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I Introduction

Average temperatures in the continental United States have increased substantially

over the past century (IPCC, 2021). The pace of warming has accelerated starting in the

1980s, with a median increase in temperature across US counties of 0.6°C, and nine in ten

counties experiencing an increase in their average temperatures between the 1980s decade

and the 2010s decade. Understanding the impact of a warming climate on economic

activity has gained the center of the political and academic debate.1

We contribute to this debate by providing new evidence on the impact of temperature

variation on U.S. manufacturing activity using four decades of plant-level data from the

U.S. Census Bureau. Three features of the Census data are particularly relevant. First,

the availability of detailed establishment-level characteristics, such as energy costs and

productivity, allows a comprehensive anatomy of the impact of temperature shocks. Sec-

ond, the ability to observe the cross-section of plants allows us to study the heterogeneous

effects of temperature shocks on establishments of different sizes. Third, observing plant

performance over four decades enables us to study the response of manufacturing activ-

ity to long-run temperature changes. To the extent that plants differ in their sensitivity

to temperature variation, one may expect manufacturing activity to concentrate among

those firms that are better able to adapt. Indeed, the main contribution of this paper is

to document the impact of temperature variation on local industry concentration, and to

discuss its potential drivers.

Our empirical strategy builds on two approaches to estimate the effect of temperature

on manufacturing plants. The first approach aims at capturing the contemporaneous re-

sponse of manufacturing outcomes to short-term (yearly) temperature shocks. The second

approach aims at capturing the long-term response of manufacturing activity to changes

in the average climate experienced by a county in the last four decades. To measure

manufacturing outcomes, we use two datasets. We combine the Census of Manufacturing

Firms (CMF) and the Annual Survey of Manufacturers (ASM) to measure plants’ energy

costs, productivity, and size. We use the Longitudinal Business Database (LBD), an ad-

ministrative register that tracks all business establishments, to identify plant entry and

exit in different geographic locations.

We start by estimating a panel regression at the plant-year level which exploits yearly

variation in temperature in the ZIP code where the plant is located. We think of these

yearly temperature shocks as random “weather” draws from the “climate” distribution

in a given geographical area, and therefore as plausibly exogenous to the outcomes of

interest (Dell et al., 2014). Because of our focus on manufacturing, we think of each US

ZIP code or county as a small open economy and manufacturing as a tradable sector

1As is common practice, we use the term weather to refer to realizations of temperature, drawn from
an underlying distribution, and climate to refer to moments of the weather distribution (e.g., Auffhammer
(2018), Dell et al. (2012)).
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whose demand is geographically sparse across the US and the rest of the world, and thus

relatively independent from local demand shocks. Under this assumption, temperature

shocks are likely to identify supply forces such as higher input costs or negative labor

productivity shocks, rather than any effect of temperature on local demand of the goods

produced by each plant.

Two key findings emerge from our estimates of the short-run effects of temperature

shocks on manufacturing outcomes. First, input costs associated with temperature man-

agement – mainly expenditures in electricity and fuel – and productivity react to contem-

poraneous temperature shocks. In particular, warmer than usual temperatures increase

energy spending and decrease plant productivity. Second, these effects are concentrated

in small manufacturing plants, while large establishments are mostly unaffected.

Despite these contemporaneous negative effects on small plants, we observe no signifi-

cant contemporaneous response of small plants via down-scaling (as measured by employ-

ment) or via exiting a given location, although hotter than usual temperatures dissuade

entry. Indeed, it is plausible that key industrial decisions such as scaling back on the size

of an existing plant or exiting a given market are not driven by yearly weather shocks,

especially if such shocks are interpreted as idiosyncratic and therefore likely to revert in

following years. On the other hand, the cumulative effect of several years of warmer than

usual weather might push managers to respond on the intensive and extensive margins.

This is because a series of deviations from past temperatures might indicate a shift in the

climate distribution from which weather events are drawn in a given geographical area.

To investigate the response to long-run changes in average temperatures in a given

county, we use a long differences approach as in Burke and Emerick (2016). In particular,

we estimate a county-level regression relating long-run changes in manufacturing activity

to long-run changes in average temperatures between the 1980s decade and the 2010s

decade, controlling for state-specific common trends and for differential trends across

counties with different initial observable characteristics. We find that, over the last four

decades, areas that got warmer at a faster pace experienced larger declines in the number

of small plants but no differential change in the number of large plants. While the number

of large plants did not increase, the point estimates on employment indicate that large

plants were able to absorb at least part of the labor force lost by smaller manufacturing

establishments. This indicates a faster reallocation of employment from small to large

plants in counties that experienced a higher increase in temperature in the last four

decades.

Then, we investigate the impact of higher average temperatures on different measures

of industrial concentration at the county level. We find that counties that in the 2010s

decade had a standard deviation higher increase in temperature – about 100 degree days

per year above 18°C – relative to the 1980s decade, experienced a 1.4 percentage points

larger increase in the share of employment concentrated in the top 5 largest plants, and a
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5.1 percent larger increase in the Herfindahl-Hirschman concentration index. Overall, the

results indicate that faster warming in the last four decades has led to higher concentration

of industrial activity among larger plants.

The finding that faster warming has led to higher concentration of manufacturing

activity among larger firms suggests that such firms might be better equipped for long-run

adaptation to climate change. We conclude the paper by discussing several potential

mechanisms that can rationalize this result. First, large firms might be naturally better

hedged to absorb weather shocks, even when they occur at higher frequency due to

climate change, because they produce output in different locations, diversifying climate

risk (Castro-Vincenzi, 2022). Second, large firms might also have better access to external

finance, which allows them to cope with weather shocks, reducing the need to downscale

employment or close plants. Large firms might have better trained managers who can

both understand the change in firm exposure to climate risk and invest in adaptation.

Finally, if higher temperature leads to out-migration, large firms – which tend to be more

productive and pay higher wages on average – might be less exposed to increases in local

wages due to a decline in local labor supply.

Related Literature

Climate economists have provided ample evidence on the relation between climate

change and macroeconomic outcomes (see Dell et al. (2014) for a comprehensive list of

outcomes studied and methods employed in the literature). Of particular interest to us

is the work on country-level output and productivity. That work generally documents

adverse effects of climate change in developing economies and explains the general lack of

effects in developed countries by adaptation (Burke et al. (2015), Chen and Yang (2019),

Colacito et al. (2019), Dell et al. (2009), Dell et al. (2012), Gallup et al. (1999), Hsiang

(2010), Jones and Olken (2010)).2 Within this area of inquiry, we study the impact of

temperature shocks and long-run warming on establishments in the U.S. manufacturing

sector.

Though in developed economies a higher capacity of adaptation may be presumed the

norm, in manufacturing not all facilities are climate-controlled, the production process it-

self produces substantial heat, and the power grid providing energy to industrial establish-

ments is subject to stress when temperatures rise above certain thresholds (Graff Zivin and

Neidell, 2014). Moreover, heterogeneity in establishment size and organizational struc-

ture may affect establishments’ ability to respond to as well as their incentives to prepare

for temperature shocks (Castro-Vincenzi 2022, Zivin and Kahn 2016, Somanathan et al.

2A notable exception exists in the agricultural sector where short-term temperature shocks are gen-
erally found to have adverse implications for productivity in developed nations once nonlinearities are
considered (see, for instance, Burke and Emerick (2016), Fisher et al. (2012), Ortiz-Bobea et al. (2018),
Schlenker and Roberts (2009) for evidence on the US, Lobell et al. (2011) for global evidence, Gupta
et al. (2017) and Auffhammer et al. (2006) for evidence on India).
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2021). Consistent with the idea that firms are heterogeneous with respect to their ability

to absorb temperature shocks and adapt to climate change, we find temperature shocks

and climate change to have adverse average effects on U.S. manufacturing firms. These

effects are almost entirely concentrated among small firms, and they have implications

for local industry concentration.

More specifically, our findings relate to three strands of the literature. First, in docu-

menting the adverse effects of climate change on U.S. manufacturing establishments, we

contribute to the rapidly growing body of empirical work on climate and firms. Among

others, higher temperatures have been documented to reduce sales among non-U.S. global

firms (Pankratz et al. (2023); using the 1995-2019 period), affect the profitability of public

firms across more than 40 percent of U.S. industries (Addoum et al. (2021); 1990-2015),

and reduce total factor productivity for Chinese manufacturing firms (Zhang et al. (2018);

1998-2007).

Existing work has also documented that suppliers of the same client lose two per-

cent in sales when faced with a one degree Celsius temperature increase vis-a-vis other

same-client suppliers; clients dynamically adjust their supplier network (Custodio et al.

(2022), Pankratz and Schiller (2021); both using the 2000-2015 period). Contrary to the

by-and-large adverse effects on firms documented in these papers, Addoum et al. (2020)

find no effects of higher temperatures on establishment sales and productivity of establish-

ments owned by public U.S. firms, which are likely larger plants.3 In order to speak to this

apparent ambiguity in findings, we study the effects of temperature changes on a represen-

tative sample of U.S. manufacturing establishments, including small- and medium-sized

establishments, over four decades. We focus on entry and exit as possible margins of ad-

justments, and, by including small establishments, are able to highlight that small firms

bear the costs of a warming climate. Contrary to existing work on firms, our sample

period covers over four decades (1977-2018), and is hence not dominated by the so-called

hiatus, a 16-year period (1998-2013) of slow average warming (Cahill et al. (2015), Hsiang

and Kopp (2018)). Length of the sample period and granularity of the data allow us to

include multiple high-order fixed effects all the while considering non-linearities along the

full spectrum of the temperature distribution.

Second, our results further speak directly to the notion that productive firms, which

also contribute more to overall industry productivity, have greater incentives to adapt

(Zivin and Kahn (2016), Somanathan et al. (2021)). With this, we think our findings

are informative also for the literature on adaptation, i.e., the speed of adjustment to

changes in the environment. While Samuelson (1947) and Viner (1958) provide theoretical

guidance, empirical evidence has been mixed and setting-dependent. In agriculture, for

3Other related work has used different climate shocks, such as floods, to document effects on entry,
employment, and output, see, e.g., Desmet and Rossi-Hansberg (2021), Lin et al. (2021), and Jia et al.
(2022).
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instance, Burke and Emerick (2016) find long-run adaptation to offset less than half and

possibly none of the short-term losses inflicted by increasing temperatures on corn yields.

