range, our model predicts that valuation will respond

more strongly to changes in p among subjects in the low adaptation condition, compared to those

in the intermediate adaptation condition.

A similar intuition applies for the other two test trial ranges. For those subjects randomized

into the high test trial range, we adapt them to either a high or intermediate range of adaptation

trials. For a subject who is adapted to high values of p, she should be better able to discriminate

between probabilities in this high range once the test trials arrive, compared to a subject who is

adapted to intermediate values of p.

Finally, for those subjects randomized into the intermediate test trial range, we adapt them

to either an extreme or intermediate range of adaptation trials. A subject who is adapted to

extreme values of p—closer to either of the two endpoints of the unit interval—should be less able

to discriminate between probabilities in the intermediate range once the test trials arrive, compared

to a subject who is adapted to intermediate values of p.

III.1.2. Directly measuring prior beliefs

A novel feature of our design, relative to previous tests of efficient coding, is that we directly

measure prior beliefs. After all, the key input to the efficient coding model described in Section II

is the DM ’s prior beliefs, which pin down the likelihood functions and shape of the probability

weighting function. Measuring prior beliefs enables us to test whether endogenously reported beliefs

10There are 24 distinct values of p in each adaptation condition. For each subject, we draw 30 values with
replacement from this set of 24, and we randomize the ordering. Thus, even within an adaptation condition, there
exists exogenous variation across subjects in the sequence of lotteries experienced, which could in turn, provide a
source of variation in prior beliefs at the test trial stage.
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about an upcoming choice set have predictive power for valuations. Moreover, the reported beliefs

can validate whether subjects have adapted to the particular distribution that we assume in our

key empirical analyses.

Figure II
Procedure for eliciting prior beliefs

The figure presents a screenshot of the belief elicitation procedure that we implement after trial
fifteen. For each of the ten bins, subjects are asked to report their belief that the upside probability
on the next trial will fall in that particular bin. We require that the percentages sum up to 100%
before the subject can submit their response.

We elicit prior beliefs twice during the experiment: immediately before the first adaptation
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trial and immediately after trial fifteen. Specifically, we measure beliefs by asking subjects for the

probability they assign to each of ten equally spaced bins over the unit interval. The probability in

each bin is therefore the perceived chance that the probability associated with the upside payoff of

the risky lottery on the next trial will fall in that particular bin. Figure II shows a screenshot of belief

elicitation. We randomize across subjects whether the order of bins is increasing or decreasing.

Asking subjects for a probability distribution over probabilities is a conceptually challenging

task. Thus, belief elicitation before the first adaptation trial is primarily to familiarize subjects with

the elicitation technique that they will engage with again immediately after trial fifteen. Moreover,

the belief measurement is unincentivized. We chose not to incentivize beliefs because, as assumed

in our model, reported beliefs likely contain a component of long-term prior beliefs that are difficult

to incentivize.

III.2. Procedures

We recruit 750 subjects from Prolific. Subjects are paid $3.00 for completing the experiment.

In addition, 10% of the subjects are randomly selected to receive a bonus whose amount is based

on their decision in one randomly selected trial. Specifically, the bonus amount is the outcome of a

Becker-Degroot-Marschak mechanism: on the randomly selected trial, we draw a monetary amount

randomly from a uniform distribution between [0, 25]. If the subject’s certainty equivalent is below

or equal to this monetary amount, the subject receives it. If the subject’s certainty equivalent is

above the monetary amount, the computer plays the lottery and pays the subject either $25 or $0

with the trial-specific probabilities.

At the beginning of the experiment, subjects are presented with instructions and then need

to pass a two-question comprehension check; the experimental instructions and the comprehen-

sion check are provided in Online Appendix E. On average, subjects completed the experiment in

about 15 minutes. Conditional on being chosen to receive a bonus, they received an average total

earning of $17.33. The sample size, main analyses, and data exclusion criteria are pre-registered on

Aspredicted.org.11

11The pre-registration document for this experiment is at: https://aspredicted.org/5rwf-bd85.pdf.
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III.3. Results

Following the pre-registration, we apply three exclusion criteria before analyzing the data. First,

we exclude those subjects who violated a basic monotonicity property in their responses. For each

subject, we estimate a linear regression of the certainty equivalent on p based on the first thirty

adaptation trials. We then record the regression coefficient for each subject, and drop all subjects

for whom the coefficient is negative; this restriction excludes 83 of the 750 subjects. Note that we

estimate the regression for each subject only on the first thirty trials, so that we do not select on

certainty equivalents on test trials, the dependent variable of interest. Next, of the remaining 667

subjects, we exclude 135 additional subjects based on an attention check administered after the

final test trial.12 Finally, we drop all test trial observations for which the subject reported their

certainty equivalent in less than one second; this restriction further excludes 4 observations at the

subject-trial level. Taken together, we are left with a data set that contains 532 subjects and 19,670

trials, of which 3,188 are test trials.

III.3.1. Manipulation of probability weighting function

We now turn to testing our main hypothesis for each of the three different test trial ranges. In

order to arrive at an estimate of the subject’s perceived value of p, here we assume that the subject

has a linear utility function. This implies that the subject’s perception of p can be estimated simply

as CE
25 , where CE represents the certainty equivalent that the subject provides.13

Figure III shows a graphical depiction of the causal effect of the prior on perception of proba-

bility. The figure has three panels; each panel plots the perceived probability against the objective

12After the last test trial, namely trial thirty-six, we inserted the final and thirty-seventh trial that acts as an
attention check. The lottery on this final trial was designed in a way that it should appear as an “outlier” relative
to the first thirty-six trials they’ve encountered. As such, subjects should be surprised and hence slow to respond.
Specifically, the lottery on the final trial has an upside probability that is far from any upside probability in the
first thirty-six trials: subjects in the low adaptation condition see a lottery that has an upside probability of 94%;
subjects in the high adaptation condition see a lottery that has an upside probability of 6%; and subjects in the
intermediate adaptation condition see a lottery that has an upside probability of either 6% or 94%—each with equal
chance. In each of the three cases, the upside probability on the final trial is extreme and surprising relative to the
upside probabilities experienced by subjects in the first thirty-six trials. If subjects were paying sufficient attention,
we reasoned that the response time on this thirty-seventh trial should be longer than that on the previous, thirty-sixth
trial. Thus, our pre-registration excludes subjects if their response time on trial thirty-seven is shorter than that on
trial thirty-six. Our main experimental tests are robust to this exclusion criterion.

13Later in this section, we consider a more general case that allows the subject to have intrinsic risk aversion over
the lottery payoff; for a payoff of X, the utility is u(X) = Xα, where α ≤ 1. We find that, under nonlinear utility
specifications, our experimental data continue to support the theoretical predictions from Section II and Figure I.
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probability for two sets of subjects. The left panel involves two sets of subjects who are both ran-

domized into the low test trials; one set is adapted to the low adaptation trials, while the other set

is adapted to the intermediate adaptation trials. The right panel involves two sets of subjects who

are both randomized into the high test trials; one set is adapted to the high adaptation trials, while

the other set is adapted to the intermediate adaptation trials. Finally, the middle panel involves

two sets of subjects who are both randomized into the intermediate test trials; one set is adapted to

the extreme adaptation trials, while the other set is adapted to the intermediate adaptation trials.
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Figure III
Causal effect of prior experience on probability distortions

Each panel plots perceived probabilities against objective probabilities from one of the three test
trial ranges. The legend in the upper left of each panel denotes the adaptation condition. Vertical
bars denote two standard errors of the mean.

