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1 Introduction

Many of us work at least partially from home these days. A phenomenon that was only marginal a

few years ago has become widespread and has challenged, in potentially profound ways, the basic

organization of work in firms and cities. Information technology has improved to a point where

workers can talk, chat, and send information in documents, databases, audio, and video without

delays and at extremely low costs. However, although information technology clearly complements

remote work, significant advances in information and communication technologies (ICT) increased

remote work only marginally between 1980 and 2019. In contrast, since the COVID-19 pandemic,

remote work has boomed. Suddenly, commuting has declined by half in many of our largest cities

and seems to have stabilized at those low levels.1 What generated this abrupt and seemingly

permanent increase in work from home since the pandemic? What are its consequences for the

structure of cities? Will the change be uniform across them? Importantly, what are the welfare

consequences of permanent shifts in commuting and agglomeration patterns? In this paper, we

aim to address these questions by proposing, and estimating for most U.S. cities, a dynamic theory

of city structure with a labor delivery choice. We also contrast and verify its implications with

data on individual cell phone mobility and zip code-level house prices.

At the core of our theory is the idea that the value of working at the CBD, in short “office

work”, depends on proximity to other workers. Workers’ productivity is enhanced by interactions

with others in their office, across businesses, and more generally with other workers at city centers.

This is an old idea from Marshall, of course. Remote work offers workers and employers the

possibility to work in the same city but without interacting in person. Since workers do not

internalize many of the benefits they convey to others, this alternative possibility leads to a novel

coordination problem: Workers prefer to work in the CBD only if others do too, but prefer to

work from home otherwise. In a dynamic economy, where workers face idiosyncratic preferences

for remote work (e.g., having a baby or remodeling) and fixed costs from switching between labor

delivery modes (e.g., setting up a home office or buying a car), this mechanism can lead to multiple

stationary equilibria with different permanent shares of commuters. In these cases, abrupt changes

to the number of commuters can make a city converge to a stationary equilibrium that is very

different from the initial one. For many places, we postulate, this abrupt change was the COVID-

19 pandemic and the lockdowns and self-isolation it generated. This one-time temporary change

has led, for several U.S. cities, to a permanent change in one of the most enduring characteristics

of human organization: work at city centers.

Of course, not all cities are equal. Some cities specialize in industries where interactions between

workers lead to large spillovers and correspondingly large populations. Other cities specialize in

industries with low spillovers and are small. Commuting costs can vary dramatically depending

on transport infrastructure and geographic characteristics. Furthermore, the ability to work from

1These trends have been reported from survey data (Barrero et al., 2023; Brynjolfsson et al., 2020; Aksoy et al.,
2022; Brynjolfsson et al., 2023), administrative data (Dalton et al., 2022), changes in job advertisements for remote
positions (Hansen et al., 2023), or changes in internet usage of firms (Matthies and Kwan, 2022).
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home varies sharply with the worker’s occupation, and occupations are, clearly, not uniformly

distributed in space. We all know about the concentration of bankers in New York or programmers

in Palo Alto. All these characteristics of cities determine the extent to which the coordination

problem we identify leads to multiplicity in stationary equilibria. We characterize these conditions

and prove that, naturally, the intensity of the coordination problems, and therefore the likelihood

of multiple stationary equilibria, increases with the strength of agglomeration forces minus that

of congestion forces and in the relative productivity of remote work to office work. We show

that, in the U.S., the particular configuration of urban characteristics that leads to multiplicity

in stationary equilibria was prevalent, before the pandemic, in many of the larger cities. That is,

we estimate parameter configurations for large cities that, in general, although not always, put

them in the “multiplicity cone”: the parameter set where cities exhibit multiplicity in stationary

equilibria.

Our finding that large cities tend to be in the multiplicity cone implies that the abrupt reduction

in commuters caused by the COVID-19 pandemic made many of them switch to a path that seems

to be converging to the low commuting stationary equilibrium. Of course, even in the stationary

equilibrium with little commuting, some people commute; their idiosyncratic preference for office

work and the fixed cost of switching make it the better choice for them. Our interpretation is that

the pandemic reduced the share of commuters below the share of commuters in the low commuting

stationary equilibrium. Hence, commuting has increased in some of these cities, but only slightly,

and has stabilized way below pre-pandemic levels. In contrast, small cities tend to have parameter

configurations outside the multiplicity cone, so their stationary equilibrium is unique. These cities

experienced the same abrupt reduction in commuters as large cities did during the pandemic,

but their dynamic evolution simply brings them back to the pre-pandemic stationary equilibrium.

Hence, they exhibit no permanent change in the number of commuters. In sum, we argue that the

pandemic acted as an equilibrium selection device for cities where multiple stationary equilibria

existed ex-ante. In a rare – in our view – empirical occurrence, the spatially uniform temporary

push of most workers into a remote state during the pandemic has revealed the set of cities featuring

multiple stationary equilibria and has served as a selection mechanism to determine the stationary

equilibrium to which these cities are converging.

We contrast these predictions of our model with cell-phone-based data on worker mobility from

SafeGraph, available from before the pandemic until mid-2022. We first identify CBDs in all cities

by finding the group of census tracks that receive the largest numbers of commuters pre-pandemic.2

We then track the number of trips to these CBDs over time. The results are revealing. In New

York, NY, for example, relative to pre-pandemic levels, the pandemic reduced the number of trips

to the CBD by more than 80%. After the pandemic, the number of trips increased slightly, but

it has now stabilized at about 40% of the pre-pandemic level. San Francisco, CA, shows a similar

pattern. In contrast, Madison, WI, experienced a drop in the pandemic as large as New York

2In some cases, we identify multiple CBDs when several areas have more than 80% of the commuters to the
main CBD. One example is Midtown and Downtown in Manhattan.
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but has recovered fully to pre-pandemic levels. The implications of the apparent multiplicity of

stationary equilibria are present more broadly in the data. The largest U.S. cities, with employment

above 1.5 million workers, experienced a drop of 80% in trips to the CBD during the pandemic

but now have stabilized at only 60% of pre-pandemic levels. In contrast, the smallest CBSAs, with

employment below 150 thousand workers, experienced a comparable drop in CBD trips during the

pandemic, but have now gone, on average, fully back to pre-pandemic levels.

The available housing data is also consistent with the mechanism in our theory. As others

have documented, the pandemic generated a flattening of house price distance gradients in cities

(Gupta et al., 2022a). Namely, prices at the CBD declined relative to prices further away from

the city. This is a natural consequence of the expansion of work from home since the advantage of

living close to work is diminished if workers do not commute to the office or do so only a couple

of days a week. What has not been documented, but we document here using Zillow zip code-

level data, is that the flattening in the rent gradient has continued in the largest cities but has

reversed and disappeared in the smaller ones. The cities where trips to the CBD have gone back

to pre-pandemic levels, like Madison, or Durham, NC, exhibit housing price gradients that are not

statistically different from pre-pandemic ones. In contrast, the larger cities where CBD trips have

stabilized at much lower levels, like New York and San Francisco, exhibit a large and significant

flattening of this gradient, which has been exacerbated since the pandemic.

What are the welfare implications of our findings? For small cities outside the multiplicity

cone, the long-run welfare effect is zero. These cities have simply reverted to the pre-pandemic

equilibrium. The transition lasted a couple of years, but the transition costs are probably only

marginal. In contrast, for cities that have permanently switched to the work-from-home intensive

stationary equilibrium, the welfare implications depend on the welfare ranking of both stable

stationary equilibria. A direct comparison of these stationary equilibria in the 208 cities that we

estimate are inside the multiplicity cone reveals that the welfare costs are positive but relatively

modest. The costs are about around 3.7% for Los Angeles and San Jose, 3.2% for New York,

2.8% for San Francisco, and 2% for Phoenix. A stationary equilibrium with office work is indeed

better than the remote work intensive stationary equilibrium, but the benefits from the lack of

commuting compensate for most of the losses. Of course, these numbers depend on the details

of the estimation strategy of our model and the many sources of data, including the ACS and

the NLSY, that we use to implement it. We discuss the details of the estimation of our dynamic

discrete choice model in the body of the paper.

Our paper is related to several strands of the literature. First, we contribute to the emerging

literature studying the effects of remote work on urban environments. Liu and Su (2023) document

a decrease in the urban wage premium of occupations with higher levels of remote work since

the COVID-19 pandemic, consistent with a decline in the agglomeration externality for these

occupations. Davis et al. (2024) develop a model where remote work productivity increases via

adoption externalities and study the response of remote work employment to improvements in its

technology. Parkhomenko and Delventhal (2024) develop a quantitative spatial equilibrium model
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with work from home and commuting that predicts the optimal frequency of remote work. They

study the spatial redistribution of economic activity induced by an increase in the amenity value

of remote work. We propose an alternative interpretation to the large and persistent increase

in remote work that does not rely on exogenous productivity or amenity shocks. Duranton and

Handbury (2023) show that exogenous changes in which workers are allowed to work remotely in

a monocentric city model can replicate observed changes in commuting and demand for housing.

Instead, we show how the coordination of agents in a city can lead to multiple stationary equilibria,

and how temporary shocks to the number of commuters can permanently affect the structure of

cities by selecting a different stationary equilibrium.

Remote work has been linked to changes in residential and commercial housing prices within

and across cities (Mondragon and Wieland, 2022; Gupta et al., 2022b; Brueckner et al., 2021; Liu

and Su, 2021; Ramani and Bloom, 2021; Althoff et al., 2021). Our finding that residential housing

rent gradients with respect to distance to the CBD are diverging between larger and smaller cities

is, to our knowledge, a new fact. We also provide an interpretation for this fact, since these housing

rent gradients map directly into structural parameters of our model.3 We show how the divergence

between larger and smaller cities is predicted by our model, given that larger cities are more likely

than smaller cities to converge to the remote-work-intensive stationary equilibrium.

Understanding the productivity of remote work relative to in-person work remains an active

area of research. Building on earlier studies (Oettinger, 2011; Cappelli and Keller, 2013), recent

work indicates that remote workers may perform better than in-person workers in some contexts

(Choudhury et al., 2022; Bloom et al., 2022; Barrero et al., 2021; Etheridge et al., 2020; Bloom

et al., 2015). However, workers employed in occupations involving a significant amount of problem-

solving tend to experience lower performance when working remotely (Emanuel et al., 2022; Kunn

et al., 2020). Gibbs et al. (2023) study employee productivity before and during the COVID-19

pandemic among skilled professionals at an Indian information technology services company. They

find that employee productivity fell by 8% to 19%, and point to higher communication costs and

longer time spent on coordination activities and meetings as sources for this decline. They also

find that employees networked with fewer individuals and business units, both inside and outside

the firm.4 Other studies emphasize that the higher earnings of remote workers can be partly

explained by their selection into remote work based on unobservable characteristics (Harrington

and Emanuel, 2022; Atkin et al., 2022). Our model recognizes workers’ heterogeneous preferences

for remote work (Mas and Pallais, 2017; Lewandowski et al., 0). Our analysis of the NLSY79

provides new estimates of the remote work premium from non-experimental data that account

for unobserved persistent heterogeneity in worker performance. Our findings indicate that the

technology of remote work has been improving steadily over the past decades while remaining less

productive than in-person work on average across occupations.

3Duranton and Puga (2023) also link housing rent gradients to the elasticity of urban costs with respect to city
size.

4See also Yang et al. (2022). They find that firm-wide remote work resulted in a less collaborative network
among workers, with fewer connections between different parts.
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Agglomeration economies are a central tenet of urban economics (Henderson, 2003; Combes

et al., 2012). When cities successfully bring people together, positive spillovers abound. People

interact, learn from each other, and foster entrepreneurship, leading to greater productivity within

the city (Moretti, 2004; Gennaioli et al., 2012; Glaeser and Maré, 2001; Baum-Snow and Pavan,

2011; De La Roca and Puga, 2016).5 We contribute to the literature examining urban agglomer-

ation economies by studying how remote work alters their workings. Canonical theories of cities

predict that more central locations command higher house prices because of better accessibility

to the locus of production (Alonso, 1964; Muth, 1969). By removing the need to travel across

locations to reach the workplace, remote work deprives cities of one of their most fundamental

organizational principles. The main insight from our analysis is that cities with strong agglomer-

ation externalities, typically viewed as successful, are also the most at risk of dramatic shifts in

their structure when people choose to stay home. Similar to us, Owens et al. (2020) uses coordi-

nation problems generated by residential externalities to rationalize the existence of depopulated

and successful neighborhoods with similar underlying characteristics in Detroit.

The remainder of the paper is organized as follows. Section 2 presents stylized facts on remote

work that emphasize the sudden increase in remote work since 2020, despite no large increase

in the earnings premium for remote work. Section 3 documents the widely heterogeneous post-

pandemic experience across cities in trips to the CBD (Subsection 3.1) and housing value gradients

(Subsection 3.2), before considering alternative explanations and presenting an intuitive case for

multiple stationary equilibria (Subsection 3.3). Section 4 presents our dynamic monocentric model

with a choice of labor delivery mode. Section 5 quantifies the model, including our estimation of

the relative productivity of remote work and externality parameters. We evaluate the ability

of our estimated model to rationalize the evolution of commuting across cities in Section 6 and

compute the resulting welfare implications in Section 7. We relegate many of the model’s and

quantification’s details, additional robustness exercises, and counterfactuals to the Appendix.

2 The Evolution of Remote Work

We begin by documenting changes in the shares of workers delivering work remotely and changes in

the hourly earnings’ remote work premium between 1980 and 2023. We rely on two data sources.

First, we use the decennial census waves of 1980, 1990, and 2000, and the annual American

Community Survey waves between 2005 and 2023. From this source, we obtain large repeated

cross-sectional information on the individual earnings per hour of workers who work in person or

remotely. Second, we use the National Longitudinal Survey of Youth 1979 (NLSY79), a panel

of 4,147 individuals from which we collect information on the number of hours of remote work,

hourly pay, and occupation every two years from 1998 to 2022. The repeated observations of

the same workers allow us to control for permanent unobserved heterogeneity among workers and

5The productivity premium in larger cities has also been linked to the combination of more efficient firms and
workers selecting these areas (Combes et al., 2008; D’Costa and Overman, 2014; Gaubert, 2018).
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obtain estimates of the remote work premium that are not biased by selection on unobservable

characteristics (Harrington and Emanuel, 2022; Atkin et al., 2022). We provide details about the

construction of our samples in Appendix A.2.

Remote work has become an increasingly common form of labor delivery over the past few

decades.6 While part of this increase is likely due to improvements in communication technologies

or remote work preferences, another part may arise via gradual changes in the composition of the

labor force, both in terms of educational attainment and employment by occupation and industry.

Our first exercise aims at removing the effect of compositional changes.

In Figure 1a, we report time-varying estimates of a logit model for the probability of being a

remote worker. We use Census/ACS and NLSY data separately. In both datasets, we control for

workers’ education, gender, age, marital status, race, experience on the job, and broad industry

and occupation fixed effects. In the Census/ACS data, we define as “remote workers” those who

report working from home when asked about their means of transportation to work. In the NLSY

data, we define as “remote workers” those who work for more than 24 hours (i.e., three days) at

home in a week. We then predict the shares of remote workers, varying the year and setting the

values of all covariates to their mean value over the sample: these shares can be interpreted as the

probability of being a remote worker for someone with typical and time-invariant characteristics.7

Both datasets reveal a small and gradual rise in the share of remote work over time and a sudden

post-pandemic jump. In the ACS, this share increases from less than 1 percent in 1980 to 2.6

percent in 2019, jumping to 12 percent in 2020 and peaking at 15 percent in 2021, before returning

to 11 percent in 2023. The NLSY features a similar pattern, increasing from 1.4 percent in 1998

to 3.7 percent in 2018, then rising to 9.2 percent in 2020, before dropping back to 7.8 percent in

2022. Importantly, since these patterns control for individual characteristics and compositional

changes, the gradual increase is likely due to changes in technology or remote work preferences,

but the large change in 2020 is probably related to the pandemic.

In Figure 1b, we estimate the hourly wage premium of remote work relative to in-person work

over time. In the Census/ACS data, we regress log hourly wages on year-specific indicators of

remote work, the same controls as those used in the logit model described above, and allowing in

addition for year-specific effects for occupation, industry, education, region, and demographics. In

the NLSY data, we complement the specification by adding individual fixed effects. Both exercises

indicate a steady increase in the premium for remote work. Estimates from the ACS data indicate

that, in 1980, remote work implied a discount of 44.5 percent in hourly rates compared to in-person

work; in 2022, remote workers with similar observable characteristics earned 6.5 percent higher

earnings relative to observationally equivalent office workers.8 In the NLSY sample, the discount

for remote work went from 18.5 percent in 2000 to 3.1 percent in 2022. The stronger wage discount

in the NLSY is consistent with remote workers having unobserved characteristics that make them

6Statistics typically report the share of all working hours performed at home over time Oettinger (2011); Cappelli
and Keller (2013); Liu and Su (2023)

7In Table A1 of Appendix A.2, we report the actual share of remote workers over time as measured in the ACS.
8The ACS series stops in 2022 since the 2023 ACS did not report industry codes at the time of analysis.
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Figure 1: Prevalence and Earnings Premium of Remote Work

(a) Predicted Share of Remote Work
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(b) Hourly Wage Premium of Remote Work
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Panel (a) reports the predicted share of remote workers from a logit model with year fixed effects and controlling
for workers’ education, gender, age, marital status, race, experience on the job, and broad industry and occupation
fixed effects. The estimates report the predicted probability that an individual with sample-average characteristics
is a remote worker in any given year. Panel (b) reports the coefficients on yearly remote work indicators from
a regression of log hourly wages on all the Panel (a) controls plus year-specific effects for occupation, industry,
education, region, and demographics. In the Census/ACS data, “remote workers” are defined as those reporting
working from home when asked about their means of transportation to work. In the NLSY data, “remote workers”
are defined as those who work for more than 24 hours at home per week. Each point represents an estimate for a
year. The shaded areas represent the 95 confidence interval around the estimates.

higher earners, everything else equal. Remarkably, the remote work premium did not increase

substantially between 2018 and 2022.9 This is consistent with the large increase in remote work

being driven by other mechanisms rather than by a large productivity increase of remote work.

The sudden increase in the probability of remote work, coupled with a stable wage discount, is

consistent with the rapid shift to remote work being driven by mechanisms other than large remote

work productivity or preference shocks. In the next section, we present evidence and articulate

the case of multiple equilibria as such a mechanism.

3 Heterogeneous Responses Across Cities

Individual decisions to reduce social contact during the pandemic and the related stay-at-home

policies had dramatic consequences on the level and evolution of commuting and the value of

proximity to the CBD across cities. We provide evidence of this impact using individual cell phone

mobility data and estimates of the gradient of housing prices relative to distance to the CBD. We

9In Figure A1 of Appendix A.5.2, we show that this stability is also present separately for occupations with high
and low teleworkable indices, as defined by Dingel and Neiman (2020).
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Figure 2: Change in Visits to the CBD for Selected Cities

(a) New York, NY
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(b) San Francisco, CA
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(c) Madison, WI
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Estimates of monthly indicators in a separate regression for each CBSA of visits to the CBD at the block group-
month level. The outcome variable is the number of visits to the CBD from the specified block group, divided by
the number of residing devices in that block group, as defined in (37), scaled by the value of this ratio in January
2020. The shaded areas represent the contour delimited by the consecutive 95 percent confidence intervals of each
monthly indicator. Standard errors are clustered at the census tract of origin.

argue that, taken together, the evidence we provide can be rationalized only with mechanisms that

allow cities to respond in drastically different ways to a common lockdown shock. Multiplicity of

stationary equilibria provides such a mechanism.

3.1 The Evolution of Commuting Patterns Across Cities

To analyze individual mobility, we use anonymized data from SafeGraph, a data provider that

tracks foot traffic to businesses relying on mobile phone GPS locations from third-party applica-

tions. We use the Neighborhood Patterns dataset, which aggregates the amount of foot traffic

at the census block group level, to study the monthly evolution of trips to the CBD.10 We first

make use of the SafeGraph data to define the location of CBDs in each CBSA. The Neighborhood

Patterns dataset provides information on the number of monthly visits recorded in each census

block group. In particular, these visits are broken down by their most likely purpose, based on

their observed characteristics.11 We identify the center point of the CBDs as the center of a disc

with a radius of 2 kilometers that receives the largest amount of work-related foot traffic. We then

include all the block groups within this 2-kilometer disk into the CBD. We also allow cities to have

several CBDs. We provide the details of our procedure in Appendix A.6.

The Neighborhood Patterns dataset also records the number of visits to each destination block

10Chapple et al. (2023) also use SafeGraph data to document patterns of downtown foot traffic in 62 North-
American Cities. They combine SafeGraph data with another private data source to obtain estimates until 2023.
Their results confirm that, while downtown visits have recovered to pre-pandemic levels in some smaller cities,
they have stabilized between 40 and 60 percent of their pre-pandemic levels in most larger cities, with little change
between July 2022 and April 2023.

