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1 Introduction

Most residential settings in the US, including homes, apartments, and mobile park homes,
are served by community water systems (CWS), representing 94% of the nation’s population (US
Environmental Protection Agency, 2019a). The Safe Drinking Water Act (SDWA) was enacted in
1974 to protect communities from unsafe drinkingwater in CWS. The act currently regulates over 90
contaminants (e.g., lead, arsenic, disinfection byproducts). Regulatory drinking water violations1
under SDWA occur when a maximum contaminant level (MCL), action level, or maximum residual
disinfectant level (MRDL) is exceeded (US Environmental Protection Agency, 2018).2 Despite
successfully reducing drinking water contamination in CWS, up to 45 million people were affected
by health-based violations from 1982-2015 (Allaire et al., 2018). In 2017, 22 million people,
representing 7 percent of the US population, relied on a CWS with a health-based drinking water
violation (US Environmental Protection Agency, 2019a). Recent lead-related drinking water crises
in Newark, New Jersey (Dave and Yang, 2022) and Flint, Michigan (Grossman and Slusky, 2019)
have highlighted the importance of these regulations to protect public health.

The vast majority of the literature studying SDWA has focused on non-compliant drinking
water. SDWA violations disproportionately impact minority and low-income communities (Allaire
et al., 2018; McDonald and Jones, 2018), egregious cases of water contamination, such as the case
of Flint, have major community and health impacts (Grossman and Slusky, 2017; Danagoulian
and Jenkins, 2021; Danagoulian et al., 2022; Christensen et al., 2023), and health-based violations
adversely impact infant health (Currie et al., 2013). Public reporting of these health-based violations
is an important mechanism to encourage compliance within the law (Bennear and Olmstead, 2008;
Bennear et al., 2009; Baker et al., 2022; Grooms, 2016). Prior research has shown that this public
reporting has resulted in fewer violations over time (Bennear and Olmstead, 2008; Baker et al.,
2022), however, other work using sampling concentrations suggests that systems may not return
to compliance following health-based violations (Grooms, 2016). Consumers appear to respond
to public reporting of violations with avoidance behavior, such as bottled water purchases (Zivin
et al., 2011; Allaire et al., 2019; Marcus, 2022). In this paper, we provide new evidence of the
health impacts of drinking water quality that is not subject to a health-based violation, which we
call compliant drinking water contamination.3

1Throughout this paper, we use “regulatory violation”, “MCL” and “MCL violation” interchangeably to mean any
action level or health based violation, respectively, even for those where the violation is based upon an action level or
MRDL.

2These thresholds are based on single contaminant concentrations, as opposed to mixtures of contaminants or co-
occurring contaminants. Most contaminants have a MCL, but lead has an action level, and disinfectants have MRDL.
Moreover, regulations vary by contaminant over whether and how samples are averaged to determine violations.
Treatment technique (TT) violations also occur when the water system does not implement corrective actions in
response to contamination.

3We discuss in the Discussion section issues that have been described in the literature regarding compliance,
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A large and growing literature focused on the health impacts of air pollution that is compliant
with the Clean Air Act has shown that even low levels of air quality can still have meaningful
impacts on health, labor market outcomes, and cognition (Currie and Walker, 2019). Much
like air quality, where particulate matter is actually a grouping of many air pollutants and not
isolating particular pollutant constituents, we propose to measure this compliant contamination
using a water quality index. Using an index addresses the multiple comparison issues we would
face if we separately estimated the effects of each contaminant, or the multicollinearity issues we
would face if we attempted to include the over 90 contaminants that are regulated under SDWA
in the same regression.4 Furthermore, while current toxicological and epidemiological studies
of the associations between water quality and health generally reflect a narrow focus on single
contaminants (Murphy et al., 2012), researchers have noted that low concentrations of contaminants
may not be associated with health outcomes when considered individually but may produce effects
when examined as mixtures (Gennings et al., 2018). For these reasons, we create an overall water
quality index using contaminant concentrations and regulatory standards, creating a single measure
for testing our hypothesis. Following prior literature, we also construct an aggregate “chemical
only” measure (Currie et al., 2013). Our aggregation strategy is discussed further in Section 2.3.

Scientific literature assessing the association between each of the more than 90 contaminants
regulated by SDWA and birth outcomes is lacking beyond a subset of contaminants.5 Still, our
overall water quality index may not be specific to our outcomes of interest (e.g., low birth weight,
pretermbirth), and sowe create a second index specific to 5 contaminantswith themost associational
evidence linking exposure to these contaminants with the outcomes studied in this paper.6 While
a reproductive-specific index can be supportive of the theoretical link between water quality and
birth outcomes, lack of empirical evidence for the other contaminants regulated by SDWA is
not indicative of no biological effect. Our overall index can be used for hypothesis generation
regarding other contaminants impacting birth outcomes. Furthermore, and we consider this most
important, the overall measure can be validated on other populations (children, older adults) and
health outcomes (cancer), and allow for a useful general index that can be used across systems and
susceptible populations, analogous to the EPA’s Air Quality Index (AQI).

We employ the universe of address-specific birth records in Pennsylvania from 2003-2014
geocoded to CWS boundaries, and match births to water samples measured at the CWS-level

enforcement, and how our results shed light on particular policy responses.
4We do include all 94 contaminants in this summary measure of water quality. See Table A2 for the full list of

contaminants included.
5We discuss in Section 2.3.1 and the Appendix Section A1.3 the literature on drinking water and birth outcomes.

Quasi-experimental literature is virtually non-existent except in the case of lead (Grossman and Slusky, 2019; Dave
and Yang, 2022) or any MCL violation as in Currie et al. (2013).

6We discuss in Section 2.3.1 and Appendix Section A1.3 creation of this index. The five contaminants include
arsenic, atrazine, nitrate, Di(2-ethylhexyl) Phthalate (DEHP), and Tetrachloroethene (PERC).
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that underlie regulatory violations during gestation.7 Using these novel data on contamination
concentrations summarized in an omnibus index, we find evidence of precise harmful effects of
water contamination on birth outcomes after removing regulatory violations. Our empirical strategy
relies on within-CWS variation (CWS fixed effects) such that our approach ignores correlations
between water quality and infant health driven by cross-sectional differences. We also include
birth year-month fixed effects to control for seasonality and state-wide time shocks. Using fixed-
effects models that isolate only within-mother across-sibling variation, we find that changes in
overall contamination from the 10th to the 90th percentile – conditional on no violation – leads
to an increase in low-birth weight (LBW) of 12% and preterm birth (PTB) of 17%. Using a
reproductive-specific index, we find slightly larger impacts of water quality on our birth outcomes
– a 19% increase in LBW and 22% increase in PTB. And in sensitivity analyses, we remove births
with samples above the regulatory threshold, which is more stringent than how regulatory violations
are determined, and continue to find a strong impact on birth outcomes.8

Given the recent findings of fertility effects of contamination and the consequent issues of
selection (e.g., for lead, see Grossman and Slusky (2019) and Clay et al. (2021)), we additionally fit
CWS panel models of births per person served by the system on various measures of recent water
contamination. Our estimates suggest small negative effects of contamination on fertility. We also
analyze whether mothers move out of their current CWS in response to contamination. While
maternal response would be of concern for our identification strategy, we find no significant effects
on mobility, which is consistent with mothers not being aware of variation in contamination that
does not trigger regulatory violations. Moreover, our results are robust to excluding mothers who
move across pregnancies. Finally, we use the bounding methods of Altonji et al. (2005) and Oster
(2016) to assess the importance of selection on unobservables, finding in most specifications that
it would have to be greater than selection on observables to conclude that there are no damaging
effects of water contamination.

Our work contributes to a well-established fetal origins literature in economics that links shocks,
such as pollution, experienced in utero to poorer birth outcomes (Almond et al., 2018). Extensive
research in economics establishes that poor birth outcomes lead to worse short- and long-term
health and human capital outcomes (see e.g. Black et al. (2007), Currie and Moretti (2007), Royer
(2009), Oreopoulos et al. (2008) and Almond et al. (2005)). Air pollution has attracted particular
attention, as findings of harmful effects appear robust, even at levels compliant with air advisory
standards (Knittel et al., 2016; Currie and Walker, 2011; Currie et al., 2015; Yang and Chou, 2018;
Beatty and Shimshack, 2014). Although federal and state regulation of public drinking water in

7Samples are taken at the system level prior to distribution and are not taken at the residence. Exceptions include
lead and copper which are measured at a random selection of residences, however, it is a small subsample within the
system and we do not have information on which residences.

8See Appendix Section A2.4.
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the US has recently come under scrutiny, in part because of the highly publicized Flint water crisis
(Grossman and Slusky (2019), Allaire et al. (2018)), few papers have studied how the quality of
drinking water in the US affects health outcomes using quasi-experimental designs (Keiser and
Shapiro, 2019b).9 The most closely related study to our work is Currie et al. (2013), who find
that exposure to a water quality violation during gestation increases the chance of low birth weight
and preterm birth, based on 1997-2007 data from NJ.10 Importantly, their estimates suggest that
non-compliant contamination has negative health consequences. Our analysis addresses health
impacts of compliant contamination levels.

Consumers currently learn about the quality of their water either by reviewing the annual
Consumer Confidence Reports (CCR), which contain the average concentrations for contaminants
in their water system, or through notifications about extreme contamination events that constitute
regulatory violations. We argue that, based on the reports as currently designed, consumers are
unlikely to respond to concentrations that are compliant with current regulations. Given our
findings of adverse birth outcomes from overall contamination concentrations removing regulatory
violations, using our index to describe these risks for consumers could greatly improve the available
information. Specifically, we propose using our overall water quality index to create a letter grade
as a summative measure of water quality that could be included in CCRs to provide more actionable
information to consumers. In Section 6, we evaluate this potential policy finding that it could lead
to economically meaningful improvements in public health as measured by birth outcomes. We
find that a policy improving water quality for births served by systems with letter grades B-F to the
average quality of systems with letter grade A would reduce the number of LBW infants by 3,960
and reduce the number of PTB infants by 6,930 over 11 years. Such a policy could save around
$280 million in medical costs for these avoided adverse birth outcomes. This analysis could serve
as a foundation for future refinements to providing a summary measure of water quality for CCRs.

2 Data and Summary Statistics

To conduct our analysis, we assembled data on birth outcomes from confidential birth records,
temperature, weather, and pollution data derived fromweather stations andToxics Release Inventory
(TRI) locations and emissions, and water quality and service areas from community water systems
(CWS). We describe each of these in turn. We join these three data sources together using spatial
and temporal attributes.

