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1
Introduction: The Case for Financial Machine

Learning

1.1 Prices are Predictions

Modern analysis of financial markets centers on the following definition
of a price, derived from the generic optimality condition of an investor:

Pi,t = E[Mt+1Xi,t+1|It]. (1.1)

In words, the prevailing price of an asset, Pi,t, reflect investors’ valuation
of its future payoffs, Xi,t+1. These valuations are discounted based on in-
vestors’ preferences, generically summarized as future realized marginal
rates of substitution, Mt+1. The price is then determined by investor
expectations of these objects given their conditioning information It. In
other words, prices are predictions—they reflect investors’ best guesses
for the (discounted) future payoffs shed by an asset.

It is common to analyze prices in an equivalent expected return, or
“discount rate,” representation that normalizes (1.1) by the time t price:

E[Ri,t+1|It] = βi,tλt, (1.2)

where Ri,t+1 = Xi,t+1/Pi,t − Rf,t is the asset’s excess return, Rf,t =
E[Mt+1|It]−1 is the one-period risk-free rate, βi,t = Cov[Mt+1,Ri,t+1|It]

Var[Mt+1|It] is

2
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the asset’s covariance with Mt+1, and λt = −Var[Mt+1|It]
E[Mt+1|It] is the price

of risk. We can ask economic questions in terms of either prices or
discount rates, but the literature typically opts for the discount rate
representation for a few reasons. Prices are often non-stationary while
discount rates are often stationary, so when the statistical properties
of estimators rely on stationarity assumptions it is advantageous to
work with discount rates. Also, uninteresting differences in the scale of
assets’ payoffs will lead to uninteresting scale differences in prices. But
discount rates are typically unaffected by differences in payoff scale so
the researcher need not adjust for them.

More generally, studying market phenomena in terms of returns
alleviates some of the researcher’s modeling burden by partially ho-
mogenizing data to have tractable dynamics and scaling properties.
Besides, discount rates are also predictions, and their interpretation
is especially simple and practically important. E[Ri,t+1|It] describes
investors’ expectations for the appreciation in asset value over the next
period. As such, the expected return is a critical input to allocation
decisions. If we manage to isolate an empirical model for this expecta-
tion that closely fits the data, we have achieved a better understanding
of market functionality and simultaneously derived a tool to improve
resource allocations going forward. This is a fine example of duality in
applied social science research: A good model both elevates scientific
understanding and improves real-world decision-making.

1.2 Information Sets are Large

There are two conditions of finance research that make it fertile soil
for machine learning methods: large conditioning information sets and
ambiguous functional forms. Immediately evident from (1.1) is that
the study of asset prices is inextricably tied to information. Guiding
questions in the study of financial economics include “what information
do market participants have and how do they use it?” The predictions
embodied in prices are shaped by the available information that is
pertinent to future asset payoffs (Xi,t+1) and investors’ feelings about
those payoffs (Mt+1). If prices behaved the same in all states of the
world—e.g. if payoffs and preferences were close to i.i.d.—then infor-
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mation sets would drop out. But even the armchair investor dabbling
in their online account or reading the latest edition of The Wall Street
Journal quickly intuits the vast scope of conditioning information lurk-
ing behind market prices. Meanwhile, the production function of the
modern asset management industry is a testament to the vast amount of
information flowing into asset prices: Professional managers (in various
manual and automated fashions) routinely pore over troves of news
feeds, data releases, and expert predictions in order to inform their
investment decisions.

The expanse of price-relevant information is compounded by the
panel nature of financial markets. The price of any given asset tends
to vary over time in potentially interesting ways—this corresponds to
the time series dimension of the panel. Meanwhile, at a given point in
time, prices differ across assets in interesting ways—the cross section
dimension of the panel. Time series variation in the market environment
will affect many assets in interconnected ways. For example, most asset
prices behave differently in high versus low risk conditions or in different
policy regimes. As macroeconomic conditions change, asset prices adjust
in unison through these common effects. Additionally, there are cross-
sectional behaviors that are distinct to individual assets or groups of
assets. So, conditioning information is not just time series in nature,
but also includes asset-level attributes. A successful model of asset
behavior must simultaneously account for shared dynamic effects as well
as asset-specific effects (which may themselves be static or dynamic).
As highlighted by Gu et al. (2020b),

The profession has accumulated a staggering list of predic-
tors that various researchers have argued possess forecasting
power for returns. The number of stock-level predictive char-
acteristics reported in the literature numbers in the hundreds
and macroeconomic predictors of the aggregate market num-
ber in the dozens.

Furthermore, given the tendency of financial economics research to
investigate one or a few variables at a time, we have presumably left
much ground uncovered. For example, only recently has the information
content of news text emerged as an input to empirical models of (1.1),
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and there is much room for expansion on this frontier and others.

1.3 Functional Forms are Ambiguous

If asset prices are expectations of future outcomes, then the statistical
tools to study prices are forecasting models. A traditional econometric
approach to financial market research (e.g. Hansen and Singleton, 1982)
first specifies a functional form for the return forecasting model moti-
vated by a theoretical economic model, then estimates parameters to
understand how candidate information sources associate with observed
market prices within the confines of the chosen model. But which of the
many economic models available in the literature should we impose?

The formulation of the first-order condition, or “Euler equation,”
in (1.1) is broad enough to encompass a wide variety of structural
economic assumptions. This generality is warranted because there is no
consensus about which specific structural formulations are viable. Early
consumption-based models fail to match market price data by most
measures (e.g. Mehra and Prescott, 1985). Modern structural models
match price data somewhat better if the measure of success is sufficiently
forgiving (e.g. Chen et al., 2022a), but the scope of phenomena they
describe tends to be limited to a few assets and is typically evaluated
only on an in-sample basis.

Given the limited empirical success of structural models, most em-
pirical work in the last two decades has opted away from structural
assumptions to less rigid “reduced-form” or “no-arbitrage” frameworks.
While empirical research of markets often steers clear of imposing de-
tailed economic structure, it typically imposes statistical structure (for
example, in the form of low-dimensional factor models or other paramet-
ric assumptions). But there are many potential choices for statistical
structure in reduced-form models, and it is worth exploring the benefits
of flexible models that can accommodate many different functional
forms and varying degrees of nonlinearity and variable interactions.

Enter machine learning tools such as kernel methods, penalized
likelihood estimators, decision trees, and neural networks. Comprised of
diverse nonparametric estimators and large parametric models, machine
learning methods are explicitly designed to approximate unknown data
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generating functions. In addition, machine learning can help integrate
many data sources into a single model. In light of the discussion in
Section 1.2, effective modeling of prices and expected returns requires
rich conditioning information in It. On this point, Cochrane (2009)1

notes that “We obviously don’t even observe all the conditioning infor-
mation used by economic agents, and we can’t include even a fraction of
observed conditioning information in our models.” Hansen and Richard
(1987) (and more recently Martin and Nagel, 2021) highlight differences
in information accessible to investors inside an economic model versus
information available to an econometrician on the outside of a model
looking in. Machine learning is a toolkit that can help narrow the
gap between information sets of researchers and market participants
by providing methods that allow the researcher to assimilate larger
information sets.

The more expansive we can be in our consideration of large con-
ditioning sets, the more realistic our models will be. This same logic
applies to the question of functional form. Not only do market par-
ticipants impound rich information into their forecasts, they do it in
potentially complex ways that leverage the nuanced powers of human
reasoning and intuition. We must recognize that investors use informa-
tion in ways that we as researchers cannot know explicitly and thus
cannot exhaustively (and certainly not concisely) specify in a parametric
statistical model. Just as Cochrane (2009) reminds us to be circumspect
in our consideration of conditioning information, we must be equally
circumspect in our consideration of functional forms.

1.4 Machine Learning versus Econometrics

What is machine learning, and how is it different from traditional econo-
metrics? Gu et al. (2020b) emphasize that the definition of machine
learning is inchoate and the term is at times corrupted by the mar-
keting purposes of the user. We follow Gu et al. (2020b) and use the
term to describe (i) a diverse collection of high-dimensional models for

1Readers of this survey are encouraged to re-visit chapter 8 of Cochrane (2009)
and recognize the many ways machine learning concepts mesh with his outline of
the role of conditioning information in asset prices.
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statistical prediction, combined with (ii) “regularization” methods for
model selection and mitigation of overfit, and (iii) efficient algorithms
for searching among a vast number of potential model specifications.

Given this definition, it should be clear that, in any of its incar-
nations, financial machine learning amounts to a set of procedures
for estimating a statistical model and using that model to make deci-
sions. So, at its core, machine learning need not be differentiated from
econometrics or statistics more generally. Many of the ideas underlying
machine learning have lived comfortably under the umbrella of statistics
for decades (Israel et al., 2020).

In order to learn through the experience of data, the machine
needs a functional representation of what it is trying to learn. The
researcher must make a representation choice—this is a canvas upon
which the data will paint its story. Part (i) of our definition points
out that machine learning brings an open-mindedness to functional
representations that are highly parameterized and often nonlinear. Small
models are rigid and oversimplified, but their parsimony has benefits like
comparatively precise parameter estimates and ease of interpretation.
Large and sophisticated models are much more flexible, but can also be
more sensitive and suffer from poor out-of-sample performance when
they overfit noise in the system. Researchers turn to large models
when they believe the benefits from more accurately describing the
complexities of real world phenomena outweigh the costs of potential
overfit. At an intuitive level, machine learning is a way to pursue
statistical analysis when the analyst is unsure which specific structure
their statistical model should take. In this sense, much of machine
learning can be viewed as nonparametric (or semi-parametric) modeling.
Its modus operandi considers a variety of potential model specifications
and asks the data’s guidance in choosing which model is most effective
for the problem at hand. One may ask: when does the analyst ever
know what structure is appropriate for their statistical analysis? The
answer of course is “never,” which is why machine learning is generally
valuable in financial research. As emphasized by Breiman (2001), its
focus on maximizing prediction accuracy in the face of an unknown
data model is the central differentiating feature of machine learning
from the traditional statistical objective of estimating a known data
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generating model and conducting hypothesis tests.

Part (ii) of our definition highlights that machine learning chooses a
preferred model (or combination of models) from a “diverse collection”
of candidate models. Again, this idea has a rich history in econometrics
under the heading of model selection (and, relatedly, model averaging).
The difference is that machine learning puts model selection at the
heart of the empirical design. The process of searching through many
models to find top performers (often referred to as model “tuning”)
is characteristic of all machine learning methods. Of course, selecting
from multiple models mechanically leads to in-sample overfitting and
can produce poor out-of-sample performance. Thus machine learning
research processes are accompanied by “regularization,” which is a
blanket term for constraining model size to encourage stable performance
out-of-sample. As Gu et al. (2020b) put it, “An optimal model is a
‘Goldilocks’ model. It is large enough that it can reliably detect potentially
complex predictive relationships in the data, but not so flexible that it is
dominated by overfit and suffers out-of-sample.” Regularization methods
encourage smaller models; richer models are only selected if they are
likely to give a genuine boost to out-of-sample prediction accuracy.

Element (iii) in the machine learning definition is perhaps its clear-
est differentiator from traditional statistics, but also perhaps the least
economically interesting. When data sets are large and/or models are
very heavily parameterized, computation can become a bottleneck. Ma-
chine learning has developed a variety of approximate optimization
routines to reduce computing loads. For example, traditional economet-
ric estimators typically use all data points in every step of an iterative
optimization routine and only cease the parameter search when the
routine converges. Shortcuts such as using subsets of data and halting
a search before convergence often reduce computation and do so with
little loss of accuracy (see, e.g., stochastic gradient descent and early
stopping which are two staples in neural network training).
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1.5 Challenges of Applying Machine Learning in Finance (and the
Benefits of Economic Structure)

While financial research is in many ways ideally suited to machine learn-
ing methods, some aspects of finance also present challenges for machine
learning. Understanding these obstacles is important for developing
realistic expectations about the benefits of financial machine learning.

First, while machine learning is often viewed as a “big data” tool,
many foundational questions in finance are frustrated by the decidedly
“small data” reality of economic time series. Standard data sets in macro
finance, for example, are confined to a few hundred monthly observations.
This kind of data scarcity is unusual in other machine learning domains
where researchers often have, for all intents and purposes, unlimited
data (or the ability to generate new data as needed). In time series
research, new data accrues only through the passage of time.

Second, financial research often faces weak signal-to-noise ratios.
Nowhere is this more evident than in return prediction, where the forces
of market efficiency (profit maximization and competition) are ever
striving to eliminate the predictability of price movements (Samuel-
son, 1965; Fama, 1970). As a result, price variation is expected to
emanate predominantly from the arrival of unanticipated news (which
is unforecastable noise from the perspective of the model). Markets
may also exhibit inefficiencies and investor preferences may give rise to
time-varying risk premia, which result in some predictability of returns.
Nonetheless, we should expect return predictability to be small and
fiercely competed over.

Third, investors learn and markets evolve. This creates a moving
target for machine learning prediction models. Previously reliable pre-
dictive patterns may be arbitraged away. Regulatory and technological
changes alter the structure of the economy. Structural instability makes
finance an especially complex learning domain and compounds the
challenges of small data and low signal-to-noise ratios.

These challenges present an opportunity to benefit from knowledge
gained by economic theory. As noted by Israel et al. (2020),

“A basic principle of statistical analysis is that theory and
model parameters are substitutes. The more structure you
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can impose in your model, the fewer parameters you need
to estimate and the more efficiently your model can use
available data points to cut through noise. That is, models are
helpful because they filter out noise. But an over-simplified
model can filter out some signal too, so in a data-rich and
high signal-to-noise environment, you would not want to use
an unnecessarily small model. One can begin to tackle small
data and low signal-to-noise problems by bringing economic
theory to describe some aspects of the data, complemented
by machine learning tools to capture aspects of the data for
which theory is silent.”

1.6 Economic Content (Two Cultures of Financial Economics)

We recall Breiman (2001)’s essay on the “two cultures” of statistics,
which has an analogue in financial economics (with appropriate modifi-
cations). One is the “structural model/hypothesis test” culture, which
favors imposing fully or partially specified structural assumptions and
investigating economic mechanisms through hypothesis tests. The tra-
ditional program of empirical asset pricing analysis (pre-dating the
emergence of reduced form factor models and machine learning pre-
diction models) studies prices through the lens of heavily constrained
prediction models. The constraints come in the form of i) specific func-
tional forms/distributions, and ii) limited variables admitted into the
conditioning information set. These models often “generalize” poorly
in the sense that they have weak explanatory power for asset price
behaviors outside the narrow purview of the model design or beyond
the training data set. This is such an obvious statement that one rarely
considers out-of-sample performance of fully specified structural asset
pricing models.

The other is the “prediction model” culture, which values statis-
tical explanatory power above all else, and is born largely from the
limitations of the earlier established structural culture. The prediction
model culture willingly espouses model specifications that might lack
an explicit association with economic theory, so long as they produce
meaningful, robust improvements in data fit versus the status quo. In
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addition to reduced-form modeling that has mostly dominated empirical
finance since the 1990’s, financial machine learning research to date
falls squarely in this second culture.

“There is no economics” is a charge sometimes lobbed at the statisti-
cal prediction research by economic seminar audiences, discussants, and
referees. This criticism is often misguided and we should guard against
it unduly devaluing advancements in financial machine learning. Let
us not miss the important economic role of even the purest statistical
modeling applications in finance. Relatively unstructured prediction
models makes them no less economically important than the traditional
econometrics of structural hypothesis testing, they just play a different
scientific role. Hypothesis testing learns economics by probing specific
economic mechanisms. But economics is not just about testing theo-
retical mechanisms. Atheoretical (for lack of a better term) prediction
models survey the empirical landscape in broader terms, charting out
new empirical facts upon which theories can be developed, and for which
future hypothesis tests can investigate mechanisms. These two forms of
empirical investigation—precision testing and general cartography—play
complementary roles in the Kuhnian process of scientific advancement.

Consider the fundamental question of asset pricing research: What
determines asset risk premia? Even if we could observe expected returns
perfectly, we would still need theories to explain their behavior and
empirical analysis to test those theories. But we can’t observe risk
premia, and they are stubbornly hard to estimate. Machine learning
makes progress on measuring risk premia, which facilitates development
of better theories of economic mechanisms that determine their behavior.

A critical benefit of expanding the set of known contours in the
empirical landscape is that, even if details of the economic mechanisms
remain shrouded, economic actors—financial market participants in
particular—can always benefit from improved empirical maps. The
prediction model culture has a long tradition of producing research
to help investors, consumers, and policymakers make better decisions.
Improved predictions provide more accurate descriptions of the state-
dependent distributions faced by these economic actors.

Economics is by and large an applied field. The economics of the pre-
diction model culture lies precisely in its ability to improve predictions.
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Armed with better predictions—i.e., more accurate assessments of the
economic opportunity set—agents can better trade off costs and benefits
when allocating scarce resources. This enhances welfare. Nowhere is
this more immediately clear than in the portfolio choice problem. We
may not always understand the economic mechanisms by which a model
delivers better return or risk forecasts; but if it does, it boosts the utility
of investors and is thus economically important.

Breiman’s central criticism of the structural hypothesis test culture
is that

“when a model is fit to data to draw quantitative conclusions:
the conclusions are about the model’s mechanism, and not
about nature’s mechanism. If the model is a poor emulation
of nature, the conclusions may be wrong.”

We view this less as a criticism of structural modeling, which must
remain a foundation of empirical finance, but rather as a motivation
and defense of prediction models. The two-culture dichotomy is, of
course, a caricature. Research spans a spectrum and draws on multiple
tools, and researchers do not separate into homogenous ideological
camps. Both cultures are economically important. Breiman encourages
us to consider flexible, even nonparametric, models to learn about
economic mechanisms:

“The point of a model is to get useful information about
the relation between the response and predictor variables.
Interpretability is a way of getting information. But a model
does not have to be simple to provide reliable information
about the relation between predictor and response variables;
neither does it have to be a [structural] data model.”

Prediction models are a first step to understanding mechanisms. More-
over, structural modeling can benefit directly from machine learning
without sacrificing pointed hypothesis tests or its specificity of economic
mechanisms.2 Thus far machine learning has predominantly served the
prediction model culture of financial economics. It is important to rec-
ognize it as a similarly potent tool for the structural hypothesis testing

2See, for example, our discussion of Chen and Ludvigson (2009), in Section 5.5.
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culture (this is a critical direction for future machine learning research
in finance). Surely, a research program founded solely on “measurement
without theory” (Koopmans, 1947) is better served by also considering
data through the lens of economic theory and with a deep understanding
of the Lucas Jr, 1976 critique. Likewise, a program that only interprets
data through extant economic models can overlook unexpected yet
economically important statistical patterns.

Hayek (1945) confronts the economic implications of dispersed in-
formation for resource allocation. Regarding his central question of how
to achieve an effective economic order, he notes

If we possess all the relevant information, if we can start
out from a given system of preferences, and if we command
complete knowledge of available means, the problem which
remains is purely one of logic... This, however, is emphat-
ically not the economic problem which society faces. And
the economic calculus which we have developed to solve this
logical problem, though an important step toward the solu-
tion of the economic problem of society, does not yet provide
an answer to it. The reason for this is that the ‘data’ from
which the economic calculus starts are never for the whole
society ‘given’ to a single mind which could work out the
implications and can never be so given.

While Hayek’s main interest is in the merits of decentralized planning,
his statements also have implications for information technologies in
general, and prediction technologies in particular. Let us be so presump-
tuous as to reinterpret Hayek’s statement as a statistical problem: There
is a wedge between the efficiency of allocations achievable by economic
agents when the data generating process (DGP) is known, versus when
it must be estimated. First, there is the problem of model specification—
economic agents simply cannot be expected to correctly specify their
statistical models. They must use some form of mis-specified paramet-
ric model or a nonparametric approximating model. In either case,
mis-specification introduces a wedge between the optimal allocations
achievable when the DGP is known (call this “first-best”) and the allo-
cations derived from their mis-specified models (call this “second-best”).
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But even second best is implausible, because we must estimate these
models with finite data. This gives rise to yet another wedge, that due
to sampling variation. Even if we knew the functional form of the DGP,
we still must estimate it and noise in our estimates produces deviations
from first-best. Compound that with the realism of mis-specification,
and we recognize that in reality we must always live with “third-best”
allocations; i.e., mis-specified models that are noisily estimated.

Improved predictions derived from methods that can digest vast
information and data sets provide an opportunity to mitigate the wedges
between the pure “logic” problem of first-best resource allocation noted
by Hayek, and third-best realistic allocations achievable by economic
agents. The wedges never shrink to zero due to statistical limits to
learnability (Da et al., 2022; Didisheim et al., 2023). But powerful
approximating models and clever regularization devices mean that ma-
chine learning is economically important exactly because they can lead
to better decisions. The problem of portfolio choice is an illustrative
example. A mean-variance investor who knows the true expected re-
turn and covariance matrix of assets simply executes the “logic” of a
Markowitz portfolio and achieves a first-best allocation. But, in analogy
to Hayek, this is emphatically not the problem that real world investors
grapple with. Instead, their problem is primarily one of measurement—
one of prediction. The investor seeks a sensible expected return and
covariance estimate that, when combined with the Markowitz objective,
performs reasonably well out-of-sample. Lacking high-quality measure-
ments, the Markowitz solution can behave disastrously, as much research
has demonstrated.
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The Virtues of Complex Models

Many of us acquired our econometrics training in a tradition anchored
to the “principle of parsimony.” This is exemplified by the Box and
Jenkins (1970) model building methodology, whose influence on financial
econometrics cannot be overstated. In the introduction to the most
recent edition of the Box and Jenkins forecasting textbook,1 “parsimony”
is presented as the first of the “Basic Ideas in Model Building”: “It is
important, in practice, that we employ the smallest possible number of
parameters for adequate representations” [their emphasis].

The principle of parsimony appears to clash with the massive pa-
rameterizations adopted by modern machine learning algorithms. The
leading edge GPT-3 language model (Brown et al., 2020) uses 175 billion
parameters. Even the comparatively skimpy return prediction neural
networks in Gu et al. (2020b) have roughly 30,000 parameters. For an
econometrician of the Box-Jenkins lineage, such rich parameterizations
seem profligate, prone to overfit, and likely disastrous for out-of-sample
performance.

Recent results in various non-financial domains contradict this view.
In applications such as computer vision and natural language processing,

1Box et al. (2015), fifth edition of the original Box and Jenkins (1970).
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models that carry astronomical parameterizations—and that exactly
fit training data—are often the best performing models out-of-sample.
In sizing up the state of the neural network literature, Belkin (2021)
concludes “it appears that the largest technologically feasible networks
are consistently preferable for best performance.” Evidently, modern
machine learning has turned the principle of parsimony on its head.

The search is underway for a theoretical rationale to explain the suc-
cess of behemoth parameterizations and answer the question succinctly
posed by Breiman (1995): “Why don’t heavily parameterized neural
networks overfit the data?” In this section we offer a glimpse into the
answer. We draw on recent advances in the statistics literature which
characterize the behavior of “overparameterized” models (those whose
parameters vastly outnumber the available training observations).2

Recent literature has taken the first step of understanding the sta-
tistical theoretical implications of machine learning models and focus
on out-of-sample prediction accuracy of overparameterized models. In
this section, we are interested in the economic implications of overpa-
rameterization and overfit in financial machine learning. A number of
finance papers have documented significant empirical gains in machine
learning return prediction. The primary economic use case of these
predictions is constructing utility-optimizing portfolios. We orient our
development toward understanding the out-of-sample risk-return trade-
off of “machine learning portfolios” derived from highly parameterized
return prediction models. Our development closely follows Kelly et al.
(2022a) and Didisheim et al. (2023).

2.1 Tools For Analyzing Machine Learning Models

Kelly et al. (2022a) propose a thought experiment. Imagine an analyst
seeking a successful return prediction model. The asset return R is
generated by a true model of the form

Rt+1 = f(Xt) + εt+1 (2.1)
2This line of work falls under headings like “overparameterization,” “benign

overfit,” and “double descent," and includes (among others) Spigler et al. (2019),
Belkin et al. (2018), Belkin et al. (2019), Belkin et al. (2020), Bartlett et al. (2020),
Jacot et al. (2018), Hastie et al. (2019), and Allen-Zhu et al. (2019).
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where the set of predictor variables X may be known to the analyst, but
the true prediction function f is unknown. Absent knowledge of f and
motivated by universal approximation theory (e.g., Hornik et al., 1990),
the analyst decides to approximate f with a basic neural network:

f(Xt) ≈
P∑
i=1

Si,tβi.

Each feature in this regression is a pre-determined nonlinear transfor-
mation of raw predictors,3

Si,t = f̃(w′iXt). (2.2)

Ultimately, the analyst estimates the approximating regression

Rt+1 =
P∑
i=1

Si,tβi + ε̃t+1. (2.3)

The analyst has T training observations to learn from and must choose
how rich of an approximating model to use—she must choose P . Simple
models with small P enjoy low variance, but complex models with large
P (perhaps even P > T ) can better approximate the truth. What level
of model complexity (which P ) should the analyst opt for?

Perhaps surprisingly, Kelly et al. (2022a) show that the analyst
should use the largest approximating model that she can compute!
Expected out-of-sample forecasting and portfolio performance are in-
creasing in model complexity.4 To arrive at this answer, Kelly et al.
(2022a) work with two key mathematical tools for analyzing complex
nonlinear (i.e., machine learning) models. These are ridge regression
with generated nonlinear features (just like Si,t above) and random
matrix theory for dealing with estimator behavior when P is large
relative to the number of training data observations.

3Our assumption that weights wi and nonlinear function f̃ are known follows
Rahimi and Recht (2007), who prove that universal approximation results apply
even when the weights are randomly generated.

4This is true without qualification in the high complexity regime (P > T ) and is
true in the low complexity regime as long as appropriate shrinkage is employed. Kelly
et al. (2022a) derive the choice of shrinkage that maximizes expected out-of-sample
model performance.
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2.1.1 Ridge Regression with Generated Features

Their first modeling assumption5 focuses on high-dimensional linear
prediction models according to (2.3), which we refer to as the “empirical
model.” The interpretation of (2.3) is not that asset returns are subject
to a large number of linear fundamental driving forces. It is instead
that the DGP is unknown, but may be approximated by a nonlinear
expansion S of some (potentially small) underlying driving variables,
X.6 In the language of machine learning, S are “generated features”
derived from the raw features X, for example via nonlinear neural
network propagation.

A definitive aspect of this problem is that the empirical model is
mis-specified. Correct specification of (2.3) requires an infinite series
expansion, but in reality we are stuck with a finite number of terms, P .
Small P models are stable because there are few parameters to estimate
(low variance), but provide a poor approximation to the truth (large
bias). A foundational premise of machine learning is that flexible (large
P ) model specifications can be leveraged to improve prediction. Their
estimates may be noisy (high variance) but provide a more accurate
approximation (small bias). It is not obvious, ex ante, which choices
of P are best in terms of the bias-variance tradeoff. As economists, we
ultimately seek a bias-variance tradeoff that translates into optimal
economic outcomes—like higher utility for investors. The search for
models that achieve economic optimality guides Kelly et al. (2022a)’s
theoretical pursuit of high complexity models.

The second modeling assumption chooses the estimator of (2.3) to
be ridge-regularized least squares:

β̂(z) =
(
zI + T−1∑

t

StS
′
t

)−1 1
T

∑
t

StRt+1, (2.4)

5We introduce assumptions here at a high level. We refer interested readers to
Kelly et al. (2022a) for detailed technical assumptions.

6As suggested by the derivation of (2.3) from equation (2.1), this sacrifices little
generality as a number of recent papers have established an equivalence between
high-dimensional linear models and more sophisticated models such as deep neural
networks (Jacot et al., 2018; Hastie et al., 2019; Allen-Zhu et al., 2019). For simplicity,
Kelly et al. (2022a) focus on time-series forecasts for a single risky asset (extended
to multi-asset panels by Didisheim et al. (2023)).
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where z is the ridge shrinkage parameter. Not all details of this estimator
are central to our arguments—but regularization is critical. Without
regularization the denominator of (2.4) is singular in the high complexity
regime (P > T ), though we will see it also has important implications
for the behavior of β̂(z) in low complexity models (P < T ).

Finally, to characterize the economic consequences of high complexity
models for investors, Kelly et al. (2022a) assume that investors use
predictions to construct a trading strategy defined as

Rπt+1 = πtRt+1,

where πt is a timing weight that scales the risky asset position up and
down in proportion to the model’s return forecast. For their analysis,
πt is set equal to the expected out-of-sample return from their complex
prediction model. And they assume investor well-being is measured in
terms of the unconditional Sharpe ratio,

SR =
E[Rπt+1]√
E[(Rπt+1)2]

. (2.5)

While there are other reasonable trading strategies and performance
evaluation criteria, these are common choices among academics and
practitioners and have the benefit of transparency and tractability.