11Workplace visits are defined as those recorded Monday through Friday between 7:30 am and 5:30 pm and that
dwelled for at least six hours. While the workplace visit count is missing for many CBSAs and census block groups
in each CBSA, the coverage is sufficient to compute the version of Figures 2 and A4 for office trips only in Appendix
A.8. We find similar patterns.
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Figure 3: Response of Trips to the CBD Relative to January 2020

(a) Large vs. Small CBSAs, Monthly
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(b) All CBSAs, April 2020 vs. June 2022
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Panel (a) reports the estimates of the average volume of visits to the CBD from block groups located in i) CBSAs
with total employment above 1.5 million (25 largest CBSAs), ii) CBSAs with total employment below 150,000
(663 smallest CBSAs) expressed as a share of their values in January 2020. The shaded areas represent the contour
delimited by the consecutive 95 percent confidence intervals of each monthly indicator. Standard errors are clustered
by month and census region. Panel (b) reports the change in the average level of visits to each CBSA’s CBD between
January 2020 and April 2020, and between January 2020 and July 2022, against employment (BEA). The solid
lines represent a fitted kernel-weighted local polynomial smoothing, with the shaded area corresponding to the 95
percent confidence interval around the fitted value.

group by block group of origin, allowing to compute bilateral flows of foot traffic at the monthly

level.12 On average, SafeGraph tracks around 30 million devices each month between January 2020

and July 2022.13 However, the number of mobile phones recorded in a city and the set of block

groups of origin in which they are located vary across months. Some of the variation in the raw

counts of foot traffic is therefore due to changes in the size of the sample and in the set of origin

block groups included in the dataset. We control for these variations by analyzing the change in

foot traffic flows at the origin block group level. In particular, we compute the share of monthly

foot traffic originating from each block group that is directed to the CBD, we normalize the share

of visits to the CBD from each origin block group by its value in January 2020, and then regress

the normalized origin block group-level shares of visits to the CBD on month indicators.14

Figure 2 shows the volume of monthly trips to the CBD over the course of the pandemic,

relative to its value in January 2020, for New York, NY, San Francisco, CA, and Madison, WI. For

12The block group of origin is imputed by assigning to each mobile phone the block group in which the phone is
recorded at night as the block group of residence.

13In the largest cities (New York, Los Angeles, Chicago), between 400,000 and 800,000 devices are recorded each
month.

14Chapple et al. (2023) measure foot traffic by counting visits to downtown businesses, scaled by the sampling
rate of the state. Instead, we count visits from any block group to downtown block groups, scaled by the sampling
rate of each origin block group. That is, we control for changes in sampling rates across neighborhoods of each city,
which we view as more robust than using the state-level sampling rate.
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all three cities, the first months of the pandemic saw a drastic drop in trips to around 20 percent

of their initial value. The recovery, however, has been quite different. While Madison, a relatively

smaller city, essentially went back to its pre-pandemic levels by the end of our sample period, CBD

trips for larger cities like New York and San Francisco have stabilized at around 40 percent of their

pre-pandemic levels, a dramatic drop.

This behavior is, in fact, systematic. Panel (a) of Figure 3 shows the monthly trips to the

CBD relative to January 2020 for cities grouped by size. Our measure of size is total non-farm

employment in the CBSA in 2019, published by the Bureau of Economic Analysis.15 The green

line reports the estimates of the trips to the CBD for the largest CBSAs with employment of more

than 1.5 million, while the blue line collects the smallest CBSAs in our sample, with employment

below 150,000.16 We normalize to 1 the number of trips in January 2020. Both groups experienced

a sharp decline to less than 30 percent of pre-pandemic trips up to April 2020, but their paths are

remarkably different afterward: while the group of small CBSAs returned to their pre-pandemic

levels of visits to the CBD around early 2021, large CBSAs stabilized at around only 60 percent

of their initial level.

Panel (b) of Figure 3 considers the relation of trips with city size in more detail. The first

series shows the extent to which these trips declined in April 2020 compared to January 2020,

plotted against the city’s total employment. Trips to the CBD declined by about 75 percent

of the pre-pandemic level on average, with only little variation in the experiences of different

cities. Importantly, this initial drop does not appear related to city size. In contrast, city size is

systematically related to the return-to-office for the latest available data. The second series shows

that in July 2022, the largest cities are substantially more likely to have trip levels way below their

pre-pandemic levels.

3.2 Distance Gradients in House Prices

The previous section showed that the evolution of flows to the CBD has been heterogeneous across

cities. Of course, changes in remote work patterns imply changes in demand for housing within

cities. As workers spend less time on-site, a short commute becomes less important, leading to

lower demand for housing next to centers of economic activity, and, everything else equal, a lower

premium for proximity to the CBD.

Changes in urban land gradients may be driven by a large number of factors varying at the

CBSA level. Some of these include constraints on local housing development (Gyourko et al., 2008;

Saiz, 2010; Lutz and Sand, 2022) or the connectivity between urban and suburban parts of the

15This measure has the advantage of being available for all CBSAs, allowing us to describe patterns of recovery
for the largest set of CBSAs—847 in total. In Appendix A.18, we reproduce the key graphs from Section 3 using as
size the measure of employment used in the quantification, computed from Census microdata, and consistent with
our measure of commuting. We confirm that the patterns described below hold for the subset of CBSAs for which
we can measure employment in the Census.

16The smallest CBSA with employment above 1.5 million is Austin, TX, while the largest CBSA with employment
below 150,000 is Rochester, MN.
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Figure 4: Change in Housing Values Gradients for Selected Cities

(a) New York, NY
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(b) San Francisco, CA
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(c) Madison, WI
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Estimates of monthly coefficients for log distance between zip codes and the CBD, relative to their value in January
2020. In a separate regression for each CBSA, we regress log housing values at the zip code level, on log distance
by month, and geographic controls. The shaded areas represent the 95 percent confidence intervals of each monthly
indicator, computed from robust standard errors. Data on housing values from Zillow’s ZHVI index.

CBSA.17 For this reason, we estimate the CBSA-specific price and rent gradients in our bid-rent

regression. We use monthly housing price zip code level data from Zillow.18 This high-frequency

data allows us to follow the monthly changes in housing prices for many cities since 2019.

Indexing CBSAs by j, zip codes by i, and months by t, we estimate the monthly slope of the

bid-rent function, using the following empirical specification,

ln pijt = δjt ln(distij) + βXij + αjt + eijt, (1)

where units of observation are zip code-months. We refer to pijt as the price in zip code i of CBSA

j in month t, and distij is the distance in kilometers between the centroid zij of zip code i and the

CBD of CBSA j. We include CBSA-month fixed effects, αjt, and zip code level control variables,

Xij. The zip code controls contain the log of median household income, the share of households in

the top national income quintile, the median age, and the share of Black residents, all measured

in 2019, and geographic controls.19

Figure 4 plots the time evolution of −(δjt − δjt0), the drop in the distance coefficient at time

t relative to the baseline of January 2020: a decrease in the reported coefficients constitutes a

flattening of the price gradient. Consistent with the evidence presented in Figure 2, we find that

the willingness to pay for proximity to the CBD is permanently lower in New York and San

Francisco, while it barely starts decreasing before returning to its initial values in Madison.

Panel (a) of Figure 5 shows the average distance elasticity of house prices relative to January

17See Bailey et al. (2018) for measures of social connections using Facebook data.
18The monthly housing price dataset is the Zillow Home Value Index (ZHVI). Zillow also publishes the Zillow

Observed Rent Index (ZORI), a monthly housing rent data that would be a closer analog to the ACS rent data.
However, the ZORI is reported for fewer zip codes, making the estimation of the gradient imprecise for many
CBSAs.

19The geographic controls are the tract-level controls in footnote 47, averaged by zip code, using tract population
as weights.
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Figure 5: Response of House Price Gradients Relative to January 2020

(a) Large vs. Small CBSAs, Monthly
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(b) All CBSAs, January 2021 vs. November 2024

-.25

-.2

-.15

-.1

-.05

0

.05

C
ha

ng
e 

in
 H

ou
si

ng
 P

ric
e 

G
ra

di
en

t

.02 .1 .5 1 2 4 8 16
CBSA Employment (millions)

January 2021 November 2024

Panel (a) reports the difference between the average housing price gradients in January 2020 and each following
month, using the same employment thresholds as in Figure 3. In this figure, 25 cities have employment above 1.5
million and 225 have employment below 150,000. A negative value for the difference in housing price gradients
implies a lower premium for housing located close to the CBD. The value of the average housing price gradient in
each group is reported next to the marker of the associated group every six months. The shaded areas represent
the contour delimited by the consecutive 95 percent confidence intervals of each monthly indicator. Panel (b)
reports the difference between the housing price gradients in January 2020 and January 2021, and November 2024,
respectively, against employment (BEA). Each marker represents a CBSA. The gradients are estimated using zip
code level data from Zillow for 278 CBSAs. The solid line represents a fitted kernel-weighted local polynomial
smoothing, with the shaded area corresponding to the 95 percent confidence interval around the fitted value.

2020 for the same group of city sizes as in Figure 3. In particular, the vertical axis reports again

−(δjt− δjt0), the drop in the distance coefficient at time t relative to the baseline of January 2020,

so that a decrease in the reported coefficients implies a flattening of the price gradient. Quite

naturally, prices move more slowly than trips over time. All cities experience a flattening of the

housing price gradients of around 0.01 by January 2021. This decline stops and reverses for small

cities, which return to around their pre-pandemic level; the drop in the gradient of larger cities,

instead, persists and appears to stabilize around 0.095 by the end of 2024.

Panel (b) of Figure 5 illustrates the cross-sectional variation as a function of city size in the

drop of housing price gradients at two different points during and after the pandemic. As above,

the vertical axis represents the drop in the distance coefficient at time t relative to the baseline of

January 2020. During the first year of the pandemic (January 2020 to January 2021), the distance

elasticity of housing prices flattened by about 0.01 on average. This drop is sizeable relative to

the average price gradient in January, equal to -0.044. The heterogeneity is moderate and again

unrelated to city size. Consistently with evidence on CBD trips, however, the flattening in the

price gradient becomes negatively associated with city size as the pandemic progresses and then

recedes.
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3.3 Potential Explanations

The dramatic changes in large cities documented in the last two subsections have received the

most attention from researchers. However, our results stress that not all cities have followed the

same path after the COVID-19 pandemic commuting shock. In particular, the return of smaller

cities to their pre-pandemic structure is a salient feature of the post-pandemic experience as well.

Existing explanations for the sharp increase in remote work rely on large and sudden increases

in either aggregate remote work productivity or worker preferences (or a combination thereof).20

These rapid and large technology and preference changes would be expected to produce at least

some noticeable and lasting shifts in commuting patterns across many cities. Yet our evidence

shows that a sizable group of smaller CBSAs have reverted to their pre-pandemic structures,

suggesting that these national shocks, while probably also relevant, cannot fully account for the

observed heterogeneity. Of course, cities differ in their share of employment amenable to remote

work, so even a large nationwide improvement in remote work productivity or attractiveness might

affect remote work adoption only moderately in cities with low shares of teleworkable employment.

However, Dingel and Neiman (2020) estimate that this share varies from 25 to 55 percent across

CBSAs. Hence, at least one-fourth of jobs remain teleworkable even in the cities least amenable to

remote work, while in the city most apt to remote work, almost one in two workers are employed

in non-teleworkable occupations. In our data, cities that fully returned to pre-pandemic CBD trips

by July 2022, and for which there is little to no change in the willingness to pay for proximity to

downtown by the end of 2024 still have 34 percent of workers employed in teleworkable occupations.

While large country-level changes in preferences or productivity would normally be expected to

imply some persistent adjustment in trips to the CBD or distance-rent gradients even in small

cities, we find little evidence of such changes. Importantly, the share of teleworkable occupations

in cities with a permanent decline of at least 40 percent in trips to CBD is 43 percent–a higher,

but not dramatically higher, value to explain the large differences in commuting patterns across

cities. Although plausible, explanations based solely on preference or technology shocks appear

insufficient to fully account for the range of heterogeneous behaviors we document.

A related series of candidate explanations suggest that cities differ in other characteristics,

unrelated to occupational composition, which produce differential evolution of commuting patterns.

One possibility, for example, is that large cities can be congested, making commuting to the city

center costly and workers more willing to transition to remote work. If congestion were the main

driver of these patterns, we might expect a lower propensity to travel to the CBD even before the

pandemic. However, the data show the opposite pattern. In particular, over the last three months

of 2019, 30.6 percent of all trips in CBSAs with employment above 1.5 million were directed toward

the CBD, compared with only 15.6 percent in CBSAs with fewer than 150 thousand workers. This

higher rate of CBD trips in larger CBSAs is consistent with the idea that those cities’ central

20Davis et al. (2024) calibrate a short-term increase in remote work productivity of 83% among high-skilled
workers. Parkhomenko and Delventhal (2024) opt for a calibration combining a rise in remote work productivity
of about 10% with a decline in the aversion to remote work of 46 to 70%.
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areas are congested precisely because workers want to have access to the wages and benefits they

provide.

A second possibility is that the differential behavior of large and small cities is driven by differ-

ential employment concentration across establishments. In particular, if smaller CBSAs are more

likely to host large establishments, they may be more likely to return to high levels of commuting if

those establishments participate in bringing workers back to the office. We examine this possibility

in Appendix A.11 by estimating, for each CBSA the share of employment accounted for by the

largest 5% and 10% of establishments. We find that employment is in fact less concentrated in

smaller cities than in larger ones. We interpret this finding as suggesting that differences in the

return to the office between large and small CBSAs are not primarily driven by the idiosyncratic

decisions of the largest establishments.

Another possibility is that, during the pandemic, workers shifted towards occupations that are

more amenable to remote work. This shift might be driven, for example, by national changes in

preferences or technology. However, we see no footprint of these changes in the wage premium by

occupations. In Appendix A.5.2, we re-estimate the wage premium dividing occupations accord-

ing to how amenable they are to remote work, using the Dingel and Neiman (2020) index. Figure

A1 shows no differential evolution of this premium over the pandemic years. Regardless of the

evolution of the wage premium, we could still observe the patterns described in the sections above

if employment shifted towards teleworkable occupations at a higher rate in larger than in smaller

cities. In Appendix A.12 we examine this possibility in detail. We find that, in the wake of the

pandemic, the share of teleworkable employment increased by about 5%, a value much smaller

than the large drops in foot traffic; crucially, by the end of 2023 the share of teleworkable em-

ployment increased more in smaller CBSAs (7.9%) than in larger ones (5.8%). This finding makes

it unlikely that differential changes in the occupational composition can explain the patterns we

have described.

While all plausible, these arguments seem limited in their ability to jointly reconcile the range

of evidence we present. This evidence highlights the need for a theory that rationalizes hetero-

geneous responses across cities to a common shock to the number of commuters. The theory we

propose rationalizes heterogeneous responses depending on whether a city exhibits multiplicity of

stationary equilibria, which in turn depends on the balance between agglomeration externalities,

occupational composition, and commuting costs. In particular, when externalities are the main

reason for downtown’s attractiveness and so a city features multiplicity, high levels of pre-pandemic

commuting were only one possible stationary equilibrium. In those cases, the pandemic shock can

move the city to a dynamic path that converges to a stationary equilibrium with much higher

levels of remote work.

To illustrate this intuition, Figure 6 presents a phase diagram for the dynamics of the number

of commuters in our model. The axes represent the number of commuters in two adjacent periods.

All stationary equilibria are represented as crossing with the 45-degree line, where the number

of commuters (the state variable) is constant over time. We compare how a city with a single
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Figure 6: Heterogeneous Responses to Lockdown Shocks

(a) Unique Stationary Equilibrium
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(b) Multiple Stationary Equilibria
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This figure shows the adjustment towards the stationary equilibrium in the case of unique vs. multiple stationary
equilibria. In both panels, the orange line depicts the adjustment towards a stationary equilibrium following an
initial shock that brings the number of commuters Lc,t to zero. The dashed gray line in the right panel shows the
45-degree line. When the stationary equilibrium is unique (left panel), the city returns to the initial stationary
equilibrium. With multiple stationary equilibria, the city converges to the low-commuting one.

stationary equilibrium (left panel) and a city with multiple stationary equilibria, initially in the

high-commuting stationary equilibrium (right panel), respond to the same commuting shock.21

From the stationary equilibrium with high levels of commuting, this shock initially reduces the

measure of commuters Lc,t to almost zero. Subsequently, as the restrictions are lifted and public

confidence returns, individuals re-optimize their labor delivery mode. The set of incentives workers

face, however, is now different between the two city structures.

In cities with a unique equilibrium, the aggregate number of commuters Lc,t has limited in-

fluence on the net individual benefit of working in the office. In this environment, technology is

the primary determinant of wage differentials, and the amenity value of being downtown is largely

independent of the CBD’s overall vibrancy. Because externalities have little impact on individual

choices, the city’s fundamentals ultimately restore the initial equilibrium, as depicted by the path

of the orange line in Panel (a).

In contrast, the economy’s fundamentals are not the sole determinant of the final aggregate

state of cities with multiple stationary equilibria. In this case, the current number of commuters

powerfully shapes the incentives to return to the office. A lockdown pushing the city into low

commuting levels significantly alters the individual productivity differential in favor of remote

work. While travel congestion may decrease, the allure of the downtown area also diminishes, and

21Here, and in all of the phase diagrams below, we implicitly assume a unique dynamic equilibrium. Although
we cannot exclude the presence of multiple dynamic equilibria, Appendix B.6 provides extensive testing suggesting
that this possibility is limited in practice.
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the amenity value of working in the central business district vanishes. As illustrated by the orange

line in Panel (b) of Figure 6, the city finally settles into a low commuting stationary equilibrium.

Since the number of commuters is permanently lower, the rent gradient is also flatter and closer

to zero. This logic explains how the same temporary shock can have large permanent effects in

some cities and no effect in others. It also explains why pre-pandemic changes in preferences

and technology that did not change the stationary equilibrium only led to marginal effects on the

number of commuters.

Equipped with this intuition, we set up the formal model in Section 4 and derive testable

predictions on the existence of multiple equilibria for multiple cities. We then investigate in

Section 5 whether cities like Madison are predicted to respond like Panel (a) of Figure 6, whether

cities like New York and San Francisco are predicted to respond like Panel (b), and the welfare

and cross-city implications of these different responses.

4 Model

4.1 Overview

We model a disk-shaped city with an exogenous population of size L.22 Time is discrete. A worker

starts period t in a labor delivery mode ℓ ∈ {c,m} (commuting or remote) that was determined

in the previous period and is fixed within the current one. The worker chooses a residence lo-

cation, housing quality, and consumption, supplying labor according to mode ℓ. Workers then

observe idiosyncratic shocks εt = {εct, εmt} for each mode, make a labor delivery decision for the

next period, and enjoy the corresponding idiosyncratic benefit. These benefits are drawn from

a Gumbel distribution with location parameter γ̃ (the Euler constant) and scale parameter s,

G (ε) = exp
{
−eε/s−γ̃

}
. The period then ends, and in the next one the new composition of labor

delivery mode becomes predetermined.

The city is radially symmetric around a central business district (CBD), located at d = 0. Each

unit of land (or housing plot) accommodates one resident, so the population density equals land

density and integrates to the total population L. All plots located at the same distance d from

the CBD are identical; we therefore index locations by their distance d ∈ (0, D̄] from the center,

where D̄ is the outer boundary of the city.

Production occurs in the CBD. Land is owned by absentee landlords, who can convert it into

housing or use it for an alternative activity yielding an exogenous return ra. A worker residing on

a housing plot at location d pays a rent r(d) per unit of housing quality. The landlord supplies

the chosen quality level by exerting effort proportional to the total rent minus the value of land.

Hence, their net return per plot is r(d), regardless of the tenant’s choice of quality.23

22In Appendix A.9 we explore possible systematic relationships between population changes and trips to the
CBD. We find that population changes have been too limited, and too uncorrelated with post-Covid behavior, to
challenge the plausibility of this assumption.

23Given that landlords are absent, an isomorphic interpretation is that the tenant pays rent in goods and the
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In what follows, we describe the production environment and then formalize the worker’s prob-

lem. The within-period part determines indirect flow utilities and the city rent schedule, while the

dynamic part governs the transitions across labor delivery modes and, consequently, the aggregate

evolution of the city. We conclude with a characterization of the city’s equilibrium.

4.2 Production

There are two goods in the economy: final consumption and housing. Final consumption is a

homogeneous good produced in the CBD by profit-maximizing firms under constant returns to

scale: one efficiency unit of labor produces one unit of good, at a constant marginal cost of w̄.24

The number of efficiency units of a worker, and hence her total wage wℓ, both depend on the

chosen labor delivery mode ℓ. In particular, define

L̃c ≡ Lµ
cL

1−µ (2)

as the aggregate measure of labor units delivered in the city center, a function of the current

number of commuters Lc, the total city size L, and the fraction of days per week a remote worker

spends at home, µ. Then, the wage of commuters and remote workers (really mixed workers since

they spend only a fraction of their work time at home) is given by25

wℓ ≡

{
wc ≡ w̄ · AL̃δ

c if ℓ = c,

wm ≡ w̄ · zµ(AL̃δ
c)

1−µ if ℓ = m.
(3)

In particular, the efficiency units offered by a commuting worker depend on the in-office produc-

tivity, A > 0, and on how many workers are on average in the CBD, L̃c, with an elasticity δ > 0.

The efficiency units of a remote worker are a combination of the efficiency of remote work z > 0,

and the efficiency of commuting work, weighted by the fraction of time remote workers spend on

each mode. Free entry in production implies p̄ = w̄ = 1, after a normalization.