9Exceptions include Currie et al. (2013); Grossman and Slusky (2019); Marcus (2019); Hill and Ma (2022); Dave
and Yang (2022); fly (2199).

10In the Online Appendix Section A3, we estimate similar models to Currie et al. (2013) using our data in
Pennsylvania from 2003-2014 and find consistent, but not statistically significant, effects.
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2.1 Birth Records and Control Variables

Data on birth certificates spanning the years 2003-2014 were provided by the Pennsylvania
Department of Health. These data contain detailed information on birth outcomes, clinical charac-
teristics and demographic characteristics. We describe in detail our control variables obtained from
these birth records in Section 3. Our two main outcomes of interest are binary indicators for low
birth weight11 and preterm birth.12 In addition, we study two birth outcome measures often used by
epidemiologists that better capture growth rates during pregnancy (see e.g., Govarts et al. (2018)).
These measures are small for gestational age (SGA) and term birth weight (TBW; in grams).13

We obtained daily weather statistics from the website of Schlenker (Schlenker and Roberts,
2009). These data provide estimates of daily precipitation and maximum and minimum temper-
atures for a grid of points across the United States. We match mothers to their closest grid point
using exact location of birth, and calculate a set of temperature and weather controls over the mom’s
pregnancy. We use these as control variables in our regression specifications described in Section
3. Note that weather and temperature have been found to be important in previous studies relating
health to drinking water contamination (Currie et al., 2013), as well as to air pollution (Beatty and
Shimshack, 2014; Knittel et al., 2016). Finally, we also obtained Toxics Release Inventory (TRI)
controls (locations and emissions) from the US Environmental Protection Agency (EPA) (US EPA,
2013). Using maternal address, we calculate the number of TRI facilities operating within 1, 3,
and 5 kilometers in the year the infant was born, and the reported total onsite, offsite, and overall
releases for TRI facilities weighted by the squared inverse distance between the facility and the
mother’s residential location.14

2.2 Community Water System Data

Our data on CWS comes from two sources: the US EPA and the Pennsylvania Department of
Environmental Protection (PADEP).

We obtained Safe Drinking Water Information System (SDWIS) data from the EPA through a
Freedom of Information Act request, which contains information on CWS drinking water violations
as well as system characteristics such as recently reported population served. These data include
violation reports 2000-2014. We observe intervals of time (“compliance periods”) for these vio-

11I.e., the baby’s weight at birth was less than 2,500 grams.
12I.e., gestation length of 36 weeks or less.
13SGA is an indicator for birth weight being below the 10th percentile of the infant’s gestational week, while TBW

is the birth weight (in grams) of babies that are not preterm, i.e., babies who “came to term.”
14Currie et al. (2015) show evidence that the impacts of TRI facilities are strongest within 1 km, however, emissions

likely persist beyond 1 km. Hill and Ma (2022) include these additional distances to account for air pollution near
the maternal residence. We follow this literature here given we are concerned about air pollution confounding our
estimates of the impact of drinking water contamination.
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lations that are primarily reported quarterly; we define a birth to have been exposed to a violation
if its gestation period overlaps with the compliance period of a violation for at least one day.15
Further discussion of these data is provided in the Online Appendix Section A1. For our fertility
analysis, we make use of the system population served measure from SDWIS, both to normalize
the dependent variable across systems (we divide births per month by system population served to
calculate a monthly fertility rate), and as weights for the regression model.

Most importantly for our study, we obtained public drinking water sampling information for
CWS from PADEP.16 These data contain the sample results underlying Pennsylvania’s SDWA
violations recorded in the SDWIS data. This drinking water sampling data contains the date of the
sample, the contaminant tested, and the result of the test. These data are recorded at a much higher
frequency than water quality violations, and they provide information on water contamination at
levels that do not trigger a violation.17

These data were augmentedwith a shapefile obtained from the Pennsylvania Spatial Data Access
(PASDA) website containing the service area boundaries of CWS.18 Figure 1 is a map of the CWS
service area boundaries for the systems in our data. As is apparent, CWS vary substantially in
size. There are 1,768 CWS in the boundary file; the average system reports serving about 5,700
people, but the smallest systems (10th percentile) serve only around 60 each, while the top 10
largest systems serve 41% of people served in this data (the Philadelphia Water Department alone
serves 16%, reporting about 1.6 million people served).

Mostwater quality samples aremeasured at entry points to the distribution system, or somewhere
within the distribution system (e.g., at the tap for lead and copper samples).19 In the simplest
case, a treatment facility pipes water from a single source through its operations, then out into a
distribution system. In more complicated cases, a distribution system can be served by several
source locations.20 Analysis requires us to aggregate up to the level of a complete CWS, as that is
the level at which we can match the water sample results to birth records using the water system

15Compliance periods vary by contaminant with more than 2/3 being ∼90 days. About 20% are 30 days and a few
are annual or longer (min 27 days and max 1095 days). Importantly, we do not have the date of the violation.

16We received the data in database form from the department. Interested readers can download data from the PA
DrinkingWater Reporting System (DWRS) here http://www.drinkingwater.state.pa.us/dwrs/HTM/
Welcome.html

17The frequency of these data are dependent on the monitoring requirements for the systems and contaminants of
interest. Some contaminants are measured monthly, quarterly or annually (lead and copper are measured every three
years) based upon the regulations in the Safe Drinking Water Act (US Environmental Protection Agency, 2019b).
These data provide exact date of sample to match to pregnancy gestation periods.

18Find these data here: https://www.pasda.psu.edu/download/dep/historic/
PublicWaterSupply/. We used vintage 2016 month 4 for these analyses. We discuss concerns about
boundaries changing over time in Section 5.4 and Appendix Section A1.5.

19Entry points are locations in the CWS after treatment or chemical addition, if any, but prior to the distribution
system. About 1% of the reported samples are reported as being of raw water; we remove those from the analysis.

20We discuss data limitations and this issue in Section 5.4 and Appendix Section A1.5.
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boundary shapefile and geocoded mother addresses.21

2.3 Water Quality Index Construction Details

In this subsection, we describe how we construct our measure of drinking water quality.
For each CWS, contaminant, and day, we use the samples of the contaminant on that day to
calculate the average contamination in the CWS’s distributed water. This measure of average daily
contamination is in the units in which the contaminant is measured, typically parts-per-billion (ppb)
or parts-per-million (ppm). Then, for each birth and contaminant, we average this daily measure of
contamination for the CWS where the mother’s residence was at the time of birth. The average is
taken across all samples within the birth’s gestation period.22

The raw Pennsylvania sampling data contains the 94 contaminants regulated under the Safe
Drinking Water Act (SDWA).23 We also obtained the health based regulatory violations from EPA
by Freedom of Information Act (FOIA) request which includes the maximum contaminant level
(MCL), action level or maximum residual disinfectant level (MRDL) for each contaminant and
whether the system received a violation during each compliance period. (Throughout this paper,
we use “MCL” and “MCL violation” tomean any action level or health based violation, respectively,
even for those where the violation is based upon an action level or MRDL.) Instead of studying each
contaminant separately, in our main analysis we aggregate by normalizing and averaging. Our goal
is to construct a simple composite measure of water contamination, in order to avoid the statistical
pitfalls of very noisy data combined with multiple hypothesis testing. The measure we choose to
employ for this purpose is the average “result relative to MCL” (RRMCL).

RRMCL = SamplingResult/MCL (1)

This approach accomodates the fact that what is atypically large for one contaminant may not
be for another contaminant. For example, the MCL for nitrate and nitrite are 10 ppm and 1ppm,
respectively. In order to create a single composite measure of contamination, we divide nitrate
samples by 10, divide nitrite samples by 1, and divide all other contaminants by their respective
MCL.

21Other work has aggregated to the county and then controlled for the percent of the population served by public
water (Almberg et al., 2018). While there remains potential measurement error in our approach, we believe it is an
improvement.

22Our method for measuring the water contamination faced by a particular birth is similar to an earlier epidemiolog-
ical study on disinfectant byproducts, Bove et al. (1995), who measure contamination monthly and then take averages
over the gestation period, weighting months equally. Our approach is the same, except we average over daily averages.

23The original Pennsylvania water sample data has 248 unique contaminant identifiers. We restrict the data to the
94 contaminants that are regulated under the Safe Drinking Water Act and for which we have regulatory MCL. These
are listed in Appendix Table A2.
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We then average over all contaminants sampled during pregnancy for each infant to have a
measure of “overall” contamination based upon contaminants regulated by the Safe DrinkingWater
Act (SDWA), weighting contaminants (not samples) equally. Given the large number of chlorine
samples (over 4.8 million samples; the next most common in our data is lead at 93,000 samples),
we take a 10% random subsample of the chlorine samples before we build the index, to ensure
computational feasibility.

Sample nondetects, i.e., samples with results that cannot be distinguish from zero, are recorded
as zero in the data and included in our index calculations. This will introduce measurement
error into our index measure. In general, when the contamination in the water sample is small,
methods that estimate the level of contamination can have substantial relative error. We take the
position expressed in the EPA internal document (US Environmental Protection Agency (2006))
that measured samples below the MCL still contain (albeit noisy) information. We further discuss
this issue in Online Appendix Section A1.4.

We make two notes about our “average RRMCL” construction process. First, it maximizes
sample size, but the measure is not composed of the same contaminants across births. For example,
one birth may only be matched to total coliform samples, while another birth may include nitrate
and arsenic samples. Each birth will have a measure of average RRMCL, but the contaminant
used in the first birth is just total coliform, while the RRMCL in the second birth is a simple
average of the RRMCL for nitrate and RRMCL for arsenic. To be clear, this is just a stylized
example for illustration: 2.47% of births in our data have only one or two unique contaminants
measured. Indeed, across births, an average of 39.31 unique contaminants are used to calculate
our overall contamination index. Second, and as this example makes clear, the step in this process
that likely makes the strongest assumptions is weighting the contaminants available for each birth
equally. Moreover, while maximum contaminant level goals (MCLG) may be a more natural
denominator given the focus on protecting health, MCLG are often zero, making them not as useful
for aggregation. In addition to our main overall measure of contamination, we repeat this exercise,
but removing coliform, heterotrophic bacteria, and turbidity. This additional measure we call a
measure of “chemical” (i.e., non-bacterial) contamination. Splitting between overall and chemical
contamination is consistent with previous literature (Currie et al., 2013). On average, 38.50 unique
contaminants are used to calculate this chemical-only index; 3.05% of these births have only one
or two contaminants in the index. Finally, we also construct a “reproductive index” measure, using
five contaminants that have been found linked to reproductive health outcomes; further discussion
of its construction is postponed to Section 2.3.1.