Similarly, Hornbeck (2012) finds effects of soil erosion during the 1930s to have effects

on productivity even two decades later, though Olmstead and Rhode (2011) find some

evidence of adaptation in wheat cultivation to harsher environments.4 One means of

adaptation that has received considerable attention in climate studies and constitutes a

likely force behind our results is the availability of air conditioning (AC). Somanathan

et al. (2021) show that climate control mitigates some of the productivity losses caused by

heat but also point out that in some industries, such as the garment industry, adaptation

of AC may not be justified given that the additional electricity costs more than offset

value-added. This point–that more productive firms have greater incentives to adapt–is

formalized in Zivin and Kahn (2016) and exploited to show that the overall impact of heat

on industry productivity is dampened: productive firms have a higher output share and

are more likely to adopt AC. Adaptation to floods, in the meantime, is front-and-center

in Castro-Vincenzi (2023) where large car manufacturers reallocate production away from

affected plants. By-and-large, our evidence on small firms and the mediating role played

by energy costs corroborates these findings. More broadly, while the adverse effects of

climate change on firms are for the most part found among developing economies (Dell

et al. (2012), Burke et al. (2015)), we show that they matter in U.S. manufacturing, and

especially to small firms.

Third, our findings are linked closely to the literature on industry concentration, a

literature that documents increasing trends in industry concentration for the U.S. over

recent decades (e.g., De Loecker et al. (2020), Grullon et al. (2019)). Drivers behind this

increased industry concentration are broadly of technological or political nature, with work

focusing on channels such as the efficient scale of operation (Autor et al. (2017), Autor

et al. (2020)), the decrease in domestic competition (Gutiérrez and Philippon (2017)), and

the increasing importance of globalization (Feenstra and Weinstein (2017)), as well as the

shift away from physical to intangible capital (Alexander and Eberly (2018), Crouzet and

Eberly (2021)). To this debate, we add climate change as a driver which, through its

adverse impact on small firms, contributes to increased local industry concentration.

The rest of the paper is organized as follows. Section II describes the data and offers

some background information on changes in average temperatures experienced in the

continental U.S. in recent decades. Section III presents the identification strategy. Section

IV discusses the short-run and long-run effects of temperature changes on manufacturing

activity, and offers some preliminary discussion of mechanisms that can rationalize our

findings.

4To illustrate the range of settings to which theories of adaptation have been applied, Davis and
Weinstein (2002) and Miguel and Roland (2006) show temporary negative shocks to have no adverse
long-lasting effects on economic and quantitative demographic outcomes in a very different setting, that
of the bombings of Japan and Vietnam.
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II Data and Background

II.A Data

Data on establishment activity, climate, and economic and demographic controls are

from various sources.

Manufacturing establishments data. To measure manufacturing activity, we rely on

three complementary establishment-level data sets from the U.S. Census Bureau. First,

we employ the Longitudinal Business Database (LBD), an administrative register that

tracks all business establishments. LBD provides information on establishment geographic

locations and industry classification. We further exploit data on the number of employees

to distinguish by establishment size. We have access to the LBD data for the time period

of 1977-2019.

Second, we combine the Census of Manufacturing Firms (CMF) and the Annual

Survey of Manufacturers (ASM) for details on activities of manufacturing establishments,

which are classified using 2-digit NAICS code 31-33. CMF provides for all US manu-

facturing plants with at least one employee for the Census years only (every five years).

ASM provides data for non-CMF years for a sample of 50,000-70,000 manufacturing

establishments, including all establishments with more than 250 employees and a sample

of smaller establishments. Sampling weight is included for all plant-years to reflect that

smaller plants are less likely to be surveyed relative to their large peers.5 We keep

ASM plants during census years from the CMF. Our ASM/CMF data span the time

period of 1973-2018. From these two data sets, we use detailed industry classification,

identification of business group affiliation, output (measured by value of shipments),

energy costs, total working hours, and employment. We also use total factor productivity

(TFP) as in Foster et al. (2016) (see their Appendix). Data quality is ensured through a

mandatory reporting requirement and fines for misreporting.

Weather data. We use two data sources to capture the weather and temperature-

related changes in climate, as well as other climate shocks, respectively. Weather data

for the contiguous United States over the 1950-2019 period is provided by the PRISM

Climate Group. To suit our purpose, we rely on the cleaned version provided on Wolfram

Schlenkers homepage.6 Data includes daily minimum and maximum temperatures for 2.5

by 2.5 mile grids on the basis of a constant set of weather stations that receive a constant

weight over the 1950-2019 sample period. This treatment ensures that the resulting time

series of temperatures does not vary through the birth and death of stations or missing

5See Foster et al. (2016) and Ersahin et al. (2021) for further detail.
6See http://www.columbia.edu/ ws2162/links.html for details such as treatment of missing values and

selection of underlying stations.
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observations (see Auffhammer et al. (2013) for a discussion of these and other potential

pitfalls).

For our plant-level analysis, we measure plants' temperature exposure at the zip code

level. In order to obtain zip-code level average daily temperatures, we first calculate the

daily average temperature for each 2.5 by 2.5 mile grid as the equally weighted average of

daily minimum temperature and daily maximum temperature reported for that grid. For

each zip code, we then calculate the value-weighted daily average temperature using grid

points within a 20-mile radius of the zipcode centroid and their inverse distance to the

centroid as the weight, a method that follows Heutel et al. (2021). For our county-level

analysis, we weight all grid-level temperature observations within a county by their inverse

distance to the geographic county midpoint. We obtain precipitation information using

the same method. On the basis of the resulting respective zip code-day and county-day

temperature time series, we construct various aggregate yearly temperature measures of

interest, such as number of days within certain temperature bins as well as Cooling Degree

Days (CDD) and Heating Degree Days (HDD).

We further obtain data on extreme weather events such as droughts and floods,

heatwaves and winter weather, as well as hurricanes and tornadoes from SHELDUS.7

SHELDUS covers the 1960-2021 period and assigns events to counties; underlying data is

from the National Center for Environmental Information and SHELDUS has significantly

more records of natural disaster events than alternative data provided by alternative

data sources such as the Federal Emergency Management Agency . We use hazards

reported by SHELDUS as controls and also to validate our temperature data.

Economic and demographic controls. Three county-level economic and demographic

controls are based on the 1980 Census and serve as controls for pre-sample period condi-

tions. Income per capita and population are obtained directly from the Census webpage,

and fraction of the population above 25 years of age with a college degree is imputed from

data provided through IPUMS-NGHIS (the National Historical Geographic Information

System). A further control captures the change in exposure to import competition from

China over the 1990 to 2007 period and reflects exposure per worker as in Autor et al.

(2013) on the basis of UN Comtrade data.

II.B Background on changes in temperature in the US

The contiguous U.S. has experienced substantial increases in average temperature over

the last century. According to the climatology literature described in the IPCC (2021)

report, the significant emergence of changes in temperature relative to historical averages

7ASU Center for Emergency Management and Homeland Security (2023). The Spatial Hazard Events
and Losses Database for the United States, Version 21.0 [Online Database]. Phoenix, AZ: Arizona State
University. Available from https://cemhs.asu.edu/sheldus
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occurred in North America after 1981.8 Figure I puts this observation into historical

context by showing the dynamics of annual average surface temperature anomalies across

the contiguous 48 states over the last 120 years. A temperature anomaly is the difference

between the average annual temperature and the average temperature over the 1901-2000

period. Figure I shows that after mild increases in average temperature in the 1930s

and 1940s, the 1960s and 1970s witnessed a cooling period. In stark contrast, and in

line with the IPCC (2021) report, average temperature increased rapidly and consistently

after 1980.9 This trend is particularly pronounced in the 2000s and 2010s, and the 2012

to 2016 period experienced some of the highest abnormal temperatures.

This recent trend of increasing temperatures is predicted to continue for the next

decades, as confirmed by long-run projections of U.S. temperatures for the remainder of

the 21st century. In Figure II we utilize the “big data” generated by Hsiang et al. (2017)

to illustrate predicted long-run trends. These data contain binned projections of daily

weather (1981-2100) for US counties using 44 different climate models, and records the

number of days that fall within 1-Celsius degree bins within a year (from -20°C to 40°C).10

Next, we take the average days across all climate models for each county-year, and then

calculate the mean value across all counties in a decade.

Climate modeling generally considers four Representative Concentration Pathways

(RCPs) to describe different 21st-century pathways of greenhouse gas (GHG) emissions

and atmospheric concentrations. The RCPs include a stringent mitigation scenario

(RCP2.6), two intermediate scenarios (RCP4.5 and RCP6.0), and one scenario with very

high GHG emissions (RCP8.5, frequently referred to as “business as usual” or “worst case

scenario”). The most pronounced pattern in Figure II is the sharp spikes in the number of

extremely hot days, namely days with an average temperature above 26°C. The average

number of days above 26°C increases from 20 days in the 2010s to 40 days by the end of the

century under the optimistic scenario (RCP2.6), 60 days under the intermediate scenario

(RCP4.5), and about 100 days under the worst-case scenario (RCP8.5). In other words,

the number of extremely hot days is expected to double under the best-case scenario, and

quintuple in the worse-case scenario.

Figure III illustrates the geographic distribution of projected changes in extremely hot

days between the 1980s and the 2090s. Across all three RCPs, we observe a prevalent

increase in the number of extremely hot days across the US, with the largest increases in

8See IPCC (2021), page 133. Historical climate is calculated using temperature data for the baseline
period 1850-1900.

9To further illustrate the recent increase in average temperatures, our own analysis shows that over the
last four decades, the median increase in average temperature across counties was 0.6°C, an increase in
average temperature was observed in more than 90% of all counties, and the average county experienced
3.4 more days per year above 26°C (and 2 fewer days per year below -6°C).

10In order to align the arguments in this section with our later analysis, we group temperature projec-
tions into coarser bins of 3 Celsius degrees. In particular, we create 11 bins of 3°C each, ranging from
-6°C to 26°C, plus two additional bins capturing average daily temperatures below -6°C and above 26°C.

9



hot days predicted to occur in the central and south US counties. Notably, there is also

significant variation in projected hot days across counties within each state.