Recall from Section II and Figure I our theoretical prediction: subjects who are adapted to

intermediate probabilities should have greater difficulty discriminating between low probabilities,

compared to those who are adapted to low probabilities. In other words, when the perceived prob-

ability is plotted against the objective probability, the slope should be lower for subjects who are

adapted to intermediate probabilities; the left panel of Figure III confirms this prediction. Similarly,
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subjects who are adapted to intermediate probabilities should also have greater difficulty discrimi-

nating between high probabilities, compared to those who are adapted to high probabilities. The

right panel of Figure III confirms this prediction, although the slope difference is weaker compared

to that estimated among low probabilities in the left panel. Finally, subjects who are adapted to

intermediate probabilities should have less difficulty discriminating between intermediate probabil-

ities, compared to those who are adapted to extreme probabilities; the middle panel of Figure III

confirms this prediction. In sum, the three panels in Figure III provide experimental evidence for

the theoretical prediction that the slope of different portions of the probability weighting function

is malleable in the manner predicted by the theory of efficient coding.

Table I
Malleability of probability weighting

(1) (2) (3)

Dependent variable:
“Perceived probability”

Low test trials
sample

Intermediate test trials
sample

High test trials
sample

p 0.585*** 0.713*** 1.012***

(0.056) (0.073) (0.085)

intermediate 4.741 –27.660*** 20.987**

(3.033) (6.103) (8.526)

p×intermediate –0.395*** 0.501*** –0.152

(0.072) (0.129) (0.107)

Constant 2.825 –1.922 –21.318***

(2.054) (3.455) (6.668)

Observations 1,120 899 1,169

Notes. The table reports results from mixed effects linear regressions, in which the dependent
variable is the perceived probability, estimated from the certainty equivalent on each test trial, and
the independent variables include p, intermediate, and the interaction between the two. The variable
p takes the objective value of the probability associated with the risky lottery’s upside payoff.
The dummy variable intermediate takes the value of one if the trial belongs to the intermediate
adaptation condition, and zero otherwise. The dependent variable and the independent variable
p are both multiplied by 100 (in percentage). Only data from test trials are included. There are
random effects on the independent variable p and the intercept. Standard errors of the fixed effect
estimates are clustered at the subject level and reported in parentheses. *, **, and *** indicate
significance at the 10%, 5%, and 1% level, respectively.
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To formally test the efficient coding hypothesis, Table I presents results from three mixed effects

linear regressions, one for each test trial range. For these regressions, the dependent variable is our

estimate of the subject’s perceived valuation of p from each test trial; the independent variables

include the objective probability p, a dummy variable labeled intermediate which takes the value of

one if the subject is randomized into the intermediate adaptation condition (and zero otherwise),

and the interaction between p and intermediate. We include only test trials in the regressions,

which allow us to estimate the effect of adaptation trials on valuation.

Column (1) reports the regression results for the low test trial range. The key variable of

interest, p× intermediate, has a significantly negative coefficient. This indicates that subjects who

are adapted to intermediate probabilities form perception of low probability that is less sensitive

to changes in the objective probability, compared to subjects who are adapted to low probabilities.

Column (3) reports the regression results for the high test trial range. Again, the interaction term,

p× intermediate, has a negative coefficient, although it is not significant at conventional levels (p-

value = 0.16 for a two-tailed test against the null of zero). Finally, Column (2) reports the regression

results for the intermediate test trial range. Here, we see that the interaction term has a significantly

positive coefficient. Consistent with the prediction of efficient coding, this result indicates that

subjects who are adapted to intermediate probabilities form perception of intermediate probability

that is more sensitive to changes in the objective probability, compared to subjects who are adapted

to extreme probabilities.14 Online Appendix A re-estimates the three regressions of Columns (1)

to (3) using an alternative exclusion criterion, in which the filter is based on subjects’ behavior on

test trials rather than on adaptation trials. We find that the treatment effects become stronger:

the coefficient on the interaction term in each of the three regressions is of the hypothesized sign;

and it is statistically significant at the 5% level in one regression and at the 1% level in two other

regressions.

In the above analyses, our key dependent variable is the subject’s perceived value of p. However,

because this perceived value is unobservable, we estimate it using the certainty equivalent data—

under the assumption that the subject has a linear utility function. If, instead, we relax this linear

utility assumption and allow the subject to have intrinsic risk aversion over the lottery payoff X—

14Section III.3.3 presents a replication of our main treatment effects using a separate sample of 600 subjects and
a slightly modified experimental design.
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that is, to assume a utility function u(X) = Xα—where X = 25 is associated with probability p

and X = 0 is associated with probability 1 − p, then, on each trial, the certainty equivalent that

the subject provides is

CE = [E(p̃|Rp) · (25)α]1/α = [E(p̃|Rp)]
1/α · 25, (11)

where α is the risk aversion parameter and α ≤ 1. Equation (11) implies that E(p̃|Rp) = (CE
25 )α.

We re-estimate our main regressions in Table I, but now using (CE
25 )α as the dependent variable.

We have examined a variety of values for α, including α = 0.88, the value reported in Tversky and

Kahneman (1992), and α = 0.7, the value used by Barberis, Jin, and Wang (2021) to match the

behavior of real-world investors. We find that our regression results are robust to these alternative

nonlinear utility specifications: the coefficient on p × intermediate remains significantly negative

for the low test trial range and it remains significantly positive for the intermediate test trial range.

For the high test trial range, the result becomes stronger and attains significance at the 10% level

when assuming α = 0.7. We also note that higher risk aversion (i.e., a lower α) leads to an increase

in our estimate of v(p). For example, when α = 0.7, we estimate that small probabilities are

distorted upwards: v(p) > p when p is small.

III.3.2. Empirical link between beliefs and valuations

In our efficient coding model, heterogeneity in prior beliefs is the main source of cross-subject

variation in the probability weighting function. However, the regression analysis in Table I has

treated prior beliefs as unobservable. In this section, we leverage our directly measured prior

beliefs to provide additional tests of the efficient coding mechanism. We first describe the data on

elicited beliefs. We then proceed to investigate how the beliefs data relate to observed valuations.

Recall that, for each of the three test trial ranges, subjects are randomized into one of two

adaptation conditions. The “intermediate” condition involves probabilities drawn from around the

center of the unit interval. The other condition draws probabilities from more extreme values of

the unit interval. Figure IV shows the prior beliefs averaged across subjects within a condition,

measured immediately before trial one (left panel) and immediately after trial fifteen (right panel).

In each panel, we pool all subjects from the intermediate condition into one group and label it
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“intermediate,” and we pool all subjects from the non-intermediate conditions (i.e., low, high, or

extreme) into the other group and label it “extreme.”

Figure IV generates two observations. First, the left panel shows no difference in measured

beliefs across the groups, which is expected given the experimental randomization. While the

average priors in the left panel are consistent with subjects putting greater weight on intermediate

probabilities, there exists extensive variation across subjects in their reported priors. For example,

while the average prior is hump-shaped, approximately 23% of subjects report a uniform prior

before trial one.15
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Figure IV
Measured prior beliefs by experimental condition

Prior beliefs averaged across subjects and disaggregated by adaptation condition. Each data point
represents one of the ten probability bins (placed on the x-axis at the midpoint of the bin). The
left panel reports average beliefs elicited at the beginning of the experiment (before trial one).
The right panel reports average beliefs elicited after 15 adaptation trials. Vertical bars denote two
standard errors of the mean.

