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ABSTRACT
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predictions over a vast combinatorial space. Traditionally, scientists and innovators use theory or 
intuition to guide their search. Increasingly, however, they use artificial intelligence (AI) instead. 
We model innovation as resulting from sequential search over a combinatorial design space, 
where the prioritization of costly tests is achieved using a predictive model. We represent the 
ranked output of the predictive model in the form of a hazard function. We then use discrete 
survival analysis to obtain the main innovation outcomes of interest – the probability of 
innovation, expected search duration, and expected profit. We describe conditions under which 
shifting from the traditional method of hypothesis generation, using theory or intuition, to instead 
using AI that generates higher fidelity predictions, results in a higher likelihood of successful 
innovation, shorter search durations, and higher expected profits. We then explore the 
complementarity between hypothesis generation and hypothesis testing; potential gains from AI 
may not be realized without significant investment in testing capacity. We discuss the policy 
implications.
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1. Introduction

The	 recent	 explosion	 in	 interest	 in	 AI	 has	 predominantly	 focused	 on	 the	 dramatic
improvements	 in	 large	 language	models	(LLMs),	reflected	 in	applications	 like	ChatGPT.	Public	
discussion	has	highlighted	both	the	uncertain	costs	and	benefits.	Understandably,	the	potential	
costs	have	received	most	attention,	including	the	adverse	impacts	on	labor	markets	due	to	task	
automation,	 the	 lowered	 cost	 of	 producing	 misinformation,	 the	 dangers	 of	 AI-facilitated	
surveillance,	and	the	damage	from	biases	in	automated	decision	processes	in	areas	ranging	from	
the	provision	of	credit	to	the	granting	of	bail	(see,	e.g.	Acemoglu	and	Johnson,	2023).		

Meanwhile,	 a	 less	 public	 –	 but	 influential	 –	 view	 has	 developed	 that	 AI’s	 truly	
transformative	 potential	 lies	 in	 its	 ability	 to	 change	 the	 process	 of	 scientific	 discovery	 and	
innovation	 (Hassabis,	 2022;	 Krenn	 et	 al.,	 2022).	 The	 latter	 perspective	 is	 predicated	 on	 AI’s	
potential	to	provide	prediction	tools	to	guide	search	over	vast	and	complex	combinatorial	spaces	
(Bianchini,	2022).		So	far,	the	most	celebrated	use	of	AI	for	scientific	discovery	is	AlphaFold,	which	
predicts	 the	 3D	 shape	 of	 proteins	 based	 on	 their	 amino-acid	 sequences	 (Jumper	 et	 al.,	 2021;	
Cavalli,	2023).	The	potential	for	AI-driven	scientific	discovery	extends	beyond	this,	with	growing	
applications	in	fields	ranging	from	medicine	to	materials	science.1	However,	existing	models	of	
the	innovation	do	not	incorporate	the	role	of	the	prediction	in	the	innovation	process.		

Our	contribution	in	this	paper	is	to	present	a	tractable	model	of	the	innovation	process	
designed	to	highlight	the	role	of	predictive	models	in	prioritizing	search	over	vast	and	complex	
combinatorial	 design	 spaces.	 AI	 can	 be	 viewed	 as	 a	 technology	 for	 discovery	 to	 the	 extent	 it	
provides	a	general	method	for	developing	predictive	models	over	such	spaces.2	As	such,	AI	is	a	
tool	for	hypothesis	generation	that	may	be	used	as	a	substitute	or	a	complement	for	traditional	
approaches,	such	as	using	theory	or	intuition	for	generating	hypotheses	(predictions).	

Notwithstanding	the	rapid	pace	of	technological	advance,	some	worry	that	we	have	yet	to	
see	significant	evidence	of	improved	productivity	in	the	innovation	process.	This	may	turn	out	to	
be	similar	to	what	happened	with	previous	general-purpose	technologies	(GPTs),	where	market	
failures	slowed	the	advancement	and	evolution	of	the	technology,	limiting	its	short-term	impact	
on	 productivity,	 market	 valuations,	 and	 income	 distribution	 (David,	 1990;	 Bresnahan	 and	
Trajtenberg,	1995;	 Jovanovic	and	Rousseau,	2005;	Bresnahan,	2010;	Brynjolfsson	et	al.,	2018,	
2021).3	As	a	special	kind	of	GPT,	AI	fits	the	category	of	an	“invention	of	a	method	of	invention”	
(Griliches,	1957;	Cockburn	et	al.,	2019;	Bianchini,	2022)	or	“meta-GPT”	(Romer,	2008;	Agrawal	
et	al.,	2019).	Relative	to	“regular”	GPTs,	a	meta-GPT	has	the	potential	for	outsized	impacts	to	the	
extent	it	changes	the	knowledge	production	function	of	the	economy	(Rosenberg,	1998).4		

1 See	Ramsundar	et	al.	(2019)	for	an	accessible	introduction	to	the	use	of	deep	learning	in	the	life	sciences.	
Raghu	and	Schmidt	(2020)	survey	deep	learning	techniques	used	in	scientific	discovery.		
2 In	a	recent	paper,	Ludwig	and	Mullainathan	(2023)	consider	an	alternative	way	that	AI	can	be	used	for	
hypothesis	generation.	They	consider	a	situation	in	which	an	AI	can	find	patterns	not	accessible	to	a	human	
observer.	Thus,	 the	AI	can	suggest	hypotheses	that	are	both	 interpretable	and	novel.	 In	the	settings	we	
assume,	 the	 search	 landscapes	 can	 be	 highly	 “rugged,”	 especially	 in	 the	 biological	 sciences,	 and	
interpretability	may	be	challenging.	The	focus	is	often	on	finding	something	that	works	–	e.g.,	an	amino-
acid	 sequence	 that	 produces	 a	 protein	 with	 some	 desired	 function	 –	 and	 it	 may	 not	 be	 possible	 to	
understand	(at	 least	 initially)	why	 it	works.	However,	 these	 two	types	of	hypothesis	generation	can	be	
complementary,	with	the	finding	of	something	that	works	leading	to	the	development	of	new	theories	of	
causal	mechanism	(Rosenberg,	1994;	Mokyr,	2002;	Krenn	et	al.,	2022). 
3 Hötte	et	al.	(2023)	examine	the	issues	involved	in	the	measurement	of	AI	as	a	GPT. 
4 Crafts	(2021)	identifies	meta-GPTs	with	industrial	revolutions,	and	speculates	that	AI	could	facilitate	the	
“fourth	industrial	revolution.”	
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The	complexity	of	the	new	research	frontiers	provides	one	explanation	for	disappointing	
recent	 productivity	 growth	 despite	 exponentially	 increasing	 resources	 invested	 in	 R&D.5	
Innovators	 lack	 the	 kinds	 of	 science-based	 predictive	 theories	 to	 search	 these	 spaces	 that	
underpinned	past	scientific	advances,	most	notably	the	predictive	tools	provided	by	19th	and	20th	
century	advances	in	theoretical	physics.	Many	of	today’s	greatest	innovation	challenges	are	in	the	
domain	 of	 biology	 –	 small	 molecule-protein	 binding,	 gene	 expression,	 protein	 structure	
prediction,	 protein	 design,	 etc.6	 	 Scientists	 hope	 that	AI-based	 predictive	models	will	 provide	
useful	tools	to	guide	search	at	these	challenging	frontiers.		

We	use	 a	 special	 case	 of	Weitzman	 sequential	 search	 (Weitzman,	 1979)	 to	model	 the	
search	process.	In	our	baseline	approach,	a	predictive	model	–	possibly	AI	based	–	is	used	to	rank	
potential	designs	by	their	probability	of	success	as	generated	by	that	model.	This	ranking	is	then	
inverted	to	produce	a	discrete	hazard	function.	The	hazard	function	represents	the	information	
available	 to	 prioritize	 the	 sequential	 search.	 Armed	with	 the	 hazard	 function,	 we	 then	 apply	
discrete	survival	analysis	to	identify	the	expected	innovation	outcomes	of	interest.	Importantly,	
our	 model	 specifies	 a	 causal	 relationship	 between	 predictive	 power	 and	 innovation	 output,	
search	duration	(amount	of	testing	before	finding	a	success),	and	profitability.	

	After	setting	up	this	machinery,	we	then	examine	the	impact	of	improving	the	fidelity	of	
predictions	–	for	example,	by	shifting	from	traditional	methods	of	hypothesis	generation,	using	
theory	or	 intuition,	 to	using	artificial	 intelligence	 instead.	We	present	comparative	statics	that	
illustrate	how	increasing	the	quality	of	hypothesis	generation	via	enhanced	prediction	 fidelity	
increases	innovation	output,	reduces	the	amount	of	testing	required	to	find	a	success,	and	thus	
enhances	profitability.	

Our	baseline	model	assumes	that	discoveries	are	binary	(e.g.,	drug	discovery	successful	
or	 not).	 However,	 in	many	 domains	 heterogeneity	 in	 success	 outcomes	 is	 possible	 (e.g.,	 new	
materials	discovery	that	achieves	varying	levels	of	success	on	all	properties	of	interest,	including	
the	cost	of	production).	So,	we	extend	our	baseline	model	by	relaxing	the	assumption	of	binary	
outcomes	and	show	the	conditions	under	which	riskier	hypotheses	(high	payoff/low	probability	
potential	 combinations)	 are	 prioritized.	 We	 also	 extend	 our	 baseline	 model	 to	 consider	 the	
competition-related	 choice	 scientists	 face	 between	 pursuing	 discoveries	 for	 more	 crowded	
problems	with	 big	 prizes	 versus	 less	 crowded	 problems	with	 smaller	 prizes.	 In	 addition,	we	
extend	our	baseline	model	to	explore	the	scientist’s	exploration-exploitation	decision.	Scientists	
can	choose	 to	 test	hypotheses	 that	are	 less	 likely	 to	be	 successful	but	more	 likely	 to	 increase	
future	 predictive	 power	 by	 generating	 data	 in	 areas	 of	 the	 search	 space	 that	 are	 otherwise	
sparsely	populated.	

Increasing	the	speed	and	fidelity	of	hypothesis	generation	highlights	the	increasing	cost	
of	the	bottleneck	imposed	by	hypothesis	testing.	For	most	of	the	paper,	we	treat	testing	as	an	
exogenous	variable	cost.	However,	after	developing	a	baseline	model	and	a	series	of	extensions,	
all	 focused	 on	 the	 first	 step	 of	 the	 innovation	 process,	 hypothesis	 generation,	 we	 turn	 our	
attention	to	the	second	step,	hypothesis	testing.			

We	 endogenize	 the	 testing	 decision.	 Tests	 can	 be	 conducted	 in	 series	 or	 parallel.	 The	
upside	of	testing	in	parallel	is	speed.	Multiple	hypotheses	can	be	tested	at	once.	The	downside	of	
testing	in	parallel	is	the	lost	opportunity	to	stop	a	search	when	a	success	is	found.	With	sequential	

 
5	See,	e.g.,	Bloom	et	al.	(2020).		
6	Chemistry	(including	materials	science)	provides	an	interesting	intermediate	case.	While	physics-based	
predictive	 theories	 are	 in	 principle	 available,	 the	 vast	 space	 of	 possible	molecules	makes	 it	 practically	
difficult	to	make	predictions,	even	using	modern	simulation	techniques,	across	the	entire	relevant	space.		
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testing,	the	scientist	can	stop	testing	when	a	success	is	found,	potentially	reducing	the	time	and	
number	of	tests	required	to	discover	a	success.	So,	with	no	penalty	for	longer	searches,	sequential	
searches	will	result	in	higher	innovation	output	and	higher	expected	profits.	

For	realism,	we	introduce	a	penalty	for	slowness	by	imposing	time	discounting.	Then,	we	
relax	the	constraint	that	all	tests	take	the	same	length	of	time.	Tests	can	be	slow	or	fast.	Scientists	
can	invest	to	speed	up	their	tests.	We	examine	the	interaction	between	parallel-vs-sequential	and	
slow-vs-fast	 testing.	We	 show	 that	 sequential	 testing	 benefits	more	 from	 speed	 than	 parallel	
testing.	Thus,	there	are	two	potential	equilibria:	slow-parallel	testing	and	fast-sequential	testing.	
Given	the	spillovers	that	result	from	science,	there	may	be	significant	welfare	gains	from	policies	
that	 shift	 science	 systems	 from	 slow-parallel	 to	 fast-sequential	 testing	 regimes.	 Perhaps	
unsurprisingly,	governments	have	begun	subsidizing	research	into	“self-driving	labs”	that	fully	
automate	the	discovery	loop:	an	AI	generates	a	hypothesis,	a	robot	tests	the	hypothesis,	the	test	
generates	an	outcome,	the	AI	learns	from	the	outcome,	the	AI	updates	its	hypothesis,	the	robot	
tests	the	new	hypothesis,	and	the	feedback	loop	continues.7	

	 We	structure	the	rest	of	the	paper	as	follows.	In	Section	2,	we	develop	our	baseline	model	
and	in	Section	3,	we	apply	the	model	to	show	how	an	improvement	in	the	available	predictive	
model	 could	 lead	 to	 “better,	 faster,	 cheaper”	 innovation.	 In	 Section	 4,	 we	 consider	 various	
extensions	to	the	baseline	model	and	in	Section	5,	we	extend	it	further	to	examine	the	idea	of	an	
autonomous	 discovery	 system.	 We	 conclude	 in	 Section	 6	 with	 brief	 discussions	 of	 policy	
implications	and	the	main	testable	implication	of	the	model.		