III Empirical Strategy

Our empirical strategy builds on two approaches to estimate the effect of temperature

on manufacturing outcomes. The first approach aims at capturing the contemporaneous

response of manufacturing outcomes to short-term (yearly) temperature shocks. The

second approach aims at capturing the long-term response of manufacturing activity to

changes in the average climate experienced by a county in the last four decades.11

III.A Panel approach to study the effects of temperature shocks

We start by studying the effect of year-to-year changes in temperature on manufac-

turing outcomes by estimating the following panel specification at the plant-year level:

yijz(s)t = αi + αjt + αst +
∑
b∈B

b6=(9−11C)

βbD
b
z(s)t + λXz(s)t + εijz(s)t, (1)

where i indexes manufacturing plants, j indexes industries, z(s) indexes the ZIP code

z in state s where the plant is located, and t indexes years. Our plant-year panel spans

the time period of 1977-2018. The main independent variables, Db, capture the number

of days in a given ZIP code and year whose average daily temperature is within a certain

bin b. Our panel specification follows the approach of Deschênes and Greenstone (2011),

which has been commonly employed in estimating temperature impacts as it allows arbi-

trary non-linear relationships between temperature and outcome variables.12 We divide

the temperature distribution in 11 bins of 3°C each, ranging from -6°C to 26°C, plus two

additional bins capturing average daily temperatures below -6°C and above 26°C. We ex-

clude the median temperature bin 9°C-11°C in all specifications, so that the estimated βb

coefficients should be interpreted as the effect of an additional day with average tempera-

ture in a certain bin relative to an additional day with average temperature of 9°C-11°C.

To account for geographical correlation in the error term, we cluster standard errors at

state-level in all specifications.

Because plants have a fixed location over time, the inclusion of plant fixed effects

(αi) implies that the impact of temperature on outcomes is identified by deviations from

plant-location specific means. As such, we think of these yearly temperature shocks as

random “weather” draws from the “climate” distribution in a given geographical area,

and therefore as plausibly exogenous to the outcomes of interest (Dell et al., 2014). We

11See, e.g., Auffhammer (2018), Burke and Emerick (2016), and Blanc and Schlenker (2017) for a
comprehensive discussion of each method, as well as their advantages and challenges.

12See Zhang et al. (2018), Heutel et al. (2021) for applications of the same methodology.
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include in equation (1) state fixed effects interacted with year fixed effects to capture

common trends in different areas of the US, which helps to ensure that the response

of manufacturing to temperature shocks is identified by idiosyncratic local shocks. We

include 4-digit NAICS industry fixed effects interacted with year fixed effects to absorb

any aggregate trends at industry-level experienced by US manufacturing plants. In ad-

dition, when examining outcome variables obtained from ASM/CMF (i.e., energy costs,

productivity, and employment), regressions are estimated using ASM sample weights.

Notice that temperature shocks can affect local manufacturing activity in two ways.

First, they can affect the input costs and the production processes of plants, for example by

increasing energy consumption, increasing maintenance costs of machinery and equipment

or affecting the productivity of workers. We think of this set of forces as manufacturing

supply shocks. Additionally, temperature shocks can affect local demand from consumers,

for example via their impact on the profitability of local agriculture (Burke and Emerick,

2016). In the context of US manufacturing studied in this paper, we think of each US

ZIP code or county as a small open economy and manufacturing as a tradable sector

whose demand is geographically sparse across the US and the rest of the world, and thus

relatively independent from local demand shocks. Under this assumption, supply forces

are likely to be the major driver of the impact of temperature on manufacturing outcomes.

We test this assumption in the data by studying how temperature shocks affect energy

costs and labor productivity, which are both observable in our data.

Temperature shocks might be associated with extreme weather events, and thus affect

manufacturing outcomes via this association. We explore this relationship in Figure IV,

which reports the effect of an additional day with average temperature within each bin

on average precipitation and the incidence of extreme weather events recorded in the

aforementioned SHELDUS database. Perhaps unsurprisingly, additional hot days are

associated with lower average precipitation and lower probability of floods. Additional

hot days are mechanically associated with a higher probability of droughts and heatwaves,

which are themselves defined based on prolonged occurrence of high temperature days.

The effect of temperatures on tornados and hurricanes are small and mostly insignificant.

We augment equation (1) with a set of time-varying controls Xz(s)t which include average

precipitation and the occurrence of extreme weather events that are not mechanically

associated with temperature, mainly hurricanes and tornados.

III.B Long differences approach to study the effects of climate changes

To study the long-run response of manufacturing activity to changes in average tem-

peratures, we aggregate data at the county level and estimate the following long difference

specification:
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∆yc(s),2010s−1980s = αs + β1∆CDDc(s),2010s−1980s + β2∆HDDc(s),2010s−1980s

+ λXc(s) + uc(s) (2)

To estimate equation (2), we construct decadal averages of yearly data for both the

manufacturing outcome variables and the temperature variables in the 1980-1989 decade

and in the 2010-2019 decade in each county c. Long run differences are then calculated

by subtracting the decadal average of 1980-1989 from the decadal average of 2010-2019.

Our choice of start- and end-point is motivated by three observations. First, as outlined

in section II.B, the significant emergence of changes in temperature relative to historical

averages occurred after 1981. Second, prior literature studying economic adaptation to

long-run changes in temperature has also focused on the post-1980 period, noting that

warming trends in the US after the 1980s have been larger than those observed in earlier

periods (Burke and Emerick, 2016). Third, as explained in section II.A, the US Census

LBD data provides consistent coverage of manufacturing activity for the period 1980-2019.

Thus, we think of the forty year period 1980-2019 as long enough to capture significant

changes in the average climate of each location.

In equation (2), we use two parsimonious measures of temperature: cooling degree days

(CDD) and heating degree days (HDD). These are standard measures meant to capture

the energy required to keep temperature at a baseline level, and have the advantage of

capturing the non-linear impact of extreme temperature variation. Daily CDD is defined

as the difference in degrees between the average daily temperature in a location and 18°C

– the baseline temperature at which no heating or cooling is necessary – conditional on

the average daily temperature being above 18°C.13 For each county, we compute CDD

as the sum of all CDDs over a year. HDDs are defined in the same way for days with

average daily temperature below 18°C.

Equation (2) includes state fixed effects, which implies that the relevant variation

identifying the coefficients β1 and β2 originate from within-state differences in climate

trends across counties. The inclusion of state fixed effects removes any role of unobservable

state-level trends. However, a potential concern is whether their inclusion also removes

most of the relevant variation in long-term changes in climate. We investigate this concern

in Figure V, where we plot the distribution of long run changes in decadal averages of

HDD and CDD.

Panel (a) reports the distribution of these two variables in the raw data. As shown,

13This implies that a day with average temperature of 20°C will correspond to 2 CDD and a day
with average temperature of 12°C to 0 CDD. See, for instance, Heutel et al. (2021) or Zivin and Kahn
(2016) for applications of CDDs constructed relative to a baseline temperature of 65°F and Burke and
Emerick (2016) for a CDD-type measure adjusted to the importance of temperature deviations during
growing seasons in agriculture. See also the discussion by the National Oceanic and Atmospheric Service,
https://www.weather.gov/key/climate_heat_cool.

12

https://www.weather.gov/key/climate_heat_cool


between the 1980s and the 2010s, most US counties experienced an increase in average

yearly cooling degree days, or degree days above 18°C, while the changes in heating

degree days were mostly negative in the same period. This is consistent with a significant

warming trend across US counties during the last four decades. Panel (b) reports the

distribution of long run changes in decadal averages of HDD and CDD in deviation from

state averages. As shown, even net of state trends, there is still significant variation in

degree days across counties. For example, a standard deviation in the raw distribution

of long run changes in CDD corresponds to 120 degree days (see Table I), while after

removing state fixed effects a standard deviation in the same variable corresponds to 57

degree days. We rely on this variation in our estimates of long-run effects of changes in

average climate on manufacturing activity.

The key identifying assumption in equation (2) is that differential changes in degree

days observed over the last four decades in each county are uncorrelated with other local

trends that might also affect the outcomes of interest. State fixed effects reduce the role

of unobservables by removing state-level aggregate trends. Still, a potential concern is

that long run changes in temperature might be correlated with unobservable county-level

trends. In support of empirical approaches similar to the one described in equation (2),

previous literature in environmental economics has underlined how “recent evidence from

the physical sciences suggests that the large differential warming trends observed over the

United States over the past few decades are likely due to natural climate variability” rather

than trends in local emissions or changes in local land use (Burke and Emerick, 2016).

In support of this assumption, in Panel A of Table A.2 we show that long-run changes in

average temperatures are not strongly correlated with county-level initial characteristics,

including population, per capita income, and share of college graduates among the adult

population. We also check the correlation of long-run increases in temperature with

exposure to shocks that might be particularly important for US manufacturing in the

period under study, such as import competition from China (Autor et al., 2013), finding

no significant correlation (column (4)).

In Panel B of Table A.2 we test the correlation of long-run changes in temperature

with long-run changes in frequency of reported natural disasters such as floods, droughts,

heatwaves hurricanes, and tornadoes , as well as long-run changes in average precipitation.

Overall, we find non-significant correlations in the expected direction between changes

in temperatures and changes in the frequency of natural disasters. The correlation with

average precipitation is instead negative and strongly significant. In the empirical analysis

we include in equation (2) the initial county characteristics reported in Panel A and also

control for long-run changes in the natural hazards that are not mechanically a function

of temperature (hurricanes and tornadoes) and average precipitation. We show that the

magnitude of the point estimates is stable after the inclusion of these controls.
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IV Empirical Results

IV.A Short-run response to temperature shocks

In this section we study the short-run effects of temperature shocks on manufacturing

outcomes. We start by focusing on two outcomes plausibly affected by an increase in hot

days relative to the climate usually experienced in a given location: energy costs and

productivity of manufacturing plants. Next, we study the impact of temperature shocks

on both the intensive margin (plant size) and the extensive margin (entry and exit) of

manufacturing activity.

Energy costs. Higher than usual temperatures can increase energy costs of manufac-

turing production in several ways. First, due to an increase in the demand for electricity

necessary to cool down work environments via air conditioning, as well as to cool down

machinery and equipment used in production. Second, higher temperatures can nega-

tively affect the efficiency of energy production systems and transmission: an increase in

hot days implies that power plants need to be cooled down more often or cannot operate

due to decreases in water availability, and electrons move slower inside transmission lines

at higher temperatures (Bartos et al., 2016).14

We estimate equation (1) when the outcome variable is energy costs at the plant level.

The results are reported in Table II and visualized in Figure VII. Energy costs are defined

as the monetary value of expenses in electricity and fuel divided by the value of shipments

at plant level. All coefficients are multiplied by 100 to facilitate readability, so the point

estimates should be interpreted as the effect of 100 additional days in a given temperature

bin relative to the omitted benchmark bins experienced by a given plant-location. We find

that plants experiencing additional days with average temperature above 18°C experience

statistically significant increases in energy costs. The effect is monotonically increasing

in temperature bins and the magnitude of the coefficients implies that a year with 100

additional days in the temperature bins above 18°C would generate a 0.2 percentage points

increase in energy costs as a share of value of shipment. This corresponds to about 9%

of the sample average in the outcome variable. On the other hand, we find mostly non

significant effects of additional cold days on energy consumption, with the exception of

the coldest temperature bin.