2.1.2 Random Matrix Theory

The ridge regression formulation above couches machine learning models
like neural networks in terms of linear regression. The hope is that,
with this representation, it may be possible to say something concrete
about expected out-of-sample behaviors of complicated models in the
P → ∞ limit with P/T → c > 0. The necessary asymptotics for
machine learning are different than those for standard econometric
characterizations (which use asymptotic approximations for T → ∞
with P fixed). Random matrix theory is ideally suited for describing the
behavior of ridge regression in the large P setting. To simplify notation,
we eliminate T from the discussion by always referring to the degree of
model parameterization relative to the amount of training data. That
is, we will simply track the ratio c = P/T , which we refer to as “model
complexity.”
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The crux of characterizing β̂(z) behavior when P →∞ is the P ×P
sample covariance matrix of signals, Ψ̂ := T−1∑

t StS
′
t. Random matrix

theory describes the limiting distribution of Ψ̂’s eigenvalues. Knowledge
of this distribution is sufficient to pin down the expected out-of-sample
prediction performance (R2) of ridge regression, as well as the expected
out-of-sample Sharpe ratio of the associated timing strategy. More
specifically, these quantities are determined by

m(z; c) := lim
P→∞

1
P

tr
(
(Ψ̂− zI)−1) (2.6)

which is the limiting Stieltjes transform of the eigenvalue distribution of
Ψ̂. From (2.6), we recognize a close link to ridge regression because the
Stieltjes transform involves the ridge matrix (Ψ̂− zI)−1. The functional
form of m(z; c) is known from a generalized version of the Marcenko-
Pastur law. From m(z; c) we can explicitly calculate the expected out-of-
sample R2 and Sharpe ratio and its sensitivity to the prediction model’s
complexity (see Sections 3 and 4 of Kelly et al. (2022a) for a detailed
elaboration of this point).

In other words, model complexity plays a critical role in understand-
ing model behavior. If T grows at a faster rate than the number of
predictors (i.e., c→ 0), traditional large T and fixed P asymptotics kick
in. In this case the expected out-of-sample behavior of a model coincides
with the behavior estimated in-sample. Naturally, this is an unlikely and
fairly uninteresting scenario. The interesting case corresponds to highly
parameterized machine learning models with scarce data, P/T → c > 0,
and it is here that surprising out-of-sample model behaviors emerge.

2.2 Bigger Is Often Better

Kelly et al. (2022a) provide rigorous theoretical statements about the
properties of high complexity machine learning models and associated
trading strategies. Our current exposition focuses on the main qualitative
aspects of those results based on their calibration to the market return
prediction problem. In particular, they assume total return volatility
equal to 20% per year and an infeasible “true” predictive R2 of 20% per
month (if the true functional form and all signals were fully available
to the forecaster). Complexity hinders the model’s ability to hone in
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Figure 2.1: Expected Out-of-sample Prediction Accuracy From Mis-specified Models

Note: Limiting out-of-sample R2 and β̂ norm of ridge regression as a function of
c and z from Proposition 5 of Kelly et al. (2022a). Calibration assumes Ψ is the
identity matrix, b∗ = 0.2, and the complexity of the true model is 10.

on the true DGP because there is not enough data to support the
model’s heavy parameterization, thus the best feasible R2 implied by
this calibration is closer to 1% per month. We focus on the mis-specified
setting by considering empirical models that use various subsets of the
true predictors.7

In this calibration, the true unknown DGP is assumed to have a
complexity of c = 10. The parameter q ∈ [0, 1] governs the complexity
of the empirical model relative to the truth. We analyze the behavior
of approximating empirical models that range in complexity from very
simple (q ≈ 0, cq ≈ 0 and thus severely mis-specified) to highly complex
(q = 1, cq = 10 corresponds to the richest approximating model and in
fact recovers the correct specification). Models with very low complexity
are poor approximating models but their parameters can be estimated
with precision. As cq rises, the empirical model better approximates the
truth, but forecast variance rises (if not regularized). The calibration
also considers a range of ridge penalties, z.

First consider the ordinary least squares (OLS) estimator, β̂(0),
which is a special case of (2.4) with z = 0. When c ≈ 0 the model is

7For simplicity the predictors are assumed to be exchangeable, so only the size
of a subset matters and not the identity of the specific predictors within the subset.
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very simple, so it has no power to approximate the truth and delivers
an R2 of essentially zero. As P rises and approaches T from below,
the model’s approximation improves, but the denominator of the least
squares estimator blows up, creating explosive forecast error variance.
This phenomenon is illustrated in Figure 2.1. When P = T , the model
exactly fits, or “interpolates,” the training data (for this reason, c = 1
is called the “interpolation boundary”), so a common interpretation of
the explosive behavior of β̂(0) is severe overfit that does not generalize
out-of-sample.

As P moves beyond T we enter the overparameterized, or high
complexity, regime. In this regime, there are more parameters than
observations, the least squares problem has multiple solutions, and
the inverse covariance matrix of regressors is not defined. However, its
pseudo-inverse is defined, and this corresponds to a particular unique
solution to the least squares problem:

(
T−1∑

t StS
′
t

)+ 1
T

∑
t StRt+1.8

Among the many solutions that exactly fit the training data, this one
has the smallest `2 norm. In fact, it is equivalent to the ridge estimator
as the shrinkage parameter approaches zero:

β̂(0+) = lim
z→0+

(
zI + T−1∑

t

StS
′
t

)−1 1
T

∑
t

StRt+1.

The solution β̂(0+) is called the “ridgeless” regression estimator (the
blue line in the Figure 2.1). When c ≤ 1, OLS is the ridgeless estimator,
while for c > 1 the ridgeless case is defined by the limit z → 0.

Surprisingly, the ridgeless R2 rises as model complexity increases
above 1. The reason is that, as c becomes larger, there is a larger space of
solutions for ridgeless regression to search over and thus it can find betas
with smaller `2 norm that still interpolate the training data. This acts as
a form of shrinkage, biasing the beta estimate toward zero. Due to this
bias, the forecast variance drops and the R2 improves. In other words,
despite z → 0, the ridgeless solution still regularizes the least squares
estimator, and more so the larger is c. By the time c is very large, the
expected out-of-sample R2 moves into positive territory. This property

8Recall that the Moore-Penrose pseudo-inverse A+ of a matrix A is defined via
A+ = (A′A)−1A′ if A′A is invertible, and A+ = A′(AA′)−1 if AA′ is invertible.
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of ridgeless least squares is a newly documented phenomenon in the
statistics literature and is still an emerging topic of research.9 The result
challenges the standard financial economics doctrine that places heavy
emphasis on model parsimony, demonstrating that one can improve
the accuracy of return forecasts by pushing model dimensionality well
beyond sample size.10

Figure 2.1 describes the statistical behavior of high complexity
models. Figure 2.2 turns attention to their economic consequences. The
right panel shows volatility of the machine learning trading strategy as
a function of model complexity. The strategy’s volatility moves one for
one with the norm of β̂ and with the R2 (all three quantities are different
representations of forecast error variance). The important point is that,
as model complexity increases past c = 1, trading strategy volatility
continually decreases. Complexity raises the implicit shrinkage of the
ridgeless estimator, which reduces return volatility (and z > 0 reduces
volatility even further).

The left panel of Figure 2.2 shows the key economic behavior of high
complexity models—the out-of-sample expected return of the timing
strategy. Expected returns are low for simple strategies. Again, this is
because simple models give a poor approximation of the DGP. Increas-
ing model complexity gets you closer to the truth and monotonically
increases trading strategy expected returns.11

What does this mean for investor well-being? The bottom panel
in Figure 2.2 shows utility in terms of expected out-of-sample Sharpe
ratio.12 Out-of-sample Sharpe ratios boil down to a classic bias-variance
tradeoff. Expected returns purely capture bias effects. For low complexity

9See Spigler et al. (2019), Belkin et al. (2018), Belkin et al. (2019), Belkin et al.
(2020), and Hastie et al. (2019).

10The remaining curves in Figure 2.1 show how the out-of-sample R2 is affected
by non-trivial ridge shrinkage. The basic R2 patterns are the same as the ridgeless
case, but allowing z > 0 can improve R2 further.

11In the ridgeless case, the benefit of added complexity reaches its maximum
when c = 1. The ridgeless expected return is flat for c ≥ 1 because the incremental
improvements in DGP approximation are exactly offset by the gradually rising bias
of ridgeless shrinkage.

12In the calibration, the buy-and-hold trading strategy is normalized to have a
Sharpe ratio of zero. Thus, the Sharpe ratio in Figure 2.2 is in fact the Sharpe ratio
gain from timing based on model forecasts, relative to a buy-and hold investor.
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Expected Return Volatility

0 2 4 6 8 10

0.00

0.01

0.02

0 2 4 6 8 10

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Sharpe Ratio

0 2 4 6 8 10

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Figure 2.2: Expected Out-of-sample Risk-Return Tradeoff of Timing Strategy

Note: Limiting out-of-sample expected return, volatility, and Sharpe ratio of the
timing strategy as a function of cq and z from Proposition 5 of Kelly et al. (2022a).
Calibration assumes Ψ is the identity matrix, b∗ = 0.2, and the complexity of the
true model is c = 10.

models, bias comes through model misspecification but not through
shrinkage. For high complexity models, the mis-specification bias is
small, but the shrinkage bias becomes large. The theory, which shows
that expected returns rise with complexity, reveals that misspecification
bias is more costly than shrinkage bias when it comes to expected
returns. Meanwhile, the strategy’s volatility is purely about forecast
variance effects. Both simple models (c ≈ 0) or highly complex models
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(c� 1) produce low variance. Given these patterns in the bias-variance
tradeoff, it follows that the out-of-sample Sharpe ratio is also increasing
in complexity, as shown in Figure 2.2.

It is interesting to compare these findings with the phenomenon
of “double descent,” or the fact that out-of-sample MSE has a non-
monotonic pattern in model complexity when z is close to zero (Belkin
et al., 2018; Hastie et al., 2019). The mirror image of double descent
in MSE is “double ascent” of the ridgeless Sharpe ratio. Kelly et al.
(2022a) prove that the ridgeless Sharpe ratio dip at c = 1 is an artifact
of insufficient shrinkage. With the right amount of shrinkage (explicitly
characterized by Kelly et al. (2022a)), complexity becomes a virtue even
in the low complexity regime: the hump disappears, and “double ascent”
turns into “permanent ascent.”

In summary, these results challenge the dogma of parsimony dis-
cussed at the start of this section. They demonstrate that, in the realistic
case of mis-specified empirical models, complexity is a virtue. This is
true not just in terms of out-of-sample statistical performance (as shown
by Belkin et al., 2019; Hastie et al., 2019, and others) but also in the
economic terms of out-of-sample investor utility. Contrary to conven-
tional wisdom, the performance of machine learning portfolios can be
theoretically improved by pushing model parameterization far beyond
the number of training observations.

Kelly et al. (2022a) conclude with a recommendation for best prac-
tices in the use of complex models:

“Our results are not a license to add arbitrary predictors
to a model. Instead, we encourage i) including all plausibly
relevant predictors and ii) using rich nonlinear models rather
than simple linear specifications. Doing so confers prediction
and portfolio benefits, even when training data is scarce, and
particularly when accompanied by prudent shrinkage.”

To derive the results above, Kelly et al. (2022a) impose an assump-
tion that predictability is uniformly distributed across the signals. At
first glance, this may seem overly restrictive, as many standard pre-
dictors would not satisfy this assumption. However, the assumption is
consistent with (and is indeed motivated by) standard neural network
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models in which raw features are mixed and nonlinearly propagated
into final generated features, as in equation (2.2). The ordering of the
generated features S is essentially randomized by the initialization step
of network training. Furthermore, in their empirical work, Kelly et al.
(2022a), Kelly et al., 2022b, and Didisheim et al. (2023) use a neural
network formulation known as random feature regression that ensures
this assumption is satisfied.

2.3 The Complexity Wedge

Didisheim et al. (2023) extend the analysis of Kelly et al. (2022a) in a
number of ways and introduce the “complexity wedge,” defined as the
expected difference between in-sample and out-of-sample performance.
For simplicity, consider a correctly specified empirical model. In a
low complexity environment with c ≈ 0, the law of large numbers
applies, and as a result in-sample estimates converge to the true model.
Because of this convergence, the model’s in-sample performance is
exactly indicative of its expected out-of-sample performance. That is,
with no complexity, there is no wedge between in-sample and out-of-
sample behavior.

But when c > 0, a complexity wedge emerges, consisting of two com-
ponents. Complexity inflates the trained model’s in-sample predictability
relative to the true model’s predictability—this is the traditional defini-
tion of overfit and it is the first wedge component. But high complexity
also means that the empirical model does not have enough data (relative
to its parameterization) to recover the true model—this is a failure of
the law of large numbers due to complexity. This gives rise to the second
wedge component, which is a shortfall in out-of-sample performance
relative to the true model. This shortfall can be thought of as the “limits
to learning” due to model complexity. The complexity wedge—the ex-
pected difference between in-sample and out-of-sample performance—is
the sum of overfit and limits to learning.

The complexity wedge has a number of intriguing implications for
asset pricing. Given a realized (feasible) prediction R2, one can use
random matrix theory to back out the extent of predictability in the
“true” (but infeasible) model. A number of studies have documented
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significantly positive out-of-sample return prediction using machine
learning models, on the order of roughly 1% per month for individual
stocks. This fact, combined with a theoretical derivation for the limits
to learning, suggest that the true infeasible predictive R2 must be
much higher. Relatedly, even if there are arbitrage (or simply very high
Sharpe ratio) opportunities implied by the true model, limits to learning
make these inaccessible to real-world investors. In a realistic empirical
setting, Didisheim et al. (2023) suggest that attainable Sharpe ratios
are attenuated by roughly an order of magnitude relative to the true
data-generating process due to the infeasibility of accurately estimating
complex statistical relationships.

Da et al. (2022) consider a distinct economic environment in which
agents, namely arbitrageurs, adopt statistical arbitrage strategies in
efforts to maximize their out-of-sample Sharpe ratio. These arbitrageurs
also confront statistical obstacles (like “complexity” here) in learning
the DGP of alphas. Da et al. (2022) show that regardless of the machine
learning methods arbitrageurs use, they cannot realize the optimal
infeasible Sharpe ratio in certain low signal-to-noise ratio environments.
Moreover, even if arbitrageurs adopt an optimal feasible trading strategy,
there remains a substantial wedge between their Sharpe ratio and the
optimal infeasible one. We discuss more details of each of these papers
in Chapter 4.6.



3
Return Prediction

Empirical asset pricing is about measuring asset risk premia. This
measurement comes in two forms: one seeking to describe and under-
stand differences in risk premia across assets, the other focusing on
time series dynamics of risk premia. As the first moment of returns,
it is a natural starting point for surveying the empirical literature of
financial machine learning. The first moment at once summarizes i) the
extent of discounting that investors settle on as fair compensation for
holding risky assets (potentially distorted by frictions that introduce an
element of mispricing), and ii) the first-order aspect of the investment
opportunities available to a prospective investor.

A return prediction is, by definition, a measurement of an asset’s
conditional expected excess return:1

Ri,t+1 = Et[Ri,t+1] + εi,t+1, (3.1)

Related to equation (1.2), Et[Ri,t+1] = E[Ri,t+1|It] represents a forecast
conditional on the information set It, and εi,t+1, collects all the remain-
ing unpredictable variation in returns. When building statistical models
of market data, it is worthwhile to step back and recognize that the

1Ri,t+1 is an asset’s return in excess of the risk-free rate with assets indexed by
i = 1, ..., Nt and dates by t = 1, ..., T .

28
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data is generated from an extraordinarily complicated process. A large
number of investors who vary widely in their preferences and individual
information sets interact and exchange securities to maximize their well-
being. The traders intermittently settle on prices, and the sequence of
price changes (and occasional cash flows such as stock dividends or bond
coupons) produce a sequence of returns. The information set implied
by the conditional expectation in (3.1) reflects all information—public,
private, obvious, subtle, unambiguous, or dubious—that in some way
influences prices decided at time t. We emphasize the complicated gene-
sis of this conditional expectation because we next make the quantum
leap of defining a concrete function to describe its behavior:

Et[Ri,t+1] = g?(zi,t). (3.2)

Our objective is to represent Et[Ri,t+1] as an immutable but otherwise
general function g? of the P -dimensional predictor variables zi,t available
to we the researchers. That is, we hope to isolate a function that, once
we condition on zi,t, fully explains the heterogeneity in expected returns
across all assets and over all time, as g? depends neither on i nor t.2
By maintaining the same form over time and across assets, estimation
can leverage information from the entire panel, which lends stability
to estimates of expected returns for any individual asset. This is in
contrast to some standard asset pricing approaches that re-estimate a
cross-sectional model each time period, or that independently estimate
time series models for each asset (see Giglio et al., 2022a). In light
of the complicated trading process that generates return data, this
“universality” assumption is ambitious. First, it is difficult to imagine
that researchers can condition on the same information set as market
participants (the classic Hansen-Richard critique). Second, given the
constantly evolving technological and cultural landscape surrounding
markets, not to mention the human whims that can influence prices, the
concept of a universal g?(·) seems far-fetched. So, while some economists
might view this framework as excessively flexible (given that it allows
for an arbitrary function and predictor set), it seems that (3.2) places

2Also, g?(·) depends on z only through zi,t. In most of our analysis, predictions
will not use information from the history prior to t, or from individual stocks other
than the ith, though this is generalized in some analyses that we reference later.
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onerous restrictions on the model of expected returns. For those that
view it as implausibly restrictive, then any ability of this framework
to robustly describe various behaviors of asset returns—across assets,
time, and particular on an out-of-sample basis—can be viewed as an
improbable success.

Equations (3.1) and (3.2) offer an organizing template for the ma-
chine learning literature on return prediction. This section is organized
by the functional form g(zi,t) used in each paper to approximate the true
prediction function g?(zi,t) in our template. We emphasize the main
empirical findings of each paper, and highlight new methodological
contributions and distinguishing empirical results of individual papers.
We avoid discussing detailed differences in conditioning variables in
different papers, but the reader should be aware that these variations
are also responsible for variation in empirical results (above and beyond
differences in functional form).

There are two distinct strands of literature associated with the
time series and cross section research agendas discussed above. The
literature on time series machine learning models for aggregate assets
(e.g., equity or bond index portfolios) developed earlier but is the smaller
literature. Efforts in time series return prediction took off in the 1980’s
following Shiller (1981)’s documentation of the excess volatility puzzle.
As researchers set out to quantify the extent of excess volatility in
markets, there emerged an econometric pursuit of time-varying discount
rates through predictive regression. Development of the time series
prediction literature occurred earlier than the cross section literature
due to the earlier availability of data on aggregate portfolio returns and
due to the comparative simplicity of forecasting a single time series. The
small size of the market return data set is also a reason for the limited
machine learning analysis of this data. With so few observations (several
hundred monthly returns), after a few research attempts one exhausts
the plausibility that “out-of-sample” inferences are truly out-of-sample.

The literature on machine learning methods for predicting returns in
panels of many individual assets is newer, much larger, and continues to
grow. It falls under the rubric of “the cross section of returns” because
early studies of single name stocks sought to explain differences in
unconditional average returns across stocks—i.e., the data boiled down
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a single cross section of average returns. In its modern incarnation,
however, the so-called “cross section” research program takes the form
of a true panel prediction problem. The objective is to explain both time-
variation and cross-sectional differences in conditional expected returns.
A key reason for the rapid and continual expansion of this literature is
the richness of the data. The panel’s cross-section dimension can multiply
the number of time series observations by a factor of a few thousand or
more (in the case of single name stocks, bonds, or options, for example).
While there is notable cross-correlation in these observations, most of
the variation in single name asset returns is idiosyncratic. Furthermore,
patterns in returns appear to be highly heterogeneous. In other words,
the panel aspect of the problem introduces a wealth of phenomena for
empirical researchers to explore, document, and attempt to understand
in an economic frame.

We have chosen an organizational scheme for this section that
categorizes the literature by machine learning methods employed, and
in each section we discuss both time series and panel applications. Given
the prevalence of cross section studies, this topic receives the bulk of
our attention.

3.1 Data

Much of the financial machine learning literature studies a canonical
data set consisting of monthly returns of US stocks and accompanying
stock-level signals constructed primarily from CRSP-Compustat data.
Until recently, there were few standardized choices for building this
stock-month panel. Different researchers use different sets of stock-level
predictors (e.g., Lewellen (2015) uses 15 signals, Freyberger et al. (2020)
use 36, Gu et al. (2020b) use 94) and impose different observation filters
(e.g., excluding observations stocks with nominal share prices below
$5, excluding certain industries like financials or utilities, and so forth).
And it is common for different papers to use different constructions
for signals with the same name and economic rationale (e.g., various
formulations of “value,” “quality,” and so forth).

Fortunately, recent research has made progress streamlining these
data decisions by publicly releasing data and code for a standardized
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stock-level panel, available directly from the Wharton Research Data Ser-
vices server. Jensen et al. (2021) construct 153 stock signals, and provide
source code and documentation so that users can easily inspect, analyze,
and modify empirical choices. Furthermore, their data is available not
just for US stocks, but for stocks in 93 countries around the world, and
is updated regularly to reflect annual CRSP-Compustat data releases.
These resources may be accessed at jkpfactors.com. Jensen et al. (2021)
emphasize a homogenous approach to signal construction by attempting
to make consistent decisions in how different CRSP-Compustat data
items are used in various signals. Chen and Zimmermann (2021) also
post code and data for US stocks at openassetpricing.com.

In terms of standardized data for aggregate market return prediction,
Welch and Goyal (2008) post updated monthly and quarterly returns
and predictor variables for the aggregate US stock market.3 Rapach and
Zhou (2022) provide the latest review of additional market predictors.

3.2 Experimental Design

The process of estimating and selecting among many models is central
to the machine learning definition given above. Naturally, selecting a
best performing model according to in-sample (or training sample) fit
exaggerates model performance since increasing model parameterization
mechanically improves in-sample fit. Sufficiently large models will fit
the training data exactly. Once model selection becomes part of the
research process, we can no longer rely on in-sample performance to
evaluate models.

Common approaches for model selection are based on information
criteria or cross-validation. An information criterion like Akaike (AIC)
or Bayes/Schwarz (BIC) allows researchers to select among models based
on training sample performance by introducing a probability-theoretical
performance penalty related to the number of model parameters. This
serves as a counterbalance to the mechanical improvement in fit due
to heavier parameterization. Information criteria aim to select a model
from the candidate set that is likely to have the best out-of-sample

3Available at sites.google.com/view/agoyal145.

jkpfactors.com
openassetpricing.com
sites.google.com/view/agoyal145
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prediction performance according to some metric.
Cross-validation has the same goal as AIC and BIC, but approaches

the problem in a more data-driven way. It compares models based on
their “pseudo”-out-of-sample performance. Cross-validation separates
the observations into one set used for training and another (the pseudo-
out-of-sample observations) for performance evaluation. By separating
the training sample from the evaluation sample, cross-validation avoids
the mechanical outperformance of larger models by simulating out-of-
sample model performance. Cross-validation selects models based on
their predictive performance in the pseudo-out-of-sample data.

Information criteria and cross-validation each have their advantages
and disadvantages. In some circumstances, AIC and cross-validation
deliver asymptotically equivalent model selections (Stone, 1977; Nishii,
1984). A disadvantage of information criteria is that they are derived
from certain theoretical assumptions, so if the data or models violate
these assumptions, the theoretical criteria must be amended and this
may be difficult or infeasible. Cross-validation implementations are often
more easily adapted to account for challenging data properties like serial
dependence or extreme values, and can be applied to almost any machine
learning algorithm (Arlot and Celisse, 2010). On the other hand, due to
its random and repetitive nature, cross-validation can produce noisier
model evaluations and can be computationally expensive. Over time,
the machine learning literature has migrated toward a heavy reliance
on cross-validation because of its apparent adaptivity and universality,
and thanks to the reduced cost in high-performance computing.

To provide a concrete perspective on model selection with cross-
validation and how it fits more generally into machine learning empirical
designs, we outline example designs adopted by Gu et al. (2020b) and
a number of subsequent studies.

3.2.1 Example: Fixed Design

Let the full research sample consist of time series observations indexed
t = 1, ..., T . We begin with an example of a fixed sample splitting scheme.
The full sample of T observations is split into three disjoint subsamples.
The first is the “training” sample which is used to estimate all candidate
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models. The training sample includes the Ttrain observations from t =
1, ..., Ttrain. The set of candidate models is often governed by a set of
“hyperparameters” (also commonly called “tuning parameters”). An
example of a hyperparameter that defines a continuum of candidate
models is the shrinkage parameter in a ridge regression, while an example
of a tuning parameter that describes a discrete set of models is the
number of components selected from PCA.

The second, or “validation,” sample consists of the pseudo-out-of-
sample observations. Forecasts for data points in the validation sample
are constructed based on the estimated models from the training sample.
Model performance (usually defined in terms of the objective function
of the model estimator) on the validation sample determines which
specific hyperparameter values (i.e., which specific models) are selected.
The validation sample includes the Tvalidate observations t = Ttrain +
1, ..., Ttrain + Tvalidate. Note that while the original model is estimated
from only the first Ttrain data points, once a model specification is
selected its parameters are typically re-estimated using the full Ttrain +
Tvalidate observations to exploit the full efficiency of the in-sample data
when constructing out-of-sample forecasts.

The validation sample fits are of course not truly out-of-sample
because they are used for tuning, so validation performance is itself
subject to selection bias. Thus a third “testing” sample (used for neither
estimation nor tuning) is used for a final evaluation of a method’s pre-
dictive performance. The testing sample includes the Ttest observations
t = Ttrain + Tvalidate + 1, ..., Ttrain + Tvalidate + Ttest.

Two points are worth highlighting in this simplified design example.
First, the final model in this example is estimated once and for all
using data through Ttrain + Tvalidate. But, if the model is re-estimated
recursively throughout the test period, the researcher can produce more
efficient out-of-sample forecasts. A reason for relying on a fixed sample
split would be that the candidate models are very computationally
intensive to train, so re-training them may be infeasible or incur large
computing costs (see, e.g., the CNN analysis of Jiang et al., 2022).

Second, the sample splits in this example respect the time series
ordering of the data. The motivation for this design is to avoid inad-
vertent information leakage backward in time. Taking this further, it



3.2. Experimental Design 35

Figure 3.1: Illustration of Standard K-fold Cross-validation
Source: https://scikit-learn.org/

is common in time series applications to introduce an embargo sample
between the training and validation samples so that serial correlation
across samples does not bias validation. For stronger serial correlation,
longer embargoes are appropriate.

Temporal ordering of the training and validation samples is not
strictly necessary and may make inefficient use of data for the model
selection decision. For example, a variation on the temporal ordering
in this design would replace the fixed validation sample with a more
traditional K-fold cross-validation scheme. In this case, the first Ttrain +
Tvalidate observations can be used to produce K different validation
samples, from which a potentially more informed selection can be made.
This would be appropriate, for example, with serially uncorrelated data.
Figure 3.1 illustrates the K-fold cross-validation scheme, which creates
K validation samples over which performance is averaged to make a
model selection decision.

https://scikit-learn.org/
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Figure 3.2: Illustration of Recursive Time-ordered Cross-validation
Note: Blue dots represent training observations, green dots represent validation observations,
and red dots represent test observations. Each row represents a step in the recursive design. This
illustration corresponds to the case of an expanding (rather than rolling) training window.

3.2.2 Example: Recursive Design

When constructing an out-of-sample forecast for a return realized at
some time t, an analyst typically wishes to use the most up-to-date
sample to estimate a model and make out-of-sample forecasts. In this
case, the training and validation samples are based on observations at
1, ..., t−1. For example, for a 50/50 split into training/validation samples,
the fixed design above would be adapted to train on 1, ..., b t−1

2 c and
validate on b t−1

2 c+ 1, ..., t− 1. Then the selected model is re-estimated
using all data through t − 1 and an out-of-sample forecast for t is
generated.

At t+ 1, the entire training/validation/testing processes is repeated
again. Training uses observations 1, ..., b t2c, validation b

t
2c+ 1, ..., t, and

the selected model is re-estimated through t to produce out-of-sample
forecast. This recursion iterates until a last out-of-sample forecast
is generated for observation T . Note that, because validation is re-
conducted each period, the selected model can change throughout the
recursion. Figure 3.2 illustrates this recursive cross-validation scheme.

A common variation on this design is to use rolling a training window
rather than an expanding window. This is beneficial if there is suspicion
of structural instability in the data or if there are other modeling or
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testing benefits to maintaining equal training sample sizes throughout
the recursion.

3.3 A Benchmark: Simple Linear Models

The foundational panel model for stock returns, against which any
machine learning method should be compared, is the simple linear
model. For a given set of stock-level predictive features zi,t, the linear
panel model fixes the prediction function as g(zi,t) = β′zi,t:

Ri,t+1 = β′zi,t + εi,t+1. (3.3)

There are a variety of estimators for this model that are appropriate
under various assumptions on structure of the error covariance matrix.
In empirical finance research, the most popular is Fama and Macbeth
(1973) regression. Petersen (2008) analyzes the econometric properties
of Fama-MacBeth and compare it with other panel estimators.

Haugen and Baker (1996) and Lewellen (2015) are precursors to the
literature on machine learning for the cross section of returns. First,
they employ a comparatively large number of signals: Haugen and Baker
(1996) use roughly 40 continuous variables and sector dummies, and
Lewellen (2015) uses 15 continuous variables. Second, they recursively
train the panel linear model in (3.3) and emphasize the out-of-sample
performance of their trained models. This differentiates their analysis
from a common empirical program in the literature that sorts stocks
into bins on the basis of one or two characteristics—which is essentially
a “zero-parameter” return prediction model that asserts a functional
form for g(zi,t) without performing estimation.4 Both Haugen and Baker
(1996) and Lewellen (2015) evaluate out-of-sample model performance
in the economic terms of trading strategy performance. Haugen and
Baker (1996) additionally analyze international data, while Lewellen
(2015) additionally analyzes model accuracy in terms of prediction R2.