	

2.	 Baseline	Model	

	
We	model	innovation	as	prioritized	costly	search	over	a	combinatorial	design	space.	The	

combinatorial	 approach	 to	 thinking	about	 innovation	has	a	 long	history	 in	economics	 (Usher,	
1929;	 Schumpeter,	 1939;	 Nelson	 and	Winter,	 1982;	Weitzman,	 1998;	 Fleming	 and	 Sorenson,	
2004;	Arthur,	2009;	Clancy,	2018;	Jones,	2021).	Agrawal	et	al.	(2019)	develop	a	model	of	AI-aided	
search	over	a	combinatorial	idea	space.	Such	a	focus	on	combining	ideas	might	be	appropriate	if	
AIs	approach	truly	human-like	general	intelligence.	However,	the	current	uses	of	AI	in	discovery	
seem	better	described	as	 search	over	 typically	 fixed	design	 spaces	 –	 the	 spaces	of	molecules,	
amino	asset	sequences,	lines	of	software	code,	etc.	–	and	we	concentrate	on	modelling	the	use	of	
narrow	AI	predictive	tools	in	prioritizing	search	in	such	settings.	Although	the	type	of	statistics-
based	AI	we	consider	 is	narrow,8	 the	range	of	 its	potential	 innovation	applications	makes	 it	a	
meta-GPT.		
2.1	A	model	of	hypothesis	generation:	outline	

 
7 In	April	2023,	the	Government	of	Canada	awarded	“one	of	the	largest	federal	research	grants	in	Canadian	
history	[to]	making	chemistry	research	automatic.”	The	goal	of	this	research	is	“to	develop	self-driving	labs,	
in	an	effort	to	automate	and	vastly	accelerate	the	pace	of	chemical	and	materials	research.”	(Toronto	Star,	
April	28,	2023).	
8 Notwithstanding	the	disappointments	with	rules-based	AI,	the	recent	successes	of	statistical	approaches	
to	AI	–	most	notably	deep	learning	and	self-supervised	learning	–	have	renewed	interest	in	the	potential	
for	 AI	 as	 a	 technology	 for	 innovation.	 While	 some	 AI	 scholars	 see	 such	 statistical-learning-based	
approaches	as	the	best	route	to	artificial	general	intelligence	(AGI),	the	focus	has	largely	been	on	their	use	
for	more	narrow	prediction	tasks	that	are	part	of	a	broader	innovation	process	that	retains	a	central	guiding	
role	for	human	intelligence. 
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We	develop	a	model	of	innovation	as	prioritized	costly	search	over	a	combinatorial	design	
space.	 Prioritization	 is	 achieved	 through	 a	 predictive	 model,	 which	 could	 involve	 human	 or	
artificial	 intelligence	 or	 some	 combination	 of	 the	 two.	 Candidate	 designs	 (i.e.,	 potential	
combinations)	must	undergo	costly	testing	before	deployment.	There	are	therefore,	two	stages	
to	the	innovation	process	–	predict	and	test.		

As	an	example,	consider	the	problem	of	finding	a	small	molecule	drug	that	binds	with	a	
target	 protein	 to	 achieve	 some	 desired	 therapeutic	 effect.	 The	 search	 space	 for	 hypothesis	
generation	is	potentially	vast	–	e.g.,	the	space	of	all	molecular	compounds	that	can	be	combined	
from	 𝑁	 molecular	 “elements”	 –	 and	 the	 innovator	 is	 uncertain	 as	 to	 the	 locations	 of	 the	
combinations	that	would	be	successful	for	a	given	target.	For	simplicity,	we	assume	that	for	the	
𝑁	elements,	each	element	can	be	part	of	a	combination	(value	=	1)	or	not	part	of	the	combination	
(value	=	0).	Given	𝑁	elements,	there	are	therefore	2!	potential	combinations	(each	described	by	
a	𝑁	dimensional	vector)	that	could	be	searched.		

We	 first	 briefly	preview	 the	 solution	 strategy	 (Figure	1).	Given	 the	 combinations	 that	
comprise	the	design	search	space,	we	start	with	the	probability	generated	by	a	predictive	model	
for	each	element	of	 the	set	of	possible	combinations.9	Under	sequential	search,	 the	ranking	of	
these	combinations	by	probability	of	success	is	used	to	define	a	discrete	hazard	function.	This	
allows	tools	from	discrete	survival	analysis	to	capture	the	key	expected	economic	outcomes	from	
the	innovation	process.	The	result	is	a	tractable	model	linking	the	predictive	model	to	economic	
outcomes	of	interest.	These	outcomes	are:	the	optimal	maximum	duration	of	a	completed	search;	
the	expected	innovation	output	(and	value)	from	a	completed	search;	the	expected	duration	(and	
cost)	 of	 a	 completed	 search;	 and,	 putting	 the	 pieces	 together,	 the	 expected	 profit	 from	 a	
completed	search.	

We	make	a	number	of	assumptions	to	show	the	logic	of	the	model	in	a	relatively	simple	
setting.	 (We	discuss	 how	 these	 assumptions	 could	 be	 relaxed	 in	 Section	 4.)	 First,	 there	 is	 no	
heterogeneity	in	outcomes	conditional	on	a	combination	being	successful	in	testing	–	e.g.,	there	is	
no	differentiation	between	successful	drugs.	Second,	there	is	no	competition	between	innovators	
working	on	a	given	problem	–	e.g.,	innovators	are	not	racing	to	discover	a	drug	to	treat	a	target	
disease.	And	third,	there	is	no	exploration,	so	that	an	innovator	seeks	simply	to	exploit	a	given	
predictive	model	to	maximize	the	expected	value	from	a	given	innovation	search	–	e.g.,	a	drug	
company	is	not	engaging	in	exploratory	search	with	a	goal	of	improving	the	predictive	model.	

2.2	Optimal	sequential	search	and	the	hazard	function	

To	 model	 hypothesis	 generation	 (search),	 we	 adopt	 a	 special	 case	 of	 the	 Weitzman	 (1979)	
sequential	search	model.	For	any	combination	𝑖	that	represents	a	potential	design,	we	denote	the	
output	 from	the	predictive	model,	 the	probability	of	success,	as	𝑞" .	Our	risk-neutral	 innovator	
achieves	a	fixed	payoff	𝑣	from	a	(first)	success	that	we	normalize	to	1	without	loss	of	generality.	
Testing	a	combination	(or	opening	a	“box”	in	Weitzman’s	terminology)	has	a	common	cost,	𝑐,	and	
can	be	viewed	as	a	draw	from	a	Bernoulli	distribution	given	the	expected	probability	of	success	
for	that	combination.		

The	 assumptions	 of	 common	 values	 and	 common	 costs	 across	 combinations	 is	 what	
allows	us	to	rank	combinations	solely	on	the	basis	of	their	probabilities	of	success.	The	variation	

 
9 We	abstract	from	the	details	of	any	particular	real	world	problem	and	simply	assume	that	a	predictive	
model	is	available	that	attaches	a	probability	to	each	combination	in	the	design	space.		



 
 
 

5 

in	Weitzman	reservation	prices	is	fully	determined	by	variation	in	the	probabilities	of	success.10	
We	can	therefore	think	of	the	innovator	as	searching	over	a	large	set	of	Bernoulli	distributions,	
one	for	each	design	in	the	search	space.		

We	assume	that	a	positive	test	is	determinative	in	the	sense	that	the	false	positive	rate	on	
the	 test	 is	 zero.11	 We	 initially	 assume	 there	 is	 no	 time	 discounting,	 though	 we	 relax	 that	
assumption	in	Section	5.12		

The	optimal	search	strategy	then	takes	a	very	simple	form:	rank	the	combinations	from	
the	one	with	the	highest	expected	probability	of	success	(𝑧 = 1)	down	to	the	lowest	(𝑧 = 2!).	
Provided	combinations	have	𝑞" ≥ 𝑐,	continue	testing	each	combination	down	the	ranking	until	a	
success	is	achieved	and	then	stop.	If	no	success	is	achieved	when	all	the	combinations	with	𝑞" ≥ 𝑐	
have	been	tested,	 then	stop	the	search.	 In	our	drug-search	example,	 the	 innovator	will	have	a	
ranked	 list	of	potential	compounds	–	or	drug	designs	–	with	some	maximum	number	that	are	
economic	to	test.	They	will	then	move	down	the	ranking	by	conducting	costly	tests,	completing	
the	search	when	either	a	success	is	found,	or	the	set	of	potential	economic	tests	is	exhausted.13		

	 We	assume	for	simplicity	that	each	combination	has	a	distinct	probability	of	success.	To	
produce	the	ranking,	we	define	a	bijective	ranking	function,	𝑟(𝑞"),	that	identifies	a	rank,	𝑧,	for	each	
combination	in	the	set	based	on	that	combination’s	expected	probability	of	success,	

	

(1)				𝑟: 𝑞" → 𝑧								∀𝑞" ∈ s𝑞" , … , 𝑞##u.	

	

In	Figure	2,	we	show	this	bijection	for	an	example	with	𝑁 = 3,	so	that	2! = 8,	but	we	note	that	
the	actual	number	of	combinations	to	be	ranked	could	be	in	the	billions.	Since	𝑟	is	a	bijection,	the	
inverse	 function	 exists	 that	maps	 each	 element	 in	 the	 set	 of	 ranks	 to	 a	 unique	 probability	 of	
success.14	Re-indexing	the	probability	of	a	combination	by	its	generated	rank	we	obtain,	

 
10 With	 heterogeneous	 values	 and	 costs,	 the	 combinations	would	 be	 ranked	 based	 on	 their	Weitzman	
reservation	prices	(see	Appendix	1).	
11	We	could	relax	this	assumption	by	assuming	that	the	false	positive	rate	on	a	test	is	𝛼,	but	the	market	
payoff	to	a	successful	combination	is	𝑣	and	the	payoff	to	a	combination	that	passes	the	test	but	ultimately	
proves	unsuccessful	in	the	market	is	-𝜃𝑣.	We	then	assume	𝑣	takes	a	value	such	that	(1 − 𝛼)𝑣 − 𝛼𝜃𝑣 = 1,	or	
𝑣 = 1/[1 − 𝛼(1 + 𝜃)].	The	expected	payoff	of	a	positive	test	is	again	equal	to	1.		
12 We	highlight	one	important	difference	from	the	Weitzman	model.	Weitzman	(1979)	assumes	the	ex	ante	
probability	distributions	for	distinct	boxes	are	 independent.	However,	we	assume	there	is	a	correlation	
structure	 across	 boxes	 (or	 combinations	 in	 our	 setting)	 in	 a	 possibly	 “rugged”	 search	 landscape.	 The	
ruggedness	of	the	landscape	is	central	to	the	motivation	for	using	AI	to	produce	predictive	models,	as	the	
correlation	structure	may	be	poorly	understood	from	theory,	simple	observation,	or	intuition.	However,	
our	assumption	of	fully	exploitive	search	means	that	in	a	given	discovery	problem	the	innovator	takes	the	
probability	 distributions	 over	 given	 combinations	 as	 given,	 but	 is	 using	 the	 available	 model	 of	 the	
correlation	structure	–	i.e.,	the	predictive	model	that	produces	these	probability	distributions	–	to	prioritize	
the	search.		
13 It	is	possible	that	the	entire	design	space	could	be	tested	without	a	success	being	found,	but	we	assume	
that	this	constraint	is	not	binding.	
14	When	probabilities	are	not	distinct,	the	ranks	of	two	or	more	combinations	can	be	randomly	assigned	in	
the	appropriate	part	of	the	ranking.	For	example,	if	the	three	combinations	that	follow	rank	=	10	all	have	
the	same	probability	of	success,	they	could	be	randomly	assigned	to	ranks	11,	12	and	13.	The	mapping	from	
probabilities	to	ranks	is	then	not	a	function.	However,	we	can	still	define	a	(surjective)	conditional	success	
function,	where	each	rank	(following	any	necessary	random	assignment)	maps	to	a	single	probability.	In	
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(2)				ℎ = 𝑟$%: 𝑧 → 𝑞&					∀𝑧 ∈ {1,… , 2!}.	

	

This	function	gives	the	conditional	probability	that	a	combination	will	yield	a	success	in	a	test	at	
rank	𝑧,	where	the	conditioning	refers	to	reaching	that	place	in	the	ranking.	We	call	it	the	hazard	
function	 to	 underline	 the	 analogy	 with	 the	 familiar	 hazard	 function	 in	 survival	 analysis.15,16	
Together	with	the	payoff	from	a	success	and	the	cost	of	a	test,	the	hazard	function	completely	
represents	the	information	available	to	the	innovator.17		

Letting	𝑍	indicate	the	number	in	the	ranking	where	the	first	success	is	discovered,	the	
hazard	 function	 produces	 the	 probability	 that	 a	 combination	 𝑧 = 𝑍	 given	 that	 the	 search	 has	
“survived”	to	that	place	in	the	ranking,		

	

(3)				ℎ(𝑧) = 𝑃𝑟(𝑧 = 𝑍|𝑍 > 𝑧 − 1).	

	

We	provide	an	illustration	of	such	a	discrete	hazard	function	in	Figure	3a.	At	each	point	
in	the	ranking,	the	function	gives	the	probability	that	the	combination	yields	a	success	in	testing	
conditional	 on	 reaching	 that	 rank.	 The	 probabilities	 are	 decreasing	 with	 the	 rank	 because	
combinations	with	higher	expected	probabilities	of	success	have	a	lower	rank	number.		

It	 is	now	straightforward	to	use	ℎ(𝑧)	to	 identify	the	optimal	maximum	duration	of	the	
sequential	 search,	 𝑧∗,	 as	 the	highest	 value	of	 𝑧	 that	has	 an	 associated	 expected	probability	 of	
success	that	is	greater	than	equal	to	the	cost	of	searching	a	combination	(i.e.,	marginal	expected	
value	is	greater	than	or	equal	to	marginal	cost),	

	

(4)				ℎ(𝑧∗) = 𝑞&∗ ≥ 𝑐.	