There is one important contaminant that we treat as an exception to Equation 1: total coliform.
Specifically, we define the Result Relative to MCL (RRMCL) for total coliform, for each birth, as

9



RRMCL =
Share of Positive Tests

max


2

©­­«
Number of tests

273
30

ª®®®¬
, 0.05



(2)

In this expression, the ratio (Number of Tests) / ((273/30)) gives the approximate number of tests
per month (per 30 days) over the gestation period, assuming full gestation length (273 days = 39
weeks). We use this expression for the RRMCL for this contaminant, since the effective MCL for
coliform is 2 tests when the number of tests per month is less than 40, and 5% of tests when the
number of tests per month is greater than 40. This implies that the MCL is the maximum in the
denominator of the above expression. Indeed, this Equation can be interpreted as the generalization
of Equation 1 for total coliform, given that the MCL for total coliform varies based on the number
of tests conducted by the system (the number of tests required to be conducted depends on system
size; see Bennear et al. (2009) for a detailed analysis of the Total Coliform Rule).

Taken together, our approach to defining an water quality index is the “sampling data analogue”
of the drinking water violations measure employed in Currie et al. (2013). To see this, consider
that we are combining across contaminants with very different properties and health effects by
normalizing by their regulatory thresholds. This is very similar to Currie et al. (2013), who
also group all contaminants into a single summary measure, weighting equally, but instead define
treatment as exposure to a regulatory violation during gestation. The advantage of our approach
is that it allows us to use variation in contamination that doesn’t trigger a health-based violation,
which is important for providing policy-relevant evidence.

Throughout our analysis, we refer to and use what we call our “analytic sample,” which restricts
births as follows. First, births in our analytic sample are not exposed to any MCL violations;
second, they have some measure of contamination within their gestation period; third, they are not
plural births; and fourth, their measured contamination does not exceed the 99th percentile across
all births in the data for the specific contamination measure under study.24 In addition, when we
provide summary statistics, we remove singleton observations based on CWS and birth year-month
fixed-effects, or mother and birth year-month fixed-effects, in order to calculate statistics for the

24The last restriction depends on the contamination measure we are using as our independent variable, e.g., when
we take overall contamination as the independent variable of interest, we trim at the 99th percentile for that measure.
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exact samples used in our regressions.25
Table 1 describes the distribution of our average RRMCL measures across births; throughout,

births exposed to MCL violations are excluded. In preliminary analyses, we noticed that our
RRMCL index measures are very right-skewed, even after removing violation-exposed births.
Thus, we decided to trim out the top 1% of births based on RRMCL when we formed our analytic
sample.26 In panel A, we show the distribution of RRMCL across births, by contaminant group,
after our trimming. To illustrate why we trimmed outliers, panel B shows the distribution before
trimming. Finally, since our main specification for identifying causal effects is a within-mother
design, Panel C shows the distribution of these index measures after removing mother fixed-effects.
We see that the standard deviation in Panel C is about two-thirds the size, as is the spread between
the 10th and 90th percentiles.

To facilitate comparing the overall, chemical, and reproductive index contamination index
measures, in our regressions, we standardize such that a 1 unit change is equivalent to a change from
the 10th to the 90th percentile of the average RRMCL, for the RRMCL measure of interest (overall
or chemical) as the casemay be. Thesemovements are equivalent to about 1.875 standard deviations
for the overall measure, about 1.625 standard deviations for the chemical measure, and about 1.889
standard deviations for the reproductive index (five contaminant) measure (Table 1 contains the
quantiles of the distribution). We chose the 10th and 90th percentiles to standardize in order to
simulate a large, though not impossible, change in contamination exposure.27 For comparison,
a movement from the 25th to the 75th percentile is about 33% of the 10th-to-90th percentile
movement for the overall contamination measure, and about 31% for the chemical-only measure.
The reader can rescale our estimates to represent effects of these movements by multiplying by 0.33
or 0.31, respectively.28 Finally, our most rigorous specifications use within-mother across-sibling
variation only; Table 1 includes statistics describing the spread of our contamination indices across
births within mother in Panel C, in case the reader wishes to rescale our estimates based on that
distribution instead.29

25See Correia (2015) for a discussion of the importance of eliminating singleton observations in order to obtain the
correct standard errors in high-dimensional fixed-effects regressions.

26Trimming the top 1% substantially improves the precision of our estimates, and without this trimming we would
generally conclude that there is no significant effect of water contamination on birth outcomes, in contrast to our present
conclusion of a precise effect (estimates without trimming are not shown).

27Note that it is a large movement in the conditional distribution of birth exposure after removing MCL violations
and after trimming outliers, which are both data manipulations that limit this difference. See Table 1 for the quantiles
of the underlying RRMCL variable.

28The regression models we use are linear, so the reader can multiply our estimates by these ratios (or different ones
based on Table 1) to obtain the estimated effects for smaller changes as desired. To obtain the effect of a change in our
overall contamination index of ∆ units of RRMCL, simply multiply our estimates by ∆/0.15; similarly for chemical,
multiply our estimates by ∆/0.13. For instance, to consider the effects of a change from 10th-to-90th within mother
for the overall contamination index, multiply our estimates by 0.10/0.15 = 66%.

29Based on this panel, the movement from the 10th to the 90th within-mother is about 0.10 RRMCL for our overall
index (the difference between the 90th percentile of 0.05 and the 10th percentile of -0.05; note that since Panel C is the
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In the Online Appendix Section A1.1, we further describe the correlation between our index
measures and the samples for selected contaminants of interest in Table A1, as well as provide a
full table listing all the contaminants included in each of our index measures (94 for the all index,
91 for the chemical index) in Table A2.

2.3.1 Reproductive Health Water Quality Index

EPA lists 13 contaminants associated with “reproductive difficulties” and another 6 associated
with harms to “infants” (US Environmental Protection Agency, 2018). See Appendix Table A3
for the specific contaminants. We performed a literature review (see Appendix Section A1.3 for
discussion of this literature) and the epidemiology literature primarily focuses on arsenic, nitrate,
atrazine, and disinfectant byproducts (Haloacetic Acids (HAA5), Total Trihalomethanes (TTHM))
and only nitrate and atrazine overlap with the EPA’s list. We also found some epidemiological
literature associating tetrachloroethylene (PERC) and Di(2-ethylhexyl)phthalate (DEHP) and a
recent study in Virgina included these plus lead, radon, and fecal bacteria (Young et al., 2022).30 We
assessed the availability of samples for these contaminants to create an index that would have more
uniform coverage in our sample population and limited to 5 with frequent sampling in Pennsylvania
for our reproductive-health specific water quality index: arsenic, atrazine, nitrate, Di(2-ethylhexyl)
Phthalate (DEHP), and Tetrachloroethene (PCE or PERC). On average, 3.27 unique contaminants
are used in this more specific water quality index. This index could be used to target water alerts
communications to pregnant persons and other studies could create water quality indices for specific
health outcomes to target water alerts to specifically vulnerable populations.

2.4 Summary Statistics

Summary statistics for births are provided in Table 2. In column (1) we display statistics for
all non-plural births matched to CWS without exposure to MCL violations; in column (2) we
restrict to our analytic sample for overall contamination.31 These births include those to mothers
who switch CWS between some of their births in the panel. There is very little difference in
mother characteristics between columns (1) and (2), suggesting that samples are consistent after
addressing data availability and trimming. Columns (3) and (4) examine the births in column
(2), split by the tails of average contamination by CWS. These columns suggest that mothers of

distribution of residuals after removing mother effects, the distribution is centered around zero but the units are still in
RRMCL), or about 66% of the 10th-to-90th percentile movement we use, and 0.09 for our chemical index, or about
69% of the movement we use in that case. See prior footnote for scaling instructions.

30They only find an association between MCL violations for nitrate-nitrite in this study.
31We keep only births with contamination measures, trim at the 99th percentile for overall contamination, and

drop singletons based on CWS and birth year-month fixed-effects (these restrictions were discussed in the previous
subsection).
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lower socioeconomic status, and worse birth outcomes on average, tend to give birth in places with
higher levels of water contamination (that doesn’t trigger a health-based violation). Column (5)
restricts the sample to the mothers with multiple births that are included in our mother fixed-effects
regressions. In general, differences between column (5) and column (2) are not large, suggesting
that sample composition does not substantially change when we restrict to mothers with multiple
births (i.e., siblings).32

To reiterate, column (1) of Table 2 already restricts to births matched to CWS; in Online
Appendix Table A8 we compare this restricted sample to the sample of all births, including those
not matched to CWS. The most notable difference is that the sample matched to CWS is more
urban, which is expressed most strongly by being of greater share black (as rural Pennsylvania is
predominantly non-black).

3 Empirical Methods

We employ two regression models to study the effects of drinking water contamination on birth
outcomes, one with community water system (CWS) fixed effects (FE) and the other with mother
FE (within-mother across-birth variation).

The first model takes the following form:

Outcomeiwmt = βRRMCLiwmt + θ
′Xiwmt + η

′Temp&Polliwmt + αw + γt + εiwmt (3)

In this model, i denotes birth to mother m living in CWS w in year-month t at the time of
the birth; Outcomeiwmt is a birth outcome; the birth outcomes we consider are: low birth weight
(LBW), preterm birth (PTB), small for gestational age (SGA) and term birth weight (TBW). See
Section 2.1 for information about how these outcomes are defined.

This regression specification employs a fixed effects estimator, where αw and γt are water
system and birth year-month fixed-effects, respectively. The independent variable of interest is
RRMCLiwmt , “mean result relative to MCL,” a measure of overall or chemical drinking water
contamination which we construct from the sample concentrations as described in subsection 2.3.
The identification assumption is that, after adjusting for an array of individual mother, weather and
pollution characteristics in Xiwmt and Temp&Polliwmt , trends in birth outcomes across water systems
would be the same on average except for differences due to differences inwater contamination trends.