4To the best of our knowledge Basu (1977) is the first to perform a characteristic-
based portfolio sort. He performs quintile sorts on stock-level price-earnings ratios.
The adoption of this approach to by Fama and French (1992) establishes portfolio
sorts as a mainstream methodology for analyzing the efficacy of a candidate stock
return predictor.
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Table 3.1: Average Monthly Factor Returns From Haugen and Baker (1996)

1979/01 through 1986/06 1986/07 through 1993/12
Factor Mean t-stat Mean t-stat
One-month excess return -0.97% -17.04 -0.72% -11.04
Twelve-month excess return 0.52% 7.09 0.52% 7.09
Trading volume/market cap -0.35% -5.28 -0.20% -2.33
Two-month excess return -0.20% -4.97 -0.11% -2.37
Earnings to price 0.27% 4.56 0.26% 4.42
Return on equity 0.24% 4.34 0.13% 2.06
Book to price 0.35% 3.90 0.39% 6.72
Trading volume trend -0.10% -3.17 -0.09% -2.58
Six-month excess return 0.24% 3.01 0.19% 2.55
Cash flow to price 0.13% 2.64 0.26% 4.42
Variability in cash flow to price -0.11% -2.55 -0.15% -3.38

Source: Haugen and Baker (1996).

Haugen and Baker (1996) show that optimized portfolios built from
the linear model’s return forecasts outperform the aggregate market,
and does so in each of the five countries they study. One of their most
interesting findings is the stability in predictive patterns, recreated
in Table 3.1 (based on Table 1 in their paper). Coefficients on the
important predictors in the first half of their sample have not only
the same sign but strikingly similar magnitudes and t-statistics in the
second half of their sample.

Lewellen (2015) shows that, in the cross section of all US stocks, the
panel linear model has a highly significant out-of-sample R2 of roughly
1% per month, demonstrating its capability of quantitatively aligning
the level of return forecasts with realized returns. This differentiates
the linear model from the sorting approach, which is usually evaluated
on its ability to significantly distinguish high and low expected return
stocks—i.e., its ability to make relative comparisons without necessar-
ily matching magnitudes. Furthermore, the 15-variable linear model
translates into impressive trading strategy performance, as shown in
Table 3.2 (recreated from Table 6A of Lewellen (2015)). An equal-weight
long-short strategy that buys the highest model-based expected return
decile and shorts the lowest earns an annualized Sharpe ratio of 1.72 on
an out-of-sample basis (0.82 for value-weight deciles). Collectively, the
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Table 3.2: Average Monthly Factor Returns And Annualized Sharpe Ratios From
Lewellen (2015)

Equal-weighted Value-weighted
Pred Avg Std t-stat Shp Pred Avg Std t-stat Shp

Panel A: All stocks
Low (L) -0.90 -0.32 7.19 -0.84 -0.15 -0.76 0.11 6.01 0.37 0.06
2 -0.11 0.40 5.84 1.30 0.24 -0.10 0.45 4.77 1.89 0.32
3 0.21 0.60 5.46 2.06 0.38 0.21 0.65 4.65 2.84 0.49
4 0.44 0.78 5.28 2.74 0.51 0.44 0.69 4.67 2.97 0.51
5 0.64 0.81 5.36 2.82 0.52 0.63 0.81 5.01 3.34 0.56
6 0.83 1.04 5.36 3.62 0.67 0.82 0.88 5.22 3.28 0.58
7 1.02 1.12 5.55 3.68 0.70 1.01 1.04 5.67 3.46 0.64
8 1.25 1.31 5.97 4.04 0.76 1.24 1.15 6.03 3.62 0.66
9 1.55 1.66 6.76 4.38 0.85 1.54 1.34 6.68 3.80 0.69
High (H) 2.29 2.17 7.97 4.82 0.94 2.19 1.66 8.28 3.73 0.70
H - L 3.20 2.49 5.02 10.00 1.72 2.94 1.55 6.56 4.51 0.82

Source: Lewellen (2015).

evidence of Haugen and Baker (1996) and Lewellen (2015) demonstrates
that simple linear panel models can, in real time, estimate combinations
of many predictors that are effective for forecasting returns and building
trading strategies.

Moving to time series analysis, the excess volatility puzzle of Shiller
(1981) prompted a large literature seeking to quantify the extent of time-
variation in discount rates, as well as a productive line of theoretical work
rationalizing the dynamic behavior of discount rates (e.g. Campbell and
Cochrane, 1999; Bansal and Yaron, 2004; Gabaix, 2012; Wachter, 2013).
The tool of choice in the empirical pursuit of discount rate variation is
linear time series regression. As noted in the Rapach and Zhou (2013)
survey of stock market predictability, the most popular predictor is
the aggregate price-dividend ratio (e.g. Campbell and Shiller, 1988),
though dozens of other predictors have been studied. By and large, the
literature focuses on univariate or small multivariate prediction models,
occasionally coupled with economic restrictions such as non-negativity
constraints on the market return forecast (Campbell and Thompson,
2008) and imposing cross-equation restrictions in the present-value
identity (Cochrane, 2008; Van Binsbergen and Koijen, 2010). In an
influential critique, Welch and Goyal (2008) contend that the abundant
in-sample evidence of market return predictability from simple linear
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models fails to generalize out-of-sample. However, Rapach et al. (2010)
show that forecast combination techniques produce reliable out-of-
sample market forecasts.

3.4 Penalized Linear Models

To borrow a phrase from evolutionary biology, the linear models of Hau-
gen and Baker (1996) and Lewellen (2015) are a “transitional species”
in the finance literature. Like traditional econometric approaches, the
researchers fix their model specifications a priori. But like machine learn-
ing, they consider a much larger set of predictors than their predecessors
and emphasize out-of-sample forecast performance.

While these papers study dozens of return predictors, the list of
predictive features analyzed in the literature numbers in the hundreds
(Harvey et al., 2016; Hou et al., 2018; Jensen et al., 2021). Add to this an
interest in expanding the model to incorporate state-dependence in pre-
dictive relationships (e.g. Schaller and Norden, 1997; Cujean and Hasler,
2017), and the size of a linear model’s parameterization quickly balloons
to thousands of parameters. Gu et al. (2020b) consider a baseline linear
specification to predict the panel of stock-month returns. They use
approximately 1,000 predictors that are multiplicative interactions of
roughly 100 stock characteristics with demonstrated forecast power
for individual stock returns and 10 aggregate macro-finance predictors
with demonstrated success in predicting the market return. Despite
the fact that these predictors have individually shown promise in prior
research, Gu et al. (2020b) show that OLS cannot achieve a stable fit
of a model with so many parameters at once, resulting in disastrous
out-of-sample performance. The predictive R2 is −35% per month and a
trading strategy based on these predictions underperforms the market.

It is hardly surprising that OLS estimates fail with so many pre-
dictors. When the number of predictors P approaches the number of
observations NT , the linear model becomes inefficient or even incon-
sistent. It begins to overfit noise rather than extracting signal. This is
particularly troublesome for the problem of return prediction where the
signal-to-noise ratio is notoriously low.

A central conclusion from the discussion of such “complex” models
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in Section 2 is the following: Crucial for avoiding overfit is constraining
the model by regularizing the estimator. This can be done by pushing
complexity (defined as c in Section 2) far above one (which implicitly
regularizes the least squares estimator) or by imposing explicit penaliza-
tion via ridge or other shrinkage. The simple linear model does neither.
Its complexity is in an uncomfortably high variance zone (well above
zero, but not above one) and it uses no explicit regularization.

The prediction function for the penalized linear model is the same
as the simple linear model in equation (3.3). That is, it continues to
consider only the baseline, untransformed predictors. Penalized methods
differ by appending a penalty to the original loss function, such as the
popular “elastic net” penalty, resulting in a penalized loss of

L(β; ρ, λ) =
N∑
i=1

T∑
t=1

(
Ri,t+1 − β′zi,t

)2 + λ(1− ρ)
P∑
j=1
|βj |+

1
2λρ

P∑
j=1

β2
j

(3.4)
The elastic net involves two non-negative hyperparameters, λ and ρ, and
includes two well known regularizers as special cases. The ρ = 1 case
corresponds to ridge regression, which uses an `2 parameter penalization,
that draws all coefficient estimates closer to zero but does not impose
exact zeros anywhere. Ridge is a shrinkage method that helps prevent
coefficients from becoming unduly large in magnitude. The ρ = 0 case
corresponds to the lasso and uses an absolute value, or “`1”, parameter
penalization. The geometry of lasso sets coefficients on a subset of
covariates to exactly zero if the penalty is large enough. In this sense,
the lasso imposes sparsity on the specification and can thus be thought
of as both a variable selection and a shrinkage device. For intermediate
values of ρ, the elastic net encourages simple models with varying
combinations of ridge and lasso effects.

Gu et al. (2020b) show that the failure of the OLS estimator in the
stock-month return prediction panel is reversed by introducing elastic
net penalization. The out-of-sample prediction R2 becomes positive and
an equal-weight long-short decile spread based on elastic net predictions
returns an out-of-sample Sharpe ratio of 1.33 per annum. In other words,
it is not the weakness of the predictive information embodied in the
1,000 predictors, but the statistical cost (overfit and inefficiency) of the
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heavy parameter burden, that is a detriment to the performance of
OLS. He et al. (2022a) analyze elastic-net ensembles and find that the
best individual elastic-net models change rather quickly over time and
that ensembles perform well at capturing these changes. Rapach et al.
(2013) apply (3.4) to forecast market returns across countries.

Penalized regression methods are some of the most frequently em-
ployed machine learning tools in finance, thanks in large part to their
conceptual and computational tractability. For example, the ridge re-
gression estimator is available in closed form so it has the same computa-
tional simplicity as OLS. There is no general closed form representation
of the lasso estimator, so it must be calculated numerically, but efficient
algorithms for computing lasso are ubiquitous in statistics software
packages (including Stata, Matlab, and various Python libraries).

Freyberger et al. (2020) combine penalized regression with a gener-
alized additive model (GAM) to predict the stock-month return panel.
In their application, a function pk(zi,t) is an element-wise nonlinear
transformation of the P variables in zi,t:

g(zi,t) =
K∑
k=1

β̃′kpk(zi,t). (3.5)

Their model expands the set of predictors by using k = 1, ...,K such
nonlinear transformations, with each transformation k having its own
Q× 1 vector of linear regression coefficients β̃k. Freyberger et al. (2020)
use a quadratic spline formulation for their basis functions, though the
basis function possibilities are endless and the nonlinear transformations
may be applied to multiple predictors jointly (as opposed to element-
wise).

Because nonlinear terms enter additively, forecasting with the GAM
can be approached with the same estimation tools as any linear model.
But the series expansion concept that underlies the GAM quickly
multiplies the number of model parameters, thus penalization to control
the degrees of freedom tends to benefit out-of-sample performance.
Freyberger et al. (2020) apply a penalty function known as group lasso
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(Huang et al., 2010), which takes the form

λ
Q∑
j=1

(
K∑
k=1

β̃2
k,j

)1/2

, (3.6)

where β̃k,j is the coefficient on the kth basis function applied to stock
signal j. This penalty is particularly well suited to the spline expansion
setting. As its name suggests, group lasso selects either all K spline
terms associated with a given characteristic j, or none of them.

Freyberger et al. (2020)’s group lasso results show that less than half
of the commonly studied stock signals in the literature have independent
predictive power for returns. They also document the importance of
nonlinearities, showing that their full nonlinear specification dominates
the nested linear specification in terms of out-of-sample trading strategy
performance.

Chinco et al. (2019) also use lasso to study return predictability.
Their study has a number of unique aspects. First is their use of high
frequency data—they forecast one-minute-ahead stock returns trained
in rolling 30-minute regressions. Second, they use completely separate
models for each stock, making their analysis a large collection of time
series linear regressions. And, rather than using standard stock-level
characteristics as predictors, their feature set includes three lags of one-
minute returns for all stocks in the NYSE cross section. Perhaps the
most interesting aspect of this model is its accommodation of cross-stock
prediction effects. Their ultimate regression specification is

Ri,t = αi + β′i,1Rt−1 + β′i,2Rt−2 + β′i,3Rt−3 + εi,t, i = 1, ..., N (3.7)

where Rt is the vector including all stocks’ returns in minute t. The
authors estimate this model for each stock i with lasso using a stock-
specific penalty parameter selected with 10-fold cross-validation. They
find that the dominant predictors vary rather dramatically from period
to period, and tend to be returns on stocks that are reporting fundamen-
tal news. The economic insights from these patterns are not fully fleshed
out, but the strength of the predictive evidence suggest that machine
learning methods applied to high frequency returns have the potential
to reveal new and interesting phenomena relating to information flows
and the joint dynamics they induce among assets.
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Avramov et al. (2022b) study how dynamics of firm-level fundamen-
tals associate with subsequent drift in a firm’s stock price. They take
an agnostic view on details of fundamental dynamics. Their data-driven
approach considers the deviations of all quarterly Compustat data items
from their mean over the three most recent quarters, rather than hand-
picking specific fundamentals a priori. This large set of deviations is
aggregated into a single return prediction index via supervised learning.
In particular, they estimate pooled panel lasso regressions to forecast the
return on stock i using all of stock i’s Compustat deviations, and refer
to the fitted value from these regressions as the Fundamental Deviation
Index, or FDI. A value-weight decile spread strategy that is long highest
FDI stocks and short lowest FDI stocks earns an annualized out-of-
sample information ratio of 0.8 relative to the Fama-French-Carhart
four-factor model.

3.5 Dimension Reduction

The regularization aspect of machine learning is in general beneficial
for high dimensional prediction problems because it reduces degrees of
freedom. There are many possible ways to achieve this. Penalized linear
models reduce degrees of freedom by shrinking coefficients toward zero
and/or forcing coefficients to zero on a subset of predictors. But this
can produce suboptimal forecasts when predictors are highly correlated.
Imagine a setting in which each predictor is equal to the forecast target
plus some i.i.d. noise term. In this situation, the sensible forecasting
solution is to simply use the average of predictors in a univariate
predictive regression.

This idea of predictor averaging is the essence of dimension reduction.
Forming linear combinations of predictors helps reduce noise to better
isolate signal. We first discuss two classic dimension reduction techniques,
principal components regression (PCR) and partial least squares (PLS),
followed by two extensions of PCA, scaled PCA and supervised PCA,
designed for low signal-to-noise settings. These methods emerge in the
literature as dimension-reduction devices for time series prediction of
market returns or macroeconomic variables. We next extend their use
to a panel setting for predicting the cross-section of returns, and then
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introduce a more recent finance-centric method known as principal
portfolios analysis tailored to this problem. In this section, we focus on
applications of dimension reduction to prediction. Dimension reduction
plays an important role in asset pricing beyond prediction, and we
study these in subsequent sections. For example, a variety of PCA-
based methods are at the heart of latent factor analysis, and are treated
under the umbrella of machine learning factor pricing models in Section
4.

3.5.1 Principal Components and Partial Least Squares

We formalize the discussion of these two methods in a generic predictive
regression setting:

yt+h = x′tθ + εt+h, (3.8)

where y may refer to market return or macroeconomic variables such
as GDP growth, unemployment, and inflation, xt is P × 1 vector of
predictors, and h is the prediction horizon.

The idea of dimension reduction is to replace the high-dimensional
predictors by a set of low-dimensional “factors”, ft, which summarizes
useful information in xt. Their relationship is often cast in a standard
factor model:

xt = βft + ut. (3.9)

On the basis of (3.9), we can rewrite (3.8) as:

yt+h = f ′tα+ ε̃t+h. (3.10)

Equations (3.9) and (3.10) can be represented in matrix form as:

X = βF + U, Y = Fα+ E, (3.11)

where X is a P × T matrix, F is K × T , F is the K × (T − h) matrix
with the last h columns removed from F , Y = (yh+1, yh+2, . . . , yT )′,
E = (ε̃h+1, ε̃h+2, . . . , ε̃T )′.

Principal components regression (PCR) is a two-step procedure.
First, it combines predictors into a few linear combinations, f̂t = ΩKxt,
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and finds the combination weights ΩK recursively. The jth linear com-
bination solves

wj = arg max
w

V̂ar(x′tw),

s.t. w′w = 1, Ĉov(x′tw, x′twl) = 0, l = 1, 2, . . . , j − 1. (3.12)

Clearly, the choice of components is not based on the forecasting objec-
tive at all, but aims to best preserve the covariance structure among the
predictors.5 In the second step, PCR uses the estimated components f̂t
in a standard linear predictive regression (3.10).

Stock and Watson (2002) propose to forecast macroeconomic vari-
ables on the basis of PCR. They prove the consistency of the first-stage
recovery of factors (up to a rotation) and the second-stage prediction,
as both the number of predictors, P , and the sample size, T , increase.

Among the earliest uses of PC forecasts for stock return prediction is
Ludvigson and Ng (2007). Their forecast targets are either the quarterly
return to the CRSP value-weighted index or its quarterly volatility.
They consider two sets of principal components, corresponding to dif-
ferent choices for the raw predictors that comprise X. The first is a
large collection of indicators spanning all aspects of the macroeconomy
(output, employment, housing, price levels, and so forth). The second is
a large collection of financial data, consisting mostly of aggregate US
market price and dividend data, government bond and credit yields,
and returns on various industry and characteristic-sorted portfolios.
In total, they incorporate 381 individual predictors in their analysis.
They use BIC to select model specifications that include various com-
binations of the estimated components. Components extracted from
financial predictors have significant out-of-sample forecasting power
for market returns and volatility, while macroeconomic indicators do
not. Fitted mean and volatility forecasts exhibit a positive association
providing evidence of a classical risk-return tradeoff at the aggregate
market level. To help interpret their predictions, the authors show that
“Two factors stand out as particularly important for quarterly excess
returns: a volatility factor that is highly correlated with squared returns,

5This optimization problem is efficiently solved via singular value decomposition
of X, a P × T matrix with columns in {x1, . . . , xT }.
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and a risk-premium factor that is highly correlated with well-established
risk factors for explaining the cross-section of expected returns.”

Extending their earlier equity market framework, Ludvigson and
Ng (2010) use principal components of macroeconomic and financial
predictors to forecast excess Treasury bond returns. They document
reliable bond return prediction performance in excess of that due to
forward rates (Fama and Bliss, 1987; Cochrane and Piazzesi, 2005).
They emphasize i) the inconsistency of this result with leading affine
term structure models (in which forward rates theoretically span all
predictable variation in future bond returns) and ii) that their estimated
conditional expected returns are decidedly countercyclical, resolving the
puzzling cyclicality of bond risk premia that arises when macroeconomic
components are excluded from the forecasting model.

Jurado et al. (2015) use a clever application of PCR to estimate
macroeconomic risk. The premise of their argument is that a good
conditional variance measure must effectively adjust for conditional
means,

Var(yt+1|It) = E
[
(yt+1 − E[yt+1|It])2 |It

]
.

If the amount of mean predictability is underestimated, conditional
risks will be overestimated. The authors build on the ideas in Ludvigson
and Ng (2007) and Ludvigson and Ng (2010) to saturate predictions
of market returns (and other macroeconomic series) with information
contained in the principal components of macroeconomic predictor
variables. The resulting improvements in macroeconomic risk estimates
have interesting economic consequences. First, episodes of elevated
uncertainty are fewer and farther between than previously believed.
Second, improved estimates reveal a tighter link between rises in risk
and depressed macroeconomic activity.

PCR constructs predictors solely based on covariation among the
predictors. The idea is to accommodate as much of the total variation
among predictors as possible using a relatively small number of dimen-
sions. This happens prior to and independent of the forecasting step.
This naturally suggests a potential shortcoming of PCR—that it fails to
consider the ultimate forecasting objective in how it conducts dimension
reduction.
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Partial least squares (PLS) is an alternative to PCR that reduces
dimensionality by directly exploiting covariation between predictors
and the forecast target. Unlike PCR, PLS seeks components of X that
maximize predictive correlation with the forecast target, thus weight in
the jth PLS component are

wj = arg max
w

Ĉov(yt+h, x′tw)2,

s.t. w′w = 1, Ĉov(x′tw, x′twl) = 0, l = 1, 2, . . . , j − 1. (3.13)

At the core of PLS is a collection of univariate (“partial”) models
that forecast yt+h one predictor at a time. Then, it constructs a linear
combination of predictors weighted by their univariate predictive ability.
To form multiple PLS components, the target and all predictors are
orthogonalized with respect to previously constructed components, and
the procedure is repeated on the orthogonalized dataset.

Kelly and Pruitt (2015) analyze the econometric properties of PLS
prediction models (and a generalization called the three-pass regression
filter), and note its resilience when the predictor set contains dominant
factors that are irrelevant for prediction, which is a situation that lim-
its the effectiveness of PCR. Related to this, Kelly and Pruitt (2013)
analyze the predictability of aggregate market returns using the present-
value identity. They note that traditional present-value regressions (e.g.
Campbell and Shiller, 1988) face an errors-in-variables problem, and
propose a high-dimensional regression solution that exploits strengths
of PLS. In their analysis, Z consists of valuation (book-to-market or
dividend-to-price) ratios for a large cross section of assets. Imposing
economic restrictions, they derive a present-value system that relates
market returns to the cross section of asset-level valuation ratios. How-
ever, the predictors are also driven by common factors in expected
aggregate dividend growth. Applying PCR to the cross section of valua-
tion ratios encounters the problem that factors driving dividend growth
are not particularly useful for forecasting market returns. The PLS
estimator learns to bypass these high variance but low predictability
components in favor of components with stronger return predictabil-
ity. Their PLS-based forecasts achieve an out-of-sample R2 of 13% for
annual returns. This translates into large economic gains for investors
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willing to time the market, increasing Sharpe ratios by more than a
third relative to a buy-and-hold investor. Furthermore, they document
substantially larger variability in investor discount rates than accommo-
dated by leading theoretical models. Chatelais et al. (2023) use a similar
framework to forecast macroeconomic activity using a cross section of
asset prices, in essence performing a PLS-based version of the Fama
(1990) analysis demonstrating that asset prices lead macroeconomic
outcomes.

Baker and Wurgler (2006) and Baker and Wurgler (2007) use PCR
to forecast market returns based on a collection of market sentiment
indicators. Huang et al. (2014) extend this analysis with PLS and show
that PLS sentiment indices possess significant prediction benefits relative
to PCR. They argue that PLS avoids a common but irrelevant factor
associated with measurement noise in the Baker-Wurgler sentiment
proxies. By reducing the confounding effects of this noise, Huang et al.
(2014) find that sentiment is a highly significant driver of expected
returns, and that this predictability is in large part undetected by
PCR. Similarly, Chen et al. (2022b) combine multiple investor attention
proxies into a successful PLS-based market return forecaster.

Ahn and Bae (2022) conduct asymptotic analysis of the PLS esti-
mator and find that the optimal number of PLS factors for forecasting
could be much smaller than the number of common factors in the origi-
nal predictor variables. Moreover, including too many PLS factors is
detrimental to the out-of-sample performance of the PLS predictor.

3.5.2 Scaled PCA and Supervised PCA

A convenient and critical assumption in the analysis of PCR and PLS
is that the factors are pervasive. Pervasive factor models are preva-
lent in the literature. For instance, Bai (2003) studies the asymptotic
properties of the PCA estimator of factors in the case λK(β′β) & P .
Giglio et al. (2022b) show that the performance of the PCA and PLS
predictors hinges on the signal-to-noise ratio, defined by P/(TλK(β′β)),
where λK(β′β) is the Kth largest eigenvalue. When P/(TλK(β′β)) 6→ 0,
neither prediction method is consistent in general. This is known as the
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weak factor problem.6
Huang et al. (2021) propose a scaled-PCA procedure, which assigns

weights to variables based on their correlations with the prediction
target, before applying PCA. The weighting scheme enhances the signal-
to-noise ratio and thus helps factor recovery.

Likewise, Giglio et al. (2022b) propose a supervised PCA (SPCA)
alternative which allows for factors along a broad spectrum of factor
strength. They note that the strength of factors depends on the set of
variables to which PCA is applied. SPCA involves a marginal screening
step to select a subset of predictors within which at least one factor
is strong. It then extracts a first factor from the subset using PCA,
projects the target and all the predictors (including those not selected)
on the first factor, and constructs residuals. It then repeats the selection,
PCA, and projection step with the residuals, extracting factors one by
one until the correlations between residuals and the target vanish. Giglio
et al. (2022b) prove that both PLS and SPCA can recover weak factors
that are correlated with the prediction target and that the resulting
predictor achieves consistency. In a multivariate target setting, if all
factors are correlated with at least one of the prediction targets, the
PLS procedure can recover the number of weak factors and the entire
factor space consistently.

3.5.3 From Time-Series to Panel Prediction

The dimension reduction applications referenced above primarily focus
on combining many predictors to forecast a univariate time series.
To predict the cross-section of returns, we need generalize dimension
reduction to a panel prediction setting as in (3.3). Similar to (3.9) and
(3.10), we can write

Rt+1 = Ftα+ Et+1, Zt = Ftγ + Ut,

where Rt+1 is an N × 1 vector of returns observed on day t+ 1, Ft is an
N ×K matrix, α is K × 1, Et+1 is N × 1 vector of residuals, Zt is an

6Bai and Ng (2021) extend their analysis to moderate factors, i.e.,
P/(TλK(β′β))→ 0, and find PCA remains consistent. Earlier work on weak factor
models includes Onatski (2009), Onatski (2010), and Onatski (2012), who consider the
extremely weak factor setting in which the factors cannot be recovered consistently.
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N × P matrix of characteristics, γ is K × P , and Ut is N × P matrix
of residuals.

We can then stack {Rt+1}, {Et+1}, {Zt}, {Ft}, {Ut} into NT × 1,
NT × 1, NT × P , NT × K, NT × P matrices, R, E, Z, F , and U ,
respectively, such that

R = Fα+ E, Z = Fγ + U.

These equations follow exactly the same form as (3.11), so that the
aforementioned dimension reduction procedures apply.

Light et al. (2017) apply pooled panel PLS in stock return prediction,
and Gu et al. (2020b) perform pooled panel PCA and PLS to predict
individual stocks returns. The Gu et al. (2020b) equal-weighted long-
short portfolios based on PCA and PLS earn a Sharp ratio of 1.89 and
1.47 per annum, respectively, which outperforms the elastic-net based
long-short portfolio.

3.5.4 Principal Portfolios

Kelly et al. (2020a) propose a different dimension reduction approach to
return prediction and portfolio optimization called “principal portfolios
analysis” (PPA). In the frameworks of the preceding section, high
dimensionality comes from each individual asset having many potential
predictors. Most models in empirical asset pricing focus on own-asset
predictive signals; i.e., the association between Si,t and the return on
only asset i, Ri,t+1. PPA is motivated by a desire to harness the joint
predictive information for many assets simultaneously. It leverages
predictive signals of all assets to forecast returns on all other assets. In
this case, the high dimensional nature of the problem comes from the
large number of potential cross prediction relationships.

For simplicity, suppose we have a single signal, Si,t, for each asset
(stacked into an N -vector, St). PPA begins from the cross-covariance
matrix of all assets’ future returns with all assets’ signals:

Π = E(Rt+1S
′
t) ∈ RN×N .

Kelly et al. (2020a) refer to Π as the “prediction matrix.” The diagonal
part of the prediction matrix tracks the own-signal prediction effects,
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Figure 3.3: Principal portfolio performance ratios.

Source: Figure 3 of KMP.

which are the focus of traditional return prediction models. Off-diagonals
track cross-predictability phenomena.

PPA applies SVD to the prediction matrix. Kelly et al. (2020a)
prove that the singular vectors of Π—those that account for the lion’s
share of covariation between signals and future returns—are a set of
normalized investment portfolios, ordered from those most predictable
by S to those least predictable.

The leading singular vectors of Π are “principal portfolios.” Kelly et
al. (2020a) show that principal portfolios have a direct interpretation as
optimal portfolios. Specifically, they are the most “timeable” portfolios
based on signal S and they offer the highest average returns for an
investor that faces a leverage constraint (i.e., one who cannot hold
arbitrarily large positions).

Kelly et al. (2020a) also point out that useful information about asset
pricing models and pricing errors is encoded in Π. To tease out return
predictability associated with beta versus alpha, we can decompose Π
into its symmetric part (Πs) and anti-symmetric part (Πa):

Π = 1
2(Π + Π′)︸ ︷︷ ︸

Πs

+ 1
2(Π−Π′)︸ ︷︷ ︸

Πa

. (3.14)
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Kelly et al. (2020a) prove that the leading singular vectors of Πa (“prin-
cipal alpha portfolios”) have an interpretation as pure-alpha strategies
while those of Πs have an interpretation as pure-beta portfolios (“princi-
pal exposure portfolios”). Therefore, Kelly et al. (2020a) propose a new
test of asset pricing models based on the average returns of principal
alpha portfolios (as an alternative to tests such as Gibbons et al., 1989).
While Kelly et al. (2020a) focus on the case of a single signal for each
asset, He et al. (2022b) show how to tractably extend this to multiple
signals. Goulet Coulombe and Göbel, 2023 approach a similar prob-
lem as Kelly et al. (2020a)—constructing a portfolio that is maximally
predictable—using a combination of random forest and constrained
ridge regression.