	

 
this	case,	we	refer	to	a	ranking	relation	rather	than	a	ranking	function,	but	the	subsequent	survival	analysis	
based	on	the	conditional	success	function	is	unaffected.		
15	The	hazard	is	a	rate	rather	than	a	probability	in	continuous-time	survival	analysis.	However,	in	discrete	
survival	analysis,	the	hazard	has	the	interpretation	of	a	conditional	probability,	where	the	probability	is	
conditional	on	the	rank.		
16 While	the	simplest	case	of	exploitive	search	involves	a	single	estimation	of	the	predictive	model,	the	
conditional	form	of	the	success	function	allows	for	continual	re-estimation	of	the	predictive	model	even	
under	exploitive	search	as	the	innovator	(hypothetically)	moves	through	the	ranking,	assuming	each	
previous	combination	tested	yields	a	failure.	Recall	that	the	hazard	function	gives	the	probability	of	a	
success	on	a	particular	test	given	that	no	successes	have	been	found	on	previous	tests.	The	remaining	
combinations	can	then	be	re-ranked	based	on	the	updated	predictive	model. 
17 The	 hazard	 function	 is	monotonically	 declining	 by	 construction	 in	 the	 case	where	 combinations	 are	
ranked	simply	based	on	the	probabilities	of	success	that	are	obtained	from	the	prediction	model.	However,	
using	Weitzman	 reservation	 prices,	 it	 is	 still	 possible	 to	 obtain	 a	 ranking	 of	 combinations	 for	 optimal	
sequential	testing.	In	Appendix	1,	we	show	that	a	monotonically	declining	conditional	success	function	is	
not	necessary	for	the	analysis	of	innovation	outcomes	based	on	this	function.		
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We	show	the	optimal	maximum	duration	of	the	search	in	Figure	3a.		

	

2.3	Discrete	survival	analysis	and	the	expected	innovation	outcomes	

We	next	define	the	discrete	survival	function	as	giving	the	probability	of	surviving	to	a	
given	place	in	the	ranking	without	achieving	a	success.	The	survival	probability	at	𝑧∗	is,		

	

(5)				𝑆(𝑧∗) = 𝑃𝑟(𝑍 > 𝑧∗) =�(1 − 𝑞&).
&∗

&(%

	

	

In	addition	to	the	conditional	probability	that	a	given	combination	at	rank	𝑧	will	yield	a	
success,	we	also	define	the	probability	that	the	first	success	will	be	achieved	at	rank	𝑧	(i.e.,	𝑧 = 𝑍).	
We	 call	 this	 the	 probability	 function	 and	 use	 the	 notation:	 𝑓(𝑧) = Pr	(𝑧 = 𝑍).	 Evaluating	 this	
probability	 at	 𝑧∗	 we	 have:	 𝑓(𝑧∗) = 𝑃𝑟(𝑧∗ = 𝑍) = ∏ (1 − 𝑞&$%)𝑞&&∗

&(% .	 We	 confirm	 the	 familiar	
definition	of	the	discrete	hazard	function	as	the	ratio	of	the	probability	that	the	first	success	is	
found	at	𝑧∗	divided	by	the	probability	of	surviving	until	𝑧∗ − 1,		

	

(6)				ℎ(𝑧∗) =
𝑓(𝑧∗)

𝑆(𝑧∗ − 1)
=
�∏ (1 − 𝑞&$%)&∗

&(% �𝑞&∗
∏ (1 − 𝑞&$%)&∗
&(%

= 𝑞&∗ ,	

	

where	we	note	that	𝑆(0) = 1.	We	also	note	that	𝑓(𝑧∗) = 𝑆(𝑧∗ − 1)ℎ(𝑧∗).	

We	next	define	the	cumulative	hazard	function	up	to	a	place	in	the	ranking,	𝑧∗	,	as,	

	

(7)				𝐻(𝑧∗) = �𝑞&.
&∗

&(%

	

	

Using	(5),	we	exploit	a	relationship	between	the	log	of	the	survival	function	and	the	cumulative	
hazard	function,	

	

(8)					𝑙𝑛𝑆(𝑧∗) = �𝑙𝑛(1 − 𝑞&) = −𝐻�(𝑧∗) ≈ −�𝑞& = −𝐻(𝑧∗).
&∗

&(%

&∗

&(%

	

	

That	is,	the	log	of	the	survival	function	is	approximately	equal	to	the	negative	of	the	cumulative	
hazard	 function.	 This	 approximation	will	 be	 close	when	 the	 probabilities	 are	 low,	which	 is	 a	
reasonable	assumption	when	search	is	over	a	vast	and	complex	space.	The	approximation	will	
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prove	useful	below	in	interpreting	the	intuitive	meaning	of	an	improvement	in	the	AI	and	we	will	
also	refer	to	𝐻�(𝑧)	as	the	cumulative	hazard	function	for	ease	of	exposition,	although	for	our	formal	
results	we	do	not	assume	the	approximation	holds.18			

	 Taking	the	antilog	of	(8),	we	obtain	an	alternative	expression	for	the	survival	function,		

	

(9)				𝑆(𝑧∗) = 𝑒$)*(&∗).	

	

Given	 the	 maximum	 size	 of	 the	 search,	 𝑧∗,	 the	 expected	 innovation	 output	 (or,	 simply,	 the	
probability	 of	 innovation)	 at	 the	 outset	 of	 that	 search	 is	 given	 by	 the	 cumulative	 incidence	
function,19		

	

(10)				𝐹(𝑧∗) = 𝑃𝑟(𝑍 ≤ 𝑧∗) = 1 − 𝑆(𝑧∗) = 1 − 𝑒$)*(&∗).	

	

In	our	drug	search	example,	this	gives	the	probability	(as	assessed	at	the	beginning	of	the	search)	
that	the	overall	innovation	search	will	yield	a	successful	drug	design.	Noting	that	the	cumulative	
incidence	function	can	also	be	obtained	by	summing	over	the	probability	function,	𝑓(𝑧),	we	have	
the	alternative	way	of	writing	the	expected	innovation	output,	

	

(10′)				𝐹(𝑧∗) =�𝑓(𝑧) =�𝑆(𝑧 − 1)ℎ(𝑧)
&∗

&(%

=
&∗

&(%

�𝑒$)*(&$%)𝑞&

&∗

&(%

.	

	

In	both	formulations,	expected	output	is	completely	determined	by	the	hazard	function.	We	show	
the	expected	innovation	output	function	in	Figure	3b.		

We	turn	next	to	the	expected	duration	of	a	completed	search	where	the	optimal	maximum	
duration	of	that	search	is	𝑧∗.	For	simplicity,	we	assume	that	a	search	takes	one	unit	of	time,	so	we	
can	identify	the	size	of	a	completed	search	with	the	time	duration	of	that	search.	(We	relax	this	
assumption	in	Section	5.)	In	our	drug-search	example,	we	have	the	expected	duration	of	a	search	
that	can	end	either	through	finding	a	successful	drug	or	by	exhausting	all	the	designs	that	are	
economical	to	test	(ℎ(𝑧) ≥ 𝑐).		Together	with	the	cost	of	a	test,	the	expected	duration	is	sufficient	
to	determine	the	expected	cost	of	an	innovation	search.		

The	concept	of	restricted	mean	survival	time	(RMST)	from	discrete	survival	analysis	can	
be	used	to	identify	the	expected	duration.	We	draw	on	a	classic	result	in	discrete	survival	analysis,	

 
18	If	the	domain	of	the	success	function	is	treated	as	continuous	rather	than	discrete,	then	the	log	of	the	
survival	function	will	be	identically	equal	to	the	negative	of	the	cumulative	success.	Although	vast,	it	is	more	
natural	to	treat	the	search	space	over	all	potential	combinations	as	discrete	rather	than	continuous,	but	the	
discrete	assumption	does	come	with	a	small	cost	in	analytic	tractability.	
19 We	do	not	refer	to	this	as	a	cumulative	distribution	function	as	it	is	possible	that	no	success	is	found	even	
after	a	fully	exhaustive	search.	We	therefore	have	∑ 𝑓(𝑧) ≤ 1-!

-./ ,	where	𝑧0	 is	the	total	size	of	the	search	
space.  
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which	shows	 that	 the	RMST	 is	 calculated	by	 summing	 the	 lagged	survival	 functions	up	 to	 the	
maximum	duration	of	search,			

	

(11)					𝐷(𝑧∗) = 𝑅𝑀𝑆𝑇 =�𝑆(𝑧 − 1)
&∗

&(%

=�𝑒$)*(&$%)
&∗

&(%

,	

	

where	−𝐻�(0) = 0	since	𝑆(0) = 1.	We	provide	the	proof	for	(11)	in	Appendix	2.		

Note	that	the	expected	duration	of	a	complete	search	is	fully	determined	by	the	hazard	
function.	 Again,	 drawing	 on	 the	 hazard	 function	 in	 Figure	 3a,	we	 show	 in	 Figure	 3c	 how	 the	
expected	duration	of	the	search	varies	with	the	maximum	duration	of	the	search.	

With	expressions	for	expected	innovation	output	the	expected	duration	of	the	completed	
search,	we	can	 identify	 the	expected	profit.	Expected	profit	 is	 simply	 the	expected	 innovation	
output	less	the	expected	duration	of	the	search	multiplied	by	the	cost	of	a	test,	

	

(12)					𝛬(𝑧∗) = 𝐹(𝑧∗) − 𝑐𝐷(𝑧∗) = 1 − 𝑒$)*(&∗) − 𝑐�𝑒$)*(&$%) =�𝑒$)*(&$%)(𝑞& − 𝑐)
&∗

&(%

,
&∗

&(%

	

	

where	 the	 last	 equality	 uses	 (10’).	 We	 can	 see	 that	 expected	 profit	 can	 be	 written	 as	 an	
appropriately	discounted	value	of	the	gaps	between	expected	marginal	value	and	marginal	cost	
up	to	the	maximum	duration	of	the	search.		

It	 can	 be	 confirmed	 that	 the	 optimal	 maximum	 duration	 of	 a	 completed	 search,	 𝑧∗,	
maximizes	expected	profit	by	noting	that,	from	the	vantage	point	of	the	beginning	of	the	search,	
the	expected	marginal	value	of	adding	an	additional	combination	to	the	search	is	𝑆(𝑧 − 1)𝑞&	and	
the	marginal	cost	is	𝑆(𝑧 − 1)𝑐.	Expected	profit	is	maximized	by	choosing	the	largest	𝑞&	that	has	
an	expected	marginal	value	that	is	greater	than	or	equal	to	marginal	cost,	

	

(4′)				𝑆(𝑧∗ − 1)𝑞&∗ ≥ 𝑆(𝑧∗ − 1)𝑐,	

	

which	yields	the	same	optimal	maximum	duration	as	(4).		

	 To	recap	the	mechanics	of	the	model	in	terms	of	the	hazard	function	notation,	we	note	
that	the	information	available	to	the	innovator	from	the	predictive	model	is	captured	in	the	form	
of	 ℎ(𝑧)	 and	 its	 associated	𝐻�(𝑧).	 	 ℎ(𝑧),	 together	with	 the	 exogenous	 cost	 of	 a	 test,	 is	 used	 to	
determine	the	maximum	duration	of	a	completed	search;	with	this	maximum	duration	identified,	
the	key	 innovation	outcomes	can	be	calculated	 from	knowledge	of	𝐻�(𝑧).	The	centrality	of	 the	
discrete	hazard	function	to	the	innovation	outcomes	also	provides	a	convenient	way	to	specify	
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improvements	in	the	predictive	model	based	on	increases	in	the	cumulative	hazard	function	over	
some	relevant	range	of	ranks.20		

The	idea	of	modelling	the	innovation	as	a	process	of	search	is	not	new.	One	particularly	
tractable	formulation	is	to	model	innovation	search	as	a	Poisson	process,	where	the	per-period	
probability	of	success	conditional	on	not	finding	a	success	in	previous	periods	is	fixed	(i.e.,	the	
success	hazard	rate	is	constant)	but	the	timing	of	the	first	success	is	random.	Dasgupta	and	Stiglitz	
(1980),	for	example,	model	R&D	as	a	Poisson	process	where	the	per-period	probability	of	success	
depends	on	R&D	expenditure.21		

Hazard	models	also	have	a	distinguished	history	in	the	economic	modeling	of	innovation.	
However,	these	models	typically	take	the	form	of	a	black	box	where	a	given	level	of	investment	in	
R&D	 leads	 to	 a	 constant	 hazard.	 Discovery	 is	 then	 certain	 over	 an	 infinite	 horizon	 (with	 the	
cumulative	hazard	going	to	infinity)	and	the	expected	time-to-discovery	is	equal	to	one	divided	
by	 the	 hazard	 rate.	 Our	 model	 allows	 for	 a	 richer	 treatment	 of	 the	 hazard	 function	 and	 a	
completed	 search	 need	 not	 result	 in	 a	 discovery.	 This	 results	 from	 our	modelling	 of	 optimal	
sequential	search,	where	search	requires	costly	tests,	but	a	predictive	model	is	used	to	prioritize	
those	tests.	We	can	then	capture	an	improvement	in	the	predictive	model	in	terms	of	its	implied	
effects	on	the	hazard	function.		

Another	fruitful	approach	in	the	literature	is	to	model	innovation	search	as	draws	from	a	
known	distribution,	and	to	derive	the	implied	extreme	value	(best	draw)	distribution.	Kortum	
(1997)	 shows	 how	 an	 appropriate	 rate	 of	 increase	 in	 sampling	 from	 an	 (thick-tailed)	 Pareto	
distribution	is	consistent	with	exponential	growth	in	the	technological	frontier	representing	the	
best	available	technology.	In	a	recent	paper	that	also	treats	innovation	search	as	draws	from	a	
distribution,	Jones	(2021)	identifies	conditions	under	which	combinatorial	growth	in	the	number	
of	 possibilities	 leads	 to	 exponential	 economic	 growth.	 In	 contrast	 to	 Kortum	 (1997),	 the	
assumption	 of	 combinatorial	 growth	 in	 the	 number	 of	 possibilities	 is	 sufficient	 to	 generate	
exponential	 growth	 even	 for	 thin-tailed	 underlying	 distributions.	 While	 ingenious,	 this	
formulation	depends	on	exhaustive	evaluation	of	the	potentially	vast	set	of	possibilities.	In	our	
approach,	the	emphasis	is	instead	on	how	the	search	is	prioritized	using	a	predictive	model,	which	
we	 argue	 provides	 a	 better	way	 to	 conceptualize	 observed	 uses	 of	 AI	 as	 a	 tool	 for	 scientific	
discovery	and	innovation	where	testing	is	costly.		

In	the	next	section,	we	consider	when	a	well-defined	improvement	in	the	prediction	model	will	
lead	to	“better,	faster,	cheaper”	innovation.	