32In exploratory regressions (not shown), we found that systems with a greater share of non-Hispanic white mothers,
and lower share served byWIC/Medicaid, are more likely to have violations. This is surprising and differs from findings
of Currie et al. (2013). However, our sampling data-based measure of contamination exhibits different relationships:
systems with lower share non-Hispanic white experience higher average levels of contamination by these measures, as
do larger systems. These last results hold both before and after removing births exposed to violations.
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We control rigorously for a wide array of mother, birth, and weather measures. Whenever a
variable is missing, we set it to zero and include an indicator for missingness. We include a full set
of mother demographic and socioeconomic controls, and risk factors for the pregnancy, in Xiwmt .33
These control variables were curated from the birth records.34 The variables in Temp&Polliwmt are
weather and temperature controls obtained from the daily weather statistics provided by Schlenker
(Schlenker and Roberts, 2009), as well as Toxics Release Inventory (TRI) facility statistics from
the EPA (US EPA, 2013).35

The CWS fixed-effects model also naturally lends itself to an aggregate water-system level
fertility regression,

(Birth Rate)wt = β (RRMCL last 9 monthswt) (4)

+ θ′ (average X last 9 monthswt)

+ η′
(
average Temp&Poll last 9 monthswt

)
+ αw + γt + εwt

This model is motivated by the concern that observed fertility rates may respond to drinking
water contamination, either due to behavior such as mobility or selection into pregnancy, or due
to health issues, such as infertility, miscarriage, or stillbirth. In this model, (Birth Rate)wt is the
birth rate for the CWS in the given year-month, defined as the number of births divided by the
system’s population served. We also estimate a version using log(births) as the dependent variable
to alleviate concerns that we are not accurately measuring CWS-population. Our population served
measure is time-invariant, so we cannot ignore the fact that variations in birth rates may be due to
mothers leaving or entering CWS over our panel; we address maternal mobility below. The variable
of interest (RRMCL last 9 monthswt) is a measure of mean contamination in the water system over

33These control variables include: mother’s age categories (19-24, 25-34, 35+); mother race (non-Hispanic white,
non-Hispanic black, Hispanic); mother’s education (less than high school, some college, college or more); risk factors
for the pregnancy (including pre-pregnancy diabetes, gestational diabetes, pre-pregnancy hypertension, gestational
hypertension, previous pre-term birth, previous poor pregnancy outcomes, vaginal bleeding, infertility treatment,
previous cesarean); maternal smoking (counts of cigarettes smoked by term); parity indicators (number of previous
successful live births and unsuccessful live births); mother is married; child is male; WIC participation; and payment
type (Medicaid, private, self-pay).

34These covariates are commonly used in the birth outcome literature. See Almond et al. (2018) for a review and
Currie et al. (2015), Currie et al. (2013), and Hill and Ma (2022) for specific examples.

35We are concerned about other environmental confounders that may be co-occurring with drinking water contam-
ination, such as weather, temperature and air pollution. Our weather and temperature controls include maximum and
minimum daily temperature, percentage of days in which the daily maximum is above 29.4◦C, percentage of days in
which daily minimum is below 0◦C, average daily precipitation, percentage of days in which precipitation is over 0,
percentage of days in which precipitation is over 0.25 millimeters, and maximum andminimum daily precipitation. Our
TRI facility statistics, which proxy for air pollution (a potential confounder, even in our mother fixed-effects models),
include the number of TRI facilities operating within 1, 3, and 5 kilometers of the maternal address in the year the
infant was born, and the reported total onsite, offsite, and overall releases for TRI facilities weighted by the squared
inverse distance between the facility and the mother’s residential location. We include these weather and air pollution
controls following Knittel et al. (2016) and Currie et al. (2015).
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the last 9 months (by aggregating the RRMCL measures described in section 2, weighting months
equally), (average X last 9 monthswt) is a measure of average birth characteristics listed earlier
taken over the last 9 months weighting births equally, and (average Temp&Poll last 9 monthswt) is
the same battery of weather and TRI facility-based controls we use in models at the individual birth
level, except again averaged over the last 9 months, weighting births equally.36 In these regressions,
we weight systems by their population served.

In light of the possibility that any fertility effects we identify may be due to mothers simply
moving out of CWS in response to contamination, it is useful to repeat regression (3), but with a
different outcome variable: whether the mom is in a different CWS in her next birth (restricting
to mothers with at least two births). These models directly calculate whether mothers can be seen
to switch systems more often when there is greater water contamination in their first birth. These
estimates indirectly speak to whether any fertility effects we see are due to mother mobility.

The second birth-level regression model we employ is a within-mother analysis, which uses
variation only across the births of the same mother. The regression is identical to the CWS fixed-
effects model (equation 3) but mother fixed-effects are added, in addition to the current fixed-effects.
Controlling for all time-invariant characteristics of mothers is a rigorous way to determine whether
water quality variation affects birth outcomes, rather than being confounded with other mother
characteristics.

As before, in addition to fittingmother fixed-effectsmodelswith birth outcomes as the dependent
variable, we can also fit these with mother mobility (switching CWS) as the outcome. We estimate
mobility effects within CWS and within mothers. The effects of contamination on mobility are
identified off relating within-mother differences in contamination that mothers face across births to
within-mother differences in whether the mother has switched CWS between births.37

The recent literature on difference-in-differences (DD) and two-way fixed effects (TWFE) esti-
mators have made significant advances in a staggered treatment setting (Callaway et al., 2021; Call-
away and SantAnna, 2021; De Chaisemartin and dHaultfoeuille, 2020; Goodman-Bacon, 2021).
While we do employ a panel model that leverages within water system or within mother vari-
ation over time, we are not explicitly using a difference-in-differences model due to this being
a non-standard setting with no clear event. Contamination can steadily increase over time, stay
relatively constant, reduce abruptly following a change in technology or following a regulatory
violation/remediation, and it is not clear that it follows a standard pattern commonly used in a DD

36An exception to using the same controls is that we use the overall share of plural births (twins or greater) rather
than the shares of each plurality type.

37Note that to be included in mother FE regressions we need mothers to have three or more births, with at least two
of them with contamination measures: for example, for a mother with exactly three births, we observe our switching
indicator for the first two births only, and then the mother’s fixed-effect absorbs another degree of freedom. The CWS
FE model only requires two births.
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model exploiting pre/post treatment (with continuous treatment). Here, there are also unlikely to
be “never treated” units.

While the literature on TWFE DD and event studies with continuous treatment suggests this
could still be an issue (Callaway et al., 2021), the literature does not at this time have a solution to
employ. The primary issue that the continuous treatment in a TWFE design presents is a selection
issue. The decomposition in Callaway et al. (2021) shows that the presence of this selection bias
without an easy fix will require credibly arguing that the average treatment effects are equal across
all dosage groups at the same dosage level. The identification assumption is strong– that there is no
selection into the intensity of treatment. However, we are studying dosages of water contamination
that are compliant with current regulations and does not trigger a violation (i.e., information to the
consumer). The water systems do not have an incentive to manipulate concentrations except near
the regulatory threshold. We show that mothers are not changing water systems in response, nor
are there large changes in fertility. Finally, our “dose” is defined by a water quality index that is not
observed by the consumer, the operator, or the policymaker, and it is unlikely that any systems or
mothers are selecting on the level of treatment.

4 Results

Tables 3 and 4 display our main estimates of the overall effects of drinking water contamination
in community water systems (CWS) on birth outcomes. Tables 5 and 6 present the results for the
reproductive-specific water quality index. Table 7 displays our estimates of the effects of water
contamination on mother mobility or overall CWS-level fertility. Throughout, we restrict to our
analytic sample. In particular, we have removed all births that have a gestation period which
overlaps with any MCL violation compliance period. Thus our estimates are of the effects of water
contamination on birth outcomes, mobility, or fertility, for variation in water contamination which
does not coincide with MCL violations.

4.1 Birth Outcomes

Fitting the model described by Equation 3, we find that the chance of low birth weight (LBW)
and preterm birth (PTB) are both significantly positively related to contamination overall and
chemical contamination specifically (Table 3). Reading across columns, we find that the addition
of our extensive set of control variables does not change inference, despite raising adjusted R2

substantially. Note, however, that point estimates are attenuated by 10 to 28% in the fully adjusted
specifications (columns (5) and (6)) relative to the unadjusted specifications (columns (1) and (2)).
Generally, effect estimates are larger in the unadjusted models. Reading across rows, we find that
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our results are more sensitive to whether we use a CWS fixed-effects (CWS FE) specification or
a mother fixed-effects (MFE) specification (that also includes CWS FE). In general estimates are
larger in the CWS FE specifications. All coefficients are estimated effects of a change from the 10th
percentile to the 90th percentile in the Pennsylvanian distribution of exposure to CWS drinking
water contamination.38 Thus they are comparable across specifications. In both cases, effects are
economically meaningful: based on columns (5) and (6), in the MFE specification, a 10-to-90th
percentile move leads to about a 0.8 percentage point increase in low birth weight (LBW). From the
base LBW rate for non-plural births of 6.7% (Table 2), this is about a 12% increase. Analogously
for PTB, we find about a 17% increase.

In order to formally calculate the degree to which the addition of control variables affects
our inference, we report “AETO’s δ.” By the acronym AETO we refer to the two papers Altonji
et al. (2005) and Oster (2016); the latter work substantially builds on the former and provides us
the Stata implementation we use.39 The interpretation of δ is the minimum ratio of selection on
unobservables to selection on observables that would be needed to make our estimated coefficients
zero.40 A ratio of at least one is a plausible rule for saying an effect estimate is “robust to controls.”41
In our case, AETO’s δ tends to be large in the CWS FE models, but much smaller in the mother
(and CWS) fixed-effects models (Table 3). This is partly by construction: the mom fixed-effects
absorb many potential unobservables, making it unlikely that the inclusion of control variables will
appreciably change the R2 in the model. Indeed, consistent with this idea, when we compare for
example, columns (1) and (3) in the mom fixed-effects specifications, the control variables do not
substantially increase adjusted R2. That said, most of our estimates have AETO’s δ’s greater than
one. This also lends support for our earlier claim that there is not a clear indication of selection
into a particular dose of treatment.

In Table 4, we report the estimated effects on more direct measures of intrauterine growth
restriction: small for gestational age (SGA) and term birth weight (TBW). These estimates are con-
sistent with our main findings. In other words, after applying at least some approaches to removing
the effects of contamination on gestation length, we continue to find effects of contamination on
birth outcomes, suggesting that effects on gestation length are not the only channels by which
water contamination affects birth outcome, and intrauterine growth restriction (IUGR) is a possible

38For the distribution of the underlying result relative to MCL (RRMCL) measure, see Table 1. Section 2.3 and
footnote 29 provide details for alternative scaling.

39Specifically we use Oster’s code available from the Boston College Statistical Software Components (SSC) archive
under the Stata command -psacalc-. We modify this code to work with the Stata command -reghdfe-.

40We use the recommendation of Oster (2016), based on an empirical analysis of randomized controlled trials
published in prestigious economics journals, and assume a maximum R2 (the R2 we would obtain if all potential
confounders were included) of 1.3 times the R2 estimate from the model with controls.