Kelly et al. (2020a) apply PPA to a number of data sets across
asset classes. Figure 3.3 presents one example from their analysis. The
set of assets Rt+1 are the 25 Fama-French size and book-to-market
portfolios, and the signals St are time series momentum for each asset.
The figure shows large out-of-sample Sharpe ratios of the resulting
principal portfolios, and shows that they generate significant alpha
versus a benchmark model that includes the five Fama-French factors
plus a standard time series momentum factor.

3.6 Decision Trees

Modern asset pricing models (with habit persistence, long-run risks, or
time-varying disaster risk) feature a high degree of state dependence
in financial market behaviors, suggesting that interaction effects are
potentially important to include in empirical models. For example, Hong
et al. (2000) formulate an information theory in which the momentum
effect is modulated by a firm’s size and its extent of analyst coverage,
emphasizing that expected stock returns vary with interactions among
firm characteristics. Conceptually, it is straightforward to incorporate
such effects in linear models by introducing variable interactions, just
like equation (3.5) introduces nonlinear transformations. The issue is
that, lacking a priori assumptions about the relevant interactions, this
generalized additive approach quickly runs up against computational
limits because multi-way interactions increase the number of parameters
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combinatorially.7
Regression trees provide a way to incorporate multi-way predictor

interactions at much lower computational cost. Trees partition data
observations into groups that share common feature interactions. The
logic is that, by finding homogenous groups of observations, one can
use past data for a given group to forecast the behavior of a new
observation that arrives in the group. Figure 3.4 shows an example with
two predictors, “size” and “b/m.” The left panel describes how the tree
assigns each observation to a partition based on its predictor values.
First, observations are sorted on size. Those above the breakpoint of
0.5 are assigned to Category 3. Those with small size are then further
sorted by b/m. Observations with small size and b/m below 0.3 are
assigned to Category 1, while those with b/m above 0.3 go into Category
2. Finally, forecasts for observations in each partition are defined as the
simple average of the outcome variable’s value among observations in
that partition.

The general prediction function associated with a tree of K “leaves”
(terminal nodes) and depth L is

g(zi,t; θ,K,L) =
K∑
k=1

θk1{zi,t∈Ck(L)}, (3.15)

where Ck(L) is one of the K partitions. Each partition is a product of
up to L indicator functions. The constant parameter θk associated with
partition k is estimated as the sample average of outcomes within the
partition.

The popularity of decision trees stems less from their structure
and more in the “greedy” algorithms that can effectively isolate highly
predictive partitions at low computational cost. While the specific
predictor variable upon which a branch is split (and the specific value
where the split occurs) is chosen to minimize forecast error, the space of

7As Gu et al. (2020b) note, “Parameter penalization does not solve the difficulty
of estimating linear models when the number of predictors is exponentially larger
than the number of observations. Instead, one must turn to heuristic optimization
algorithms such as stepwise regression (sequentially adding/dropping variables un-
til some stopping rule is satisfied), variable screening (retaining predictors whose
univariate correlations with the prediction target exceed a certain value), or others.”
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Figure 3.4: Regression Tree Example

Source: Gu et al. (2020b).
Note: This figure presents the diagrams of a regression tree (left) and its equivalent representation
(right) in the space of two characteristics (size and value). The terminal nodes of the tree are
colored in blue, yellow, and red, respectively. Based on their values of these two characteristics,
the sample of individual stocks is divided into three categories.

possible splits is so expansive that the tree cannot be globally optimized.
Instead, splits are determined myopically and the estimated tree is a
coarse approximation of the infeasible best tree model.

Trees flexibly accommodate interactions (a tree of depth L can
capture (L− 1)-way interactions) but are prone to overfit. To counter-
act this, trees are typically employed in regularized “ensembles.” One
common ensembling method is “boosting” (gradient boosted regression
trees, “GBRT”), which recursively combines forecasts from many trees
that are individually shallow and weak predictors but combine into
a single strong predictor (see Schapire, 1990; Friedman, 2001). The
boosting procedure begins by fitting a shallow tree (e.g., with depth
L = 1). Then, a second simple tree fits the prediction residuals from
the first tree. The forecast from the second tree is shrunk by a factor
ν ∈ (0, 1) then added to the forecast from the first tree. Shrinkage helps
prevent the model from overfitting the preceding tree’s residuals. This
is iterated into an additive ensemble of B shallow trees. The boosted
ensemble thus has three tuning parameters (L, ν,B).

Rossi and Timmermann (2015) investigate Merton (1973)’s ICAPM
to evaluate whether the conditional equity risk premium varies with
the market’s exposure to economic state variables. The lynchpin to this
investigation is an accurate measurement of the ICAPM conditional
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covariances. To solve this problem, the authors use boosted trees to pre-
dict the realized covariance between a daily index of aggregate economic
activity and the daily return on the market portfolio. The predictors
include a collection of macro-finance data series from Welch and Goyal
(2008) as well as past realized covariances. In contrast to prior litera-
ture, these conditional covariance estimates have a significantly positive
times series association with the conditional equity risk premium, and
imply economically plausible magnitudes of investor risk aversion. The
authors show that linear models for the conditional covariance are badly
misspecified, and this is likely responsible for mixed results in prior tests
of the ICAPM. They attribute their positive conclusion regarding the
ICAPM to the boosted tree methodology, whose nonlinear flexibility
reduces misspecification of the conditional covariance function.

In related work, Rossi (2018) uses boosted regression trees with
macro-finance predictors to directly forecast aggregate stock returns
(and volatility) at the monthly frequency, but without imposing the
ICAPM’s restriction that predictability enters through conditional vari-
ance and covariances with economic state variables. He shows that
boosted tree forecasts generate a monthly return prediction R2 of 0.3%
per month out-of-sample (compared to −0.7% using a historical mean
return forecast), with directional accuracy of 57.3% per month. This
results in a significant out-of-sample alpha versus a market buy-and-
hold strategy and a corresponding 30% utility gain for a mean-variance
investor with risk aversion equal to two.

A second popular tree regularizer is the “random forest” model which,
like boosting, creates an ensemble of forecasts from many shallow trees.
Following the more general “bagging” (bootstrap aggregation) procedure
of Breiman (2001), random forest draws B bootstrap samples of the data,
fits a separate regression tree to each, then averages their forecasts. In
addition to randomizing the estimation samples via bootstrap, random
forest also randomizes the set of predictors available for building the
tree (an approach known as “dropout”). Both the bagging and dropout
components of random forest regularize its forecasts. The depth L of the
individual trees, the number of bootstrap samples B, and the dropout
rate are tuning parameters.

Tree-based return predictions are isomorphic to conditional (sequen-
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tial) sorts similar to those used in the asset pricing literature. Consider
a sequential tercile sort on stock size and value signals to produce
nine double-sorted size and value portfolios. This is a two-level ternary
decision tree with first-layer split points equal to the terciles of the
size distribution and second-layer split points at terciles of the value
distribution. Each leaf j of the tree can be interpreted as a portfolio
whose time t return is the (weighted) average of returns for all stocks
allocated to leaf j in time t. Likewise, the forecast for each stock in leaf
j is the average return among stocks allocated to j in the training set
prior to t.

Motivated by this isomorphism, Moritz and Zimmermann (2016)
conduct conditional portfolio sorts by estimating regression trees from
a large collection of stock characteristics, rather than using pre-defined
sorting variables and break points. While traditional sorts can accom-
modate at most two or three way interactions among stock signals, trees
can search more broadly for the most predictive multi-way interactions.
Rather than conducting a single tree-based sort, they use random for-
est to produce ensemble return forecasts from 200 trees. The authors
report that an equal-weight long-short decile spread strategy based on
one-month-ahead random forest forecasts earns a monthly return of
2.3% (though the authors also show that this performance is heavily
influenced by the costly-to-trade one-month reversal signal).

Building on Moritz and Zimmermann (2016), Bryzgalova et al. (2020)
use a method they call “AP-trees” to conduct portfolio sorts. Whereas
Moritz and Zimmermann (2016) emphasize the return prediction power
of tree-based sorts, Bryzgalova et al. (2020) emphasize the usefulness of
sorted portfolios themselves as test assets for evaluating asset pricing
models. AP-trees differ from traditional tree-based models in that it
does not learn the tree structure per se, but instead generates it using
median splits with a pre-selected ordering of signals. This is illustrated
on the left side of Figure 3.5 for a three-level tree that is specified (not
estimated) to split first by median value, then again by median value
(i.e., produce a quartile splits), and finally by median firm size. AP-trees
introduce “pruning” according to a global Sharpe ratio criterion. In
particular, from the pre-determined tree structure, each node in the
tree constitutes a portfolio. The AP-trees procedure finds the mean-
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Figure 3: Illustration of pruning with multiple characteristics
The figure shows sample trees, original and pruned for portfolios of depth 3, and constructed based on size and book-to-market
as the only characteristics. The fully pruned set of portfolios is based on eight trees, where the right figure illustrates a potential
outcome for one tree.

the splits and their depth. Notably, an optimal set of portfolios could also be overlapping, if

this is the best sparse combination of the final and intermediate nodes that spans the SDF.

The AP-Pruning is statistically desirable. The problem of split selection fundamentally

reflects the bias-variance trade-o↵. Tree portfolios at higher nodes are more diversified,

naturally leading to a smaller variance of their mean estimation, and so forth, while more

splits allow us to capture a more complex structure in the returns at the cost of using

investment strategies with higher variance. Our selection method will choose the parent

nodes, unless the children nodes add asset pricing information that outweighs the increase

in variance.12

Importantly, the selection of a sparse set of tree portfolios implies a classification of

individual stocks. Because of its recursive overlapping structure, the selection of a small

number of AP-Trees is conceptually di↵erent from sparsity on some generic portfolios. The

AP-Pruning estimates the mapping between individual stocks and their characteristics by

combining similar assets in larger portfolios. While trees allow us to model the problem as

a portfolio selection problem, our sparsity operates directly on assigning individual stocks

into groups. This is not the case for generic basis portfolios, which do not have a recursive

structure.

12The selection of depth in an AP-Tree can be interpreted as the choice of bandwidth in a non-parametric
estimation. Our AP-Tree chooses the optimal bandwidth based on an asset pricing criterion. If lower-level
splits are removed in favor of a higher-level node, it implies that the split creates redundant assets. It can be
interpreted as choosing a larger bandwidth, which reduces the variance. Removing higher-level nodes and
splitting the portfolios into finer level, corresponds to a smaller bandwidth, which reduces the bias.

14

Electronic copy available at: https://ssrn.com/abstract=3493458

Figure 3.5: Source: Bryzgalova et al. (2020)

variance efficient combination of node portfolios, imposing an elastic
net penalty on the combination weights. Finally, the procedure discards
any nodes that receive zero weight in the cross-validated optimization,
while the surviving node portfolios are used as test assets in auxiliary
asset pricing analyses. The authors repeat this analysis for many triples
of signals, constructing a variety of pruned AP-trees to use as test
assets. Bryzgalova et al. (2020) highlight the viability of their optimized
portfolio combinations as a candidate stochastic discount factor, linking
it to the literature in Section 5.5.8

Cong et al. (2022) push the frontier of asset pricing tree methods
by introducing the Panel Tree (P-Tree) model, which splits the cross-
section of stock returns based on firm characteristics to develop a
conditional asset pricing model. At each split, the algorithm selects a
split rule candidate (such as size < 0.2) from the pool of characteristics
(normalized to the range −1 to 1) and a predetermined set of split
thresholds (e.g., -0.6, -0.2, 0.2, 0.6) to form child leaves, each representing
a portfolio of returns. They propose a compelling split criterion based
on an asset pricing objective. The P-tree algorithm terminates when
a pre-determined minimal leaf size or maximal number of leaves is

8Giglio et al. (2021b) point out that test asset selection is a remedy for weak
factors. Therefore, creating AP-trees without pruning is also a reasonable recipe for
constructing many well-diversified portfolios to serve as test assets which can be
selected to construct hedging portfolios for weak factors.
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met. The P-tree procedure yields a one-factor conditional asset pricing
model that retains interpretability and flexibility via a single tree-based
structure.

Tree methods are used in a number of financial prediction tasks
beyond return prediction. We briefly discuss three examples: credit risk
prediction, liquidity prediction, and volatility prediction. Correia et al.
(2018) use a basic classification tree to forecast credit events (bankruptcy
and default). They find that prediction accuracy benefits from a wide
collection of firm-level risk features, and they demonstrate superior
out-of-sample classification accuracy from their model compared to
traditional credit risk models (e.g. Altman, 1968; Ohlson, 1980). Easley
et al. (2020) use random forest models to study the high frequency
dynamics of liquidity and risk in a truly big data setting—tick data for 87
futures markets. They show that a variety of market liquidity measures
(such as Kyle’s lambda, the Amihud measure, and the probability of
informed trading) have substantial predictive power for subsequent
directional moves in risk and liquidity outcomes (including bid-ask
spread, return volatility, and return skewness). Mittnik et al. (2015) use
boosted trees to forecast monthly stock market volatility. They use 84
macro-finance time series as predictors and use boosting to recursively
construct an ensemble of volatility prediction trees that optimizes the
Gaussian log likelihood for monthly stock returns. The authors find large
and statistically significant reductions in prediction errors from tree-
based volatility forecasts relative to GARCH and EGARCH benchmark
models.

3.7 Vanilla Neural Networks

Neural networks are perhaps the most popular and most successful
models in machine learning. They have theoretical underpinnings as
“universal approximators” for any smooth predictive function (Hornik
et al., 1989; Cybenko, 1989). They suffer, however, from a lack of
transparency and interpretability.

Gu et al. (2020b) analyze predictions from “feed-forward” networks.
We discuss this structure in detail as it lays the groundwork before more
sophisticated architectures such as recurrent and convolutional networks
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Figure 3.6: Neural Networks

Note: This figure provides diagrams of two simple neural networks with (right) or
without (left) a hidden layer. Pink circles denote the input layer and dark red circles
denote the output layer. Each arrow is associated with a weight parameter. In the
network with a hidden layer, a nonlinear activation function f transforms the inputs
before passing them on to the output.

(discussed later in this review). These consist of an “input layer” of raw
predictors, one or more “hidden layers” that interact and nonlinearly
transform the predictors, and an “output layer” that aggregates hidden
layers into an ultimate outcome prediction.

Figure 3.6 shows two example networks. The left panel shows a
very simple network that has no hidden layers. The predictors (denoted
z1, ..., z4) are weighted by a parameter vector (θ) that includes an inter-
cept and one weight parameter per predictor. These weights aggregate
the signals into the forecast θ0 +

∑4
k=1 zkθk. As the example makes

clear, without intermediate nodes a neural network is a linear regression
model.

The right panel introduces a hidden layer of five neurons. A neuron
receives a linear combination of the predictors and feeds it through a non-
linear “activation function” f , then this output is passed to the next layer.
E.g., output from the second neuron is x(1)

2 = f
(
θ

(0)
2,0 +

∑4
j=1 zjθ

(0)
2,j

)
.

In this example, the results from each neuron are linearly aggregated
into a final output forecast:

g(z; θ) = θ
(1)
0 +

5∑
j=1

x
(1)
j θ

(1)
j .

There are many choices for the nonlinear activation function (such
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as sigmoid, sine, hyperbolic, softmax, ReLU, and so forth). “Deep”
feed-forward networks introduce additional hidden layers in which non-
linear transformations from a prior hidden layer are combined in a
linear combination and transformed once again via nonlinear activation.
This iterative nonlinear composure produces richer and more highly
parameterized approximating models.

As in Gu et al. (2020b), a deep feed-forward neural network has
the following general formula. Let K(l) denote the number of neurons
in each layer l = 1, ..., L. Define the output of neuron k in layer l as
x

(l)
k . Next, define the vector of outputs for this layer (augmented to

include a constant, x(l)
0 ) as x(l) = (1, x(l)

1 , ..., x
(l)
K(l))′. To initialize the

network, similarly define the input layer using the raw predictors, x(0) =
(1, z1, ..., zN )′. The recursive output formula for the neural network at
each neuron in layer l > 0 is then

x
(l)
k = f

(
x(l−1)′θ

(l−1)
k

)
, (3.16)

with final output

g(z; θ) = x(L−1)′θ(L−1). (3.17)

The number of weight parameters in each hidden layer l is K(l)(1 +
K(l−1)), plus another 1 +K(L−1) weights for the output layer. The five-
layer network of Gu et al. (2020b), for example, has 30,185 parameters.

Gu et al. (2020b) estimate monthly stock-level panel prediction
models for the CRSP sample from 1957 to 2016. Their raw features
include 94 rank-standardized stock characteristic interacted with eight
macro-finance time series as well as 74 industry indicators for a total of
920 features. They infer the trade-offs of network depth in the return
forecasting problem by analyzing the performance of networks with
one to five hidden layers (denoted NN1 through NN5). The monthly
out-of-sample prediction R2 is 0.33%, 0.40%, and 0.36% for NN1, NN3,
and NN5 models, respectively. This compares with an R2 of 0.16% from
a benchmark three signal (size, value, and momentum) linear model
advocated by Lewellen (2015). For the NN3 model, the R2 is notably
higher for large caps at 0.70%, indicating that machine learning is not
merely picking up small scale inefficiencies driven by illiquidity. The
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out-of-sample R2 rises to 3.40% when forecasting annual returns rather
than monthly, illustrating that the neural networks are also able to
isolate predictable patterns that persist over business cycle frequencies.

Table 3.3: Performance of Machine Learning Portfolios

Panel A: Equal Weights
NN1 NN3 NN5

Pred Avg Std SR Pred Avg Std SR Pred Avg Std SR

L -0.45 -0.78 7.43 -0.36 -0.31 -0.92 7.94 -0.40 -0.08 -0.83 7.92 -0.36
2 0.15 0.22 6.24 0.12 0.22 0.16 6.46 0.09 0.33 0.24 6.64 0.12
3 0.43 0.47 5.55 0.29 0.45 0.44 5.40 0.28 0.51 0.53 5.65 0.32
4 0.64 0.64 5.00 0.45 0.60 0.66 4.83 0.48 0.62 0.59 4.91 0.41
5 0.80 0.80 4.76 0.58 0.73 0.77 4.58 0.58 0.71 0.68 4.56 0.51
6 0.95 0.85 4.63 0.63 0.85 0.81 4.47 0.63 0.80 0.76 4.43 0.60
7 1.12 0.84 4.66 0.62 0.97 0.86 4.62 0.64 0.88 0.88 4.60 0.66
8 1.32 0.88 4.95 0.62 1.12 0.93 4.82 0.67 1.01 0.95 4.90 0.67
9 1.63 1.17 5.62 0.72 1.38 1.18 5.51 0.74 1.25 1.17 5.60 0.73
H 2.43 2.13 7.34 1.00 2.28 2.35 8.11 1.00 2.08 2.27 7.95 0.99
H-L 2.89 2.91 4.72 2.13 2.58 3.27 4.80 2.36 2.16 3.09 4.98 2.15

Panel B: Value Weights
NN1 NN3 NN5

Pred Avg Std SR Pred Avg Std SR Pred Avg Std SR

L -0.38 -0.29 7.02 -0.14 -0.03 -0.43 7.73 -0.19 -0.23 -0.51 7.69 -0.23
2 0.16 0.41 5.89 0.24 0.34 0.30 6.38 0.16 0.23 0.31 6.10 0.17
3 0.44 0.51 5.07 0.35 0.51 0.57 5.27 0.37 0.45 0.54 5.02 0.37
4 0.64 0.70 4.56 0.53 0.63 0.66 4.69 0.49 0.60 0.67 4.47 0.52
5 0.80 0.77 4.37 0.61 0.71 0.69 4.41 0.55 0.73 0.77 4.32 0.62
6 0.95 0.78 4.39 0.62 0.79 0.76 4.46 0.59 0.85 0.86 4.35 0.68
7 1.11 0.81 4.40 0.64 0.88 0.99 4.77 0.72 0.96 0.88 4.76 0.64
8 1.31 0.75 4.86 0.54 1.00 1.09 5.47 0.69 1.11 0.94 5.17 0.63
9 1.58 0.96 5.22 0.64 1.21 1.25 5.94 0.73 1.34 1.02 6.02 0.58
H 2.19 1.52 6.79 0.77 1.83 1.69 7.29 0.80 1.99 1.46 7.40 0.68
H-L 2.57 1.81 5.34 1.17 1.86 2.12 6.13 1.20 2.22 1.97 5.93 1.15

Note: In this table, we report the performance of prediction-sorted portfolios over
the 1987-2016 testing period (trained on data from 1957-1974 and validated on data
from 1975-1986). All stocks are sorted into deciles based on their predicted returns
for the next month. Column “Pred”, “Avg”, “Std”, and “SR” provide the predicted
monthly returns for each decile, the average realized monthly returns, their standard
deviations, and Sharpe ratios, respectively.

Next, Gu et al. (2020b) report decile portfolios sorts based on neural
network monthly return predictions, recreated in Table 3.3. Panel A
reports equal-weight average returns and Panel B reports value-weight
returns. Out-of-sample portfolio returns increases monotonically across
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deciles. The quantitative match between predicted returns and average
realized returns using neural networks is impressive. A long-short decile
spread portfolio earns an annualized equal-weight Sharpe ratio of 2.1,
2.4, and 2.2 for NN1, NN3, and NN5, respectively. All three earn
value-weight Sharpe ratios of 1.2. So, while the return prediction R2

is higher for large stocks, the return prediction content of the neural
network models is especially profitable when used to trade small stocks.
Avramov et al. (2022a) corroborate this finding with a more thorough
investigation of the limits-to-arbitrage that impinge on machine learning
trading strategies. They demonstrate that neural network predictions are
most successful among difficult-to-value and difficult-to-arbitrage stocks.
They find that, after adjusting for trading costs and other practical
considerations, neural network-based strategies remain significantly
beneficial relative to typical benchmarks. They are highly profitable
(particularly among long positions), have less downside risk, and continue
to perform well in recent data.

As a frame of reference, Gu et al. (2020b)’s replication of Lewellen
(2015)’s three-signal linear model earns an equal-weight Sharpe ratio of
0.8 (0.6 value-weight). This is impressive in its own right, but the large
improvement from neural network predictions emphasizes the important
role of nonlinearities and interactions in expected return models. Figure
3.7 from Gu et al. (2020b) illustrates this fact by plotting the effect of a
few characteristics in their model. It shows how expected returns vary as
pairs of characteristics are varied over their support [-1,1] while holding
all other variables fixed at their median value. The effects reported are
interactions of stock size (mvel1) with short-term reversal (mom1m),
momentum (mom12m), total volatility (retvol) and accrual (acc). For
example, the upper-left figure shows that the short-term reversal effect
is strongest and is essentially linear among small stocks (blue line).
But among mega-cap stocks (green line), the reversal effect is concave,
manifesting most prominently when past mega-cap returns are strongly
positive.

The models in Gu et al. (2020b) apply to the stock-level panel. Feng
et al. (2018) use a pure time series feed-forward network to forecast ag-
gregate market returns using the Welch-Goyal macro-finance predictors,
and find significant out-of-sample R2 gains compared to linear models
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Figure 3.7: Expected Returns and Characteristic Interactions (NN3)

Note: Sensitivity of expected monthly percentage returns (vertical axis) to interactions
effects for mvel1 with mom1m, mom12m, retvol, and acc in model NN3 (holding all
other covariates fixed at their median values).

(including those with penalization and dimension reduction).

3.8 Comparative Analyses

A number of recent papers conduct comparisons of machine learning
return prediction models in various data sets. In the first such study,
Gu et al. (2020b) perform a comparative analysis of the major machine
learning methods outlined above in the stock-month panel prediction
setting. Table 3.4 recreates their main result for out-of-sample panel
return prediction R2 across models. This comparative analysis helps
establish a number of new empirical facts for financial machine learning.
First, the simple linear model with many predictors (“OLS” in the
table) suffers in terms of forecast accuracy, failing to outperform a naive
forecast of zero. Gu et al. (2020b) define their predictive R2 relative to
a naive forecast of zero rather than the more standard benchmark of
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OLS OLS-3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5
+H +H +H +H +H

All -3.46 0.16 0.27 0.26 0.11 0.19 0.33 0.34 0.33 0.39 0.40 0.39 0.36
Top 1000 -11.28 0.31 -0.14 0.06 0.25 0.14 0.63 0.52 0.49 0.62 0.70 0.67 0.64
Bottom 1000 -1.30 0.17 0.42 0.34 0.20 0.30 0.35 0.32 0.38 0.46 0.45 0.47 0.42

Table 3.4: Monthly Out-of-sample Stock-level Prediction Performance (Percentage
R2

oos)

Note: In this table, Gu et al. (2020b) report monthly R2
oos for the entire panel of

stocks using OLS with all variables (OLS), OLS using only size, book-to-market, and
momentum (OLS-3), PLS, PCR, elastic net (ENet), generalize linear model (GLM),
random forest (RF), gradient boosted regression trees (GBRT), and neural networks
with one to five layers (NN1–NN5). “+H” indicates the use of Huber loss instead
of the l2 loss. R2

oos’s are also reported within subsamples that include only the top
1,000 stocks or bottom 1,000 stocks by market value.

the historical sample mean return, noting:

Predicting future excess stock returns with historical aver-
ages typically underperforms a naive forecast of zero by a
large margin. That is, the historical mean stock return is so
noisy that it artificially lowers the bar for “good” forecasting
performance. We avoid this pitfall by benchmarking our R2

against a forecast value of zero. To give an indication of
the importance of this choice, when we benchmark model
predictions against historical mean stock returns, the out-
of-sample monthly R2 of all methods rises by roughly three
percentage points.9

Regularizing with either dimension reduction or shrinkage improves
the R2 of the linear model to around 0.3% per month. Nonlinear models,
particularly neural networks, help even further, especially among large
cap stocks. Nonlinearities outperform a low-dimensional linear model
that uses only three highly selected predictive signals from the literature
(“OLS-3” in the table).

Nonlinear models also provide large incremental benefits in eco-
nomic terms. Table 3.5 recreates Table 8 of Gu et al. (2020b), showing

9He et al. (2022a) propose an alternative cross-section out-of-sample R2 that
uses the cross section mean return as the naïve forecast.
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OLS-3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5
+H +H +H +H

Risk-adjusted Performance (Value Weighted)
Mean Ret. 0.94 1.02 1.22 0.60 1.06 1.62 0.99 1.81 1.92 1.97 2.26 2.12
FF5+Mom α 0.39 0.24 0.62 -0.23 0.38 1.20 0.66 1.20 1.33 1.52 1.76 1.43
t-stats 2.76 1.09 2.89 -0.89 1.68 3.95 3.11 4.68 4.74 4.92 6.00 4.71
R2 78.60 34.95 39.11 28.04 30.78 13.43 20.68 27.67 25.81 20.84 20.47 18.23
IR 0.54 0.21 0.57 -0.17 0.33 0.77 0.61 0.92 0.93 0.96 1.18 0.92

Risk-adjusted Performance (Equally Weighted)
Mean Ret. 1.34 2.08 2.45 2.11 2.31 2.38 2.14 2.91 3.31 3.27 3.33 3.09
FF5+Mom α 0.83 1.40 1.95 1.32 1.79 1.88 1.87 2.60 3.07 3.02 3.08 2.78
t(α) 6.64 5.90 9.92 4.77 8.09 6.66 8.19 10.51 11.66 11.70 12.28 10.68
R2 84.26 26.27 40.50 20.89 21.25 19.91 11.19 13.98 10.60 9.63 11.57 14.54
IR 1.30 1.15 1.94 0.93 1.58 1.30 1.60 2.06 2.28 2.29 2.40 2.09

Table 3.5: Risk-adjusted Performance, Drawdowns, and Turnover of Machine Learn-
ing Portfolios

Note: The tables reports average monthly returns in percent as well as alphas,
information ratios (IR), and R2 with respect to the Fama-French five-factor model
augmented to include the momentum factor.

out-of-sample performance of long-short decile spread portfolios sorted
on return forecasts from each model. First, it is interesting to note
that models with relative small out-of-sample R2 generates significant
trading gains, in terms of alpha and information ratio relative to the
Fama-French six-factor model (including a momentum factor). This is
consistent with the Kelly et al. (2022a) point that R2 is an unreliable
diagnostic of the economic value of a return prediction; they instead rec-
ommend judging financial machine learning methods based on economic
criteria (such as trading strategy Sharpe ratio). Nonlinear models in
Table 3.5 deliver the best economic value in terms of trading strategy
performance.

Subsequent papers conduct similar comparative analyses in other
asset classes. Choi et al. (2022) analyze the same models as Gu et al.
(2020b) in international stock markets. They reach similar conclusions
that the best performing models are nonlinear. Interestingly, they demon-
strate the viability of transfer learning. In particular, a model trained
on US data delivers significant out-of-sample performance when used to
forecast international stock returns. Relatedly, Jiang et al. (2018) find
largely similar patterns between stock returns and firm characteristics
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OLS PCA PLS Lasso Ridge ENet RF FFN LSTM Combination
R2

oos −3.36 2.07 2.03 1.85 1.89 1.87 2.19 2.37 2.28 2.09
Avg. Returns 0.16 0.51 0.63 0.39 0.33 0.43 0.79 0.75 0.79 0.67

Table 3.6: Machine Learning Comparative Bond Return Prediction (Bali et al.,
2020)

Note: The first row reports out-of-sample R2 in percentage for the entire panel of
corporate bonds using the 43 bond characteristics (from Table 2 of Bali et al. (2020)).
The second row reports the average out-of-sample monthly percentage returns of
value-weighted decile spread bond portfolios sorted on machine learning return
forecasts (from Table 3 of Bali et al. (2020)).

in China using PCR and PLS. Recently, Leippold et al. (2022) compare
machine learning models for predicting Chinese equity returns and
highlight how liquidity, retail investor participation, and state-owned
enterprises play a pronounced role in Chinese market behavior.