Landlords produce housing quality on the plots they own. To supply H units of quality on a

plot at location d, a landlord must expend r(d)(H − 1) efficiency units of work, which has value

r(d)(H − 1) in the market since wages per efficiency unit are normalized to 1.26 The resident pays

r(d)H for the unit, so the landlord’s net return from the plot is r(d), independent of the chosen

landlord uses some of these goods, rather than effort, to supply the demanded housing quality. Equivalently, the
household could pay the landlord for the land and use the rest of the housing expenditure to improve housing
quality directly.

24Our model abstracts from heterogeneous occupations. This choice is motivated by the empirical findings, in
Appendix A.12, that transitions between occupations differentially amenable to remote work are too rare to be an
empirically relevant margin of adjustment at our time horizon.

25In Appendix A.13, we show that this wage structure is the outcome of a linear production function in remote and
in-person workers. More generally, if we use a CES production function and estimate the elasticity of substitution
between these two types of labor, we find very large values. This finding motivates our linear production function.

26If H < 1, the landlord is effectively compensated for supplying less quality, for instance through greater leisure.
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quality level.27

4.3 Problem of the Worker

A worker starts period t in state ℓ ∈ {c,m}, solves a within-period problem delivering a flow utility

uℓ, observes idiosyncratic shocks associated with the next period’s labor delivery mode options,

and makes a new choice ℓ′.

4.3.1 Within-Period Problem

We write the within-period problem of a worker in state ℓ, in a city with Lc commuters, as

uℓ(Lc) = max
Qℓ,Hℓ,d

log

T µℓ

(
B(L̃c)

τ(L̃c)dγ

)1−µℓ

Qα
ℓH

1−α
ℓ

 , (4)

s.t. µℓ ≡

{
0 if ℓ = c

µ if ℓ = m
, (5)

wℓ = Qℓ + r(d)Hℓ. (6)

where we have omitted the time index and consider distances d > 0.

The parameter µ ∈ (0, 1] denotes the fixed fraction of workdays spent at home by remote

workers. Commuters spend no time at home (µc = 0). Agents take µ as a fixed job characteristic

that they take as given when choosing to work remotely. The worker chooses consumption Qℓ,

housing Hℓ, and location d. Amenity and disutility terms include T > 0, a benefit of working from

home; B(L̃c), a benefit of visiting the CBD that increases with L̃c; τ(L̃c), the congestion cost of

commuting, also increasing in L̃c; and commuting costs dγ, where γ > 0 measures the elasticity of

commuting costs with respect to distance. The exponent α ∈ (0, 1) is the weight of consumption

in utility. Workers earn a wage wℓ described in (3) and spend it on consumption, with a price

normalized to one, and housing, with unit price r(d).

Our formulation captures the key trade-offs between commuting and remote work. On the

amenity side, remote work allows an individual to enjoy the flexibility of working from home and

paying lower commuting and congestion costs, at the price of lower enjoyment of the social and

consumption opportunities in the CBD, all for a fraction µ of the time. On the wage side, remote

work trades off the positive externalities arising from in-office interactions with the efficiency of

communication technology z, again for a fraction µ of the time. The scale of economic activity in

the CBD, as measured by L̃c, shapes the balance of these tradeoffs: when more agents visit the

27This formulation of the housing sector—with unit-size plots and adjustable quality—allows us to combine a
Cobb–Douglas within-period utility function with a tractable rent schedule based solely on rent-per-unit arbitrage.
These two features make it possible to derive a clear analytical characterization of equilibrium in Section 4.4.3.

18



city center, individual productive efficiency is higher, the CBD is more lively, but congestion is

heavier.

4.3.2 Dynamic Problem

The solution to the within-period problem described above delivers the within-period utility flow.

The worker then observes two new idiosyncratic shocks for the next period’s labor delivery mode,

εℓ′t, and chooses ℓ′ accounting for the evolution of the state of the economy. In particular, the

dynamic decision of a worker who starts the period in state ℓ is

Uℓ

(
{εct, εmt} ;Lct, ω

t
)
= uℓ (Lct) + max

ℓ′∈{c,m}

{
βVℓ′

(
Lct+1;ω

t+1
)
− Fℓℓ′t + εℓ′t

}
, (7)

where ωt ≡ {ωk}+∞
k=t and ωt ≡ {At, zt, Fℓℓ′t, Tt, Bt(·), τt(·)} is a known exogenous sequence of (pos-

sibly) time-varying technology, fixed costs, and amenities, and

Vℓ
(
Lct;ω

t
)
=

∫
εm

∫
εc

Uℓ

(
{εc, εm} ;Lct, ω

t
)
dG (εc) dG (εm) , (8)

is the expected utility of a worker starting in state ℓ if Lct workers are commuting. In these

expressions, Fℓℓ′t is the cost of transitioning from mode ℓ to mode ℓ′ at time t.28 Although the

theory can accommodate any non-negative values, we will set Fℓℓ = 0 for ℓ ∈ {c,m}. The term εℓ
is the idiosyncratic shock received by the worker in mode ℓ.

4.4 Equilibrium

We start by defining a within-period equilibrium condition that has to hold at each time, given

the current distribution of commuters and remote workers. We then define a dynamic equilibrium,

which describes the evolution of the economy when the within-period equilibrium holds at each

time, and forward-looking workers make commuting and remote work choices based on—and con-

sistent with—the aggregate evolution of the economy. Finally, we define a stationary equilibrium

as a dynamic equilibrium where all endogenous variables are constant.

28Note that, in the flow utility, the willingness to pay to live close to the CBD is a function of the labor delivery
mode choice: agents will enjoy the remote work utility only if they pay the associated switching cost. As in standard
urban models, the average utility of agents is equalized across locations where commuters live, and across locations
where remote workers live, as a consequence of the first-order condition for residence location choice, d; the average
flow utility, however, is not equalized between commuters and remote workers. Hence, the fixed cost F should be
interpreted as jointly capturing the cost of changing labor delivery mode and of switching the residence location
between any location where commuters live and any location where remote workers live. Ultimately, it represents
the cost of accessing the average flow utility of a different state.
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4.4.1 Within-Period Equilibrium

We now define a within-period equilibrium. In the section, we eliminate the time index to simplify

notation.

Definition 4.1 Given Lc and ω, a within-period equilibrium is a rent function r(d), d ∈
(
0, D̄

]
and an allocation {Qc, Qm, Hc, Hm} such that i) individuals solve (4)-(6), ii) firms maximize profits

and free entry drives profits to zero and iii) the housing market clears.

We construct a within-period equilibrium by first solving for consumption and housing demand

conditional on a distance, and then letting the agent pick the distance that delivers the highest

(indirect) utility. From the Cobb-Douglas structure, we have

Qℓ = αwℓ, (9)

Hℓ(d) =
(1− α)wℓ

r(d)
, (10)

which implies an indirect utility of

uℓ = log

ᾱT µℓ

(
B(L̃c)

τ(L̃c)dγ

)1−µℓ

wℓ

r(d)1−α

 , (11)

with ᾱ ≡ αα(1− α)1−α, for ℓ ∈ {c,m}. Taking the first-order conditions for the optimal distance

to the CBD yields
r′ℓ(d)d

rℓ(d)
= −γ(1− µℓ)

(1− α)
=⇒ rℓ(d) = kℓd

− γ(1−µℓ)

(1−α) , (12)

where r′ℓ (d) is the slope of the rent function in the segment relevant to workers with delivery mode

ℓ, and kℓ is a constant of integration. At the optimal residence location, the savings on rents of

a marginally farther location exactly compensate for the increased disutility in travel time. Since

remote workers suffer less for a given travel time increase (by eq. (5), µm ≡ µ ∈ (0, 1] > µc = 0),

their willingness to pay for proximity to the CBD is lower. Hence, commuters live in
(
0, d̄
]
, remote

workers live in
[
d̄, D̄

]
, and the equilibrium rent function has a steeper (constant) elasticity for

commuters than for remote workers.

In our formulation, these conditions translate into a constant elasticity rent, with constants

of integration kc and km. These constants of integration kc and km are characterized by two

no-arbitrage conditions. First, the rent per unit of housing in the last residence location has to

coincide with the alternative land use ra, so that rm(D̄) = ra. Second, land owners must be

indifferent between renting to commuters and remote workers at d = d̄, so that rc(d̄) = rm(d̄).

Using these two conditions, the equilibrium rent function is

r (d) =

{ (
D̄/d

)γ/(1−α) (
d̄/D̄

)µγ/(1−α)
ra if 0 < d < d̄(

D̄/d
)(1−µ)γ/(1−α)

ra if d̄ ≤ d ≤ D̄
. (13)

20



An implication of this result is that the average elasticity of rent to distance κ is given by

κ ≡ 1

D̄

∫ D̄

x=0

∂r(x)

∂x

x

r(x)
dx = − γ

1− α

[
(1− µ) + µ

d̄

D̄

]
. (14)

The housing market clears at each distance because landowners rent one unit of land per resident

at a rate r(d) per unit of housing quality.29 Each household occupies one plot of land but chooses

its optimal housing quality Hℓ(d) according to (10), so that total rent payments per household

equal r(d)Hℓ(d). Because the number of plots is fixed, the total measure of occupied plots in any

region of the city must equal the number of residents living there. Hence, in equilibrium, the land

density equals the population density, and the total number of plots within radius d̄ must match

the number of commuters Lc occupying that area.

In this circular city, the total number of units in the disk of radius d̄ is πd̄2 and must equal the

number of residents Lc in that disk. Similarly, πD̄2 = L. These conditions imply that d̄ = (Lc/π)
1/2

and D̄ = (L/π)1/2. Hence, the rent gradient reflects the strength of distance frictions, as measured

by γ, and the average value of being close to the CBD, as proxied by the commuting population

Lc.

A within-period equilibrium is then described by this rent function, and the allocation implied

by equations (9)-(10). The indirect utility function (11) then becomes,

uℓ =


log
[
rα−1
a ᾱ

(
B(L̃c)

τ(L̃c)

)
wc/(d̄

µD̄1−µ)γ
]

if ℓ = c

log

[
rα−1
a ᾱT µ

(
B(L̃c)

τ(L̃c)

)1−µ

wm/D̄
γ(1−µ)

]
if ℓ = m

. (15)

These indirect utilities of each labor delivery mode are an element of the dynamic problem of a

worker, to which we now turn.

4.4.2 Dynamic Equilibrium

A worker starts the period in state ℓ and enjoys the utility flow uℓ. The worker then observes

two new idiosyncratic shocks εℓ′t and decides the new state for next period ℓ′, accounting for the

exogenous evolution ωt and the aggregate measure of commuting workers, Lct+1.

The evolution of the measure of commuting workers is governed by the law of motion30

Lct+1 = Lctλcct + (L− Lct) (1− λmmt) , (16)

29From (4) and (13), for commuters (µc = 0) we have uc(d) ∝ log
[
d−γr(d)−(1−α)

]
= log(d−γdγ) = log(1),

so limd→0 uc(d) is finite and utility is continuous at the center. For remote workers (µ > 0), um(d) ∝
log
[
d−γ(1−µ)r(d)−(1−α)

]
= log(dγµ) → −∞, hence no remote worker optimally lives near d = 0. Since {d = 0} is

measure zero, these limits do not affect any aggregate.
30All calculations are reported in Appendix B.1.
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where the share of workers in state ℓ transitioning to ℓ′ is given by

λℓℓ′t =
exp (ε̄ℓℓ′t (Lct+1) /s)

exp (ε̄ℓct (Lct+1) /s) + exp (ε̄ℓmt (Lct+1) /s)
. (17)

Naturally, the term ε̄ℓℓ′,t (Lc,t+1) denotes the average value of switching from ℓ to ℓ′ and is given

by

ε̄ℓℓ′t (Lct+1) ≡ β
[
Vℓ′
(
Lct+1;ω

t+1
)
− Vℓ

(
Lct+1;ω

t+1
)]

− (Fℓℓ′t − Fℓℓt) . (18)

We are ready to define a dynamic equilibrium, as well as a stationary equilibrium.

Definition 4.2 Given a known exogenous sequence of parameters {ωt}+∞
t=0 and an initial condition

0 ≤ L̄c0 ≤ L, a dynamic equilibrium is a pair of value functions Vℓ, ℓ ∈ {c,m} and a matrix of

transition probabilities λℓℓ′t, ℓ, ℓ
′ ∈ {c,m} such that equations (8) and (17) hold, and the state of

the economy evolves according to (16), with Lc0 = L̄c0.

Definition 4.3 Given a time-invariant sequence of exogenous parameters ω ≡ {ω̄}+∞
t=0 , a station-

ary equilibrium is a dynamic equilibrium where all endogenous variables are constant over time.

Throughout the text, we focus on multiplicity of stationary equilibria. In principle, the model

might feature multiple equilibria, something we have not fully explored theoretically. In our

numerical exercises, we have not found indications of the presence of such multiplicity.

4.4.3 Characterization of Stationary Equilibria

To discuss the existence and other properties of stationary equilibria, we specify the shape of B(·)
and τ(·), and ensure that the model does not deliver corner solutions. In the rest of the paper, we

maintain the following two assumptions.

Assumption 1 B(·) and τ(·) are isoelastic functions:

B(L̃c) ≡ B̄L̃ξ
c and τ(L̃c) = τ̄ L̃θ

c , with B̄, τ̄ , ξ, θ > 0.

Assumption 2 The dispersion in the idiosyncratic shocks is large enough:

s > µ2

(
ξ + δ − θ − γ

2µ

)
.

Assumption 1 allows a characterization of stationary equilibria in terms of comparisons among

(constant) elasticity values. Assumption 2 guarantees that as an economy approaches a purely

remote equilibrium, the average value of switching from commuting to remote goes to −∞.
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The elasticity ξ captures how the CBD amenity value rises with the mass of in-office workers,

while θ captures how congestion costs increase with that same activity. These parameters sum-

marize the non-pecuniary externalities of density and operate alongside the production elasticity δ

and the commuting-cost elasticity γ. We retain ξ and θ to present a complete characterization of

how the balance between all agglomeration and congestion forces affects the existence and number

of stationary equilibria. As discussed in Section 5, our attempt to estimate the relevant difference

between ξ and θ yields statistically insignificant results, so the quantitative analysis sets ξ− θ = 0.

This leaves all comparative-static and welfare results unchanged but focuses our analysis on the

empirically well measured productivity externality and commuting costs.

Proposition 4.1 There always exists at least one stationary equilibrium.

Proof. See Appendix B.2.

The proof makes a formal case that, under Assumptions (1) and (2), any stationary equilibrium is

always interior regardless of the switching costs. On one hand, the average benefit of switching to

commuting approaches +∞ when almost everybody is working remotely, which causes the number

of commuters to stay above zero. On the other, when almost all employees commute, the number

of remote workers tends to stay above zero. Since the law of motion for Lc is continuous, there

must be at least one level of current commuters for which the number of commuters in the following

period remains constant.

Having established existence, we now investigate the properties of the set of stationary equilibria

in this economy. Proposition 4.2 establishes that if agglomeration forces are weak enough, there

is a unique stationary equilibrium.

Proposition 4.2 Assume δ+ ξ < θ+γ/(2µ). Then there is a unique stationary equilibrium. The

stationary equilibrium value of the commuting population Lcss monotonically increases with A and

B̄, and monotonically falls with Z, T and τ̄ .

Proof. See Appendix B.3.

A unique stationary equilibrium requires that having more commuters increases the individual

incentive to become a remote worker. We can break down this individual incentive into two parts:

the current benefit of working remotely instead of commuting, and the option value of becoming

a remote worker. If the measure of commuters increases, the option value of becoming a remote

worker always grows—a dynamic congestion force. Under the assumptions of Proposition 4.2,

static congestion forces dominate agglomeration forces and so the current net benefit, um − uc,

from being a remote worker also increases with the number of commuters. This is sufficient for

uniqueness. The top left panel of Figure 7 depicts a typical phase diagram for this case. The blue

line indicates how the measure of commuters changes from one period t (horizontal axis) to the

next t+1 (vertical axis). The city’s unique stationary equilibrium occurs at the crossing with the

dashed 45◦ line. A city below the stationary equilibrium value will experience an increase in the
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Figure 7: Phase Diagrams and Increases in the Remote Work Productivity z

(a) Unique Stationary Equilibrium

𝑳𝒄𝒕

𝑳𝒄𝒕+𝟏

(b) Higher z (One Stationary Equilibrium)

𝑳𝒄𝒕

𝑳𝒄𝒕+𝟏

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑧

(c) Multiple Stationary Equilibria

𝑳𝒄𝒕

𝑳𝒄𝒕+𝟏

𝑬𝟏

𝑬𝟑

𝑬𝟐

(d) Higher z (Multiple Stationary Equilibria)

𝑳𝒄𝒕

𝑳𝒄𝒕+𝟏

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑧

The top panels of this figure show the case of a city with a unique stationary equilibrium: panel (a) depicts a
typical phase diagram, and panel (b) shows how the phase diagram shifts in response to increases in remote work
productivity, from the light blue line to the black line. The bottom panels of the figure shows the case of a city
with multiple stationary equilibria: panel (c) depicts a typical phase diagram, and panel (d) indicates how its phase
diagram shifts in response to increases in remote work productivity, from the light blue line to the black line. In
all panels, the dashed gray line is the 45-degree line.
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number of commuters over time. However, congestion forces will eventually slow this growth as

the number of commuters rises.

Increases in office productivity A and amenity benefits B̄ reduce the static gains of remote

work, lowering the share of commuters that switch to remote work. These changes would move

the blue line up and to the left, increasing the number of steady-state commuters. Conversely,

improvements in the efficiency of remote work z or its amenity benefit, T , or higher commuting

frictions τ̄ increase the motivation to move to remote work, pushing the line down and to the right,

and reducing the equilibrium number of commuters. Panel (b) of Figure 7 shows the consequences

of a progressive improvement in remote work productivity. This is reminiscent of the gradual

and modest adjustment in the number of commuters before the pandemic, likely in response to

advances in information and communication technology.

The discussion above suggests that multiplicity can arise when an increase in the number of

commuters strengthens the incentive to become a commuter. These conditions occur when static

agglomeration forces overcome dynamic congestion forces. The bottom left panel of Figure 7

illustrates a typical phase diagram for this scenario with three stationary equilibria, E1, E2, and

E3. If a city is located between E1 and E2, the number of commuters increases towards E1.

However, if a city is situated between E2 and E3, the number of commuters decreases until it

reaches the stationary equilibrium E3. Thus, E2 is an unstable stationary equilibrium, and any

perturbation away from it will cause the city to depart from that equilibrium.

Perhaps surprisingly, strong agglomeration forces alone are not sufficient for multiplicity. The

bottom right panel of Figure 7 shows that the phase diagram shifts down and to the right, from

lighter to darker colors, as remote work efficiency improves. If remote work is not efficient, having

fewer commuters does not increase the relative incentive to work from home enough to induce more

workers to work remotely. Conversely, if remote work is highly efficient, the “high commuting”

equilibrium vanishes as the incentive to switch to remote work is consistently strong. Proposition

4.3 makes this intuition formal and characterizes the “cone of multiplicity,” namely, the set of

parameters for which we obtain multiplicity of stationary equilibria.

Proposition 4.3 Suppose Fcc = Fmm = 0. Then, there exist a finite threshold ηmin > θ+ γ/(2µ),

and a set Z ⊂ R++, such that:

i) for δ + ξ > ηmin, Z is a non-empty interval (Zmin, Zmax) and there are multiple stationary

equilibria if z/A ∈ Z; further, Zmin and Zmax are functions of all the parameters of the

model, they grow with L and B̄, and fall with T and τ̄ ;

ii) there is a unique stationary equilibrium in all other cases.

Proof. See Appendix B.4.

The left panel of figure 8 provides a visual representation of this Proposition. The figure displays

the combinations of (δ+ξ, z/A) for which a city exhibits multiple stationary equilibria, holding the
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Figure 8: Implication of Higher Agglomeration Forces

(a) Cone of Multiplicity

𝜹 + 𝝃

𝒛/𝑨

𝜃 + 𝛾/(2𝜇)
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stationary 
equilibria
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equilibrium

𝜂𝑚𝑖𝑛 𝑍𝑚𝑎𝑥(∙)

𝑍𝑚𝑖𝑛(∙)
𝑃1 𝑃2

(b) Phase Diagram

𝑳𝒄𝒕
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𝐹2

The left panel of this figure shows the combinations of z/A and δ + ξ for which, given the remaining parameters,
the city displays multiple stationary equilibria. Changes in the remaining parameters move the cone. The dashed
gray line indicates the minimum value of agglomeration externalities that generate multiple stationary equilibria.
The left panel also shows that for some values of z/A, an increase in δ − ξ can switch the city from exhibiting a
unique (P1) to multiple (P2) stationary equilibria. The right panel displays how the phase diagram changes from
F1 to F2 in association with this switch. The dashed gray line in the right panel shows the 45-degree line.

remaining parameters constant. When δ+ ξ < θ+ γ/(2µ), no values of z/A can generate multiple

stationary equilibria. This is essentially a re-statement of Proposition 4.2.31 If agglomeration

forces are high enough (δ+ ξ > ηmin > θ+ γ/(2µ)), there is a range of z/A where the city exhibits

multiplicity. Intuitively, ηmin summarizes the minimum level of static and dynamic congestion

forces that agglomeration forces need to overcome for multiple stationary equilibria to be possible,

although not guaranteed: as in panel (d) of Figure 7, the efficiency of remote work can neither be

too low nor too high.