The second and more important observation is that, after 15 adaptation trials, there is a strong

separation in prior beliefs across the intermediate and extreme groups. Subjects who faced lotteries

with the probability of the upside payoff drawn from intermediate values of p state a high likelihood

of observing an intermediate probability on the next trial. Conversely, subjects who faced lotteries

with the probability of the upside payoff drawn from extreme values of p state a low likelihood of

15By contrast, only 12% of subjects report a uniform prior after trial fifteen.
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observing an intermediate probability on the next trial. Notice also that for the extreme group

in the right panel, subjects attach the lowest likelihood to the probability bins (1-10%) and (91-

99%). This result is consistent with the empirical distribution of probabilities on adaptation trials:

subjects never observe a probability below 10% or above 90% in the low, high, or extreme condition.

Next, we use the prior beliefs elicited after trial fifteen to test the efficient coding mechanism.

We begin with a reduced form test for each of the three test trial ranges. For each subject who is

randomized into the low test trials with p ∈ [0.11, 0.31], we measure how much weight they attach

to this range in their prior beliefs. The hypothesis is that a subject who attaches a larger weight

to this range should endogenously be more sensitive to changes in p within the range. It follows

that lottery valuations from such a subject should be more sensitive to changes in p, compared to

those from another subject who attaches a smaller weight to observing a value of p ∈ [0.11, 0.31].

To measure how much weight a subject attaches to these low probabilities, we sum the density

she attaches to the 11-20% bin and the 21-30% bin in her elicited beliefs. We label this sum

localDensity. We then run a mixed effects linear regression, in which the dependent variable is

our estimate of the subject’s perceived valuation of p from each low test trial, and the independent

variables include the objective probability p, the variable localDensity, and the interaction between

p and localDensity. A positive coefficient on the interaction term would suggest that a one unit

increase in p generates a larger increase in valuation for subjects who attach a higher likelihood

to facing an upside probability in this range. Importantly, this analysis does not condition on the

adaptation condition, which means that such a test can, in principle, be conducted in more general

settings that do not require exogenous variation in prior beliefs.

Column (1) of Table II provides the regression results. We observe that the interaction term,

p × localDensity, has a positive coefficient that is significant at the 1% level. This confirms the

hypothesis that measured beliefs about an upcoming choice set can explain variation in valuations.

To our knowledge, this is the first result in the cognitive economics literature that establishes a link

between measured prior beliefs about a choice set and behavior when the subject ultimately faces

that choice set. We also emphasize that a sizable gap exists between the time that subjects report

beliefs and the time that they report lottery valuations on test trials. Specfically, the results in

Column (1) indicate that beliefs elicited after trial fifteen correlate with subjects’ lottery valuations
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measured 15 trials later.16

Table II
Predicting lottery valuations using prior beliefs

(1) (2) (3)

Dependent variable:
“Perceived probability”

Low test trials
sample

Intermediate test trials
sample

High test trials
sample

p 0.285*** 0.840*** 0.842***

(0.045) (0.111) (0.076)

localDensity –0.141*** –0.245*** –0.338

(0.041) (0.080) (0.219)

p×localDensity 0.004*** 0.003* 0.005*

(0.002) (0.002) (0.003)

Constant 8.460*** –2.654 –4.340

(2.093) (5.518) (6.147)

Observations 1,120 899 1,169

Notes. The table reports results from mixed effects linear regressions, in which the dependent
variable is the perceived probability, estimated from the certainty equivalent on each test trial,
and the independent variables include p, localDensity, and the interaction between the two. The
variable p takes the objective value of the probability associated with the risky lottery’s upside
payoff. The variable localDensity is the sum of the densities that a subject attaches to the range
of upside probabilities that she faces during subsequent test trials; an upside probability is the
probability associated with the upside payoff of the risky lottery. Specifically, for the low test
trials, localDensity is the sum of the densities that a subject attaches to the 11-20% and 21-30%
bins. For the intermediate test trials, localDensity is the sum of the densities that a subject attaches
to the 31-40%, 41-50%, 51-60% and 61-70% bins. For the high test trials, localDensity is the sum
of the densities that a subject attaches to the 71-80% and 81-90% bins. The dependent variable
and the independent variables p and localDensity are all multiplied by 100 (in percentage). Only
data from test trials are included. There are random effects on the independent variable p and the
intercept. Standard errors of the fixed effect estimates are clustered at the subject level and reported
in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

For the intermediate test trials, subjects face lotteries where the upside probability is drawn

from the range [0.38, 0.62]. In this case, localDensity is the sum of the densities that a subject

attaches to the 31-40%, 41-50%, 51-60%, and 61-70% bins. Column (2) of Table II shows that the

16Two reasons lead our experimental design to have a lag between belief measurement and test trials. First, we
did not want subjects’ attention to be fully directed to the belief measurement task right before the crucial set of
test trials: this may interrupt the adaptation process. Second, a recent study provides intriguing evidence that the
encoding function may adapt more slowly than the prior (Hahn and Wei, 2024).
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interaction term again has a positive coefficient, which is significant at the 10% level. Finally, for

the high test trials, subjects face lotteries where the upside probability is drawn from the range

[0.69, 0.89]. In this case, localDensity is the sum of the densities that a subject attaches to the

71-80% and 81-90% bins. Column (3) of Table II shows that the coefficient on the interaction term

is again significantly positive at the 10% level.

Such reduced form tests are useful as they are free of any parametric assumption; for example,

they do not require specifying the capacity parameter n from equation (1). At the same time, the

simplicity comes at the cost of discarding valuable information about subjects’ prior beliefs: the

regression analysis in Table II only uses information about subjects’ prior beliefs in the “local area”

of the unit interval that heavily overlaps with the range of upside probabilities presented during

test trials. The efficient coding model, instead, takes into account the entire prior distribution when

making predictions about perceived probabilities.

We now turn to a model-based test of the efficient coding mechanism, which takes as input the

entire distribution of prior beliefs that subjects provide after 15 adaptation trials. Specifically, for

each subject, we take the ten densities that she attaches to the ten probability bins and construct a

prior distribution. We assume that, within each bin, the prior distribution is uniform. We then plug

this prior distribution into the efficient coding model described in Section II and compute, for each

test trial, the model-implied valuation of p according to equation (5); we denote this model-implied

valuation v(p|prior). Here, p takes the objective value of the upside probability in the test trial,

and we set n, the capacity parameter in equation (1), to 10 when computing v(p|prior).17

In Table III, we regress the perceived probability, estimated from the certainty equivalent on

each test trial, on p and v(p|prior). The latter variable is the model-implied valuation given the

prior distribution elicited after 15 adaptation trials. Column (1) of Table III provides a benchmark

of the sensitivity of the perceived probability to the objective probability p. It shows that a one

unit increase in p leads to a 0.76 units increase in the perceived probability. Column (2) shows that

a one unit increase in v(p|prior) leads to a 0.91 units increase in the perceived probability. The

crucial test is shown in Column (3): after controlling for the objective probability p, the model-

implied valuation v(p|prior) continues to explain variation in the lottery valuation and hence the

17The results in Table III are robust to different values of n.
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perceived probability.18

Table III
Predicting valuations using model-implied distorted probabilities

(1) (2) (3)

Dependent variable:
“Perceived probability”

p 0.764*** 0.667***

(0.029) (0.045)

v(p|prior) 0.907*** 0.142**

(0.037) (0.059)

Constant –3.456** –8.719*** –5.635***

(1.501) (1.946) (1.883)

Observations 3,188 3,188 3,188

Notes. The table reports results from mixed effects linear regressions, in which the dependent
variable is the perceived probability, estimated from the certainty equivalent on each test trial, and
the independent variables include p and v(p|prior). The variable p takes the objective value of the
probability associated with the risky lottery’s upside payoff. The variable v(p|prior) is the model-
implied valuation of p. The dependent variable and the independent variables p and v(p|prior) are
all multiplied by 100 (in percentage). Only data from test trials are included. There are random
effects on the independent variable p and the intercept. Standard errors of the fixed effect estimates
are clustered at the subject level and reported in parentheses. *, **, and *** indicate significance
at the 10%, 5%, and 1% level, respectively.