	

	

	

	

 
20 In	Appendix	1,	we	relax	the	assumptions	of	homogeneous	success	payoffs	and	costs	of	 testing	across	
design	combinations,	and	show	that	the	key	result	established	above	holds	true:	given	the	payoffs	and	costs,	
the	 conditional	 success	 function	 (and	 associated	 cumulative	 success	 function)	 provide	 sufficient	
information	to	determine	the	key	innovation	outcomes. 
21 Aghion	and	Howitt	(1992)	model	the	flow	of	new	ideas	as	a	Poisson	process	in	developing	a	quality-
ladder	model	of	endogenous	growth	based	on	creative	destruction. 
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3.	 Improvements	 in	 Prediction	 and	 “Better,	 Faster,	 Cheaper”	
Innovation	

	

	 We	now	consider	the	effects	of	an	improvement	in	the	predictive	model,	initially	assuming	
that	the	maximum	number	of	hypotheses	tested	(combinations	sent	for	testing)	by	the	innovator	
stays	at	𝑧∗.	To	be	concrete,	we	assume	that	that	this	improvement	comes	about	because	of	a	newly	
available	AI-based	prediction	model.		

The	 improved	 predictive	 model	 generates	 more	 discriminating	 predictions,	 and	 is	
therefore	 assumed	 to	 increase	 the	 probability	 of	 success	 of	 the	 well-ranked	 combinations.	
Notwithstanding	that	the	rank	order	of	the	combinations	may	change,	we	intuitively	expect	that	
an	 improvement	 in	 the	 prediction	model	 causes	 the	 hazard	 function	 to	 swivel	 in	 a	 clockwise	
direction,	thereby	causing	the	cumulative	hazard	function	to	rise	over	some	range	of	the	best-
ranked	combinations.		

Under	what	 conditions	will	 the	 search	 yield	 higher	 expected	 innovation	 output	 and	 a	
lower	 expected	 search	 duration	 for	 a	 given	 maximum	 duration	 of	 search?	 Together	 these	
outcomes	would	also	imply	unambiguously	higher	expected	profit.		

The	 following	 conditions	 on	𝐻�(𝑧)	 are	 sufficient	 to	 yield	 an	 innovation	 process	 that	 is	
better	(higher	expected	output	and	profit),	faster	and	cheaper	(lower	expected	search	duration	
and	consequent	cost):	

	

(13)					𝐻�%(𝑧) > 𝐻�-(𝑧)							∀	𝑧 = 1,… , 𝑧∗.	

	

where	0	and	1	index	the	prediction	model	before	and	after	the	improvement	in	the	prediction	
model	respectively.	We	can	intuitively	think	of	these	conditions	as	saying	that	the	improvement	
in	the	AI	leads	to	a	higher	cumulative	hazard	function	at	each	rank	up	to	𝑧∗.	22	

We	can	use	(10)	and	(11)	to	determine	the	effect	of	(13)	on	expected	innovation	output,	
the	expected	duration	search,	and	(putting	these	together)	on	expected	profit.	Given	the	assumed	
improvement	 in	 the	 prediction	 model:	 ∆𝐹(𝑧∗) > 0,	 since	 𝐻�%(𝑧∗) > 𝐻�-(𝑧∗);	 ∆𝐷(𝑧∗) < 0,	 since	
𝐻�%(𝑧) > 𝐻�-(𝑧), ∀	𝑧 = 1,… , 𝑧∗ − 1;	and	therefore,	∆𝛬(𝑧∗) > 0.	

The	necessary	and	sufficient	conditions	for	expected	innovation	output	to	increase	and	
expected	duration	 to	 fall	are:	𝐻�%(𝑧∗) > 𝐻�-(𝑧∗)	and	∑ 𝑒$)*((&$%) < ∑ 𝑒$)*)(&$%),&∗

&(%
&∗
&(% 	where	 the	

latter	condition	requires	just	that	the	value	of	the	cumulative	lagged	survival	probability	is	lower	
at	𝑧∗,	rather	than	requiring	that	the	lagged	survival	probability	is	lower	at	each	rank	up	to	and	
including	𝑧∗.	

The	foregoing	analysis	assumes	that,	following	the	improvement	in	the	prediction	model,	
the	 maximum	 number	 of	 tests	 that	 could	 be	 completed	 before	 the	 search	 is	 abandoned	 is	
unchanged	at	𝑧∗.	However,	the	improved	prediction	model	will	lead	the	innovator	to	re-optimize	
in	terms	of	choice	of	the	maximum	number	of	combinations	to	send	for	testing,	with	the	maximum	

 
22 These	are	weaker	conditions	than	requiring	this	probability	to	be	higher	at	each	of	these	ranks,	and	
allows	in	principle	for	the	new	conditional	success	function	to	cross	the	old	success	function	before	𝑧∗. 
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number	of	tests	potentially	either	rising	or	falling	depending	on	the	change	to	the	shape	of	ℎ(𝑧).	
We	denote	the	new	optimal	maximum	search	as	𝑧∗∗.		

The	new	optimal	maximum	search	 is	 given	by	 the	 intersection	of	 the	hazard	 function	
(post	prediction-model	improvement)	with	the	test	cost	line.	It	is	possible	that	the	new	optimal	
maximum	number	of	tests	could	either	rise	or	fall.	An	improved	prediction	model	could	increase	
the	number	of	combinations	that	it	is	economic	to	test	(𝑧∗∗ > 𝑧∗).	For	example,	for	an	innovator	
searching	 for	a	 small	molecule	drug	 to	bind	with	a	 target	protein,	 a	greater	 range	of	possible	
designs	may	become	economic	to	test	with	improved	knowledge	of	the	design	space.	But	to	the	
extent	that	the	improved	discrimination	that	is	possible	with	a	better	predictive	model	–	raising	
the	probability	of	success	of	the	best	ranked	combinations,	but	lowering	that	probability	for	most	
others	–	the	swiveling	of	the	hazard	function	might	be	such	that	the	optimal	maximum	number	of	
tests	actually	falls	(𝑧∗∗ < 𝑧∗).	For	example,	the	innovator	seeking	the	new	small	molecule	drug	
might	be	better	able	to	effectively	rule	out	a	larger	fraction	of	the	design	space.		

For	𝑧∗∗ ≠ 𝑧∗,	 the	necessary	and	sufficient	conditions	for	expected	innovation	output	to	
increase	 and	 expected	 duration	 to	 fall	 are	 then,	 respectively:	 𝐻�%(𝑧∗∗) > 𝐻�-(𝑧∗)	 and	
∑ 𝑒$)*((&$%) < ∑ 𝑒$)*)(&$%).&∗

&(%
&∗∗
&(% 	

To	help	fix	intuition,	in	Figure	4	we	illustrate	two	cases	involving	an	improvement	in	the	
prediction	 model.	 In	 both	 cases,	 we	 assume	 that	 the	 cumulative	 hazard	 function	 is	 larger	
following	the	improvement	when	measured	at	𝑧∗.		

In	Figure	4a	we	show	the	case	where	the	new	hazard	 function	crosses	 the	cost	 line	at	
𝑧∗∗ > 𝑧∗.	 Moving	 to	 this	 new	 profit	maximizing	maximum	 duration	 of	 search	will	 result	 in	 a	
further	increase	in	expected	innovation	output	and	profit,	but	the	effect	on	the	expected	duration	
of	search	will	only	be	negative	(i.e.,	faster	innovation)	if	∑ 𝑒$)*((&$%) < ∑ 𝑒$)*)(&$%).&∗

&(%
&∗∗
&(% 			

In	Figure	4b,	we	show	the	case	where	𝑧∗∗ < 𝑧∗.	 In	 this	case,	expected	profit	will	again	
increase	and	expected	duration	will	decrease.	But	the	effect	on	expected	innovation	output	will	
now	only	be	positive	if	𝐻�%(𝑧∗∗) > 𝐻�-(𝑧∗).		

In	summary,	the	linkage	of	the	prediction	model	and	its	associated	ranking	function	with	
survival	analysis	allows	us	to	build	a	tractable	model	of	search	over	a	combinatorial	search	space.	
In	particular,	we	can	represent	 the	 information	gain	 that	 results	 from	an	 improvement	 in	 the	
prediction	model	as	a	change	in	the	position	of	the	hazard	function	and	the	associated	change	in	
the	cumulative	hazard	function.	Intuitively,	we	can	think	of	an	improvement	in	the	AI	as	yielding	
an	increase	in	the	cumulative	hazard	function	over	the	relevant	range	of	ranks.	Assuming	optimal	
sequential	search,	we	can	identify	general	conditions	on	the	cumulative	hazard	function	under	
which	the	availability	of	AI	leads	to	“better,	faster,	cheaper”	innovation.	

	

4.	 Extensions	to	Baseline	Model	

	

The	baseline	model	makes	a	number	of	simplifications	in	order	to	highlight	the	essential	
features	of	predictive-model-aided	search	over	a	combinatorial	search	space:	no	heterogeneity	in	
success	outcomes;	no	competition	between	innovators	in	seeking	to	discover	a	successful	design;	
and	no	exploration	to	enhance	the	predictive	model.	These	assumptions	obviously	abstract	away	
from	important	features	of	real	world	innovation	processes.	Given	space	limitations,	we	simply	
note	how	the	basic	model	can	be	extended	to	incorporate	these	additional	elements.		
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4.1	Heterogeneity	in	success	outcomes	

Although	 it	 significantly	 simplifies	 the	 analysis,	 a	 restrictive	 feature	 of	 the	 baseline	model	 is	
homogeneity	of	payoffs	conditional	on	a	combination	being	a	success.	One	limiting	feature	of	this	
assumption	 is	 that	 it	 excludes	 the	 relative	 “riskiness”	 of	 a	 combination	 being	 relevant	 for	 its	
ranking,	which	 is	at	odds	with	an	 intuition	that	 innovators	may	prioritize	high	payoff	but	 low	
probability	potential	combinations	in	the	innovation	search.	However,	even	with	Bernoulli	boxes,	
the	Weitzman	model	allows	for	heterogeneity	in	payoffs	(and	costs)	as	well	probability	of	success	
to	be	relevant	for	the	calculation	of	“reservation	prices”	underlying	the	optimal	order	of	search.		

In	Appendix	1,	we	relax	the	assumption	of	common	payoffs	conditional	on	success	and	
show	that	the	main	results	of	the	basic	model	still	hold.	The	more	general	model	shows	that	high	
payoff/low	probability	potential	combinations	will	be	prioritized.	We	show	that	for	two	potential	
combinations	(or	boxes)	with	the	same	expected	value,	𝑞%𝑣% = 𝑞#𝑣#,	but	where	𝑣% > 𝑣#	and	𝑞% <
𝑞#,	Box	1	will	have	a	higher	reservation	price	than	Box	2	and	consequently	will	be	searched	first.	
As	there	 is	an	 intuitive	sense	that	Box	1	 is	riskier	than	Box	2	–	a	higher	payoff	conditional	on	
success	but	a	lower	conditional	probability	of	success	–	this	shows	how	an	innovator	will	tend	to	
prioritize	riskier	combinations	in	the	search.		

Moving	 beyond	 Bernoulli	 boxes,	 the	 general	 form	 of	 the	Weitzman	model	 allows	 the	
probability	 distribution	 of	 payoffs	 to	 be	 specified	 on	 the	 continuous	 domain	 (−∞,∞).	 It	 is	
noteworthy	that	Weitzman	emphasizes	the	tendency	for	“riskier”	options	to	be	searched	first	in	
an	optimal	sequential	search	as	one	of	most	important	implications	of	the	model:	

Other	things	being	equal,	 it	 is	optimal	to	sample	 first	 from	distributions	that	are	more	
spread	out	or	riskier	in	the	hopes	of	striking	it	rich	early	and	ending	the	search.	This	is	a	
major	result	of	the	present	paper.	Low-probability	high-payoff	situations	should	be	prime	
candidates	for	early	investigation	even	though	they	may	have	a	smaller	chance	of	ending	
up	 as	 the	 source	 ultimately	 yielding	 the	 maximum	 reward	 when	 the	 search	 ends.	
(Weitzman,	1979,	p.	647.)	

	

4.2	Competition	between	innovators	

A	second	restrictive	feature	of	the	baseline	model	is	that	it	ignores	potential	competition	between	
innovators	to	discover	a	success	–	say	an	effective	drug	to	treat	Alzheimer’s	disease.	Even	without	
explicit	 strategic	 interaction	 between	 competing	 innovators	 (as	 in	 a	 classic	 “patent	 race”),	
innovators	may	choose	their	discovery	problem	taking	into	account	the	competition.	Given	our	
use	 of	 survival	 analysis	 in	 the	 model,	 this	 suggests	 the	 “competing	 risks”	 paradigm	 from	
epidemiology	as	a	natural	way	to	extend	the	model	to	allow	for	competition.		

	 Suppose,	for	example,	there	are	𝐾	competitors	(𝑘 = 1, . . . 𝑀)	each	using	a	distinct	hazard	
function.	All	competitors	start	their	searches	at	the	same	time.	We	further	assume	that	owing	to	
the	 size	of	 the	 search	 space,	 the	prioritized	 combinations	 are	not	 overlapping	 in	 the	 relevant	
range	of	the	functions.	The	innovation	search	will	end	if	any	competitor	achieves	a	success.	The	
cumulative	incidence	function	for	our	focal	innovator,	𝑗,	then	takes	the	form:	
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(14)								𝐹.(𝑧) = ���𝑆/(𝑧 − 1)
0

/(%

�ℎ.(𝑧)
&∗

&(%

,	

	

where	𝑆/(. )	is	the	survival	function	for	competitor	𝑘	and	ℎ.(𝑧) = 𝑞.,&	is	the	probability	of	success	
for	the	focal	innovator	conditional	on	reaching	rank	𝑧.		

	 In	choosing	an	innovation	problem,	the	innovator	may	face	a	choice	between	problems	
for	 which	 a	 good	 prediction	 model	 exists	 but	 there	 are	 a	 large	 number	 of	 competitors,	 and	
problems	 with	 a	 less	 accurate	 prediction	 model	 but	 also	 fewer	 competitors	 in	 the	 race	 for	
discovery.		