Next, we investigate the effect of temperature shocks on energy costs of small vs

large plants in Figure VIII. Throughout the paper, we define small vs large plants based

on number of employees. Results are similar depending on whether we consider as

small plants those with less than 20 or 50 employees. Panels (a) and (b) of Figure VIII

14Although the effect of temperature on energy production systems is relevant in the aggregate, it does
not necessarily manifest in the same ZIP code of the manufacturing plant using the energy (because power
plants might be located elsewhere), and thus it is less likely to be captured by our empirical strategy.
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document that the effects of temperature shocks on energy costs are concentrated among

small plants. Large manufacturing plants – and especially those above 50 employees –

seem to be largely immune from the effects of temperature shocks on energy costs. A

potential explanation of this finding is that large plants might be operating with capital

– machinery, equipment, buildings – of higher “quality” and that is less sensible to

temperature shocks. For example, larger plants might have better insulated buildings or

newer machinery and equipment used in production that are more energy efficient and

less prone to overheating, thus requiring less cooling of production spaces.

Productivity. A large existing literature has documented a negative relationship be-

tween temperature and labor productivity (see, among others, Graff Zivin and Neidell

(2014), Heal and Park (2013), Hsiang (2010), and Somanathan et al. (2021)). Rising tem-

peratures can affect manufacturing productivity via their effect on both the performance

of workers and the productivity of machinery and equipment. The effect of temperature

on workers’ productivity can arise due to fatigue and lower ability to focus, as well as

absenteeism. Stricter safety standards have increased the amount of protective gear nec-

essary in manufacturing workplaces over time, amplifying the exhaustion of performing

the same task at a higher temperature. Another amplifying effect might arise from the

faster physical pace or longer shifts set by manufacturing plants in order to meet produc-

tion goals and remain competitive in a global market. On the other hand, direct evidence

on the effects of temperature on the performance of machinery and equipment is more

sparse, though Zhang et al. (2018) show suggestive evidence that higher temperatures

lower capital productivity for Chinese manufacturers. In what follows we document sim-

ilar negative effects of temperature shocks on productivity for US manufacturing plants,

and provide new evidence on how these effects differ for small vs large plants.

The results of estimating equation (1) when the outcome variables are different mea-

sures of productivity are reported in Table III and visualized in Figure IX. We use two

measures of productivity: total factor productivity (TFP ) and labor productivity at the

plant level, both in logs. TFP is computed as the plant-level Solow residual. Labor pro-

ductivity is defined as valued added divided by total number of employee-hours worked.

Point estimates should be interpreted as the effect of 100 additional days in a given tem-

perature bin relative to the average climate experienced by a given plant-location. We

find a negative and monotonic effect of temperature on both measures of productivity,

with additional days in hotter bins leading to lower productivity. The positive effects on

additional cold days are small and mostly not statistically significant, while plants experi-

encing additional hot days experience significant declines in productivity. The magnitude

of the coefficients imply that a year with 100 additional days in the temperature bins

above 18°C would generate a 4 percentage points decline in TFP and a 7 percentage

15



point decline in labor productivity as measured by value added per hour worked.15

Next, in Figure X, we report the results when splitting the sample between small vs

large plants. Independently of the threshold used to define small plants, we find that

higher than usual temperatures are associated with large and significant declines in the

productivity of small plants. On the other hand, the effects of temperature shocks on

the productivity of large manufacturing plants are small and mostly non statistically

significant. Mechanisms that can rationalize these heterogeneous effects of temperature

shocks on plant productivity include heterogeneity in the type of labor and capital

used by plants of different size. Larger plants tend to produce with physical capital

whose performance is less affected by abnormal temperatures. Examples include higher

probability to have temperature control systems (Zivin and Kahn, 2016), or better

insulated work environments. Differences in the type of labor force employed in large vs

small plants might also play a role. For examples, large plants are matched with more

productive, more motivated workers whose performance is less affected by temperature

shocks.

Size, Entry and Exit. After documenting contemporaneous effects of temperature

shocks on energy costs and productivity, we now focus on studying whether US manufac-

turing plants respond to temperature shocks via the intensive margin (e.g. by increasing

or decreasing their size) or via the extensive margin (e.g. by deciding to enter or exit

certain locations).

We start by studying the effect of temperature shocks on plant size, as measured by

total number of employee-hours. The results are reported in Table IV and visualized

in Figure XI. As shown, we find no contemporaneous response to additional hot days

relative to what usually experienced by a given plant, and a positive but noisy response to

additional cold days. Figure XII also documents that small and large plants are similarly

non responsive to temperature shocks on the intensive margin.

Next, we focus on the extensive margin, and in particular on the decision of a given

plant to enter or exit a given ZIP code. To this end, we use data from the LBD described

in section II.A, which tracks all manufacturing establishments along with their location

and size over time. When estimating equation (1), we define entry of plant i in ZIP code

z during year t as a dummy equal to 1 if plant i has no employment in year t − 1 and

positive employment in year t. We define exit in year t as a dummy equal to 1 if plant i

15Because energy is an input in production, the increase in energy costs documented above could
mechanically generate a decline in value added, and thus in TFP or labor productivity measured as
value added per worker. We checked this potential explanation of the productivity results by estimating
equation (1) using alternative measures of productivity that are not a function of energy costs, such
as: value of shipments per worker or per hour worked, and value added per worker or per hour worked
where value added is constructed without including energy among inputs. We find similar results using
these alternative measures, which indicates that the effect of temperature shocks on productivity is not
mechanically driven by the effect of temperature shocks on energy costs.
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has positive employment in the LBD in year t but no recorded employment in year t+ 1.

This is because plants that are in operation for a fraction of a year are still recorded in the

LBD for that year, so our definition ensures that we are capturing the contemporaneous

relationship between temperature shocks and exit decisions.

The results for entry are reported in columns (1) to (4) of Table V and visualized in

Figure XIII. We find that entry is more likely to occur in years with additional “median”

temperature days, while the probability of entry declines with both additional cold and

hot days. As shown, higher than usual number of hot days are detrimental for the opening

of a new plant in a given location, though the economic magnitude of the coefficient on the

contemporaneous effects is relatively small. The magnitude of the estimated coefficients

imply that a year with 100 additional days in the temperature bins above 18°C corresponds

to a 1 percentage point decline in the probability of plant opening in that year. This is

an economically large effect when considering the average entry rate in our sample is 0.07

(Table I).

Figure XIV shows that the effects of temperature shocks on entry are concentrated

on plants with less than 20 or 50 employees. The effects on large plants follow a pattern

similar to small plants across temperature bins, but are smaller in magnitude and noisier

– in part because most manufacturing plants are small at the time of opening.

The results for exit are reported in columns (5) to (8) of Table V and visualized in

Figure XV. We find mostly small in magnitude and non significant effects of temperature

shocks on exit. The probability of exit monotonically increases with temperature bins

above 18°C but even estimates on highest temperature realizations are not statistically

significant. Notice that the majority of exit events in the LBD occur after plants decrease

in size and thus enter into the category of small plants. This implies that when studying

the heterogeneous effects of temperature shocks on exit by plant size we can only estimate

the saturated model described in equation (1) for small plants. These results are reported

in Figure XVI, and show a similar pattern as Figure XV.

Discussion of short-run response to temperature shocks. There are two key

findings that emerge from our estimates of the short run effects of temperature shocks

on manufacturing outcomes. First, input costs associated with temperature management

(such as energy costs) and productivity react to contemporaneous temperature shocks. In

particular, higher than usual temperatures increase energy spending and decrease plant

productivity. However, in the short run, plants do not seem to respond to temperature

shocks via contemporaneously adjusting employment in a significant way. We also do

not find evidence that these temperature shocks significantly affect the probability of

exit, while hotter than usual temperatures seem to dissuade entry. Second, the effects

described above are driven by small manufacturing plants, while we document mostly

small and non significant effects for large establishments.
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IV.B Long-run response to changes in temperature

The short run response to temperature shocks documented in section IV.A indicates

that small plants incur significant additional energy costs and lower productivity in hot-

ter than usual years. However, these effects do not trigger significant contemporaneous

adjustments on the intensive or extensive margin, possibly with the exception of a lower

likelihood of entering. It is plausible that key industrial decisions such as scaling back on

the size of an existing plant or exiting a given market are not driven by yearly weather

shocks, especially if such shocks are interpreted as idiosyncratic and therefore likely to

revert in following years. On the other hand, the cumulative effect of several years of

hotter than usual weather might push managers to respond on these margins. This is be-

cause a series of deviations from past temperatures might indicate a shift in the “climate”

distribution from which “weather” events are drawn in a given geographical area.

To investigate the response to long-run changes in average temperatures in a given

county we estimate equation (2) described in section III.B. This equation relates

long-run changes in manufacturing activity with long-run changes in average tem-

peratures between the 1980s decade and the 2010s decade. As discussed in section

II.B, the US has experienced a large increase in average temperatures between the

1980s and 2010s, with substantial variation even across counties within the same state.

Because the short-run effects indicate that there are significant heterogeneous effects

of temperature shocks across plants of different size, in what follows we investigate

the effects of long run changes in average temperatures separately for small vs large plants.

Number of plants and employment. We start by studying the effect of long-run

changes in temperature on long-run changes in the number of plants of different size in a

given county. The results are reported in columns (1) to (4) of Table VI, panels A and

B. The point estimate reported in column (2) of Panel A implies that counties that in

the 2010s decade had a standard deviation higher increase in temperature – about 100

degree days per year above 18°C – relative to the 1980s decade experienced a 4.2 percent

larger decline in the number of manufacturing plants with less than 20 employees. This

effect remains stable in magnitude and statistically significant when controlling for the

set of initial county characteristics described in section III.B, which lends support to the

empirical strategy.

The relative decline in the number of small plants does not translate into an increase

in the number of large plants, as shown in columns (3) and (4). This indicates that the

documented effect on small plants is not driven by a higher transition from small to large

plants (i.e. small plants becoming large plants) in areas that are getting warmer at a faster

pace. We also document that changes in cooling degree days between the 1980s and the

2010s had smaller and non statistically significant effects on the number of manufacturing
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plants in a given county. In Panel B, we replicate the analysis using 50 employees as a

threshold to define large plants, finding similar results.

