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Explaining the Variance of Price Dividend Ratios

The contrast between the volatility of stock prices and the smoothness
of dividends and discount rate measures is a long standing apparent puzzle.
Many authors have quantitatively assessed whether the volatility of prices is
too large to be justified by variation in dividends or discount rates, This
literature is summarized in Flood and Hodrick (1988) and Gilles and LeRoy
(1987).

Starting from the model that stock prices are equal to the expected
present value of dividends, this paper derives two tests of the variance of
price dividend ratios. The first is a variance bound in the tradition of
LeRoy and Porter (1981), Shiller (1981), Grossman and Shiller (1981), Marsh
and Merton (1986), Kleidon (1986), West (1987, 1988), LeRoy and Parke (1988)
and Durlauf and Hall (1988). Variance bound exploit the idea that the
variance of prices should be less than the variance of the ex-post present
value of dividends, since the variance of the expected value of a random

variable is always less than the variance of the random variable itself.

The second is a variance decomposition. This idea was first presented in
LeRoy and Porter (1981),.and is the basis of Campbell and Shiller's (1989)
work. The basic idea is derived by regressing both sides of price = present
value on a variable observed at time t. The regression coefficient of price
on the variable should then equal an appropriately weighted sum of regression
coefficients of future dividends and discount rates on that variable. This
idea is used here to derive a decomposition of the variance of the price
dividend ratio into terms reflecting the covariance of the price dividend

ratio with future discount rates and future dividend growth rates.

The form of both tests conforms to the time series desiderata of the
recent literature in this area: dividend growth rates and discount rates are
assumed to be stationary, rather than presuming linear trends or stationary
first differences of dividends; the time-series properties of dividend growth
and discount rates are not otherwise restricted, rather than imposing

parsimonious time series models. The calculations do not use a terminal



price, but instead are functions of the moments of dividend growth and the
price-dividend ratio. This avoids some of the sampling problems associated

with earlier tests (See Flavin (198l), Flood and Hedrick (1988)).

This paper also presents an approximate model relating price dividend
ratios to future dividends and future discount rates that is amenable to the
same multi-asset and varying discount rate methodology pioneered by Hansen
and Sigleton, and now universally used to study returns, as opposed to the
single-asset constant discount rate model common to date in price or price

dividend empirical work.

The previous work closest to the variance bound is that of LeRoy and
Parke (1988). The variance bound presented here extends LeRoy and Parke’s to
include arbitrary dividend growth and discount rate processes rather than a
random walk in dividend growth and constant discount rates. Also, the
present value model has predictions for the mean price dividend ratio as well
as the variance bound, and the tests presented here exploit predictions about
both moments together, where LeRoy and Parke considered only the variance

bound.

The previous work closest to the variance decomposition is that of
Campbell and Shiller (1988). The most important distinction between this
paper and Campbell and Shiller’s is that the model here uses a second order
Taylor approximation, where Campbell and Shiller used only a first order
approximation. As a result, terms in the variance and covariance of dividend
growth and discount rates entér the equation for the mean price dividend
ratio, with the crucial implication that the mean discount rate is not
identifiable from the mean price dividend ratio. In Campbell and Shiller'’s
approximation, these terms did not enter the equation for the mean price
dividend ratio, so they could solve their equation for the mean discount

rate, giving a value approximately equal to the mean return.

The possibility that the mean discount rate is different from the mean
return is desirable. Since there should be one discount rate process that

prices all assets (for example, pu'(ct+l)/u’(ct)), its mean must be different



than the mean return on some assets. It turns out to make a practical
difference as well, in that the variance bound and decomposition are

sensitive functions of the mean discount rate.

Why examine prices, or price-dividend ratios, rather than returns?
After all, a present value model incorporates the information in an Euler
equation model of returns, so it includes whatever restrictions flow from

that Euler equation.

The first answer is that a present value model for prices or
price-dividend ratios also includes a transversality condition that rules out
nrational bubbles,” and a condition that the present value is finite that
rules out "sunspot" solutions to the return model. Because of this extra
content, a present value model of prices or price-dividend ratios can
evaluate whether large unpredictable swings in prices such as the October
1987 crash are justified by subsequent changes in dividends and discount
rates. This question cannot be addressed by examining returns alone: Euler

equations place no limit on the variance of either returns or prices.

The second answer is that, even if one is not interested in testing for
bubbles or sunspots, so that Euler equation and present value models have
exactly the same statistical content, the behavior of ©prices or
price-dividend ratios provides useful diagnostics for particular discount
rate models. For example, this paper finds that discount rate models based
on consumption growth or interest rates plus a constant risk premium fail
because price-dividend ratios do not correctly forecast long term movements
in those variables: a high price-dividend ratio should, and does not,
forecast low interest rates and consumption growth rates, as it successfully
forecasts low returmns. While the same statistical rejection of either
discount rate model could come from a rejection of a one period Euler
equation using a particular weighted combination of 15 years of past
price-dividend ratios as instruments, the present value model makes it clear

why those discount rate models fail.

Statistical rejections of present value models have been interpreted as



support for three rough categories of alternatives:

1) There is no discount rate process that can rationalize the volatility
of prices. In the absence of arbitrage opportunities, this can only occur if
there is a speculative bubble or sunspot in stock prices, which in turn occur

if and only if the price dividend ratio or present value are nonstationary.

2) No reasonable discount rate process can rationalize the volatility of
prices. Here it is admitted that there may exist unobserved discount rate
processes that can reconcile the volatility of prices with the smoothness of
dividends (since it is not claimed that either a bubble or sunspot drives the
volatility of stock prices), but it is claimed that any discount rate process
that works must have extreme statistical properties, such as high variance.
It 1is considered unlikely that any discount rate process based on
fundamentals (for example, consumption growth raised to a reasonable risk
aversion coefficient) can have these extreme properties. For example,
Poterba and Summers (1989) summarize their results by a calculation that if
discount rates ("required returns”) have a half-life of 2.9 years, they must
have a standard deviation of 5.8%. They find it "difficult to think of risk
factors that could account for such variation in required returns" (p.51). I
will use the term "fads" to denote this alternative-- that there is no
speculative bubble, but expected returns vary over time in a way that is
clearly wunrelated to fundamentals (e.g., consumption growth) in the larger

economy.

3) Particular discount rate models are rejected. Most of the variance
bound literature rejects a model in which discount rates are constant over
time; Grossman and Shiller (1981) argue that the volatility of prices is too
high to be explained by discount rates generated from consumption data with a
particular family of utility functions; Campbell and Shiller (1988) try on a

variety of models.

To address each of the three categories of potential rejections of the
present value model, the variance bound and variance decomposition derived in

this paper are each used in three ways,



1) They are calculated with no assumptions on discount rates beyond
stationarity.1 These calculations allow us to test whether there 1is any
discount rate process that can explain the volatility of price dividend

ratios.

2) To assess whether the implied discount rates are reasonable,
mean-standard deviation frontiers are calculated for the discount rate
processes that must be invoked to make the mean price dividend ratio,
variance bound and variance decomposition hold. These can be compared with
the discount rates from a variety of models to see if they are "reasonable.”
This methodology is in the spirit of Hamsen and Jagannathan (1989); puzzles
that asset price or return data seem to require high standard deviations of
discount rates also include Grossman and Shiller (1981), Mehra and Prescott

(1985), Cochrane (1988b), and Poterba and Summers (1988) and West (1988).

3) With specific models for discount rates, the variance bound can be
further restricted, and the the variance decomposition can be tested--we can
check whether all variance of the price-dividend ratio is in fact accounted
for by changing expectations of future dividend growth and discount rates.
Models considered below include constant discount rates, discount rates
generated by a constant risk premium plus the treasury bill rate, a long term
government rate and a corporate bond rate, discount rates equal to returns,
and discount rates generated by the consumption based model with constant

relative risk aversion utility.
1. The Present Value Model

The null hypothesis of this paper is that stock prices are equal to the

expected present value of future dividends

b J
(1) P_=E [ Y (o« )y d ]
t t jal kel t+k t+]j

where Pt denotes the ex-dividend price at time ¢t, Et denotes expectation

conditional on information at time t, dt stand for dividends, and 7. stands



for the ex-post (stochastic) discount factor. (A summary of the notation is
presented in the appendix.) With nominal dividend and price data, Te is
interpreted as a nominal discount factor or marginal rate of substitution
between dollars at t and dollars at t-1l; with real data Te is interpreted as
a real discount factor or marginal rate of substitution between goods at t

and t-1.

This form of the present value model nests others considered in the
literature as special cases. It is derived by recursive substitution of the

Euler equation

2) 1 =E where Rt+ - (P
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together with a transversality condition and a condition that the sums

converge, described in the appendix.

The present value model (1) is inappropriate for statistical analysis if
dividend growth rates rather than levels are stationary, because in this case
both sides of (l) are nonstationary. To transform it to a relation that can
hold between stationary variables, divide both sides of (1) by dividends and

express the result in terms of discount rates and dividend growth rates:

P © j d_. . ©
t t+

(3 = =B L (My_) st =E L T (v, )
dt t j=1 kel t+k dt tj-l k=1 t+k “t+k

where n, = dt/dt-l'

The discount factor Te and dividend growth rate n, are assumed strongly
stationary. Since (3) expresses the price-dividend ratio as a time-invariant
continuous function of stationary variables, the price dividend ratio.is also
stationary, if the right hand side is finite almost surely. This is assumed
to be the case, and first and second moments of all variables are also
assumed to exist, so that the price dividend ratio, dividend growth and

discount rates are all covariance stationary.

The next task is to characterize the moments of the price-dividend

ratio. Equation (3) can be rewritten as
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where g, = -1n(7t) (the - sign is introduced so that discount rates -5 will

be positive), n_ = ln(nt) denotes the dividend growth rate.

t

Taking expectations of both sides of (4), the mean price-dividend ratio
is '

® 3
&) E[ g ] = E[ L exp ) Peix ~ Beik) ]
j=1 k=1
(The t subscripts are deleted when they are not necessary to indicate timing.
E(P/d) = E(Pt/dt))' Since the variance of the ex ante price-dividend ratio
must be less than the variance of the ex-post price-dividend ratio
(var(Et(X)) < var(X) for any random variable X) the variance bound is
(6) var [ 13 ] < var [ E exp % (n - g, ) ].
d j=1 kel t+k t+k

Many variance bounds tests form the ex-post prices or price-dividend
ratios (the terms inside the brackets in (5) and (6)), and then take their
sample variance to evaluate (6). This procedure usually requires many terms
of the sum, often more than the sample size, so it is common to use a
terminal price or price-dividend ratio. If this is fixed, it introduces
sampling problems (Kleidon(1986), Flavin(1981), Flood and Hodrick(1988)). If
terminal price data are used, the "present value" becomes only an iterated
Euler equation, which is better estimated by filtering the instruments rather
than iterating the Euler equation (see Hansen and Hodrick (1989)) However,
forecasts of dividend growth and discount rates, or their correlations,
should die off much more quickly than their ex-post values, so (5) and (6)
might be well approximated with relatively few terms of the sums if we could
move the expectations inside the sums, or if the mean price dividend ratio
and variance bound can be expressed in terms of the moments of dividend

growth and discount rates.