	

4.3	Allowing	for	an	exploration-exploitation	tradeoff	

The	 baseline	 model	 assumes	 the	 innovator	 takes	 the	 predictive	 model	 as	 given	 and	 simply	
exploits	 it	 to	maximize	 the	 expected	profit	 from	 innovation.	However,	 an	 innovator	may	 also	
choose	 tests	 in	 order	 to	 generate	 data	 to	 improve	 the	 predictive	 model	 rather	 than	 simply	
exploiting	the	predictive	model	it	has.	Such	an	exploration	motive	is	strengthened	if	the	innovator	
is	involved	in	multiple	projects	and	there	is	a	possibility	of	transfer	learning	between	projects,	
whereby	the	data	generated	in	the	focal	project	can	improve	the	predictive	models	used	in	their	
other	projects.		

	 We	consider	two	possible	directions	to	extend	the	model	that	allow	for	exploration	as	well	
exploitation.	First,	we	assume	that	there	is	an	initial	exploration	stage	focused	on	improving	the	
predictive	 model	 followed	 by	 a	 standard	 exploitation	 stage.	 To	 keep	 the	 stages	 distinct,	 we	
assume	that	exploration	takes	place	on	an	adjacent	problem	and	transfer	learning	can	be	used	to	
improve	the	predictive	model	for	the	focal	problem.		

The	vast	literature	on	active	learning	points	to	a	fruitful	way	of	modelling	the	exploration	
stage.	Instead	of	taking	the	data	available	to	train	the	predictive	model	as	given,	the	innovator	can	
request	a	“label”	from	an	“oracle”	–	i.e.,	the	test	of	a	target	combination	in	our	setting.	Various	
criteria	for	selecting	the	tests	have	been	suggested	in	the	active	learning	literature.	As	examples,	
under	 uncertainty	 sampling,	 tests	 would	 be	 requested	 based	 on	 the	 degree	 of	 uncertainty	
surrounding	particularly	labels;	under	diversity	sampling,	tests	would	be	requested	for	regions	
of	 the	 search	 space	where	 data	 is	 particularly	 sparse.	 Recognizing	 these	 tests	 are	 costly,	 we	
assume	there	is	an	optimal	set	of	tests	that	would	be	performed	in	this	exploratory	stage,	which	
we	can	think	of	as	a	fixed	cost	for	the	innovation	process.		

	 While	the	two-stage	process	neatly	separates	the	exploration	and	exploitation	stages,	the	
nature	 of	 sequential	 search	 suggests	 the	 importance	 of	 ongoing	 exploration,	 so	 that	 the	
exploration	and	exploitation	take	place	in	parallel.	The	paradigmatic	example	of	an	exploration-
exploitation	 tradeoff	 is	 the	multi-armed	 bandit	 problem,	 but	 the	 standard	 formulation	 is	 not	
suitable	in	our	setting	given	the	assumed	correlation	structure	in	the	search	space	and	the	fact	
that	search	ceases	once	a	success	is	found.		

However,	 the	broad	approach	of	contextual	bandits	suggests	a	possible	 framework	for	
modelling	the	tradeoff.	The	relevant	contexts	are	the	features	of	the	potential	combinations	(e.g.,	
molecular	compounds	 in	 the	small	drug	discovery	example)	and	 the	predictive	model	maps	a	
given	context	to	its	probability	of	success.	For	any	given	ordering	of	tests,	we	can	still	identify	the	
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relevant	hazard	function,	but	it	is	now	possible	that	lower	probability	of	success	combinations	
will	 be	 ranked	 better	 than	 higher	 probability	 combinations.	 Intuitively,	 a	 lower	 probability	
combination	 may	 receive	 a	 better	 ranking	 in	 part	 because	 of	 the	 informativeness	 of	 the	
combination	for	the	predictive	model,	allowing	for	an	“improved”	hazard	function	over	later	parts	
of	the	ranking.		

In	effect,	we	can	view	our	innovator	as	choosing	over	different	hazard	functions,	where	
each	function	reflects	a	different	exploration-exploitation	tradeoff.	More	formally,	we	can	define	
a	 functional	 relationship:	Λ = Λ(ℎ(𝑧)),	which	maps	 the	expected	profit	 from	the	search	 to	 the	
particular	hazard	function,	where	ℎ(𝑧) ∈ Θ,	where	Θ	is	the	set	of	feasible	hazard	functions	given	
the	exploration-exploitation	tradeoff.23	The	optimal	hazard	function	is	then:		

	

(15)							ℎ(𝑧)∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
23(&)4		

[Λ(ℎ(𝑧))]													ℎ(𝑧) ∈ Θ.	

	

And	the	optimal	expected	profit	is:		

	

(16)							Λ∗ = 	Λ(ℎ(𝑧)∗).	

	

While	this	optimal	hazard	function	exists	in	principle	given	our	assumptions,	in	reality	
the	contextual	bandit	literature	suggests	various	heuristic	methods	will	have	to	be	deployed	to	
achieve	reasonable	performance	on	the	exploration-exploitation	tradeoff.		

	

5.	 Autonomous	Discovery	Systems	

	

To	 the	 extent	 that	 AI	 provides	 prediction	 models	 that	 prioritize	 search	 over	 various	
combinatorial	search	spaces	–	genes,	proteins,	molecules,	etc.	–	it	can	be	viewed	as	a	meta-GPT.	A	
major	 theme	 of	 the	 theoretical	 and	 historical	 literatures	 on	 GPTs	 is	 that	 significant	
reorganizations	 are	 often	 required	 before	 the	 new	 GPT	 has	 its	 full	 impact.	 However,	 these	
reorganizations	 can	 be	 held	 up	 by	 the	 need	 to	 coordinate	 different	 elements	 of	 the	 system	
change.24		

 
23 A restricted example would be where the innovator first engages in exploratory search by randomly selecting a 
given number of designs from the design space to undertake tests to add to the data available to estimate the 
predictive model. In advance of the exploration, the innovator will not know the precise ranking of the 
combinations they will face when they enter the exploitation stage. But we assume that they can determine the 
position of hazard function in the exploitation range. We can therefore think of the innovator as choosing between 
different hazard functions given the set of exploration strategies available.  
24 This	form	of	process	re-organization	has	parallels	in	the	evolving	responses	to	other	important	GPTs.	In	
David’s	(1990)	classic	treatment	of	the	introduction	of	electricity,	substantial	productivity	benefits	were	
seen	only	once	factories	were	re-organized	–	notably	from	a	vertical	design	with	a	central	power	source	to	
a	horizontal	design	with	distributed	power	sources	–	which	can	be	viewed	as	a	movement	towards	greater	
integration	with	the	new	GPT.	See	also	Agrawal	et	al	(2022a).			
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	 In	this	section,	we	extend	and	apply	the	baseline	model	to	the	question	of	system-level	
reorganization.	We	assume	there	are	two	dimensions	to	the	prediction-model-aided	innovation	
system:	whether	testing	is	done	in	parallel	or	sequentially;	and	whether	testing	is	slow	or	fast.	
We	show	that	parallel/slow	and	sequential/fast	can	both	form	coherent	systems	(Figure	5).	We	
also	allow	for	the	sequential/fast	system	to	ultimately	be	more	profitable,	although	the	transition	
to	 the	superior	system	can	be	delayed	due	 to	coordination	challenges	associated	with	system	
redesign.		

	 We	 first	 extend	 the	 model	 to	 allow	 for	 parallel	 search	 and	 compare	 the	 innovation	
outcomes	with	our	baseline	sequential	search	model.	We	then	introduce	a	test-time	variable	that	
is	absent	in	the	baseline	model	(where	all	tests	were	assumed	to	take	one	period).	Finally,	we	
consider	the	extreme	case	of	a	fully	autonomous	innovation	system.		

	

5.1	Parallel	versus	sequential	testing	

We	have	assumed	to	this	point	that	the	testing	process	is	sequential.	However,	where	the	testing	
process	is	lengthy	(e.g.,	the	multiple	stages	involved	in	testing	for	the	safety	and	efficacy	of	a	new	
drug),	the	innovator	may	be	forced	to	test	different	potential	combinations	in	parallel	rather	than	
in	sequence.	We	model	this	as	the	innovator	choosing	a	portfolio	of	combinations	at	the	outset	of	
the	search	that	proceed	in	parallel	through	the	testing	process.		

The	problem	facing	the	innovator	is	to	choose	the	size	and	composition	of	this	portfolio.	
In	 hypothetically	 adding	 a	 combination	 to	 the	 portfolio,	 the	 innovator	 must	 consider	 the	
probability	 that	 a	 success	will	 be	 achieved	 by	 one	 of	 the	 already	 included	members.	With	𝑚	
existing	 members,	 the	 marginal	 expected	 value	 of	 adding	 a	 member	 is	 then:	 𝑓(𝑚 + 1) =
(1 − 𝑞%)(1 − 𝑞#). . . (1 − 𝑞6)𝑞67%.	This	 is	 the	probability	 function	evaluated	at	𝑚 + 1	–	 i.e.,	 the	
probability	of	achieving	the	first	success	on	combination	𝑚 + 1.	To	obtain	the	optimal	portfolio	
size	(and	composition),	we	replace	the	function	with	the	probability	function	in	(4).	The	optimal	
size	of	the	portfolio,	𝑧7,	is	then	given	by	the	highest	ranked	combination	such	that,			

	

(17)				𝑓(𝑧7) ≥ 𝑐.	

	

To	compare	parallel	and	sequential	testing,	it	is	useful	to	rewrite	this	optimality	condition	as,	

	

(18)					𝑓(𝑧7) = 𝑆(𝑧7 − 1)𝑞&* ≥ 𝑐.	

	

Comparing	(18)	to	(4’),	it	is	clear	that	𝑧7 < 𝑧∗	at	the	respective	profit-maximising	points;	i.e.,	the	
size	of	the	optimal	portfolio	under	parallel	testing	is	 less	that	the	size	of	the	maximum	search	
under	 sequential	 testing.	 The	 reason	 is	 that	 although	 the	 respective	 expected	marginal	 value	
schedules	are	the	same,	the	expected	marginal	cost	schedule	is	lower	under	sequential	testing	
given	the	less	than	certain	probability	of	reaching	any	given	rank	(1 < 𝑧 ≤ 𝑧∗)	under	sequential	
testing.	Moreover,	if	we	force	the	size	of	the	maximum	search	under	sequential	testing	to	be	𝑧7,	
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expected	profits	and	duration	will	be	lower	as	the	search	will	stop	before	reaching	𝑧7	if	a	success	
is	found,	while	the	expected	innovation	output	will	be	the	same.	By	allowing	the	maximum	length	
of	the	sequential	testing	to	be	chosen	optimally,	expected	profits	from	sequential	testing	would	
rise	 further,	 as	 would	 expected	 innovation	 output,	 although	 it	 is	 possible	 that	 the	 expected	
duration	of	the	sequential	testing	would	be	longer	than	the	optimal	parallel	testing.	The	expected	
profit	under	parallel	testing	is,			

	

(23)				𝛬(𝑧7) =�𝑆(𝑧 − 1)𝑞& −�𝑐
&*

&(%

&*

&(%

	

	

																																		= �𝑒$)*(&$%)
&*

&(%

𝑞& − 𝑐𝑧7 < 𝛬(𝑧∗).	

	

We	 show	profit	 as	 a	 function	 of	 different	 search	 lengths	 (representing	 the	 size	 of	 the	
portfolio	under	parallel	testing	and	the	maximum	duration	of	the	search	under	sequential	testing)	
in	Figure	6.	The	bottom	line	of	this	comparison	is	that,	with	no	penalty	for	longer	searches,	an	
increase	 in	 integration	as	 reflected	 in	a	move	 from	parallel	 to	sequential	 testing	will	 result	 in	
higher	expected	profits	and	innovation	output.		

	

5.2	Slow	versus	fast	testing	

Of	course,	the	reason	for	the	greater	profitability	of	sequential	testing	is	that	there	is	no	penalty	
for	the	extra	time	taken	to	engage	in	sequential	compared	to	parallel	testing.	But	if	testing	takes	
time,	parallel	testing	has	the	inherent	advantage	that	the	entire	portfolio	can	be	tested	in	the	time	
it	takes	one	test	under	sequential	testing.		

To	provide	 a	 fair	 comparison	between	 the	 two	 forms	of	 testing,	we	 therefore	need	 to	
introduce	a	time	penalty,	which	we	do	simply	by	introducing	time	discounting.	Starting	at	time	
𝑡 = 0,	future	benefits	and	costs	are	discounted	by	the	discount	factor	𝛿8 .	Furthermore,	we	now	
assume	that	a	test	takes	𝜆	units	of	time.	We	can	therefore	rewrite	the	discount	factor	in	units	of	
the	test	as	𝛿9&.		

Under	sequential	testing,	for	a	given	rank	in	the	sequence	that	a	test	results	in	success,	
the	higher	the	value	of	𝜆	the	more	the	resulting	expected	profit	will	be	discounted.	As	the	entire	
portfolio	can	be	tested	under	parallel	testing	in	the	time	it	takes	to	conduct	one	test,	the	relevant	
discount	factor	is	a	constant	𝛿9	across	the	entire	portfolio.		

	 Allowing	for	discounting,	the	optimal	discounted	expected	profits	under	sequential	and	
parallel	testing	are,	respectively:	

	

(24)				𝛬(𝑧∗) = 	�𝛿9&𝑆(𝑧 − 1)(𝑞& − 𝑐)
&∗

&(%

,	
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(25)					𝛬(𝑧7) =�𝛿9(𝑆(𝑧 − 1)𝑞& − 𝑐)
&*

&(%

.	

	

It	is	useful	to	write	the	gap	between	profits	under	sequential	and	parallel	testing	as,		

	

(26)				𝛬(𝑧∗) − 	𝛬(𝑧7) = 𝛿9 ¬�𝛿9(&$%)𝑆(𝑧 − 1)(𝑞& − 𝑐)
&∗

&(%

® −�(𝑆(𝑧 − 1)𝑞& − 𝑐)
&*

&(%

¯.	

	

As	noted,	when	𝜆 = 0	this	gap	is	positive	(i.e.,	sequential	testing	is	more	profitable	than	parallel	
testing).	However,	as	𝜆	increases	the	gap	will	decrease	as	the	term	in	square	brackets	becomes	
smaller	and	will	eventually	become	zero.			