Next, we investigate the long-run effects of higher average temperatures on number

of workers employed by small vs large plants. The results are reported in columns (5) to

(8) of Table VI. We find negative and significant effects of long-run changes in average

temperatures on employment in small plants. The estimated coefficient in column (6) of

Panel A indicates that counties that in the 2010s decade had a standard deviation higher

increase in temperature – about 100 degree days per year above 18°C – relative to the

1980s decade experienced a 5.9 percent larger decline in the number of workers employed

by manufacturing plants with less than 20 employees. The effects on number of workers

in large plants are positive, indicating that while the number of large plants does not

increase, these plants are able to absorb the labor force lost by smaller manufacturing

establishments.

Finally, in Table VII we document the overall effect of long-run increases in tem-

peratures on total number of plants, overall employment and average plant size in a

given county. We find negative but noisy estimates on the effects on total number of

plants, and positive but non significant effects on total employment. Columns (5) and

(6) show instead positive and significant effects on average plant size. Overall, these

results indicate that that counties with faster warming temperatures did not experience

significant major changes in total employment, but mostly a reallocation of production

from small to large plants, leading to a 7.7 percent higher increase in average plant size

for a standard deviation higher increase in average temperatures over the last four decades.

Concentration of manufacturing activity. The results presented in Tables VI and

VII indicate that, over the long run, areas getting warmer at a faster pace experienced

larger declines in the number of small plants and no effect on the number of large plants.

In this section we study the impact of long-run changes in temperature on local concen-

tration in manufacturing activity. In particular, we focus on the percent of employment

concentrated in the top-5 largest plants in a given county, and the Herfindahl-Hirschman

Index (HHI). We compute the Herfindahl-Hirschman Index as the sum of squared val-

ues of the employment shares of each plant in a given county. The index thus captures

the amount of concentration in the employment share across plants, with higher values

indicating higher concentration.

The results are reported in Table VIII. The point estimates indicate positive and

significant effects of long run changes in average temperatures on industrial concentration.

In particular, we find that counties that in the 2010s decade had a standard deviation

higher increase in temperature – about 100 degree days per year above 18°C – relative

to the 1980s decade experienced a 1.4 percentage points larger increase in the share of

employment concentrated in the top 5 largest plants, and a 5.1 percent larger increase in
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the Herfindahl-Hirschman concentration index. Overall, the results indicate that faster

warming in the last four decades has led to higher concentration of industrial activity

among larger plants. We discuss potential mechanisms behind this result in the next

section.

IV.C Preliminary discussion of mechanisms

The finding that faster warming has led to higher concentration of manufacturing

activity among larger plants suggests that such plants might be better equipped for

long-run adaptation to climate change. In this preliminary version of this section we list

potential economic mechanisms that can rationalize the main results of the paper. We

plan to test these mechanisms empirically in the next iteration of the paper.

i. Hedging. Large firms might be naturally better hedged to absorb weather shocks, even

when they occur at higher frequency due to climate change. For example, Castro-Vincenzi

(2022) documents how large firms in the car industry are able to partly absorb weather

shocks – like floods – by reallocating production from affected plants to non-affected

plants. This hedging strategy requires firms to keep spare capacity in each location,

which multi-plant large firms are more likely to be able to afford.

ii. Access to finance. Large firms might also have better access to external finance. This

would allow them to use available credit lines to cope with weather shocks, reducing the

need to downscale employment or close plants. Easier access to external finance also

facilitates investments in long term projects necessary to make their production process

less sensitive to climate change.

iii. Managerial skills. Large firms might have better trained managers who can both

understand the change in firm exposure to climate risk and invest in adaptation.

Examples of such investments include the adoption of technologies that reduce the

effect of temperature on labor productivity, such as automated warehouse management

systems, or the update of buildings and machinery so that they can better withstand

higher temperatures or natural disasters.

iv. Migration. Over the long run, counties that experienced higher increases in temper-

atures might also have experienced larger out-migration. Local decline in labor supply

would increase local wages, which tend to negatively affect small firms the most, as they

tend to be less productive and pay lower wages.
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V Concluding remarks

In this paper, we study the short-run and long-run implications of temperature vari-

ation on U.S. manufacturing establishments. We find extreme temperatures, and par-

ticularly warmer temperatures, to result in short-term increases in the cost of inputs

associated with temperature management (electricity and fuel costs), short-term declines

in productivity, and short-term deterrence of entry. While these effects are concentrated

in small manufacturing plants, large establishments are mostly unaffected. In the long

run, we find that areas faced with greater increases in average temperatures between the

1980s and the 2010s experienced larger declines in the number of small plants. While the

number of large plants did not increase, large plants were able to absorb at least part of

the labor force lost by smaller manufacturing establishments.

Taken together, large firms are better equipped for long-run adaptation to climate

change, which results in greater industry concentration. Among the various channels that

may help large plants adapt better are (i) their ability to hedge in order to absorb weather

shocks, (ii) better access to external finance, (iii) higher managerial quality, and (iv) lower

sensitivity to local wage increases. Our results highlight that recent increases in industry

concentration are note solely due to technological and political factors, but that climate

change plays an important role as well.
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VI Figures

Figure I: Temperature Trend in the U.S.

Note: Data source: National Oceanic and Atmospheric Administration (NOAA).
The figure illustrates the temperature dynamics for the contiguous 48 U.S. states from 1901-
2019. The anomaly is calculated as the difference between the annual temperature and the
average temperature between 1901-2000. The yellow line represents the 10-year moving average
of the anomalies.
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Figure II: Distribution of temperature days by bin over time

(a) RCP 2.6

(b) RCP 4.5

(c) RCP 8.5

Note: Data source: Hsiang et al. (2017).
This figure presents the U.S. long-run temperature projection in the 21st century. Temperature
projection is calculated as the average across 44 climate models. We first group temperature
projection into 3-Celsius degree bins, and then calculate the average number of days that fall
under each degree bin across all U.S. counties for each decade. We include three different RCPs
in this figure, including a stringent mitigation scenario in panel (a) (RCP2.6), an intermediate
scenarios in panel (b) (RCP4.5), and one scenario with very high GHG emissions in panel (c)
(RCP8.5, frequently referred to as “business as usual” or “worst case scenario”).
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Figure III: Projected changes in the number of days above 26C between
the 1980s and the 2090s

(a) RCP26

(b) RCP45

(c) RCP85

Note: Data source: Hsiang et al. (2017).
This figure presents the geographic distribution of projected changes in the number of days above
26°C between the 1980s and the 2090s. For each county-year, the number of days above 26°C
is calculated as the average across 44 different climate models. We include three different RCPs
in this figure, including a stringent mitigation scenario in panel (a) (RCP2.6), an intermediate
scenarios in panel (b) (RCP4.5), and one scenario with very high GHG emissions in panel (c)
(RCP8.5, frequently referred to as “business as usual” or “worst case scenario”)
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Figure IV: Temperature bins and probability of extreme weather events

(a) Average Precipitation (b) Number of Floods

(c) Number of Droughts (d) Number of Heatwaves

(e) Number of Hurricane (f) Number of Tornado

Note: Data source: Schlenker Columbia and SHELDUS. The figures show the year-to-year county-level
correlation between the 3-degree temperature bins and the average precipitation and the number of a set
of natural disaster events. County and year fixed effects are included in all regressions, and the standard
errors are clustered at the state level.
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Figure V: Distribution of the long-run changes in degree days above
and below 18°C

(a) Raw changes (b) Residual changes after removing state FE

Note: Data source: Schlenker Columbia. The blue bins plot the long run difference in heating
degree days (HDD) between the 1980s and the 2010s, and the red bins plot that for the cooling
degree days (CDD). One unit in the x-axis corresponds to 100 degree-days. The CDD is defined
as the difference in degrees between the average daily temperature in a location and 18°C,
conditional on the average daily temperature being above 18°C. The HDD is defined in the same
way for days with average daily temperature below 18°C.
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Figure VI: Geographic distribution of long-run changes in degree days
above and below 18°C

(a) ∆ (degree days > 18°C)

(b) ∆ (degree days < 18°C)

Red indicates counties that have become warmer between the 1980s and 2010s relative to state-
level long run trend. Similarly, blue indicates counties that have become cooler between the
1980s and 2010s relative to state-level long run trend.
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Figure VII: Effect of year-to-year temperature changes on energy
costs

Note: The figure shows the point estimates and the 95% confidence interval of βb in Equation (1), with
the outcome variable being the share of energy costs to total value of shipments. The temperature bin
[9◦C,12◦C) is used as the reference bin. Control variables include the average precipitation, number of
hurricanes, and number of tornadoes in the year. Plant, state-year, and industry-year fixed effects are
included in all specifications. Regressions are estimated using ASM sample weights. Standard errors are
clustered at the state level.

Figure VIII: Heterogeneous effect of year-to-year temperature
changes on energy costs

(a) Split at Employment=20 (b) Split at Employment=50

Note: The figures report the point estimates and the 95% confidence interval of year-to-year changes in
the number of days when the average daily temperature for each zip-code fell within each temperature
bin on the x-axis for different subsamples. Figure (a) divides the sample to plants with an employment
size of more than 20 and below 20. Figure (b) divides the sample to plants with an employment size of
more than 50 and below 50. The bin [9◦C,12◦C) is used as the reference bin. Control variables include
the average precipitation, number of hurricanes, and number of tornadoes in the year. Plant, state-year,
and industry-year fixed effects are included in all specifications. Regressions are estimated using ASM
sample weights. Standard errors are clustered at the state level.
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Figure IX: Effect of year-to-year temperature changes on Productivity

(a) Log(TFP) (b) Log(Value Added/Total Working Hours)

Note: The figures report the point estimates and the 95% confidence interval of year-to-year changes in
the number of days when the average daily temperature for each zip-code fell within each temperature
bin on the x-axis for different measurement of productivity. Figure (a) uses log-transformed TFP as the
outcome variable, while Figure (b) uses log-transformed division of value added by total employee hours.
The bin [9◦C,12◦C) is used as the reference bin. Control variables include the average precipitation,
number of hurricanes, and number of tornadoes in the year. Plant, state-year, and industry-year fixed
effects are included in all specifications. Regressions are estimated using ASM sample weights. Standard
errors are clustered at the state level.