To do this, an approximate model is derived by taking a second order



Taylor expansion of the terms inside the brackets in (5) and (6) with respect
to dividend growth and discount rates, about their unconditional means, and
then taking the expectations inside the brackets, to yield moments of the
price dividend ratio in terms of means, variances and covariances of dividend
growth and discount rates. The derivation is presented in the appendix. The

approximate model is:
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Where nt - nt- E(n), gt - gt = E(g), and Q is defined as
&) 0= eEM® - E®

Taking the expected value of (7), we obtain the mean price dividend ratio
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Note that (7) and (9) embody the hope used to motivate them: the covariances
and forecasts of discount rates and dividend growth may die off much more
quickly than their ex-post values, so relatively few terms of the sums may be

needed.

Since for any X, var(Et(X)) < var(X), (7) implies the variance bound

1 @©
P ;
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The variance and covariance term is the same in (9) and (10).
Substituting out that term, the content of the pair (9) and (10) can be

summarized by (9) together with

20 Q
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1-0° 1-0

This is a variance bound that holds for arbitrary discount rates.




Premultiplying (7) by Pt/dt and taking expectations yields

o]
o]

P 1 it 3 1 t = ]
(12) var[ 3 ] 1o cov[ a—,.z Q nt+j] + 1o cov [ 3_‘.2 Q _gt+j .
t j=1 t j=1

This is a decomposition of the variance of the price dividend ratio into
price-dividend forecasts of future discount rates and dividend growth rates.
It is not an orthogonal decomposition, so terms less than 0O and greater than
100% are possible. High price dividend ratios may be associated with low
future dividend growth if they are also associated with much lower discount

rate growth.
Interpreting the approximate present value model.

The mean and variance diverge to infinity as the mean discount rate E(g)
approaches the mean dividend growth rate E(n), or as G > 1. The appendix
shows that this is true for the exact present value model as well (precisely
that the ex post present value converges if and only if E(g) > E(n)). The
Taylor expansion that generates the approximate model was taken about the
mean log discount rate and dividend growth rate E(g) and E(n), rather than
(say) the mean discount factor E(y) and gross dividend growth rate
E(dt/dt-l)’ so that the exact and approximate model would diverge at the same

point.

The weights on future discount rates and dividend growth rates in the

o3 (E(®) -E(m))

present value (7) decline as nj - for an "effective discount
rate" equal to the mean discount rate less the mean dividend growth rate.
For example, if one adopts the common benchmark model of a constant real 5%
discount rate, the equally weighted portfolio has a mean dividend growth rate
of 4.65% so the rate at which information about future dividends and discount
rate movements are downweighted in (7) is only 0.35%. Thus even with a 5%
real discount rate, events in the very far off future can and should affect

the price dividend ratio today.

Consider the case that discount rates and dividend growth are both white



and uncorrelated at leads and lags. Then the expected price-dividend ratio

(9) reduces to

Q Q

E[ 3 ] - —+ — [ var(g) + var(n) - 2cov(g,n) ]
1-a 2(1-a)

The first term is the exact value of the price-dividend ratio in a certainty

world with constant dividend growth E(n) and constant discount rates E(g) and

g - GE(M-E(g)

The second term includes an adjustment for covariance of
dividends with discount rates. If two assets have the same mean dividend
growth, but one has greater covariance with discount rates, that asset will

have a lower price-dividend ratio and hence a higher average return.

The mean price-dividend ratio responds only to very long run properties
of discount rates and dividend growth rates. Since O is near 1, the term in
the variance and covariance terms in (9) is nearly the spectral density at
frequency zero of dividend growth less discount rates, or (equivalently) the
variance of a very long moving average of dividend growth minus discount

rates--(9) can be written

9 E[g] - i+_1-—92 var[ Erzj (nt+.-gt+.)].
1-6 2a(1-9) -1 J J

In particular, if discount rates are constant and log dividend lIevels
are stationary, then the spectral density at frequency 0 of dividend growth
is 0. In this case the term in the variances and covariances of dividend
growth of the mean price dividend ratio (9) or (9’) and also the variance
bound (10) is nearly but not quite 0. In consequence, if dividends are
assumed stationary about a linear trend, the variance bound is very close to

zero, practically by construction.

Two features of the variance decomposition (12) are noteworthy. First,
since the sums start at j=1, only predictable changes in the discount rate or
dividend growth rate can explain variation in the price-dividend ratio. 1f
the discount rate and dividend growth rate are pure white noise, the price
dividend ratio should be a constant. (This is also seen directly in the

approximate model (7).)
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Second, the variance decomposition 1is a special case of a moment
condition that can be used for more general tests than those presented in
this paper. Premultiplying (7) by a vector of mean 0 variables it and taking
expectations, we obtain

P 1 ©
E[E—]-—E[i T (n .-g.)]
d 1.0 t o1 t+]j t+]j
These moment conditions can be use to estimate parameters of the discount
rate process and can be tested with a vector of instruments, a discount rate
process (e.g. g, - -1n(pu'(ct)/u'(ct_1)) and a vector of asset prices and

corresponding dividends.

These moment conditions can also be written as a restriction on long
horizon regression coefficients in the style of Fama and French (1988b). Let
the first element of Zt be the price dividend ratio, and premultiply by the

variance covariance matrix of it, yielding

® P _/d 1
1 tht
ﬂ[—j— T g 01| 5 ]'
1-Q j=1 t+j Ct+] Zt 0
where B(y|x) denotes the OLS regression coefficient of y on x. Since Q is

near 1, the left hand variable is approximately a long horizon dividend

growth or discount rate.

Last, note that time-varying covariances are missing from the
approximate model (7) and hence its moments. They would require third

moments E(Z which are 1ignored by the second order Taylor

N LRRE
expansion.

2. Discount Rate Models
The following discount rate models are considered.
1) Discount rate equals a constant. This model is included because it

is widely tested in the variance bounds and variance decomposition

literature, and it helps to understand how the more plausible models work.
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It predicts no risk premia--expected returns on all assets are the same.

2) Discount rate = reference return plus a risk premium that is constant
over time. One way to obtain a proxy for expected discount rate variation is
to assume that discount rates are generated by a reference return ri (a
constant, or the rate of return on a bond portfolio) plus an unpredictable
(but not necessarily mean 0) homoskedastic random variable2 €es

g - ri e

E (

elear) ™ EBlegyy), Covi (e

t+lZ) - Cov(et+12) for all Z.

With this model the terms in future discount rates in the variance
decomposition (12) can be measured using the reference return, since

) = Cov(P /4, )

Cov(Pt/dt, t4]

Beej

Note that the model (13) does not identify the mean discouht rate. E(e)
need not be 0, and because of the term in the variance of ¢, neither the
equation for the mean price-dividend ratio nor the one period return equation

. 3
can be solved for the mean discount rate.

3) Discount rate = return. In this model, the discount rate is equal to

the return itself, By = Ty- This model solves the Euler equation for a single

. . 4 . -1
security by construction, both ex ante and ex post: with g, = T - Rt
1

e Tt

sol=E ,(R'R) = R;lRt.

This does not mean that the model discount rate = return is without
content for the price-dividend ratio, because the sums could not converge or
the transversality condition could fail. For example, if there is a
speculative bubble in prices, then the variance of the price-dividend ratio
is infinite, but the price-dividend ratio need have no forecast power for
either dividend growth or future returns, violating the wvariance
decomposition (12), and the variance bound (10) can be 0. Thus the model
discount rate = return is included below as a test of bubbles or sunspots,
and as a check on the accuracy of the Taylor approximation used to derive the
moments of the price dividend ratio, together with the fact that only a

finite number of covariances can be included in the calculations.
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1f several assets are considered together, the model discount rate =
return does not automatically hold for returns. It is not necessarily true
that asset 1 is correctly priced by the inverse of asset j's return. In
particular, the statement that all assets can be priced by the inverse of the
market return is a version of the capital asset pricing model, derivable from

logarithmic utility, and so has content in a multiple asset case.

4) Consumption based discount rates. With utility

l-a
2o 2 e -1
U=E) » u(e,) = E Y o»
t=0 t=0 l-a
the real discount rate 1is
(14) m_o= - In ( pu'(ct)/u’(ct_l)] = -1ln(p) + a ln (Ct/ct-l)'

The nominal discount rate is composed of that real rate and inflation LI

B TP Y e
3. Variance Bounds

Table 1 presents summary statistics for the NYSE value and equally

weighted portfolios.

Note that mean dividend growth is higher for the equally weighted
portfolio, and note the large standard errors of estimation of mean dividend
growth. Since the estimates of the formulas for the mean-price dividend
ratio, its variance bound and the variance decomposition are sensitive
functions of Q = exp(E(n)-E(g)), this standard error is a large component of
the estimation uncertainty in the calculations that follow. Table 1 also
includes the autocorrelations of dividend growth and estimates of partial
sums of autocorrelations. This sum can be used to estimate the random walk
component of log dividends and is therefore a diagnostic for the presence of
a unit root in log dividends (see Cochrane (1988a)). The values of the summed
autocorrelations are consistent with the presence of a unit root in log

dividends, as assumed. However, they also indicate some serial correlation

13



in real dividend growth, which may thus not be well modelled as a pure random

walk.

A. Bounds on the variance of the price-dividend ratio with no restrictions on

discount rates.

Fig. 1 presents the mean price dividend ratio (9) and variance bound
(10) calculated with constant discount “rates. As the mean discount rate
rises, both the mean and variance bound decline. 1In part, this is due to the
down weighting of high autocovariances of dividend growth as the mean
discount rate rises and hence I declines. The largest part of the decline in

Fig. 1 is due to the effect of the leading terms in 0 of the two formulas.

Typical variance bounds tests with constant discount rates (such as
Leroy and Parke (1988)) pick a value for the mean discount rate, such as the
mean return or the value that satisfies the mean price dividend ratio, and
see whether the variance bound is satisfied at that value. Fig. 1 shows that
this procedure will not lead to a violation so long as the chosen mean
discount rate is less than about 10.5%.  In particular, Fig. 1 shows that the
the variance bound is not violated at the mean discount rate implied by the

mean price dividend ratio.

The variance bound with no restrictions on discount rates (11) exploits
both the mean price dividend equation (9) and the variance bound (10)
together. Table 2 presents calculations of the variance bound (l11) for a
variety of assumed values for the mean discount rate. Fig. 2 illustrates

these calculations for the value weighted portfolio.

Since the substitution that produced (11) works for constant discount
rates as well as any other discount rate process, this bound may also be used
to test the constant discount rate model. In this case, the mean price
dividend ratio (9) may be solved for the mean discount rate. These values of
the mean discount rate are marked with "var(g)=0" or "var(m)=0" in the tables
and figures, according to the use of nominal or real dividend growth and

hence the assumption of constant nominal or real discount rates. Thus the

14



variance bound with the constant discount rate model is again equation (1l),
but evaluated only at the particular mean discount rate that solves the mean
price dividend ratio equation. As shown in table 2 and fig. 2, the variance
bound with constant discount rates is satisfied by the point estimates for

all the portfolios.

The different appearance of the variance bound (11) in table 2 or fig. 2
and the bound (10) in fig. 1 is due to the fact that the mean price dividend
ratio equation (9) is always implicitly satisfied in using the bound (11),
where it is ignored in using (10) or in Fig. 1. In particular, this explains
why the lowest possible value of the mean discount rate is higher, and why

the bound slopes up rather than down with increasing mean discount rates.