An implication of Proposition 4.3 is that for some values of z/A, increasing agglomeration

forces will change the structure of the city from a single to multiple stationary equilibria. This fact

is also easily seen in Figure 8. In the left panel, we consider a movement from point P1, outside

the cone of multiplicity, towards P2, inside the cone. We know this movement can be generically

constructed because Z is non-empty for at least some values of δ+ξ. This comparison corresponds

to the movement from the phase diagram F1 to F2 in the right panel. An increase in the strength

of agglomeration forces exacerbates the role of coordination mechanisms and can create multiple

31Proposition 4.3 imposes Fcc = Fmm = 0, a slightly more restrictive assumption. Without it, Z need not be an
interval for low values of δ + ξ. Instead, there are two thresholds, ηmin and ηmax ≥ ηmin; Z is generally the union
of disjoint intervals, and it is exactly one interval only when δ + ξ > ηmax. We believe it is reasonable to assume
no fixed costs to remain in the same labor delivery mode. Therefore, we focus on this case in the main text.
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stationary equilibria.

Because our framework treats each city as a closed economy, cities with strong agglomeration

externalities cannot expand by attracting additional workers. This does not imply, however, that

in a world with many cities the strongest-agglomeration city would attract the entire population in

equilibrium. The parameters governing agglomeration are elasticities: as a high-agglomeration city

grows, each additional worker represents a smaller proportional increase in population and thus

a diminishing marginal effect on productivity and amenities. Moreover, idiosyncratic preferences

for city attributes, together with congestion and migration frictions across locations, can ensure a

spatially dispersed population even when some cities operate under locally increasing returns.

These results can speak to the organization of production in cities both in the long and short

run. In the long run, secular trends alter the position of a city with respect to its cone. For

example, the trends in remote work discussed in Section 2 suggest that a city with a high enough

δ+ξ may traverse its cone from a single equilibrium to a region of multiplicity, and suddenly lose the

high-commuting equilibrium in favor of the low-commuting one. From a shorter-run perspective,

lockdown policies during the recent COVID-19 pandemic can be seen as a negative exogenous

shock to the number of commuters. Our theory envisions heterogeneous adjustments across cities,

depending on whether they find themselves inside or outside their cone when the shock occurs.

We now turn to the estimation of the parameters of our model. After quantifying our model for

most U.S. cities in Section 5, we relate the predictions of our model to the evidence in Section 6.

5 Quantification

When cities can potentially feature multiple equilibria, quantifying the model requires either taking

a stand on which equilibrium the data is a realization of, or relying on relationships that hold in

any equilibrium. For this reason, we rely entirely on data that was produced before 2019, a period

during which every city was arguably in the high commuting equilibrium. More importantly, we

only use predictions of the model that do not depend on which equilibrium—stationary or not—is

being realized.

We quantify our model by estimating parameters that are specific to each Core-based Statistical

Area in the United States when possible. We proceed in four steps. First, we estimate the

dispersion of idiosyncratic preferences, which is inversely related to the elasticity of transitions

into remote work with respect to earnings and the fixed cost of transitioning between delivery

modes. Second, we construct estimates of the agglomeration externality in production. Third, we

estimate the parameters of the remote work technology. Fourth, we estimate the transportation

costs elasticity from city-specific measures of housing rent distance gradients.

27



5.1 Estimation of the Transition Elasticity and Transition Costs

We start with the identification of the variance of idiosyncratic preference shocks for labor delivery

modes, the fixed costs, and a time trend for the amenity value of remote work. As in Proposition

4.3, we assume Fcc = Fmm = 0. We further assume that Fcm = Fmc = F , reducing the quantifica-

tion of fixed transition costs to the identification of F . Following the work of Artuç et al. (2010)

on the estimation of discrete choice models, and of Arcidiacono and Miller (2011) in the structural

labor literature on conditional choice probabilities (CCPs), we exploit the log-linear relationship

between observed transition probabilities across labor delivery modes and workers’ payoffs, includ-

ing transition costs, income, and continuation values. Through a linear regression, the elasticity

of transitions between labor delivery modes is identified from the responsiveness of transitions to

income changes, while fixed transition costs are additionally identified from the overall level of

transitions.32 We use the following result, which provides an expression of forward-looking relative

transition probabilities as a function of the within-period flows of utility, transition costs F , and

transition elasticity s only.

Lemma 5.1 Suppose Fcc = Fmm = 0 and Fcm = Fmc = F . Then

yℓℓ′t ≡ ln
λℓℓ′tλ

β
ℓ′ℓ′t+1

λℓℓtλ
β
ℓℓ′t+1

=
β

s
(uℓ′t+1 − uℓt+1)−

(1− β)F

s
. (19)

Proof. See Appendix B.5.

Intuitively, a sluggish response of transitions to differences in utility flows suggest that a large

variance in idiosyncratic shocks (high s) is overshadowing the significance of those differences;

conditional on a variance, high average gross flows are then indicative of small switching costs (low

F ) between states. Technically, this approach considers one-period deviations from an otherwise

common sequence of labor delivery modes to difference out continuation values. We can write the

difference in the utility flows from (15) as

umt+1 − uct+1 = ln
wmt+1

wct+1

+ µ lnTt+1 − µ lnB(L̃ct+1) + µ ln τ(L̃ct+1) +
γµ

2
lnLct+1 −

γµ

2
ln π. (20)

In order to obtain a specification that can be estimated in a linear regression, we maintain As-

sumption 1 about the parametric specification of the city-center amenity B(L̃c) and congestion

τ(L̃c), and assume that the remote work amenity takes the form of a log-linear function of time.

That is, we let Tt = exp{α0 + α1t}. Our estimating equation can then be written as:

yℓℓ′t = η0 · ln
wℓ′t+1

wℓt+1

+ η1 + dℓℓ′ · (η2 + η3 · (t+ 1) + η4 · lnLct+1 + η5 · lnLt+1) + ε̂ℓℓ′t, (21)

where dℓℓ′ = 1 is a discrete variable taking the value 1 if the transition is from commuting to

32See Traiberman (2019) for an application to occupational and sectoral transitions.
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remote, i.e. if ℓℓ′ = cm and takes the value −1 if the transition is from remote to commuting, i.e.

dℓℓ′ = −1 if ℓℓ′ = mc, and ε̂ℓℓ′t is an expectation error.

With this specification, the parameters s, F , and ξ − θ, can be recovered from the estimated

coefficients according to

s =
β

η0
, F = − β

1− β

η1
η0
, ξ − θ = − 1

µ(1− µ)

η5
η0
. (22)

In principle, we should compute yℓℓ′t for each city. However, the NLSY sample does not contain

enough observations of these transitions to obtain them accurately for each city. This is especially

true if we define remote work as spending three days per week or more at home, a choice that

was rare before the COVID-19 pandemic.33 For this reason, we impose additional assumptions

to implement the estimation of (21). In our main specification, we partition cities based on four

U.S. regions, the most precise geographic units recorded in the NLSY public-use data.34 We define

transition shares for each of these four regions and for two groups of educational attainment (with

or without a college degree). That is, for each year we construct the empirical equivalent of yrℓℓ′t in

(21) for eight region-education groups, indexed by r. We define a remote worker as someone who

spends at least 1 day per week at home to maximize the number of observed transitions.35

The construction of yrℓℓ′t for each group r is based on the fraction of individuals λrℓℓ′t who make

a transition to or from remote work between two consecutive periods of time. To compute these

shares for each group r, we first control for the role of covariates other than education and region

in driving the transition shares of each group that are not directly captured by our model. These

include differences in the industrial and occupational composition across groups that could drive

differences in transition shares. Specifically, we estimate a probit model for the share of remote

workers, controlling for year-group r, t indicators, the role of age and experience, and occupation

and industry fixed effects. We use as measures of λrℓℓ′t the predicted transition shares from our

probit model for each group r, setting all other covariates to their mean value. We then assemble

the yearly transition shares into the relative shares yrℓℓ′t, setting β to 0.96 on an annual basis,

corresponding to a discount rate of about 4 percent.

To construct wages wr
ct and w

r
mt, we follow a similar approach by removing the contribution of

industrial and occupational determinants of the wage levels. We regress individual log hourly wages

on age, tenure and their square, year-group r, t indicators, and person, industry, and occupation

fixed-effects. We use the residuals from these regressions to obtain a measure of wages for each

year-group r, t after controlling for individual variation. The wage for a region is then the average

33Out of the 4,847 individuals observed between 2000 and 2018 in our sample, only 386 ever reported working
remotely for 3 days per week, while 650 and 1,074 worked remotely two days or more per week, and one day or
more per week, in at least one of the survey years, respectively.

34The four regions are Northeast, North-Central, South, and West.
35In Appendix A.3.3, we conduct an alternative exercise assuming that cities can be partitioned into subsets that

offer similar remote work conditions and define remote work as spending at least two days per week at home. We
then combine the decisions of individuals in cities in a given subset and form transition shares at that level. We
obtain similar parameter estimates.
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residual wage for all the observations in a region-time.36 Finally, we construct measures of total

employment Lr
t and of the number of commuters Lr

ct in each year-group r, t from the ACS.

Our model assumes workers are forward-looking and make decisions in period t based on wages

in period t + 1. However, if the relative wages of remote workers and commuters are imperfectly

observed by workers or measured with error, OLS estimates will likely yield downward-biased

estimates of η0. We address this concern by using past values of the wage ratio as an instrument

for the future ratio.

Table A3 in Appendix A.3.2 reports the results of the estimation of (21) and the implied

structural parameters. We obtain statistically significant OLS and IV estimates of η0 and η1 at

the one percent level. We use the IV estimates of η0 = −0.47 and η1 = 3.09 to construct estimates

of s and F .

We obtain an estimate of s equal to 0.30. We are not aware of existing estimates of this

parameter. This value of s corresponds to an elasticity of transitions into remote work of 3.09.

This elasticity can be interpreted in two slightly different ways. First, if we return to (19) and

(20), it means that an increase of 1 percent in the wage of remote workers relative to the wage of

commuters can induce an “acceleration” of transitions to remote work by 3.09 percent. That is,

transitions into remote work would increase in period t to benefit from these higher wages—the

numerator in the definition of yℓℓ′t—relative to transitions that would have occurred in period

t + 1—the denominator. Alternatively, one can easily show from (17) that the elasticity of the

probability of transition to remote work λcmt (relative to the probability of not transitioning λcct)

with respect to the relative value of remote work, Vmt+1 − Vct+1, is also β/s. That is, if the wage

of remote workers relative to the wage of commuters were to increase permanently by 1 percent,

then transitions into remote work would increase by 3.09 percent in period t.

Our estimate for the transition cost F is 1.78. Given the specification of the utility of consump-

tion in log terms, we can interpret the cost F as being equivalent to giving up 100(1−exp(−F )) =
83 percent of earnings in year t in order to transition into remote work. This large number is

reminiscent of the very large transition costs estimated in structural labor models.37 These large

estimates for the cost F reflect the fact that despite the existence of wage differentials between

labor delivery modes, the mobility of workers remains quite low.38 Of course, if transitioning be-

tween modes also implies changing homes in order to live at the appropriate distance to the CBD,

these large fixed costs are natural.

All other coefficients are imprecisely estimated, and we have no further guidance on the values

for ξ, θ, α1 and the combination α0 − ln(B̄/τ̄). Hence, we set them all to zero for the rest of our

36This specification removes static sources of heterogeneity but preserves within-industry and within-occupation
time variation in the relative compensation of remote versus in-person work. Hence, wr

ct and wr
mt capture changes in

the productivity or returns to remote work over time, rather than shifts in occupational or industrial composition.
37Artuç et al. (2010) estimate switching costs between occupations that are equal to at least four times annual

wages. In their study of location decisions, Kennan and Walker (2011) estimate moving costs amounting to $312
thousand 2010 dollars on average.

38In Appendix A.3.3, we estimate s and F with the restricted-use version of the NLSY data that is geocoded at
the county level. We obtain similar estimates.
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analysis, except for τ̄ . The parameter τ̄ will be calibrated for each city to match the initial value

of Lc/L, as described in Section 5.5.

5.2 Agglomeration Externalities

We estimate the agglomeration externality δj for each CBSA j, where δj measures the percentage

increase in labor value added associated with a one-percent increase in the number of commuters

to the CBD in city j.

Our estimation strategy builds on the wage expression in equation (3), augmented to allow for

time-varying in-office productivity Ajt. The wage of a commuter in CBSA j is therefore

wcjt = AjtL̃
δj
cjt. (23)

Each CBSA’s in-office productivity Ajt may depend on an external factor Kjt (e.g., the quality

of its business environment, transit network, or other relevant infrastructure) that can itself scale

with total employment. Let Ajt = ĀjtK
νj
jt and Kjt = gjtL

ϑj

jt , so that Ajt = ĀjtgjtL
ςj
jt, where

ςj ≡ νjϑj governs the elasticity of in-office productivity with respect to city size.39 We can then

decompose in-person log productivity as

logAjt = ãt + b̃jt+ c̃j + ςj logLjt + ũjt.

Defining ∆xt = xt − xt−∆t as the ∆t-period change in variable x, the implied change in pro-

ductivity over ∆t periods is

∆ logAjt = at + bj + ςj∆ logLjt + ujt, (24)

where at ≡ ∆ãt, bj ≡ b̃j∆t, and ujt = ∆ũjt.

Let Scjt ≡ Lcjt/Ljt denote the share of commuters. Combining equations (23) and (24) with

the definition of L̃c in equation (2) yields

∆ logwcjt = at + bj + µδj∆ logScjt + (δj + ςj)∆ logLjt + ujt. (25)

Equation (25) forms the basis of our estimation strategy. It implies that commuter wages vary

more with the share of commuters in cities with strong agglomeration externalities. Importantly, it

also shows that wage changes associated with city size Ljt may reflect additional channels beyond

the in-person externality δj. Hence, to estimate δj we focus on identifying the causal effect of

changes in commuter shares rather than population changes.

Specifically, our empirical strategy proceeds in three steps. First, we define the empirical

counterpart of commuter wages in CBSA j as the average wage w̄cjt of commuters in that CBSA,

39See Appendix A.14.1 for the derivation of the wage function and the estimation equation (25) from a production
function featuring Kjt as an explicit input.

31



after controlling for individual characteristics (see Appendix A.14.2).

Second, we adopt an instrumental variables approach to isolate the variation in a CBSA’s

commuter share that is orthogonal to changes in residual productivity ujt.
40 For every CBSA-

year (j, t), we predict the change the commuter share between t − ∆t and t, labeled IVjt, as a

function of the CBSA’s 1980 occupational composition, Lsjt0/Ljt0 , and the economy-wide changes

in occupation-specific commuter shares, ∆ logSc,st:

IVjt =
S∑

s=1

Lsjt0

Ljt0

∆ logScst. (26)

Third, we assume that agglomeration forces are industry-specific and that CBSAs’ effective ag-

glomeration strengths differ according to their employment composition. Following Rossi-Hansberg

et al. (2021), we group industries into five sectors, g = 0, . . . , 4: Retail, Utilities, and Construction

(RUC); Health and Education (HE); Professional and Other Services (PS); Manufacturing (M);

and Accommodation, Trade, and Transportation (ATT).41 Denoting CBSA j’s labor-value-added

weighted employment share in group g in 1980 by sgj0, we specify

δj = β0 +
4∑

g=1

βgsg,j0. (27)

We then estimate

∆ log w̄cjt = at + bj +

(
β0 +

4∑
g=1

βgsgj0

)
∆ logScjt + γj∆ logLjt + ujt, (28)

using sgj0IVjt, g = 1, . . . , 4 as instruments for each interaction sgj0∆ logSc,jt. Table A9 in Ap-

pendix A.14.2 reports the individual coefficients. Combining the industry-specific IV estimates

with each CBSA’s labor-value-added-weighted employment shares yields city-specific measures of

the agglomeration externalities δj. Summary statistics for these δj’s are reported in Table 1. Fig-

ure 10a plots the 619 CBSA-specific estimates against employment, showing a mean of 0.067 and

a standard deviation of 0.022. On average, a doubling of city size is associated with an elasticity

about 0.004 points higher. Appendix A.17 further demonstrates that our main results are robust

to calibrations using lower values of δj.

40It is not necessary for ∆ logLjt to be exogenous in equation (25) for the instrumental variable strategy to yield
a consistent estimate of δj . As shown in standard treatments of two-stage least squares (see, e.g., Wooldridge,
2010, Ch. 5.2.1), endogeneity of included controls does not bias the IV estimate of the coefficient on the endogenous
regressor of interest, provided that the instrument is valid. We treat the role of total employment ∆ logLjt as a
city-specific slope without linking it to δj because of this potential endogeneity.

41We introduce the five industry groups for estimation tractability, allowing us to parsimoniously estimate the
cross-city distribution of δj with only five parameters instead of one per CBSA. Introducing distinct industry groups
with their own in-office and remote productivities within the model would generate heterogeneity in commuting
shares across industries and, consequently, some degree of spatial sorting by industry, which we abstract from here.
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5.3 Remote Work and In-Office Technology

We also estimate in-office and remote productivities Ajt and zjt for each CBSA j. We develop

further the exercise presented in Section 2 by estimating the remote work premium by occupation.

Using data from the NLSY, we estimate the remote work premium for every incremental hour

spent working from home. Specifically, we denote by hremoteit the number of hours worked at

home, and predict ĥ = 24 hours per week, equivalent to three days per week of remote work.42

We estimate a national trend and an intercept for each of the 22 occupation groups, denoted

by o.43 Specifically, we estimate

lnwit = (ψ0
o(i) + ψ1t)hremoteit +Xitβo(i) + ϵit, (29)

where lnwit represents the log of the hourly wage for individual i at time t, ψ0
o(i) and ψ

1 represent

the intercept for occupation group o and the national trend, respectively, and Xit is a vector of

individual-level control variables, including age, age squared, tenure at the job, tenure squared,

industry, marital status, race, education-year, number of children, metro area-year, and individual

fixed effects. We focus on full-time US-born workers in metropolitan areas, observed between 2000

and 2018.

Finally, we estimate the remote work premium in city j using

ψjt =
∑
o

sh2018oj (ψ0
o + ψ1t)ĥ, (30)

where sh2018oj is the share of workers in city j working in occupation o in 2018. Figure 9 displays the

estimates (ψ̂0
o(i) + ψ̂1t)ĥ for t = 2018 for each of the 22 occupation groups obtained from (29), and

the estimates ψj2018 of the remote work premium by CBSA obtained from (30). Both are plotted

against the share of teleworkable employment estimated by Dingel and Neiman (2020).44

From equations (29) and (30), we can interpret (ψ0
o(i)+ψ1t)ĥ as an estimate of ln(wmt/wct) for

each occupation, and ψjt as an estimate of ln(wmt/wct) for each CBSA. We use the specification of

wages in (3), to map our estimates of the remote work premium into the remote work technology

parameter, z:

zjt = exp(ψ̂jt/µ)wcjt, (31)

where wcjt is the average hourly wage of commuters in each CBSA j. We then recover the in-office

productivity using

Ajt = L̃
−δj
cjt wcjt, (32)

given the city-level estimates of δj obtained in 5.2. Table 1 reports summary statistics for these

estimates.

42In Appendix A.5, we estimate the remote work premium from the ACS. Table A6 compares the two approaches.
43We describe these occupation groups in Appendix A.4.
44In Appendix A.5, we report the estimates for each occupation group and CBSA.
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Figure 9: Estimates of the Remote Work Premium
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Panel (a) reports estimates for each of the 22 occupation groups obtained from (29), against the share of teleworkable
employment from Table 1 in Dingel and Neiman (2020). Panel (b) reports the estimates of the remote work premium
by CBSA obtained from (30) plotted against the share of teleworkable employment at the CBSA level. We compute
the CBSA-level shares of teleworkable employment as the weighted average of the occupation-specific measures from
Table 1 in Dingel and Neiman (2020). The weights are given by the CBSA share of employment of each occupation
from the Census sample. The coefficient β and the associated robust standard error from the regression of the
remote premium on the share of teleworkable employment are reported at the top left of each figure.

5.4 Transportation Costs Elasticity

We estimate the transportation costs elasticity γj for each CBSA j. We use the relationship that

relates γj to the slope κjt of the housing rent schedule with respect to distance to the CBD.45

From (14), the average elasticity of rent to distance to the CBD in period t is exactly related to

the slope of the housing rent schedule according to

κjt = − γj
1− α

(
1− µ+ µ

(
Lcjt

Ljt

)1/2
)
. (33)

In order to estimate κjt, we use data on housing rents at the block group level from the ACS

corresponding to average values between 2015 and 2019. For each CBSA, we estimate a regression

at the block group level of the log of the median housing rental price pij in each block group i on

the log of the distance, distij, between the centroid of block group i and the centroid of the closest

45Our model assumes that there is a fixed housing supply of one house per plot. In Appendix A.15.3, we show
that a model where the number of housing units endogenously responds to the rents would deliver, for practical
purposes, a very similar gradient. This result is a consequence of the number of commuters being a very high share
of the overall employment before 2020.
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CBD of CBSA j.46 We then estimate

ln pij = κj ln(distij) + βjXij + αj + eij, (34)

where the controls Xij contain block-level measures of the percentages of Hispanic, Black, and

Asian population, dwelling characteristics such as the percentage of dwellings by type of structure,

by the number of bedrooms, and by construction decade, as well as other geographic controls

defined at the tract level and obtained from Lee and Lin (2017).47 The summary statistics of the

estimates of γj across CBSAs are reported in Table 1 and Appendix A.15.2 shows their relation

with city size.48

Although the estimated values of γj are lower than those found in studies such as Duranton

and Puga (2023), this difference reflects model structure rather than data discrepancies. In our

framework, where housing is a consumption good, the mapping from the observed rent gradient

to the transportation-cost elasticity is scaled by the share of non-housing consumption, 1 − α.