Figure X: Heterogeneous effect of year-to-year temperature changes
on Log(TFP)

(a) Split at employment=20 (b) Split at employment=50

Note: The figures report the point estimates and the 95% confidence interval of year-to-year changes in
the number of days when the average daily temperature for each zip-code fell within each temperature
bin on the x-axis for different subsamples. The outcome variable is log(TFP). Figure (a) split the sample
by whether the employment is above or below 20, and Figure (b) split the sample by the employment
size threshold of 50. The bin [9◦C,12◦C) is used as the reference bin. Control variables include the
average precipitation, number of hurricanes, and number of tornadoes in the year. Plant, state-year, and
industry-year fixed effects are included in all specifications. Regressions are estimated using ASM sample
weights. Standard errors are clustered at the state level.
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Figure XI: Effect of year-to-year temperature changes on total
employee-hours

Note: The figure shows the point estimates and the 95% confidence interval of βb in Equation (1), with
the outcome variable being the total employee hours. The temperature bin [9◦C,12◦C) is used as the
reference bin. Control variables include the average precipitation, number of hurricanes, and number of
tornadoes in the year. Plant, state-year, and industry-year fixed effects are included in all specifications.
Regressions are estimated using ASM sample weights. Standard errors are clustered at the state level.

Figure XII: Heterogeneous effects of year-to-year temperature
changes on total employee-hours

(a) Employment < 20 (b) Employment < 50

Note: The figures report the point estimates and the 95% confidence interval of year-to-year changes in
the number of days when the average daily temperature for each zip-code fell within each temperature
bin on the x-axis for different subsamples. The outcome variable is total employee hours. Figure (a)
split the sample by whether the employment is above or below 20, and Figure (b) split the sample by
the employment size threshold of 50. The bin [9◦C,12◦C) is used as the reference bin. Control variables
include the average precipitation, number of hurricanes, and number of tornadoes in the year. Plant,
state-year, and industry-year fixed effects are included in all specifications. Regressions are estimated
using ASM sample weights. Standard errors are clustered at the state level.
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Figure XIII: Effect of year-to-year temperature changes on entry

Note: The figure shows the point estimates and the 95% confidence interval of βb in Equation (1), with
the outcome variable being the probility of entry (%). We define entry of a plant i in ZIP code z during
year t as a dummy equal to 1 if plant i if plant i has no employment in year t−1 and positive employment
in year t. The temperature bin [9◦C,12◦C) is used as the reference bin. Control variables include the
average precipitation, number of hurricanes, and number of tornadoes in the year. Plant, state-year, and
industry-year fixed effects are included in all specifications. Standard errors are clustered at the state
level.

Figure XIV: Heterogeneous effects of year-to-year temperature
changes on entry

(a) Split at employment=20 (b) Split at employment=50

Note: The figures report the point estimates and the 95% confidence interval of year-to-year changes in
the number of days when the average daily temperature for each zip-code fell within each temperature
bin on the x-axis for different subsamples. The outcome variable is the probability of entry (%). Figure
(a) split the sample by whether the employment is above or below 20, and Figure (b) split the sample by
the employment size threshold of 50. The bin [9◦C,12◦C) is used as the reference bin. Control variables
include the average precipitation, number of hurricanes, and number of tornadoes in the year. Plant,
state-year, and industry-year fixed effects are included in all specifications. Standard errors are clustered
at the state level.
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Figure XV: Effect of year-to-year temperature changes on exit

Note: The figure shows the point estimates and the 95% confidence interval of βb in Equation (1), with the
outcome variable being the probability of exit (%). We define exit in year t as a dummy equal to 1 if plant i
has positive employment in the LBD in year t but no recorded employment in year t+1. The temperature
bin [9◦C,12◦C) is used as the reference bin. Control variables include the average precipitation, number
of hurricanes, and number of tornadoes in the year. Plant, state-year, and industry-year fixed effects are
included in all specifications. Standard errors are clustered at the state level.

Figure XVI: Heterogeneous effects of year-to-year temperature
changes on exit

(a) Employment < 20 (b) Employment < 50

Note: The figures report the point estimates and the 95% confidence interval of year-to-year changes in
the number of days when the average daily temperature for each zip-code fell within each temperature
bin on the x-axis for different subsamples. The outcome variable is the probability of exit (%). Figure
(a) only uses the sample with an employment size below 20 for estimation, and Figure (b) only includes
plant with below-50 employment. The bin [9◦C,12◦C) is used as the reference bin. Control variables
include the average precipitation, number of hurricanes, and number of tornadoes in the year. Plant,
state-year, and industry-year fixed effects are included in all specifications. Standard errors are clustered
at the state level.
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VII Tables

Table I: Summary Statistics

Variables N Mean Sd

Panel A: ASM & CMF Sample

Energy/Total Value of Shipments 1922000 0.022 0.0291
Log(TFP) 1922000 1.85 0.56
Log(Value-Added / Total Hours Worked) 1922000 3.472 0.912
Log(Total Hours Worked) 1922000 5.193 1.395
T < -6 °C 1922000 15.34 19.09
-6 °C ≤ T < -3 °C 1922000 10.92 9.622
-3 °C ≤ T < 0 °C 1922000 16.48 12.41
0 °C ≤ T < 3 °C 1922000 22.57 14.14
3 °C ≤ T < 6 °C 1922000 26.47 13.69
6 °C ≤ T < 9 °C 1922000 29.4 12.76
12 °C ≤ T < 15 °C 1922000 35.66 14.14
15 °C ≤ T < 18 °C 1922000 38.51 15.82
18 °C ≤ T < 21 °C 1922000 41.95 14.39
21 °C ≤ T < 24 °C 1922000 42.36 15.01
24 °C ≤ T < 27 °C 1922000 32.96 22.25
T ≥ 27 °C 1922000 20.02 30.94

Panel B: LBD Sample

Exit 13590000 0.0754 0.264
Entry 13590000 0.0727 0.26
T < -6 °C 13590000 14.21 18.59
-6 °C ≤ T < -3 °C 13590000 10.47 9.739
-3 °C ≤ T < 0 °C 13590000 15.77 12.67
0 °C ≤ T < 3 °C 13590000 21.65 14.83
3 °C ≤ T < 6 °C 13590000 25.68 14.97
6 °C ≤ T < 9 °C 13590000 28.87 14.14
12 °C ≤ T < 15 °C 13590000 36.95 16.12
15 °C ≤ T < 18 °C 13590000 40.04 17.95
18 °C ≤ T < 21 °C 13590000 42.79 15.84
21 °C ≤ T < 24 °C 13590000 42.74 16.59
24 °C ≤ T < 27 °C 13590000 32.28 23.24
T ≥ 27 °C 13590000 20.81 33.02

Panel C: LBD - Long-run difference between the 1980s and the 2010s

∆ Degree-Days > 18 °C / 100 2800 1.197 1.058
∆ Degree-Days < 18 °C / 100 2800 -2.399 1.536
∆ Log(# Estab.) 2800 -0.0087 0.389
∆ Log(Emp.) 2800 -0.241 0.721
∆ Log(Avg. Size of Estab.) 2800 -0.235 0.61
∆ Fraction of Emp. in Top 5 Largest Estab. 2800 -0.0111 0.112
∆ Log(HHI Emp.) 2800 -0.0349 0.563
∆ Log(# Estab. of Size < 20) 2800 0.042 0.438
∆ Log(# Estab. of Size ≥ 20) 2800 -0.111 0.589
∆ Log(Emp. in Estab. of Size < 20) 2800 -0.0045 0.495
∆ Log(Emp. in Estab. of Size ≥ 20) 2800 -0.289 0.757
∆ Log(# Estab. of Size < 50) 2500 0.0355 0.394
∆ Log(# Estab. of Size ≥ 50) 2500 -0.198 0.653
∆ Log(Emp. in Estab. of Size < 50) 2500 -0.0072 0.501
∆ Log(Emp. in Estab. of Size ≥ 50) 2500 -0.312 0.752
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Table II: Effects of year-to-year temperature changes on energy costs

Dep. Var. Energy Costs/TVS
(1) (2) (3) (4)

T < -6 °C 0.0004 0.0008 0.0014 0.0014
(0.0007) (0.0006) (0.0015) (0.0015)

-6 °C ≤ T < -3 °C 0.0009 0.0008 0.0001 0.0001
(0.0009) (0.0009) (0.0018) (0.0018)

-3 °C ≤ T < 0 °C 0.0002 0 -0.0004 -0.0004
(0.0006) (0.0006) (0.0011) (0.0011)

0 °C ≤ T < 3 °C 0.0008 0.0008 0.0008 0.0008
(0.0005) (0.0005) (0.0009) (0.0009)

3 °C ≤ T < 6 °C 0.0006 0.0003 0.0003 0.0003
(0.0006) (0.0006) (0.0007) (0.0007)

6 °C ≤ T < 9 °C 0.0004 0.0003 0.0005 0.0004
(0.0007) (0.0007) (0.0009) (0.0009)

12 °C ≤ T < 15 °C 0.0008 0.0009** -0.0001 -0.0001
(0.0005) (0.0004) (0.0007) (0.0007)

15 °C ≤ T < 18 °C 0.0013*** 0.0012** 0.0007 0.0007
(0.0005) (0.0004) (0.0009) (0.0009)

18 °C ≤ T < 21 °C 0.0015*** 0.0014*** 0.0017** 0.0016**
(0.0005) (0.0005) (0.0007) (0.0007)

21 °C ≤ T < 24 °C 0.0017*** 0.0015*** 0.0021*** 0.0021***
(0.0005) (0.0005) (0.0008) (0.0008)

24 °C ≤ T < 27 °C 0.0013*** 0.0013*** 0.0026*** 0.0026***
(0.0004) (0.0004) (0.0008) (0.0008)

T ≥ 27 °C 0.0007 0.0008 0.0023* 0.0023*
(0.0006) (0.0005) (0.0013) (0.0013)

Obs 1922000 1922000 1922000 1922000
R-squared 0.786 0.793 0.795 0.795
Establishment FE yes yes yes yes
Year FE yes
NAICS4-Year FE yes yes yes
State-year FE yes yes
Extreme weather controls yes
Se. cluster level State State State State
Sample period 1977-2018 1977-2018 1977-2018 1977-2018

Notes: Independent variables are number of days when the temperature fell into the corre-

sponding temperature bin in each county-year. Regressions are estimated using ASM sample

weights. The RHS are divided by 100 to make the results more readable. Significance level:

*** p<0.01, ** p<0.05, * p<0.1.
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Table III: Effects of year-to-year temperature changes on productivity

Dep. Var. Log(TFP) Log(Value-Added/Total Hours Worked)

(1) (2) (3) (4) (5) (6) (7) (8)

T < -6 °C 0.0044 -0.0024 0.0356 0.0361 0.0129 0.0068 0.0365 0.0371
(0.0125) (0.0107) (0.0280) (0.0281) (0.0189) (0.0176) (0.0430) (0.0430)