The variance terms in (9) or (ll) must be positive, so the mean
price-dividend ratio can be no lower than /(1-Q). This gives rise to the
lower limit for the mean discount rate:

o (3 o[ 5]

]z— or 3 €« —————— or E(g) 2 E(n}) - In| ——

1-a 1+ E[ 3 ] 1+ E[ 3 ]

d
Denote the value of E(g) that satisfies this equation with equality (the
leftmost points in Fig. 1) as E(g)mn. This is tighter restriction on mean
discount rates than the restriction that the mean discount rate exceed the

mean dividend growth rate (@ < 1) in Fig. 1.

To see why the bound rises with mean discount rate rather than falling,
start at the mean discount rate E(g)vu(p-o’ at which the mean price
dividend ratio equation (9) is exactly satisfied with no variance in discount
rates. Referring to (9) or fig. 1, if the mean discount rate increases, the
mean price-dividend ratio decreases. Therefore, a higher variance of
discount rates must be implicitly assumed, to increase the right hand side of
the mean discount rate (9). But this also increases the right hand side of
the variance bound (10), by exactly the same amount. For this reason, the
variance bound (11) 1increases to the right of E(g) in Fig. 1.

var(g)=~0

Conversely, as the mean discount rate decreases from E(g) (s)=0’ the mean
var(g)=

15



price-dividend ratio increases. Therefore, to match the mean price dividend
ratio (9), we must implicitly assume a process for discount rates with
increasing variance that is positively correlated with dividend growth rates,
in order to lower the variance and covariance term in (9). But this also
lowers the value of the variance and covariance term on the right hand side
of the variance bound (10), so the variance bound decreases. At the mean
discount rate E(g)Mn, E(P/d) = Q/(1-Q) so discount rates must be equal to
dividend growth rates to eliminate the variance and covariance term in the
mean price-dividend ratio (9). But doing this also eliminates that term on
the right side of the variance bound (10), so the variance bound (11) goes to

0 by construction:

Thus there is always a region of low mean discount rates in which the
point estimate of the variance bound is violated. The value of the mean
discount rate at which the variance bound (1l) is just satisfied (where the
variance bound and the sample variance intersect in Fig. 1) 1is denoted
E(g)bmmd and marked "Var(P/d)=bound" in the tables and figures. However,
even in the region in which the point estimate of the variance bound (11) is
below the point estimate of the variance of the price-dividend ratio, it is
never even one standard error below, so a statistical test would not reject
the present value model for any value of the mean discount rate at which it

).

can be constructed (above E(g)min

The variance bound is the same for real and nominal portfolios, since it
is only a function of the dimensionless price dividend ratio and Q =
eE(n)—E(g)_eE(nr)-E(m)' The” only difference between real and nominal
portfolios is the value of the mean discount rate at which the mean price
and E(g) The bound is

var(g)=0 var(m)=0"
satisfied for both mean discount rates, for both portfolios,.

dividend ratio is satisfied E(g)

The shape of the variance bound is the same for the real equallyweighted
portfolio. The results for the different portfolios differ most noticeably
in the values of mean discount rate. Since the mean equally weighted
dividend growth rate is higher (7.7%) than the mean value weighted dividend

growth rate (3.9%), correspondingly higher values of the mean discount rate
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must be used to keep the mean price-dividend ratio finite or equal to its

sample value.

B. Variance bounds with discount rate models

Since only the mean discount rate enters in the variance bound (1l), the
only way a discount rate model can restrict the variance bound is if it
provides enough information to restrict the mean discount rate through the
mean price dividend ratio (9). For example, the constant discount rate model
had one free parameter, E(g), which could be estimated by the mean price
dividend equation. The constant risk premium or interest rate plus constant
risk premium discount rate models together with the mean price dividend
equation (9) do not restrict the mean discount rate, and so do not restrict
the variance bound beyond the values presented above with no assumptions on

discount rates.

Discount rate = return

With the model discount rate = return, the return is used in the place
of discount rates in the mean price-dividend ratio (9) and variance bound
(10) or (11). This calculation is both a test of the accuracy of the Taylor
approximation and the truncation to 15 covariances, and a test for bubbles or
sunspots, whose absence is the only ingredient of the present value model
with discount rate equal to return. The result is given in Table 4. For the
value weighted portfolio, the predicted mean is a bit lower than the actual
mean, due to the term in the variance and covariances, which is about half
the size it should be (the term /(1-Q) = 18.59, the term in the variances
and covariances should contribute the rest). The predicted mean for the
equally weighted portfolio is closer to the sample mean. However, the
difference between sample and predicted means is less than about one standard
deviation for both portfolios. The variance bound is above the sample

variance in both cases.

Consumption based discount rates

17



Given values for risk aversion o and the subjective discount. factor p,
consumption based discount rates (l4)can be used in the mean price-dividend
ratio (9) and the variance bound (10). These variance bounds are presented
in Table 5. Since there are two free parameters «(a and p), the mean
price-dividend ratio equation (9) cannot be solved for a unique mean discount
rate and thus restrict the variance bound beyond the values calculated with
no restrictions on discount rates. Therefore, table 5 presents the variance
bound for a variety of assumed mean subjective discount factors p, from .95
to .99. For each p, a risk aversion parameter a is estimated by the mean
price dividend equation (9), and then the variance bound is estimated at the

mean discount rate corresponding to the assumed p and estimated a.

The implied mean discount rates are quite constant over this range of
subjective discount factors p, so there is little variation in the bound,
which is satisfied by the point estimates for both portfolios. Since
constant discount rates were not rejected, the only way consumption based
discount rates could be rejected is if consumption growth was strongly
positively correlated with dividends, so that the mean price dividend ratio
equation (9) is satisfied at a low mean discount rate, in the region where
the variance bound is violated. That the consumption based model does not
give rise to a violation just reflects a sufficiently low correlation between

consumption growth and dividend growth.

4. Decomposing the Variance of the Price/Dividend Ratio

A. Variance decomposition with unobserved discount rates, constant discount

rates, and discount rate = interest rate plus constant risk premium models.

Table 3 presents calculations of the variance decomposition (12). For
these discount rate models, the mean price -dividend ratio equation (9) only
restricts the variance decomposition by placing the lower bound E(g) =

E(g)min on the mean discount rate.

The columns of table 3 marked "n" and "nr" give the real and nominal

dividend growth terms of (17) respectively. The columns marked "g" and "m"
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give 100% less the dividend growth terms, and thus represent the fraction of
the variance of the price dividend ratio that must be explained by

correlation of the price dividend ratio with future discount rates.

Note first the effect of the mean discount rate. As the mean discount
rate is increased, the covariance of the price dividend ratio with dividend
growth in the far future counts less, so the contribution of the dividend
growth term declines with increasing E(g). More importantly, the leading
term 1/(1-0) lowers the size of the dividend growth term as the mean discount
rate is increased. Conversely, as the mean discount rate declines, the term
1/(1-Q) grows without bound. Therefore, so long as the dividend growth term
in (12) is positive, there will be some mean discount rate at which all
variance of the price-dividend ratio is attributed to the dividend term.
However, that mean discount rate may be lower than the value E(g)min which is

the minimum value consistent with the mean price dividend ratio.

Thus, the model discount rate = constant + constant risk premium can be
rejected if either the dividend growth term in (12) is negative, or if the
mean discount rate that required is lower than E(g)muf In the model
discount rate=constant, the mean price dividend ratio equation can be solved
for the unique mean discount rate value E(g)v"(“_o, so that model can be
rejected if 100% of the variance of the price dividend ratio is not accounted
for by dividend growth at the mean discount rate E(g)v“(”_w

For the value weighted portfolio, the dividend growth terms are small,
and more than two standard errors away from 100% at E(g)mm (158 % 25%
nominal, -37% *11% real), E(gxmugyo (l11s * 19%), and E(gxuumpo (-33% %
9%), so the real and nominal discount rate = constant and constant plus
constant premium models are statistically rejected. In fact none of the
value weighted divided growth terms are significantly greater than 0, and the

real dividend growth terms are significantly negative.

For the equally weighted portfolio, the dividend growth terms are
positive, larger, and less than two standard errors from 100% at E(g)i (73%
min

+ 49% nominal, 39% t 48sreal), E(g) (558 * 39%), and E(g)
g var{g)=0 g var(m)=0
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(30% £ 39%). Thus the real or nominal discount rate = constant and constant
plus constant risk premium models are not statistically rejected for the
equally weighted portfolio. However, the standard errors are large enough

that we cannot reject that the dividend growth terms are zero either.

The columns marked tb, gb, cb and tbr gbr, cbr measure the discount rate
term of (12) using the models discount rate equals treasury bill, government
bond, and corporate bond rate plus a risk premium that is constant over time.
Ideally, the fraction of the variance of the price dividend ratio accounted
for by the discount rate proxy should be equal to the residual left over from

the dividend growth term, calculated in the "g" and "m" columns.

For the nominal wvalue-weighted portfolio, all these discount rate
measures make negative contributions. High price dividend ratios forecast
high nominal interest rates, rather than low nominal interest rates. A large
part of this phenomenon is that a high price dividend ratio forecasts higher
inflation, presented in the column marked =«. The real government and
corporate rates at least make positive contributions, but the real treasury
bill rate still makes a negative contribution--high price dividend ratios

forecast high real as well as nominal treasury bill rates.

The total percentage explained is the same in the real and nominal
columns: going from nominal to real shifts the correlation of price dividend
with inflation from the dividend growth term to the discount rate term.

The highest total percentage explained is negative.

All these discount rate terms are about one standard deviation from 0O
for a wide range of mean discount rates, Qith the exception of inflation,
which is about two standard deviations above zero, and the nominal t-bill
rate, which is more than two standard deviations below 0. Thus we can easily
reject that any of these discount rate proxies make the  large positive
contributions to explaining the variance of the value weighted price dividend

ratio required for mean discount rates above E(g) o
min

The picture is roughly similar for the equally weighted portfolio. The
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contributions of the nominal discount rate terms are all negative; the
contributions of the real discount rate terms are all slightly positive, but
the corporate and government returns make lower contributions (1l and 13% at
E(g)Mn) than they did to the value weighted price dividend ratio, and all
the positive contributions are less than one standard deviation from 0. The
total variance explained is never more than 39% + 19% = 58%, using the
treasury bill rate and E(g) = E(g)min, and the real treasury bill rate at 19%

+ 23% is the largest positive contribution of any interest rate term.

B. Variance decomposition with discount rate = return and consumption based

discount rates.
i) Discount rate = return and market return

Table 4 presents both terms of the variance decomposition (12) with
discount rates equal to returns on the portfolios themselves. (The dividend
term is the same as in table 3, at a mean discount rate equal to mean
return). The variance of value weighted price-dividend ratio is 10% nominal
dividends / 86% nominal returns and -28% real dividends / 124% real returns.
A total of 97% of the variance of the price-dividend ratio is accounted for,
which is a measure of the accuracy of the approximation, and an indication of
the absence of bubbles. The variance of the equally weighted price-dividend
ratio is 57% nominal dividends / 50% nominal discount rate, and 31% real

dividends / 77% real discount rate, for a total of 108%.