It is worth noting that the link between beliefs and lottery valuations is also at the core of al-

ternative theories of risky choice, such as the Kőszegi and Rabin (2007) model of expectation-based

reference points. However, there exists a crucial distinction between our model and the Kőszegi and

Rabin (2007) model. In their model, the DM perfectly observes the choice set and state probabil-

ities, and the valuation of a risky lottery is driven by the DM ’s beliefs about the future outcomes

of the lottery. By contrast, in our model, the prior beliefs about a lottery’s state probabilities

drive lottery valuations during subsequent trials—even after the choice set and state probabilities

on these trials have been presented to the DM . Put differently, for any lottery we display on a

test trial, the Kőszegi and Rabin (2007) model predicts that valuation is independent of the prior

18Online Appendix A.2 reports an alternative pre-registered, but less powerful, test of the the empirical link
between beliefs and valuations.
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belief we measure after trial fifteen, whereas our model predicts dependence of valuation on the

prior belief. We provide further discussion of alternative theories in Section IV.3.

III.3.3. Replication of main treatment effects

Table IV
Conceptual replication of treatment effects from earlier experiment in Frydman and Jin (2023)

(1) (2) (3)

Dependent variable:
“Perceived probability”

Low test trials
sample

Intermediate test trials
sample

High test trials
sample

p 0.620*** 0.664*** 0.983***

(0.060) (0.059) (0.061)

intermediate 1.710 –18.531*** 14.857**

(1.901) (4.092) (6.745)

p×intermediate –0.312*** 0.367*** –0.166**

(0.070) (0.094) (0.084)

Constant 0.352 –5.279* –21.057***

(1.217) (2.722) (4.969)

Observations 1,127 1,096 1,133

Notes. The table reports results from mixed effects linear regressions using data from a separate
experiment discussed in more detail in Frydman and Jin (2023). In these regressions, the dependent
variable is the perceived probability, estimated from the certainty equivalent on each test trial, and
the independent variables include p, intermediate, and the interaction between the two. The variable
p takes the objective value of the probability associated with the risky lottery’s upside payoff.
The dummy variable intermediate takes the value of one if the trial belongs to the intermediate
adaptation condition, and zero otherwise. The dependent variable and the independent variable
p are both multiplied by 100 (in percentage). Only data from test trials are included. There are
random effects on the independent variable p and the intercept. Standard errors of the fixed effect
estimates are clustered at the subject level and reported in parentheses. *, **, and *** indicate
significance at the 10%, 5%, and 1% level, respectively.

In an earlier working paper (Frydman and Jin, 2023), we conducted a similar experiment to

the one reported above. The main difference is that the earlier experiment did not elicit prior

beliefs.19 We found very similar results in that experiment, whereby the sensitivity of the perceived

probability to the objective probability was significantly modulated by adaptation trials in the

19Another difference is that the earlier experiment included 24 adaptation trials, whereas the current experiment
includes 30.
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manner predicted by the theory of efficient coding. Table IV shows that the results from the earlier

experiment are analogous to those presented above in Table I; if anything, the earlier results are

even stronger. We view this earlier experiment, which we conducted on a separate sample of 600

subjects from Prolific in December 2022, as a conceptual replication of our main treatment effects.20

IV. Discussion

IV.1. Noisy coding of payoffs and probabilities

The model described in Section II assumes that noise enters the decision process only when

the DM encodes probabilities; that is, it makes the simplifying assumption that there is no noise

in encoding lottery payoffs. To justify this assumption, we use the same lottery upside of $25 on

each trial of our experiment, and thus noisy coding of this fixed amount of $25 should be minimal.

However, previous studies have shown that, when payoffs vary across decision problems, noisy

encoding of payoffs has important consequences for behavior (Khaw et al., 2021; Frydman and Jin,

2022). In this section, we study a more general case in which the DM encodes both payoffs and

probabilities with noise.

Consider a risky lottery of the form ($X, p; $0, 1−p); it pays X > 0 with probability p and zero

dollars with probability 1 − p. Suppose that the DM holds prior beliefs about X and p, denoted

by f(X, p). When the lottery is revealed to the DM , she draws two noisy signals: Rx, a noisy

signal of X, and Rp, a noisy signal of p. The two signals are drawn from their respective likelihood

functions, f(Rx|X, p) and f(Rp|X, p). Further suppose that the DM encodes X and p through a

total number of n “neurons”—following Heng et al. (2020)—and that she chooses f(Rx|X, p) and

f(Rp|X, p) to maximize the mutual information between the payoff-probability pair, (X, p), and its

noisy representation, (Rx, Rp). Online Appendix B.1 formalizes this maximization problem.

We analyze a special case of the above model in which X and p are statistically independent;

in this case, f(X, p) = f(X) · f(p). This special case is easier to solve, yet it remains a generalized

version of our baseline model as it allows for variation in X and noisy coding of X. We solve it in

Online Appendix B.2. We find that, under this model, our main predictions for the instability of

20See Frydman and Jin (2023) for more details on the design of the earlier experiment and the associated pre-
registration document.
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probability weighting continue to hold.

To illustrate our finding, we provide a numerical example. Suppose theDM holds a prior thatX

is drawn uniformly from [23, 27] and that X and p are drawn independently. Also suppose that the

DM has a total of n = 15 neurons for the encoding of X and p. Then, under the intermediate prior

about p which is a mixture of the stable component that takes the form of a uniform distribution and

the fast-moving component that takes the form in equation (8), the DM optimally allocates nx = 8

neurons to encode X and np = 7 neurons to encode p. Under the extreme prior about p which is a

mixture of the stable component that takes the form of a uniform distribution and the fast-moving

component that takes the form in equation (9), the DM again optimally allocates nx = 8 neurons

to encode X and np = 7 neurons to encode p. Figure B.1 in Online Appendix B.2 shows that the

weighting functions implied by the intermediate and the extreme priors are quantitatively similar

to those in the lower graph of Figure I. As such, the theoretical predictions discussed in Section II

regarding the malleability of probability weighting remain robust to allowing for noisy coding of

X.21

We emphasize that the above numerical analysis assumes that X and p are statistically in-

dependent. In the more general model formalized in Online Appendix B.1, which allows for any

correlation between X and p, the optimal encoding rules will change. Solving this general model

and deriving its predictions are beyond the scope of the paper.22 One potentially interesting direc-

tion for future work is to experimentally manipulate the correlation between X and p in order to

assess the extent to which information about p affects the encoding precision of X. This, in turn,

could guide future theorizing about how the DM jointly encodes payoffs and probabilities.

IV.2. Belief distortion as a source of probability weighting

The model that we present, which builds on earlier work by Khaw et al. (2021) and Frydman

and Jin (2022), has only one free parameter n. This parameter measures the number of “neurons”

that the DM uses to encode probability, so it can be interpreted as a capacity constraint. Our

21We note that the results from Figure B.1 are largely invariant with respect to the range over which X is drawn.
Suppose the DM holds a prior that X is drawn uniformly from [25−∆, 25 +∆]. We find that, for any ∆ between 0
and 25 and for both the intermediate and the extreme priors about p, the DM always sets nx = 8 and np = 7.