In contrast, models with fixed housing consumption identify the rent gradient directly as γ. As

shown in Appendix A.15.1, this distinction mechanically results in smaller implied elasticities for

the same empirical slope. Appendix A.17 further demonstrates that our main results are robust

to calibrations using higher values of γj.

Proposition 4.3 indicates that the resulting net strength of the agglomeration externalities,

δj−γj/(2µ) is a crucial statistic for the potential of a city to exhibit multiple stationary equilibria.

In Figure 10b we plot such net strength against the CBSAs’ employment size. We find that this

net strength is positively related to city size; a doubling in city size is associated to an increase of

0.004 of this net strength, out of a mean value of 0.049.

5.5 Quantification of Remaining Parameters

We calibrate τ̄j for each city to match its observed value of Ljc/Lj. As shown in Appendix B.2,

a stationary equilibrium value for Ljc/Lj can be expressed in terms of λcc. Hence, we assume

that the city is in the high-commuting stationary equilibrium in 2019, infer the value of λjcc that

is consistent with Ljc/Lj, and then solve for the value of τ̄j that makes such λjcc a stationary

equilibrium.

We set the share of consumption expenditures on tradable goods to α = 0.76, following Dia-

mond and Moretti (2024) and Davis and Ortalo-Magné (2011). The share of days per week spent

at home for remote workers is set to µ = 3/5. As discussed in Section 5.1, our estimation does

46We provide details on how we identify each CBSA’s CBDs in Appendix A.6.
47Geographic controls include the log of land area in square kilometers, number of housing units, the average age of

housing units, average terrain slope, the maximum average temperature in July, the minimum average temperature
in January, annual precipitations, log of distance to the closest river, to the closest lake, and to the closest shore.

48For small CBSAs, the number of block groups with non-missing observations on rents and other control variables
is sometimes small, leading to estimates of γj that are not statistically different from zero at the 10 percent level.
We drop those cities due to the lack of data.
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Figure 10: Agglomeration Externalities and CBSA size

(a) Agglomeration Externalities δj

Boston

Houston

New York
San Diego

San Francisco

San Jose

β=0.004(0.001)

0

.02

.04

.06

.08

.1

.12

A
gg

lo
m

er
at

io
n 

E
la

st
ic

ity
 δ

.05 .1 .25 .5 1 2 4 8 16
Employment (Million)

(b) Net Strength δj − γj/(2µ)
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Panel (a) reports the city-specific δj against the CBSAs’ BEA employment. Each δj is estimated from eq. (28).
The size of the circles represents CBSAs’ employment. Panel (b) reports the city-specific δj − γj/(2µ) against the
CBSAs’ BEA employment.

not separately identify the amenity externality ξ from the congestion externality θ. In addition,

our estimates of the difference are not statistically different from zero at the 95 percent level.

Therefore, without more guidance on their value, we set them each to zero.

6 Permanent Responses to Transitory Shocks

The analysis in Subsection 4.4 indicates that a city in the cone of multiplicity could permanently

switch to a path that converges towards the low-commuting stationary equilibrium when subject

to a large enough shock to the number of commuters. In this new stationary equilibrium, trips

to the CBD are permanently lower, and the rent and value gradients are permanently flatter. In

our data, the response heterogeneity as a function of city size of Figures 3 and 5 appears to have

stabilized by 2022. To interpret this evidence, we turn to a quantified version of our model. We

use city-specific parameters retrieved in Section 5 to calculate the values of zj/Aj, δj − γj/(2µ),

and the corresponding set Zj defined in Proposition 4.3. We construct these values for 278 CBSAs

with valid information on remote work premiums and elasticities.49 For each city, we create an

indicator variable 1cone
j = 1 if zj/Aj ∈ Zj, and zero otherwise, meaning the city is inside its cone of

multiplicity. We find that 208 cities were in their respective cone before the pandemic. These cities

could be pushed into a low commuting equilibrium by a large enough, albeit temporary, shock to

the number of commuters.

Our theory appears to have explanatory power. We estimate a city-level probit of 1cone
j on

the July 2022 measure of CBD trips, relative to January 2020. This regression returns a negative

49The model assumes positive δ and γ, and requires a remote work wage discount for a valid calibration.
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Table 1: Estimates of City-Specific Parameters

Agglomeration Remote Work Rel. Remote Work Transport Cost
Externality Productivity Productivity Elasticity

δj zj zj/Aj γj

Mean 0.067 16.6 2.05 0.027
10th perc. 0.040 13.5 1.43 0.002
50th perc. 0.067 15.9 1.97 0.014
90th perc. 0.092 20.3 2.82 0.044
Nb of CBSAs 619 626 626 278

Mean if emp. ≥ 1 million 0.078 23.0 2.95 0.013
Mean if emp. ≤ 100,000 0.065 15.6 1.91 0.039

The last two rows report the mean values of the parameters for i) the group of CBSAs with employment above
1 million (consisting of 19 CBSAs), ii) the group of CBSAs with employment below 100 thousand (consisting of
468 CBSAs). Employment is measured as the number of employed workers between 25 and 64 years old, not self-
employed, listed as residents of the CBSA in the 2019 ACS. We are able to estimate the transport cost elasticity for
a smaller number of CBSAs, given the data limitations on housing rents at the block group level in smaller CBSAs.

and significant coefficient: cities with a lower level of trips post-pandemic were indeed much more

likely to be in their cone before the pandemic. Figure 11a reports this estimated share of cities

that are inside the cone as a function of the trip shortfall, while the blue dots report the fraction

of cities in the cone in each of 20 bins of the independent variable.

The propensity of being inside the cone is also associated with the observed flattening of the

housing price gradient. As Figure 11b shows, a probit regression of 1cone
j on the change in the bid-

rent housing gradient between January 2020 and November 2024 yields a positive and significant

coefficient. The blue dots report the fraction of cities in the cone in each of the 20 bins of gradient

change. Hence, cities that display a large persistent flattening of the house price gradient are more

likely to be in their cone of multiplicity.50

Overall, we find that larger cities exhibit a higher propensity to being inside their cone. A

probit regression of 1cone
j on the log employment of a city shows a positive and significant coeffi-

cient. Figure 11c shows this estimated share as a function of log employment, with a 95% robust

confidence interval. The blue dots report the fraction of cities in the cone in each of the 20 bins

of employment size. Larger cities, which in the data are more likely to display a permanent shift,

are also more likely to be in the cone of multiplicity that our theory proposes. In Appendix A.10,

we show that the probability of being in the cone also grows with δj and zj/Aj, while falling with

γj, as implied by the theory.

50Note that some small cities are missing from the analysis in Figures 11a and 11b since there is not enough
data to estimate the full set of parameters required to determine if they were in the cone of multiplicity before the
pandemic. However, in general, small cities are much more likely to be outside of the cone of multiplicity, and they
mostly have gone back to pre-pandemic commuting levels, as shown in Figures 3a and 5a. Hence, Figures 11a and
11b, would probably show an even starker relationship if we could include more small cities.
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Figure 11: Share of Cities in the Cone of Multiplicity by CBSA Characteristics
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The blue line in this figure plots the predicted share of cities in their cone of multiplicity from a probit regression of
the indicator variable 1cone

j on the volume of trips in July 2022, relative to their value in January 2020 (Panel a),
the change in the house price distance gradients between January 2020 and November 2024 (Panel b), and on the
log total employment of a city (Panel c), with the shaded area representing the 95 percent confidence interval. The
figure also reports the coefficient and robust standard error of the independent variable in the probit regression.
One blue dot is the average value of 1cone

j in each of 20 quantiles of the trip shares.

Our explanation of the post-pandemic empirical patterns rests on an indicator, 1cone
j , that

summarizes all the relevant aspects of a city’s propensity to exhibit multiple equilibria. A natural

question is whether this summary measure continues to predict post-pandemic behavior once

we control for other observable determinants of the return to office—even though those same

observables partly shape 1cone
j through their influence on the underlying model parameters.

Table 2 shows that 1cone
j retains strong explanatory power after accounting for alternative city

characteristics. The dependent variable in columns (1)–(3) is the percentage change in trips to the

CBD in July 2022 relative to January 2020. Column (1) confirms the strong association between

1cone
j and trip shortfalls illustrated in Figure 11a: the R2 is 0.144 when including this variable

alone. Columns (2) and (3) add pre-pandemic controls—the share of employment in teleworkable

occupations, the pre-pandemic share of trips to the CBD (a proxy for congestion), and value-added

employment shares sgj0 in the four industry groups used to estimate agglomeration elasticities in

Section 5.2. The cone indicator remains highly significant. Adding total CBSA employment as

an additional control leaves its coefficient virtually unchanged, confirming that the effect is not

merely capturing city size.

To isolate the extensive margin of switching, we also construct a binary indicator, 1
back(5,20)
j ,

equal to one if trips in July 2022 were within 5% of pre-pandemic levels and zero if they fell by

more than 20%. Columns (4)–(6) report probit estimates using the same set of regressors. The

cone indicator again remains the most significant predictor across specifications.51

Taken together, this evidence indicates that the persistent heterogeneity in post-pandemic

51Appendix A.19 shows similar results under an alternative definition of switching.
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Table 2: Determinants of CBSAs’ Changes in Trips to CBD: Observable Characteristics

Trip shortfall 1
back(5,20)
j

(1) (2) (3) (4) (5) (6)
1
cone
j -14.17 -7.97 -8.00 -1.26 -1.16 -1.10

(0.00) (0.00) (0.00) (0.00) (0.00) (0.01)
CBSA Employment -3.38 -6.59

(0.00) (0.01)
Share of Teleworkable Employment -36.75 -38.35 -5.60 -6.07

(0.05) (0.03) (0.08) (0.04)
Share of Trips to CBD in 2019 -0.90 -1.10 -0.29 -0.59

(0.55) (0.46) (0.31) (0.03)
sj0 Health and education -4.32 9.41 5.87 8.50

(0.92) (0.83) (0.47) (0.31)
sj0 Professional and other services -288.26 -204.95 -17.26 10.66

(0.00) (0.00) (0.10) (0.26)
sj0 Manufacturing 82.35 109.94 39.63 52.73

(0.39) (0.24) (0.04) (0.01)
sj0 Accomm., trade, transport. -83.38 -47.96 4.75 14.07

(0.41) (0.63) (0.72) (0.32)
Constant -8.40 31.16 20.29 0.37 2.31 -2.61

(0.00) (0.05) (0.21) (0.07) (0.36) (0.30)
Observations 275 275 275 188 188 188
R2 0.144 0.422 0.456
Pseudo R2 0.137 0.392 0.494

Columns (1)–(3) report OLS estimates of the percentage drop in CBD trips from January 2020 to July 2022 on 1cone
j

and the listed controls. Columns (4)–(6) report probit estimates for 1
back(5,20)
j . Robust p-values in parentheses.

commuting patterns is well accounted for by the coordination mechanism implied by our model.

Because this coordination occurs partly outside firm boundaries, individual firms’ return-to-office

policies may be insufficient to restore the pre-pandemic equilibrium. City-level interventions—such

as taxing remote work or subsidizing commuting—could in principle do so, but their welfare

implications and effectiveness remain open questions that we explore next.

7 Welfare

The model gives us an expression to compute the average stationary equilibrium welfare in a city

as a function of the measure of commuters. Evaluating equation (8) in a stationary equilibrium
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Table 3: Percentage Welfare Difference Between the High and Low-Commuting Equilibrium

Min p10 p25 p50 p75 p90 Max Mean N

Welfare Loss (−Ŵ) 1.2 1.6 1.9 2.2 2.6 3.1 4.0 2.3 208

and rearranging terms, the average welfare Wj can be computed as

W(Lss
cj) =

(
Lss
cj

Lj

)
Vc
(
Lss
cj

)
+

(
1−

Lss
cj

Lj

)
Vm
(
Lss
cj

)
. (35)

This is a utilitarian welfare function where all workers in the same delivery mode receive the same

utility, despite living at different distances from the CBD.52 In a city with multiple stationary

equilibria, this welfare varies across stationary equilibrium. For the 208 cities inside the cone, we

can then compute Ŵj ≡ 100×
(
W(Lss

cj low)/W(Lss
cj high)− 1

)
as the percentage change between the

welfare in the low-commuting versus the high-commuting stationary equilibrium. All cities in the

cone would lose from being permanently pushed to the low-commuting stationary equilibrium.53

Table 3 shows some moments of the distribution of welfare losses.54

The median potential loss from such a switch to the low-commuting stationary equilibrium is

2.2%, with a range from 1.2% to 4.0%. The loss stems from a drop in average wages, which is

only partially compensated by a reduction in commuting costs and changes in the option values.

A city switching equilibrium has lower wages both for commuters and remote workers since each

individual interacts with a smaller average number of agents, L̃cj. Fewer interactions lead to

diminished production externalities. Specifically, the change in average wages is given by

ŵj ≡ 100×


(

Lss
cj low

Lj

)
wcj low +

(
1− Lss

cj low

Lj

)
wmj low(

Lss
cj high

Lj

)
wcj high +

(
1− Lss

cj high

Lj

)
wmj high

− 1

 . (36)

The residual component of the welfare impact, that accounts for changes in commuting costs and

option values can be constructed as χj ≡ Ŵj − ŵj. Figure 12b plots ŵj and χj against the net

strength of agglomeration externalities, δj − γj/(2µ), for all cities estimated to be in the cone.

The fall in average wages is quite severe, between 15% and 35%. This large magnitude is to be

expected, however, because agglomeration externalities tend to be significant precisely for cities

more likely to be in the multiplicity region. Net welfare losses are then muted by the combined

effect of changes in the average commuting disutility and option values. Overall, the net strength

52This occurs because, within each group, individuals choose distance to trade off rents and commuting costs.
53Although we do not have a proof, the intuitive reason why all cities in the multiplicity cone would rather be in

the commuting-intensive stationary equilibrium is that the only active externality in our quantification is a positive
agglomeration externality. This implies that, in all equilibria, there is too little commuting compared to the efficient
benchmark.

54Table A12 in the Appendix shows actual welfare changes for the largest U.S. cities in our calibration sample.
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Figure 12: Welfare Ratio Ŵ and its Decomposition
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(b) Sources of Welfare Changes
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The left panel shows a scatterplot between Ŵ and the net strength of agglomeration externalities, δ − γ/(2µ).
The right panel shows the percentage difference in wages across equilibria, ŵ, and the residual commuting and
option value gains χ, plotted against the net strength of agglomeration externalities, δ − γ/(2µ). The marker size
is proportional to total city employment. These scatterplots can only be computed for the set of cities in the cone
of multiplicity.

of the agglomeration externality (Figure 12a) is a strong predictor of the final welfare loss: a

regression of the estimated loss on δj − γj/(2µ) delivers an R
2 of 0.85.

In Figure A15 in the Appendix, we also compare welfare losses to the observed drop in trips to

the CBD. The largest drops in CBD trips are concentrated around welfare losses of 2.5 to 3%. In

particular, we find that the welfare loss of the average resident in cities with trips to the CBD of

60% or less of the pre-pandemic level is 2.7%.55

8 Conclusion

We have proposed a theory of remote work and city structure. At its core, our theory features a

coordination problem: workers prefer to commute if others do as well, and prefer to work from

home otherwise. This mechanism can lead to multiplicity in stationary equilibria if agglomeration

forces are sufficiently larger than congestion forces and remote-work technology is decent relative

to in-office technology. In the resulting dynamic discrete choice model, large exogenous changes

in the number of commuters, a state variable of the model, can put the city on an equilibrium

path that makes it converge to an alternative stationary equilibrium. We have argued that the

55As welfare falls, one might also expect a population response. In Appendix A.9 we find that large cities are
indeed experiencing a small differential drop in residents, although the changes are rather small and not very
correlated with the change in trips to the CBD (see Figure A7b). This pattern is probably due to a low migration
elasticity across cities, large migration costs, and the myriad of idiosyncratic shocks affecting individual cities. This
is the reason we do not consider between-city employment flows in our analysis.
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COVID-19 pandemic constituted such an exogenous shock and that, as a result, many large cities

have switched from a stationary equilibrium where most workers commuted to one in which there

is a large share of agents working from home. Small cities, in contrast, tend not to exhibit this

multiplicity and therefore have converged back to the pre-pandemic stationary equilibrium. We find

consistent evidence from our estimated model for 278 U.S. cities, from cell-phone-based individual

mobility data, and from house price distance gradients. An arguably uniform shock to the labor

delivery mode across cities has revealed which cities were exposed to this coordination problem –

and thus, presented multiple stationary equilibria – before the pandemic, a rather unique empirical

event.

The model can be used to estimate the welfare losses associated with the switch to remote work

for all cities that exhibit this type of multiplicity in stationary equilibria. We find that welfare in

the commuting-intensive equilibrium is between 1.2% and 4.0% larger than in the remote-work-

intensive equilibrium. A significant, but not overwhelming, cost. This modest cost is, however,

the result of a large drop in wages compensated by substantial utility gains from option values and

commuting costs.

Although our analysis can fit the available data quite well, it inevitably abstracts from a number

of important forces and issues. First, our model studies cities in isolation but not as a system of

cities with migration, trade, and investment links. This is potentially relevant since the spatial

equilibrium condition across cities will determine local welfare effects and population flows. The

welfare implications we estimate for some of the large U.S. cities appear to be partially translating

into smaller populations. Similarly, some of the small cities with unique stationary equilibria might

grow and gain industries that transform them in ways that could put them in the multiplicity cone.

Of course, remote workers could also commute across cities, another issue we abstract from but has

received some recent attention in the media. Second, although we model remote work as “partial

remote work,” where agents work from home only a fraction µ of days, we have kept this fraction

constant rather than the agent’s choice. Of course, agents in different cities, or in different parts

of a city, or with different occupations or skills, might choose different shares. Understanding the

importance of these choices and the resulting heterogeneity across individuals could be important

but complicates the analysis significantly. Third, some of the spillovers between workers could be

internalized by firms and cities, which might then proactively affect workers’ delivery mode choice.

Understanding the extent to which active policy can determine the dynamic path and stationary

equilibrium that a city converges to, is an interesting topic for future research.

The repercussions of remote work are intriguing and potentially transforming for the organiza-

tion of work in cities, firms, and labor markets. Our paper hopes to contribute to what will surely

be an active area of research in the future, as the organization of work changes to accommodate

the booming phenomenon of remote work.
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Artuç, E., S. Chaudhuri, and J. McLaren (2010): “Trade Shocks and Labor Adjustment:

A Structural Empirical Approach,” American Economic Review, 100, 1008–45.

Atkin, D., A. Schoar, and S. Shinde (2022): “Worker Sorting, Worker Discipline and Devel-

opment,” Working Paper.

Bailey, M., R. Cao, T. Kuchler, J. Stroebel, and A. Wong (2018): “Social Connected-

ness: Measurement, Determinants, and Effects,” Journal of Economic Perspectives, 32, 259–80.

Barrero, J. M., N. Bloom, and S. J. Davis (2021): “Why Working from Home Will Stick,”

Working Paper 28731, National Bureau of Economic Research.

——— (2023): “The Evolution of Work from Home,” Journal of Economic Perspectives.

Baum-Snow, N. and R. Pavan (2011): “Understanding the City Size Wage Gap,” The Review

of Economic Studies, 79, 88–127.

Bloom, N., R. Han, and J. Liang (2022): “How Hybrid Working From Home Works Out,”

Working Paper 30292, National Bureau of Economic Research.

Bloom, N., J. Liang, J. Roberts, and Z. J. Ying (2015): “Does Working from Home Work?

Evidence From a Chinese Experiment,” The Quarterly Journal of Economics, 130, 165–218.

Brueckner, J., M. E. Kahn, and G. C. Lin (2021): “A New Spatial Hedonic Equilibrium in

the EmergingWork-from-Home Economy?” Working Paper 28526, National Bureau of Economic

Research.

Brynjolfsson, E., J. J. Horton, C. Makridis, A. Mas, A. Ozimek, D. Rock, and

H.-Y. TuYe (2023): “How Many Americans Work Remotely? A Survey of Surveys and Their

Measurement Issues,” Working Paper 31193, National Bureau of Economic Research.

43



Brynjolfsson, E., J. J. Horton, A. Ozimek, D. Rock, G. Sharma, and H.-Y. TuYe

(2020): “COVID-19 and Remote Work: An Early Look at US Data,” Working Paper 27344,

National Bureau of Economic Research.

Cappelli, P. H. and J. Keller (2013): “A Study of the Extent and Potential Causes of

Alternative Employment Arrangements,” ILR Review, 66, 874–901.

Chapple, K., H. Moore, M. Leong, D. Huang, A. Forouhar, L. Schmahmann,

J. Wang, and J. Allen (2023): “The Death of Downtown? Pandemic Recovery Trajec-

tories across 62 North American Cities,” Research Brief, School of Cities, University of Toronto

and Institute of Governmental Studies, University of California, Berkeley.

Choudhury, P., T. Khanna, C. Makridis, and K. Schirmann (2022): “Is Hybrid Work the

Best of Both Worlds? Evidence from a Field Experiment,” Harvard Business School Technology

& Operations Mgt. Unit Working Paper, No. 22-063.

Combes, P.-P., G. Duranton, and L. Gobillon (2008): “Spatial wage disparities: Sorting

matters!” Journal of Urban Economics, 63, 723–742.