Table 4 also presents a decomposition of the equally weighted
price-dividend ratio, using the value weighted return as the discount rate.
The variance attributed to dividends is the same as in table 3 at the value
of mean discount rate equal to the expected return on the value weighted
portfolio. The dividend terms are 245% (nominal) or 127% (real). The
covariances with the value weighted return add another 127% (nominal) or 392%
(real), for a total of 519%. Of course, these point estimates are subject to
large standard errors, as seen in the table. The reasons such a large
percentage is accounted for are that the mean value weighted return is lower

than the mean equally weighted return so QI is higher, together with the fact
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that the equally weighted price-dividend ratio is a good forecaster of the

value weighted return.
iv) Consumption based discount rates

In the consumption based model, the discount rate is measured by (14),

so the covariance of the price-dividend ratio with discount rates by

cov(Pt/dt, -mt+j) - cov(Pt/dt, - a ln(ct+j/ct+j

)
Table 5 presents the variance decomposition (12) using this consumption
based model of discount rates. As before, the mean price dividend ratio

equation (9) can be used to infer one parameter of the utility function, so a

is estimated by that equation for various values of p.

All the consumption-based discount rate contributions are negative, and
many are more than two standard deviations below 0. A high price dividend
ratio forecasts higher future real and nominal consumption growth. It should
forecast lower future consumption growth: any wealth effects of a high stock
price should be incorporated 1into consumption immediately, and then

consumption growth should be lower, as discount rates are lower.
5. Bounds on the mean and standard deviation of discount rates.

Are the unobserved discount rate processes that satisfy the mean price
dividend ratio, the variance bound, and the variance decomposition
"reasonable," or must they have unusual time series processes suggestive of
"fads?" To address this question, this section computes the minimum standard
deviation of discount rates required to satisfy the mean price dividend
ratio, the variance bound, and the variance decomposition. The problem is:
for a given mean discount rate, find the discount rate process (choose its
variance, autocovariances, and cross covariances with dividend growth and the
price dividend ratio) with minimum variance such that the expected
price-dividend ratio (9), the variance bound (10) or (1ll), and/or variance

decomposition (12) are satisfied.
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The form of the solution to' this problem is discount rate process
that is a function of the dividend growth and price dividend ratio
process:

g, = a(Lyn, + A(L)(B/d)).

(a(L) and B(L) may be two sided.) Adding a noise term uncorrelated with

dividend growth and price dividend ratio just adds standard deviation without
helping to attain the constraints. The problem is then to find the form of
a(L) and B(L) that minimize the variance of g subject to the comnstraints. It
is a straightforward but algebraically unpleasant Lagrangian minimization,
and so is presented in the appendix. The results are presented in table 6

and illustrated in fig. 3. and fig. 4

Examine first the bound on the standard deviation of nominal discount
rates that satisfy the mean price dividend ratio alone. It has a global
minimum at E(g) = E(g)“r(s)=0 and var(g) = 0. This value of the mean
discournc rate is defined as the value at which the mean price dividend ratio
equation (9) is satisfied with constant discount rates, so the minimum
standard deviation of discount rates had better be 0 at this mean discount
rate. As explained in conjunction with the variance bound, a discount rate
process with higher variance must be assumed to keep the mean price dividend
ratio satisfied to the right of E(g)var(g)=0, and this is reflected in the
rising frontier. The frontier also rises to the left of E(g)var(z)=o. In
this reglon, discount rate processes with higher variances that are
positively correlated with dividend growth rates must be assumed in order to
maintain the mean price dividend ratio constraint. In the limit that E(g) =
E(g)mm, so E(P/d) = 01/(1-Q), discount rates must be equal to dividend growth
and hence var(g) = var(n), as shown in the "E(g)min" rows of Table 6. For
mean discount rates lower than E(g)mJ, no discount rate process is

consistent with the mean price dividend ratio equation, so the bound rises to

infinity.

Next, examine the bound on the standard deviation of discount rates that

satisfy the variance decomposition. The variance decomposition allows us to

@© .
infer the regression coefficient of discount rates g, ©on the variable 3} o
j=1
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P

(E)t-j’ observable at time t-1. (The variance of the price dividend ratio
«© .
less the dividend growth term in (12) leaves ). o cov(g,gt+j) = cov
j=1

© -
[gt, Z o (g)t_j ]). This regression coefficient leads to an obvious lower
j=1

bound on the variance of discount rates: it must be higher than the variance
of the forecast using this variable. The appendix shows that the resulting
bound is tight, and is thus the greatest lower bound of standard deviations

of discount rates that satisfy the variance decomposition.

In table 3, for portfolios with a positive dividend growth term, there
was a mean discount rate at which 100% of the variance of the price dividend
ratio was accounted for by dividend growth, and the bound shows a global
minimum standard deviation of discount rates equal to 0 at these values.
(This is most visible in the nominal equally weighted portfolio.) At higher
mean discount rates, the required standard deviation of discount rates rises
steadily. Here the 1/(1-0) term is shrinking, so the weighted sum of the
covariances of price dividend ratios with future discount rates must
increase. Also, the weights on far future discount rates are decreasing, so
that more variance of the discount rates are required. Below the standard
deviation = 0 mean discount rate, the bound rises slightly. At a mean
discount rate equal to the mean dividend growth rate, (=1, all the formulas
blow up, no lower mean discount rate is allowed, and the bound rises to

infinity at this point.

The variance bound is an_ inequality constraint, and so only adds the
information that the mean discount rate must be greater than the value

E(g)bound at which var(P/d)=bound, indicated in the table.

The bound that includes both the mean and the variance decomposition is
tighter than the intersection of the mean and variance decomposition bounds.
That is because the mean bound is a singular function of dividend growth (gt
= a(L)nt), while the variance decomposition bound is a singular function of
the price dividend ratio (gt - ﬂ(L)(Pt/dt)). For example, at the global

minimum of the mean bound, the process g=constant satisfies that bound. But
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a process gt-ﬂ(L)(Pt/dt) is required to satisfy the variance decomposition,

and this process does not satisfy the mean bound.

The standard errors of the "Mean" and "both" bounds become very large at
the lower limits of mean discount rates, but then decline rapidly with
increasing mean discount rate. At the high discount rates, the standard

errors are a great deal smaller than the estimated coefficients.

The bounds on discount rate processes that satisfy the mean, variance
decomposition and variance bound separately all prescribe lower limits on the
mean discount rate. (The large estimation uncertainty near this lower limit
reflects estimation uncertainty about exactly what the lower 1limit is.)
These bounds on the mean discount rate can be surprisingly high: the mean
real discount rate must be as much as 10% to satisfy the equally weighted
portfolio results. However, each of these bounds admits a discount rate
process with zero variance for a mean discount rate near the lower bound, so
the traditional puzzle of the variance of discount rates is not present in
satisfying the mean price dividend ratio, the variance bound, or the variance

decomposition taken alone.

When the mean, variance bound, and variance decomposition are taken
together, a bound on the standard deviation appears along with bounds on the
mean: the value weighted portfolio requires a standard deviation of real
discount rates somewhat above 5%, while the equally weighted requires
somewhat above 9%. These minima are about two standard errors above 0, but
the standard errors increase much faster than the minimum standard deviations

for smaller mean discount rates.

Are discount rates in these mean-standard deviation frontiers
"reasonable?"” To get some idea, fig. 3 and fig. 4 also present the mean and
standard deviation of consumption based discount rates. - The utility
parameters are a subjective discount factor p = .98 and a variety of risk
aversion coefficients a below 7. Changing the subjective discount factor p
simply shifts the curve to the left or right. As the figure shows, the

consumption based discount rates have means and standard deviations in the
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required regions with a range of "reasonable" parameters. The minimum risk
aversion coefficient required to get in the point estimates of the regions is

about 3.

This only argues that the required mean and standard deviation of
discount rates is "reasonable" compared to the discount rates generated by
the standard consumption model. This is not a test of the consumption model,
as it fails to generate other moments consistent with the price-dividend
model. For example, table 5 showed that forecasts of consumption growth from

price dividend ratios had the wrong sign.

As another way to display some characteristics of the required discount
rates that are inconsistent with the consumption based model, Table 5
calculates the first order autocorrelation coefficient of the variance
minimizing discount rate process. For most mean discount rates, this
autocorrelation is very near 1. There is a trade off between autocorrelation
and variance: by adding white noise to the standard deviation minimizing
discount rate processes, we can decrease their autocorrelation by burying the
required predictable components in noise, at the expense of higher and

potentially "puzzling" standard deviation.

The required predictability is only a puzzle together with bounds on the
mean discount rate. At very low discount rates, the standard deviation of
the predictable (which is equal to actual) discount rate that satisfies the
variance decomposition alone is quite small. We are only forced to have
larger predictable components karound 3-4% annual standard deviation) by the
lower limits on the mean discount rate imposed by the mean price dividend

ratio and the variance bound.

Thus the required discount rates are "reasonable"™ from the usual
criterion of their standard deviation, but are quite unlike consumption based
discount rates in their autocorrelation or persistence, and their
predictability from price dividend ratios. This requirement for a
predictable component of discount rates may appear as a sharper puzzle for

consumption based discount rates than bounds on the standard deviation of
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discount rates.5
5. Concluding Remarks

This paper tried to answer the three questions raised by the volatility
of price dividend ratios together with the autocorrelation structure and
predictability of dividend growth from price dividend ratios: 1) Is there any
discount rate process that is consistent with the volatility of the price
dividend ratio, or 1is 1its volatility an indication of "bubbles" or
"sunspots?"” 2) Is there a reasonable discount rate process that explains the
volatility of the price dividend ratio and 3). Do particular discount rate
models account for the volatility of the price dividend ratio, including a
constant, constant  plus constant risk premium, interest rate plus constant

risk premium, consumption based discount rates, and discount rate=return

This paper finds no evidence that there is no discount rate process that
explains the variance of price-dividend ratios. The mean price dividend
ratio, the bound on the variance of the price dividend ratio, and the
decomposition of the variance of the price dividend ratio into forecasts of
future dividend growth and discount rates were all satisfied using returns
for discount rates. (The only ingredient of these tests is the lack of
bubbles or sunspots, as discount rate=return satisfies the Euler equation by
construction.) Furthermore, the global maximum of the variance bound with no
restrictions on discount rates was well above the sample variance of the

price dividend ratio

The particular models studied yielded mixed results. The variance bound
was satisfied for all the discount rate models including a constant discount
rate. In contrast to the extensive literature on variance bounds, the mean
price dividend ratio together with the variance decomposition proved more

difficult to reconcile here.
For the value weighted portfolio, price dividend ratios provided very

small forecasts of future nominal dividend growth, and forecast negative

future real dividend growth. The very small mean discount rates required to
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explain all the variance of the price dividend ratio by nominal dividend
growth were ruled out by the mean price dividend equation. Thus, the
constant discount rate model and constant plus constant risk premium model
were rejected for the value weighted portfolio. Furthermore, the interest
rate and consumption based discount rate models did not provide sufficiently
strong forecasts of discount rates from price dividend ratios to account for
the variance of the price dividend ratio together with these weak dividend
growth forecasts. In fact, when the estimates are even more than one
standard error from O, high price dividend ratios are associated with higher
future interest rates and consumption growth, so the discrepancy is one of

sign as well as magnitude.

The equally weighted price dividend ratio provided stronger forecasts of
its dividend growth, so that the constant, constant plus risk premium and
interest rate models could not be statistically rejected. However, standard
errors were large enough that the hypotheses that the dividend growth and
discount rate forecasts are zero could not be rejected either. The nominal
interest rate contributions and all the consumption based discount rate
contributions to explaining the variance of the price dividend ratio were
again negative, while the real interest rate forecasts contributed only small
amounts, less than 19%. The greater success of the decomposition for the
equally weighted portfolio is thus entirely due to better price dividend
forecasts of dividend growth, rather than any better forecasts of discount

rates in these models.