-6 °C ≤ T < -3 °C -0.0248* -0.0147 0.018 0.018 -0.0299 -0.0237 0.0168 0.0164
(0.0136) (0.0136) (0.0311) (0.0312) (0.0202) (0.0212) (0.0441) (0.0441)

-3 °C ≤ T < 0 °C 0.0004 -0.0029 0.0065 0.0068 0.0024 -0.0025 0.0022 0.0025
(0.0147) (0.0133) (0.0214) (0.0216) (0.0197) (0.0192) (0.0361) (0.0363)

0 °C ≤ T < 3 °C 0.0044 -0.0033 -0.008 -0.008 0.0057 0.0027 0.0072 0.0071
(0.0105) (0.0090) (0.0146) (0.0147) (0.0133) (0.0128) (0.0285) (0.0284)

3 °C ≤ T < 6 °C 0.0019 0.0012 0.0077 0.0076 0.0035 0.0012 0.0183 0.0183
(0.0117) (0.0096) (0.0111) (0.0111) (0.0148) (0.0137) (0.0235) (0.0233)

6 °C ≤ T < 9 °C -0.0062 -0.0107 0.0045 0.0042 -0.0064 -0.0081 0.0089 0.0088
(0.0103) (0.0104) (0.0132) (0.0133) (0.0132) (0.0126) (0.0138) (0.0138)

12 °C ≤ T < 15 °C -0.0061 -0.0073 0.0011 0.0004 0.0023 -0.0007 -0.0021 -0.0031
(0.0091) (0.0086) (0.0094) (0.0094) (0.0141) (0.0129) (0.0159) (0.0158)

15 °C ≤ T < 18 °C 0.0056 -0.0012 -0.0292*** -0.0296*** -0.0117 -0.0131 -0.0426** -0.0430***
(0.0129) (0.0109) (0.0097) (0.0096) (0.0122) (0.0121) (0.0159) (0.0158)

18 °C ≤ T < 21 °C 0 0.0004 -0.0343* -0.0347* -0.0024 -0.0027 -0.0454 -0.0460*
(0.0105) (0.0093) (0.0188) (0.0187) (0.0134) (0.0122) (0.0272) (0.0272)

21 °C ≤ T < 24 °C -0.0022 -0.0086 -0.0531*** -0.0539*** -0.0275** -0.0310** -0.0851*** -0.0861***
(0.0119) (0.0097) (0.0158) (0.0157) (0.0126) (0.0141) (0.0161) (0.0161)

24 °C ≤ T < 27 °C -0.0042 -0.0101 -0.0573*** -0.0583*** -0.0230* -0.0246* -0.0689*** -0.0701***
(0.0103) (0.0097) (0.0165) (0.0164) (0.0128) (0.0132) (0.0141) (0.0142)

T ≥ 27 °C 0.0106 0.0068 -0.0413** -0.0419** -0.0023 -0.0048 -0.0769*** -0.0777***
(0.0089) (0.0088) (0.0203) (0.0203) (0.0125) (0.0121) (0.0205) (0.0207)

Obs 1922000 1922000 1922000 1922000 1922000 1922000 1922000 1922000
R-squared 0.771 0.785 0.787 0.787 0.777 0.781 0.782 0.782
Establishment FE yes yes yes yes yes yes yes yes
Year FE yes yes
NAICS4-Year FE yes yes yes yes yes yes
State-year FE yes yes yes yes
Extreme Weather controls yes yes
Se. cluster level State State State State State State State State
Sample period 1977-2018 1977-2018 1977-2018 1977-2018 1977-2018 1977-2018 1977-2018 1977-2018

Notes: Independent variables are number of days when the temperature fell into the corresponding temperature bin in each county-year. Regressions are

estimated using ASM sample weights. The RHS are divided by 100 to make the results more readable. Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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Table IV: Effects of year-to-year temperature changes on employment

Dep. Var. Log(Total Hours Worked)
(1) (2) (3) (4)

T < -6 °C 0.0487** 0.0484** 0.0643 0.0637
(0.0186) (0.0181) (0.0704) (0.0705)

-6 °C ≤ T < -3 °C 0.0321 0.0382 0.0709 0.0706
(0.0375) (0.0339) (0.0660) (0.0658)

-3 °C ≤ T < 0 °C 0.0497** 0.0447** 0.0756 0.0753
(0.0216) (0.0214) (0.0472) (0.0472)

0 °C ≤ T < 3 °C 0.0342 0.0303 0.0418 0.0417
(0.0207) (0.0199) (0.0392) (0.0391)

3 °C ≤ T < 6 °C 0.0025 0.006 0.0066 0.0068
(0.0163) (0.0150) (0.0283) (0.0283)

6 °C ≤ T < 9 °C 0.004 0.0033 -0.0247** -0.0243**
(0.0135) (0.0119) (0.0118) (0.0118)

12 °C ≤ T < 15 °C -0.0008 -0.0022 0.0057 0.0066
(0.0232) (0.0191) (0.0158) (0.0158)

15 °C ≤ T < 18 °C -0.0249 -0.022 -0.0021 -0.0015
(0.0166) (0.0148) (0.0132) (0.0131)

18 °C ≤ T < 21 °C -0.0138 -0.0166 0.0107 0.011
(0.0196) (0.0162) (0.0224) (0.0222)

21 °C ≤ T < 24 °C -0.0199 -0.019 0.0122 0.0132
(0.0199) (0.0186) (0.0263) (0.0261)

24 °C ≤ T < 27 °C -0.0191 -0.0147 0.0008 0.0019
(0.0136) (0.0126) (0.0312) (0.0309)

T ≥ 27 °C -0.0092 -0.0124 -0.025 -0.0243
(0.0241) (0.0230) (0.0322) (0.0322)

Obs 1922000 1922000 1922000 1922000
R-squared 0.923 0.925 0.925 0.925
Establishment FE yes yes yes yes
Year FE yes
NAICS4-Year FE yes yes yes
State-year FE yes yes
Extreme Weather controls yes
Se. cluster level State State State State
Sample period 1977-2018 1977-2018 1977-2018 1977-2018

Notes: Independent variables are number of days when the temperature fell into the corre-

sponding temperature bin in each county-year. Regressions are estimated using ASM sample

weights. The RHS are divided by 100 to make the results more readable. Significance level:

*** p<0.01, ** p<0.05, * p<0.1.
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Table V: Effects of year-to-year temperature changes on entry and exit

Dep. Var. Entry Exit

(1) (2) (3) (4) (5) (6) (7) (8)

T < -6 °C -0.0031 -0.003 -0.0063 -0.0063 -0.0052 -0.0053 0.0011 0.0011
(0.0076) (0.0076) (0.0044) (0.0044) (0.0042) (0.0043) (0.0043) (0.0044)

-6 °C ≤ T < -3 °C -0.0118 -0.0116 -0.0056 -0.0055 -0.0076 -0.0077 -0.0084 -0.0084
(0.0094) (6) (0.0043) (0.0043) (0.0051) (0.0051) (0.0073) (0.0073)

-3 °C ≤ T < 0 °C -0.0045 -0.0045 -0.005 -0.005 -0.0024 -0.0024 -0.0011 -0.0011
(0.0061) (0.0062) (0.0035) (0.0035) (0.0036) (0.0036) (0.0037) (0.0037)

0 °C ≤ T < 3 °C -0.0026 -0.0025 -0.0048 -0.0048 -0.0064** -0.0064** -0.0029 -0.0029
(0.0055) (0.0055) (0.0030) (0.0030) (0.0030) (0.0030) (0.0032) (0.0032)

3 °C ≤ T < 6 °C -0.0001 -0.0002 -0.0049* -0.0049* -0.0002 -0.0001 0.0017 0.0018
(0.0052) (0.0051) (0.0028) (0.0028) (0.0020) (0.0020) (0.0022) (0.0022)

6 °C ≤ T < 9 °C -0.0005 -0.0006 -0.003 -0.0032 -0.0007 -0.0006 -0.0009 -0.0008
(0.0028) (0.0027) (0.0020) (0.0020) (0.0024) (0.0024) (0.0029) (0.0028)

12 °C ≤ T < 15 °C -0.0028 -0.0028 -0.0042*** -0.0043*** -0.0047 -0.0046 -0.0029 -0.0029
(0.0020) (0.0020) (0.0013) (0.0013) (0.0032) (0.0032) (0.0019) (0.0019)

15 °C ≤ T < 18 °C -0.0059** -0.0059** -0.0102*** -0.0102*** -0.0017 -0.0017 0.0015 0.0015
(0.0024) (0.0025) (0.0025) (0.0025) (0.0029) (0.0029) (0.0029) (0.0029)

18 °C ≤ T < 21 °C -0.0085*** -0.0085*** -0.0122*** -0.0123*** -0.0007 -0.0006 0.0005 0.0005
(0.0026) (0.0026) (0.0022) (0.0022) (0.0027) (0.0027) (0.0032) (0.0032)

21 °C ≤ T < 24 °C -0.0068** -0.0068** -0.0118*** -0.0119*** 0.0005 0.0006 0.0015 0.0015
(0.0032) (0.0032) (0.0029) (0.0029) (0.0030) (0.0030) (0.0025) (0.0024)

24 °C ≤ T < 27 °C -0.0016 -0.0017 -0.0072*** -0.0074*** 0.0021 0.0022 0.0029 0.003
(0.0041) (0.0041) (0.0027) (0.0027) (0.0042) (0.0042) (0.0028) (0.0028)

T ≥ 27 °C -0.0035 -0.0035 -0.0083** -0.0083** 0.0014 0.0015 0.0052 0.0052
(0.0046) (0.0046) (0.0032) (0.0032) (0.0053) (0.0052) (0.0038) (0.0039)

Obs 1922000 1922000 1922000 1922000 1922000 1922000 1922000 1922000
R-squared 0.021 0.021 0.189 0.189 0.016 0.016 0.19 0.19
Zipcode FE yes yes yes yes
Establishment FE yes yes yes yes
NAICS4-Year FE yes yes yes yes yes yes yes yes
State-year FE yes yes yes yes yes yes yes yes
Extreme weather controls yes yes yes yes
Se. cluster level State State State State State State State State
Sample period 1977-2018 1977-2018 1977-2018 1977-2018 1977-2018 1977-2018 1977-2018 1977-2018

Notes: Dependen variable Entry in columns (1)-(4) is an indicator of plant entry at t, where employment of the firm in year t-1 is zero and in year t is

above zero. Dependent variable Exit in columns (5)-(8) is an indicator of establishment exiting at t, where employment of the firm in year t is above-zero

and in year t+1 is zero. Independent variables are number of days when the temperature fell into the corresponding temperature bin in each county-year.