Combes, P.-P., G. Duranton, L. Gobillon, D. Puga, and S. Roux (2012): “The Produc-

tivity Advantages of Large Cities: Distinguishing Agglomeration From Firm Selection,” Econo-

metrica, 80, 2543–2594.

Dalton, M., M. Dey, and M. Loewenstein (2022): “The Impact of Remote Work on Local

Employment, Business Relocation, and Local Home Costs,” BLS Working Paper 553, U.S.

Bureau of Labor Statistics.

Davis, M. A., A. C. Ghent, and J. Gregory (2024): “The Work-From-Home Technology

Boon and its Consequences,” The Review of Economic Studies, 91, 3362–3401.
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A Appendix

A.1 Data Sources

Cross-sectional Data on Remote Work Our first source of data to measure the prevalence

of remote work in the U.S. economy and the earnings of remote workers are the decennial census

between 1980 and 2000 and the American Community Survey thereafter. These surveys include a

question asked of those ages 16 and over who were employed and at work in the previous week on

the method of transportation usually used to get to work. We define as remote workers those who

reported “work from home” on this question.1 We measure the hourly earnings rate of workers

by dividing the total pre-tax wage and salary income by the number of hours worked during the

year.2 This definition of remote work allows us to obtain a consistent measure of remote work and

its compensation from 1980 to 2023 through repeated cross-sectional samples.3 On average, every

year, about 5 million workers are listed as remote workers. However, the decennial census and the

ACS do not contain information on the number of hours worked at home.

Longitudinal Data on Remote Work Our second source of data is the National Longitudinal

Survey of Youth - 1979 Cohort (NLSY79), a nationally representative sample of 12,686 young men

and women born between the years 1957 through 1964 in the United States. We focus on data

reported from 1998 onward, a period through which the reporting of hours worked is consistent.

Every two years, the survey reports the number of hours worked at home in a week. This allows

us to observe variation in remote work on the intensive margin. We obtain workers’ hourly rates

directly from the survey. Thanks to the longitudinal design of the survey, we can observe workers’

transitions into and out of remote work over time.

Foot Traffic Data We use data from a private provider, SafeGraph, which produces foot traf-

fic information at the business place level by collecting anonymized phone GPS tracking from

third-party applications. Specifically, we use the Neighborhood Patterns dataset, which contains

information on foot traffic to census block groups every month. This dataset has several key ad-

vantages. First, it captures foot traffic at a fine geographical level.4 This allows us to specifically

focus on mobility to cities’ CBDs. Second, it provides a count of individual visits by category of

trip, including visits that are likely to be for work. We use this feature to define CBDs. Third,

the visits to any block groups are disaggregated by block group of origin. This allows us to control

1In the decennial census, the question on means of transportation to work was asked in the “long form” ques-
tionnaire, which was administered to approximately 1 out of every 6 housing units in the United States.

2The income variable is “incwage”. It includes wages, salaries, commissions, cash bonuses, tips, and other money
income received from an employer. Payments-in-kind or reimbursements for business expenses are not included.
The number of hours worked in the year is computed by multiplying the reported number of hours worked in a
typical week by the number of weeks worked in the year.

3In 2023, no information on workers’ industry of work is available, so only include this year for the descriptive
evidence in Section 3.

4There are 220,684 census block groups in the United States.
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for unobserved permanent characteristics of origin block groups by studying mobility to the CBD

from each block group separately.

Housing Prices and Rents We rely on house prices and rents aggregated at the zip code level

by Zillow.5 Our measure of house prices is the Zillow House Value Index (ZHVI), which controls

for common house characteristics and adjusts for seasonality. We measure rents with the Zillow

Observed Rental Index (ZORI), an index of house rents obtained by averaging asking rents after

controlling for house quality indicators. Both series include prices and rents of single- and multi-

family units. These datasets have the advantage of being reported monthly before and during

the COVID-19 pandemic, allowing us to track the changes in housing prices and rent gradients

in about 200 CBSAs. While the monthly Zillow data is well suited for within-city comparison

across time, the relatively low number of observed zip codes in smaller CBSAs makes it is less

amenable to comparisons across cities. To obtain more precise estimates of housing rent gradients

for a larger number of CBSAs, we turn to data from the ACS at the census block group level.6 We

use the median rent paid in a block group during the 2015-2019 period. This, along with other

block group-level controls defined below, allows us to estimate housing rent gradients before the

COVID-19 pandemic more precisely and for almost 300 CBSAs.

Local Housing Market Characteristics We collect zip code level variables to control for

variation in housing market characteristics. From the Census Bureau, we obtain the median

household income, the share of households in the top national income quintile, the median age, and

the proportion of Black residents. There is significant variation in housing market characteristics

at the CBSA level. We complement these measures with local geographic features collected by Lee

and Lin (2018). We aggregate these census tract-level indicators at the zip code level.

A.2 Definitions of Data Samples

A.2.1 Census/ACS Sample

We combine the decennial census waves in 1980, 1990, and 2000 with the yearly waves of the Amer-

ican Community Survey between 2005 and 2023. We start from observations from all individuals

recorded in each wave, weighted by their personal sampling weight. We only include workers who

are employed, of age between 25 and 64, who do not work in agriculture or in the military, and who

are not self-employed.7 We restrict our sample to individuals who have not moved to a different

5The datasets are publicly available from https://www.zillow.com/research/data/.
6The data can be obtained from IPUMS’ National Historical Geographic Information System (NHGIS) portal

Manson et al. (2022).
7Specifically, we exclude workers in 1-digit industries 1 and 14 from the 1990 Census industry classification

(“Agriculture, Forestry, and Fisheries” and “Active Duty Military/NA/NC”, respectively), workers in 1-digit occu-
pations 4 and 7 from the 1990 Census occupation classification (“Agriculture, Forestry, and Fishing Occupations”
and “Military Occupations/NA”, respectively), and workers whose reported “class” or worker is self-employed
(variable classwkr equal to 1).
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metropolitan area since the previous year in order to allocate the labor delivery, and earnings of

the individual to the appropriate labor market. To limit measurement error in earnings, we further

restrict our sample to only include full-time workers, employed for the full year. We only include

individuals born in the United States. Finally, we only include individuals who reside in one of

the Core-based Statistical areas in the United States.

We define the main variables of interest as follows. An individual is categorized as a remote

worker if they answer “work from home” to the question “What is your means of transportation to

work?”.8 Our main measure of earnings is log hourly wage. We compute it by dividing yearly wage

income by the estimated number of hours worked in the year. To obtain the total number of hours

worked per year, we multiply the usual number of hours worked per week by the total number

of weeks worked in the year.9 For individuals located in small CBSAs (Micropolitan Statistical

Areas), the CBSA is sometimes missing in IPUMS. We use a crosswalk from the PUMA (smallest

geographical areas recorded in IPUMS) to CBSAs, by the intermediary of a crosswalk from PUMA

to counties, and from counties to CBSAs.

Our final sample contains 15,872,072 observations, each corresponding to an individual in a

given year. There are 637 distinct CBSAs covered by the sample. We report the number of

observations, the share of remote workers, and the median hourly pay of commuters and remote

workers per year in Table A1.

A.2.2 NLSY Sample

Our NLSY sample is constructed from the public use NLSY79 dataset.10 We only include individ-

uals from the main sample.11 Besides this restriction, we include all individuals.

We define the main variables of interest as follows. When estimating the remote work premium,

we use a continuous measure of remote work based on the number of hours worked at home per

week. When a discrete definition is necessary, for example, when determining transitions into and

from remote work, we use 24 hours of work at home per week as the threshold. Our main measure

of earnings is hourly rates of pay, reported directly in the data. The geographical location is coded

by the region of the United States. The four regions are Northeast, North-Central, South, and

West.

Our final sample comprises, on average, 30,548 observations per year, representing observations

from 5,656 individuals. We report the number of observations, average number of hours worked

at home, and median hourly pay of commuters and remote workers per year in Table A2.

8This is coded as tranwork = 80 in IPUMS.
9The yearly income variable is incwage. The number of weeks is coded into bins by the variables wkswork*, and

the usual number of hours is recorded in uhrswork.
10Note that there also exists the NLSY97, which follows individuals born between 1980 and 1984. Unfortunately,

for the purposes of our analysis, the number of hours worked from home is not reported in this panel.
11That is, we exclude individuals from the supplemental and military samples that disproportionately survey

individuals in the military and economically disadvantaged non-black, non-Hispanic individuals.
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Table A1: Summary Statistics for the Census/ACS Sample

Share of Median Hourly Median Hourly
Number of Remote Pay of Commuting Pay of Remote

Year Observations Workers (pct) Workers (2021 $/hr) Workers (2021 $/hr)

1980 1,112,304 0.42 29.3 19.0
1990 1,788,782 0.64 26.8 22.5
2000 2,178,352 1.31 26.9 32.5
2005 517,591 1.51 26.7 35.9
2006 543,922 1.65 26.1 36.3
2007 549,974 1.80 26.4 36.2
2008 593,101 2.00 25.6 37.0
2009 569,593 2.16 25.7 35.8
2010 560,349 2.33 26.0 34.7
2011 540,518 2.45 25.6 35.7
2012 557,632 2.56 25.1 35.4
2013 575,307 2.72 24.9 35.0
2014 579,939 2.86 25.0 35.5
2015 592,265 3.02 24.9 36.5
2016 602,106 3.38 25.2 36.7
2017 618,611 3.61 25.8 37.6
2018 627,578 3.79 26.0 37.9
2019 637,308 4.29 26.4 37.0
2020 482,726 18.53 26.0 39.0
2021 601,567 21.98 25.7 41.1
2022 646,785 17.94 25.8 39.2
2023 395,762 16.74 27.2 39.3

All 15,872,072 5.70 25.8 38.5

Data from the Census/ACS. Hourly pay is adjusted for the Consumer Price Index and defined as the total annual
earnings divided by the total number of hours worked in the year.

A.2.3 SafeGraph Sample

We measure visits to CBSAs’ CBDs with the Neighborhood Patterns dataset, which contains

monthly data between January 2019 and July 2022. Every month, the data is reported in a table

that lists the number of phone devices that stopped for a visit inside a census block group by block

group of origin. A visit is defined as the recording of the same device inside a polygon identified as

a “place of interest” (i.e., a place of business) for more than a minute. SafeGraph also reports for

each block group and each month the number of devices with a primary nighttime location inside

the specified block group. We refer to this number as the number of residing devices in a block

group.

Visits are categorized based on the behavior associated with the visit. Our main category of
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Table A2: Summary Statistics for the NLSY Sample

Average Median Hourly Median Hourly
Number of Number of Hours Pay of Commuting Pay of Remote

Year Observations Worked at Home Workers (2021 $/hr) Workers (2021 $/hr)

2002 30,541 1.34 21.2 28.2
2004 30,548 1.64 21.8 28.2
2006 30,545 1.61 21.5 31.0
2008 30,548 2.07 21.2 29.1
2010 30,549 2.14 21.2 29.4
2012 30,540 2.61 21.2 30.3
2014 30,548 2.96 21.2 31.2
2016 30,549 3.45 21.7 32.3
2018 30,546 3.52 21.6 31.9
2020 30,544 7.90 20.9 32.7
2022 30,542 7.27 20.4 32.0

All 336,000 3.08 21.3 30.8

Data from the NLSY79. Hourly pay is adjusted for the Consumer Price Index and is reported for the main job
during the specified two-year period.

interest is the one associated with visits featuring a “work” behavior. “Work” visits are those

recorded Monday through Friday between 7:30 am and 5:30 pm and that dwelled for at least six

hours. Ideally, we would use “work” visits for all our analysis of visits to the CBD. However,

this category only accounts for a small share of the total number of visits, leading the number of

recorded “work” visits to be more volatile over time and less precisely measured.

For this reason, we use two different measures of visits in our analysis. First, we use the number

of “work” visits from all block groups. We use the average number of monthly “work” visits in

2019 to define the location of the CBD. Second, we use the number of visits of any category by

block group of origin. This is our preferred measure to study the variation over time of foot traffic

patterns to the CBD.

Once the CBDs of each CBSA are defined according to the procedure defined in Section A.6,

we define mobility to the CBD at the origin block group of level. For each block group i, month

t, in a CBSA j, we compute the number of visits Nii′t originating from block group i that have as

destination a block group that is inside a CBD of CBSA j, divided by the number N res
it of sampled

devices residing in block group i at t:

shCBD
it =

∑
i′∈CBDj

Nii′t

N res
it

, (37)

noting that we allow CBSAs to have multiple CBDs.

We exclude block groups with fewer than 300 residing devices in a month. Our sample contains
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data on 896 CBSAs, with 203,075 distinct census block groups. The median CBSA in the sample

has 59 distinct block groups with available foot traffic data to the CBD.

A.2.4 ACS Housing Rents Sample

We assemble a dataset of housing rents and local market characteristics at the block group level

from the 2015-2019 ACS. The main outcome variable in our sample of block group-level rents is

the median rent paid in the block group.

Our controls include the percentage of dwellings by type of structure, number of bedrooms,

and construction decade, all based on the 2015-2019 ACS data. Additionally, we include controls

for block-group characteristics such as the percentage of Hispanic, Black, and Asian populations.

We also include controls from Lee and Lin (2017) that are defined at the census tract level.12

These include the average slope, the maximum temperature in July, the minimum temperature in

January, annual precipitations, the distance to the closest port, the distance to the closest river,

the distance to the closest lake, the distance to the closest shore, and the surface area of the block

group.

Finally, we compute the distance of each block group to the closest CBD of the CBSA, using

the latitude and longitude of the centroid of the block group.

A.3 Estimation of the Transition Elasticity and Transition Costs

A.3.1 Predicting Transition Shares

We estimate a probit model to control for individual characteristics in transition probabilities ℓℓ′:

Yiℓℓ′t = Φ
(
δ
r(i)
t +Xitβ

)
,

where Yiℓℓ′t is an indicator of individual i transitioning from ℓ to ℓ′, r(i) is individual i’s education-

region group (among the eight possible groups), Xi,t contains individual i’s age, age squared,

tenure at the job, tenure squared, occupation, industry. We define λ̂rℓℓ′t = Φ
(
δ̂rt + X̄itβ̂

)
the pre-

dicted transition shares evaluated at mean values of X. The dependent variable in the estimation

regression is then defined as

yrℓℓ′t ≡ ln
λ̂rℓℓ′t(λ̂

r
ℓ′ℓ′t+1)

β

λ̂rℓℓ,t(λ̂
r
ℓℓ′t+1)

β
.

We estimate the log hourly rates for each education group-region-year after controlling for

individual characteristics

lnwit = Xitβ + ζi + ωit

where Xit contains individual i’s age, age squared, tenure at job, tenure squared, occupation,

12We assign the same value of these geographic controls to all block groups inside the same tract.
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industry, and region. We define lnwr
ℓ′t+1 as the average value of ω̂it+1 for individuals in education-

region r. With 4 regions, 2 education groups, 9 periods (every two years from 2002 to 2018), 2

transition types, we obtain a maximum of 4× 2× 9× 2 = 144 observations.

A.3.2 Main Results

Table A3 reports the results of the estimation of (21) and the implied structural parameters.13

In the first two columns, we report the OLS and IV estimates from the specification in (21),

respectively. Consistent with the intuition that workers only respond to the part of the wage

ratio that they observe, better captured by using the past wage ratio as an instrument, the IV

estimates of the coefficient on the log hourly wage difference are higher than the OLS estimates.

They provide estimates of the elasticity of transitions to wages s, and of the fixed transition cost

that are statistically significant at the 1 percent level. Note that, in practice, the number of

commuters, Lr
ct+1, and total employment, Lr

t+1, are highly correlated, and so the coefficients on

these two covariates are noisy.

In addition to the parameters s, F , and ξ− θ, Equation (21) in principle also allows to recover

the following parameters:

α0 − ln
B̄

τ̄
=

1

η0

(
η2
µ

+

(
η4
µ

− η5
1− µ

)
lnπ

)
, α1 =

η3
η0µ

, γ =
2

η0

(
η4
µ

− η5
1− µ

)
. (38)

However, since η2, η3, η4, and η5 are imprecisely estimated, the implied values for these param-

eters, as well as for ξ−θ, are uninformative. For example, the implied value of ξ−θ is −1.70, with

a standard error of 19.9. This is why we set these parameters to zero for the rest of our analysis,

except for τ̄ , as described in Section 5.5.

A.3.3 Transitions by City Size

In this section, we conduct an alternative estimation of (21), with transition shares defined by

subsets of CBSAs with similar population rather than by groups of region-educational attainment.

While the region-education groups used in our main specification allow for differences in tran-

sition patterns across broad geographical areas, they pool observations from many different cities

in the same region. These cities may offer different conditions to remote workers. Pooling observa-

tions from CBSAs with similar population recognizes that larger cities may offer different remote

work conditions than smaller cities—at the expense of pooling observations from different regions.

In order to partition cities into subsets with similar population, we first obtain information on

13The total number of possible observations is the product of the number of groups r (8) with the number of
distinct years (9 for every two years between 2000 and 2016), times two for each direction of transition (to remote,
or to commute), i.e. 144 observations. In practice, however, there are only 48 observations with non-missing values
of yrℓℓ′t.
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Table A3: Estimates of the Gravity Equation for Mode Transitions and Structural Parameters

OLS IV OLS IV
Covariate yrℓℓ′,t yrℓℓ′,t Parameter Estimates Estimates

ln
wr

ℓ′,t+1

wr
ℓ,t+1

1.954 3.088 s 0.472 0.298

(0.411) (0.998) (0.099) (0.096)
dℓℓ′ 4.579 3.927 F 2.818 1.785

(6.141) (6.040) (0.843) (0.696)
dℓℓ′(t+ 1) -0.078 -0.082 ξ − θ -5.672 -1.697

(0.055) (0.067) (30.522) (19.850)
dℓℓ′L

r
c,t+1 -2.902 -1.452

(14.519) (14.832)
dℓℓ′L

r
t+1 2.660 1.258

(14.301) (14.607)
cons -0.469 -0.469

(0.103) (0.097)

N 48 48
R2 0.26 0.19

Robust standard errors in parentheses. Structural parameters estimated with the Delta method.

the CBSA and county of each individual from the restricted-use NLSY Geocode dataset.14 When

the CBSA information is missing, we infer it from the county FIPS code, if available. For each

CBSA j, j = 1, . . . , J , we compute the average population popj over the 2000-2018 period. Given

a number of subsets K, we order CBSAs by increasing average population, such that the CBSAs

indexed by j and j+1 satisfy popj ≤ popj+1 for any j = 1, . . . , J−1. We then define the threshold

indices (τk)k=0,...,K , such that τ0 = 0, τK = J , and for k = 1, . . . , K − 1, τk is defined recursively as

the smallest index such that all CBSAs indexed between τk−1 and τk account for at least 1/K of

the total average population across all CBSAs,

τk = min
τ=τk−1,...,J

τ∑
j=τk−1

popj ≥
1

K

J∑
j

popj, k = 1, . . . , K − 1.

For each k = 1, . . . , K, we refer to the subset {j|τk−1 < j ≤ τk} of CBSAs as subset k. We then

define transition shares by counting the number of transitions into and out of remote work of

individuals located in CBSAs that are part of the same subset k. By construction, subset k = 1

contains many small CBSAs, while subset K contains few large ones.

In Table A4, we describe the results from estimating (21) with K = 5 subsets of cities, defining

remote work as spending either d = 1 or d = 2 days per week at home. We compare the OLS

14A description of the NLSY Geocode data is available at https://www.bls.gov/nls/request-restricted-data/nlsy-
geocode-data.htm.

55



estimator with the Poisson Pseudo Maximum Likelihood (PPML) estimator. Given the limited

number of remote workers observed per subset k and year t, the transition shares λkℓℓ′t are sometimes

computed based on a small number of observations. We define a minimum threshold n̄remote of

remote workers, such that observations ykℓℓ′t are included in the estimation only if more than n̄remote

remote workers are observed in subset k, year t. In the case where we define remote work as d = 1

day per week at home, we set n̄remote = 20, leaving 62 observations; with d = 2, we set n̄remote = 10,

leaving 66 observations.

The estimates of s and F from the OLS and PPML estimator, with d = 1, are reported in

Columns (1) and (2). The estimates of s are similar, and not significantly different from our main

estimate of 0.3. The estimates of F are also close to our main estimate of 1.78 The estimates

obtained from defining remote work as d = 2 days or more per week are reported in Columns (3)

and (4). The OLS and PPML yield slightly higher estimates of both s and F , although our main

values of s and F are contained in the 95% confidence intervals of these estimates.

A.4 Occupations

We define 22 groups of occupations based on the occupation classification used in the 2000 decennial

census, denoted OCC in IPUMS. From the 2000 decennial census until the latest ACS, the 2000

Census classification is available. For the decennial census waves in 1980 and 1990, the 1990 Census

classification is available. We use a crosswalk between the 1990 and 2000 Census classifications to

obtain a consistent definition of our occupation groups.

The NLSY uses the 2000 Census occupation classification from 2002 onward. Prior to 2002, the

NLSY uses the 1970 Census occupation classification. We use a crosswalk from the 1970 Census

to the 1990 Census classifications, then from the 1990 Census to the 2000 Census classifications to

obtain a consistent definition.

We report descriptive statistics about these occupation groups in Table A5.