Ait-Sahalia et al. (2022) study the predictability of high-frequency
returns (and other quantities like duration and volume) using machine
learning methods. They construct 13 predictors over 9 different time
windows, resulting in a total of 117 variables. They experiment with
S&P 100 index components over a sample of two years and find that all
methods have very similar performance, except for OLS. The improve-
ments from a nonlinear method like random forest or boosted trees are
limited for most cases when compared with lasso.

Bali et al. (2020) and He et al. (2021) conduct comparative analyses
of machine learning methods for US corporate bond return prediction.
The predictive signals used by Bali et al. (2020) include a large set of 43
bond characteristics such as issuance size, credit rating, duration, and
so forth. The models they study are the same as Gu et al. (2020b) plus
an LSTM network (we discuss LSTM in the next subsection). Table
3.6 reports results of Bali et al. (2020). Their comparison of machine
learning models in terms of predictive R2 and decile spread portfolio
returns largely corroborate the conclusions of Gu et al. (2020b). The
unregularized linear model is the worst performer. Penalization and
dimension reduction substantially improve linear model performance.
And nonlinear models are the best performers overall.

In addition, Bali et al. (2020) investigate a machine learning predic-
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tion framework that respects no-arbitrage implications for consistency
between a firm’s equity and debt prices. This allows them to form
predictions across the capital structure of a firm—leveraging equity
information to predict bond returns. They find that

“once we impose the Merton (1974) model structure, equity
characteristics provide significant improvement above and
beyond bond characteristics for future bond returns, whereas
the incremental power of equity characteristics for predicting
bond returns are quite limited in the reduced-form approach
when such economic structure is not imposed.”

This is a good example of the complementarity between machine learning
and economic structure, echoing the argument of Israel et al. (2020).

Lastly, Bianchi et al. (2021) conduct a comparative analysis of ma-
chine learning models for predicting US government bond returns. This
is a pure time series environment (cf. comparative analyses discussed
above which study panel return data). Nonetheless, Bianchi et al. (2021)
reach similar conclusions regarding the relative merits of penalized and
dimension-reduced linear models over unconstrained linear models, and
of nonlinear models over linear models.

3.9 More Sophisticated Neural Networks

Recurrent neural networks (RNNs) are popular models for capturing
complex dynamics in sequence data. They are, in essence, highly param-
eterized nonlinear state space models, making them naturally interesting
candidates for time series prediction problems. A promising use of RNNs
is to extend the restrictive model specification given by (3.2) to capture
longer range dependence between returns and characteristics. Specifi-
cally, we consider a general recurrent model for the expected return of
stock i at time t:

Et[Ri,t+1] = g?(hi,t), (3.18)
where hi,t is a vector of hidden state variables that depend on zi,t and
its past history.

The canonical RNN assumes that

g?(hi,t) = σ(c+ V hi,t), hi,t = tanh(b+Whi,t−1 + Uzi,t),
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where b, c, U , V , and W are unknown parameters, and σ(·) is a sigmoid
function. The above equation includes just one layer of hidden states.
It is straightforward to stack multiple hidden state layers together to
construct a deep RNN that accommodates more complex sequences.
For instance, we can write h(0)

i,t = zi,t, and for 1 ≤ l ≤ L, we have

g?(h(L)
i,t ) = σ(c+ V h

(L)
i,t ), h

(l)
i,t = tanh(b+Wh

(l)
i,t−1 + Uh

(l−1)
i,t ).

The canonical RNN struggles to capture long-range dependence. Its
telescoping structure implies exponentially decaying weights of lagged
states on current states so the long-range gradient flow vanishes rapidly
in the learning process.

Hochreiter and Schmidhuber (1997) propose a special form of RNN
known as the long-short-term-memory (LSTM) model. It accommodates
a mixture of short-range and long-range dependence through a series
of gate functions that control information flow from ht−1 to ht (we
abbreviate the dependence on i for notation simplicity):

ht = ot � tanh(ct), ct = ft � ct−1 + it � c̃t, (3.19)

where � denotes element-wise multiplication, ct is so-called cell state,
it, ot, and ft are “gates” that are themselves sigmoid functions of zt
and ht−1:

at = σ(Wazt + Uaht−1 + ba), (3.20)

where a can be either gate i, o, or f , and Wa, Ua, and ba are parameters.
The cell state works like a conveyor belt, representing the “memory”

unit of the model. Past values of ct−1 contributes additively to ct (barring
from some adjustment by ft). This mechanism enables the network to
memorize long-range information. Meanwhile, ft controls how much
information from the past to forget, hence it is called the forget gate.
Fresh information from ht−1 and zt arrive through c̃t:

c̃t = tanh(Wczt + Ucht−1 + bc), (3.21)

which is injected into the memory cell ct. The input gate, it, controls the
content of c̃t to be memorized. Finally, ot determines which information
is passed on to the next hidden state ht, and is hence called output gate.
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Intuitively, not all information memorized by ct needs be extracted for
prediction (based on ht).

Despite their usefulness for time series modeling, LSTM and related
methods (like the gated recurrent unit of Cho et al., 2014) have seen
little application in the empirical finance literature. We have discussed
a notable exception by Bali et al. (2020) above for predicting corporate
bond returns. (Guijarro-Ordonez et al., 2022) use RNN architectures to
predict daily stock returns. Another example is Cong et al. (2020), who
compare simple feed-forward networks to LSTM and other recurrent
neural networks in monthly stock return prediction. They find that
predictions from their LSTM specification outperform feed-forward
counterparts, though the description of their specifications is limited and
their analysis is conducted more in line with the norms of the computer
science literature. Indeed, there is a fairly voluminous computer science
literature using a wide variety of neural networks to predict stock
returns (e.g. Sezer et al., 2020). The standard empirical analysis in this
literature aims to demonstrate basic proof of concept through small scale
illustrative experiments and tend to focus on high frequencies (daily
or intra-daily, rather than the perhaps more economically interesting
frequencies of months or years) or tend to analyze one or a few assets at
a time (as opposed to a more representative cross section of assets).10

This is in contrast to the more extensive empirical analyses common in
the finance and economics literature that tend to analyze monthly or
annual data for large collections of assets.

3.10 Return Prediction Models For “Alternative” Data

Alternative (or more colloquially, “alt”) data has become a popular
topic in the asset management industry, and recent research has made
strides developing machine learning models for some types of alt data.
We discuss two examples in this section, text data and image data, and
some supervised machine learning models customized to these alt data
sources.

10Examples include Rather et al. (2015), Singh and Srivastava (2017), Chong
et al. (2017), Bao et al. (2017).
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3.10.1 Textual Analysis

Textual analysis is among the most exciting and fastest growing frontiers
in finance and economics research. The early literature evolved from
“close” manual reading by researchers (e.g. Cowles, 1933) to dictionary-
based sentiment scoring methods (e.g. Tetlock, 2007). This literature is
surveyed by Das et al. (2014), Gentzkow et al. (2019), and Loughran
and McDonald (2020). In this section, we focus on text-based supervised
learning with application to financial prediction.

Jegadeesh and Wu (2013), Ke et al. (2019), and Garcia et al. (2022)
are examples of supervised learning models customized to the problem
of return prediction using a term count or “bag of words” (BoW)
representation of text documents. Ke et al. (2019) describe a joint
probability model for the generation of a news article about a stock
and that stock’s subsequent return. An article is indexed by a single
underlying “sentiment” parameter that determines the article’s tilt
toward good or bad news about the stock. This same parameter predicts
the direction of the stock’s future return. From a training sample of
news articles and associated returns, Ke et al. (2019) estimate the set
of most highly sentiment-charged (i.e., most return-predictive) terms
and their associated sentiment values (i.e., their predictive coefficients).
In essence, they provide a data-driven methodology for constructing
sentiment dictionaries that are customized to specific supervised learning
tasks.

Their method, called “SESTM” (Sentiment Extraction via Screening
and Topic Modeling), has three central components. The first step
isolates the most relevant terms from a very large vocabulary of terms
via predictive correlation screening. The second step assigns term-specific
sentiment weights using a supervised topic model. The third step uses
the estimated topic model to assign article-level sentiment scores via
penalized maximum likelihood.

SESTM is easy and cheap to compute. The model itself is analytically
tractable and the estimator boils down to two core equations. Their
modeling approach emphasizes simplicity and interpretability. Thus, it
is “white box” and easy to inspect and interpret, in contrast to many
state-of-the-art NLP models built around powerful yet opaque neural
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Negative Words Positive Words

Figure 3.8: Sentiment-charged Words

Note: This figure reports the list of words in the sentiment-charged set S. Font size
of a word is proportional to its average sentiment tone over all 17 training samples.

network embedding specifications. As an illustration, Figure 3.8 reports
coefficient estimates on the tokens that are the strongest predictors
of returns in the form of a word cloud. The cloud is split into tokens
with positive or negative coefficients, and the size of each token is
proportional to the magnitude of its estimated predictive coefficient.

Ke et al. (2019) devise a series of trading strategies to demon-
strate the potent return predictive power of SESTM. In head-to-head
comparisons, SESTM significantly outperforms RavenPack (a leading
commercial sentiment scoring vendor used by large asset managers) and
dictionary-based methods such as Loughran and McDonald (2011).

A number of papers apply supervised learning models to BoW text
data to predict other financial outcomes. Manela and Moreira (2017)
use support vector regression to predict market volatility. Davis et al.
(2020) use 10-K risk factor disclosure to understand firms’ differential
return responses to the COVID-19 pandemic, leveraging Taddy (2013)’s
multinomial inverse regression methodology. Kelly et al. (2018) introduce
a method called hurdle distributed multinomial regression (HDMR) to
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improve count model specifications and use it to build a text-based
index measuring health of the financial intermediary sector.

These analyses proceed in two general steps. Step 1 decides on the
numerical representation of the text data. Step 2 uses the representations
as data in an econometric model to describe some economic phenomenon
(e.g., asset returns, volatility, and macroeconomic fundamentals in the
references above).

The financial text representations referenced above have some limi-
tations. First, all of these examples begin from a BoW representation,
which is overly simplistic and only accesses the information in text that
is conveyable by term usage frequency. It sacrifices nearly all informa-
tion that is conveyed through word ordering or contextual relationships
between terms. Second, the ultra-high dimensionality of BoW repre-
sentations leads to statistical inefficiencies—Step 2 econometric models
must include many parameters to process all these terms despite many
of the terms conveying negligible information. Dimension reductions like
LDA and correlation screening are beneficial because they mitigate the
inefficiency of BoW. However, they are derived from BoW and thus do
not avoid the information loss from relying on term counts in the first
place. Third, and more subtly, the dimension-reduced representations
are corpus specific. For example, when Bybee et al. (2020) build their
topic model, the topics are estimated only from The Wall Street Journal,
despite the fact that many topics are general language structures and
may be better inferred by using additional text outside of their sample.

Jiang et al. (2023) move the literature a step further by constructing
refined news text representations derived from so-called “large language
models” (LLMs). They then use these representations to improve models
of expected stock returns. LLMs are trained on large text data sets that
span many sources and themes. This training is conducted by specialized
research teams that perform the Herculean feat of estimating a general
purpose language model with astronomical parameterization on truly
big text data. LLM’s have billions of parameters (or more) and are
trained on billions of text examples (including huge corpora of complete
books and massive portions of the internet). But for each LLM, this
estimation feat is performed once, then the estimated model is made
available for distribution to be deployed by non-specialized researchers
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in downstream tasks.
In other words, the LLM delegates Step 1 of the procedure above

to the handful of experts in the world that can best execute it. A Step
2 econometric model can then be built around LLM output. Like LDA
(or even BoW), the output of a foundation model is a numerical vector
representation (or “embedding”) of a document. A non-specialized
researcher obtains this output by feeding the document of interest
through software (which is open-source in many cases). The main
benefit of an LLMS in Step 1 is that it provides more sophisticated and
well-trained text representations than used in the literature referenced
above. This benefit comes from the expressivity of heavy nonlinear model
parameterizations and from training on extensive language examples
across many domains, throughout human history, and in a wide variety
of languages. The transferability of LLMs make this unprecedented
scale of knowledge available for finance research.

Jiang et al. (2023) analyze return predictions based on a news text
processed through a number of LLMs including Bidirectional Encoder
Representations from Transformer (BERT) of Devlin et al. (2018),
Generative Pre-trained Transformers (GPT) of Radford et al. (2019),
and Open Pre-trained Transformers (OPT) by Zhang et al. (2022). They
find that predictions from pre-trained LLM embeddings outperform
prevailing text-based machine learning return predictions in terms
of out-of-sample trading strategy performance, and that the superior
performance of LLMs stems from the fact that they can more successfully
capture contextual meaning in documents.

3.10.2 Image Analysis

Much of modern machine learning has evolved around the task of image
analysis and computer vision, with large gains in image-related tasks
deriving from the development of convolutional neural network (CNN)
models. Jiang et al. (2022) introduce CNN image analysis techniques
to the return prediction problem.

A large finance literature investigates how past price patterns fore-
cast future returns. The philosophical perspective underpinning these
analyses is most commonly that of a hypothesis test. The researcher
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formulates a model of return prediction based on price trends—such as
a regression of one-month-ahead returns on the average return over the
previous twelve months—as a test of the weak-form efficient markets
null hypothesis. Yet it is difficult to see in the literature a specific
alternative hypothesis. Said differently, the price-based return predic-
tors studied in the literature are by and large ad hoc and discovered
through human-intensive statistical learning that has taken place be-
hind the curtain of the academic research process. Jiang et al. (2022)
reconsider the idea of price-based return predictability from a different
philosophical perspective founded on machine learning. Given recent
strides in understanding how human behavior influences price patterns
(e.g. Barberis and Thaler, 2003; Barberis, 2018), it is reasonable to
expect that prices contain subtle and complex patterns about which
it may be difficult to develop specific testable hypotheses. Jiang et al.
(2022) devise a systematic machine learning approach to elicit return
predictive patterns that underly price data, rather than testing specific
ad hoc hypotheses.

The challenge for such an exploration is balancing flexible mod-
els that can detect potentially subtle patterns against the desire to
maintain tractability and interpretability of those models. To navigate
this balance, Jiang et al. (2022) represent historical prices as an image
and use well-developed CNN machinery for image analysis to search
for predictive patterns. Their images include daily opening, high, low,
and closing prices (ofter referred to as an “OHLC” chart) overlaid
with a multi-day moving average of closing prices and a bar chart for
daily trading volume (see Figure 3.9 for a related example from Yahoo
Finance).

A CNN is designed to automatically extract features from images
that are predictive for the supervising labels (which are future realized
returns in the case of Jiang et al., 2022). The raw data consists of
pixel value arrays. A CNN typically has a few core building blocks that
convert the pixel data into predictive features. The building blocks are
stacked together in various telescoping configurations depending on the
application at hand. They spatially smooth image contents to reduce
noise and accentuate shape contours to maximize correlation of images
with their labels. Parameters of the building blocks are learned as part
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Figure 3.9: Tesla OHLC Chart from Yahoo! Finance

Note: OHLC chart for Tesla stock with 20-day moving average price line and daily
volume bars. Daily data from January 1, 2020 to August 18, 2020.

of the model estimation process.
Each building block consists of three operations: convolution, ac-

tivation, and pooling. “Convolution” is a spatial analogue of kernel
smoothing for time series. Convolution scans through the image and,
for each element in the image matrix, produces a summary of image
contents in the immediately surrounding area. The convolution oper-
ates through a set of learned “filters,” which are low dimension kernel
weighting matrices that average nearby matrix elements.

The second operation in a building block, “activation,” is a nonlinear
transformation applied element-wise to the output of a convolution filter.
For example, a “Leaky ReLU” activation uses a convex piecewise linear
function, which can be thought of as sharpening the resolution of certain
convolution filter output.

The final operation in a building block is “max-pooling.” This oper-
ation uses a small filter that scans over the input matrix and returns
the maximum value the elements entering the filter at each location in
the image. Max-pooling acts as both a dimension reduction device and
as a de-noising tool.

Figure 3.10 illustrates how convolution, activation, and max-pooling
combine to form a basic building block for a CNN model. By stacking
many of these blocks together, the network first creates representations
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Figure 3.10: Diagram of a Building Block

Note: A building block of the CNN model consists of a convolutional layer with 3× 3
filter, a leaky ReLU layer, and a 2× 2 max-pooling layer. In this toy example, the
input has size 16 × 8 with 2 channels. To double the depth of the input, 4 filters
are applied, which generates the output with 4 channels. The max-pooling layer
shrinks the first two dimensions (height and width) of the input by half and keeps
the same depth. Leaky ReLU keeps the same size of the previous input. In general,
with input of size h× w × d, the output has size h/2× w/2× 2d. One exception is
the first building block of each CNN model that takes the grey-scale image as input:
the input has depth 1 and the number of CNN filters is 32, boosting the depth of
the output to 32.

of small components of the image then gradually assembles them into
representations of larger areas. The output from the last building block
is flattened into a vector and each element is treated as a feature in
a standard, fully connected feed-forward layer for the final prediction
step.11

Jiang et al. (2022) train a panel CNN model to predict the direction
of future stock returns using daily US stock data from 1993 to 2019. A
weekly rebalanced long-short decile spread trading strategy based on
the CNN-based probability of a positive price change earns an out-of-
sample annualized Sharpe ratio of 7.2 on an equal-weighted basis and
1.7 on a value-weighted basis. This outperforms well known price trend
strategies—various forms of momentum and reversal—by a large and
significant margin. They show that the image representation is a key
driver of the model’s success, as other time series neural network speci-
fications have difficulty matching the image CNN’s performance. Jiang

11Ch. 9 of Goodfellow et al. (2016) provide a more general introduction to CNN.
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et al. (2022) note that their strategy may be partially approximated by
replacing the CNN forecast with a simpler signal. In particular, a stock
whose latest close price is near the bottom of its high-low range in recent
days tends to appreciate in the subsequent week. This pattern, which is
not previously studied in the literature, is detected from image data by
the CNN and is stable over time and across market size segments and
across countries.

Glaeser et al. (2018) study the housing market using images of
residential real estate properties. They use a pre-trained CNN model
(Resnet-101 from He et al., 2016) to convert images into a feature vector
for each property, which they then condense further using principal
components, and finally the components are added to an otherwise
standard hedonic house pricing model. Glaeser et al. (2018) find that
property data derived from images improves out-of-sample fit of the he-
donic model. Aubry et al. (2022) predict art auction prices via a neural
network using artwork images accompanied by non-visual artwork char-
acteristics, and use their model to document a number of informational
inefficiencies in the art market. Obaid and Pukthuanthong (2022) apply
CNN to classify photos on the Wall Street Journal and construct a daily
investor sentiment index, which predicts market return reversals and
trading volume. The association is strongest among stocks with more
severe limits-to-arbitrage and during periods of elevated risk. They also
find that photos convey alternative information to news text.12

12Relatedly, Deng et al. (2022) propose a theoretical model to rationalize how the
graphical content of 10-K reports affects stock returns.



4
Risk-Return Tradeoffs

The previous section mainly focuses on supervised prediction models
that do not take a stand on the risk-return tradeoff, and thus do not
constitute asset pricing models. In this section, we develop factor pricing
models using unsupervised and semi-supervised learning methods that
model the risk-return tradeoff explicitly.

4.1 APT Foundations

The Arbitrage Pricing Theory (APT) of Ross (1976) lays the groundwork
for data-driven, machine learning analysis of factor pricing models. It
demonstrates that with a partial model specification—requiring in
essence only a linear factor structure, a fixed number of factors, and the
minimal economic assumption of no-arbitrage—we can learn the asset
pricing model simply by studying factor portfolios and understanding
which components of returns are diversifiable and which are not. In
other words, the APT provides a blueprint for empirical analysis of the
risk-return tradeoff without requiring any knowledge of the mechanisms
that give rise to asset pricing factors. Machine learning methods for
latent factor analysis can thus be leveraged to conduct new and powerful
analyses of empirical asset pricing phenomena.

79
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We also refer readers to a survey of return factor models by Giglio
et al. (2022a). They organize the literature into categories based on
whether factors are observable, betas are observable, or neither are
observable. Observable factors or betas give rise to time series and
cross section regression methodologies. In this survey, we focus on the
more challenging case in which factors and betas are latent (or, at best,
partially observable), which allows us to go deeper into some of the
details of machine learning factor modeling techniques.

4.2 Unconditional Factor Models

The premise of Ross (1976)’s APT is the following statistical factor
model:

Rt = α+ βFt + εt, (4.1)

where Rt collects individual asset excess returns Ri,t into an N × 1
vector, β is an N ×K matrix of loadings on the K × 1 vector of latent
factors, Ft, which may have a non-zero mean γ = E(Ft) interpreted as
factor risk premia, and εt is an N × 1 vector of mean-zero residuals.

The N × 1 intercept vector α represents pricing errors. They are the
components of expected asset returns that are not explained by factor
exposures. Ross (1976)’s APT and its descendants (e.g. Huberman,
1982; Ingersoll, 1984; Chamberlain and Rothschild, 1983) establish that
no-near-arbitrage is equivalent to1

α′Var(εt)−1α .P 1, as N →∞. (4.2)

That is, the compensation for bearing idiosyncratic risk does not explode
as the investment universe expands.

4.2.1 Estimating Factors via PCA

Motivated by the APT, Chamberlain and Rothschild (1983), Connor
and Korajczyk (1986), and Connor and Korajczyk (1988) advocate
PCA as a factor model estimator when factors and betas are latent. A

1We use a .P b to denote a = OP(b), and use a �P b if a .P b and b .P a.
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more convenient yet equivalent approach is to conduct singular value
decomposition (SVD) of the de-meaned returns R̄ = R− ( 1

T

∑T
t=1Rt)ι′T :

R̄ =
K̂∑
j=1

σjςjξ
′
j + Û , (4.3)

where {σj}, {ςj}, and {ξj} correspond to the first K̂ singular values,
left and right singular vectors of R̄, K̂ is any consistent estimator (e.g.
Bai and Ng, 2002) of the number of factors in Rt, Û is a matrix of
residuals, and ιT is a T × 1 vector of ones. This decomposition yields
estimates of factor innovations Vt = Ft−E(Ft) and risk exposures β as

V̂ = T 1/2(ξ1, ξ2, . . . , ξK̂)′, β̂ = T−1/2(σ1ς1, σ2ς2, . . . , σK̂ςK̂). (4.4)

The factor estimates are normalized such that they satisfy V̂ V̂ ′ =
T I

K̂
. Alternatively, we can normalize β̂ such that β̂′β̂ = NI

K̂
. There

is fundamental indeterminacy in latent factor models, i.e., rotating
factors and counter-rotating loadings leads to no change in the data-
generating process. Therefore, factors and their loadings are identifiable
only up to an invertible linear transformation (i.e., rotation). In light of
this, different normalizations yield equivalent estimators of factors and
loadings, in that they only differ by some rotation. Bai (2003) proves
the consistency of these PCA estimates and derives their asymptotic
distributions under the assumption that all factors are pervasive, i.e.,
λK(β′β) �P N .

Connor and Korajczyk (1988) first investigate the performance of a
latent factor model using a large cross section of roughly 1,500 stocks.
They find that, while a PCA-based factor model performs better than the
CAPM in explaining the risk-return tradeoff in their sample, it admits
large and significant pricing errors. Generally speaking, unconditional
factor models have a difficult time describing stock-level data. Based on
this and related studies, unconditional latent factor models (and their
estimation via PCA) largely fell out of favor in the period following
Connor and Korajczyk (1988). Kelly et al. (2020b) corroborate those
findings in more recent data. They show that, in the panel of CRSP
stocks from 1962–2014, PCA is extremely unreliable for describing risk
premia of individual stocks.
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There is a recent resurgence of PCA for return factor modeling.
This emanates in large part from the fact that, while PCA suffers
when describing individual stock panels, it has much greater success in
modeling panels of portfolios. For example, Kelly et al. (2020b), Kozak
et al. (2018), and Pukthuanthong et al. (2019) demonstrate that factor
models estimated from a panel of anomaly portfolios manage to price
those portfolios with economically small pricing errors. These analyses
build on earlier work of Geweke and Zhou (1996) who use a Gibbs
sampling approach to extract latent factors from portfolio-level data.

A potential drawback of the latent factor approach lies in its difficulty
in interpreting the estimated factors due to the indeterminacy of latent
factor models. Yet, it is beneficial to adopt the latent-factor approach
whenever the object of interest is invariant to rotations. We provide one
such example next.

4.2.2 Three-pass Estimator of Risk Premia

A factor risk premium describes the equilibrium compensation investors
demand to hold risk associated with that factor. Many theoretical
economic models are developed on the basis of some non-tradable
factors (factors that are not themselves portfolios) such as consumption,
GDP growth, inflation, liquidity, and climate risk. To estimate the
risk premium of a non-tradable factor we need to construct a factor
mimicking portfolio and estimate its expected returns. To fix ideas,
suppose that this non-tradable factor, Gt, relates to the cross-section of
assets in the following form:

Gt = ξ + ηVt + Zt, (4.5)

where Zt is measurement error and Vt = Ft − E(Ft). According to this
model, the risk premium of Gt is given by ηγ. Since Gt is sometimes
motivated from some economic theory, its mimicking portfolio and risk
premium may be economically interpretable. Moreover, ηVt and ηγ

are rotation invariant and identifiable despite that Vt, η, and γ are
identifiable only up to some rotation. To see this, it is known from Bai
and Ng (2002) that there exists a matrix H such that V̂t

P−→ HVt, for
any t. If we rewrite the DGP of Rt and Gt with respect to HVt, then the
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risk premium of Vt is Hγ, and the loading of Gt on HVt becomes ηH−1,
yet the innovation of the mimicking portfolio and the risk premium of
Gt remain ηH−1HVt = ηVt and ηH−1Hγ = ηγ.

Giglio and Xiu (2021) propose a three-pass estimator to make
inference on ηγ, marrying Fama-MacBeth regression with PCA. The
first pass is to conduct PCA and estimate factors and loadings according
to (4.4). The second pass recovers the risk premia of latent factors via
Fama-MacBeth regressions:

γ̂ = 1
T

T∑
t=1

(β̂′ β̂)−1β̂
′
Rt. (4.6)

The third pass recovers the loading of Gt on the estimated latent factors:

η̂ = 1
T

T∑
t=1

GtV̂
′
t .

The risk premium estimator thereby becomes: η̂γ̂.
Giglio and Xiu (2021) establish the asymptotic property of the

resulting estimator. Their asymptotic analysis of Fama-MacBeth on
PCA outputs paves the way for statistical inference on quantities of
interest in asset pricing with latent factor models, including risk premia,
stochastic discount factors (Giglio et al., 2021b), and alphas (Giglio
et al., 2021a).

The three-pass estimator is closely related to PCA-regression based
mimicking portfolios. The procedure amounts to regressing Gt onto the
PCs of Rt to construct its factor-mimicking portfolio and computing its
average return to arrive at Gt’s risk premium. The use of PCs instead
of the original assets in Rt is a form of regularization. This viewpoint
encourages the adoption of other regularization methods in machine
learning, like ridge and lasso, when creating mimicking portfolios.

On the empirical side, Table 4.1 collects risk premia estimates using
different methods for a number of non-tradable factors, including AR(1)
innovations in industrial production growth (IP), VAR(1) innovations
in the first three principal components of 279 macro-finance variables
from Ludvigson and Ng (2010), the liquidity factor of Pástor and
Stambaugh (2003), the intermediary capital factor from He et al. (2017),
four factors from Novy-Marx (2014) (high monthly temperature in
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Manhattan, global land surface temperature anomaly, quasiperiodic
Pacific Ocean temperature anomaly or “El Niño,” and the number of
sunspots), and an aggregate consumption-based factor from Malloy
et al. (2009).

This table highlights two issues of the conventional two-pass regres-
sions: the omitted variable bias and the measurement error bias. The
two-pass estimates depend on the benchmark factors researchers select
as controls. Yet economic theory often provides no guidance on what
factors should serve as controls. Omitting control factors would in gen-
eral bias the risk premia estimates. Take the liquidity and intermediary
capital factors as an example. Risk premium estimates for the former
change from 226bp per month based on a univariate two-pass regression
to 57bp based on the same method but with FF3 factors as control.
Similarly, estimates for the latter change from 101bp to 43bp.

Equation (4.5) also allows for noisy (η = 0) and weak (η small)
factors as special cases, which normally would distort inference on risk
premia in a two-pass regression (a phenomenon first documented by Kan
and Zhang, 1999). For instance, the four factors from Novy-Marx (2014)
are examples of variables that appear to predict returns in standard
predictive regressions, but their economic link to the stock market seems
weak. Nonetheless, three out of these four factors have significant risk
premia based on two-pass regression with FF3 factors. Macro factors
(such as PCs or consumption growth) are also weak. The three-pass
approach addresses both omitted variable bias and measurement error
because it estimates latent factors in the first pass, uses them as controls
in the second-pass cross sectional regression, and adopts another time-
series regression in the third pass to remove measurement error. Thanks
to this robustness, the estimates from the last two columns of Table 4.1
appear more economically reasonable.