The failure of these discount rate models indicates that the needed
movement in expected discount rates predicted by the price-dividend ratio
(and found in forecasts of returns) is a movement in risk premia, such as
changes in the slope of the mean-standard deviation frontier or the
conditional variance of discount rates, rather than movement in a relatively
riskless reference return, which would be a movement in the intercept of the

mean-standard deviation frontier.

To assess whether the required unobserved discount rates are reasonable,

mean standard deviation frontiers for discount rates that satisfy the
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variance bound, variance decomposition and mean price dividend ratio were

calculated. The required discount rates have standard deviations that seem
"reasonable," at least as compared with those predicted by the consumption
based model with ‘“"reasonable" discount factors and risk aversion

coefficients. However, the required discount rates are more predictable and
autocorrelated than consumption growth rates. Also, the bounds included

relatively high lower bounds on the mean discount rate.

In summary, the results of this paper suggest that there exists a
discount rate process that, together with dividend growth, rationalizes the
variance of the dividend price ratio: there are neither bubbles nor sunspots
and the variance of the price-dividend ratio can be attributed to changing
expectations of future discount rates and dividend growth; it suggests that
the discount rate process has some "reasonable" characteristics: its standard
deviation can be lower than that of returns or consumption growth multiplied
by a reasonable risk aversion coefficient, and some  “"puzzling"
characteristics--it must be predictable and autocorrelated, as returns are,
but consumption growth seems not. The challenge posed by these results is
thus exactly that of Euler equation models of returns, namely to find an
observable proxy for the discount rate other than returns themselves, a proxy
that can be used to connect discount rate variation to events in the real

economy.

These results can be extended by considering several assets together as
well as more instruments than just the price dividend ratio. This would join
the time series implications studied here and in the rest of the variance
bound literature with the cross sectional implications of Euler equation
studies. Since all assets should be priced by the same discount rate, this
may make it possible to infer more about the discount rate process. Sharper
bounds on the discount rate will likely emerge. For example, the mean
discount rate must be larger than the mean dividend growth rate on each asset
separately, so inclusion of assets with high dividend growth rates may rule
out the low range of mean discount rates required for many of the tests in

this paper.
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Appendix.

2. Existence and stationarity of the price dividend ratio and present value,
bubbles and sunspots.

To derive the present value model, express the Euler equation (2) as

P g (g twiden o Cen
dt t t+l dt+l dt t+1l dt

iterating this equation with p we obtain the present value

erl ~ Ger1/der

model
P, © ]
(3) = = E_ L T (Yo T
dt tj=l k=1 t+k t+k
if the associated transversality condition
j P_..
t+
limE. T (v, 7...) =4 =0
§oe0 £l t+k “t+k dt+j

holds.

A discount factor that satisfies the Euler equation exists trivially for
a single asset: T = R;l, or v, = Rt/Et_l(Ri) for example. Hansen and
Richard (1987) show the existence of a single discount factor that prices any
group of asset returns under weak conditions, essentially that the price of a
portfolio equal the value of its constituent securities. Hence, there exists
a present value relation (there exists a discount factor such that (3) holds)
under those conditions, and the transversality condition. In addition, since
the price dividend ratio is finite, the present value must be finite almost

surely. The latter two conditions are thus the extra content of a

price-dividend model over a return model.

Assume that the discount factor and dividend growth are strongly
stationary and positive a.s. Since the price-dividend ratio (3) is a time
invariant function of stationary variables it too is stationary, if it is
finite almost surely. A necessary condition that the price-dividend ratio be

finite is that the ex-post price-dividend ratio

e = ] = ]
£ = 3 M (v ) = Loexp )(n - g,) = L oexp LV
dt ol kel t+k 't+k j=1 k=1 t+k t+k j=1 k=1 t+k

is finite a.s.. Therefore,
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Proposition 1: E(n) < E(g) or E(w) < 0 are necessary and sufficient for
the ex-post price-dividend ratio to be finite a.s., and hence

stationary.

Proof: By the weak law of large numbers, sample means of any strongly
stationary random variable converge to the population means almost surely.

With T = sample size, this means

* * I
VE>03IT >0s.t. VTIT>T, ¥ w, - E(w) <

k=1

LT

Therefore,
* * T
YV§>03T >0s.t. VT>T, Lw, <T (6 +E(n-g) as..
k=1

If E(w) < 0, pick § = -E(w)/2, so
* * T
3T >0s.t. VT>T, YTw <T/2 E(w) <0 a.s.
. k=1 k

Write the ex-post price-dividend ratio as
ex

P, T j o j
— =) exp ) w + ), exp ) w <
dt j=1 k=l t+k j-T* k=1 t+k
£ B T'E(w) /2
% oo T JEM/2 & o °
'Zepowt+k+Z*e -'Zepowt+k+—<w.
j=1 k=1 =T §=1 k=1 L. /2

The same argument shows that if E(g) < E(n), or E(w) > 0, then the

ex-post price-dividend ratio is infinite a.s. ]

For the price-dividend ratio to be finite, it is not sufficient that the
ex-post price-dividend ratio be finite, because the expectation may not
exist. For example, suppose w is lognormally distributed. Then, E(exp(w))

= exp( E(w) + 1/2var(w) ), so

® h] ® J
E(P/d) = E [ z exp z w ] - z exp [ j E(w) + 1/2 var ( z w ) ].
=1 k=1 K50 k=1 YK
Now, .
;1 J
};: = var(kglwt+k) = 5,(0)

where Sw(O) denotes the spectral density of w at frequency 0. Thus, if w is
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lognormally distributed, the expected price-dividend ratio is finite if and
only E(w) + Sw(O) < 0, which is more stringent than E(w) < O. For this
reason the logic of the text is to assume that the price-dividend ratio,
dividend growth and discount rates are all stationary with first and second
moments, and to point out that this is consistent with the present value

formula (3). E(g) > E(n) is necessary by not sufficient for price-dividend

tionarity.

A bubble term is defined as the expression on the left hand side of the

. - cp s s . . b
transversality condition, if it is not zero. Denoting it Pt/dt’ the bubble

obeys
b b
P j P_.. P
t s t+] t+l
g = Um B T (g Tend 3, Be (Vee1 Mea1 @ )
t o k=1 t+] t+l

Hence if vy and n are stationary, the bubble return (P2+1/dt+1)/(Pt/dt) may
be stationary, but the bubble Pt/dt will not be stationary. If there is a
bubble, the price dividend ratio is not stationary, and the variance of the

price-dividend ratio is infinite.

Sunspots occur when E(nt) > E(gt) so that the present value does not

converge, but the Euler equation still holds. Starting from (2), define € by
Peop = 7P * ede e

so that Et_l(et) = 0. Solving for Pt/dt

EE _ 1?4 L 1 .
de T Y1 TeTe ©
Iterating backwards,
P j-1 1 P_ . ® j-1 1 ® j-1 1
EE -lip 0 —— - oy T — .

I — ¢,
t oo k=0 Tt-kTt-k de-j  j=0 k=0 Tt-kTt-k  j=0 k=0 Tt-kTt-k Cd

Following the same logic as before, these backward sums converge if and only
if E(g) < E(n). Such backward solutions of the Euler equation are called
"sunspots" (Flood and Hodrick (1988)) ©because variability in the
price-dividend -ratio is in part due to the shock € which may have no

relation to fundamentals.
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Thus the absence of both bubbles and sunspots are necessary conditions
for stationarity of the price dividend ratio and the present value formula.
If there is a sunspot, the price-dividend ratio itself could be stationary,
but, since the present value is infinite, the price dividend ratio need not
forecast dividend growth or discount rates as predicted by the variance
decomposition (12), nor satisfy the variance bound (10) or (ll) and the mean
price-dividend formula (9). 1If there is a bubble, the present value may be
finite and stationary, but the price dividend ratio is nonstationary with
infinite variance, so again, the variance bound and decomposition need not

hold.

Since the price and/or present value are not stationary under the bubble
or sunspot alternatives,sample moments do not converge to (infinite or
undefined) population moments. This means that the test statistics are valid
only under the null, and that their power against bubble or sunspot

alternatives is an open question.

If we rule out sunspots, the price dividend ratio is finite and
nonstationary if and only if there is a bubble, so a test for the
stationarity of the price dividend ratio would ideally capture all the
testable content of a bubble. However, unit roots tests have little power
against the alternative of long swings in the price dividend ratio, which can
be generated by by long swings in discount rates. Thus, although bubbles and
time varying discount rates (whether due to “fads" or due to "fundamentals")
are distinct hypotheses in population, because bubbles generate price
dividend ratios with unit roots and time varying discount rates generate
stationary price dividend ratios, these alternatives are not distinguishable
in a finite sample, since long swings in discount rates generate long swings
in price dividend ratios against which unit roots tests have arbitrarily low

power.
3. Derivation of the approximate present value model.

Starting from the present value model (3), premultiplying by any

variable Zt observed at time t and taking expectations, we obtain
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Pt @ 3

E [Z ——] - E[ Z_ Y exp YW ]

€ty tJ. 21 kel t+k
t

where w_ = no- g Construct a second order Taylor expansion of the

expression in the brackets, with respect to w , J=1,2, ..., and Zt about

t+j
their means E(w) and E(Z). With LA E(w), that Taylor expansion is:

{2.3.1)
«© 3 Ztﬂ Zt @ ]_E(Z)m (- a @ . - _
2 3 exp Yy W — Yo Wt — 3 nj[wc+.+2 ya wH.wH.ﬂ:]
i"j=1 k=1 1-Q 1-0 j=1 3 2 1-0 j=1 k=1 C
- 3
Where O = eE(w) = eE(n) E(g,‘

With Z = 1, we obtain an expression for the mean price dividend ratio,

: P Q Q @ nj
[€)) E[ = ] - —  — [var(w) + 2 Z cov(w_,w .)].
d 1-a 2(1-0)° 51 RS
Then, taking the expected value of (A.3.1) for any Z,and with Z = Z - E(Z)

5[2 g] - ;l—n E[ z, Elnj &tﬂ_ ]

Since this must hold for any variable Zt’ we have

(2.3.2) Et—E[E]=LE§ﬂjG
T dt d t

(9) and (A.3.2) together give the model (7) presented in the text.

4

4. Accuracy of approximation
(A section checking the accuracy of the Taylor approximation was deleted

to fit the NBER page limit. It is available from the author. )

5. Finding the mean standard deviation frontier for discount rates.

The problem is: min var(gt), subject to the mean (9) and variance
decomposition (12). The variance decomposition will be presented for any
variable Zt rather than just the price dividend ratio. The constraints (9)

and (12) can be rewritten as

(2) )20 i @

-4 .)]
d 1-a 1_02 1 5=1 t+]j t+]j
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@ w©
P s
cov[Zt,.z Ojnt+jJ - (1-Q) cov(Z, H) - X2 - cov[Zt,'Z OJ gt+j]
j=1 j=1
The problem is most easily solved in the frequency domain,

1
min = J S (w) dw subject to
Tly 8

1" -iwy 2 1"
X - Io Ih(e™™)1% s () do  and X, - o Io S, hyg(® ®
where :
@ i ﬂelw
h(Ly = Y3 L so h(e™) =
j=1 1 - qe™

and Sx(w) Sx y(w) denote spectral and cross spectral densities.
The variance-minimizing process is singular, there is an a and 8 such
that g ~ a(L)nt + ﬂ(L)zt. With this form for the g process and using

h(elw)Sx - the problem becomes

Sx,h(Lyy ~

4
min 1 J dw |a|25 + ]ﬂ]ZS + af*S + a*fS* subject to
(a, B) T, n z nz nz

1 2 2 2
xl = x Jodw i [ [1-al Sn + 1A Sz ) (1-a)ﬁ*snz ) (l—a)*ﬂS;Z ]

1
= = *akSk *Bx
X2 5. Jodw (haSnZ + h*a Snz) + (hB + h*8 )SZ

where the (e-lw) notation is suppressed following a, 8, h and the spectral

densities.
The first order conditions to this Lagrangian maximization yield
s |h|2 s h*
1 2
a=——"73, B = — Q7. -
1+ 61|h| 2 (1 + 61|h| )

Where 61 and 82 are Lagrange multipliers on the two constraints.