A.5 Remote Work Premium

A.5.1 Estimates from the ACS

In addition to our preferred estimation of the remote work premium based on individual longi-

tudinal data in the NLSY, we also estimate here the remote work premium based on data from

the American Community Survey. Hence, rather than defining remote work based on the num-

ber of hours worked at home, we define remote work as a binary variable. Specifically, we define

dremoteit as an indicator that equals one if an individual reports “work at home” as their means of

transportation to work, and then predict d̂ = 1 to represent remote work.

We then estimate the national trend and an intercept for each of the 22 occupation groups,

denoted by o. Specifically, we estimate the following equation:

lnwit = (ψ0
o(i) + ψ1t)dremoteit +Xitβo(i) + ϵit,
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Table A4: Estimates of the Gravity Equation Based on City Size

(1) (2) (3) (4)
Remote = 1 day Remote = 2 days

OLS PPML OLS PPML

ln
wr

ℓ′t+1

wr
ℓt+1

1.439 1.384 1.071 0.886

(0.380) (0.389) (0.482) (0.460)
dℓℓ′ 1.100 1.105 0.513 0.080

(0.686) (0.661) (0.933) (0.764)
dℓℓ′(t+ 1) -0.051 -0.060 0.133 0.027

(0.046) (0.046) (0.077) (0.046)
dℓℓ′L

r
c,t+1 -0.152 -5.603 8.880 11.60

(14.81) (14.71) (17.19) (14.73)
dℓℓ′L

r
t+1 0.103 5.546 -8.899 -11.60

(14.78) (14.69) (17.16) (14.71)
cons -0.339 -0.231 -0.406 -0.272

(0.065) (0.060) (0.065) (0.060)

Implied parameters
s 0.640 0.666 0.860 1.041

(0.169) (0.187) (0.387) (0.540)
F 2.773 1.962 4.458 3.610

(0.910) (0.780) (2.020) (2.158)

N 62 62 66 66
R2 0.14 0.20

Robust standard errors in parentheses. Structural parameters estimated with the Delta method.

where lnwit is the log of the hourly wage for individual i at time t, ψ0
o(i) and ψ

1 represent the inter-

cept and the national trend for occupation group o, respectively, and Xit is a vector of individual-

level control variables, including age, age squared, tenure at the job, tenure squared, industry,

marital status, race, education-year, number of children, metro area-year. We focus on full-time

US-born workers in metropolitan areas observed between 2000 and 2018.

Finally, we estimate the remote work premium in city j as follows:

ψjt =
∑
o

sh2018oj (ψ0
o + ψ1t)d̂,

where sh2018oj is the share of workers in city j working in occupation o in 2018. The results are

reported in Table A6.
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Table A5: Summary Statistics for Occupation Groups

2019 Share 2019 Share
of Total That is

Code Occupation Employment Remote

43 Executive, Administrative, and Managerial Occupation 0.118 0.067
95 Management Related Occupations 0.050 0.088
124 Mathematical and Computer Scientists 0.041 0.107
156 Architecture and Engineering 0.025 0.041
196 Life, Physical, and Social Services 0.012 0.058
206 Community and Social Services 0.020 0.042
215 Legal 0.011 0.051
255 Education, Training, and Library 0.070 0.026
296 Art, Design, Entertainment, Sports and Media 0.016 0.083
354 Healthcare Practitioners and Technical 0.068 0.026
365 Healthcare Support 0.032 0.055
395 Protective Service 0.024 0.017
416 Food Preparation and Serving Related 0.046 0.012
425 Building and Grounds Cleaning and Maintenance 0.026 0.017
465 Personal Care and Service 0.017 0.031
496 Sales and Related 0.085 0.060
593 Office and Administrative Support 0.123 0.041
613 Farming, Forestry, and Fishing 0.002 0.073
694 Construction and Extraction 0.049 0.015
762 Installation, Repair, and Maintenance 0.032 0.017
896 Production 0.066 0.013
983 Transportation and Material Moving 0.064 0.016
999 Experienced Unemployed not Classified by Occupation 0.001 0.016

Occupation groups based on the occupation classification used in the 2000 decennial census, denoted OCC in IPUMS.

A.5.2 Wage Premium of Remote Work by Occupations’ Teleworkable Index

Our theory predicts that cities’ heterogeneous paths in the wake of the pandemic lockdowns can

be explained without large changes, or any change at all, in the productivity of remote work—a

feature that we view as appealing.

However, there may have been some changes in the productivity of remote work, and these

changes may have been heterogeneous across cities. One possibility is that occupations that offer a

high potential for telework may have experienced larger increases in productivity, leading CBSAs

with higher employment shares in those occupations to experience higher average increases in

remote work productivity.

We investigate this possibility by plotting a version of Figure 1b for two groups of occupations

in the ACS: those above and below the median share of teleworkable index, according to Dingel
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Table A6: Remote Work Premium for Occupation Groups

(1) (2)
NLSY ACS

Remote -0.006 (0.001) 0.029 (0.000)
Remote × Year 0.001 (0.000) 0.006 (0.000)
Management Related Occupations × Remote 0.000 (0.001) -0.058 (0.000)
Mathematical and Computer Scientists × Remote 0.002 (0.001) -0.021 (0.000)
Architecture and Engineering × Remote 0.000 (0.001) -0.009 (0.000)
Life, Physical, and Social Services × Remote -0.002 (0.004) 0.013 (0.001)
Community and Social Services × Remote -0.001 (0.003) -0.190 (0.001)
Legal × Remote 0.002 (0.002) -0.060 (0.001)
Education, Training, and Library × Remote 0.003 (0.002) -0.064 (0.000)
Art, Design, Entertainment, Sports × Remote -0.003 (0.003) -0.080 (0.001)
Healthcare Practitioners and Technical × Remote -0.001 (0.002) -0.151 (0.000)
Healthcare Support × Remote -0.002 (0.003) -0.373 (0.001)
3Management Related Occupations × Remote -0.000 (0.003) -0.086 (0.001)
Food Preparation and Serving Related × Remote -0.004 (0.003) -0.153 (0.001)
Building Cleaning and Maintenance × Remote -0.003 (0.003) -0.198 (0.001)
Personal Care and Servic × Remote -0.003 (0.002) -0.325 (0.001)
Sales and Related × Remote 0.002 (0.001) 0.140 (0.000)
Office and Administrative Support × Remote -0.002 (0.001) -0.050 (0.000)
Farming, Forestry, and Fishing × Remote -0.009 (0.004) -0.038 (0.001)
Construction and Extraction × Remote -0.003 (0.004) -0.111 (0.001)
Installation, Repair, and Maintenance × Remote -0.002 (0.001) -0.125 (0.001)
Production × Remote -0.001 (0.003) -0.069 (0.001)
Transportation and Material Moving × Remote -0.009 (0.007) -0.141 (0.001)

Indiv. Controls Yes Yes
Year FE Yes Yes
Occ. & Ind. FE Yes Yes
Indiv. FE Yes No
Observations 40,385 15,872,072

Robust standard errors in parentheses. Occupation groups based on the occupation classification used in the 2000
decennial census, denoted OCC in IPUMS.

and Neiman (2020).

The occupation groups above the median value of teleworkable index are “Executive, Ad-

ministrative, and Managerial Occupation”, “Management Related Occupations,” “Mathematical

and Computer Scientists,” “Architecture and Engineering,” “Life, Physical, and Social Services,”

“Community and Social Services,” “Legal,” “Education, Training, and Library,” “Art, Design, En-

tertainment, Sports and Media,” “Sales and Related,” and “Office and Administrative Support.”
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Figure A1: Remote Work Hourly Wage Premium – Low vs. High Teleworkable Index Occupations
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This figure reports the coefficients of yearly remote work indicators from the regression of log hourly wages, including
the same controls as in Panel (b) of Figure 1b, for two subsamples: individuals working in occupation groups with
above and below median teleworkable index, as defined by Dingel and Neiman (2020). The shaded areas represent
the 95 confidence interval around the estimates.

Those below the median value of teleworkable index are “Healthcare Practitioners and Tech-

nical,” “Healthcare Support,” “Protective Services,” “Food Preparation and Serving Related,”

“Building and Grounds Cleaning and Maintenance,” “Personal Care and Service,” “Farming,

Forestry, and Fishing,” “Construction and Extraction,” “Installation, Repair, and Maintenance,”

“Production,” “Transportation and Material Moving,” and “Experienced Unemployed not Classi-

fied by Occupation.”

We report the results in Figure A1. The two series show that, expectedly, the premium for

remote work has been higher for occupations with high teleworkable index. However, both groups

have experienced parallel upward trends since 2005, with no clear sign of differential growth,

including after 2020. We view this as another indication that large heterogeneous changes in the

productivity of remote work of specific occupations is unlikely to be the main driver of the large

divergence in city structure since the COVID-19 pandemic.

A.6 Defining Central Business Districts

For each CBSA j, chosen radius r, we define the geographic coordinates of the kth CBD of j as

z
(1)
cbd j(r) = argmax

z

∑
i∈cbsaj

1{dist(zi, z) ≤ r}Ncommute i2019

land areai
, (39)

where i is a block group, zi its coordinates (latitude and longitude), dist(·, ·) the geodesic distance,
Ncommute i2019 the total number of work-related visits recorded in block group i during the year

2019 from SafeGraph.
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Figure A2: Central Business Districts of Selected Large Cities

New York, NY San Francisco, CA Seattle, WA

Chicago, IL Houston, TX Los Angeles, CA

For k ≥ 2, we impose that the center of the kth CBD is not inside previous CBDs. We retain

the kth CBD if it attracts at least 80% as many commuters as the main CBD and if it does not

overlap with CBDs 1 to k− 1. We define the distance of each zip code to the CBD as the distance

to the nearest CBD.

A.7 Change in Visits to the CBD for Selected Cities

In Figure A4, we report the time series of visits to the CBD of six selected cities. The estimates

are the coefficients for monthly indicators in a regression at the block group-month level. The

outcome variable is the number of visits to the CBD of the CBSA from the specified block group,

divided by the number of residing devices in that block group, as defined in (37), scaled by the

value of this ratio in January 2020. That is, our outcome variable is yit = shCBD
it /shCBD

it0
, where

i is a block group, t is a month, and t0 is set to January 2020. We then estimate the following

regression for each CBSA:

yit =
S∑

s=s0

βs1{t = s}+ ϵit,

where s0 = 1 for October 2019, and S = 34 for July 2022. We restrict the sample to block groups

that are located less than 50 kilometers away from the CBD, and cluster standard errors at the

census tract level, which contains 3.4 block groups on average.

Figure A4 reports the estimates of βs for the CBSAs of Los Angeles, CA, Chicago, IL, Boston,

MA, San Diego, CA, Durham, NC, and Burlington, VT, along with the 95 percent confidence
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Figure A4: Change in Visits to the CBD for Selected Cities
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 Lockdown

0

.2

.4

.6

.8

1

1.2

T
rip

s 
to

 C
B

D
, r

el
. t

o 
Ja

n 
'2

0

01/20 07/20 01/21 07/21 01/22 07/22

San Diego, CA
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Durham, NC
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Burlington, VT
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Estimates of monthly indicators in a separate regression for each CBSA of visits to the CBD at the block group-
month level. The outcome variable is the number of visits to the CBD from the specified block group, divided by
the number of residing devices in that block group, as defined in (37), scaled by the value of this ratio in January
2020. The shaded areas represent the contour delimited by the consecutive 95 percent confidence intervals of each
monthly indicator. Standard errors are clustered at the census tract of origin.

interval around each estimate. All six CBSAs experience a sudden drop in visits to the CBD in

March-April 2020, corresponding to the period of nation-wide stay-at-home orders at the onset of

the COVID-19 pandemic. The share of visits to the CBD drops to about 20 percent of their value

just three months earlier. The patterns in the following months are similar for the three cities

in the top panel. After some ebbs and flows likely explained by the various waves of COVID-19

infections, visits to the CBD in these CBSAs stabilize at, or below, 50 percent of January 2020

levels. In the three cities in the lower panel, however, the patterns of visits to the CBD is starkly

different: after a small temporary upset in the winter of 2021, visits to the CBD continue to

increase and return to pre-pandemic levels, or close to, by the end of the sample period.

A.8 Office Trips for Selected Cities

In Section 3.1, we measure trips to the CBD as the share of all trips originating from a census

block group and ending in the CBD, averaged across all block groups. This measure, therefore,

captures not only workers’ trips to the office, but also non-work-related trips, such as visits to

retail stores, restaurants, and other amenities.

In this section, we confirm that, for the CBSAs for which they are available, office trips to the

CBD follow the same patterns as all other trips. We use an alternative measure of trips to the
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Figure A5: Office Trips to CBD relative to January 2020

(a) New York, NY
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(b) San Francisco, CA
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(c) Madison, WI
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(d) Los Angeles, CA
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(e) Chicago, IL
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(f) Boston, MA
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(g) San Diego, CA
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(h) Durham, NC
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(i) Burlington, VT
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Estimates of monthly indicators in a separate regression for each CBSA of workplace visits to the CBD—those
recorded Monday through Friday between 7:30 am and 5:30 pm that dwelled for at least six hours—at the block
group-month level. The outcome variable is the number of visits to the CBD from the specified block group, divided
by the number of residing devices in that block group, as defined in (37), scaled by the value of this ratio in January
2020. The shaded areas represent the contour delimited by the consecutive 95 percent confidence intervals of each
monthly indicator. Standard errors are clustered at the census tract of origin.
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CBD based only on the subset of trips that are labeled as workplace trips in the Neighborhood

Patterns dataset. Workplace visits are defined by SafeGraph as those recorded Monday through

Friday between 7:30 am and 5:30 pm and that dwelled for at least six hours. Workplace visits

are recorded less consistently than all trips and are less often reported in smaller CBSAs. For the

nine CBSAs analyzed in Figures 2 and A4, however, workplace visits are reported consistently.

We report the monthly estimates of office trips to these CBSA’s CBDs in Figure A5.

Figure A5 reveals the same patterns as those observed in Figures 2 and A4. For all cities,

the first months of the pandemic saw a drastic drop in trips to around 20 percent of their initial

value. The recovery, however, has been quite different. While Madison, San Diego, Durham, and

Burlington essentially went back to their pre-pandemic levels by the end of our sample period,

CBD office trips for New York, San Francisco, Los Angeles, Chicago, and Boston have stabilized

at around 40 percent of their pre-pandemic levels.

A.9 Evidence of Population Changes Across CBSAs

In this section, we motivate our choice of considering a closed-city model by documenting that,

while there have been noticeable changes in CBSAs’ populations since 2019, those changes are

small in comparison to the large shifts in remote work, trips to CBD, and house price gradients

documented in Sections 2 and 3.

We look at estimates of CBSAs’ population published by the US Census Bureau. We build a

yearly time series from 2015 to 2023 by appending a file with estimates from 2015 to 2020, included,

and one from 2020, included, to 2023. Some CBSAs’ delineations changed in 2020, leading to two

different population estimates for that same year, one for each delineation. To avoid jumps due

to these delineation changes, we adjusted the estimates in 2020-2023 by the difference in the two

estimates in 2020. In Figure A6, we start by documenting the changes in population for the nine

cities used as examples throughout the paper. Several cities, particularly those that experienced

large decreases in trips to CBD, have also seen their population decline between 2019 and 2023.

New York City’s population declined by 3.1 percent, while San Francisco’s population declined by

4.3 percent, the strongest decline in that group. CBSAs that returned to pre-pandemic levels of

trips to CBD, such as Madison, WI, Durham, NC, Burlington, VT, and San Diego, CA, appear

to be following their pre-pandemic trends. Note that the decline in population in the largest cities

is consistent with our findings that these cities offer lower levels of welfare in the low-commuting

equilibrium.

In Figure A7a, we show that this deviation from trend of the CBSA population for large cities,

but not for smaller cities, appears to be systematic. Large CBSAs with employment above 1.5

million grew on average by 3.7 percent between 2015 and 2019, but only by 1.9 percent between

2019 and 2023. Small CBSAs with employment below 150 thousand, however, grew almost at the

same rate between 2015 and 2019 (0.4 percent) and between 2019 and 2023 (0.5 percent). Hence,

on average, small CBSAs grew at the same rate in the four years preceding and following the

COVID-19 pandemic, while large CBSAs grew by 1.8 percentage points less. In comparison, these

64



Figure A6: Change in Total Population Relative to 2019

(a) New York, NY
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(b) San Francisco, CA

 Lockdown

.9

.95

1

1.05

1.1

P
op

ul
at

io
n,

 r
el

at
iv

e 
to

 2
01

9

2015 2016 2017 2018 2019 2020 2021 2022 2023

(c) Madison, WI
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(d) Los Angeles, CA
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(e) Chicago, IL
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(f) Boston, MA
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(g) San Diego, CA
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(h) Durham, NC
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(i) Burlington, VT
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Population estimates from “Annual Resident Population Estimates and Estimated Components of Resi-
dent Population Change for Metropolitan and Micropolitan Statistical Areas and Their Geographic Compo-
nents for the United States,” available at https://www.census.gov/data/tables/time-series/demo/popest/

2020s-total-metro-and-micro-statistical-areas.html.
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Figure A7: Change in Total Population Relative to 2019

(a) Change in Population in Large vs. Small CBSAs
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(b) Population Change vs. Change in CBD Trips
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Population estimates from “Annual Resident Population Estimates and Estimated Components of Resi-
dent Population Change for Metropolitan and Micropolitan Statistical Areas and Their Geographic Compo-
nents for the United States,” available at https://www.census.gov/data/tables/time-series/demo/popest/

2020s-total-metro-and-micro-statistical-areas.html. Panel (a) represents the average CBSA population
relative to 2019 for i) CBSAs with total employment above 1.5 million (25 largest CBSAs), ii) CBSAs with total
employment below 150,000 (663 smallest CBSAs). The shaded areas represent the consecutive 95 percent confidence
intervals of each yearly estimate. Panel (b) reports the change in CBSA population between 2019 and 2023 against
the change in visits to the CBD in July 2022 relative to January 2020. Each marker represents a CBSA. The solid
line represents a fitted kernel-weighted local polynomial smoothing, with the shaded area corresponding to the 95
percent confidence interval around the fitted value.

large CBSAs saw a decrease in trips to CBD by at least 40 percent.

In Figure A7b, we find that, even though larger cities appear to have experienced larger devi-

ation from their population trends since the pandemic, there is little, if any, correlation between

the population change between 2019 and 2023 and the change in trips to CBD between January

2020 and July 2022. We view this as further evidence that the reallocation of workers across

CBSAs is unlikely to be the essential driving force behind the dramatic changes in city structure

we document in Sections 2 and 3.

A.10 Evidence on Remote Work, Agglomeration Externalities and

Transportation Elasticities

In this subsection we ask what determines, empirically, whether a city is inside its cone. The

several dimensions of heterogeneity that we have exploited to quantify the cities’ parameters,

like industrial and occupational composition and the rent gradients, all jointly contribute to this

position. To organize our discussion, we leverage our theory, which indicates that the position of

a city with respect to its cone is influenced by the city’s size, agglomeration and transportation

costs elasticities, and the relative productivity of remote work.
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The left side of Figure A8 reports the relationship between the change in visits to the CBD and

our estimates of agglomeration externalities, δj, transportation elasticities γj, and relative remote

productivity zj/Aj. Each bubble represents a city of population proportional to the bubble area.

The right side of Figure A8 reports the share of cities that are predicted to be in their cone of

multiplicity as a function of the same parameters. Blue dots indicate the fraction of cities in the

cone in the calibrated model for 20 quantiles of the variable indicated on the horizontal axis.

The left side of the figure shows that cities that experienced larger declines in visits to the CBD

are those that have a larger agglomeration externality, a smaller transportation costs elasticity, and

a higher relative productivity of remote work. These relationships are quite strong, as indicated

by the magnitude and significance of the population-weighted linear fit in the figures and values

of R2 between 0.08 and 0.41.

The right side of the figure shows that the relationship between the drop in visits to the CBD

and the key agglomeration parameters is rooted in the workings of the model. The figures show

that calibrated cities with higher agglomeration externalities δj, lower transportation elasticities

γj, and higher relative productivity of remote work zj/Aj are those that are the most likely to

be inside the cone of multiplicity.15 Therefore, our model predicts that these are the cities that

are the most likely to remain in a low-commuting equilibrium after a temporary shock such as a

lockdown.

In Table A7, we explore the relative ability of these factors to relate to CBD trips, and their

contribution to whether each city is inside or outside its cone – the multivariate versions of the left

and right columns of Figure A8. We note that these partial correlations should be interpreted with

caution, since is it their joint combination that determines whether or not a city exhibits multiple

stationary equilibria. In particular, in Column (1) we run a linear regression of the shortfall in

trips to the CBD on standardized values of Lj, zj/Aj, δj, and γj. We find that the variation in

agglomeration elasticity and the relative remote work productivity are the most strongly associated

to the drop in trips to CBD. In column (2), we estimate a probit regression of the indicator of

whether the city is inside its cone on standardized values of Lj, zj/Aj, δj, and γj. Empirically, we

find a large role for the distance elasticity of transportation costs, γj, which is natural given the

large variability we find in the data, followed by the agglomeration externality, δj, and relative

productivity of remote work. The high pseudo-R2 suggests that there is little residual variation to

be explained by the interactions of these factors.