Again,	using	the	conditional	success	function	from	Figure	3b,	in	Figure	7	we	compare	the	
optimal	expected	profits	under	sequential	and	parallel	testing	for	various	values	of	𝜆.	When	𝜆 =
0	we	obtain	the	same	optimal	profits	as	with	no	discounting	since	testing	is	instantaneous	and	
time	is	irrelevant.	However,	the	figure	shows	the	increasing	penalty	of	relatively	time-consuming	
sequential	 testing	 as	 𝜆	 increases,	 and	 the	 implied	 optimal	 regimes	 of	 sequential	 and	 parallel	
testing.		

As	 𝜆	 is	 a	 continuous	 variable,	 there	 is	 a	 value	 of	 𝜆 = 𝜆° > 0	 that	makes	 the	 innovator	
indifferent	between	sequential	and	parallel	testing.	We	can	therefore	identify	two	regimes:	(i)	a	
sequential	testing	regime,	0 ≤ 𝜆 < 𝜆°;	and	(ii)	a	parallel	testing	regime,	𝜆 ≥ 𝜆°,	where	we	assume	
(arbitrarily)	that	the	innovator	uses	parallel	testing	in	the	case	of	indifference.	Moreover,	the	size	
of	the	sequential	testing	regime	will	shrink	with	the	size	of	the	discount	rate,	𝛿,	as	the	innovator	
becomes	more	sensitive	to	the	timing	that	profit	is	realized.		

	 Our	next	step	is	to	endogenize	𝜆	and	thus	the	innovator’s	choice	of	the	testing	regime.	For	
any	given	starting	value	of	the	testing	time,	𝜆-,	we	assume	the	innovator	can	make	investments	
𝐼 = 𝐼(𝜆- − 𝜆)	to	reduce	the	length	of	testing	time.	The	cost	of	the	investment,	𝐼,	is	assumed	to	be	
increasing	at	an	increasing	rate	in	the	size	of	the	reduction	in	the	testing	time;	i.e.,	the	marginal	
cost	of	reducing	the	testing	time	is	increasing	with	the	size	of	the	reduction.	Under	either	regime,	
the	marginal	 benefit	 is	 the	marginal	 increase	 in	 optimal	 regime-specific	 profit:	 − 𝜕𝛬(𝑧∗) 𝜕⁄ 𝜆	
under	 sequential	 testing;	 and	−𝜕𝛬(𝑧7) 𝜕⁄ 𝜆	 under	 parallel	 testing.	 In	 Figure	 8,	 we	 show	 the	
assumed	marginal	cost	curve	and	the	two	marginal	benefit	curves	for	our	illustrative	example	
based	again	on	the	empirical	conditional	success	function	shown	in	Figure	3a.	

	 Under	each	regime,	we	can	identify	the	optimal	testing	time	as,	

	

(27)						Sequential		Testing:					𝜆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
294		

[𝛬(𝑧∗, 𝜆) − 𝐼(𝜆- − 𝜆)],	

	 	



 
 
 

19 

(28)						Parallel		Testing:				𝜆7 = argmax
294		

[Λ(𝑧7, 𝜆) − 𝐼(𝜆- − 𝜆)].	

	

The	optimal	regime	is	then	given	as,	

	

(29)						�̿� = 𝑎𝑟𝑔𝑚𝑎𝑥
29∗,9:4		

�µ𝛬(𝑧∗, 𝜆∗) − 𝐼(𝜆- − 𝜆∗)¶, (𝛬(𝑧7, 𝜆7) − 𝐼(𝜆- − 𝜆7))	�.	

	

In	terms	of	Figure	5,	recognizing	the	likely	complementarities	between	sequential	testing	
and	speedy	testing,	the	innovator	is	most	likely	to	be	in	the	upper	left-hand	quadrant	or	the	lower	
right-hand	quadrant.	We	think	of	an	improvement	in	the	prediction	model	as	potentially	shifting	
the	innovator	(after	some	reorganization	involving	costly	investments)	from	the	parallel/slow	to	
the	 sequential/fast	 regime.	 Given	 the	 needed	 reorganization,	 time	 could	 elapse	 between	 the	
availability	of	a	new	GPT	for	prediction	and	visible	changes	in	the	testing	process	and	outcomes.		

	

5.3	An	autonomous	discovery	system	

We	chose	these	two	dimensions	of	integration	for	their	plausibility	but	also	because	they	
can	be	demonstrated	with	straightforward	extensions	of	our	model.	Other	possibilities	arise	as	
we	move	towards	greater	integration	via	rapid	sequential	testing.	As	discussed	in	Section	4,	more	
integrated	search	processes	would	also	give	rise	to	possibilities	for	more	effective	exploration	of	
the	search	space,	which	may	have	benefits	beyond	the	immediate	design	task.	Such	exploratory	
search	would	be	aimed	at	improving	the	predictive	model,	and	the	benefits	would	also	include	
the	 information	 gains,	 some	 of	 which	 may	 spillover	 to	 other	 design	 problems	 and	 other	
innovators.		

	 We,	therefore,	conceive	an	autonomous	(or	“self-driving”)	testing	process	as	having	the	
following	 complementary	 characteristics:	 (i)	 sequential	 testing;	 (ii)	 rapid	 testing;	 (iii)	 a	
predictive	model	 that	effectively	prioritizes	 tests	over	a	wide	range	of	 combinations;	and	(iv)	
feedback	from	the	tests	to	the	predictive	model	allowing	for	exploratory	search.		

Materials	science	provides	a	possible	use-case	for	such	autonomous	discovery	systems.	
As	with	drug	discovery,	 the	space	of	potential	molecules	 is	vast.	Computational	methods	have	
long	been	used	 to	 aid	 the	discovery	process,	 including	 the	use	of	 computational	 chemistry	 to	
virtually	screen	for	the	properties	of	molecules,	including	methods	such	as	quantum	chemistry	
and	molecular	mechanics.	However,	the	computational	costs	of	such	simulation	methods	can	be	
prohibitive,	 leading	to	 interest	 in	statistical	approaches	such	as	machine	 learning	to	prioritize	
molecules	 for	 simulation-	 or	 experiment-based	 characterization	 (see,	 e.g.,	 Pyzer-Knapp	 et	 al.,	
2015).	For	example,	input	data	on	molecular	descriptors	and	output	data	on	molecular	properties	
could	be	used	to	develop	a	machine-learning-based	predictive	model	of	a	large	chemical	space	
that	would	otherwise	be	prohibitively	costly	through	computational	and	experimental	methods.			

Lamenting	the	slow	speed	and	high	cost	of	the	development	and	deployment	of	advanced	
materials	using	the	traditional	approach	–	new	materials	typically	“reach	the	market	after	10-20	
years	of	basic	and	applied	research”	–	Tabor	et	al.	(2018,	p.5)	outline	what	they	see	as	required	
for	an	autonomous	(closed-loop)	innovation	process:	
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To	fully	exploit	the	advances	in	autonomous	robotics,	machine	learning,	high-throughput	
virtual	screening,	combinatorial	methods	and	in	situ	or	in	operando	characterization,	we	
must	close	the	loop	in	the	research	process.		This	means	that	humans	must	partner	with	
autonomous	 research	 robots	 to	 design	 experimental	 campaigns	 and	 that	 the	 research	
robots	perform	experiments,	analyze	the	results,	update	our	understanding	and	then	use	
AI	and	machine	learning	to	design	new	experiments	optimized	to	the	research	goals,	thus	
completing	one	experimental	loop.		

Such	autonomous	discovery	systems	are	already	under	active	exploration	(Aspuru-Guzik	
and	Persson,	2018).	These	systems	are	 feasible	where	 it	 is	possible	 to	have	rapid	 feedback	 in	
terms	of	outcome	data,	where	those	data	can	be	used	to	improve	the	prediction	model	as	part	of,	
say,	 an	 active	 learning	 strategy.	 For	 example,	 machine-learning-based	 predictions	 determine	
which	candidates	will	be	tested	next	using	robotic	high	throughput	screening	(HTP)	methods.		

There	 is	 an	 obvious	 potential	 for	 a	move	 to	 a	 capital-intensive,	 self-driving	 discovery	
process	to	alter	the	balance	between	humans,	algorithms,	and	robots	 in	the	R&D	process.	The	
most	obvious	threat	in	terms	of	demand	for	task-specific	skills	is	to	those	involved	in	testing	that	
is	 increasingly	 automated.	However,	 chemists	 involved	 in	 selecting	 the	 candidates	 for	 testing	
(hypothesis	generation)	would	also	be	at	risk,	as	AI-based	predictions	replace	human	predictions	
in	the	prioritization	process.	On	the	other	hand,	new	demands	would	likely	arise	in	building	task-
specific	 AIs	 for	 prediction.	 To	 guide	 the	 overall	 design	 process,	 there	may	 also	 be	 increased	
demand	for	individuals	who	can	integrate	AI	and	domain-specific	skills,	such	as	AI	specialists	who	
have	an	understanding	of	chemistry	or	chemists	with	an	understanding	of	AI.		

	

6.	 Discussion		

	

Our	model	suggests	that	one	testing	regime,	fast	and	sequential,	might	be	superior,	from	
a	 social	 welfare	 perspective,	 compared	 to	 the	 other	 regime,	 slow	 and	 parallel.	 However,	 it’s	
possible	to	get	stuck	in	the	slow-parallel	equilibrium.	The	advance	of	AIs	might	so	dramatically	
increase	 the	quality	 of	 hypothesis	 generation	 that	 this	 alone	might	drive	 the	 shift	 from	slow-
parallel	to	fast-sequential.		Or,	this	might	not.	A	social	planner	might	be	required	to	intervene	and	
move	society	to	the	more	socially	optimal	equilibrium.		

Higher	fidelity	hypotheses	increase	the	return	on	investment	in	testing	capacity,	so	as	AIs	
improve,	they	will	increase	the	incentive	to	invest	in	testing.	An	increase	in	testing	capacity	will,	
in	turn,	increase	the	incentive	to	further	invest	in	AIs	for	improved	hypothesis	generation.	AIs	for	
hypothesis	generation	and	 technologies	 for	hypothesis	 testing	are	complements.	 So,	we	could	
enter	a	renaissance	in	scientific	discovery	if	the	flywheel	begins	to	spin	as	investments	in	AI	drive	
investments	in	testing	which	drive	further	investments	in	AI.		

However,	 the	 flywheel	may	not	begin	to	spin,	and	thus	society	may	not	benefit	 from	a	
flourishing	 of	 new	 scientific	 discoveries,	 without	 policy	 intervention.	 How	 will	 these	
complements	co-evolve?	What	is	the	role	for	policy?	Although	the	path	is	uncertain,	we	can	gain	
policy	insights	from	observing	the	evolutions	of	past	GPTs	as	seen	through	the	lens	of	the	model.	
As	introduced	by	Bresnahan	and	Trajtenberg	(1995,	p.	84)	GPTs	are:		

.	.	.	characterized	by	the	potential	for	pervasive	use	in	a	wide	range	of	sectors	and	by	their	
technological	 dynamism.	 As	 a	 GPT	 evolves	 and	 advances	 it	 spreads	 throughout	 the	
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economy,	bringing	about	and	fostering	generalized	productivity	gains...	This	phenomenon	
involves	what	we	call	“innovational	complementarities”	(IC),	that	is,	the	productivity	of	
R&D	 in	 a	 downstream	 sector	 increases	 as	 a	 consequence	 of	 innovation	 in	 the	 GPT	
technology.	These	complementarities	magnify	the	effects	of	innovation	in	the	GPT,	and	
help	propagate	them	through	the	economy.	

	 The	 special	 relevance	 of	 GPTs	 that	 provide	 a	 new	 technology	 for	 innovation	 was	
recognized	 early	 on	 by	 Nathan	 Rosenberg	 (Rosenberg,	 1998).	 Writing	 in	 the	 context	 of	
breakthroughs	in	the	discipline	of	chemical	engineering	(and	in	particular,	the	invention	of	“unit	
operations”),	Rosenberg	(1998,	p.	165)	writes:	

This	 perspective	 of	 chemical	 engineering	 as	 a	 general	 purpose	 technology	 may	 be	
compared	with	GPTs	that	have	been	identified	with	a	specific	form	of	hardware:	steam	
engines,	machine	tools,	dynamos,	computers,	and	so	on.	This	suggests	that	the	concept	of	
a	GPT	should	not	be	confined	to	hardware.	Indeed,	a	discipline	that	provides	the	concepts	
and	 methodologies	 to	 generate	 new	 or	 improved	 technologies	 over	 a	 wide	 range	 of	
downstream	activity	may	be	thought	of	as	an	even	purer,	or	higher	order,	of	GPT.		

The	 theoretical	 and	 empirical	 literatures	 on	 GPTs	 have	 shown	 how	 various	 market	
failures	can	condition	the	speed	and	long-run	impacts	of	the	technology.	First,	past	GPTs	have	
shown	 how	 full	 impacts	 are	 seen	 only	 after	 substantial	 process	 reorganizations	 –	 such	 as	
reorganizing	 factory	 floors	 to	 take	 advantage	 of	 electricity.	 Such	 reorganizations	 may	 raise	
substantial	 coordination	 challenges	 for	 managers	 and	 policymakers.	 Our	 treatment	 of	 an	
autonomous	 discovery	 system	provides	 an	 example	 of	 how	 rapid	 exploratory	 testing	may	 be	
required	to	take	advantage	of	the	predictive	possibilities	of	modern	AI	systems.		

Second,	 the	 evolution	 of	 past	 GPTs	 has	 highlighted	 the	 importance	 of	 horizontal	
spillovers.	 Drawing	 on	 our	 model,	 two	 types	 of	 spillovers	 stand	 out	 as	 being	 particularly	
important:	demonstration	effects	and	data.		