Substituting, the minimum variance of discount rates is
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1 (" ihi? 2 2. & 5152
var(gt) - I o —————— [ 61|h| S, +—8, - — (hSnz + h*S;z )]
0 (1+ 61|h| ) 4 2
{(A.5.1)
where the constraints 81 and 82 are found from the constraint equations
1 (" In)? 5 5y
{4.5.2) Xl - = | dw — [ Sn + —|hj Sz + — (hSnz + h*S;z )]
TJo (1 + 6,015 4 2
1 (" ]h|2
{8.5.3) X, =5 dw —y [ Sl(hsnz + h*S;z) - 6252].
0 1+ 61|h|
The second constraint can be solved for 62 as a function of 61:
b |h|2 x ]h|2
(A.5.4) &, = 22X, - J dwo ———— §.(hS__ + h*S* )| / J do ————= S
2 2 0 1+ 51|h|2 1" "nz nz 0 1+ 51|h12 z

To calculate the minimum standard deviation of discount rates for a
given mean discount rate the following procedure is followed: The spectral

densities Sn' s _, Snz are constructed using the first fifteen covariances,

z
down weighted as in Newey-West (1987) to ensure that the spectral densities

are positive. (A.5.4) is used to substitute for 82 in (A.5.2), and then a
value of 61 that satisfies (A.5.2) is searched for, performing the integrals
mumerically. With the resulting values of 81 and 82, (A.5.1) is evaluated to

give the minimum variance of discount rates.

The case 81=0, which corresponds to the same minimization imposing only
the second constraint, yields a natural interpretation as a regression of
discount rates on a variable observed at time t. In this case, the minimum
variance reduces to

2
E ) E
var(g.) = & J do -2 |h|2%s_; with X, = - =& J dw 5. |h|’s
t TJs 4 b4 2 2n 0 2 z

Solving the constraint for 62 and substituting in the variance, we obtain

2
1 (" 2 1 (" 2
var(g,) = Jodw Ih|“s, [- X /5 Jodw ih| sz]
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- [cov[Zt,jglﬂjnt+j] - (1-Q) cov(Z, g) ]2 / var [jglﬂjzt_j]

@ . © . ©
= [cov[gt’ Y. QJZC_.] / var [ Y. QJZC_.]]Z var [ Y. OJZC_.].
=1 =1 =1
This is the variance of the fitted value of the regression of g, on
@© :
). OJZC_,. Thus, the minimum variance of discount rates compatible with the
j=1
variance decomposition only can also be found by inferring the OLS regression

@ :
coefficient of discount rates g, on the variable ) OJZt

g1 3

6. Data description

The treasury bill, government bond index, corporate bond index and CPI
are from the SBBI database. The real per capita consumption series is the
same as in Campbell and Shiller (1988) and is described there. Price-dividend
and dividend gréwth data are based on the CRSP value weighted and equally
weighted portfolio returns, with and without dividends, converted to annual
frequencies. Thus Pt is the December 31, year t-1 closing price and
dividends in year t are the monthly dividends, brought forward from the end

of the month in which they are paid to December 31 by reinvestment at the

7. Standard Errors

All the statistics of the paper can be expressed as functions £f(u),
where yy is a vector of means, variances and covariances of price dividend
ratios, dividend growth and discount rates that converges to its expected
value u. These statistics are estimated by using sample moments B in place
of the population moment u. Hansen (1985) shows that Tl/z[f(pt)-f(p)]
converges in distribution to a normally distributed random vector with mean 0

and covariance matrix Vf(p)’VOVf(p), where

131
Vo = lim ] [1 - ——] €(j), and C(j) = E[(yt-M(yt_j-#) ]
. J
Jo  j=-J
Vf is calculated analytically where possible, and otherwise as the numerical
derivative of the procedures that calculate test statistics as a function of

sample moments. J=5 is used throughout the tables.
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Table 1. Summary Statistics for value and equally weighted NYSE portfolios,
annual data 1927-1987

Value weighted Equally weighted

Mean Std. dev. Variance Mean Std. dev. Variance

¥om, dividend growth (%) 3.89 13.67 7.73 20.31

standard errors 1.83 1.93 2.99 4. 24
Real dividend growth (%) 0.81 13.39 4,65 19.35

standard errors 1.35 1.43 2.55 3.76
Price/dividend ratio 23.15 5.88 34.55 26.00 7.57 57.37

standard errors 1.69 0.64 7.56 1.99 1.05 15.87

J J-k+1
Autocorrelation p(j) of dividend growth and sums 1 + 2 2 T p(k)
k=1
lag j

Portfolio 1 2 3 4 5 10 15
Nominal p(3) 0.03 0.06 0.03 -0.07 -0.11 -0.09 -0.00
value sum 1.03 1.07 1.11 1.11 1.07 0.95 0.9
weighted s.e. 0.15 0.22 0.28 0.33 0.35 0.44 0.54
Real p(3) -0.16 -0.10 -0.04 0.01 -0.06 -0.08 0.03
value sum 0.84 0.72 0.64 0.60 0.55 0.32 0.30
weighted s.e. 0.12 0.15 0.16 0.18 0.18 0.15 0.17
Nominal p (i) 0.28 0.07 -0.09 -0.28 -0.29 -0.15 0.03
equal sum 1.28 1.42 1l.44 1.35 1.18 0.88 0.67
weighted s.e. 0.19 0.30 0.37 0.40 0.39 0.41 0.38
Real p(3) 0.15 0.00 -0.10 -0.22 -0.26 -0.14 0.10
equal sum 1.15 1.21 1.18 1.08 0.92 0.63 0.51
weighted s.e. 0.17 0.25 0.30 0.32 0.31 0.29 0.29

Note to table 1:
Sum standard errors are calculated wusing the Bartlett formula s.e. =
(4j/3T)1/2 x sum. Calculation of all other standard errors is described in

the appendix.
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Table 2. Bounds on the variance of price-dividend ratios.

Value Weighted Equally Weighted
Assumed mean Variance Standard Assumed mean Varianée Standard
discount rate bound error discount rate bound error
nom, real (Actual= nom. real (Actual= Note on mean
E(g) E(m) 34.55) E(g) E(m) 57.37) discount rate
8.12 5.04 0.00 35.74 11.50 8.42 0.00 50.07 v E(g)min
8.13 5.05 1.32 35.65 11.51 8.43 1.85 49,95 var. bound
8.22 5.14 12.61 34.84 11.60 8.52 17.64 48.79 violated
8.42 5.34 34.55 33.14 11.87 8.79 57.37 45.59 bound=Var P/d
8.51 5.43 43 .66 32.38 12.31 9.23 101.84 41.31
8.51 5.43 43.66 20.77 12.31 9.23 101.84 97 .64 var(m)=0
8.95 5.87 76.66 29.29 12.36 9.28 106.12 40.84
8.95 5.87 76.66 28.71 12.36 9.28 106.12 84 .98 var(g)=0
3.00 5.92 .79.77 28.96 13.00 9.92 142.75 36.06
10.00 6.92 119.05 23.68 14.00 10.92 168.10 30.69
11.00 7.92 134.61 19.94 20.00 16.92 149.05 18.78
12.00 8.92 139.32 17.15
13.00 9.92 138.82 15.02
14.00 10.92 135.76 13.35
20.00 16.92 107.71 8.23

Note to table 2:

"Assumed mean discount rate E(g) and E(m)" give assumed values of the
mean nominal and real discount rate, respectively, in annual percent units.
"Variance bound" gives a calculation of the variance bound (11). "Standard
error" gives the standard error of (var(P/d) - variance bound). Data are
annual, 1927-1987.

Notes on mean discount rate: "E(g) min" gives the minimum value of the
mean discount rate, at which E(P/d) = Q/(1-Q). "Yariance bound violated”
notes that the point estimate of the variance bound is violated in these
rows. "var(g) = 0" and "var(m) = 0" note the values of the mean discount
rate that solve the mean price dividend ratio equation (9) with constant
discount rates and nominal or real dividend growth. The first row at this
mean discount rate gives the standard error of (var(P/d)-variance bound); the
second row at this mean discount rate gives the standard error including the
uncertainty of estimating the constant discount rate, and thus provides a
test of the constant discount rate model. "bound = Var(P/d)" marks the mean
discount rate at which the point estimate of the variance bound is equal to
the point estimate of var(P/d).
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Table 3. Percent of variance of price dividend ratio due to dividends and

discount rates

1. Value weighted portfolio

Mean discount Nominal dividends

Real dividends

Notes on mean

rate and discount rate and discount rates discount rate

£(g) E(m) n g tb gb cb = nr m tbr gbr cbr

4,86 0.81 ® - -® -0 -® w0 -® ® ~® @ © E(n)
5.00 1.92 87 13 -354 -150 -154 262 -175 275 -92 112 108

6.00 2.92 40 60 -171 -68 -70 126 -86 186 -45 58 56

7.00 3.92 24 76 -106 -39 -41 78 -54 154 -28 39 38

8.00 4.92 16 84 -74 -25 -26 54 -38 138 -20 29 28

8§.12 5.04 15 85 -71 -24 -25 52 -37 137 -19 28 27 E(g)min
8.42 5.34 13 87 -65 -21 -22 47 -34 134 -17 26 25 var(P/d)=bound
8.52 5.44 13 87 -63 -21 -21 46 -33 133 -17 25 24 var{(m)=0
8.95 5.87 11 89 -55 -18 -18 40 =29 129 -15 23 22 var(g)=0
9.00 5.92 11 89 -55 -17 -18 40 -29 129 -15 23 22

9.13 6.05 10 90 -53 -16 -17 38 -28 128 -14 22 21 E(r)
10.00 6.92 8 92 -42 -12 -13 31 -23 123 -12 18 18
12.00 8.92 4 96 -27 -6 -7 19 -15 115 -8 13 13
15.00 11.92 2 98 -16 -2 -2 11 -9 109 -5 9 9

20.00 16.92 0 100 -8 -0 -0 5 -5 105 -2 5 5

Standard errors

5.60 1.92 127 127 109 102 105 132 49 49 71 150 160

6.00 2.92 61 61 52 50 51 64 26 24 35 74 78

7.00 3.92 38 38 32 31 33 40 15 15 22 47 50

§.00 4.92 26 26 22 22 23 28 11 11 16 33 35

8.12 5.04 25 25 22 21 22 27 11 11 16 32 34 E(g)min
8.42 5.34 23 23 20 19 20 25 10 10 14 29 31 var(P/d)=bound
8.52 5.44 22 22 19 19 20 24 10 10 14 28 30 var(m)=0
8.95 5.87 19 19 17 17 18 22 9 9 12 25 27 var(g)=0
9.00 5.92 19 19 17 17 17 21 9 9 12 25 27