The RHS are divided by 100 to make the results more readable. Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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Table VI: Heterogeneous effects of long-run changes in average temperature on number of plants and
employment

Panel A: Heterogeneity by establishment size of less or more than 20 workers

Dep. Var. ∆ Log(# Estab. of Size < 20) ∆ Log(# Estab. of Size ≥ 20) ∆ Log(Emp. in Estab. of Size < 20) ∆ Log(Emp. in Estab. of Size ≥ 20)

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Degree-Days > 18 °C / 100 -0.0494** -0.0399* -0.0073 0.0005 -0.0668** -0.0559** 0.0573* 0.0613*
(0.0209) (0.0213) (0.0271) (0.0257) (0.0261) (0.0278) (0.0316) (0.0310)

∆ Degree-Days < 18 °C / 100 -0.0253* -0.0196 0.0041 0.0115 -0.0259* -0.0215 0.0310* 0.0366**
(0.0149) (0.0149) (0.0133) (0.0125) (0.0140) (0.0143) (0.0165) (0.0160)

Obs 2800 2800 2800 2800 2800 2800 2800 2800
R-squared 0.125 0.138 0.179 0.193 0.094 0.101 0.181 0.186
State FE yes yes yes yes yes yes yes yes
County controls yes yes yes yes
Se. cluster level State State State State State State State State

Panel B: Heterogeneity by establishment size of less or more than 50 workers

Dep. Var. ∆ Log(# Estab. of Size < 50) ∆ Log(# Estab. of Size ≥ 50) ∆ Log(Emp. in Estab. of Size < 50) ∆ Log(Emp. in Estab. of Size ≥ 50)

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Degree-Days > 18 °C / 100 -0.0558*** -0.0432** -0.0051 -0.0015 -0.0556** -0.0448 0.0436 0.0568*
(0.0186) (0.0201) (0.0294) (0.0272) (0.0247) (0.0276) (0.0344) (0.0336)

∆ Degree-Days < 18 °C / 100 -0.0211** -0.0165 -0.0137 -0.0048 -0.0007 0.0033 0.0123 0.0172
(0.0102) (0.0103) (0.0153) (0.0137) (0.0102) (0.0104) (0.0194) (0.0187)

Obs 2500 2500 2500 2500 2500 2500 2500 2500
R-squared 0.155 0.175 0.173 0.191 0.114 0.127 0.182 0.19
State FE yes yes yes yes yes yes yes yes
County controls yes yes yes yes
Se. cluster level State State State State State State State State

Notes: Control variables are at the county level, including long-run changes in average precipitation, percentage of population who attended at least one year of college in 1980, log-transformed population in 1980, log-transformed

income per capita in 1980, changes in exposure to China shock between 1990 and 2007 in Autor et al. (2013), and changes in occurrences of hurricanes and tornados between the 1980s and the 2010s. Standard errors clustered

at state level. Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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Table VII: Effect of long-run changes in average temperature on total
number of plants, employment and average plant size

Dep. Var. ∆ Log(# Estab.) ∆ Log(Emp.) ∆ Log(Avg. Size of Estab.)

(1) (2) (3) (4) (5) (6)

∆ Degree-Days > 18 °C / 100 -0.0406* -0.0311 0.0336 0.0441 0.0730*** 0.0727***
(0.0213) (0.0213) (0.0373) (0.0354) (0.0248) (0.0242)

∆ Degree-Days < 18 °C / 100 -0.0169 -0.0097 0.0189 0.0264 0.0362** 0.0361**
(0.0139) (0.0135) (0.0206) (0.0197) (0.0142) (0.0139)

Obs 2800 2800 2800 2800 2800 2800
R-squared 0.19 0.211 0.192 0.199 0.114 0.116
State FE yes yes yes yes yes yes
County controls yes yes yes
Se. cluster level State State State State State State

Notes: Control variables are at the county level, including long-run changes in average precipitation, percentage of population

who attended at least one year of college in 1980, log-transformed population in 1980, log-transformed income per capita in

1980, changes in exposure to China shock between 1990 and 2007 in Autor et al. (2013), and changes in occurrences of

hurricanes and tornados between the 1980s and the 2010s. Standard errors clustered at state level. Significance level: ***

p<0.01, ** p<0.05, * p<0.1.

Table VIII: Effect of long-run changes in average temperature on
industrial concentration

Dep. Var. ∆ Frac. of Emp. in Top 5 Largest Estab. ∆ Log(HHI Emp.)

(1) (2) (3) (4)

∆ Degree-Days > 18 °C / 100 0.0113** 0.0133*** 0.0329 0.0483**
(0.0047) (0.0038) (0.0222) (0.0206)

∆ Degree-Days < 18 °C / 100 0.0068* 0.0048 0.0158 0.0081
(0.0034) (0.0029) (0.0157) (0.0143)

Obs 2800 2800 2800 2800
R-squared 0.09 0.12 0.073 0.1
State FE yes yes yes yes
County controls yes yes
Se. cluster level State State State State

Notes: Control variables are at the county level, including long-run changes in average precipitation, percentage of

population who attended at least one year of college in 1980, log-transformed population in 1980, log-transformed

income per capita in 1980, changes in exposure to China shock between 1990 and 2007 in Autor et al. (2013), and

changes in occurrences of hurricanes and tornados between the 1980s and the 2010s. Standard errors clustered at

state level. Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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Appendix

Table A.1: Variable Definitions

Variable Definition Source

Panel A: ASM & CMF Sample

Energy Costs / TVS The ratio of energy costs to total value of shipments
Log(TFP) Log of total factor productivity
Log(Value-Added/Total Hours Worked) Log of the ratio of value-added to workers’ total working hours
Log(Total Hours Worked) Log of workers’ total working hours

Panel B: LBD Sample

Entry An indicator of entry, where employment of the firm in year t-1 is zero and in year t is above zero
Exit An indicator of exit, where employment of the firm in year t is above-zero and in year t+1 is zero

Panel C: LBD - Long-run difference between the 1980s and the 2010s

∆ Degree-Days > 18 °C long-difference in the average degree days above 18 °C from 1980s to 2010s
∆ Degree-Days < 18 °C long-difference in the average degree days below 18 °C from 1980s to 2010s
∆ Log(# Establishments) Long-difference in log of average total establishment from 1980s to 2010s
∆ Log(Employment) Long-difference in log of average total employment from 1980s to 2010s
∆ Log(Avg. Size of Establishments) long-difference in log of average employment size from 1980s to 2010s
∆ Frac. of Emp. in Top 5 Largest Estab. long-difference in the average fraction of employment from top 5 establishments from 1980s to 2010s
∆ Log(HHI Emp.) long-difference in the average HHI of employment from 1980s to 2010s
∆ Log(# Estab. of Size < 20) long-difference in the log of average number of establishments with < 20 workers from 1980s to 2010s
∆ Log(# Estab. of Size ≥ 20) long-difference in the log of average number of establishments with ≥ 20 workers from 1980s to 2010s
∆ Log(Emp. in Estab. of Size < 20) long-difference in the log of average employment of establishments with < 20 workers from 1980s to 2010s
∆ Log(Emp. in Estab. of Size ≥ 20) long-difference in the log of average employment of establishments with ≥ 20 workers from 1980s to 2010s
∆ Log(# Estab. of Size < 50) long-difference in the log of average number of establishments with < 50 workers from 1980s to 2010s
∆ Log(# Estab. of Size ≥ 50) long-difference in the log of average number of establishments with ≥ 50 workers from 1980s to 2010s
∆ Log(Emp. in Estab. of Size < 50) long-difference in the log of average employment of establishments with < 50 workers from 1980s to 2010s
∆ Log(Emp. in Estab. of Size ≥ 50) long-difference in the log of average employment of establishments with ≥ 50 workers from 1980s to 2010s

Panel D: Control Variables from Other Sources

Avg. Precipitation Average daily precipitation of the county-year Database built by Wolfram Schlenker
# Events of Floods Number of drought events in the county-year SHEDULS from Arizona State University
# Events of Droughts Number of drought events in the county-year SHEDULS from Arizona State University
# Events of Heatwaves Number of heatwave events in the county-year SHEDULS from Arizona State University
# Events of Hurricane Number of hurricane events in the county-year SHEDULS from Arizona State University
# Events of Tornado Number of tornado events in the county-year SHEDULS from Arizona State University
∆ IPW Changes in the exposure to the import shock from China from 1990 to 2007 Autor, Dorn, and Hanson (2013)
Perc. of college students Percentage of 25-year old or above population finished at least one year of college US Census
Log(Population) Log of county population Database built by Andrew Leuven
Log(Income pc) Log of county per capita income IPUSM
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Table A.2: Balance Table

Panel A: County initial characteristics

Dep. Var. log(pc income) log(pop) percentage of ∆IPW
pop attended college

(1) (2) (3) (4)

∆ Degree-days > 18 / 100 -0.0481 0.121 -0.0292** -0.410
(0.0302) (0.200) (0.0145) (0.474)

Obs 3,085 3,085 3,085 3,104
R-squared 0.024 0.110 0.025 0.013

Panel B: Long-run changes in the occurrences of natural hazards

Dep. Var. ∆ avg. precipitation ∆ flood ∆ drought ∆ heatwave ∆ hurricane ∆ tornado
(1) (2) (3) (4) (5) (6)

∆ Degree-days > 18 / 100 -0.143*** -0.318 1.507 0.369 0.301 -0.0374
(0.0392) (0.623) (1.720) (0.645) (0.445) (0.477)

Observations 3,105 3,105 3,105 3,105 3,105 3,105
R-squared 0.073 0.024 0.066 0.042 0.011 0.018

Notes: Outcome variables in Column (1)-(3) of Panel A are county characteristics observed in 1980 Census. Outcome variable in Column

(4) of Panel A is the changes in exposure to China shock between 1991 and 2007, as is defined in Autor et al. (2013). The last two rows

in Panel A report the mean and standard deviation of the corresponding outcome variable in each column. Outcome variables in Panel B

is the difference between the occurrences of each natural disaster in the 1980s and the 2010s. The independent variables in both panels are

the changes in the number of degree days above 18°C from the 1980s to the 2010s. The long run changes in degree days below 18°C are also

controlled in all specifications.The independent variables are divided by 100 to make the report table easier to read. Standard errors are

clustered at the state level. Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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