41Note that a negative δ means that selection on unobservables would have to be the reverse of selection on
observables to bring the effect to zero.
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consequence of contamination.
While our main analysis focuses on indices of water quality that include a large number of

contaminants, as discussed in Section 2.3.1 and Appendix Section A1.3, an alternative approach
is to restrict to contaminants which are commonly sampled and for which we could find research
literature suggesting deleterious health effects for infants. We ultimately chose five contaminants to
include in a reproductive health specific water quality index. Estimates using this five-contaminant
index to measure water quality are included in Tables 5 and 6 (the tables include estimates for
our all index of contamination for comparison). Across the various specifications, we see slightly
stronger effects for the reproductive-specific index. In particular, focusing on columns (5) and (6)
and mother fixed-effects regressions, we find that a 10th-to-90th percentile movement in RRMCL
for our five-contaminant index leads to a 1.3 percentage point increase in low birth weight (about
19% relative to the mean), a 1.8 percentage point increase in preterm birth (about 22% relative to
the mean), 0.3 percentage point increase in small for gestational age (significant at only the 10%
level), and a 12.59 gram decrease in term birth weight.

For interested readers, in Appendix Section A3 we estimate models studying the effects of MCL
violations on health, following Currie et al. (2013). We find that 3% of our sample has a regulatory
violation during gestation, compared to 8% in NJ in the prior study. We find similar effects in
magnitude and statistical precision for any MCL violation, but not for chemical violations, which
is in contrast to Currie et al. (2013).42

4.2 Avoidance via Migration

Table 7, Panels A and B, display the estimated effects of contamination on mother mobility.
Mobility is defined for a given birth as an indicator for the mother being in a different CWS at the
time of her next birth. Regressions in this table are similar to equation 3, except with mobility
as the dependent variable. As before, we restrict to our analytic sample as described in Section
2. In these models, the independent variable of interest is CWS drinking water contamination, as
measured during the gestation period of the current birth.

Mothers would exhibit avoidance behavior via migration if, when they experience higher levels
of water contamination during this gestation period, they are more likely to be found in a different
CWS at the time of their next birth. We find little evidence for this type of avoidance behavior,
which is consistent with mothers not behaviorially responding to contamination levels that do not
trigger MCL violations. In Table 2 about 37% of births have their mother in a different CWS at the
next birth (this is consistent with statistics from New Jersey in Currie et al. (2013)), so the point
estimates from Table 7 are also economically small.

42More details and discussion of our findings are in the Appendix given the focus of this paper on contamination
compliant with regulatory standards.
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While we have evaluated the degree of avoidance behavior through very costly migration
decisions, this is not the only possible and probably not the most likely form of avoidance behavior.
It is possible that very attentive mothers purchase bottled water instead of using tap water, or
they filter their tap water, when contamination rises. This avoidance behavior is less likely in
our setting where we study water quality that doesn’t trigger a health-based violation unless their
system previously experienced violations. However, mobility looms large as a potential avoidance
behavior that could lead to bias in our estimated effects of contamination on birth outcomes, and
especially fertility, discussed in the next section, so it is helpful to note little evidence for this
particular behavior.

4.3 Fertility

Table 7, Panel C, displays the estimated effects of contamination on fertility rates from the
regression described in equation 4. These regressions are weighted by CWS population served.
CWS fertility rates are defined as monthly births per 100,000 people served.43 Our findings are
consistent with poor water quality reducing fertility. A typical birth is in a CWS with about 113
births per 100,000 served per month (Table 2). We find that changes in overall contamination
from the 10th to the 90th percentile reduces this number by about 0.07 births per 100,000 per
month, or approximately a 0.06% reduction in fertility. Effects for chemical contamination are
similar. Comparing these effects to those found for lead contamination, Grossman and Slusky
(2019) found that the Flint water crisis led to a 12% reduction in fertility, while Clay et al. (2021)
found, for topsoil lead, that bringing a typical above-median county to the lead levels of a typical
below-median county would lead to approximately an 11% increase in the birth rate. By contrast,
we find that going from the 10th to the 90th percentile of water contamination in our sample has
a much smaller, though still statistically significant, negative effect on fertility. Lead is known to
induce miscarriage, whereas the more general contamination studied in our paper does not have
strong evidence for causing pregnancy loss. Given that mobility effects appear to be limited, the
effects on fertility are likely due to selection out of pregnancy, either through choice or through
contamination leading to reduced fertility.

Our fertility regressions in Panel C of Table 7 use time-invariant CWS population served in the
denominator of the dependent variable. As a robustness check, in Panel D of the same table we use
log births as the outcome variable, thereby avoiding the use of the time-invariant population served

43Analogous to our approach at the individual birth level, we remove CWS-months for which an MCL violation
occurred in the last 9 months, and we remove CWS-months above the 99th percentile of contamination (among all
CWS-months in the data). However, the units of contamination used in this model are the same as in the previous
regressions. Specifically, a one unit increase of the contamination measure reflects a change from the 10th to the 90th
percentile in the overall index of drinking water contamination among births (rather than among CWS-months) after
removing births above the 99th percentile.
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variable. This approach is commonly used (Guldi, 2008; González, 2013; Ananat and Hungerman,
2012). Effects in Panel D are larger in magnitude, at about a 0.1% reduction in fertility, but they
are of the same sign and statistical significance as our main fertility results in Panel C.

5 Sensitivity Analyses

In this section, we discuss the sensitivity of our findings to different subsamples. For all results
presented thus far, we have restricted to non-plural births, and have included all mothers, including
those who switch CWS. We show robustness to these sample selection choices in this section. All
tables referenced in this section are included in Online Appendix Section A2.

5.1 Robustness to sample restrictions based on plurality and mobility

In the Online Appendix, we estimate our models with two alternative samples: first, all births
(i.e., including plural births), and second, sub-setting to never-moving mothers. Including plural
births does little to change our findings (Tables A9 and A10). Our findings are also robust to
excluding all mothers with multiple births who we ever observe in different CWS across births
(Tables A11 and A12). This is surprising since this sample restriction removes a quarter to a half
of the births in our data, depending on specification; moreover, one component of our variation in
water quality from the mother fixed-effects analyses was due to mothers switching water systems
with different average contamination. The robustness of our results in this very restrictive sample
provides additional support for our within-water system estimates.

5.2 Robustness to sample restrictions based on MCL violations

Recall that throughout our analysis, we excluded births exposed toMCLviolations. In theOnline
Appendix, we also re-estimate our models with two additional alternative sample restrictions: we
run the analysis keeping births that are exposed to MCL violations, and we run the analysis
removing births with any samples exceeding the MCL threshold. The latter analysis is motivated
by the complexity of the regulatory environment, in that in many cases violations are triggered only
when a particular average of samples exceeds the regulatory threshold (e.g. TTHM and HHA5 use
running averages), and a concern that the MCL violation data may be missing some violations.
See the Online Appendix Section A2.3 and Section A2.4 for further details on these alternative
samples. We also include models estimating the effects of MCL violations on birth outcomes in
Online Appendix Section A3.

Our findings are robust to including births exposed to MCL violations (Online Appendix Tables
A13 and A14). This may not be surprising since our sample size increases by only about 3 to
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5% (depending on specification) by adding these births. More surprisingly, our findings are robust
to removing births exposed to samples exceeding MCL thresholds (Online Appendix Tables A15
through A20). In conducting these further restrictions, we document in the Appendix Section A2.4
that four contaminants very often have single samples that exceed their respective MCL (Coliform,
TTHM, HAA5, and lead), and this makes sense because none of these contaminants have violations
driven by single-sample exceedences. Our findings are robust to several different ways to treating
these four contaminants, which is an important consideration since if we drop births exposed to
any samples with exceedences for these contaminants we lose about 85% of our data. In any
case, this robustness check is intended to simulate a stricter definition of MCL violation, and
reduces sample sizes by 25% to 85% depending on specification. That our results are robust to
these stricter definitions of “compliant drinking water” suggests that there are indeed statistically
significant effects of water contamination on birth outcomes, even when systems are in compliant
with regulations or all sample concentrations are below the regulatory threshold.

5.3 Robustness to restricting to MFE sample using CWS FE

In the main specifications, using mother fixed-effects (MFE) rather than community water
system fixed-effects (CWS FE) often appreciably and significantly changed the effect estimates
(e.g., the differences between the CWS FE and MFE subpanels in Table 3). In fact, this is the main
way in which our results are sensitive, since the addition of mother and birth control variables does
little to change our estimates.

In the Online Appendix, we present CWS FE and MFE estimates sub-setting throughout to the
sample used in the MFE specifications. Our results are robust in Tables A21 and A22. Thus, the
differences between the CWS FE and MFE specifications are due to differences in the models we
fit, not due to differences in the samples we employ.

5.4 Study Limitations

Our estimates may be affected by a few forms of exposure misclassification which is common
in environmental health research. First, our index is created from the measured contamination
during gestation periods. The regulations provide monitoring schedules that vary by size of system,
season, and contaminant (among others). For some contaminants, systems are required to measure
monthly, quarterly, annually, every 3 years, and in some cases every 6 years. Unfortunately, this
temporal sparsity of the data leads to unobserved contamination levels during gestation for some
contaminants that make up our index for any individual pregnancy. We chose not to impute
contamination because we do not believe we have adequate information to predict contamination
over time across systems. Despite this limitation, we believe using the sampling data provides
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more temporal frequency than the MCL violations data as they only report violations or not in each
monitoring period (approx. quarterly) but when there is no violation, the researcher doesn’t observe
whether it is a true zero (measured) or just no violation in the monitoring period (which leads to
censoring). Second, our estimates are dependent on the accuracy of the technology measuring the
concentrations for CWS. In particular, in the Pennsylvania data, non-detect values are treated as
zero, when in fact, the technology may have a minimum detection limit (MDL) such that we cannot
be confident that the concentrations are in fact zero. In Appendix Section A1.4, we examine how
replacing non-detects with the MDL changes the distribution of our index, and furthermore show
that Pennsylvania MDL are typically lower than California’s, suggesting Pennsylvania is a decent
setting to conduct this study. Third, we rely on water system service areas to define exposure to
CWS and assign water quality during gestation at the system-level to each mother residing in that
water system. There could be exposure misclassification if the water ingested by an individual
mom is more or less contaminated than what is measured prior to the water being released into the
distribution system. Ideally, we would have distribution maps and be able to assign samples for
sub-areas of the service area. Unfortunately, these distribution maps are not available and this is
a data limitation.44 Despite this limitation, we believe that this is analogous to what is used in air
quality studies extrapolating monitor or satellite data (Currie and Walker, 2019) or water quality
studies at the county or city level (Grossman and Slusky, 2019; fly, 2199). However, we are using
system boundaries providing sub-county variation in water quality, which should improve upon
existing approaches that use county-level variation (McDonald et al., 2022). Finally, in our analysis,
we used a singular vintage of the water system boundaries. In the Appendix, we checked to see if
there was any correlation between systems that changed over time and the water quality index. See
Appendix Section A1.5 for details. We found that while there were some changes over time, they are
minimally associated with our measure of water quality. We hold the boundaries constant over our
study period to ensure that factors that might influence changing systems (e.g., population growth,
population decline, water contamination, etc.) are not influencing our assignment of treatment.