Demonstration	 effects	 refer	 to	 how	 successes	 in	 one	 design	 problem	 can	 serve	 as	
analogies	for	how	to	go	about	the	process	of	discovering	designs	in	other	domains.	This	could	
happen	within	sectors	–	say,	the	finding	of	a	small	molecule	drug	that	successfully	binds	with	a	
target	malfunctioning	protein	could	demonstrate	how	to	find	a	drug	to	bind	with	a	protein	related	
to	 a	 different	 disease;	 and	 across	 sectors	 –	 say	 demonstrations	 of	 successful	 use	 in	 medical	
biotechnology	 could	 help	 solve	 design	 problems	 in	 agricultural	 biology.	 In	 the	 context	 of	 AI	
applications,	such	demonstration	effects	may	be	more	important	than	in	other	areas	of	science	
given	 the	 emphasis	 on	 finding	 something	 that	 “works”	 notwithstanding	 the	 often	 paucity	 of	
understanding	of	“why	it	works.”	

Recognizing	the	importance	of	data	to	modern	statistics-based	AI,	a	potentially	even	more	
consequential	source	of	spillovers	is	data.25	In	our	model,	testing	generates	data	on	successes	and	
failures,	and	these	data	are	used	to	improve	the	underlying	predictive	models.	Even	putting	aside	
for	the	moment	concern	about	the	monopolization	of	data,	scientists	may	have	difficulty	accessing	
data	that	exists	in	principle	as	a	non-rival	good.	Data	on	what	has	not	worked	–	failures	in	our	
model	–	can	be	particularly	problematic,	with	such	data	remaining	hidden	in	the	notebooks	of	
experimentalists.	This	access	problem	 is	worsened	by	publication	bias	 towards	successes	and	
weak	incentives	to	reveal	data	on	failures	(Raccuglia	et	al.,	2016;	Krieger,	2021).		

 
25 See	Farboodi	and		Veldkamp	(2021)	for	fascinating	treatment	of	the	importance	and	measurement	of	
data	in	the	modern	economy.		
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We	have	noted	how	the	basic	exploitation	model	of	Section	2	be	extended	to	allow	for	the	
value	of	exploration.	To	the	extent	that	 the	primary	output	of	exploration	 is	data,	and	at	 least	
some	 of	 this	 data	 spills	 over	 to	 other	 users,	 there	 is	 also	 a	 potential	 bias	 towards	 excessive	
exploitation	of	 existing	data	 instead	of	more	exploratory	 research	 to	 generate	new	data.	This	
suggests	the	value	of	public	subsidies	for	research	that	explores	the	design	space.	At	the	firm	level,	
the	centrality	of	data	highlights	the	importance	of	firms	being	part	of	open	innovation	networks	
–	both	providing	and	gaining	access	from	their	active	participation	in	data	sharing.26			

Third,	 the	 evolution	 of	 AI	 as	 a	 technology	 for	 discovery	 will	 depend	 on	 how	 the	
downstream	applications	feedback	to	the	development	of	 the	AI	 technology	 itself.	We	identify	
two	 important	 dimensions:	 (i)	 whether	 development	 is	 demand-	 or	 supply	 driven;	 and	 (ii)	
whether	development	is	task-specific	or	task-general.		

Although	economists	have	generally	adopted	a	positive	attitude	 towards	 technological	
change,	 there	 is	 increasing	attention	 to	 the	 importance	of	 the	direction	of	 such	 change	 to	 the	
ultimate	benefits	for	society	(see,	e.g.,	Acemoglu	and	Johnson,	2023).	Science	is	interesting	in	this	
context	 in	 that	 it	 is	 affected	 by	 AI	 (as	 highlighted	 by	 our	model)	 and	 is	 itself	 a	 driver	 of	 AI	
development.	To	the	extent	that	the	societal	effects	of	AI-aided	science	are	positive	–	new	drugs,	
new	treatment	targets,	new	energy-efficient	materials,	etc.	–	policies	may	be	required	to	ensure	
that	 the	allocation	of	efforts	 to	develop	AI	support	scientific	applications	rather	 than,	 say,	 the	
further	development	of	LLMs.		

The	 debate	 over	 the	 relative	 importance	 of	 supply-driven	 versus	 demand-driven	
development	 has	 a	 long	 history	 in	 the	 economics	 of	 innovation.	 As	 AI	 development	 becomes	
increasingly	concentrated	in	large	corporations	due	to	scale	requirements,	policy	may	need	to	
address	the	need	to	invest	in	science-focused	AI	research	as	a	public	good.		

Jacob	Schmookler	argues	strongly	for	the	primacy	of	demand	in	his	classic	early	study,	
Invention	and	Economic	Growth:		

As	different	classes	of	goods	become	relatively	more	important	than	before,	the	yield	to	
inventive	effort	in	different	fields	will	tend	to	change	correspondingly.	And	if	we	further	
grant	that	 inventive	effort	 is	 influenced	by	prospective	yield,	the	direction	of	 inventive	
effort	will	shift	(Schmookler,	1966,	p.	180).		

While	largely	agreeing	with	Schmookler	on	the	importance	of	demand,	Nathan	Rosenberg	(1974)	
advocates	a	more	nuanced	position	in	which	both	supply	(notably	advancements	in	science)	and	
demand	(driven	by	end-user	needs)	drive	the	innovation	process:	

The	burden	of	my	argument	here	is	that	the	allocation	of	inventive	resources	has	in	the	
past	been	determined	jointly	by	demand	forces	which	have	broadly	shaped	the	shifting	
payoffs	to	successful	innovation,	together	with	supply-side	forces	which	have	determined	
both	the	probability	of	success	within	any	particular	timeframe	as	well	as	the	prospective	
cost	of	producing	a	successful	invention	(Rosenberg,	1974,	p.	103).		

While	there	is	 little	doubt	that	the	initial	advances	in	machine	learning	–	including	the	
development	of	the	foundations	for	deep	learning	and	self-supervised	learning	–	had	their	origins	
in	academia,	driven	by	curiosity	and	the	imperative	of	solving	scientific	problems,	this	balance	
appears	to	have	shifted	over	time.	As	already	noted,	even	in	its	more	purely	science-driven	phase,	

 
26 Of	course,	one	risk	with	open-sourced	data	is	that	malevolent	actors	could	put	them	to	socially	
damaging	ends.		
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AI	 is	unusual	 in	 its	 emphasis	on	developing	 techniques	 that	work	even	where	 the	 theoretical	
foundations	 for	why	 they	work	 lags	 behind.	 But,	 as	 the	 extent	 of	 real	world	 applications	 has	
expanded,	firm-specific	needs	have	had	an	increasing	influence	on	the	development	trajectory	of	
the	 technology,	much	 of	which	 now	 occurs	 outside	 of	 academia	 or,	where	 academics	 remain	
centrally	involved,	in	collaboration	with	downstream	users,	often	involving	joint	appointments	
between	universities	and	large	platform	firms.		

The	 second	 useful	 dimension	 of	 development	 is	 the	move	 from	 a	 set	 of	 diverse	 task-
specific	 models	 to	 multi-task	 models.	 Using	 François	 Chollet’s	 typology	 of	 degrees	 of	
generalization	(Chollet,	2019,	pp	11-12),	we	can	think	of	this	development	as	the	move	from	local	
generalization	(i.e.,	“the	ability	of	a	system	to	handle	new	points	from	a	known	distribution	for	a	
single	task	or	a	well-scoped	set	of	known	tasks”)	to	broad	generalization	(i.e.,	 “the	ability	of	a	
system	 to	 handle	 a	 broad	 category	 of	 tasks	 and	 environments	 without	 further	 human	
intervention”).	We	note	that	both	degrees	of	generalization	fall	short	of	what	Chollet	calls	human-
centric	extreme	generalization	where	“the	scope	considered	is	the	space	of	tasks	and	domains	
that	fit	within	the	human	experience.”	

The	 idea	 of	 “foundation	models”	was	 introduced	 by	 the	 Stanford	 Institute	 for	Human	
Centered	AI	 (HAI),	which	 they	define	as	 “models	 trained	on	broad	data	 (generally	using	 self-
supervision	 at	 scale)	 that	 can	 be	 adapted	 to	 a	 wide	 range	 of	 downstream	 tasks	 (see,	 e.g.,	
Bommasani	and	Liang,	2021).”	These	models	have	been	central	to	recent	developments	in	AI	and	
include	such	large	language	models	(LLMs)	as	Google’s	PaLM	and	OpenAI’s	GPT-4,	ChatGPT,	and	
DALL-E.27	Beyond	language,	they	also	exist	for	other	modalities	including	images,	code,	proteins,	
speech,	and	molecules.28		

	 	Notwithstanding	their	role	in	the	development	of	AI	as	a	GPT,	concerns	have	been	raised	
about	the	increasing	importance	of	such	broad	generalization	models.	One	concern	is	that	as	the	
underlying	 platforms	 become	 increasingly	 homogenous	 over	 time,	 their	 (possibly	 poorly	
understood)	weaknesses	as	well	as	their	strengths	get	transmitted	to	downstream	applications,	
becoming	 a	 source	 of	 systemic	 risk	 as	 well	 as	 benefit.	 This	 risk	 can	 be	 heightened	 by	 the	
“emergent”	 nature	 of	 the	 capabilities	 of	 the	 learning	 system.	 This	 suggests	 a	 role	 for	 public	
regulation	of	AI	products	in	some	areas,	though	not	necessarily	regulation	of	AI	research	itself.		

A	 further	concern	is	that	the	control	over	a	core	part	of	 the	AI	 infrastructure	becomes	
increasingly	 concentrated	 in	 large	 firms	 and	 thus	 a	 source	 of	 potential	market	 power.	 Policy	
makers	will	need	to	be	alert	to	anti-competitive	practices,	including	the	ability	to	monopolize	data	
and	access	to	the	underlying	foundation	models.		

	 Our	model	also	highlights	how	AI	can	alter	the	balance	between	humans,	algorithms,	and	
robots	in	the	production	of	science	itself.	The	extreme	form	of	an	autonomous	discovery	system	
would	seem	to	leave	limited	tasks	for	humans,	with	algorithms	doing	the	predictions	and	robots	

 
27 Here	GPT	stands	for	generative	pre-trained	transformer	rather	than	general	purpose	technology.		
28 While	GPT-4	is	often	taken	as	the	paradigmatic	case	of	a	foundation	model,	another	prominent	example	
of	the	evolution	of	learning	systems	from	the	more	task-specific	to	the	task-general	would	be	the	evolution	
of	DeepMind’s	celebrated	AlphaGo	to	AlphaGoZero	to	AlphaZero	(with	the	latter	capable	of	learning	any	
two-player	game).	DeepMind	also	recently	introduced	a	multi-task	learning	model	(or	“generalist	agent”)	
that	it	calls	Gato	(Reed	et	al.,	2022).	The	model	is	trained	on	more	than	600	distinct	tasks	(including	vision,	
language	and	robotic	control	tasks).	In	testing,	the	model	is	found	to	perform	reasonably	well	in	many	tasks	
compared	to	task-specific	model	benchmarks.		
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doing	the	testing.	But	the	effects	on	the	division	of	labor	are	likely	to	be	case	specific.	The	demand	
for	some	types	of	scientists	–	such	as	 those	who	can	combine	domain-specific	knowledge	and	
machine	learning	–	are	likely	to	rise,	while	demand	for	those	whose	tasks	can	be	automated	is	
likely	to	fall.	This	raises	questions	for	universities	and	government	in	relation	to	the	design	of	
training	–	and	re-training	–	programs.		

	 The	changing	balance	between	humans	and	algorithms	as	this	meta-GPT	evolves	is	likely,	
then,	to	affect	both	productivity	growth	and	income	distribution.	One	fear	is	that	AI	will	prove	to	
be,	 in	 the	pithy	phrase	of	Acemoglu	and	Restrepo	(2019),	a	 “so-so	 technology”	–	with	 limited	
productivity	effects	while	potentially	causing	substantial	disruption	to	 labor	markets.	But	as	a	
meta-GPT,	AI-aided	innovation	may	also	affect	a	wider	range	of	sectors	by	altering	the	knowledge	
production	function	of	the	overall	economy.	Shifting	the	knowledge	production	function	makes	it	
less	 likely	that	AI	will	be	a	so-so	technology	when	used	as	a	tool	 in	the	innovation	process,	as	
opposed	to	simply	being	a	product	of	that	process.		

AI’s	growing	uses	as	 it	matures	(not	all	 likely	to	be	welcome)	could	also	mean	that	 its	
impact	as	a	technology	for	innovation	could	extend	far	beyond	the	sectors	traditionally	associated	
with	information	technology,	providing	new	blueprints	for	“rearranging	atoms”	and	not	just	for	
“rearranging	bits.”	And,	of	course,	the	creative	destruction	induced	by	these	innovation	processes	
may	affect	 labor	demand	much	more	broadly	than	the	narrow	scientist	skill	markets	we	have	
considered	here.	In	any	case,	new	dynamic	models	of	the	innovation	process	that	highlight	costly	
search	over	combinatorial	search	spaces	are	needed	to	help	us	better	understand	this	important	
new	 force	 that	 could	 change	 the	 balance	 between	 humans	 and	 machines	 at	 the	 economy’s	
innovation	frontiers.	