22For related theoretical work, see Khaw et al. (2024) who allow the encoding precision of X to depend on the noisy
signal for p. Note that their model exogenously assumes the encoding functions; in contrast, our model endogenously
derives the encoding functions from the DM ’s prior.
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assumption that n is finite—and thus information processing is constrained—is responsible for

the prediction that the average perception of p does not always equal p. As such, our model of

probability weighting derives exclusively from a friction in information processing and thus points

to a belief-based channel as an important driver of probability distortions.

Such a belief-based channel is worth emphasizing, given that the literature beginning with Kah-

neman and Tversky (1979) has largely interpreted probability weighting as an expression of pref-

erences, rather than a misperception of beliefs. Specifically, our results suggest that the degree of

probability weighting should be modulated by the agent’s prior expectations, and thus informa-

tion provision and past experience may play an important role in characterizing the shape of the

weighting function. This interpretation is consistent with recent work by Enke and Graeber (2023),

who show that the weighting function can be modulated by the complexity of the lottery under

consideration. At the same time, our data do not rule out preferences as a source of probability

weighting. That is, even if we shut down our noisy encoding channel, it may well be that valuation

is still passed through an exogenous nonlinear probability weighting function.

IV.3. Comparison with alternative theories

IV.3.1. Efficient coding with an alternative performance objective

The efficient coding model in Section II assumes that the DM chooses the coding rule θ(p) that

maximizes the mutual information between probability p and its noisy signal Rp. However, there

are other plausible performance objectives that the DM may use instead (Ma and Woodford, 2020).

For example, the DM may choose the coding rule so as to maximize the expected payoff from the

task at hand (Heng et al., 2020). In this section, we examine our model’s implications when the

DM chooses the coding rule θ(p) that maximizes the expected payoff from the experiment.

Specifically, given the Becker-Degroot-Marschak (Becker et al., 1964) incentive scheme imple-

mented in the experiment, the DM chooses θ(p) to maximize the expected payoff

E[payoff] =
25

2

∫ 1

0
(1 + p2)f(p)dp− 25

2

∫ 1

0

(∑n

Rp=0
(E[p̃|Rp]− p)2f(Rp|p)

)
f(p)dp, (12)

where f(p) is the DM ’s prior belief, and f(Rp|p) and E[p̃|Rp] are given by equations (1) and (6);

we derive equation (12) in Online Appendix C. Because the coding rule only affects the second
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term of equation (12), the performance objective can be rewritten so as to minimize the following

expected error

∫ 1

0

(∑n

Rp=0
(E[p̃|Rp]− p)2f(Rp|p)

)
f(p)dp. (13)

We now examine whether our efficient coding model still gives rise to malleability of probability

weighting under the alternative assumption that the DM chooses θ(p) to maximize the expected

payoff in equation (12). We again consider the two mixed priors specified in Section II and Figure I.

One mixed prior applies equal weights to a stable component that is uniform and a fast-moving

component that takes the form of (8) with pl = 0.38 and ph = 0.62. The other mixed prior we

examine applies equal weights to the same uniform stable component and a fast-moving component

that takes the form of (9) with pl,1 = 0.1, pl,2 = 0.21, ph,1 = 0.79, and ph,2 = 0.9. Figure C.1

in Online Appendix C plots these two mixed priors, the optimal coding rules θ̂(p), as well as the

subjective valuations v̂(p) implied by θ̂(p).23 The figure shows that two very different priors both

lead to similar probability weighting functions. In other words, when the DM chooses the optimal

code to maximize the expected payoff, our efficient coding model does not generate malleability of

probability weighting. This finding, in conjunction with our experimental results from Section III,

implies that subjects in our experiment are likely maximizing mutual information rather than the

expected payoff.24

IV.3.2. Expectations-based reference points: Kőszegi and Rabin (2007)

Consider a risky lottery L that has N potential outcomes, x1, x2,. . ., xN ; outcome xn is as-

sociated with probability pn. Kőszegi and Rabin (2007) propose a model of the reference point,

whereby the DM equates the lottery’s payoff distribution with the reference point distribution.

23We apply a projection method with Chebyshev polynomials to numerically solve for the θ̂(p) that minimizes (13).
See Mason and Handscomb (2003) for a detailed discussion of the properties of Chebyshev polynomials.

24When comparing different performance objectives that can be implemented in an efficient coding model, one
caveat is that there are also multiple possible information processing constraints for each performance objective. The
particular constraint we impose in our model is inherited from Heng et al. (2020), but other possible constraints—
for example, the one imposed in Wei and Stocker (2015)—have also been examined. For further discussion on the
comparison between minimizing error and maximizing discriminability in the context of probabilities, see Zhang et al.
(2020).
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The DM ’s lottery valuation is, therefore, given by

v(L) =
N∑
i=1

N∑
j=1

pipj(xi + µ(xi − xj)), (14)

where

µ(y) =


η · y if y ≥ 0

(ηλ) · y if y < 0

, (15)

η measures the relative importance of the gain-loss utility, and λ measures the degree of loss

aversion.

Under this specification, the lottery valuation v(L) depends only on the payoff and probability

distributions {xn, pn}Nn=1, which, in our experiment, is held constant across different adaptation

conditions for a given test trial. Yet, our experiment shows that, after subjects are presented with

the payoff and probability distributions {xn, pn}Nn=1, lottery valuations are still affected by prior

beliefs about the probabilities. As such, the model of Kőszegi and Rabin (2007) cannot explain our

experimental result of malleability with respect to the prior.

IV.3.3. Endogenizing the encoding function

There have been many earlier and ongoing attempts to microfound the probability weighting

function. Our model is closest in spirit to recent models of noisy and efficient coding of probability.

In particular, Khaw et al. (2021, 2024) assume that the DM encodes probabilities using a log odds

encoding function. Specifically, in their models, a noisy cognitive signal Rp is drawn as follows:

f(Rp|p) =
1√
2πv2z

exp

(
− 1

2v2z

[
Rp − log

(
p

1− p

)]2)
. (16)

That is, the noisy signal Rp is drawn from a Normal distribution with mean of log( p
1−p) and

standard deviation of vz. Figure V presents the two mixed prior distributions specified in Figure I

and the probability weighting functions implied by these priors and the likelihood function of (16).

Figure V leads to two observations. First, a log odds encoding function tends to always produce

an inverse S-shaped weighting function, hence leaving little room for malleability of the general

shape of the weighting function. Second, when the likelihood function is exogenously assumed as
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Figure V
Prior distribution and value function implied by the log odds encoding function from Khaw et al.

(2021, 2024)

The upper graph plots two mixed prior distributions f(p) in the form of (7). For each mixed prior,
the first, stable component is assumed to be a uniform distribution between 0 and 1. The second,
fast-moving component takes the form of (8) for the intermediate prior and the form of (9) for the
extreme prior; the parameter values are: pl = 0.38, ph = 0.62, pl,1 = 0.1, pl,2 = 0.21, ph,1 = 0.79,
and ph,2 = 0.9. The weight ξ the DM assigns to the stable component is 0.5. The lower graph
plots, for both the intermediate prior and the extreme prior, the probability weighting function
implied by the mixed prior and the log odds encoding function of (16); here we set vz = 1. The
green dash-dot line is the forty-five degree line.

a log odds function, the intermediate prior gives rise to a lower slope of the weighting function for

intermediate probabilities; this implication is inconsistent with the experimental finding reported

in Table I that, in the data, the intermediate prior actually gives rise to a higher slope of the

weighting function for intermediate probabilities.