4.2.3 PCA Extensions

While PCA is the most common approach to factor recovery, there are
alternatives with unique features. For instance, Giglio et al. (2021a)
adopt matrix completion to estimate the factor model that can cope
with an unbalanced panel of returns. Suppose that Ω is an N×T matrix
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Factors Two-pass w/o controls Two-pass w/ FF3 Three-pass regression
Liquidity 2.26∗∗ (0.90) 0.57 (0.68) 0.37∗∗ (0.16)
Interm. Cap. 1.01∗∗ (0.45) 0.43 (0.45) 0.60∗∗ (0.31)
NY temp. -319.01 (255.73) -277.96∗∗ (124.08) -0.69 (13.90)
Global temp. -6.65 (4.85) -3.33 (2.07) 0.05 (0.21)
El Niño 56.85∗∗∗ (17.42) -15.34∗∗ (7.11) 0.41 (0.82)
Sunspots -409.37 (937.73) 882.89∗∗ (405.40) 4.01 (35.63)
IP growth -0.36∗∗∗ (0.14) -0.14∗∗ (0.05) -0.01∗ (0.00)
Macro PC1 84.90∗∗∗ (24.76) 39.96∗∗∗ (13.57) 3.26∗∗ (1.58)
Macro PC2 9.35 (15.93) 23.91∗∗∗ (8.97) -0.88 (1.27)
Macro PC3 -5.94 (14.30) -31.24∗∗∗ (9.74) -1.25 (1.51)
Cons. growth 0.26∗ (0.16) 0.07 (0.05) 0.00 (0.01)

Table 4.1: Three-Pass Regression: Empirical Results

Note: For each factor, the table reports estimates of risk premia in percentage points
per month using different methods, with the restriction that the zero-beta rate
is equal to the observed T-bill rate: two versions of the two-pass cross-sectional
regression, using no control factors in the model and using the Fama-French three
factors, respectively; the three-pass estimator using 7 latent factors. The test assets
comprise of 647 portfolios sorted by various characteristics (from Table B1 of Giglio
and Xiu, 2021).

with the (i, t) element equal to 1 if and only if Ri,t is not missing. The
matrix completion algorithm solves the following convex optimization
problem:

X̂ = arg min
X
‖(R−X) ◦ Ω‖2 + λ‖X‖n,

where ◦ denotes Hadamard product, ‖X‖n =
∑min{N,T}
i=1 ψi(X) with

ψi(X) being the ith largest singular value of X, and λ is a tuning
parameter. By penalizing the `1-norm of singular values of X, the
algorithm attempts to find a low rank approximation of the return
matrix R using only its observed entries. The estimated X̂ is a completed
matrix of R with a low rank structure, from which latent factors and
loadings can thus be recovered via SVD.

The standard implementation of PCA applies SVD to demeaned ex-
cess returns matrix R̄. In doing so, it estimates latent factors and betas
solely from the sample centered second moment of returns. Lettau and
Pelger (2020b) point out that PCA’s sole reliance on second moment in-
formation leads to inefficient factor model estimates. Asset pricing theory
implies a restriction between asset means and factor betas (in particular,
through the unconditional version of Euler equation (1.2)). They thus
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argue that leaning more heavily on factor loading information contained
in the first moment of returns data can improve overall performance of
PCA estimators. Based on this insight, they develop “risk-premia PCA”
(RP-PCA) estimator, which applies PCA to an uncentered second mo-
ment of returns, T−1∑T

t=1RtR
′
t+λ(T−1∑T

t=1Rt)(T−1∑T
t=1Rt)′, where

λ > −1 serves as a tuning parameter. Connor and Korajczyk (1988)
also use uncentered PCA, but stick to the case of λ = 0, whereas the
standard PCA corresponds to λ = −1.

Lettau and Pelger (2020a) establish the asymptotic theory of RP-
PCA and show that it is more efficient than PCA when factors are
pervasive in the absence of pricing error. While the standard PCA ap-
proach is robust to the existence of pricing error, this error term could
bias the RP-PCA estimator in that the expected returns are no longer
parallel to factor loadings. We conjecture that such a bias is asymptoti-
cally negligible if the economic constraint of no-near-arbitrage (4.2) is
imposed, in which case the magnitude of α is sufficiently small that it
would not bias estimates of factors and their loadings asymptotically.2

Giglio et al. (2021b) point out that the strength of a factor hinges
on the choice of test assets. Even the market factor could become weak
if all test assets are long-short portfolios that have zero exposure to this
factor. To resolve this weak factor issue in risk premia estimation, they
propose a procedure to select test assets based on supervised PCA, as
discussed in Section 3.5.2. Moreover, this procedure can be applied to
detect missing factors in models of the stochastic discount factor.

4.2.4 Which Factors?

The search for factors that explain the cross section of expected stock
returns has produced hundreds of potential candidates. Many of them
are redundant, adding no explanatory power for asset pricing given
some other factors. Some are outright useless that have no explanatory
power.

Machine learning methods can address the challenge of redundant
and useless factors through dimension reduction and variable selection.

2Bryzgalova et al. (2023) introduce other economically motivated targets to
identify later pricing factors.
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For example, a lasso regression of average returns on factor covariances
can help identify a parsimonious set of factors that price the cross
section of assets. At the same time, selection mistakes are inevitable:
overfitting may lead to the selection of useless variables; variables that
have relatively weak explanatory power may be omitted; redundant
variables may be selected in place of the real ones. Figure 4.1 by Feng
et al. (2020) show that the variables selected by lasso vary consider-
ably across different random seeds adopted in cross validation, which
randomly split the sample into multiple folds (see Figure 3.1).

Figure 4.1: Factor Selection Rate

Note: Source: Feng et al. (2020). The figure shows, for each factor identified by the
factor ID (on the X axis), in what fraction of the random seeds each factor is selected
by a lasso regression of average returns onto factor covariances via 200 random cross
validations.

Feng et al. (2020) propose a methodology that marries the double
machine learning framework of Chernozhukov et al. (2018) with two-
pass cross-sectional regression to identify a coherent set of factors and
develop the asymptotic distribution of their estimator, with which they
can make inferences regarding the factors.
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Empirically, Feng et al. (2020) apply their inference procedure
recursively to distinguish useful factors from useless and redundant
factors as they are introduced in the literature. Their empirical findings
show that had their approach been applied each year starting in 1994,
only 17 factors out of 120+ candidate factors would have been considered
useful, with a large majority identified as redundant or useless.

Another literature considers factor model selection from a model
uncertainty and model averaging perspective, with related work in-
cluding Avramov et al. (2021) and Chib et al. (2023). Avramov et al.
(2021) shows that prior views about how large a Sharpe ratio could
be has implications for the inclusion of both factors and predictors. In
general, Bayesian model uncertainty is an interesting topic for further
development in financial machine learning.

4.3 Conditional Factor Models

The previous section focuses on the unconditional version of Euler
equation (1.2) with static betas and risk prices (derived by replacing It
with the null set, or “conditioning down”). Generally, when we change
the conditioning set, the factor representation also changes because
assets’ conditional moments change. It could be the case that as we
condition down asset betas and expected returns do not change—in
this special case the conditional and unconditional models are the same.
However, empirical research demonstrates that asset covariances are
highly predictable in the time series, and a preponderance of evidence
suggests that asset means are also predictable. In other words, we can
rule out the “conditionally static” special case.

To condition, or not to condition? That is the question when devising
return factor models. Our view is that, whenever possible, the researcher
should aspire to build an effective conditional model. Conditional mod-
els are ambitious—they describe the state dependent nature of asset
prices, and thus capture in finer resolution the behavior of markets.
However, conditional models are also more demanding, requiring the
researcher to supply relevant data to summarize prevailing conditions.
Such conditioning information may be expansive and may require more
richly parameterized models in order to capture nuanced conditional
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behaviors. When the relevant conditioning information is unavailable,
an unconditional model allows the researcher to understand basic asset
behavior without necessarily having to understand detailed market
dynamics and with potentially simpler models. For this reason, much
of the early literature on return factor analysis pursues unconditional
specifications (as in the preceding section). In this section we focus on
conditional model formulations.

In analogy to (4.1), the vectorized conditional latent factor model is

Rt+1 = αt + βtFt+1 + εt+1, (4.7)

where factor loadings and pricing errors now vary with the conditioning
information set It.

4.3.1 IPCA

Without additional restrictions, the right-hand side of (4.7) contains
too many degrees of freedom and the model cannot be identified. Instru-
mented principal components analysis (IPCA) of Kelly et al. (2020b)
makes progress by introducing restrictions that link assets’ betas (and
alphas) to observables. The IPCA model takes the form

Rt+1 = ZtΓα︸ ︷︷ ︸
αt

+ZtΓβ︸ ︷︷ ︸
βt

Ft+1 + εt+1, (4.8)

where Zt is an N × L matrix that stacks up data on L observable
characteristics (or “instruments”) for each asset.3 Ft+1 is again a K × 1
vector of latent factors. Harvey and Ferson (1999), and more recently
Gagliardini et al. (2016), also model factor loadings as time-varying
functions of observables, but their factors are fully observable.

The core of the IPCA model is its specification of βt. First and
foremost, time-varying instruments directly incorporate dynamics into
conditional factor loadings. More fundamentally, incorporating instru-
ments allows additional data to shape the factor model, differing from
unconditional latent factor techniques like PCA that estimate the factor
structure only from returns data. And anchoring loadings to observables

3Typically, one of the characteristics in Z is a constant term.
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identifies the model by partially replacing unidentified parameters with
data.

The L×K matrix Γβ defines the mapping from a potentially large
number of characteristics (L) to a small number of risk factor expo-
sures (K). When we estimate Γβ, we are searching for a few linear
combinations of candidate characteristics that best describe the latent
factor loading structure. To appreciate this point, first imagine a case
in which Γβ is the L-dimensional identity matrix. In this case, it is easy
to show that Ft consists of L latent factors that are proportional to
R′t+1Zt, and the characteristics determine the betas on these factors.
This is reminiscent of Rosenberg (1974) and MSCI Barra (a factor
risk model commonly used by practitioners). Barra’s model includes
several dozen characteristics and industry indicators in Zt. When the
number of firm characteristics L is large, the number of free parameters
is equal to the number of factor realizations {Ft}, or L× T , which is
typically large compared to sample size. There is significant redundancy
in Barra factors (a small number of principal components capture most
of their joint variation) which suggests it may be overparameterized
and inefficient.

IPCA addresses this problem with dimension reduction in the char-
acteristic space. If there are many characteristics that provide noisy
but informative signals about a stock’s risk exposures, then aggregating
characteristics into linear combinations isolates their signal and averages
out their noise.

The challenge of migrating assets, such as stocks evolving from small
to large or from growth to value, presents a problem in modeling stock-
level conditional expected returns using simple time series methods.
The standard solution is to create portfolios that possess average char-
acteristic values that are somewhat stable over time, but this approach
becomes impractical if multiple characteristics are needed to accurately
describe an asset’s identity. The IPCA solution parameterizes betas
with the characteristics that determine a stock’s risk and return. IPCA
tracks the migration of an asset’s identity through its betas, which are
in turned defined by the asset’s characteristics. This eliminates the need
for a researcher to manually group assets into portfolios since the model
explicitly tracks assets’ identities in terms of their characteristics. As a
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K
Test Assets Statistic 1 3 4 5 6

Panel A: IPCA
Stocks Total R2 14.9 17.6 18.2 18.7 19

Pred. R2 0.36 0.43 0.43 0.70 0.70
Np 636 1908 2544 3180 3816

Portfolios Total R2 90.3 97.1 98.0 98.4 98.8
Pred. R2 2.01 2.10 2.13 2.41 2.39
Np 636 1908 2544 3180 3816

Panel B: Observable Factors
Stocks Total R2 11.9 18.9 20.9 21.9 23.7

Pred. R2 0.31 0.29 0.28 0.29 0.23
Np 11452 34356 45808 57260 68712

Portfolios Total R2 65.6 85.1 87.5 86.4 88.6
Pred. R2 1.67 2.07 1.98 2.06 1.96
Np 37 111 148 185 222

Table 4.2: IPCA Comparison with Other Factor Models

Note: The table reports total and predictive R2 in percent and number of estimated
parameters (Np) for the restricted (Γα = 0) IPCA model (Panel A) and for observable
factor models with static loadings (Panel B). Observable factor model specifications
are CAPM, FF3, FFC4, FF5, and FFC6 in the K = 1, 3, 4, 5, 6 columns, respectively
(from Table 2 of Kelly et al., 2020b).

result, the model accommodates a high-dimensional system of assets
(e.g., individual stocks) without the need for ad hoc portfolio formation.

Finally, the IPCA specification in (4.7) also allows for the possibility
that characteristics may proxy for alpha instead of beta. Conventional
asset pricing models assume that differences in expected returns among
assets are solely due to differences in risk exposure. However, when the
L× 1 coefficient vector Γα is non-zero, stock-level characteristics can
predict returns in a way that does not align with the risk-return trade-
off. IPCA addresses this by estimating alpha as a linear combination
of characteristics (determined by Γα) that best explains conditional
expected returns while controlling for the characteristics’ role in factor
risk exposures. If the alignment of characteristics with average stock
returns differs from the alignment of characteristics with risk factor
loadings, IPCA will estimate a non-zero Γα, thus identifying mispricing
(that is, compensation for holding assets that is unrelated to the assets’
systematic risk exposure).

Table 4.2 compares IPCA (Panel A) with various numbers of la-
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tent factors to other leading models in the literature. The first set of
comparison models includes pre-specified observable factors, estimated
using the traditional approach of asset-by-asset time series regression.
The K = 1 model is the CAPM, K = 3 is the Fama-French (1993)
three-factor model that includes the market, SMB and HML (“FF3”
henceforth), K = 4 is the Carhart (1997, “FFC4”) model that adds
MOM to the FF3 model, K = 5 is the Fama-French (2015, “FF5”)
five-factor model that adds RMW and CMA to the FF3 factors, K = 6
(“FFC6”) includes MOM alongside the FF5 factors. All models in Table
4.2 are estimated with a zero-intercept restriction by imposing Γα = 0
in IPCA or by omitting an intercept in time series regressions.

Table 4.2 reports the total R2 based on contemporaneous factor
realizations, the predictive R2 (replacing the factor realization with its
average risk premium), as well as the number of estimated parameters
(Np) for each model. We report fits at the individual stock level and
at the level of characteristic-managed portfolios. These statistics are
calculated in-sample.4 For individual stocks, observable factor models
produce a slightly higher total R2 than IPCA. To accomplish this,
however, observable factors rely on vastly more parameters than IPCA.
In this sample of 11,452 stocks with 37 instruments over 599 months,
observable factor models estimate 18 times (≈ 11452/(37 + 599)) as
many parameters as IPCA! In short, IPCA provides a similar description
of systematic risk in stock returns as leading observable factors while
using almost 95% fewer parameters. At the same time, IPCA provides
a substantially more accurate description of stocks’ risk compensation
than observable factor models, as evidenced by the predictive R2. For
characteristic-managed portfolios, observable factor models’ total R2

and predictive R2 both suffer in comparison to IPCA.
Figure 4.2 compares models in terms of average pricing errors for

37 characteristic-managed “anomaly” portfolios.5 The left-hand plot
shows portfolio alphas from the FFC6 model against their raw average

4Kelly et al. (2020b) show that IPCA is highly robust out-of-sample, while
other models like those using observable factors or PCA tend to suffer more severe
out-of-sample deterioration.

5For comparability, portfolios are re-signed and scaled to have positive means
and 10% annualized volatility.
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Figure 4.2: Alphas of Characteristic-Managed Portfolios

Note: The left and right panels report alphas for characteristic-managed portfolios
relative to the FFC6 model and the IPCA five-factor model. Alphas are plotted
against portfolios’ raw average excess returns. Alphas with t-statistics in excess of
2.0 are shown with filled squares, while insignificant alphas are shown with unfilled
circles (from Figure 1 of Kelly et al., 2020b).

excess returns, overlaying the 45-degree line. Alphas with t-statistics in
excess of 2.0 are depicted with filled squares, while insignificant alphas
are shown with unfilled circles. Twenty-nine characteristic-managed
portfolios earn significant alpha with respect to the FFC6 model. The
alphas are clustered around the 45-degree line, indicating that their
average returns are essentially unexplained by observable factors. The
right-hand plot shows the time series averages of conditional alphas
from the five-factor IPCA specification. Four portfolios have conditional
alphas that are significantly different from zero but are economically
small. Figure 4.2 supports the conclusion that the IPCA latent factor
formulation is more successful at pricing a range of equity portfolios
relative to asset pricing models with observable factors.

The IPCA framework has been used to study cross-sectional asset
pricing in a variety of markets, including international stocks (Langlois,
2021; Windmueller, 2022), corporate bonds (Kelly et al., Forthcoming),
equity index options (Büchner and Kelly, 2022), single-name equity
options (Goyal and Saretto, 2022), and currencies (Bybee et al., 2023a).
It has also been used to understand the profits of price trend signals
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(Kelly et al., 2021) and the narrative underpinnings of asset pricing
models (Bybee et al., 2023b).

4.4 Complex Factor Models

A number of papers study generalizations of specification (4.8) for
instrumented betas in latent conditional factor models. IPCA can be
viewed as a linear approximation for risk exposures based on observable
characteristics data. While many asset pricing models predict nonlinear
association between expected returns and state variables, the theoretical
literature offers little guidance for winnowing the list of conditioning
variables and functional forms. The advent of machine learning allows
us to target this functional form ambiguity with a quiver of nonlinear
models.

In early work, Connor et al. (2012) and Fan et al. (2016b) allow for
nonlinear beta specification by treating betas as nonparametric functions
of conditioning characteristics (but, unlike IPCA, the characteristic are
fixed over time for tractability). Kim et al. (2020) adopt this framework
to study the behavior of “arbitrage” portfolios that hedge out factor
risk.

Gu et al. (2020a) extends the IPCA model by allowing betas to
be a neural network function of characteristics. Figure 4.3 diagrams
their “conditional autoencoder” (CA) model. Figure 4.3 illustrates its
basic structure, which differs from (4.8) by propagating the input data
(instruments Zt) through nonlinear activation functions. The CA is the
first deep learning model of equity returns that explicitly accounts for
the risk-return tradeoff. Gu et al. (2020a) show that CA’s total R2 is
similar to that of IPCA, but it substantially improves over IPCA in
terms of predictive R2. In other words, the CA provides a more accurate
description of assets’ conditional compensation for factor risk.

Gu et al. (2020a) is a high complexity model and its strong empirical
performance hints at a benefit of complexity in factor models analogous
to that studied in prediction models by Kelly et al. (2022a). Didisheim et
al. (2023) formalize this idea and prove the virtue of complexity in factor
pricing. They build their analysis around the conditional stochastic
discount factor (SDF), which can be generally written as a portfolio of
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Figure 4.3: Conditional Autoencoder Model

Note: This figure presents the diagram of a conditional autoencoder model, in
which an autoencoder is augmented to incorporate covariates in the factor loading
specification. The left-hand side describes how factor loadings (in green) depend on
firm characteristics (in yellow) of the input layer 1 through an activation function g
on neurons of the hidden layer. Each row of yellow neurons represents the vector
of characteristics of one ticker. The right-hand side describes the corresponding
factors. Nodes (in purple) are weighted combinations of neurons of the input layer 2,
which can either be characteristic-managed portfolios (in pink) or individual asset
returns (in red). In the former case, we further use dashed arrows to indicate that the
characteristic-managed portfolios rely on individual assets through pre-determined
weights (not to be estimated). In either case, the effective input can be regarded as
individual asset returns, exactly what the output layer (in red) aims to approximate,
thus this model shares the same spirit as a standard autoencoder. Source: Gu et al.
(2020a).

risky assets:
Mt+1 = 1− w(Xt)′Rt+1, (4.9)

where Rt+1 is the vector of excess returns on the N assets. The N -
vector w(Xt) contains the SDF’s conditional portfolio weights, with Xt

representing conditioning variables that span the time t information set.
Absent knowledge of its functional form, w() can be approximated with
a machine learning model:

w(Xt) ≈
P∑
p=1

λpSp(Xt)
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where Sp(Xt) is some nonlinear basis function of Xt and the number of
parameters P in the approximation is large. A machine learning model
of the SDF may be interpreted as a factor pricing model with P factors:

Mt+1 ≈ 1−
∑
p

λpFp,t+1, (4.10)

where each “factor” Fp,t+1 is a managed portfolio of risky assets using the
nonlinear asset “characteristics” Sp(Xt) as weights. The main theoretical
result of Didisheim et al. (2023) shows that quite the more factors in
an asset pricing model the better. In this setup, adding factors means
using a richer representation of the information contained in Xt which
achieves a better approximation of the true SDF. The improvement
in approximation accuracy dominates statistical costs of having to
estimate many parameters. As a result, expected out-of-sample alphas
decrease as the number of factors grows. This interpretation of the
virtue of complexity is a challenge for the traditional APT perspective
that a small number of risk factors provide a complete description of
the risk-return tradeoff for any tradable assets. This has the implication
that, even if arbitrage is absent and an SDF exists, the fact that the
SDF must be estimated implies that it is possible (in fact, expected)
to continually find new empirical “risk” factors that are unpriced by
others and that adding these factors to the pricing model continually
improves its out-of-sample performance.

4.5 High-frequency Models

The increasing availability of high-frequency transaction-level data on a
growing cross-section of tradable assets presents a unique opportunity
in estimating risks of individual assets and their interdependencies.
Simple nonparametric measures of volatility and covariances (Andersen
and Bollerslev, 1998; Andersen et al., 2001; Barndorff-Nielsen and
Shephard, 2002) provide an early demonstration of how to harness
rich and timely intraday prices data to better understand asset market
fluctuations. The use of high frequency measures helps resolve several
challenges of studying low frequency time series. For example, it helps the
researcher accommodate structural breaks and time-varying parameters
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with minimal assumptions. Moreover, many standard assumptions on
linearity, stationarity, dependence, and heteroscedasticity in classic time
series are often unnecessary for modeling intraday data.

We identify two streams of recent literature that adopt machine
learning techniques to estimate high-dimensional covariances and to
improve volatility forecasting with high frequency data.

Accurate covariance estimates are critical to successful portfolio
construction. But estimating large covariance matrices is a challenging
statistical problem due to the curse of dimensionality. A number of
methods rely on various forms of regularization (Bickel and Levina,
2008a; Bickel and Levina, 2008b; Cai and Liu, 2011; Ledoit and Wolf,
2012; Ledoit and Wolf, 2004) to improve estimates. Inspired by the
APT, Fan et al. (2008) propose factor-model based covariance matrix
estimators in the case of a strict factor model with observable factors,
and Fan et al. (2013) offer an approach with an approximate factor
structure with latent factors.

A factor structure is also necessary at high frequency when the
dimension of the panel approaches the sample size. However, the econo-
metric techniques are fundamentally different in low-frequency and
high-frequency sampling environments. The latter is often cast in a
continuous-time setting based on a general continuous-time semimartin-
gale model, allowing for stochastic variation and jumps in return dy-
namics. Ait-Sahalia and Xiu (2019) develop the asymptotic theory of
nonparametric PCA to handle intraday data, which paves the way for
applications of factor models in continuous time. In addition, Fan et al.
(2016a) and Ait-Sahalia and Xiu (2017) develop estimators of large
covariance matrices using high frequency data for individual stocks on
the basis of a continuous-time factor model.

A promising agenda is to tie the literature on high-frequency risk
measurement with the literature on the cross-section of expected re-
turns, leveraging richer risk information for a better understanding of
the risk-return tradeoff. Some relevant research in this direction includes
Bollerslev et al. (2016), who compute individual stock betas with respect
to the continuous and the jump components of a single market factor
in a continuous-time setting, but associate these estimates with the
cross-section of returns in a discrete-time setup. Ait-Sahalia et al. (2021)
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provide inference for the risk premia in a unified continuous-time frame-
work, while also allowing for multiple factors and stochastic betas in the
first stage, and treat the betas in the second pass as components that
were estimated in the first pass, generalizing the classical approach to
inference by Shanken (1992a). Empirically, they examine factor models
of intraday returns using Fama-French and momentum factors sampled
every 15 minutes built by Ait-Sahalia et al. (2020).

The idea of measuring volatility using high-frequency data also
spurred a promising agenda in volatility forecasting. The heterogenous
autoregressive (HAR) model of past realized volatility measures (Corsi,
2009) has emerged as the leading volatility forecasting model in academic
research and industry practice. A number of recent papers have examined
machine learning strategies for volatility forecasting, including Li and
Tang (2022) and Bollerslev et al. (2022). But unlike a return prediction
analysis in which machine learning predictions directly translate into
higher Sharpe ratios, it is unclear the extent to which machine learning
forecasts outperform existing HAR models in economic terms. This is
an interesting open question in the literature.

4.6 Alphas

This section discusses the literature on alpha testing and machine
learning. Alpha is the portion of the expected return unaccounted for by
factor betas and is thus a model-dependent object. Because economic
theory is often too stylized to pin down the identities of all factors,
and because the data may not be rich enough to infer the true factors
in a data-driven way, model misspecification is lingering challenge for
distinguishing alpha from “fair” compensation for factor risk exposure.
For example, it is possible that estimated alphas are a manifestation
of weak factor betas, reminiscent of the omitted variable problem in
regression. In other words, one person’s alpha is another’s beta. In a
latent factor model, alphas and betas are ultimately distinguished by
a factor strength cutoff that distinguishes factors from idiosyncratic
noise.

We concentrate our alpha analysis from the perspective of uncon-
ditional latent factor models. Our emphasis on unconditional rather
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than conditional alphas is motivated by the focus in the literature.
Our emphasis on latent factor models is motivated by our view that
misspecification concerns are less severe for latent factor models.

4.6.1 Alpha Tests and Economic Importance

A longtime focus of empirical asset pricing is the null hypothesis that
all alphas are equal to zero, H0 : α1 = α2 = . . . = αN = 0. This is
a single hypothesis distinct from a multiple hypotheses alpha testing
problem that we discuss later. Rejection of H0 is interpreted as evidence
of misspecification of the asset pricing model or mispricing of the test
assets (and, perhaps mistakenly, as a violation of Ross (1976)’s APT).

The well known GRS test (Gibbons et al., 1989) of H0 is a Chi-
squared test designed for low-dimensional factor models with observable
factors. Fan et al. (2015) and Pesaran and Yamagata (2017) propose
tests of the same null but in high-dimensional settings. This is an
important step forward as it eliminates a restriction (T > N+K) in the
original GRS test and improves the power of the test when N is large.
While these methods are initially proposed for models with observable
factors, it is possible to extend them to latent factor models. In fact,
Giglio et al. (2021a) construct an estimator of α using the estimated
factor loadings and risk premia given by (4.4) and (4.6), respectively:

α̂ = 1
T

T∑
t=1

Rt − β̂γ̂. (4.11)

They also derive the necessary asymptotic expansion of α̂, which paves
the way for constructing tests of alpha in latent factor models.

The GRS test statistic is built upon (S?)2 = α′Σ−1
ε α, which can

be interpreted as the optimal squared Sharpe ratio of a portfolio that
has zero exposure to factors. Estimating this Sharpe ratio is one thing,
implementing a trading strategy to realize it is another. That is, a
rejection of the zero alpha hypothesis in a GRS-like test does not neces-
sarily mean the rejection is economically important. Any meaningful
quantification of the economic importance of alphas should consider
the feasibility of a would-be arbitrageur’s trading strategy. Evaluating
statistical rejections in economic terms is both more valuable for asset
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pricing research and more relevant for practitioners.6
The APT assumes that arbitrageurs know the true parameters in

the return generating process. Such an assumption might be benign
provided a sufficiently large sample size, in which case the parameters
are asymptotically revealed and arbitrageurs behave (approximately)
as if they know the true parameters. The catch is that, in the setting
of the APT, arbitrageurs must know an increasing number of alphas,
thus the cross-section dimension is large relative to a typical sample
size. Consequently, it is unreasonable to assume that arbitrageurs can
learn alphas even in the large T limit.

Da et al. (2022) revisit the APT and relax the assumption of known
parameters. In their setting, arbitrageurs must use a feasible trading
strategy that relies on historical data with a sample size T . For any
feasible strategy ŵ at time t, they define this strategy’s next period
conditional Sharpe ratio as:

S(ŵ) := E(ŵ′Rt+1|It)/Var(ŵ′Rt+1|It)1/2,

where It is the information set at t. They show that S(ŵ) obeys

S(ŵ) ≤
(
S(G)2 + γ′Σ−1

v γ
)1/2 + oP(1), (4.12)

where S(G)2 := E(α|G)′Σ−1
ε E(α|G), as N → ∞, Σv is the covari-

ance matrix of factors, and G is the information set generated by
{(Rs, β, Vs,Σε) : t− T + 1 ≤ s ≤ t}.

Notably, γ′Σ−1
v γ is the Sharpe ratio of the optimal factor portfolio.

Therefore, for any factor-neutral strategy ŵ, i.e., ŵ′β = 0,

S(ŵ) ≤ S(G) + oP(1). (4.13)

This result suggests that it is the posterior estimate of α that determines
the optimal feasible Sharpe ratio and imposes an upper bound on the

6As Shanken (1992b) puts
... practical content is given to the notion of ‘approximate arbitrage,’
by characterizing the investment opportunities that are available as
a consequence of the observed expected return deviation ... Far more
will be learned, I believe, by examining the extent to which we can
approximate an arbitrage with existing assets.
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profits of statistical arbitrage. Any machine learning strategy, simple or
complex, needs obey this feasible Sharpe ratio bound.