What	is	the	main	testable	implication	of	the	model?	It	 is	simple	to	state	but	difficult	to	
implement	 –	 access	 to	 AI-based	 prediction	 models	 will	 increase	 scientific	 discovery	 and	
innovation.	We	refer	to	this	as	the	Hassabis	hypothesis.	Demis	Hassabis,	co-founder	of	DeepMind	
(now	part	of	Google),	has	been	an	evangelist	for	the	potential	of	AI	to	speed	scientific	discovery.	
He	has	noted	three	requirements	that	make	a	scientific	problem	amenable	to	an	AI-aided	solution:	
a	 combinatorial	 search	 space	 (too	 large	 for	 exhaustive	 search);	 a	 clear	 objective	 function	 for	
training	the	prediction	model;	and	sufficient	data	or	capability	to	simulate	that	data	to	train	the	
model.	We	suggest	adding	a	fourth	–	poor	alternative	predictive	models	for	prioritizing	search	
over	the	design	space.	When	these	conditions	are	present,	the	Hassabis	hypothesis	is	essentially	
that	the	space	of	amenable	problems	that	cannot	be	solved	by	other	means	is	large.	AlphaFold	
can	reasonably	be	seen	as	a	proof	of	concept	–	albeit	one	with	significant	real-world	implications.	
Time	–	and	empirical	research	–	will	tell	if	it	is	a	fluke	or	a	harbinger	of	a	new	era	of	discovery.		
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Figure	1.	Outline	of	a	model	of	the	innovation	process	with	an	exogenous	testing	cost	
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Note:	The	goal	of	the	model	is	to	link	a	predictive	model	over	a	combinatorial	design	space	to	the	
expected	innovation	outcomes.	We	assume	the	innovator	in	engages	in	Weitzman	sequential	search.	
A	test	of	a	design	is	modelled	as	a	Bernoulli	trial.	With	no	heterogeneity	in	the	value	of	a	success	or	
the	cost	of	a	test	in	the	baseline	model,	reservation	prices	(and	thus	the	ranking	of	designs)	are	
completely	determined	by	the	probabilities	of	success	that	are	the	outputs	of	the	predictive	model.	
Inverting	the	ranking	based	on	these	probabilities	results	in	a	discrete	hazard	function	–	i.e.,	a	
function	that	gives	the	probability	of	success	conditional	on	reaching	that	point	in	the	ranking	in	a	
sequential	search.	Discrete	survival	analysis	is	then	used	to	derive	the	key	expected	innovation	
outcomes	of	interest.		
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Figure	2.	Bijective	function	linking	probabilities	from	the	predictive	model	to	their	rank		

(𝑵 = 𝟑;	𝟐𝑵 = 𝟖)	
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are	then	ranked	based	on	probability	of	success,	with	the	design	with	the	highest	probability	given	a	
rank	of	1	(see	the	ranking	of	combinations	on	the	right).	The	numbers	in	square	brackets	on	the	left	
represent	the	re-indexing	of	the	probabilities	based	on	the	generated	rankings.	
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Figure	3.	Key	outcomes	from	an	innovation	search	
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Notes:	(i)	Panel	a.	shows	the	probability	of	success	by	rank.	This	can	be	viewed	as	a	discrete	hazard	
function	as	it	gives	the	probability	of	success	conditional	on	reaching	that	rank	in	a	sequential	search.	
Absent	a	success,	the	innovator	will	continue	to	test	designs	provided	the	probability	of	success	is	greater	
than	or	equal	to	the	cost	of	a	test.	The	maximum	duration	of	the	search,	𝑧∗,	can	therefore	be	identified	as	
the	highest	𝑧	such	that	𝑞- ≥ 𝑐.	(ii)	Panel	b.	shows	the	cumulative	incidence	function	(or	expected	
probability	of	innovation)	for	different	durations	of	the	maximum	search.	This	is	our	measure	of	expected	
innovation	output.	For	a	given	hazard	function,	a	longer	maximum	search	duration	is	associated	with	
higher	expected	innovation	output.	(iii)	Panel	c.	shows	how	the	expected	duration	of	search	varies	with	
the	maximum	duration	of	search.	For	a	maximum	duration	of	search	great	than	1,	the	expected	duration	
will	lie	below	the	maximum	duration,	where	we	assume	there	is	some	positive	probability	that	a	success	
will	be	found	on	any	given	test.		
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Figure	4.	Impact	of	an	improvement	in	the	prediction	model	(assumes	cumulative	conditional	
success	probability	increases	at	the	original	profit	maximizing	maximum	search	duration)	

	

	

	

Notes:	An	improvement	in	the	prediction	model	is	represented	as	a	clockwise	swivel	in	the	hazard	
function,	reflecting	an	increase	in	the	probabilities	of	success	of	the	highly	ranked	combinations	over	
some	range	due	to	the	more	discriminating	prediction	model.	Panel	a.	shows	the	case	where	the	
maximum	duration	of	search	increases;	Panel	b.	shows	the	case	where	the	maximum	duration	of	search	
decreases.	In	both	cases,	given	the	optimal	maximum	duration	of	search,	the	pre-	and	post-improvement	
innovation	outcomes	can	be	obtained	from	knowledge	of	the	cumulative	hazard	function	over	the	
relevant	ranges	of	ranks	as	set	out	in	the	text.			
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Figure	5.	Complementary	dimensions	of	Integration	in	the	Innovation	Process	
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Notes:	The	diagram	captures	an	innovation	system	with	two	complementary	dimensions:	whether	testing	
is	done	in	parallel	or	sequentially;	and	whether	testing	is	slow	or	fast.	It	is	assumed	that	parallel/slow	and	
sequential/fast	represent	two	coherent	systems.	An	investment	option	is	available	that	affects	the	speed	of	
testing.	 It	 is	 assumed	 that	 the	 sequential/fast	 system	 is	 superior	 given	 optimal	 investment	 (see	 text).	
However,	we	allow	 for	 the	possibility	 that	 the	 innovator	will	 remain	stuck	 in	 the	 inferior	system	given	
difficulties	 of	 coordinating	 the	 reorganization	 required	 to	move	 from	 a	 parallel	 to	 a	 sequential	 testing	
regime	together	with	the	investment	in	speeding	up	the	testing	process.			
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Figure	6.	Expected	profit	under	parallel	and	sequential	testing	

	

Note:	The	figure	shows	how	the	profitability	of	sequential	and	parallel	testing	varies	with	the	maximum	
duration	of	testing	(sequential	testing)	and	the	size	of	the	testing	portfolio	(parallel	testing).	The	optimal	
maximum	duration	is		𝑧∗	(sequential	testing)	and	the	optimal	portfolio	size	is	𝑧3(parallel	testing).	With	no	
time	penalty,	maximum	profit	is	higher	under	sequential	testing	than	under	parallel	testing.		
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Figure	7.	Sequential	and	parallel	testing	regimes		

	

Note:	Based	on	the	hazard	function	in	Figure	3b	this	figure	shows	expected	profit	under	optimal	
sequential	and	optimal	parallel	testing	as	a	function	of	the	time	cost	of	conducting	a	test.	There	is	a	cut-off	
time	cost	where	the	expected	profitability	is	equal	under	both	regimes.	Sequential	testing	yields	higher	
expected	profit	for	time	costs	below	this	cut-off;	parallel	testing	yields	higher	expected	profit	for	time	
costs	at	or	above	this	cut-off.	We	can	therefore	identify	optimal	sequential	and	parallel	testing	regimes	
based	on	the	actual	time	cost	the	innovator	faces.		
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Figure	8.	Endogenous	determination	of	testing	regime	

	

Note:	The	figure	shows	the	expected	marginal	benefit	and	marginal	cost	of	small	reductions	in	the	test	time	
relative	to	some	starting	test	cost,	𝜆4	 .	The	optimal	test	cost	is	𝜆∗under	sequential	testing	and	𝜆3	under	
parallel	testing.	Given	optimal	investment	under	each	regime,	it	is	assumed	in	the	figure	that	expected	profit	
is	higher	under	the	sequential	testing	regime.	Therefore,	the	overall	optimal	test	time,	�̿�,	is	𝜆∗.	
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Appendices	

	

Appendix	1.	Generalization	of	the	model	to	heterogeneous	payoffs	and	costs	of	testing	

The	model	in	Section	2.1	assumes	that	the	payoffs	conditional	on	success	and	the	cost	of	testing	
are	each	the	same	for	all	potential	design	combinations.	More	specifically,	we	assume:	𝑣" = 1, ∀𝑖 ∈
{1, . . . , 2!}	and	𝑐" = 𝑐, ∀𝑖 ∈ {1, . . . , 2!}.	This	allows	the	ranking	of	combinations	–	and	thereby	the	
order	of	search	–	to	depend	only	on	the	probabilities	of	success	of	those	combinations.	Here,	we	
generalize	the	results	to	the	case	of	heterogeneous	payoffs	and	costs.		

As	 shown	 in	 Weitzman	 (1979),	 the	 optimal	 order	 of	 search	 for	 a	 profit-maximizing	
decision	maker	can	be	specified	 in	declining	order	of	“reservation	prices.”	(See	Agrawal	et	al.,	
2022b,	 for	a	simple	proof	of	 the	Bernoulli	case.)	The	reservation	price	 is	 the	“sure	thing”	that	
makes	the	decision	maker	(i.e.,	the	innovator)	indifferent	between	a	lottery	of	obtaining	a	success	
with	 probability	 𝑝" 	 and	 otherwise	 receiving	 the	 sure-thing	 payoff,	 and	 the	 sure-thing	 payoff.	
Letting	𝜃" 	denote	this	reservation	price,	it	is	therefore	determined	as:		

(𝐴1.1)						𝑞"(𝑣" − 𝑐") + (1 − 𝑞")(𝜃" − 𝑐") = 𝜃" 	

=> 						 𝜃" = 𝑣" −
𝑐"
𝑞"
.	

Agrawal	et	al.	(2022b)	show	that	for	combinations	with	a	reservation	price	greater	than	
or	equal	to	zero	the	optimal	search	strategy	with	such	heterogeneous	combinations	(or	“Bernoulli	
boxes”)	 is	 to	 search	 the	 combinations	 in	 order	 of	 reservation	 prices	 from	 highest	 to	 lowest	
(randomizing	in	the	case	of	equal	reservation	prices)	and	to	stop	the	search	when	a	success	is	
found.	 If	no	success	 is	 found	once	all	 the	non-negative	reservation	prices	have	been	searched,	
then	search	should	stop.		

Again,	indexing	a	combination	in	the	ranked	list	by	its	rank	𝑧,	the	maximum	search	that	
maximizes	expected	profit,	𝑧∗,	is	given	by	the	largest	rank	such	that	𝜃&∗ ≥ 0.	It	is	easily	verified	
from	A1.1	that	this	is	equivalent	to	the	largest	rank	such	that	𝑞&∗𝑣&∗ − 𝑐&∗ ≥ 0.	

While	the	ranking	is	no	longer	determined	by	the	success	probabilities	alone,	we	are	still	
able	 to	 define	 the	 hazard	 function	 based	 on	 the	 new	 optimal	 ranking.	 However,	 unlike	 the	
monotonically	declining	success	function	in	the	homogenous	payoffs	and	costs	case,	this	success	
function	 can	 rise	 and	 fall	 with	 𝑧.	 Notwithstanding	 this	 non-monotonicity,	 we	 can	 apply	 the	
analysis	 of	 Section	 2	 to	 this	 hazard	 function	 to	 determine	 the	 expected	 innovation	 output,	
expected	search	duration,	and	expected	profit.	Moreover,	in	addition	to	the	information	on	the	
heterogeneous	 payoffs	 and	 costs,	 the	 related	 cumulative	 hazard	 function	 provides	 sufficient	
information	to	determine	these	expected	innovation	outcomes.	The	corresponding	equations	to	
(10)	and	(11)	 for	expected	 innovation	output	and	expected	search	duration,	 respectively,	are	
identical	(though	we	note	that	the	methods	of	determining	the	optimal	maximum	search	length	
are	different).		Given	the	heterogeneous	payoffs	and	costs,	expected	innovation	profit	is	then,	

(𝐴1.2)					𝛬(𝑧∗) = �𝑆(𝑧 − 1)(𝑞&𝑣&

&∗

&(%

− 𝑐&)	
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																														= �𝑒$)(&$%)(𝑞&𝑣&

&∗

&(%

− 𝑐&).	

Once	we	for	heterogeneity	across	boxes	in	the	value	of	payoffs,	it	is	easy	to	show	that,	all	
else	equal,	“riskier”	boxes	will	tend	to	be	prioritized	in	the	search.	We	assume	𝑐" = 𝑐	to	limit	the	
heterogeneity	to	the	value	of	boxes	conditional	on	success.	Now	consider	two	boxes,	Box	1	and	
Box	2,	such	that	𝑣% > 𝑣#	and	𝑞% < 𝑞#.	Box	1	has	a	high	payoff	but	a	low	probability	of	success;	Box	
2	has	a	low	payoff	but	high	probability	of	success.	From	A1.1	it	is	clear	that	Box	1	has	a	higher	
reservation	 price	 and	 will	 be	 searched	 first.	 Therefore,	 allowing	 for	 heterogeneous	 success	
outcomes,	the	innovator	will	tend	to	prioritize	“riskier”	boxes	in	the	search.		
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Appendix	2.	Expected	duration	of	search	and	the	cumulative	survival	function	

Proposition:	The	expected	duration	of	search	with	restricted	size,	𝑧∗,	is	equal	to	the	sum	of	the	
survival	probabilities	up	to	𝑧∗ − 1.	

Proof:	The	expected	duration	of	the	restricted	search	is,	

(𝐴2.1)					𝐷(𝑧∗) =�𝑓(𝑧)𝑧 + 𝑆(𝑧∗)𝑧∗.
&∗

&(%

	

That	is,	the	expected	duration	of	the	restricted	search	is	given	by	the	sum	of	all	search	durations	
up	to	𝑧∗	weighted	by	their	probabilities	of	being	the	 first	success	plus	 the	maximum	duration	
weighted	by	the	probability	that	the	search	will	not	have	achieved	a	success	on	completion	of	the	
final	test.		

We	now	use	the	fact	that	the	probability	of	a	first	success	at	a	given	rank,	𝑧,	is	equal	to	the	
negative	of	the	change	in	the	survival	probability	–	i.e.,	𝑓(𝑧) = −𝛥𝑆(𝑧)	–	to	rewrite	(A2.1)	as,	

(𝐴2.2)			𝐷(𝑧∗) = �−𝛥𝑆(𝑧)𝑧 + 𝑆(𝑧∗)𝑧∗.
&∗

&(%

	

Expanding	the	first	term	on	the	right-hand-side	and	cancelling	yields,	

(𝐴1.3)				𝐷(𝑧∗) = 𝑆(0) + 𝑆(1)+	. . . +𝑆(𝑧 − 1) − 𝑆(𝑧∗)𝑧∗ + 𝑆(𝑧∗)𝑧∗ =�𝑆(𝑧 − 1)
&∗

&(%

.	

It	is	useful	to	illustrate	with	an	example	taking	𝑧∗ = 3.	Expanding	(A2.2)	yields:	

𝐷(3) = µ𝑆(0) − 𝑆(1)¶1 + µ𝑆(1) − 𝑆(2)¶2 + µ𝑆(2) − 𝑆(3)¶3 + 𝑆(3)3	

= 𝑆(0) + 𝑆(1) + 𝑆(2).																																																																				

	