6 Discussion

Policymakers have increasing begun using summary indices to regulate or improve communi-
cation of quality in various sectors for consumers. For example, Centers forMedicaid andMedicare
Services (CMS) has promoted Hospital Compare, Nursing Home Compare, and Medicare Care
Compare as mechanisms for improving health care quality. Most related to our context, the EPA
has long provided the U.S. Air Quality Index (AQI; updates by metro area daily) and the AQI is
now reported in AirAlerts communicating to the public when air quality could be risky for at-risk

44More details about this issue are discussed in Appendix Section A1.5.
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individuals. State departments of education provide school report cards and provide summary mea-
sures of quality using “grades”. Researchers have studied responses by consumers and suppliers
(e.g., providers, schools) to use of these indices for communicating quality. For example, AQI and
communicating poor air quality has been shown to change participation in outdoor activities (Zivin
and Neidell, 2009; Wen et al., 2009) and following star-ratings for Nursing Home Compare, low
scoring nursing homes lost demand and high scoring nursing homes experienced an increase in
demand (Werner et al., 2016). With recent scrutiny on water quality, use of a water quality index to
communicate more frequent water quality information to society could be beneficial for avoiding
poor outcomes for the most sensitive groups.45

Figure 2 displays an excerpt of Philadelphia’s 2017 Consumer Confidence Report (CCR), which
was provided to consumers of Philadelphia water to inform them of water quality in the prior year.
Sample result data in the report is displayed by contaminant, for example, the highest level of
Barium reported in Philadelphia’s water in 2017 was 0.044ppm. Except for reported regulatory
violations, which are rare, consumers are unlikely to extract actionable information from current
Consumer Confidence Reports. Motivated by our results, we propose that regulators consider
providing a summative, index measure of water quality for CWS, to be displayed on annual CCRs
or to be used more frequently as water alerts to community members.

We run a simple simulation to provide an example policy counterfactual, if systems were to
adopt our overall index measure. Our example accountability policy takes our index measure,
measured at the birth level, and aggregates to the CWS level by averaging the measure for all births
(below the 99th percentile of contamination) since the start of 2010 through the end of 2014.46
This gives us a “mean result relative to MCL,” or “mean RRMCL” measure. We then split systems
into letter grades, A through F, as follows. We begin by splitting up the CWS-level mean RRMCL
measure into four quartiles, and assigning letter grades A through D to those quartiles. Then, if a
system receives any MCL violation (or for lead and copper, any trigger of the action level) over the
2010 through 2014 period, we assign the system to grade F. Several large water systems with their
letter grades assigned according to our method are displayed in Table 8.

In Table 9, we display results from a counterfactual simulation, wherewe assume that consumers
in systems with letter grades C, D, or F engage in avoidance behavior or lobby their water systems
for better water treatment, and these responses ultimately move their effective water quality to the
mean quality for systems of letter grade A. The table displays back-of-the-envelope estimated effects
on birth outcomes.47 To put these numbers in context, there are about 150,000 singleton births

45This is the stated purpose of the EPA’s Air Alerts: “The AQI informs the public about air quality in the area, tells
who may be affected, and provides steps to take to reduce exposure when pollution levels are unhealthy.”

46We use births below the 99th percentile to ensure consistency with the rest of the paper; naturally, the letter grades
would be different were we to include these outliers.

47Consistent with our approach elsewhere in the paper, we remove births exposed to contamination above the 99th
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in Pennsylvania each year, and about 10,005 are low birth weight (6.67 out of 100); the proposed
policy could reduce this to about 9,645 low birth weight infants, thus, about 360 infants per year
would avoid being low birth weight (3,960 over our 11-year period). Similarly, for preterm birth,
there are about 12,195 such infants born in Pennsylvania each year; the policy could reduce this
to 11,565, thus preventing 630 preterm births annually (6,930 over 11 years). This policy could
save around $290 million in total costs for PTB and LBW associated hospitalizations and medical
services before age 9.48 Given the large human capital costs of poor birth outcomes for later life
education outcomes, labor market outcomes, and life expectancy (Black et al., 2007; Almond et al.,
2018), our estimates clearly have economic and policy significance.

Based on this simulation, we argue that providing a grade for water systems could be an
improvement on the current information provided to consumers. We have to acknowledge, however,
that while this providesmore information for the consumer, it puts the burden of preventing exposure
on the consumer andmay disproportionately affect low-income families. Research onwater systems
in California, however, suggests that water systems may not be removing contaminants even after
regulatory violations (Grooms, 2016). Given this imperfect enforcement, we do believe that adding
a summary index (after further validation) to CCR or used in water quality alerts could further
protect public health at the very least by informing consumers of water quality in their local systems.
For example, the EPA’s Air Alerts indicate levels of concern as well as which populations might be
most at risk and should avoid exposure. The actual implementation of this information would need
to take into account equity and environmental justice concerns, much like air quality alerts where
low-income families may not have air conditioning, access to air filters or be able to avoid exposure
due to employment that requires spending time outdoors.

The index that we used in this study is but one possible summary measure, and we encourage
researchers and policymakers to consider alternatives. Our index, or an alternative water quality
index, could be used to study other health outcomes and other populations that could be at risk of
adverse outcomes from exposure to drinking water contamination (e.g., children, older adults). As
research causally links various water quality indices that may be relevant for particular populations
(such as our reproductive index described in Section 2.3.1) or how our overall index affects the
health of other populations, “water alerts” could be targeted to specific populations at risk with
enough research and validation to support such implementation.

We view our letter grading policy proposal as a way to consider the potential benefits of

percentile before conducting these counterfactual exercises. In this analysis, we kept births exposed to MCL violations,
however.

48Russell et al. (2007) calculated that each instance of LBW costs $14,500, on average, due to increased hospital-
ization and related medical services use ages 0-9 years. For each instance of PTB, Behrman et al. (2007) calculated the
hospital costs to be $33,284. Back-of-the-envelope estimates suggest a savings of $57.4 million for LBW and $230.7
million for avoided PTB. These estimates are likely overstated because PTB babies are also more likely to be LBW and
therefore could double count savings.
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improving water quality, and our study is not a formal cost-benefit analysis of safe drinking
water policies. The cost-benefits literature on water contamination is relatively new, and a recent
evaluation of the Clean Water Act suggested that its benefits did not exceed its costs (Keiser and
Shapiro, 2019a). One approach to assess costs in our context might be to assume that households
make bottled water purchases to replace tap water with higher quality water, but it is unclear whether
bottled water is a sufficient substitute for quality tap water. In particular, the persistent and large
negative house price effects of the Flint water crisis found in Christensen et al. (2023), despite three
years of free bottled water provision and several programs to distribute free water filters and filter
cartridges, suggests that private goods are imperfect substitutes for quality tap water.

Our results using a water quality index have two additional implications for water regulation.
The scientific literature has suggested that certain co-occurring contaminants that are not regulated
by SDWA and therefore are unmeasured in our data could be explaining some of the effects we
observe (Bradley et al., 2018). Using this index could be helpful, given regulators can not monitor
all contaminants in drinking water. Furthermore, as briefly discussed in the introduction, SDWA
regulates contaminants on a contaminant-by-contaminant basis. Toxicology literature suggests that
mixtures of contamination may be more problematic for human health (Gennings et al., 2018;
Braun et al., 2016), and people are exposed to mixtures in real-world settings. Our approach of
using a summary index could be a first step towards having drinking water policy take into account
mixtures.

In this paper, we define compliance as not having a health-based violation as reported to the
EPA. Recent work (Baker et al., 2022) has argued that while there is some evidence that violations
go unreported to the national EPA, the majority (79%) are accurately reported.49 Given that we
condition on no health-based violations as reported to the EPA, we join other studies (Allaire
et al., 2019) that suggest that improving this reporting could benefit communities health through
communicating water quality accurately.50 Furthermore, if violations do not result in improved
compliance, as Grooms (2016) suggests, our findings could reflect this lack of enforcement resulting
in poor birth outcomes.

We address the question of “missed” or unreported violations by crudely removing samples
that are above the regulatory threshold for each contaminant (Appendix Section A2.4). The current
regulations do not treat these thresholds as binding for all contaminants, and so our removal of
concentrations above any regulatory threshold is much more stringent than the current regulations.
We find similar results when we treat thresholds as binding for all contaminants in Appendix
Tables A19 and A20. While this suggests that even when concentrations are below the regulatory

49We found 94% of violations were reported to EPA. See Appendix Section A2.4 for more details.
50Allaire et al. (2019) suggest using bottled water purchases for surveillance to identify emerging water quality

problems that might go undetected or unreported.
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threshold, water contamination could be impacting infant health, we lose substantial sample and
caution that more research is needed to confirm these findings.

For analyses such as those reported in this paper, the lack of regular monitoring for certain
contaminants that may be very important for reproductive health outcomes (e.g., lead, uranium)
limited our ability to create a reproductive health-specific water quality index containing the full list
of contaminants that the EPA has indicated could harm reproductive health or infants.51 Frequent
monitoring has costs and the EPA has already considered these costs when defining monitoring
schedules for each contaminant. Still, our analysis has limitations (see Section 5.4 for discussion)
due to the limited frequency of sampling, and this limitation applies to other analyses that may wish
to inform regulators.

7 Conclusions

In this paper, we studied the effects of drinking water contamination on birth outcomes, using
panel data on births within community water systems (CWS) for the state of Pennsylvania. In
order to provide the most policy-relevant estimates possible, we restricted the sample to births that
were not exposed to a water quality regulatory violation. We found that when we measure water
contamination using either an omnibus measure of water quality or a measure removing microbial
contaminants, birth outcomes respond negatively to water contamination, even in this no-violation-
exposure sample. We find consistent evidence when using a reproductive-health-specific index
and when we remove samples below the regulatory threshold (despite a substantial loss in sample
size). In addition, we identify small negative effects on fertility. We find little evidence of mobility
in response to contamination. This is consistent with our variation in water contamination not
triggering significant avoidance behavior, which is intuitive since we have removed births exposed
to regulatory violations that trigger public notification. Finally, we argue that current consumer
confidence reports provided to consumers by CWS do not provide much information that can
be easily understood by the consumer. Our index could be used to characterize the level of
contamination in a simpler way and help consumers avoid exposure.