In general, E
(
S(G)2) ≤ E

(
(S?)2), where the equality holds only

when E(α|G) = α almost surely. S(G) results from the feasible strategy
and S? can be referred to as the infeasible optimal Sharpe ratio.

The “Sharpe ratio gap” between feasible and infeasible strategies
characterizes the difficulty of statistical learning. If learning is hard,
the gap is large. Figure 4.4 reports the ratio between these two Sharpe
ratios numerically for a hypothetical return generating process in which
α takes a value of zero with probability 1− ρ and a value of µ or −µ
each with probability ρ/2. Residuals have a covariance matrix Σε that
is a diagonal with variances of σ2. Within this class of DGPs, µ/σ
characterizes the strength of α (relative to noise), while ρ characterizes
its rareness. Varying µ/σ and ρ helps trace out the role of various
generating processes in arbitrageur performance, shown in Figure 4.4.
As µ/σ increases, alpha is sufficiently strong and easy to learn, and the
Sharpe ratio gap is smaller. Rareness of alpha plays a less prominent
role, though more ubiquitous alpha also lead to a smaller gap.

Da et al. (2022) show how to quantify the gap between infeasible
and feasible Sharpe ratios. They evaluate the APT on the basis of a 27-
factor model, in which 16 characteristics and 11 GICS sector dummies
are adopted as observable betas. The estimated infeasible Sharpe ratio
is over 2.5 for a test sample from January 1975 to December 2020,
and this is four times higher than the feasible Sharpe ratio of around
0.5 achieved by machine learning strategies. The fact that the feasible
Sharpe ratio (before transaction costs) is below 0.5 suggests that the
APT in fact works quite well empirically. In theory, the gap between
feasible and infeasible Sharpe ratios further increases if arbitrageurs face
more statistical obstacles, such as model misspecification, non-sparse
residual covariance matrix, and so forth.

4.6.2 Multiple Testing

Since the introduction of CAPM, the financial economics community
has collectively searched for “anomalies;” i.e., portfolios with alpha to
the CAPM. Some of these, like size, value, and a handful of others, have
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Figure 4.4: Ratios between S(G) and S?

Note: The figure reports the ratios of optimal Sharpe ratios between feasible and
infeasible arbitrage portfolios. The simulation setting is based on a simple model, in
which only a 100× ρ% of assets have non-zero alphas, with each entry corresponding
to an annualized Sharpe ratio µ/σ ×

√
12. Source: Da et al. (2022).

been absorbed into benchmark models (Fama and French, 1993; Fama
and French, 2015). New anomalies are then proposed when researchers
detect an alpha with respect to the prevailing benchmark. Harvey
et al. (2016) survey the literature and collates a list of over three
hundred documented anomalies. They raise the important criticism that
the anomaly search effort has failed to properly account for multiple
hypothesis testing when evaluating the significance of new anomalies.7

Multiple testing in this context refers to simultaneously testing
a collection of null hypotheses: Hi

0 : αi = 0, for i = 1, 2, . . . , N . This
problem is fundamentally different from testing the single null hypothesis
H0 : α1 = α2 = . . . = αN = 0 discussed earlier. Multiple testing is prone
to a false discovery problem because a fraction of the individual alpha
tests are bound to appear significant due to chance alone and hence

7More broadly, Harvey (2017) among others highlight the propensity for finance
researchers to draw flawed conclusions from their analyses by failing to account for
unreported tests, failure to account for multiple tests, and career incentives that
promote “p-hacking.”



4.6. Alphas 103

their null hypotheses are incorrectly rejected.
Let ti be a test statistic for the null Hi

0. Suppose Hi
0 is rejected

whenever |ti| > ci for some pre-specified critical value ci. Let H0 ⊂
{1, ..., N} denote the set of indices for which the corresponding null
hypotheses are true. In addition, let R be the total number of rejections
in a sample, and let F be the number of false rejections in that sample:

F =
N∑
i=1

1{i ≤ N : |ti| > ci and i ∈ H0}, R =
N∑
i=1

1{i ≤ N : |ti| > ci}.

Both F and R are random variables, but R is observable whereas F is
not.

For any predetermined level τ ∈ (0, 1), say, 5%, the individual tests
ensure that the per-test error rate is bounded below by τ : E(F)/N ≤ τ .
In other words, the expected number of false rejections can be as large as
Nτ . To curb the number of false rejections, an alternative proposal is to
select a larger critical value to control the family-wise error rate (FWER):
P(F ≥ 1) ≤ τ . The latter proposal is unfortunately overly conservative
in practice. The third proposal, dating back to Benjamini and Hochberg
(1995), is to control the false discovery rate directly: FDR ≤ τ , where
the false discovery proportion (FDP) and its expectation, FDR, are
defined as FDP = F/max{R, 1} and FDR = E(FDP).

While the asset pricing literature has long been aware of the gen-
eral data snooping problem (Lo and MacKinlay, 1990; Sullivan et al.,
1999), early proposals suggest alternative single null hypotheses instead,
such as H0 : maxi αi ≤ 0 or H0 : E(αi) = 0 (see e.g. White, 2000;
Kosowski et al., 2006; Fama and French, 2010). Barras et al. (2010),
Bajgrowicz and Scaillet (2012), and Harvey et al. (2016) are among
the first to adopt FDR or FWER control methods in asset pricing
contexts to curb multiple testing. Harvey and Liu (2020) propose a
double-bootstrap method to control FDR, while also accounting for
the false negative rate and odds ratio.8 Giglio et al. (2021a) propose
a rigorous inference approach to FDR control on alphas in a latent
factor model, simultaneously tackling omitted variable bias, missing

8Chen et al. (2023) study hundreds of factors and find only 2 independent
anomaly factors after controlling the FDR.
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data, and high dimensionality in the test count. Jensen et al. (2021)
propose a Bayesian hierarchical model to accomplish their multiple
testing correction, which leverages a zero-alpha prior and joint behavior
of factors, allowing factors’ alpha estimates to shrink towards the prior
and borrow strength from one another.

Ultimately, multiple testing is a statistical problem in nature. The
aforementioned statistical methods typically meet the criteria of a good
statistical test, such as controlling Type I error, false discovery rate, etc.
Nonetheless, it is the economic performance that agents care about most.
These two objective are typically in conflict. Jensen et al. (2021) and Da
et al. (2022) point that multiple testing as a device for alpha selection
often leads to extremely conservative trading strategies, even though it
guards against FDR perfectly. Jensen et al. (2021) demonstrate that a
researcher that includes factors in their portfolio based on a Bayesian
hierarchical multiple testing approach would have achieved a large and
significant improvement over an investor using the more conservative
approach of FDR control.



5
Optimal Portfolios

In this section, we discuss and analyze machine learning approaches
to portfolio choice. The portfolio choice problem lies at the heart of
finance. It aims for efficient allocation of investor resources to achieve
growth-optimal savings, and all major problems in asset pricing have an
intimate association with it. Under weak economic assumptions (such as
the absence of arbitrage), the mean-variance efficient portfolio (MVE) in
an economy is a tradable representation of the stochastic discount factor
(SDF), and thus summarizes the way market participants trade off risk
and return to arrive at equilibrium prices (Hansen and Richard, 1987).
Likewise, individual assets’ exposures to the MVE portfolio map one-
for-one into assets expected returns, meaning that the MVE amounts to
a one-factor beta pricing model that explains cross-sectional differences
in average returns (Roll, 1977). And, in the return prediction problem
analyzed in Section 3, prediction performance is ubiquitously evaluated
in terms of the benefits it confers in optimal portfolios.

There are many statistical approaches available for pursuing optimal
portfolios. All approaches combine aspects of the distributional prop-
erties of assets (their risk and reward) and investors’ preferences over
the risk-return tradeoff. The seminal Markowitz (1952) problem endows

105
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investors with knowledge of the return distribution.1 Without the need
to estimate this distribution, portfolio choice is a one-step problem of
utility maximization. Invoking Hayek’s quote from the introduction,
“if we command complete knowledge of available means, the problem
which remains is purely one of logic.” This, once again, is emphatically
not the economic problem the investor faces. The investor’s portfolio
choice problem in inextricably tied to estimation, which is necessary
to confront their lack of knowledge about the return distribution. The
investor makes portfolio decisions with highly imperfect information.

Since Markowitz, a massive literature proposes methodological tools
to solve the estimation problem and arrive at beneficial portfolios. It is
a stubborn problem whose nuances often thwart clever methodological
innovations. Practical success hinges on an ability to inform the utility
objective with limited data. In other words, the portfolio problem is
ripe for machine learning solutions.

An emergent literature proposes new solutions rooted in machine
learning ideas of shrinkage, model selection, and flexible parameteriza-
tion. First, machine learning forecasts, derived from purely statistical
considerations (such as return or risk prediction models) may be plugged
into the portfolio choice problem and treated as known quantities. An
investor that treats the estimation and portfolio objectives in isolation,
however, is behaving suboptimally. Estimation noise acts as a source of
risk for the investor’s portfolio, so a complete segregation of the esti-
mation problem unnecessarily sacrifices utility. Intuitively, the investor
can do better by understanding the properties of estimation noise and
accounting for it in their risk-return tradeoff calculations. This calls for
integrated consideration of estimation and utility optimization, leading
once again to problem formulations that are attractively addressed with
machine learning methods. We begin our discussion by illustrating the
limitations of naive solutions that segregate the estimation and utility
maximization problems. This provides a foundational understanding

1There is a substantial theoretical literature that extends the Markowitz problem
with sophisticated forms of preferences, return distributions, portfolio constraints, and
market frictions, while maintaining the assumption that investors have all necessary
knowledge of the return distribution. Brandt (2010) and Fabozzi et al. (2010) survey
portions of this literature.
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upon which we build our discussion of machine learning tools that
improve portfolio choice solutions.

5.1 “Plug-in” Portfolios

We begin with an illuminating derivation from Kan and Zhou (2007)
who analyze the impact of parameter estimation in a tractable portfolio
choice problem. The one period return on N assets in excess of the risk
free rate, Rt, is an i.i.d. normal vector with first and second moments
µ ∈ RN and Σ ∈ RN×N . Investor attitudes are summarized by quadratic
utility with risk aversion γ, and the investor seeks a portfolio of risky
assets w ∈ RN (in combination with the risk-free asset) to maximize
one-period expected utility:

E[U(w)|µ,Σ] = w′µ− γ

2w
′Σw. (5.1)

When the distribution of returns is known, the utility maximizing
portfolio solution is

w∗ = 1
γ

Σ−1µ. (5.2)

Once we account for the reality of imperfect knowledge of the return
distribution, investors must decide how to use available information in
order to optimize the utility they derive from their portfolio. We assume
that investors have at their disposal an i.i.d. sample of T observations
drawn from the aforementioned return distribution.

A simple and common approach to portfolio choice treats the statis-
tical objective of estimating return distributions in isolation. First, the
investor infers the mean and covariance of returns while disregarding
the utility specification. Second, the investor treats estimates µ̂ and Σ̂
as the true return moments and, given these, selects portfolio weights to
optimize utility. This is known colloquially as the “plug-in” estimator,
because it leads to a solution that replaces inputs to the solution (5.2)
with estimated counterparts

ŵ = 1
γ

Σ̂−1µ̂. (5.3)

The motivation of the plug-in solution comes from the fact that, if
µ̂ and Σ̂ are consistent estimates, then ŵ is also consistent for w∗. It
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offers a simple and direct use of machine learning forecasts to achieve
the desired economic end. While consistency of ŵ can be an attractive
theoretical property, rarely do we have sufficient data for convergence
properties to kick-in. When N is large, consistency is in peril. Thus,
unfortunately, the plug-in portfolio solution has a tendency to perform
poorly in practice, and is disastrous in settings where the number of
assets begins to approach the number of training observations (Jobson
and Korkie, 1980; Michaud, 1989).

Kan and Zhou (2007) connect the portfolio estimation problem
to statistical decision theory by noting that the difference in investor
utility arising from the “true” optimal portfolio (w∗) versus the plug-in
portfolio (ŵ) can be treated as an economic loss function with expected
value

E[L(w∗, ŵ)|µ,Σ] = U(w∗)− E[U(ŵ)|µ,Σ]. (5.4)

This is the well known statistical “risk function,” which in the current
environment can be viewed as the certainty equivalent cost of using a
suboptimal portfolio weight.

Suppose the investor estimates µ and Σ using the sample sufficient
statistics

µ̂ = 1
T

T∑
t=1

Rt, Σ̂ = 1
T

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′,

then Kan and Zhou (2007) show that the risk function of the plug-in
portfolio is

E[L(w∗, ŵ)|µ,Σ] = a1
SR2

2γ + a2 (5.5)

where SR2 is the squared Sharpe ratio of the true optimal strategy w∗
and (a1, a2) are constants that depend only on the number of sample
observations T and the number of assets N .2 The formula shows that
the expected loss is zero for w∗ and is strictly positive for any other
weight. Holding N fixed, both a1 and a2 approach zero as T increases,
suggesting that the loss is inconsequential when T is large relative to

2The explicit formulae are given by a1 = 1− T
T−N−2

[
2− T (T−2)

(T−N−1)(T−N−4)

]
, a2 =

NT (T−2)
(T−N−1)(T−N−2)(T−N−4) .
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N . Holding T fixed, both a1 and a2 are increasing in N , meaning that
the loss becomes more severe when there are more parameters (more
assets), all else equal. And the investor suffers a bigger loss when the
Sharpe ratio is higher or risk aversion is lower as both of these lead the
investor to tilt toward risky assets, which in turn increases the investor’s
exposure to estimation uncertainty.

Equation (5.5) makes it possible to quantify the utility cost of the
plug-in estimator in reasonable calibrations. These costs suggest large
utility shortfalls for investors that unduly rely on consistency properties
of ŵ. But beyond its high dimensional challenge, a glaring disadvantage
of the plug-in solution is its inadmissibility. Other portfolio rules, such
as those based on shrinkage or Bayesian decision theoretic approaches,
improve expected out-of-sample performance for any values of the true
moments µ and Σ. The plug-in estimator is in this sense an especially
unattractive portfolio solution. Its inadmissibility stems from the failure
to account for dependence of end-use utility on parameter estimation.

By placing their analysis in a decision theoretical framework, Kan
and Zhou (2007) next provide a straightforward demonstration that
investors have tools at their disposal to mitigate out-of-sample utility
loss and easily improve over the plug-in portfolio. In particular, an
investor can understand ex ante how estimation uncertainty impacts
their out-of-sample utility, and how she can internalize this impact with
modified portfolio rules that reduce the deleterious effects of estimation
noise. Kan and Zhou (2007) demonstrate plug-in portfolio inadmissibility
by proving that simple portfolio tweaks (like tilting the plug-in solution
toward a heavier weight in the risk-free asset or mixing it with the
plug-in minimum variance portfolio) produce higher expected utility for
any value of µ and Σ. This insight is the essence of statistical decision
theory—outcomes are improved by integrating aspects of the investor’s
utility objective into the statistical problem of weight estimation, rather
than treating estimation and utility maximization as distinct problems.3

3There is a large literature analyzing portfolio choice through a Bayesian and
economic decision theoretical lens (see the survey of Avramov and Zhou (2010)).
Early examples such as Jorion (1986) and Frost and Savarino (1986) demonstrate
the utility benefits conferred by Bayes-Stein shrinkage solutions. Other contributions
in this area use informative and economically motivated priors (Black and Litterman,
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But the decision theoretical approach also gives rise to a paradox.
The problem formulation above is extraordinary simple. Returns are i.i.d.
normal. Preferences are quadratic. There is no aspect of the problem
that is ambiguous or unspecified. It would seem, then, that any solution
to this problem (decision theoretical or otherwise) must be similarly
clear cut and unambiguous. But this is not the case! To see this, let
us take stock of what each assumption buys us. The i.i.d. normality
assumption implies that sample means and covariances are sufficient
statistics for the investor’s information set (the sample of T return
observations). From this we know that any effective solution to the
quadratic utility problem should depend on data through these two
statistics and no others, so we know to restrict solutions to the form

ŵ = f(µ̂, Σ̂). (5.6)

Next, quadratic utility plus i.i.d. normality buys us some analytical
tractability of the expected loss in (5.5).4 We seek a portfolio rule
that minimizes E[L(w∗, ŵ)|µ,Σ]. But, without further guidance on the
function f , the problem of minimizing expected loss is ill-posed. Herein
lies the paradox. The seemingly complete formulation of the Markowitz
problem delivers an unambiguous solution only when the parameters
are known. Once estimation uncertainty must be accounted for, the
problem provides insufficient guidance for estimating portfolio rules
that maximize expected out-of-sample utility.

Some make progress by imposing a specific form of f . For example,
to demonstrate inadmissibility of the plug-in solution, Kan and Zhou
(2007) restrict f to a set of linear functions and show that within this set
there are portfolio solutions that uniformly dominate the plug-in rule.
Meanwhile they note that good choices for ŵ “can potentially be a very
complex nonlinear function of µ̂ and Σ̂ and there can be infinitely many
ways to construct it. However, it is not an easy matter to determine the

1992; Pastor, 2000; Pastor and Stambaugh, 2000; Tu and Zhou, 2010). While these
are not machine learning methods per se, they paved the way for development of
integrated estimation and utility optimization solutions that are now the norm among
machine learning portfolio methods.

4But this analytical tractability only obtains for certain choices of f (for example,
those linear in µ̂, Σ̂−1, or Σ̂−1µ̂).
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optimal f(µ̂, Σ̂).” Tu and Zhou (2010) and Kan et al. (2022) elaborate on
this idea with alternative portfolio combinations and propose portfolio
rules that aim to minimize utility loss under estimation uncertainty.
Yuan and Zhou (2022) extend this analysis to the high-dimensional case
where N > T . Instead of restricting the functional form of portfolio
strategies f , Da et al. (2022) make progress on this problem by imposing
restrictions on the data generating process of returns.

5.2 Integrated Estimation and Optimization

So where does the inadmissibility paradox leave us more generally? We
have an unknown function f appearing in an economic problem—this
is an ideal opportunity to leverage the strengths of machine learning.
In the current setting how might this work? Perhaps we can choose
a flexible model like a neural network to parameterize f and search
for function parameter values that maximizes expected out-of-sample
utility (or, equivalently, minimizes the risk function E[L(w∗, ŵ)|µ,Σ])?
The problem is that E[L(w∗, ŵ)|µ,Σ] can only be derived for certain
special cases like the plug-in estimator. For general f , the expected
out-of-sample utility is not available in closed form, and if it were it
depends on the unknown true parameters µ and Σ.

A feasible alternative approach is to choose the portfolio rule f to
optimize in-sample utility, and to regularize the estimator to encourage
stable out-of-sample portfolio performance (e.g., via cross-validation).
This falls neatly into the typical two-step machine learning workflow:

Step 1. Choose a class of functions indexed by a tuning parameter
(for example, the class might be linear ridge models, which are
indexed by the ridge penalty z) and use the training sample to
estimate model parameters (one set of estimates for each value of
z). Take note of how immediately the simple, analytical Markowitz
paradigm morphs into a machine learning problem. When the true
parameters are known, the tightly specified Markowitz environ-
ment gives a simple and intuitive closed-form portfolio solution.
Yet with just a sprinkling of estimation uncertainty, the decision
theoretical problem is only partially specified and the portfolio rule
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that minimizes out-of-sample loss cannot be pinned down. This
leads us to use the economic objective as the estimation objective.
In other words, the decision theoretical structure of the problem
compels us to integrate the statistical and economic objectives
and to consider open-minded machine learning specifications.

Step 2. In the validation sample, choose tuning parameters (e.g.,
a specific ridge penalty z) to optimize expected out-of-sample
performance. The theoretical underpinnings of regularization are
rooted minimization of estimation risk. In the Kan and Zhou
(2007) framework these underpinnings are explicit and regulariza-
tion is pursued through analytical calculations. The more standard
course of action replaces the theoretical calculations with empirics.
Expected out-of-sample utility is approximated by realized utility
in the validation sample, and the value of z that maximizes vali-
dation utility is selected. This empirical cross-validation obviates
the need for theoretical simplifications that would be necessary
to optimize expected utility directly.

Once the portfolio choice problem is cast in the machine learning
frame, one can begin generalizing any otherwise restrictive assumptions.
For example, the return distribution need not be normal nor i.i.d., since
we do not need to explicitly calculate expected out-of-sample utility.
We can thus write the general portfolio rule as

ŵ = f(XT ), (5.7)

where XT collates all data relevant to the decision making process. It
may include the return sample {Rt}Tt=1 itself as well as any conditioning
variables that modulate the conditional return distribution. We can
likewise swap out preference specifications to accommodate tail risk
concerns, multiple-horizon objectives, or other complications.

5.3 Maximum Sharpe Ratio Regression

Frontier machine learning methods for portfolio choice directly take
utility optimization into consideration when estimating portfolio rules.
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Important early progress in machine learning portfolio choice comes
from Ait-Sahalia and Brandt (2001), Brandt and Santa-Clara (2006),
and Brandt et al. (2009). Their central contribution is to formalize the
portfolio problem as a one-step procedure that integrates utility maxi-
mization into the statistical problem of weight function estimation. The
approach makes no distributional assumptions for returns. Instead, it
specifies investor utility and an explicit functional form for the investor’s
portfolio weight function in terms of observable covariates. Parameters
of the weight function are estimated by maximizing average in-sample
utility. Following Brandt (1999), we refer to this as the “parametric
portfolio weight” approach.

To keep our presentation concrete, we continue in the spirit of
Markowitz and specialize our analysis to the mean-variance utility
framework. Our primary motivation for doing so is that we can cast the
“parametric portfolio weight” as an OLS regression. To do so, we rely on
Theorem 1 of Britten-Jones (1999) who shows that the Markowitz plug-
in solution in (5.3) is proportional to the OLS coefficient in a regression
of a constant vector on the sample asset returns. In particular, the OLS
regression

1 = w′Rt + ut (5.8)

delivers coefficient5

wOLS ∝ Σ̂−1µ̂.

Intuitively, regression (5.8) seeks a combination of the risky excess
returns Rt that behaves as closely as possible to a positive constant.
This is tantamount to finding the combination of risky assets with the
highest possible in-sample Sharpe ratio. While this is exactly propor-
tional to identifying the in-sample tangency portfolio of risky assets, we
will see that the regression formulation is attractive for incorporating
machine learning methods into parameterized portfolio problems. Going
forward, we dub regressions of the form (5.8) as “maximum Sharpe
ratio regression,” or MSRR.

Brandt et al. (2009) focus on the portfolio weight parameterization

wi,t = w̄i,t + s′i,tβ (5.9)

5To derive this result, note that wOLS = (Σ̂ + µ̂µ̂′)−1µ̂ = Σ̂−1µ̂(1 + µ̂Σ̂−1µ̂)−1.
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where w̄i,t is some known benchmark weight of asset i at time t, and
si,t is a set of K signals that enter linearly into the portfolio rule with
K-dimensional coefficient vector β. This introduces scope for dynamic
portfolio weights that vary with conditioning variables. For notational
simplicity, we normalize w̄i,t to zero and stack weights and signals into
the vector equation6

wt = Stβ, (5.10)

where wt is N × 1 and St is N × K. Substituting into (5.8), MSRR
becomes

1 = β′(S′t−1Rt) + ut = β′Ft + ut. (5.11)

We may view wt as a set of dynamic weights on the N base assets Rt. Or,
equivalently, β is a set of static weights on K “factors” (characteristic-
managed portfolios):

Ft = S′t−1Rt. (5.12)

In other words, the restriction that the same signal combo applies for all
assets immediately converts this into a cross-sectional trading strategy
(since F represents portfolios formed as a cross-sectional covariance
of returns with each of the signals individually). The estimated port-
folio coefficients are β̂ = Ĉov(F )−1Ê(F ). In the language of Brandt
and Santa-Clara (2006), the MSRR weight parameterization in (5.10)
“augments the asset space,” from the space of base returns to the space
of factors. With this augmentation, we arrive back at the basic problem
in (5.8) that estimates fixed portfolio weights on factors. A benefit of
the MSRR formulation is that we have simple OLS test statistics at
our disposal for evaluating the contribution of each signal (as originally
proposed by Britten-Jones, 1999).

Brandt (1999) summarizes the benefits of parametric portfolio rules,
noting

“the return modeling step is without doubt the Achilles’ heel
of the traditional econometric approach.... Focusing directly

6Brandt et al. (2009) also note the ease of accommodating industry neutrality or
other weight centering choices as well as handling time-varying cross-section sizes
(in which case they recommend the normalization 1

Nt
s′i,tβ in (5.9), where Nt is the

number of assets at period t). We abstract from these considerations for notational
simplicity.



5.3. Maximum Sharpe Ratio Regression 115

on the optimal portfolio weights therefore reduces consid-
erably the room for model mispecification and estimation
error.”

They emphasize that estimation error control stems from a highly
culled parameter dimension (relative to estimating all assets’ means
and covariances).

The Brandt et al. (2009) empirical application studies portfolio rules
for thousands of stocks using only three parameters (that is, condition-
ing only on stocks’ size, value, and short-term reversal characteristics).
The least squares formulation for parameterized portfolio rules prompts
a brainstorm of adaptations to incorporate machine learning struc-
tures. We are immediately tempted to consider large K regressions
for incorporating a rich set of conditioning information, including for
example the full zoo of factor signals and perhaps their interactions with
macroeconomic state variables, along with the usual machine learning
regularization strategies for shrinkage and model selection. The idea of
lasso-regularized parametric portfolios is broached by Brandt and Santa-
Clara (2006) and Brandt et al. (2009), and thoroughly investigated by
DeMiguel et al. (2020).7 The beauty of MSRR is that efficient software
for lasso and elastic-net regression can be deployed for the portfolio
choice problem straight off-the-shelf. This covers essentially all varieties
of penalized regression that employ `1 or `2 parameter penalties, which
includes a range of realistic portfolio considerations like leverage control
(often formulated as an `1 penalty) or trading costs adjustments (often
modeled as an `2 penalty). In the special case of ridge regression with
penalty z, the penalized MSRR objective is

min
w

∑
t

(1− β′Ft)2 + zβ′β (5.13)

with solution
β̂ ∝ (Ĉov(F ) + zI)−1Ê(F ), (5.14)

which modifies the standard sample tangency portfolio of factors by
shrinking the sample covariance toward identity. This naturally connects

7Ao et al. (2018) also study a related lasso-regularized portfolio choice problem
that they call MAXSER.
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with the broader topic of covariance shrinkage for portfolio optimization
discussed by Ledoit and Wolf (2004) and Ledoit and Wolf (2012).

Together with the ease of manipulating MSRR specifications, the
viability of penalized linear formulations raises exciting prospects for
parametric portfolio design. For example, we can break the restriction
of identical coefficients for all assets in (5.10) with the modification

wi,t = s′i,tβi (5.15)

and associated regression representation

1 = vec(B)′{vec(St−1)� (Rt ⊗ 1K)}+ ut, (5.16)

where B = [β1, ..., βN ]. This regression has the interpretation of finding
the tangency portfolio among NK “managed” strategies, with each
individual strategy an interaction of return on asset i with one of its
signals. A minor modification of this problem makes it possible to
accommodate assets with different sets of predictors. As a twist on the
applicability of penalized MSRR, one interesting approach would be
to penalize βi − β̄, which allows some heterogeneity across assets but
shrinks all assets’ weight rules toward the average rule, in the spirit of
empirical Bayes.

Brandt et al. (2009) discusses a number of extensions and refine-
ments to their parametric portfolio problem, including non-negative
transformations of weights for long-only strategies, trading cost consid-
erations, and multi-period investment horizons. Most of these extensions
can be folded into the MSRR framework outlined here as long as the
mean-variance objective is retained. For more general utility functions,
estimation must step out of the OLS regression framework and requires
numerical optimization. This is more computationally challenging for
high-dimensional parameterization but adds very little conceptual com-
plexity.

5.4 High Complexity MSRR

MSRR is adaptable to sophisticated machine learning models such as
neural networks. One simple example of a potential MSRR network
architecture is shown in Figure 5.1. A set of L “raw” signals for stock
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θ

β

wi,t=β′Si,t(θ)

Si,t(θ)=q(Xi,t; θ)

Xi,t

Figure 5.1: MSRR Neural Network

Note: Illustration of a simple neural architecture mapping conditioning variables Xi,t
into optimal portfolio weights wi,t.

i, denoted Xi,t, are inputs to the network. These propagate through
a sequence of nonlinear transformations (parameterized by network
coefficients θ) to produce a vector ofK output signals, Si,t(θ) = q(Xi,t; θ)
where q ∈ RL → RK . Then an otherwise standard MSRR formulation
uses the transformed characteristics to derive the mean-variance efficient
portfolio rule:

1 = β′St−1(θ)′Rt + ut. (5.17)

Estimation of the parameters (β, θ) is a nonlinear least squares prob-
lem that is straightforward to implement with off-the-shelf neural net-
work software packages. The interpretation of this estimation is that it
searches for flexible nonlinear transformations of the original signals set
to engineer new asset characteristics that can actively manage positions
in the base assets and produce high Sharpe ratio strategies.