The recent work of Enke and Graeber (2023) also provides a microfoundation of the probability
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weighting function. In their model, the noisy signal Rp is drawn according to:

f(Rp|p) =
(

n

Rp

)
(p)Rp(1− p)n−Rp . (17)

This likelihood function is exogenously specified and not tied to the prior distribution. Figure VI

plots the weighting function v(p) implied by this likelihood function and either of the two mixed

priors specified in Figure I.

Figure VI shows that, similar to the result in Figure V, the model of Enke and Graeber (2023)

generates the same counterfactual implication: the intermediate prior implies a lower slope of the

weighting function for intermediate probabilities, while in the data, the intermediate prior implies a

higher slope. Taken together, Figures V and VI highlight the importance of allowing the likelihood

function to be endogenously tied to the prior distribution—this is the approach our paper takes.

IV.4. Broader implications of imprecision of ratios

Throughout the paper, we have mainly been concerned with deriving and testing implications

for risky choice when the DM has an imprecise representation of probability. To this end, our exper-

iment uses explicit representations of state probabilities, both numerically (displaying percentages)

and visually (displaying the ratio of two colored bars).

However, our theory of efficient coding can be applied more broadly to real numbers in the

unit interval that do not necessarily have to represent probabilities. For example, our framework

of noisy and efficient coding will also make predictions about perception of proportions when there

is no intrinsic risk to consider. To make ideas concrete, consider the task in Oprea (2024) where

the DM must report a valuation of a riskless—but disaggregated—set of monetary payments.

In particular, subjects are asked to provide a valuation for an asset that is comprised of 100

disaggregated payments. A proportion p of these payments are each worth $2.50 and the remaining

proportion 1− p of the payments are worth $0. Thus, the subject’s task is simply to aggregate the

100 payments into a single valuation.

If the subject encodes the proportion p with noise, this can drive a wedge between the subject’s

reported valuation and the “true” valuation—the latter is simply the sum of the 100 disaggregated

payments. This is consistent with the finding of Oprea (2024) that subjects report valuations—what
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Figure VI
Prior distribution and value function implied by the encoding function from Enke and Graeber

(2023)

The upper graph plots two mixed prior distributions f(p) in the form of (7). For each mixed prior,
the first, stable component is assumed to be a uniform distribution between 0 and 1. The second,
fast-moving component takes the form of (8) for the intermediate prior and the form of (9) for the
extreme prior; the parameter values are: pl = 0.38, ph = 0.62, pl,1 = 0.1, pl,2 = 0.21, ph,1 = 0.79,
and ph,2 = 0.9. The weight ξ the DM assigns to the stable component is 0.5. The lower graph
plots, for both the intermediate prior and the extreme prior, the probability weighting function
implied by the mixed prior and the likelihood function of (17); here we set the parameter n to 10.
The green dash-dot line is the forty-five degree line.

he calls “simplicity equivalents”—that seem to accord with the four-fold pattern of risk-taking, even

in the absence of any intrinsic risk.25 Moreover, our model makes an additional untested prediction,

which is that the pattern of reported simplicity equivalents can be modulated by the DM ’s prior

25See also Vieider (2024) who replicates the Oprea (2024) findings using binary choice rather than the multiple
price list approach.
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belief about proportions.

IV.5. Applications to financial economics

While probability weighting has been applied in a variety of areas of economics, including insur-

ance and betting markets, it has been particularly fruitful in explaining facts in financial economics

(Barberis, 2013; O’Donoghue and Somerville, 2018). The core component of probability weighting

that most researchers in financial economics have invoked is the overweighting of small probabilities.

Models with this basic assumption can generate the high equity premium (De Giorgi and Legg,

2012), abnormal returns of individual stocks (Barberis and Huang, 2008; Barberis, Mukherjee, and

Wang, 2016; Barberis et al., 2021), overpricing of out-of-the-money stock options (Baele, Driessen,

Ebert, Londono, and Spalt, 2019), and time-inconsistent risk-taking (Barberis, 2012; Ebert and

Strack, 2015; Heimer, Iliewa, Imas, and Weber, 2025). Importantly, in all these studies, researchers

assume that probability distortions are “hard-wired” and do not shift over time.

Our results suggest that the degree of probability distortions depends critically on the DM ’s

prior belief about probability, which can vary over time. It follows that the financial phenomena

described above should also vary over time—to the extent that they are generated by probability

weighting. This insight leads to two concrete paths forward for future empirical work. First, our

model predicts when probability distortions should arise, and thus when we should observe anoma-

lous asset prices and risk-taking behavior. For example, when combined with the theory in Barberis

et al. (2021), our model predicts conditional moments of asset prices by identifying periods when

overweighting of small probabilities should be more pronounced. During these periods—when per-

ception of probability is heavily distorted—we should observe average returns of individual stocks

that are consistent with those returns documented in anomalies that can be explained by prob-

ability weighting, for example, the idiosyncratic volatility and failure probability anomalies. But

during other periods, when investors’ prior beliefs induce less perceptual distortions, the asset

pricing anomalies should be weaker.

Second, by connecting probability distortions to investors’ prior beliefs, our model also makes

predictions about individual heterogeneity (Bruhin, Fehr-Duda, and Epper, 2010). In particular,

those investors who hold prior beliefs that differ significantly from a uniform distribution will

distort probabilities more than investors who believe that probabilities are uniformly distributed.
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One challenge, of course, in testing these predictions is to obtain accurate measures of real-world

investors’ prior beliefs about probabilities.

V. Conclusion

We have provided a new explanation for probability weighting based on a core principle from

neuroscience called efficient coding. We first develop a model to show that efficient coding readily

generates nonlinear and malleable probability weighting. In particular, as the DM ’s prior beliefs

change, the slope of different portions of the probability weighting function changes in the manner

predicted by efficient coding.

Our main experimental contribution is to unveil the close connection between prior beliefs and

lottery valuations. To demonstrate this connection, we exogenously manipulate the distribution

of lottery probabilities faced by subjects and then directly measure prior beliefs. We find strong

evidence that valuations, and hence the shape of the probability weighting function, are systemat-

ically unstable. In particular, as subjects report a higher likelihood of observing a given range of

probabilities for an upcoming lottery, their lottery valuations become more sensitive to a change

in probability over this range. This empirical correlation between ex-ante beliefs and subsequent

valuations validates a critical but previously untested prediction from efficient coding models.

In closing, it is useful to highlight the connection between the experimental results in our paper

and the patterns documented in recent experiments by Payzan-LeNestour and Woodford (2022)

and Frydman and Jin (2022). Each of the two latter papers provides experimental support in

favor of efficient coding as a driver of diminishing sensitivity, which is another core ingredient of

prospect theory. Thus, when viewed against this broader perspective, our data add credence to

the hypothesis that efficient coding serves as a common mechanism underlying multiple features of

prospect theory (Woodford, 2012a,b).
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Online Appendix

A. Additional Empirical Analyses of Experimental Data

A.1. Re-estimating main regressions with an alternative exclusion criterion

Our main tests of the malleability of probability weighting are summarized in Table I of the main

text, whereby we followed the pre-registered exclusion criterion by taking out subjects who violated

a basic monotonicity property in their valuations. Specifically, for each subject, we regressed

her certainty equivalents, elicited from the adaptation trials (trials 1-30), on the lottery’s upside

probabilities. We then excluded any subject with an estimated negative slope. In this section, we re-

estimate the main regressions by applying a filter that takes out subjects based on their behavior

on test trials rather than on adaptation trials; this alternative exclusion criterion alleviates the

concern that, across different adaptation conditions, our filter is applied to different lotteries.