Although our findings are of short-run health consequences of poor water quality, even at levels
that do not trigger regulatory violations, long-run effects are not a distant possibility. Our results call
for further research on these important environmental and health policy issues. Future studies could
repeat our analysis on different samples and fit models that critique and refine our index measures.
In addition, previous research has shown that consumer confidence report policy changes can
influence water system behavior (Bennear and Olmstead, 2008), while there is weaker evidence
that violations can (Grooms, 2016); our findings motivate developing and adding omnibus water

51See Section 2.3.1 and Appendix Section A1.3 more details
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quality measures to these consumer confidence reports, which could be similar to letter grading in
K-12 education (e.g., Figlio and Lucas, 2004). Innovative accountability policies such as this may
be able to improve water quality even for systems that are not in violation of regulatory standards,
an outcome that our results suggest could improve public health.
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8 Tables and Figures

Figure 1: Map of Pennsylvania and 1,768 CWS Service Areas
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Table 1: Distribution of drinking water contamination experienced by Pennsylvanian births
during gestation.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Contaminant Mean SD 10th 25th 50th 75th 90th Max Births

Panel A: Trimmed sample (births used in analysis)

All 0.08 0.08 0.02 0.03 0.05 0.08 0.17 0.50 1,216,132

Chemical 0.07 0.08 0.02 0.03 0.04 0.07 0.15 0.87 1,214,709

Repro. Index 0.08 0.09 0.00 0.02 0.06 0.11 0.17 2.80 1,147,893

Panel B: Raw sample (including births not used)

All 0.09 2.24 0.02 0.03 0.05 0.09 0.18 1425.00 1,228,531

Chemical 0.09 2.24 0.02 0.03 0.04 0.07 0.17 1425.00 1,227,035

Repro. Index 0.08 0.59 0.00 0.02 0.06 0.11 0.18 193.80 1,151,025

Panel C: Trimmed sample, after removing mother fixed-effects

All -0.00 0.05 -0.05 -0.02 -0.00 0.01 0.05 0.37 700,951

Chemical -0.00 0.05 -0.05 -0.01 -0.00 0.01 0.04 0.54 699,656

Repro. Index -0.00 0.05 -0.05 -0.02 0.00 0.02 0.05 1.26 645,353

Notes: Table displays the average sample result relative to MCL (RRMCL) over gestational periods
for births in Pennsylvania, 2003-2014. Throughout, the table restricts to non-plural births not exposed
to MCL violations. Panel A trims the sample of births at the 99th percentile (separately for each
contaminant group). This is the sample we use throughout the paper. Panel B shows the raw statistics
for comparison. Panel C shows the distribution after removing mother fixed-effects, which is relevant
given our causal design. “All” and “Chemical” are our indexes described in Section 2.3; “Repro.
Index” is our five-contaminant index described in Section 2.3.1.
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Table 2: Descriptive Statistics of Births in Pennsylvania, 2003-2014

(1) (2) (3) (4) (5)
Tails of Contamination

Characteristic Non-Plural Analytic Distribution Mom FE

No MCL Sample ≤ 10th ≥ 90th Sample

Sample Sizes
No. of births 1,241,656 1,216,132 122,856 110,523 700,815
No. of moms 832,674 820,173 112,209 103,069 304,934
No. of CWSs 1,537 1,459 1,302 885 1,343
Outcomes
Low birth weight 0.067 0.067 0.057 0.079 0.065
Preterm birth 0.082 0.082 0.074 0.102 0.081
Small for gestational age 0.095 0.096 0.083 0.095 0.091
Term birth weight (g) 3,396 3,396 3,423 3,389 3,402

(468.9) (468.8) (465.0) (467.5) (467.2)
CWS births per 100k per month 113.4 112.7 141.0 109.6 112.1

(107.4) (103.3) (223.4) (108.1) (98.59)
Other characteristics
Mom age (years) 27.87 27.87 28.01 27.80 27.69

(6.054) (6.057) (5.854) (6.023) (5.858)
Mom Black 0.210 0.213 0.074 0.185 0.220
Mom Hispanic 0.068 0.069 0.038 0.060 0.074
Mom white, not Hispanic 0.722 0.718 0.889 0.757 0.713
HS or less 0.401 0.401 0.377 0.402 0.406
Mom smokes 0.224 0.223 0.262 0.238 0.216
Mom married 0.569 0.568 0.642 0.581 0.578
WIC/Medicaid 0.477 0.478 0.422 0.459 0.482
Different CWS next birth 0.369 0.368 0.456 0.356 0.368
Mean RRCML, all contaminants 0.095 0.078 0.014 0.285 0.078

(2.237) (0.078) (0.006) (0.082) (0.077)
Mean RRCML, chemical only 0.085 0.069 0.013 0.281 0.069

(2.238) (0.080) (0.006) (0.112) (0.079)
Notes: Sample consists of births matched to a public water system. Means (for indicator variables, proportions) are
displayed, with standard deviations in parentheses when appropriate. Column (1) provides statistics for non-plural
births without MCLs. Column (2) restricts to our analytic sample, keeping only births with an overall measure of
contamination and for which that measure is below the 99th percentile. Columns (3) and (4) describe births in the tails
of the overall contamination distribution (among births in column (2)). Column (5) describes births in our mother
fixed-effects specifications.
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Table 3: Effects of drinking water contamination on low birth weight and preterm birth

(1) (2) (3) (4) (5) (6)

No controls Adding mother ctrls Adding temp & TRI ctrls

All Chemical All Chemical All Chemical

Panel A: low birth weight (LBW)

CWS FE

10th to 90th RRMCL 0.01356∗∗∗ 0.01456∗∗∗ 0.01249∗∗∗ 0.01349∗∗∗ 0.01059∗∗∗ 0.01050∗∗∗
(0.00302) (0.00133) (0.00285) (0.00124) (0.00240) (0.00140)

Observations 1,216,132 1,214,688 1,216,132 1,214,688 1,216,132 1,214,688
Adj R2 0.0050 0.0052 0.0456 0.0458 0.1058 0.1059
AETO’s δ 32.59 34.50 10.78 7.82

Mom & CWS FE

10th to 90th RRMCL 0.00957∗∗∗ 0.01048∗∗∗ 0.00932∗∗∗ 0.01003∗∗∗ 0.00819∗∗∗ 0.00774∗∗∗
(0.00245) (0.00120) (0.00232) (0.00115) (0.00198) (0.00133)

Observations 700,815 699,546 700,815 699,546 700,815 699,546
Adj R2 0.1506 0.1508 0.1689 0.1691 0.2103 0.2104
AETO’s δ 2.29 1.43 1.13 0.55

Panel B: preterm birth (PTB)

CWS FE

10th to 90th RRMCL 0.01997∗∗∗ 0.02134∗∗∗ 0.01866∗∗∗ 0.02001∗∗∗ 0.01626∗∗∗ 0.01623∗∗∗
(0.00405) (0.00178) (0.00375) (0.00164) (0.00306) (0.00175)

Observations 1,216,132 1,214,688 1,216,132 1,214,688 1,216,132 1,214,688
Adj R2 0.0036 0.0040 0.0467 0.0471 0.1316 0.1318
AETO’s δ 40.16 41.35 13.38 9.72

Mom & CWS FE

10th to 90th RRMCL 0.01571∗∗∗ 0.01716∗∗∗ 0.01533∗∗∗ 0.01658∗∗∗ 0.01405∗∗∗ 0.01377∗∗∗
(0.00363) (0.00166) (0.00345) (0.00160) (0.00276) (0.00170)

Observations 700,815 699,546 700,815 699,546 700,815 699,546
Adj R2 0.1486 0.1489 0.1663 0.1665 0.2252 0.2253
AETO’s δ 2.44 1.79 2.00 0.99

Notes: standard errors in parentheses; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. Standard errors are twoway clustered on
public water system and mother. Each cell is a separate regression. Observations (number of births) and adjusted R2s
(for the full model, i.e. including the fixed-effects) are reported. In each regression, the sample is restricted to births
in our analytic sample for whom we observe at least one water quality sample of the given contaminant group during
gestation in the public water system of residence at the time of birth. Control variables used vary over super-columns;
independent variable, i.e. the contaminant group studied, vary across columns; the outcomes varies over panels; the
specification used (either public water system fixed-effects or mom fixed-effects) varies over sub-panels; temp & TRI
ctrls = weather and toxics release inventory (air pollution) controls.
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Table 4: Effects of contamination on small for gestational age and term birth weight

(1) (2) (3) (4) (5) (6)

No controls Adding mother ctrls Adding temp & TRI ctrls

All Chemical All Chemical All Chemical

Panel A: small for gestational age (SGA)

CWS FE

10th to 90th RRMCL 0.00341∗∗∗ 0.00268∗∗∗ 0.00282∗∗∗ 0.00217∗∗∗ 0.00258∗∗∗ 0.00183∗∗∗
(0.00077) (0.00064) (0.00074) (0.00061) (0.00079) (0.00062)

Observations 1,214,205 1,212,766 1,214,205 1,212,766 1,214,205 1,212,766
Adj R2 0.0054 0.0054 0.0381 0.0381 0.0390 0.0390
AETO’s δ 13.15 11.59 8.30 5.86

Mom & CWS FE

10th to 90th RRMCL 0.00279∗∗∗ 0.00179∗∗ 0.00276∗∗∗ 0.00165∗∗ 0.00290∗∗∗ 0.00173∗∗
(0.00100) (0.00083) (0.00096) (0.00081) (0.00099) (0.00083)

Observations 698,761 697,487 698,761 697,487 698,761 697,487
Adj R2 0.1386 0.1393 0.1542 0.1548 0.1544 0.1550
AETO’s δ 6.36 0.65 -1.90 1.26

Panel B: term birth weight (TBW)

CWS FE

10th to 90th RRMCL -10.61∗∗∗ -10.04∗∗∗ -9.75∗∗∗ -9.44∗∗∗ -9.54∗∗∗ -8.77∗∗∗
(1.39) (1.25) (1.55) (1.21) (1.69) (1.32)

Observations 1,116,570 1,115,266 1,116,570 1,115,266 1,116,570 1,115,266
Adj R2 0.0169 0.0169 0.0943 0.0944 0.0987 0.0988
AETO’s δ 30.56 42.24 22.73 17.70

Mom & CWS FE

10th to 90th RRMCL -9.05∗∗∗ -8.82∗∗∗ -9.15∗∗∗ -8.58∗∗∗ -9.33∗∗∗ -8.25∗∗∗
(1.73) (1.34) (1.84) (1.37) (1.87) (1.46)

Observations 612,960 611,893 612,960 611,893 612,960 611,893
Adj R2 0.3437 0.3437 0.3827 0.3828 0.3848 0.3849
AETO’s δ -10.33 3.87 -5.48 1.47

Notes: see notes to Table 3.
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Table 5: Effects of drinking water contamination on low birth weight and preterm birth, using five-
contaminant reproductive index.