Simon et al. (2022) pursue this framework using a feed-forward
neural network in the portfolio weight function with three hidden layers
of 32, 16, and 8 neurons in each layer, respectively. They show that the
neural network enhances parametric portfolio performance. The linear
portfolio specification with the same predictors earns an annualized
out-of-sample Sharpe ratio of 1.8, while the neural network portfolio
achieves a Sharpe ratio of 2.5, or a 40% improvement.

Didisheim et al. (2023) prove theoretically that the “virtue of com-
plexity” also holds in mean-variance efficient portfolio construction.
Under weak assumptions, the Sharpe ratio of a machine learning portfo-
lio is increasing in model parameterization. Empirically, they present one
especially convenient neural specification derived within the framework
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of Section 2. In particular, they propose a neural architecture using
random feature ridge regression. The formulation is identical to (5.17)
except that the neural coefficients θ are randomly generated rather than
estimated. As predicted by theory, the realized out-of-sample Sharpe
ratio in their empirical analysis is increasing with the number of model
parameters and flattens out around 4 when 30,000 parameters are used.

5.5 SDF Estimation and Portfolio Choice

The equivalence between portfolio efficiency and other asset pricing
restrictions, like zero alphas in a beta pricing model or satisfaction
of SDF-based Euler equations, imply that there are statistical objec-
tives (besides utility objectives) to work from when estimating optimal
portfolios. Much of the financial machine learning literature focuses on
SDF estimation. Knowledge of the SDF is interesting for a number of
economic questions, such as inferring investor preferences, quantifying
pricing errors, and eliciting the key sources of risk that influence asset
prices. In practice, however, the financial machine learning literature
has placed insufficient restrictions on the SDF estimation problem to
answer questions about specific economic mechanisms. Instead, this
literature tends to evaluate estimation results in terms of the out-of-
sample Sharpe ratio of the estimated SDF. That is, machine learning
approaches to SDF estimation focus on the mean-variance portfolio
choice problem, motivated by Hansen and Richard (1987)’s theorem of
SDF and mean-variance frontier equivalence.

The typical formulation of the SDF estimation problem is the follow-
ing. If an SDF exists (given, for example, the absence of arbitrage), it
can be represented as a portfolio w of excess returns (barring a constant
term)

Mt = 1− w′Rt. (5.18)
Furthermore, an SDF must satisfy the standard investor Euler equation
at the heart of asset pricing theory:

E[MtRt] = 0. (5.19)

Combining these we see:

E[Rt −RtR′tw] = 0. (5.20)
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This equation identifies a tradable SDF. Note that it is also the first-
order condition to the Britten-Jones (1999) MSRR problem,

min
w

E
[
(1− w′Rt)2

]
,

which formally connects the problems of SDF estimation and Sharpe
ratio maximization, and thus it results in the tangency portfolio as the
estimated SDF weights.

Kozak et al. (2020) propose an SDF estimation problem in a condi-
tional and parameterized form that has a close connection to MSRR.
In particular, they posit an SDF portfolio wt = Stβ just as in (5.10),
and note that this implies an SDF of the form

Mt = 1− β′Ft (5.21)

with Ft defined in (5.12).8 In other words, the SDF that prices assets con-
ditionally can be viewed as a static portfolio of characteristic-managed
factors. The main contribution of Kozak et al. (2020) is to introduce reg-
ularization into the conditional SDF estimation problem. They primarily
analyze ridge regularization, which directly maps to the MSRR ridge
estimator in equation (5.14). Rotating their estimator into the space of
principal components of the factors, Kozak et al. (2020) show that ridge
shrinkage induces heavier shrinkage for lower ranked components. They
offer an insightful take on this derivation: “The economic interpretation
is that we judge as implausible that a PC with low eigenvalue could con-
tribute substantially to the volatility of the SDF and hence to the overall
maximum squared Sharpe ratio.” Kozak (2020) uses a kernel method
to estimate a high dimensional SDF with a clever implementation of
the “kernel trick” that circumvents the need to estimate an exorbitant
number of parameters.

The empirical results of Kozak et al. (2020) indicate that their
methodology of estimating a factor-based SDF with penalized regres-
sion delivers a portfolio with economically potent (and statistically
significant) out-of-sample performance relative to standard benchmark

8Kozak et al. (2020) normalize the SDF to have mean 1: Mt = 1−β′(Ft−E(Ft)).
We adopt a different normalization to conform to the MSRR problem in Britten-Jones
(1999).
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asset pricing models. Constructing the SDF from 50 anomaly factor
portfolios results in an SDF with an annualized information ratio of
0.65 versus the CAPM. If instead of using 50 characteristics for their
set of signals, they supplement the raw characteristics with second and
third powers of those characteristics as well as pairwise characteristic
interactions (for a total of 1,375 signals), this information ratio increases
to 1.32.9

Giglio et al. (2021b) analyze and compare the asymptotic properties
of Kozak et al. (2020)’s estimator with PCA and RP-PCA-based estima-
tors proposed by Giglio and Xiu (2021) and Lettau and Pelger (2020a),
in a common unconditional factor model framework (4.1). With γ̂ and
V̂ defined by (4.6) and (4.4) the PCA-based SDF estimator is given by

M̂t = 1− γ̂′V̂t.

Giglio et al. (2021b) show that the ridge and PCA-based estimators are
consistent as long as factors are pervasive.

Unlike Kozak et al. (2020) who model the SDF as a portfolio of
anomaly factors, Chen et al. (2021) extend the SDF estimation problem
by modeling weights on individual stocks. Their model deviates from
MSRR and the parametric portfolio problem in a few interesting ways.
First, they allowing for a flexible weight function that includes a recur-
rent neural network component. Second, they formulate their estimator
via GMM with a sophisticated instrumentation scheme. Beginning from
a conditional version of the basic Euler equation in (5.20), Chen et al.
(2021) rewrite the GMM objective function as

min
w

max
g

1
N

N∑
j=1

∥∥∥∥∥E
[(

1−
N∑
i=1

w(SM,t, Si,t)Ri,t+1

)
Rj,t+1g(SM,t, Sj,t)

]∥∥∥∥∥ .
(5.22)

The function w(SM,t, Si,t) describes the weight of the ith stocks in the
tradable SDF, which is a scalar function of macroeconomic predictors
(SM,t, which influence all assets’ weights) and stock-specific predictors
(Si,t, which only directly influence the weight of stock i). It uses an
LSTM to capture dynamic behavior of SM,t, whose output flows into a

9Information ratios are inferred from alphas and standard errors reported in
Table 4 of Kozak et al. (2020).
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for a given conditioning function ĝ(.) and information set. We deal with an unbalanced panel in

which the number of time series observations Ti varies for each asset. As the convergence rates of

the moments under suitable conditions is 1/
p

Ti, we weight each cross-sectional moment condition

by
p

Ti/
p

T , which assigns a higher weight to moments that are estimated more precisely and

down-weights the moments of assets that are observed only for a short time period.

For a given conditioning function ĝ(.) and choice of information set the SDF portfolio weights

are estimated by a feedforward network that minimizes the pricing error loss

!̂ = min
!

L(!|ĝ, It, It,i).

We refer to this network as the SDF network.

We construct the conditioning function ĝ via a conditional network with a similar neural network

architecture. The conditional network serves as an adversary and competes with the SDF network

to identify the assets and portfolio strategies that are the hardest to explain. The macroeconomic

information dynamics are summarized by macroeconomic state variables ht which are obtained by

a Recurrent Neural Network (RNN) with Long-Short-Term-Memory units. The model architecture

is summarized in Figure 1 and each of the di↵erent components are described in detail in the next

subsections.

Figure 1: GAN Model Architecture

This figures shows the model architecture of GAN (Generative Adversarial Network) with RNN (Recurrent Neural
Network) with LSTM cells. The SDF network has two parts: (1) A LSTM estimates a small number of macroeco-
nomic states. (2) These states together with the firm-characteristics are used in a FFN to construct a candidate
SDF for a given set of test assets. The conditioning network also has two networks: (1) It creates its own set of
macroeconomic states, (2) which it combines with the firm-characteristics in a FFN to find mispriced test assets for
a given SDF M . These two networks compete until convergence, that is neither the SDF nor the test assets can be
improved.

In contrast, forecasting returns similar to Gu, Kelly, and Xiu (2020) uses only a feedforward

network and is labeled as FFN. It estimates conditional means µt,i = µ(It, It,i) by minimizing the

13

Electronic copy available at: https://ssrn.com/abstract=3350138

Figure 5.2: Chen et al. (2021)’s Network Architecture

Note: Source: Chen et al. (2021).

feed-forward network where it is combined with the stock-level predictors
to produce the final portfolio weight output (see the top portion of
Figure 5.2).

The function g(SM,t, Sj,t) is a set of D instrumental variables which
provide the system of moment conditions necessary to estimate the
portfolio weight function. The instrumental variables, however, are
derived from the underlying data via the network function, g. The
structure of g mirrors the structure of w. Macroeconomic dynamics are
captured with an LSTM, and the output is combined with stock-specific
variables Sj,t in a feed-forward network to produce instruments for the
Euler equation pricing errors of asset j. The loss function is the norm
of the pricing errors aggregated across all stocks, which is minimized to
arrive at weight function estimates.

Perhaps the most interesting aspect of this specification is that
instrumental variables are generated in an adversarial manner. While
the estimator searches for an SDF weight function that minimizes
pricing errors for given a set of instruments (the outer minimization
objective in (5.22)), it simultaneously searches for the instrumental
variables function that casts the given SDF in the worst possible light
(the inner minimization objective in (5.22)).

Motivated by these empirical studies of machine learning SDFs,
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Didisheim et al. (2023) theoretically analyze the role that model com-
plexity plays shaping the properties of SDF estimators. Like Kelly et al.
(2022a), they focus on high-dimensional ridge estimators with two main
differences. First, they move from a single asset time series setting with
a single asset to a panel setting with an arbitrary number of risky
assets. Second, they reorient the statistical objective from time series
forecasting to SDF optimization. In this setting, Didisheim et al. (2023)
explicitly derive an SDF’s expected out-of-sample Sharpe ratio and
cross-sectional pricing errors as a function of its complexity. Their cen-
tral result is that expected out-of-sample SDF performance is strictly
improving in SDF model complexity when appropriate shrinkage is
employed. They report empirical analyses that align closely with their
theoretical predictions. Specifically, they find that the best empirical
asset pricing models have an extremely large number of factors (more
than the number of training observations or base assets).

5.5.1 Non-tradable SDF Estimation

The preceding section focuses on estimating an SDF represented in the
space of excess returns, or as a tradable portfolio. As noted, the rather
minimal economic structure imposed in these estimation problems make
it difficult to investigate economic mechanisms. A smaller but equally
interesting literature infers an SDF by balancing structure and flexibility,
including using (semi-)nonparametric model components embedded in
a partial structural framework and conducting hypothesis tests.

It is fascinating to recognize that the idea of parameterizing asset
pricing models using neural networks appears as early in the litera-
ture as Bansal and Viswanathan (1993). These prescient specifications
have all of the basic ingredients that appear in more recent work, but
are constrained by smaller data sets and thus study small network
specifications.

Chen and Ludvigson (2009) is perhaps the finest example to date of
this approach. Their model environment is broadly rooted in the nonlin-
ear habit consumption utility specification of Campbell and Cochrane
(1999) and related models of Menzly et al. (2004), Wachter (2006),
and Yogo (2006). As the authors rightly point out, the variety of habit
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specifications in the literature suggest “the functional form of the habit
should be treated, not as a given, but as part and parcel of any empirical
investigation,” and in turn they pursue a habit model by “placing as
few restrictions as possible on the specification of the habit and no
parametric restrictions on the law of motion for consumption.”

The model of Chen and Ludvigson (2009) is best summarized by its
specification of habit consumption, which is the key driver of investors’
marginal utility. In particular, habit consumption is

Xt = Ctg

(
Ct−1
Ct

, ...,
Ct−L
Ct

)
,

where Ct is consumption level at time t and g is the “habit function”
that modulates the habit level as a function of consumption in the recent
L periods. Habit impacts investor well-being via the utility function

U = E
( ∞∑
t=0

δt
(Ct −Xt)1−γ − 1

1− γ

)
,

which in turn defines the SDF (where δ and γ are the time discount
factor and risk aversion, respectively). In contrast to Campbell and
Cochrane (1999) who specify an explicit functional form for g, Chen
and Ludvigson (2009) use a feed-forward neural network as a generic
approximating model for the habit function.

Like Chen et al. (2021), they estimate an SDF by minimizing the
norm of model-implied Euler equation conditional moments with macro-
finance data as instruments. A particularly appealing aspect of the
analysis is the care taken to choose the size of the neural network and
conduct statistical tests in line with asymptotic theory upon which their
tests rely. First, they extend the asymptotic theory of Ai and Chen
(2003) and Ai and Chen (2007) for “sieve minimum distance (SMD)”
estimation of neural networks to accommodate the serial correlation in
asset pricing data. Ultimately, they decide on a small model by machine
learning standards (only 18 parameters), but with a sample of only 200
observations this restraint lends credibility to their tests.

The payoff from careful asymptotic analysis is the ability to conduct
hypothesis tests for various aspects of habit persistence in investor
preferences. Results favor a nonlinear habit function over linear, and
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internal habit formation (i.e., dictated by one’s own consumption history)
rather than external habit (or “keeping up with the Joneses”). Lastly,
they conduct a comparison of pricing errors from their estimated habit
model versus other leading asset pricing models such as the three-
factor model (Fama and French, 1993) and the log consumption-wealth
ratio CAPM model (Lettau and Ludvigson, 2001), and find significant
improvements in pricing of size and book-to-market sorted portfolios
with neural network habit formulation.

5.5.2 Hansen-Jagannathan Distance

The GMM (and the related SMD) SDF estimation approach is rooted
in the problem of minimizing squared pricing errors. The pricing error
is defined by the Euler equation, and may be represented as the average
discounted excess return (which should be zero according to the Euler
equation) or as the difference between the undiscounted average excess
return and the model-based prediction of this quantity. While it is
convenient to directly compare models in terms of their pricing errors,
Hansen and Jagannathan (1997) emphasize that the efficient GMM
estimator uses a model-dependent weighting matrix to aggregate pricing
errors, which means we cannot compare models in terms of their opti-
mized GMM loss function values. As a solution to the model comparison
problem, Hansen and Jagannathan (1997) recommend evaluating all
models in terms of a common loss function whose weighting matrix
is independent of the models. In particular, they propose a distance
metric of the form

HJ2
m = min

θm
e(θm)′Σ̃−1e(θm), (5.23)

where e(θm) is the vector of pricing errors associated with the mth

model (which is parameterized by θm). The square root of equation
(5.23) is known as the “HJ-distance.” There are two key aspects to note
in its formulation. First, pricing errors are weighted by Σ̃ = 1

T

∑
tRtR

′
t,

which is model independent, and thus puts all models on equal footing
for comparison. Second, the pricing errors are based on the parameters
that minimize the HJ-distance, as opposed to those dictated by the
efficient GMM objective.
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While these differences versus the standard GMM objective function
are subtle, they equip the HJ-distance with some extraordinary theoreti-
cal properties. First, Hansen and Jagannathan (1997) show that HJm is
equal to the pricing error of the most mispriced portfolio of base assets
(those corresponding to the vector e) arising from model m. That is,
the HJ-distance describes the best that model m can do in minimizing
the worst-case pricing error.10 Second, the HJ-distance describes the
least squares distance between the (potentially misspecified) SDF of
model m and the SDF family that correctly prices all assets.

Both of these properties imply that the HJ-distance is a particularly
attractive objective function for training machine learning models of the
SDF and optimal portfolios. A machine learning model that minimizes
the HJ-distance will be robust (as it seeks to minimize worst-case model
performance) and will deliver a model that is minimally misspecified in
an `2 sense. Training machine learning models via HJ-distance aligns
with Ludvigson (2013)’s admonition

“for greater emphasis in empirical work on methodologies
that facilitate the comparison of competing misspecified mod-
els, while reducing emphasis on individual hypothesis tests
of whether a single model is specified without error.”

Progress has begun in integrating the HJ-distance into financial
machine learning problems. Kozak et al. (2020) link their SDF estimation
approach to an HJ-distance minimization problem with a ridge (or lasso)
penalty. Theirs can be viewed as an unconditional HJ-distance applied to
the space of factors. Recently, Gagliardini and Ronchetti (2019), Antoine
et al. (2018), and Nagel and Singleton (2011) analyze approaches to
model comparison via a conditional HJ-distance. Didisheim et al. (2023)
derive the theoretical behavior of the HJ-distance in complex machine
learning models and show that the distance is decreasing in model
complexity. There remains large scope for future research into machine
learning models trained through the conditional or unconditional HJ-
distance.

10This worst-case portfolio is essentially the “Markowitz portfolio” of pricing
errors, achieving the highest pricing error per unit of volatility.
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5.6 Trading Costs and Reinforcement Learning

The financial machine learning literature provides a flexible framework
to combine several characteristics into a single measure of overall ex-
pected returns (e.g. Gu et al., 2020b). The same literature documents
the relative “feature importance” of different return prediction char-
acteristics (e.g. Chen et al., 2021). These findings suggest that the
prediction success of machine learning methods is often driven by short-
lived characteristics that work well for small and illiquid stocks e.g.
Avramov et al., 2022a, suggesting that they might be less important
for the real economy (e.g. Van Binsbergen and Opp, 2019). The high
transaction costs of portfolio strategies based on machine learning imply
that these strategies are difficult to implement in practice and, more
broadly, raise questions about the relevance and interpretation of the
predictability documented in this literature. Do machine learning ex-
pected return estimates merely tell us about mispricings that investors
do not bother to arbitrage away because the costs are too large, the
mispricing too fleeting, and the mispriced markets too small to matter?
Or, do trading-cost-aware machine learning predictions also work for
large stocks, over significant time periods, and in a way that matters
for many investor types, thus leading to new and important economic
insights?

It is common in financial research to separate the question of port-
folio implementability from the return prediction (or portfolio weight
estimation) component of the problem. In this approach, the estimation
problem abstracts from transaction costs and turnover, and it is not
uncommon for the resultant investment strategies to produce negative
returns net of transaction costs. There is a natural explanation for this
result. It’s not that the market doesn’t know predictive patterns are
there; it’s that the patterns are there because they are too costly to
trade or due to other limits-to-arbitrage. This is a critical challenge for
predictive methods in finance. Without somehow embedding limits-to-
arbitrage into the statistical prediction model, the model will tend to
isolate predictive patterns that are unrealistic to trade because these are
the ones currently unexploited in the market. This does not rule out the
possibility that there are predictable phenomena that may be practically
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exploited; i.e., predictability that is profitable net of trading costs. It
just means that without guidance on costs, a statistical model cannot
distinguish between implementable and non-implementable predictive
patterns. So, if it’s the case that the most prominent predictable pat-
terns in returns are those that are associated with limits-to-arbitrage (a
plausible scenario given the unsparing competition in securities markets),
these will be the first ones isolated by ML prediction models.

This section discusses attempts to derive machine learning portfolios
that can be realistically implemented by market participants with
large assets under management, such as large pension funds or other
professional asset managers. If a strategy is implementable at scale, then
the predictive variables that drive such portfolio demands are likely to
be informative about equilibrium discount rates.

5.6.1 Trading Costs

The literature on portfolio choice in the face of trading costs typically
solves the problem by assuming that the trading cost function is known
or that trading cost data is available. This obviates the need for an
“exploration” step in a machine learning portfolio choice algorithm,
keeping the problem more or less in a standard supervised learning
framework and avoiding reinforcement learning machinery. Brandt et al.
(2009) take this approach in the baseline parameterized portfolio setup.
Recently, Jensen et al. (2022) introduce a known trading cost function
into the portfolio choice objective, then use a combination of machine
learning and economic restrictions to learn the optimal portfolio rule.
We outline their model and learning solution here.

The finance literature has long wrestled with the technical challenges
of trading cost frictions in portfolio choice (e.g. Balduzzi and Lynch,
1999; Lynch and Balduzzi, 2000). Garleanu and Pedersen (2013) derive
analytical portfolios amid trading costs. Their key theoretical result is
that, in the presence of trading costs, optimal portfolios depend not
just on one period expected returns Et[Rt+1], but on expectations of
returns over all future horizons, Et[Rt+τ ] τ = 1, 2, ....11 Because of this,

11Intuitively, the investor prefers to trade on long-lived predictive patterns because
the cost of trading can be amortized over many periods, while short-lived predictability
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the idea of approaching the return prediction problem with machine
learning while accounting for trading costs faces tension. Garleanu and
Pedersen (2013) achieve a tractable portfolio solution by linking all
horizons together with a linear autoregression specification, which keeps
the parameterization small and collapses the sequence of expectations
collapses to a linear function of prevailing signal values. Machine learn-
ing typically seeks flexibility in the return prediction model; but if
separate return prediction models are needed for all future horizons
the environment quickly explodes into an intractable specification even
by machine learning standards. How can we maintain flexibility in the
model specification without making restrictive assumptions about the
dynamics of expected returns?12

Jensen et al. (2022) resolve this tension with three key innovations.
First, they relax the linearity of expected returns in predictive signals
and allow for nonlinear prediction functions. Second, they relax the
autoregressive expected return assumption of Garleanu and Pedersen
(2013) by requiring stationary but otherwise unrestricted time series
dynamics. From these two solutions, they are able to theoretically derive
a portfolio rule as a generic function of conditioning signals. Their third
contribution is to show that a component of this portfolio rule (the “aim”
function to which the investor gradually migrates her portfolio) can be
parameterized with a neural network specification, which sidesteps the
aforementioned difficulty of requiring different machine learning return
prediction models for different investment horizons.13 Their solution is
an example of a model that combines the benefits of economic structure
with the flexibility of machine learning. The economics appear in the
form of a solution to the investor’s utility maximization problem, which
imposes a form of dynamic consistency on the portfolio rule. Only after
this step is the flexible machine learning function injected into the
portfolio rule while maintaining the economic coherence of the rule.

is quickly cannibalized due to frequent portfolio adjustments.
12Another complementary tension in this setting is that, if a trading cost portfolio

solution must build forecasts for many return horizons, the number of training
observations falls as the forecast horizon increases, so there is generally little data to
inform long horizons forecasts.

13This requires the assumption that signals are Markovian, but their dynamics
need not be further specified.
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Specifically, the investor seeks a portfolio wt to maximize net-of-cost
quadratic utility:

utility = E
[
µ(st)′wt −

κt
2 (wt − gtwt−1)′ Λ (wt − gtwt−1)− γt

2 w
′
tΣwt

]
(5.24)

where µ(st), Σ and Λ summarize asset means, covariances, and trading
costs, respectively. These vary over time in predictable ways related to
the conditioning variable set st, though for purposes here we discuss
the simplified model with static covariances and trading costs. κt is
investor assets under management (the scale of the investor’s portfolio
is a first-order consideration for trading costs) and gt is wealth growth
from the previous period. Proposition 3 of Jensen et al. (2022) shows
that the optimal portfolio rule in the presence of trading costs is

wt ≈ mgtwt−1 + (I −m)At (5.25)

where the investor partially trades from the inherited portfolio wt−1
toward the “aim” portfolio At at time t:

At = (I −m)−1
∞∑
τ=0

(mΛ−1ḡΛ)τ cEt
[ 1
γ

Σ−1µ(st+τ )︸ ︷︷ ︸
Markowitzt+τ

]
. (5.26)

The aim portfolio depends on m, a nonlinear matrix function of trading
costs and covariances, as well as the mean portfolio growth rate ḡ = E[gt].
The aim portfolio is an exponentially smoothed average of of period-by-
period Markowitz portfolios, which reflects the fact that adjustments
are costly so it is advantageous to smooth portfolio views over time.
The portfolio solution may be rewritten as an infinite sum of past aim
portfolios and their growth over time:

wt =
∞∑
θ=0

(
θ∏

τ=1
mgt−τ+1

)
(I −m)A(st−θ) . (5.27)

This solution in (5.27) embeds all of the relevant dynamic economic
structure necessary for an optimal portfolio in the presence of trading
costs. But it also shows that, if we substitute this solution into the
original utility maximization problem, the learning task may be reduced
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to finding the aim portfolio function A(·) that maximizes expected
utility. Based on this insight, Jensen et al. (2022) use the random Fourier
features neural network specification (as in Kelly et al., 2022a; Didisheim
et al., 2023), but rather than approximating the return prediction
function they directly approximate the aim function, A(·) = f(st)β for
f a set of P known random feature functions and β is the regression
coefficient vector in RP . Empirically, their one-step, trading-cost-aware
portfolio learning algorithm delivers superior net-of-cost performance
compared to standard two-step approaches in the literature that first
learn portfolios agnostic of trading costs then smooth the learned
portfolio over time to mitigate costs.

5.6.2 Reinforcement Learning

Reinforcement learning broadly consists of machine learning models for
solving a sequential decision making problem under uncertainty. They
are especially powerful for modeling environments in which an agent
takes an action to maximize some cumulative reward function but the
state of the system and thus the distribution of future outcomes is
influenced by the agent’s action. In this case, the agent’s choices are key
conditioning variables for learning the payoff function. But since most
state/action pairs are not observed in the past, the data can be thought
of as largely unlabeled, and thus the model does not lend itself to direct
supervision. Because relevant labels are only precipitated by the agent’s
actions, much of reinforcement learning splits effort between learning
by experimentation (“exploration”) and optimizing future expected
rewards given what they’ve learned (“exploitation”).

That the agent seeks to optimize future rewards means that rein-
forcement learning may be a valuable tool for portfolio choice. However,
in the basic portfolio choice problem outlined earlier, the state of the
system is not influenced by the investor’s decisions. The investor is
treated as a price taker, so any portfolio she builds does not perturb
the dynamics of risk and return going forward. Thus, given data on
realized returns of the base assets, machine learning portfolio choice
can be pursued with supervised learning techniques. In other words,
the benefits of reinforcement learning for a price taker may be limited.
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Of course, the price-taker assumption is unrealistic for many in-
vestors. Financial intermediaries such as asset managers and banks are
often the most active participants in financial markets. Their promi-
nence as “marginal traders” and their tendency to trade large volumes
means that their portfolio decisions have price impact and thus alter
the state of the system. Such an investor must learn how their decisions
affect market dynamics, and this introduces an incentive to experiment
with actions as part of the learning algorithm. That is, once investors
must internalize their own price impact, the tools of reinforcement
learning are well-suited to the portfolio choice problem.

The mainstream finance literature has seen minimal work on re-
inforcement learning for portfolio choice,14 though there is a sizable
computer science literature on the topic. The more prominent is an
investor’s price impact in dictating their future rewards, the more
valuable reinforcement learning methods become. As such, the finance
profession’s tendency to focus on relatively low frequency investment
strategies makes it somewhat unsurprising that reinforcement learning
has not taken hold, though we expect this to change in coming years.
Meanwhile, the computer science literature has largely applied reinforce-
ment learning to higher frequency portfolio problems related to market
making and trade execution. While we do not cover this literature here,
for interested readers we recommend the survey of Hambly et al. (2022).

14Cong et al. (2020) is one example.



6
Conclusions

We attempt to cover the burgeoning literature on financial machine
learning. A primary goal of our work is to help readers recognize machine
learning as an indispensable tool for developing our understanding of
financial markets phenomena. We emphasize the areas that have received
the most research attention to date, including return prediction, factor
models of risk and return, stochastic discount factors, and portfolio
choice.

Unfortunately, the scope of this survey has forced us to limit or
omit coverage of some important financial machine learning topics. One
such omitted topic that benefits from machine learning methods is risk
modeling. This includes models of conditional variances and covariances,
and in particular the modeling of high-dimensional covariance matrices.
A large literature uses machine learning methods to improve estima-
tion of covariance matrices and, in turn, improve the performance of
optimized portfolios. Closely related to risk modeling is the topic of
derivatives pricing. In fact, some of the earliest applications of neu-
ral networks in finance relate to options pricing and implied volatility
surfaces. Prominent examples of machine learning or nonparametric
models for derivatives research include Ait-Sahalia and Lo (1998) and
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Ait-Sahalia and Lo (2000), Anders et al. (1998), Rosenberg and Engle
(2002), Bollerslev and Todorov (2011), and Israelov and Kelly (2017),
among many others.

Most research efforts to date involve machine learning to improve
performance in prediction tasks. This is the tip of the iceberg. One
critical direction for next generation financial machine learning analysis
is to better shed light on economic mechanisms and equilibria. Another
is using machine learning methods to solve sophisticated and highly
nonlinear structural models. Separately, the evolutionary nature of
economies and markets, shaped by technological change and shifting
regulatory environments, presents economists with the challenge of
modeling structural change. An exciting potential direction for research
is to leverage the flexible model approximations afforded by machine
learning to better detect and adapt to structural shifts.

While this survey has focused on the asset pricing side of finance,
machine learning is making inroads in other fields such as corporate
finance, entrepreneurship, household finance, and real estate. For ex-
ample, Hu and Ma (2020) use machine learning techniques to process
video pitches of aspiring entrepreneurs to test the role of speaker per-
suasiveness in early stage financing success. Li et al. (2021) use textual
analysis of earnings calls to quantify corporate culture and its impact
on firm outcomes. Lyonnet and Stern (2022) use machine learning to
study how venture capitalists make investment decisions. Erel et al.
(2021) provide evidence that machine learning algorithms can help firms
avoid bad corporate director selections. Fuster et al. (2022) quantify
the equilibrium impact of machine learning algorithms in mortgage
markets. While machine learning is has seen far more extensive use in
asset pricing, its further application to corporate finance problems is
an exciting area of future research.
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