9.13 6.05 18 18 16 16 17 21 8 8 12 24 26 E(r)
10.00 6.92 15 15 13 i3 14 17 7 7 10 20 21

12.00 8.92 9 9 8 9 9 11 5 5 7 13 14
15.00 11.92 5 5 5 5 6 7 4 4 4 8 9

20.00 16.92 2 2 2 3 3 4 2 2 2 4 5

(Table 3 Continues)
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(Table 3 continued)
2. Equally weighted portfolio

Mean discount Nominal dividends Real dividends Notes on mean
rate and discount rate and discount rates discount rate

E(g) E@m) n g tb gb cb =« nr m tbr gbr cbr
7.73 4.65 @ o -® -® - © © - @ @ « E(n)
9.00 .92 273 -173 -59 -89 -81 132 142 -42 73 43 51

10.00 .92 139 -39 -30 -45 -41 66 73 27 37 22 26

11.00 .92 88 12 -19 -28 -26 41 47 53 23 14 16

11.50 42 73 27 -15 -23 -21 34 39 61 19 11 13 E(g)min

11.87 .79 64 36 -14 -20 -18 30 34 66 16 10 11 bound=var(P/d)

.92 62 38 -13 -19 -18 29 33 67 16 9 11
.15 57 43 -12 -18 -16 26 31 69 14 9 10 E(r)

—
(2]
28]
w

O W W WO W oo oo o ~ o

12.32 .24 56 44 -12 -17 -16 26 30 70 14 9 10 var(m)=0
12.38 .30 55 45 -12 -17 -16 25 30 70 14 8 10 var(g)=0
13.00 .92 46 54 -10 -14 -13 21 25 75 11 7 8
15.00 11.92 28 72 -6 -8 -8 12 16 84 6 4 4
20.00 16.92 11 89 -2 -3 -3 4 7 93 2 1 1

Standard errors

.30 38 38 20 13 14 13 38 38 17 15 17 var(g)=0
.92 33 33 17 11 12 11 33 33 15 13 14
15.00 11.92 22 22 10 7 7 7 22 22 9 8 9
20.00 16.92 11 11 5 3 3 3 12 12 4 4 4

"Mean discount rate" gives the assumed mean discount rate, in annual
percent units. ge=nominal, m=real. The quantities in the columns "Nominal.."
and "Real dividends and discount rates" give the percent of the variance of
the price dividend ratio attributable to nominal or real dividend growth (n,
nr), unobserved nominal or real discount rates (g, m; these columns are 100-
the n or nr columns), nominal and real treasury bill (tb, tbr), government
bond (gb, gbr), corporate bond (cb, cbr) returns, and inflation (x). These
are calculated by equation (12).

Notes on mean discount rate:"E(n)" marks the mean discount rate equal to
the mean dividend growth rate, at which @ = 1 and all the formulas diverge to
©w Or -, "E(g)min" marks the mean discount rate at which E(P/d) = 1/(1-Q).
Below this value, the mean discount rate equation is violated. "Var(m) = o"
and "var(g) = 0 " mark the mean discount rate at which the mean price
dividend formula (9) holds with constant discount rates, and nominal or real
dividend growth. "Var(P/d)=bound" marks the mean discount rate at which the
variance bound (11) holds exactly. ™"E(r)" marks the mean discount rate equal
to the mean log return.

9.00 5.92 160 160 92 60 67 56 157 157 81 72 80
10.00 6.92 86 86 48 31 34 30 84 84 42 37 41
11.00 7.92 57 57 31 20 22 19 57 57 27 24 27
11.50 8.42 49 49 26 17 18 16 48 48 23 20 22 E(g)min
11.87 8.79 44 44 23 15 16 14 43 43 20 18 20 bound=var(P/d)
12.00 8.92 42 42 22 14 16 14 42 42 19 17 19
12.23 9.15 40 40 20 13 15 13 39 39 18 16 18 E(r)
12.32 9.24 39 39 20 13 14 13 39 39 18 16 17 var(m)=0
9
9
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Table 4. Mean price-dividend ratio, variance bound and variance decomposition

with discount rate = return.

i. Mean price dividend ratio and variance bound

Value Weighted Equally Weighted
mean variance bound mean variance bound
Sample 23.15 34.55 26.00 57.37
Standard error 1.69 7.56 1.99 15.87
Pradicted 20.84 43.00 25.85 91.86
tandard error 1.15 22.00 3.51 77.81
S.e., sample-pred. 1.96 4.31

2. Variance decomposition
nominal nominal real real total
dividends return dividends return

Value Percent of Var(P/d) 10.48 86.06 -27.92 124.46 96.54
Yeighted Standard error 18.33 17.38 8.42  28.53

Equally Percent of Var(P/d) 57.32 50.81 30.87 77.27 108.14
Weighted Standard error 39.68 16.31 39.40 18.38

EW, disc. Percent of Var(P/d) 245.24  274.53 127.31  392.46 519.77
rate=VW Standard error 144.83 68.74 141.51 75.54

NHocte to table 4:

"Sample" gives the mean and variance of the price dividend ratio,
1927-1987. The "predicted mean" is calculated from equation (9) with returns
in the place of discount rates. The "predicted" "bound" is calculated from
equation (11). The percent of the variance of the price-dividend ratio
accounted for by dividends and returns are calculated by equation (12).

"Total" is the total variance accounted for.
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Table 5. Variance bound and variance decomposition using consumption based
discount rates.

1. Value weighted portfolio

Utility Mean discount Variance Decomposition Variance Bound
Parameters rate % var(P/d) due to Std. errors Var(P/d)=35.28
P a E(g) E(m) n g nr m total n g nr m bound s.e.
0.99 2.96 8.72 5.63 13 -67 -35 -20 -55 16 35 10 17 38.6 152.3
0.98 2.30 8.71 5.62 13 -63 -35 -15 -50 16 32 10 13 37.5 140.5
0.97 1.65 8.71 5.62 13 -59 -35 -11 -46 16 29 10 10 37.4 131.5
0.96 0.99 8.72 5.63 13 -54 -35 -7 -42 16 25 10 6 38.4 126.6
0.95 0.33 8.74 5.65 13 -50 -35 -2 -37 16 22 10 2 40.4 126.2

2. Equally weighted portfolio

Utility Mean discount Variance Decomposition Variance Bound
Parameters rate svar(P/d) due to Std. errors Var(P/d)=58.30
P a E(g) E(m) n g nr m total n g nr m bound s.e.
0.99 5.83 13.20 10.11 48 -59 25 -37 -11 34 30 34 26 132.9 134.7
0.98 5.12 13.10 10.01 50 -56 26 -33 -7 35 27 35 23 127.6 139.9
0.97 4.40 13.01 9.91 51 -53 27 -29 -2 36 25 36 21 122.3 145.3
0.96 3.68 12.92 9.83 52 -49 27 -25 3 37 22 36 18 117.2 151.5
0.95 2.96 12.85 9.76 53 -46 28 -20 8 37 20 37 14 112.2 159.1

Note to table 5:

Discount rates are generated by the consumption based model: the real
discount rate is calculated by mt = -1In(p) + aln(ct/ct_l) and the nominal
discount rate is g, = W, + " (nt-inflation). For a given choice of p, a is
calculated to satisfy the mean price dividend ratio (9) with this real
discount factor L and real dividend growth. The variance decomposition
gives the percent of the variance of the price dividend ratio due to
dividends and discount rates, calculated from the decomposition (12).The
variance bound is calculated by (11). The standard errors of the variance

bound take the preference parameters p and a as fixed, and include the

uncertainty of estimating E(m) from consumption growth rates.
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Table 6. Minimum standard deviation of discount rates required to satisfy the
mean price dividend ratio, variance bound, and variance decomposition.

Mean disc.

1. Nominal Value Weighted Portfolio

Notes on mean

rate Constraint discount rate
Mean P/d Var. decomp. Both
E(g) o(g) s.e. p o(g) s.e. p o(g) s.e.
3.89 0 E(n)
4,00 0.01 0.20 1.00
.00 0.91 0.57 1.00
8.00 2.64 0.83 0.99
8.12 13.56 0.03 2.76 0.85 0.99 E(g)min
8.12 10.79 10813 0.28 2.76 0.85 0.99
8.13 7.56 49.87 0.65 2.78 0.85 0.99
8.41 1.37 2.17 1.00 3.08 0.90 0.99 Var (P/d}=bound
8.50 1.02 1.56 1.00 3.17 0.91 0.99 18.97 27.81 0.20
8.60 0.69 1.64 1.00 3.28 0.93 0.99 13.48 15.18 0.49
8.87 0.00 2.23 1.00 3.59 0.98 0.99 7.99 5.34 0.86 var(g)=0
9.00 0.29 1.35 1.00 3.74 1.00 0.99 7.01 4.23 0.91
9.13 0.56 1.30 1.00 3.89 1.03 0.99 6.43 3.64 0.93 E(xr)
10.00 2,21 1.17 1.00 4.97 1.20 0.99 5.52 2.25 0.98
12.00 5,98 1.21 1.00 7.84 1.66 0.99 7.88 1.41 0.99
15.00 12.38 1.37 1.00 13.08 2.43 0.99 13.97 1.27 1.00
20.00 25.15 1.79 1.00 24.25 3.81 0.98 27.00 1.67 1.00
2. Real Value Weighted Portfolio
Mean disc. Notes on mean
rate Constraint discount rate
Mean P/d Var. decomp. Both
E(m) o(m) s.e. p o(m) s.e. p o(m) s.e.
0.81 E(nr)
0.92 0.15 0.10 1.00
2.92 1.40 0.54 1.00
4.92 3.25 1.04 0.99
5.046 13.28 -0.15 3.38 1.07 0.99 E(m)min
5.05 6.60 72.42 0.42 3.39 1.07 0.99
5.06 4.72 37.84 0.65 3.40 1.08 0.99
5.10 1.89 10.35 0.94 3.44 1.09 0.99
5.20 0.57 2.28 1.00 3.55 1.11 0.99
5.33 0.00 1.21 1.00 3.70 1.15 0.99 var (m)=0
5.35 0.06 1.43 1.00 3.72 1.15 0.99 18.16 1144 0.15 E(m)bound
5.490 0.21 1.12 1.00 3.78 1.17 0.99 12.39 25.48 0.49
5.50 0.47 1.02 1.00 3.89 1.19 0.99 8.28 8.69 0.81
5.92 1.38 1,06 1.00 4.38 1.30 0.99 5.48 '2.55 0.97
6.05 1.62 1.02 1.00 4.53 1.34 0.99 5.33 2.21 0.97 E(rr)
6.92 3.20 0.96 1.00 5.64 1.58 0.99 5.70 1.84 0.99
8.92 6.93 1.02 1.00 8.53 2.13 0.99 8.78 1.59 0.99
11.92 13.32 1.21 1.00 13.77 2.98 0.99 15.13 1.69 1.00
16.92 26.12 1.66 1.00 24,90 4.43 0.98 28.30 2.22 1.00
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(Table 6 continued)