(1) (2) (3) (4) (5) (6)

No controls Adding mother ctrls Adding temp & TRI ctrls

All 5 Contam All 5 Contam All 5 Contam

Panel A: low birth weight

CWS FEs

10th to 90th RRMCL 0.01356∗∗∗ 0.01936∗∗∗ 0.01249∗∗∗ 0.01833∗∗∗ 0.01059∗∗∗ 0.01406∗∗
(0.00302) (0.00639) (0.00285) (0.00580) (0.00240) (0.00576)

Observations 1,216,132 1,139,430 1,216,132 1,139,430 1,216,132 1,139,430
Adj R2 0.0050 0.0049 0.0456 0.0452 0.1058 0.1049

Mom & CWS FEs

10th to 90th RRMCL 0.00957∗∗∗ 0.01709∗∗∗ 0.00932∗∗∗ 0.01637∗∗∗ 0.00819∗∗∗ 0.01282∗∗∗
(0.00245) (0.00405) (0.00232) (0.00381) (0.00198) (0.00411)

Observations 700,815 637,615 700,815 637,615 700,815 637,615
Adj R2 0.1506 0.1507 0.1689 0.1686 0.2103 0.2094

Panel B: preterm birth

CWS FEs

10th to 90th RRMCL 0.01997∗∗∗ 0.02743∗∗∗ 0.01866∗∗∗ 0.02621∗∗∗ 0.01626∗∗∗ 0.02096∗∗∗
(0.00405) (0.00863) (0.00375) (0.00798) (0.00306) (0.00788)

Observations 1,216,132 1,139,430 1,216,132 1,139,430 1,216,132 1,139,430
Adj R2 0.0036 0.0034 0.0467 0.0460 0.1316 0.1306

Mom & CWS FEs

10th to 90th RRMCL 0.01571∗∗∗ 0.02370∗∗∗ 0.01533∗∗∗ 0.02279∗∗∗ 0.01405∗∗∗ 0.01834∗∗∗
(0.00363) (0.00525) (0.00345) (0.00497) (0.00276) (0.00543)

Observations 700,815 637,615 700,815 637,615 700,815 637,615
Adj R2 0.1486 0.1487 0.1663 0.1659 0.2252 0.2247

Notes: see notes to Table 3. Results for the overall index included for comparison, which are the same as the “All”
columns in Table 3.
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Table 6: Effects of drinking water contamination on small for gestational age and term birth weight, using
five-contaminant reproductive index.

(1) (2) (3) (4) (5) (6)

No controls Adding mother ctrls Adding temp & TRI ctrls

All 5 Contam All 5 Contam All 5 Contam

Panel A: small for gestational age

CWS FEs

10th to 90th RRMCL 0.00341∗∗∗ 0.00511∗∗∗ 0.00282∗∗∗ 0.00470∗∗∗ 0.00258∗∗∗ 0.00390∗∗∗
(0.00077) (0.00143) (0.00074) (0.00125) (0.00079) (0.00138)

Observations 1,214,205 1,137,738 1,214,205 1,137,738 1,214,205 1,137,738
Adj R2 0.0054 0.0053 0.0381 0.0380 0.0390 0.0390

Mom & CWS FEs

10th to 90th RRMCL 0.00279∗∗∗ 0.00349∗∗ 0.00276∗∗∗ 0.00350∗∗ 0.00290∗∗∗ 0.00317∗
(0.00100) (0.00164) (0.00096) (0.00167) (0.00099) (0.00168)

Observations 698,761 635,832 698,761 635,832 698,761 635,832
Adj R2 0.1386 0.1405 0.1542 0.1559 0.1544 0.1561

Panel B: term birth weight

CWS FEs

10th to 90th RRMCL -10.61∗∗∗ -13.86∗∗∗ -9.75∗∗∗ -13.92∗∗∗ -9.54∗∗∗ -12.58∗∗∗
(1.39) (3.94) (1.55) (3.57) (1.69) (3.91)

Observations 1,116,570 1,047,149 1,116,570 1,047,149 1,116,570 1,047,149
Adj R2 0.0169 0.0167 0.0943 0.0945 0.0987 0.0989

Mom & CWS FEs

10th to 90th RRMCL -9.05∗∗∗ -13.74∗∗∗ -9.15∗∗∗ -13.86∗∗∗ -9.33∗∗∗ -12.59∗∗∗
(1.73) (2.79) (1.84) (2.82) (1.87) (2.99)

Observations 612,960 558,355 612,960 558,355 612,960 558,355
Adj R2 0.3437 0.3483 0.3827 0.3867 0.3848 0.3887

Notes: see notes to Table 3. Results for the overall index included for comparison, which are the same as the “All”
columns in Table 4.
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Table 7: Effects of drinking water contamination on mobility and fertility.

(1) (2) (3) (4) (5) (6)

No controls Adding mother controls Adding weather controls

All Chemical All Chemical All Chemical

Panel A: Mobility − CWS FE

10th to 90th RRMCL -0.00108 -0.00014 -0.00165 -0.00068 -0.00069 -0.00100
(0.00189) (0.00149) (0.00178) (0.00151) (0.00152) (0.00152)

Observations 413,135 412,785 413,135 412,785 413,135 412,785
Adj R2 0.1271 0.1271 0.1470 0.1470 0.1472 0.1472

Panel B: Mobility −Mom FEs

10th to 90th RRMCL 0.00255 0.00348 0.00165 0.00297 0.00298 0.00280
(0.00315) (0.00260) (0.00309) (0.00251) (0.00252) (0.00257)

Observations 172,651 172,498 172,651 172,498 172,651 172,498
Adj R2 0.2494 0.2486 0.2694 0.2689 0.2696 0.2691

Panel C: Fertility (birth rate per 100,000 people served) − CWS FE

10th to 90th RRMCL -0.07271∗∗ -0.08445∗∗ -0.06937∗∗ -0.07647∗∗ -0.07472∗∗ -0.07040∗∗
(0.03491) (0.03351) (0.02934) (0.03040) (0.02939) (0.02799)

Observations 59,763 59,406 59,763 59,406 59,763 59,406
Adj R2 0.7397 0.7393 0.7420 0.7417 0.7422 0.7418

Panel D: Fertility (log number of births) − CWS FEs

10th to 90th RRMCL -0.00114∗∗∗ -0.00095∗∗∗ -0.00114∗∗∗ -0.00089∗∗∗ -0.00122∗∗∗ -0.00093∗∗∗
(0.00041) (0.00033) (0.00036) (0.00031) (0.00037) (0.00031)

Observations 33,122 32,912 33,122 32,912 33,122 32,912
Adj R2 0.9924 0.9925 0.9925 0.9926 0.9925 0.9926

Notes: standard errors in parentheses; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. Standard errors are twoway clustered on public
water system and mother in panels A and B, and clustered on public water system in panel C. Observations (number of
births in panel A and B; public water system months in panel C) and adjusted R2s (inclusive of fixed-effects) are reported.
Each cell is a separate regression. In panels A and B, the sample is our analytic sample; in panel A, mothers must have two
or more births in the data (to measure mobility), with at least one having a measure of contamination, to be included.
Panel B requires mothers to have three or more births in our sample due to the addition of mom fixed-effects. In both
panels A and B, the dependent variable (measured for each birth) is whether the mother is in a different public water
system at the time of the next birth (being in no public water system in the next birth is considered being in a different
water system for this purpose). Observations in panel C are public water system quarters, and the dependent variable is the
number of births per 100,000 people served by the public water system. Regressions in panel C are weighted by public
water system population served. Regressions in panel D are the same as panel C, except the outcome variable is the natural
log of the number of births (community water system quarters with zero births are dropped). Control variables used vary
over super-columns; independent variables, i.e. the contaminant group studied, vary across columns.
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Figure 2: Philadelphia Water Consumer Confidence Report Summary Results, 2017
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Table 8: Largest systems by water quality letter grades based on our index measure

(1) (2) (3)

Water System Name Population Served Mean RRMCL Letter Grade

Ambler Boro Water Dept 20,000 0.02 A
Lansford Coaldale Jt Water Aut 9,300 0.02 A
Paw Bangor District 9,008 0.02 A
Erie City Water Authority 180,000 0.03 B
York Water Co 159,623 0.04 B
North Penn Water Authority 82,822 0.03 B
Pittsburgh Water & Sewer Auth 250,000 0.06 C
West View Boro Muni Auth 200,000 0.05 C
Westmd Mun Auth-Sweeney Plant 140,000 0.06 C
Philadelphia Water Department 1,600,000 0.07 D
Pa Amer Water Co-Pittsburgh 507,675 0.08 D
City Of Lancaster 120,000 0.09 D
Aqua Pa Main System 784,939 0.06 F
Easton Area Water System 93,400 0.05 F
Capital Region Water 66,540 0.06 F

Notes: Letter grades assigned based on average result relative to MCL for all contaminants available
since 2010 (reported in the mean RRMCL column): the cleanest 25% public water systems are
assigned grade “A”, the next 25% are assigned grade “B”, and so forth.
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Table 9: Possible effects of an information provision inter-
vention - assigning letter grades to systems on consumer
confidence reports.

(1) (2) (3)

A or B C, D, or F Overall

Panel A: Low birth weight

Actual rates 5.73 6.90 6.67
After policy change 5.73 6.60 6.43

Panel B: Pre-term birth

Actual rates 7.28 8.33 8.13
After policy change 7.28 7.81 7.71

Number of births 242,388 1,014,850 1,257,238

Notes: We assume that people in systems assigned to letter
grades C, D, or F engage in avoidance behavior and obtain water
quality at the average for letter grade A systems. Estimates give
an idea of the magnitude of public health gains that might be
obtained from adopting a consumer confidence report simplifi-
cation policy.
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