Table A.1
Malleability of probability weighting: An alternative exclusion criterion

(1) (2) (3)

Dependent variable:
“Perceived probability”

Low test trials
sample

Intermediate test trials
sample

High test trials
sample

p 0.651*** 0.824*** 1.113***

(0.056) (0.066) (0.076)

intermediate 1.934 –20.405*** 24.262**

(2.079) (5.939) (7.557)

p×intermediate –0.336*** 0.356*** –0.187**

(0.065) (0.120) (0.095)

Constant 0.666 –5.741* –31.084***

(1.610) (3.280) (5.904)

Observations 990 894 1,115

Notes. The table reports results from mixed effects linear regressions, in which the dependent
variable is the perceived probability, estimated from the certainty equivalent on each test trial, and
the independent variables include p, intermediate, and the interaction between the two. The variable
p takes the objective value of the probability associated with the risky lottery’s upside payoff.
The dummy variable intermediate takes the value of one if the trial belongs to the intermediate
adaptation condition, and zero otherwise. The dependent variable and the independent variable p
are both multiplied by 100 (in percentage). Only data from test trials are included, and we apply
the alternative exclusion criterion described in Online Appendix A.1. There are random effects
on the independent variable p and the intercept. Standard errors of the fixed effect estimates are
clustered at the subject level and reported in parentheses. *, **, and *** indicate significance at
the 10%, 5%, and 1% level, respectively.
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For each subject, we regress her certainty equivalents, elicited from the test trials (trials 31-

36), on the lottery’s upside probabilities. The regression coefficient is negative for 117 out of 750

subjects in our sample. We exclude these 117 subjects. For the remaining 633 subjects, we re-run

the regressions from Table I and report the results in Table A.1. We find that the treatment effects

are robust to the alternative exclusion criterion. If anything, the results become stronger: the

p-values on the treatment effects for low, intermediate, and high test trials are 0.001, 0.003, and

0.049, respectively.

A.2. Pre-registered test linking beliefs and valuations

In this section, we report results from a pre-registered test linking beliefs and valuations. Specif-

ically, for each subject, we regress v(p|prior), which is the model-implied valuation of p, on the

objective probability p, using test trials only. We then record the subject-specific coefficient from

this regression; the coefficient for subject s is denoted as βs. For each test trial condition, we con-

duct a median split on βs. Those subjects who are above the median are classified as “sensitive.”

Those who are at or below the median are classified as “insensitive.” Hence, the classification of

“sensitive” is done without any data on certainty equivalents as it relies on beliefs data only.

We then test, for each test trial condition, whether “sensitive” subjects display a stronger

correlation between their certainty equivalents and the lottery’s upside probabilities, compared to

insensitive subjects. To implement this test, we re-run the regressions in Table I, replacing the

“intermediate” dummy with the “sensitive” dummy. The results are shown in Table A.2. Under

this specification, we do not find that beliefs can be used to significantly predict valuations. One

potential reason for this null effect is that the test here is less powerful than the one we report in the

main text. In particular, the regression we report here relies crucially on the “sensitive” dummy

variable, which contains a nontrivial amount of estimation error. The source of this estimation

error can be in part traced to the fact that the “sensitive” dummy variable is estimated from a

regression for each subject that contains only six data points.
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Table A.2
Pre-registered regressions linking beliefs and valuations

(1) (2) (3)

Dependent variable:
“Perceived probability”

Low test trials
sample

Intermediate test trials
sample

High test trials
sample

p 0.334*** 1.035*** 0.948***

(0.044) (0.104) (0.072)

sensitive –0.093 5.648 5.178

(3.075) (6.565) (8.740)

p×sensitive 0.098 –0.123 –0.019

(0.077) (0.136) (0.109)

Constant 5.314*** –19.125*** –13.750**

(1.927) (4.961) (5.735)

Observations 1,120 899 1,169

Notes. The table reports results from mixed effects linear regressions, in which the dependent
variable is the perceived probability, estimated from the certainty equivalent on each test trial, and
the independent variables include p, sensitive, and the interaction between the two. The variable
p takes the objective value of the probability associated with the risky lottery’s upside payoff. The
dummy variable sensitive takes the value of one if a subject is classified as “sensitive” according to
the definition described in Online Appendix A.2, and zero otherwise. The dependent variable and
the independent variable p are both multiplied by 100 (in percentage). Only data from test trials
are included. There are random effects on the independent variable p and the intercept. Standard
errors of the fixed effect estimates are clustered at the subject level and reported in parentheses.
*, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
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B. Multi-Dimensional Efficient Coding

B.1. A general setup

Consider a binary risky lottery: ($X, p; $0, 1−p). In this section, we analyze an efficient coding

model with two dimensions: the first dimension is X, the lottery upside; the second dimension is p,

the probability that the risky lottery delivers X. Suppose that the DM holds prior beliefs about

X and p, denoted by f(X, p). When the lottery is revealed to the DM , she draws a noisy signal,

Rx, of X, from the likelihood function f(Rx|X, p) and a noisy signal, Rp, of p, from the likelihood

function f(Rp|X, p). We then assume that the DM encodes X and p through a total number of n

“neurons” and that she maximizes

I((X, p); (Rx, Rp)), (B.1)

which is the mutual information between the payoff-probability pair, (X, p), and its noisy repre-

sentation (Rx, Rp).

Specifically, the DM chooses nx, the number of neurons used to encode X, and np = n − nx,

the number of neurons used to encode p. Given nx, np, and the coding constraint from Heng et al.

(2020), the DM then chooses the two likelihood functions

f(Rx|X, p) =

(
nx

Rx

)
(θx(X, p))Rx(1− θx(X, p))nx−Rx

f(Rp|X, p) =

(
np

Rp

)
(θp(X, p))Rp(1− θp(X, p))np−Rp (B.2)

by choosing the two coding functions θx(X, p) and θp(X, p), each bounded between 0 and 1. In

other words, the DM chooses nx, an integer between 0 and n, and two coding functions θx(X, p)

and θp(X, p) to maximize the mutual information in (B.1).

B.2. A special case with independent priors

We now analyze a special case of the above model in which the DM has a prior that X and p are

drawn independently; that is, f(X, p) = f(X)f(p). In this case, p contains no information about X

and therefore f(Rx|X, p) = f(Rx|X); similarly, X contains no information about p and therefore

f(Rp|X, p) = f(Rp|p). Moreover, it is easy to show that, when X and p are drawn independently,

I((X, p); (Rx, Rp)) = I(X;Rx) + I(p;Rp). (B.3)

That is, the overall mutual information in (B.1) is equal to the sum of I(X;Rx), the mutual

information between X and Rx, and I(p;Rp), the mutual information between p and Rp.
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The two likelihood functions in (B.2) are reduced to

f(Rx|X) =

(
nx

Rx

)
(θ(X))Rx(1− θ(X))nx−Rx ,

f(Rp|p) =

(
np

Rp

)
(θ(p))Rp(1− θ(p))np−Rp , (B.4)

where

θ(X) =
(
sin
(π
2
F (X)

))2
and θ(p) =

(
sin
(π
2
F (p)

))2
(B.5)

are derived in Heng et al. (2020). As such, the constrained optimization problem faced by the DM

reduces to

max
nx>0,np>0

{I(X;Rx) + I(p;Rp)}, (B.6)

subject to equations (B.4) and (B.5) and nx + np = n. We solve this constrained optimization

problem numerically.