3. Nominal Equally Weighted Portfolio
Mean disc. Notes on mean
rate Constraint discount rate
Mean P/d Var. decomp. Both
E(g) o(g) s.e. p a(g) s.e. p o(g) s.e.
7.73 E(n)
8.00 0.32 0.67 1.00
9.00 0.04 1.06 1.00
10.00 0.83 0.96 0.99
11.00 2.04 0.73 0.99
11.50 20.15 0.26 2.76 0.64 0.99 E(g)umin
11.50 18.60 192917 0.36 2.76 0.64 0.99
11.50 17.79 42631 0.41 2.76 0.64 0.99
11.60 7.50 10.17 0.89 2.91 0.63 0.99
11.87 3.03 2.33 0.99 3.32 0.62 0.99 var (P/d)=bound
12.00 2.23 1.99 0.99 3.53 0.63 0.99 30.78 66.79 0.10
12.10 1.80 1.88 0.99 3.70 0.63 0.99 25.83 17.28 0.25
12.20 1.45 1.84 1.00 3.86 0.65 0.99 22.42 13.57 0.35
12.77 0.00 6.07 1.00 4,85 0.79 0.99 13.40 7.20 0.69 var(g)=0 nom.
13.00 0.48 1.83 1.00 5.26 0.87 0.99 11.93 6.41 0.76
15.00 4.38 1.80 1.00 9.35 1.93 0.98 10.93 4.64 0.93
20.00 15.76 1.87 1.00 22.75 5.29 0.97 23.02 6.64 0.96
4. Real Equally Weighted Portfolio
Mean disc. Notes on mean
rate Constraint discount rate
Mean P/d Var. decomp. Both
E(m) o(m) s.e. p c(m) s.e. p o(m) s.e.
4.65 0 E(nr)
4,92 0.16 0.60 1.00
6.92 1.20 0.94 0.99
7.92 2.45 0.87 0.99
8.42 19.19 0.14 3.18 0.88 0.99 E(g)min
8.43 13.70 2252 0.50 3.19 0.88 0.99
8.50 6.54 12.58 0.86 3.29 0.89 0.99
8.60 3.60 5.98 0.96 3.45 0.90 0.99
8.79 1.78 2.61 0.99 3.74 0.93 0.99 var (P/d)=bound
8.92 1.18 2.56 1.00 3.96 0.95 0.99 24.63 22.85 0.24
9.12 0.56 2.50 1.00 4.29 0.99 0.99 17.25 12.05 0.50
9.35 0.00 5.60 1.00 4,67 1.05 0.99 13.23 8.02 0.67 var(m)=0
9.92 1.18 2.37 1.00 5.69 1.25 0.99 9.62 5.19 0.86
10.92 3.07 2.30 1.00 7.63 1.70 0.99 9.24 4.14 0.93
11.92 5.00 2.26 1.00 9.76 2.24 0.98 10.59 4.01 0.95
16.92 16.38 2.28 1.00 23.07 5.45 0.97 23.14 6.11 0.97
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(Table 6 continued)
Note to table 6:

"Mean discount rate" gives the assumed mean nominal or real discount
rate, in annual percent units. "Constraint" indicates which constraint is
imposed. "o(g)" or "o(m)" gives the minimum standard deviation of nominal or
real discount rates that satisfy the given constraint. "s.e." gives standard
errors of the standard deviation of discount rates. "p" gives the first order
autocorrelation coefficient of the variance minimizing discount rate.

To satisfy the "Mean" constraint, the discount rate g together with data

on dividend growth rates n and price dividend ratios P/d must satisfy

¢ RN Y
(9) E[ = ] - — % — 7 Q cov(n -g_, n_ .-g_..)
d 1-6 2(1-0)% e t ot t-j St+j

To satisfy the "Var" constraint, it must satisfy the variance decomposition

® P =

1 P 1 t 3 1 _t 3

(12) var[ 3 ] By cov[ a—,jz o nt+j] + 15 <oV [ dt,’Zln _gt+j]‘
- =

Notes on mean discount rate:

"E(n)" or "E(nr)" marks the mean discount rate E(g) or E(m) equal to the
mean dividend growth rate, at which @ = 1 and all the formulas diverge to =
oY -®, "E(g)min" and"E(m)min" mark the mean discount rate at which E(P/d) =
Q/¢1-Q); it is the minimum value at which the mean constraint can hold.
“var(g) = 0" marks the mean discount rate at which the mean price dividend
constraint holds with constant discount rates. "var(P/d)=bound" marks the
mean discount rate at which the variance bound (12) holds exactly. "E(x)"
marks the mean log return. The "var(g)=0" value of the mean discount rate is
slightly different from that in other tables because the covariances are down

weighted here to insure a positive definite spectral density matrix.
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Fig. 1. Mean price dividend ratio and variance bound with constant discount =~

rates, nominal value weighted NYSE portfolio 1927-1987.

For each assumed value of the mean discount rate E(g), the dashed curve

reports the predicted mean price dividend ratio,

P Q Q 15 11
E[ = ] -—t— ¥ ¢] cov(n_, n_.,)
d 1-0 2¢1-0)% 3=-15 e e
where 0 = eE(n)-E(g). n = log nominal dividend growth,

reports the variance bound

15
P ] Q 131
var| = | €« —— ¥ ¢] cov(n_, n_ ,)
[ d 1-0? (l_n)z j=-15 t t+]j

The solid curve

in standard deviation units. The horizontal lines "E(P/d)" and "S.d.(P/d)"

give the sample mean and standard deviation for reference.

"E(n)" marks the

mean discount rate equal to mean dividend growth, "var(g)=0" marks the mean
discount rate at which the mean price dividend ratio equals its sample value.
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Fig. 2: Variance bound with no restrictions on discount rates, nominal value
weighted NYSE portfolio 1927-1987.

At each assumed mean discount rate E(g), "bound” gives the variance
bound,

3]s =((3) - =)

where 3 = eE(n)-E(g)’ n = log dividend growth. The +/- 1 standard error
lines show standard errors for (var(P/d) - bound). The "Var(P/d)" line gives
the sample variance of the price-dividend ratio, for reference.

"E(g)min " gives the minimum value of the mean discount rate, at which
E(P/d) = Q/(1-Q). "var(m) = O" and "var(g) = 0" note the values of the mean
discount rate that solve the mean price dividend ratio equation with constant
discount rates. "Bound = Var(P/d)" marks the mean discount rate at which
the point estimate of the variance bound is equal to the point estimate of
var(P/4d).
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Fig. 3. Bounds on the mean and standard deviation of nominal discount rates
that satisfy the mean price dividend ratio, variance bound and variance
decomposition, value weighted NYSE 1927-1987, together with consumption based
discount rates and return statistics.

The bound marked "E(P/d)" gives the minimum standard deviation of
discount rates that, together with data on dividend growth rates, satisfy the
sample mean price dividend ratio. The bound marked "Var(P/d)" gives the
pinimum standard deviation of discount rates that satisfy the variance
decomposition. The bound marked "Both” gives the minimum standard deviation

of discount rates that satisfy both conditions. See note to table 6 for
formulas.
The line marked "a=0" .. "a=5" gives the mean and standard deviation of

consumption based discount rates, using s_Libjective discount factor p = .98
and the indicated risk aversion a. "R "" gives the mean and standard
deviation of the log inverse return, "R/E(R")" gives the mean and standard
deviation of the log of this quantity.
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real discount rate
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Fig. 4. Bounds on the mean and standard deviation of real discount rates that
satisfy the mean price dividend ratio, variance bound and variance
decomposition, value weighted NYSE 1927-1987, together with consumption based
discount rates and return statistics.

The bound marked "E(P/d)" gives the minimum standard deviation of real
discount rates that, together with data on real dividend growth rates nr,
satisfy the sample mean price dividend ratio. The bound marked "Var(p/d)"
gives the minimum standard deviation of real discount rates that satisfy the
variance decomposition., The bound marked "Both" gives the minimum standard
deviation of real discount rates that satisfy both conditions. See note to
table 6 for formulas.

The line marked "a=0" .. "a=5" gives the mean and standard deviation of
real consumption based discount rates, using constant relative risk aversion
utility function, p = .98 and the indicated risk aversion = a. "R,”" gives

the mean and standard deviation of the log inverse return, "R/E(R™)" gives
the mean and standard deviation of the log of this quantity.
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FOOTNOTES

*

University of Chicago. I am grateful to Gene Fama, Robert Hodrick, Lars
Hansen and seminar participants at the University of Chicago, Northwestern
University and Columbia University for helpful suggestions. This research was

partially supported by a grant from the National Science Foundation.

lPrecisely, they are derived using no assumptions beyond stationarity. They
are calculated with an extra assumption that the temporal dependence in
dividend growth and discount rates is adequately captured by 15 positive and

negative covariances in annual data.

2The model (13) generates expected returns that are equal to the reference
return plus a constant risk premium when returns and discount rates are
jointly lognormal and homoskedastic. (Essentially the same equations can be
derived with the second order Taylor expansion used for the price-dividend
ratio.) With these assumptions,

L=E 1 0RY)
implies

0 = Et_l(rt - gt) + 1/2 var(rt - gt),
where r = In(R), g = -1In(y). Using (20),

0 0 0
0= Et_l(rt-rt) - E(et) + 1/2 var(rt-rt) + 1/2 var(et) - cov(rt-rt,e ).

t
s . 0
This equation must hold for r = r as well, so ¢ must obey
E(e = 1/2 var(e
(¢,) = 1/2 var(e,)
and thus the expected return equals the expected reference return plus a risk
premium that is constant over time and depends on the covariance of the

return with the discount rate,

0 0 0
Et-l(rt) - Et_l(rt) + 1/2 var(rt - rt) - cov(rt - T et).
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3For the purposes of the variance decomposition (12), a discount rate model

0 : : . c
g, =T, * constant could be used instead, and in this model the mean discount
rate would be identified from the mean price dividend ratio. In this model
0
.) = Cov(P /d_, r_ .
gt:+_]) ( t/ t’ Tt
discount rate, it also predicts risk premia that are constant across assets,

it is also true that Cov(Pt/dt, ). Like the constant

and is not used for this reason.

Asset return information cannot be used to identify the mean discount
rate. The mean nominal discount factor may be deduced from the mean of a

nominal conditionally risk free rate (bond) as follows:

1= E (v Repp) @ EpQreyp) = 1Ry 2 B = E(L/R).

However, the mean discount rate cannot be so identified. For example,

consider the pricing equation for any asset return,

L= B OrpReny)
Approximating the joint distribution of T Rtas a lognormal (essentially the
same equation can be derived by a second order Taylor expansion as for the

price-dividend ratio),

B (reyy) = EelBey) + L2 var (ry - 8ei1)

where r = 1ln(R

e+l Hence, even in the case of a riskless rate,

t+l)'

E(rD) = E(g) + 1/2 var(g)

Z"I'his is not the only model to satisfy the Euler equation by construction.

2 . s

v, = Rc/ Et-l(R:) + € for any N (including €& - 0) such that Et_l(eth) =0
also satisfies the Euler equation by construction. In fact, all discount
rates v, that satisfy the Euler equation may be expressed in this way (see
Hansen and Richard (1987) and Hansen and Jagannathan (1989)).

5Other utility functions may help resolve the puzzle. For example, Ferson
and Constantinedes (1989) claim that a habit persistence utility function not
only generates high variance of discount rates, but passes an Euler equation
test using price-dividend ratios as instruments, in which case the discount

rates may have the required predictability.
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