Figure B.1 provides a numerical example of the model’s solution. Suppose the DM holds a prior

that X is drawn uniformly from [23, 27] and that X and p are independent. Further suppose that

the DM has a total of n = 15 neurons to encode X and p. We then consider the two mixed priors,

which take the form of (7) described in Section II. For both mixed priors, the stable component is

assumed to be a uniform distribution between 0 and 1. For the intermediate prior, the fast-moving

component takes the form of (8). For the extreme prior, the fast-moving component takes the form

of (9). The parameter values are: pl = 0.38, ph = 0.62, pl,1 = 0.1, pl,2 = 0.21, ph,1 = 0.79, and

ph,2 = 0.9. The weight ξ the DM assigns to the stable component is 0.5.

Following the constrained optimization described by (B.6), the DM optimally allocates nx = 8

neurons to encode X and np = 7 neurons to encode p under the intermediate prior; she optimally

allocates nx = 8 neurons to encode X and np = 7 neurons to encode p under the extreme prior.

Figure B.1 plots the probability weighting functions implied by the intermediate and the extreme

priors. Comparing Figure B.1 with Figure I, we observe that the theoretical predictions discussed

in Section II regarding the malleability of probability weighting remain robust to allowing for noisy

coding of X.

Interestingly, the results presented in Figure B.1 are invariant with respect to the range over

which X is drawn. Specifically, suppose the DM holds a prior that X is drawn uniformly from

[25−∆, 25+∆] and that X and p are independent. We find that, for any ∆ between 0 and 25 and

for both the intermediate prior and the extreme prior, the DM always chooses to allocate nx = 8

neurons to encode X and np = 7 neurons to encode p. In this sense, the predicted malleability of

probability weighting holds for a large class of uniform priors over X. This result is notable because

it implies that, as the support of the prior over X expands, the DM does not choose to reallocate

any coding resources away from the p dimension.
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Figure B.1
Prior distribution and value function: Multi-dimensional efficient coding

The upper graph plots two mixed prior distributions about p in the form of (7) described in the
main text. For each mixed prior, the first, stable component is assumed to be a uniform distribution
between 0 and 1. The second, fast-moving component takes the form of (8) for the intermediate
prior and the form of (9) for the extreme prior; the parameter values are: pl = 0.38, ph = 0.62,
pl,1 = 0.1, pl,2 = 0.21, ph,1 = 0.79, and ph,2 = 0.9. The weight ξ the DM assigns to the stable
component is 0.5. The lower graph plots, for both the intermediate prior and the extreme prior, the
probability weighting function implied by the multi-dimensional efficient coding model described in
Online Appendix B; here we set n = 15. For both the intermediate and the extreme priors about p,
X is drawn uniformly from [23, 27]. In both cases, the DM optimally chooses nx = 8 and np = 7.
The green dash-dot line is the forty-five degree line.
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C. Expected Payoff from Experiment

In this section, we derive the expected payoff a subject receives from the experiment. As

described in Section III, each subject receives a fixed amount of $3.00 for participating in the

experiment. As such, when computing the subject’s expected payoff, we focus only on the bonus

component.

Suppose, for a given trial, the objective probability is p. Given p, the subject’s perceptual

system generates a noisy signal Rp from f(Rp|p). Then, given Rp, the subject reports a certainty

equivalent of 25·E[p̃|Rp]. With the Becker-Degroot-Marschak (Becker et al., 1964) incentive scheme,

the expected bonus payoff the subject receives, conditional on p and Rp, is

1

25

∫ 25

25·E[p̃|Rp]
qdq +

1

25

∫ 25·E[p̃|Rp]

0
(25× p)dq

=
1

25

∫ 25

25p
qdq +

1

25

∫ 25p

0
(25× p)dq − 1

25

∫ 25·E[p̃|Rp]

25p
(q − 25p)dq

=
25

2
(1 + p2)− 25

2
(E[p̃|Rp]− p)2. (C.1)

Note that equation (C.1) corresponds to the limiting case of the 2,500-row payoff scheme we im-

plemented in the experiment; the details of this 2,500-row payoff scheme are provided in Online

Appendix E. As the number of rows increases from 2,500 to infinity, the expected bonus payoff

approaches the expression given by equation (C.1).

Averaging across different values of Rp for a given p, and further averaging across different

values of p drawn from the subject’s prior belief f(p), the expected bonus payment is

E[payoff] =
25

2

∫ 1

0
(1 + p2)f(p)dp− 25

2

∫ 1

0

(∑n

Rp=0
(E[p̃|Rp]− p)2f(Rp|p)

)
f(p)dp, (C.2)

which is equation (12) in the main text.

We consider the two mixed prior distributions—one intermediate and one extreme—presented

in Figure I of the main text. Given the DM ’s objective of maximizing the expected payoff in

equation (C.2), Figure C.1 plots the two mixed priors, the optimal coding rules θ̂(p), which we

solve numerically, as well as the subjective valuations v̂(p) implied by the coding rules.
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Figure C.1
Prior distribution, coding function, and value function: Efficient coding with an alternative

performance objective

The upper graph plots two mixed prior distributions f(p) in the form of (7) described in the main
text. For each mixed prior, the first, stable component takes the form of a uniform distribution
between 0 and 1. The second, fast-moving component takes the form of (8) for the intermediate
prior and the form of (9) in the extreme prior; the parameter values are: pl = 0.38, ph = 0.62, pl,1 =
0.1, pl,2 = 0.21, ph,1 = 0.79, and ph,2 = 0.9. The weight ξ the DM assigns to the stable component
is 0.5. The middle graph plots, for both the intermediate prior and the extreme prior, the coding
rule θ̂(p), numerically solved for maximizing the expected payoff given by equation (C.2). The
lower graph plots, for both priors, the subjective valuation v̂(p) implied by θ̂(p); when computing
v̂(p), we set the parameter n to 10. The green dash-dot line is the forty-five degree line.
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D. Experimental Designs

Figure D.1
Screenshot of trial

In this example, the risky lottery pays $25 with 53% probability and $0 with 47% probability. The
slider position indicates that the subject’s reported certainty equivalent on this trial is $10.12.
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Table D.1
Design parameters

Adaptation conditions Test conditions

Extreme Low Intermediate High Low Intermediate High

10 10 38 67 11 38 69

11 11 39 68 15 42 73

12 12 40 69 19 47 77

13 13 41 70 23 53 81

14 14 42 71 27 58 85

15 15 43 72 31 62 89

16 16 44 73

17 17 45 74

18 18 46 75

19 19 47 76

20 20 48 77

21 21 49 78

79 22 51 79

80 23 52 80

81 24 53 81

82 25 54 82

83 26 55 83

84 27 56 84

85 28 57 85

86 29 58 86

87 30 59 87

88 31 60 88

89 32 61 89

90 33 62 90

Notes. The table provides the specific values of probability (in percentage) used in each of the

adaptation and test conditions. Each of the four columns on the left corresponds to an adaptation

condition, and it contains 24 distinct values. For each subject, we sample 30 values with replacement

from the corresponding adaptation condition (a different sample is drawn for each subject). Each

of the three columns on the right corresponds to a test condition, and it contains 6 trials. Each

entry in the table denotes a probability p associated with the upside payoff of $25. Subjects

who are randomized into the low test condition are further randomized into either the low or

intermediate adaptation condition; subjects who are randomized into the high test condition are

further randomized into either the high or intermediate adaptation condition; subjects who are

randomized into the intermediate test condition are further randomized into either the extreme or

intermediate adaptation condition.
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E. Experimental Instructions
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