A.11 Establishment Employment Concentration by City Size

Our theory considers a competitive production sector in which no single firm is large enough to

affect the equilibrium selection through its own demand for in-person and remote workers. In

practice, however, some CBSAs host large establishments that can represent a substantial share

of that CBSA’s employment. If smaller CBSAs are more likely to host such large establishments,

15Panel (d) in this figure excludes some large outliers focusing on γj < 0.1. This choice is made for the visibility
of the graph, and the estimates return unchanged messages without these restrictions.

67



Figure A8: Visits to CBD and Share of Cities in the Cone vs. City Parameters
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(c) Transportation Elasticity, γj
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(e) Relative Productivity of Remote Work, zj/Aj
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Table A7: Probit Regression of Cone Indicator on Model-Predicted CBSA Characteristics

(1) (2)
Trip shortfall 1

cone
j

Employment -2.37 2.12
(1.74) (0.57)

Relative Remote Productivity, zj/Aj -16.50 -6.56
(4.07) (1.30)

Agglomeration Externality, δj 12.65 8.69
(3.24) (1.43)

Transportation Cost Elasticity, γj 1.54 -18.60
(0.91) (2.49)

Observations 274 274
R2 0.334
Pseudo R2 0.826

Column (1) of this table shows the results of a linear regression of the shortfall of trips in July 2022 relative to
January 2020, as described in the main text, on 1cone

j on Lj , zj/Aj , δj , and γj . Column (2) shows the results of a
probit regression on the same set of variables. All the regressors have been standardized. Robust standard errors
in parentheses.

they may be more likely to return to high levels of commuting if those establishments participate

in bringing workers back to the office.

In this section, we show that, perhaps surprisingly, smaller MSAs (the subset of CBSAs for

which we can perform the exercise) are less likely to host establishments that account for a large

share of their employment. We interpret this finding as indicative that the differential rates of

return to the office between large and small CBSAs are unlikely to be facilitated by the idiosyncratic

decisions of the largest establishments.

We examine the empirical relationship between the MSA-level concentration of employment

in large establishments and the total employment size of the MSA. To this aim, we estimate, for

each MSA j, the share of employment accounted for by the fraction p of largest establishments,

χj(p) ∈ (0, 1), and relate it to the log employment in the MSA j, log(empj).

We start by constructing a Lorenz curve for the total MSA j’s employment in 2019. The curve

maps the share ej(s) ∈ (0, 1) of MSA j’s establishments smaller than s into the share of employment

ζj(s) ∈ (0, 1) accounted for by those establishments. The 2019 County Business Patterns’ MSA

file (CBP) contains, for each MSA j, the total employment in the MSA Ej, the total number of

establishments Nj, and the number of establishments nj(r) in each of 11 different employment

brackets [tl(r), tu(r)], for r = 1, ..., 11, plus a residual category tl(12) with employment above

5,000. With these data, we seek to 1) estimate employment in each bracket with an appropriate

weight between the lower and upper end, 2) estimate employment in the top bracket where we

only know the lower end, 3) to minimize the sum of squared deviations between estimated and

actual employment across CBSAs. We address each of these points as follow:
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1. We approximate employment in brackets size [tl(r), tu(r)], for r ≤ 11, with

emp(r;ω, b) = tu(r) [ω · φ(tu(r); b)] + tl(r) [1− ω · φ(tu(r); b)] (40)

where ω ∈ [0, 1] is a weight common across all ranges, and φ(tu(r); b) ∈ [0, 1] is a “bending”

function that shifts the common weight differentially across ranges as a function of a param-

eter b ∈ [0, 1]. The values of ω and b will be chosen optimally, as described below. Note that

if ω = 0.5, φ(tu(r); b) = 1 for all r, the approximation is simply the average of the brackets’

endpoints; since the establishment size distribution is not uniform, one might conjecture that

the appropriate midpoint varies across the intervals. In particular, if the establishment size

is Pareto, the appropriate midpoint is closer to the left end for lower employment ranges

than it is for higher employment ranges. We then seek a function φ(tu(r); b) that assumes

values between 0 and 1, is increasing in the endpoint tu(r), and admits “no bending” as a

possibility, that is, φ(tu(r); b) = 1 for all tu(r). One such function is:

φ(x; b) = b+ (1− b)

(
x− 4

4995

)1/2

(41)

defined between the values of x = 4 (the upper end of the lowest employment bracket, 1

to 4) and x = 4999 (the upper end of the highest employment bracket, from 2,500 to 4,999

employees), and b ∈ [0, 1]. This function approaches a flat line at 1, and the heterogeneity

among midpoints becomes less extreme, as b→ 1.

2. With regard to the second constraint, we parameterize employment in the residual interval

as emp(12;m) = 5, 000m, with m ≥ 1. The total imputed employment in a CBSA can then

be written as:

ẽj(ω, b,m) =
11∑
r=1

empj(r;ω, b)nj(r) + empj(12;m)nj(12) (42)

3. We then minimize

ρ(ω, b,m) =
∑
j

(
ẽj(ω, b,m)

Ej

− 1)2 (43)

under the constraints that ω ∈ [0, 1], b ∈ [0, 1],m ≥ 1.

The best fit for our procedure is b = 1, ω = 0.4475,m = 1, which rejects heterogeneous weights and

suggests a common weight higher than 0.5 on the highest end of each bracket. Panel (a) of figure A9

reports a comparison between data and fitted CBSA employment, across CBSAs. This procedure

delivers data on the number of establishments and an estimate of the total employment in each of

the brackets, empj(r; 0.447, 1)nj(r), for each bracket and CBSA. We build the Lorenz curve for each

MSA by computing the share of establishments up to a given size bin s, ej(s) =
∑s

r=1 nj(r)/Nj, and
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Figure A9: Estimating employment by bracket size from CBSA County Business Patterns

(a) Fitted vs. Actual CBSA Employment
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Panel (a) of this figure shows the relationship between actual CBSA employment on the x axis,
and estimated employment after recovering the optimal weights ω, b,m from equation 43, on the
y axis; the black line is the 45 degree line. Panels (b) and (c) show the implied Lorenz curves for
the metro areas of New York, NY and Madison, WI.

the cumulative employment share accounted for by these establishments, ζj(s) =
∑s

r=1 empj(r)/Ej.

For each MSA j, we then linearly interpolate the set of points (ej(s), ζj(s)) to obtain the function

ζ̃j(s), giving, for each s ∈ (0, 1), the share of employment accounted for by the 100e percent

smallest establishments in that MSA. Finally, for a chosen share of top establishments p, we

compute the share of employment accounted for by the 100p percent largest establishments in

MSA j as χj(p) = 1− ζ̃j(1− p). Two examples of the function χj(p) for New York and Madison,

WI, are reported in panels (b) and (c) of Figure A9.

Figure A10 shows the relationship between city size and the share of employment accounted

for by the largest 5% and 10% of establishments, respectively. We find that smaller cities tend

to have employment less concentrated in a few large establishments. We interpret this finding as

indicative that the return to the office in smaller cities is less likely to be triggered by the decision

of a few large employers mandating a return to the office.
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Figure A10: Employment Concentration in Largest Establishments by MSA Size

(a) Top 5%, all MSAs
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(b) Top 10%, all MSAs
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Estimated share of employment accounted for by the top 5 and 10 percent establishments in size.
Each dot represents a Metropolitan Statistical Area. The MSA employment is obtained from the
2019 County Business Patterns. The share of employment in the top establishments is obtained
by constructing the Lorenz curve of employment share by establishment size for each MSA.

A.12 Changes in CBSAs’ Teleworkable Employment

Our theory considers workers in a representative occupation with in-person and remote productivi-

ties that are calibrated as the employment-weighted average of our occupation-specific productivity

estimates. This assumption abstracts from the possibility for workers to change their occupations

over time. However, shifts in cities’ occupational composition could partly explain their diverging

trajectories if, in response to the pandemic lockdowns, workers in large cities decided to transition

in large numbers to occupations more amenable to remote work, while workers in smaller cities

did not.

In this section, we show that this was not the case. First, while there is a noticeable transition

toward occupations with higher teleworkable index, it is of much lower magnitude than the shift in

trips to CBD. Second, that shift is slightly more pronounced in smaller CBSAs, indicating that the

dramatic switch to remote work in large cities is not explained by a disproportional shift toward

teleworkable occupations.

In Figure A11, we report the evolution of the share of teleworkable employment, computed

as the employment-weighted average of the time-invariant measures of occupational teleworkable

index by Dingel and Neiman (2020). In New York City, we observed a marked, but limited, increase

in teleworkable employment. The share increased by 2.3 percent between 2015 and 2019 and by

5.0 percent between 2019 and 2023. In San Francisco, the share of teleworkable employment

has increased on average at a rate comparable to pre-pandemic. Our measure of teleworkable

employment is more volatile in Madison; on average, it also increased at a similar rate to pre-

pandemic.
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Figure A11: Change in Share of Teleworkable Employment for Selected Cities

(a) New York, NY
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(b) San Francisco, CA
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(c) Madison, WI
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Estimates are constructed by computing CBSAs’ yearly occupational composition from the ACS, and multiplying
each occupational share by the teleworkable index from Dingel and Neiman (2020).

We investigate these patterns systematically across large and small CBSAs in Figure A12. On

average, the share of teleworkable employment increased by 5 percent between 2019 and 2020 in

small and large CBSAs. By 2023, the increase was 7.9 percent in small CBSAs, and 5.8 percent in

large CBSAs. We view this finding as indicating that changes in CBSAs’ occupational composition

are unlikely to be a key driver of the heterogeneous responses described in Section 3.

Figure A12: Change in Share of Teleworkable Employment in Large vs. Small CBSAs
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Plotted coefficients represent the average share of teleworkable employment in a CBSA relative to 2019 for i) CBSAs
with total employment above 1.5 million (25 largest CBSAs), ii) CBSAs with total employment below 150,000 (663
smallest CBSAs). The shaded areas represent the consecutive 95 percent confidence intervals of each yearly estimate.

A.13 Estimates of the Elasticity of Substitution Between Remote and

In-Person Workers

A.13.1 Model with Multi-Sector CES Production and Inelastic Labor Supply

The model in Section 4 focuses on a representative production sector that implicitly assumes a

linear production function in remote and in-person workers, such that the relative wage of remote
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and in-person workers is independent of their relative labor supply. These assumptions translate

into a simple strategy for estimating the remote work premium based on the relative wages of

remote and in-person workers.

In this Section, we provide evidence in support of these assumptions. We develop an alternative

model that allows for multiple sectors and a CES production in remote and in-person workers. We

derive estimating equations for the elasticity of substitution between remote and in-person workers

and find very large values that do not reject the linear specification in the main model. For that

reason, we maintain the linear production model as our main model.

Consider a disk-shaped city with an exogenous population of size L. There are two final goods

in the economy: consumption and housing. The final consumption good Q, the price of which

we normalize to 1, is produced according to a Cobb-Douglas function over intermediate sectoral

goods,

Q =
S∏

s=1

qβs
s , βs ∈ (0, 1), s = 1, . . . , S, ,

S∑
s=1

βs = 1. (44)

Sectoral goods are produced in the CBD by profit-maximizing firms under constant returns to

scale according to a CES production function combining in-person and remote workers,

qs = As

[
AcsL

θ
cs + AmsL

θ
ms

]1/θ
, θ ≤ 1, (45)

where Lcs is the number of in-person workers, Lms is the number of remote workers, and θ =

(ρ − 1)/ρ, where ρ is the elasticity of substitution between remote and in-person workers. The

efficiency of in-person and remote workers in sector s depends on the total economic activity that

takes place in the city center across all sectors, which we measure, as in Section 4, by defining

L̃c ≡ Lµ
cL

1−µ, (46)

a function of the current number of commuters Lc =
∑S

s=1 Lcs, the total city size L = Lc + Lm,

and the fraction of days per week a remote worker spends at home, µ. We postulate that the factor

shares for each type of labor are given by

Acs ≡

(
AsL̃

δ
c

)µ
zµs +

(
AsL̃δ

c

)µ , Ams ≡
zµs

zµs +
(
AsL̃δ

c

)µ . (47)

The productivity of a commuting worker depends on the in-office productivity in that sector As > 0,

and on how many workers are on average in the CBD, L̃c, with an elasticity δ > 0. Similarly, the

productivity of a remote worker depends on the remote work productivity in that sector zs. Hence,

the optimal ratio of remote workers increases in their productivity, the more so as they spend a

higher share of the week at home. The wage for workers in mode ℓ in sector s resulting from profit
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maximization is given by

wℓs = psA
θ
sAℓsL

θ−1
ℓs q1−θ

s , (48)

where ps is the price of sectoral good s. The wage of commuters relative to remote workers in

sector s is therefore given by
wms

wcs

=

(
zs

AsL̃δ
c

)µ(
Lms

Lcs

)θ−1

. (49)

Absentee landlords invest their effort to produce housing on their unit-size plot and receive r(d)

per unit of housing. Land has an alternative use that yields ra.

Equation (49) will be the basis of our estimation strategy of the elasticity of substitution

between remote and in-person workers. We aim to estimate ϕ ≡ θ − 1 = −1/ρ.

A.13.2 Estimates of the Elasticity of Substitution Between Remote and In-Person

Consider equation (49) for different cities j = 1, . . . , J and different periods t = 1, . . . , T . Let δj
be the agglomeration externality in city j. We assume that the technology zst is constant across

cities and let in-office productivity be the product of sector-year, city-year terms, and a residual

Asjt = Āstājtãsjt. Taking logs and adding time and city indices, equation (49) writes

log
wmsjt

wcsjt

= Dst +Gjt + ϕ log
Lmsjt

Lcsjt

+ ϵsjt, (50)

where Dst ≡ µ log zst
Āst

, Gjt ≡ −µājt−µδj log L̃cjt, ϕ ≡ θ−1, and the error term ϵsjt = −µ log ãsjt
captures unobserved productivity shocks specific to each sector-city-year.

A threat to identification in (50) is the presence of contemporaneous unobserved innovations

to the productivity of any sector s in a city j. These innovations are likely to affect both the

relative wages and labor supply of remote workers. We estimate ϕ using past ratios of the relative

labor supply, Lmsjt′/Lcsjt′ , with t
′ < t, as instrument for the ratio in period t, under the exclusion

restriction that those past ratios are orthogonal to the contemporaneous innovations in the sector-

city component of productivity.

We estimate Equation (50) with the ACS data, using all years between 1980 and 2022, 638

CBSAs, and 33 distinct industry groups. In an alternative specification, we replace industry groups

with the 22 occupation groups defined in Section A.4. We define the dependent variable as the

residual remote work premium for a sector-CBSA-year ψsjt estimated from the regression of all

workers’ hourly wage on individual characteristics and indicators of being remote in each sector

and CBSA, and year t,

logwit =
S∑

s=1

1secit=s

(
γstXit +

J∑
j=1

1cbsait=j (βjst + ψjst1remoteit=1)

)
+ uit, (51)

where the vector of individual covariates Xit contains a constant and worker i’s log of the levels
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and squares of their work experience and age, and indicators for levels of educational attainment,

part-year work status, marital status, race, number of children, and gender.

We report the estimates of ϕ from equation (50) in Table A8. Recall that ϕ = −1/ρ, so for any

value of ρ ∈ [0,∞), ϕ ∈ (−∞, 0), and values of ϕ close to zero correspond to very high values of

the elasticity of substitution ρ.

The exclusion restriction in our estimation of Equation (50) is that the levels of the innovations

in city-sector productivity are independent over time. Next, we consider a different exclusion

restriction and assume that the changes in innovations are independent over time. This allows for

the estimation of ϕ in time differences. For any τ ∈ N, define ∆xt = xt − xt−τ for any variable x.

Then, a consistent estimate of ϕ can be obtained using past values of the change in the relative

supply of remote workers, ∆ logLmsjt′/Lcsjt′ , with t
′ < t,

∆ log
wmsjt

wcsjt

= dst + gjt + ϕ∆ log
Lmsjt

Lcsjt

+ εsjt, (52)

where dst ≡ ∆Dst, gjt ≡ ∆Gjt, and εsjt ≡ ∆ϵsjt. We report the estimates of ϕ from equation (52)

in Table A8, where instruments are defined for a reference period t′ = t − 3 and time differences

are defined with τ = 3. In all our specifications, whether dividing workers by occupation or

industry groups, estimating the elasticity of substitution using levels or time differences, with OLS

or instrumental variables, the estimates are consistently centered on zero, implying a near-infinite

elasticity of substitution between remote and in-person workers.

From Table A8, we conclude that the association between the relative labor supply of remote

workers and their compensation is consistent with a very large elasticity of substitution, and with

setting ϕ = 0, i.e., θ = 1 in Equation (45), implying that the production function is well represented

by a linear function as in the paper.

A.14 Estimation Details for the Agglomeration Externalities

A.14.1 Derivation of the Estimation Equation

This appendix derives the estimating equation for the agglomeration elasticity from an explicit

production function, rather than postulating a wage equation. Doing so clarifies the origin of each

term in equation (25) and highlights how the presence of a city-wide production factor modifies

the interpretation of coefficients.

We extend the baseline model to include a city-wide factor of production Kjt (e.g., infras-

tructure, transit quality, or other shared inputs) that augments the productivity of all workers

equally, regardless of their labor delivery mode. This factor scales with city size and introduces an

additional channel through which total population affects wages.

Production is linear in equipped labor. LetMj denote the mass of firms in city j, each choosing
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Table A8: Estimates of Substitution Parameter Between Remote and In-Person

By Occupation By Indsutry

Levels Time Diff. Levels Time Diff.

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

log
Lm,sjt

Lc,sjt
0.005 -0.002 -0.001 -0.017

(0.002) (0.015) (0.002) (0.014)

∆ log
Lm,sjt

Lc,sjt
0.003 0.006 -0.003 0.005

(0.003) (0.008) (0.003) (0.008)

CBSA-Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Group-Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 104796 44095 44095 25134 102642 41331 41331 23733

Estimates of ϕ = −1/ρ, where ρ is the elasticity of substitution between remote and in-person workers. Columns
(1)-(4) define worker groups as the 22 occupation groups in Section A.4; Columns (5)-(8) define worker groups as the
33 two-digit 1990-industry codes in the ACS. Columns (1)-(2) and (5)-(6) estimate Equation (50); Columns (3)-(4)
and (7)-(8) estimate Equation (52). The dependent variable is the estimated remote work hourly wage premium, in
levels or in time-difference, from Equation (51). The period of reference for the definition of instrumental variables
is t′ = t− 3, and time differences are defined with τ = 3.

the quantities of commuters ℓc and remote workers ℓm according to

yjt =

(
AjtL̃

δj
cjtℓc + zµj

(
AjtL̃

δj
cjt

)1−µ

ℓm

)
K

νj
jt .

Efficiency units delivered to the CBD are defined as in (2):

L̃cjt ≡ Lµ
cjtL

1−µ
jt , Scjt ≡

Lcjt

Ljt

.

Profit maximization implies that the wage of a worker with delivery mode ℓ ∈ {c,m} satisfies

wℓjt =


wcjt = w̄ K

νj
jtAjtL̃

δj
cjt if ℓ = c,

wmjt = w̄ K
νj
jt z

µ
j

(
AjtL̃

δj
cjt

)1−µ

if ℓ = m.

Relative to the baseline specification, wages now scale with Kjt. We assume the city-wide factor

grows proportionally with city size,

Kjt = gjtL
ϑj

jt ,

and define Ājt ≡ Ajtgjt and ςj ≡ νjϑj as the elasticity of productivity with respect to total
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employment. Substituting into the commuter wage equation yields

logwcjt = const + log Ājt + µδj logScjt + (δj + ςj) logLjt.

Taking ∆t-period differences (∆xt ≡ xt − xt−∆t) gives

∆ logwcjt = ∆ log Ājt + µδj∆ logScjt + (δj + ςj)∆ logLjt.

Equation (25) thus follows directly from this structural setup. The parameter δj captures agglom-

eration externalities—the elasticity of commuter productivity with respect to the density of CBD

work activity—while ςj captures capital-deepening or shared-input effects : as total city size Ljt

grows, firms and workers benefit from more abundant non-labor factors such as infrastructure,

management systems, or supplier networks. Empirically, (δj + ςj) governs the sensitivity of wages

to changes in total city size, whereas µδj determines the response to changes in the commuter

share Scjt.

A.14.2 Main Specification

The dependent variable in Equation (28) is the log change in the hourly wages of commuters in

each CBSA and year. We build it using our ACS sample and a similar approach to the one taken

in Section A.13.2, but focusing on city-wide wages of commuters only instead of sector-specific

wages of all workers.

Namely, we define the dependent variable as the residual commuter wages for a CBSA-year w̄jt

estimated from the regression of all commuters’ hourly wage on individual characteristics and for

each CBSA, and year t,

logwit =
J∑

j=1

1cbsait=j (γjtXit + w̄jt) + uit, (53)

where the vector of individual covariates Xit contains a constant and worker i’s log of the levels and

squares of their work experience and age, and indicators for each occupation, levels of educational

attainment, part-year work status, marital status, race, number of children, and gender.

We specify δj as a linear combination of CBSA j’s labor-value-added employment shares in each

of the four industry groups. We use estimates of the labor-value-added shares γs, s = 1, . . . , 22,

of each of the 1997-NAICS 2-digit industries from Rossi-Hansberg et al. (2021) and compute the

employment shares shempsj0 of each industry s in each CBSA j in 1980 in our ACS sample. We

then compute the labor-value-added employment share in each industry group as,

sgj0 ≡
∑
s∈g

γsshempsj0, (54)

where s ∈ g indicates that industry s is part of the industry group g.
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Table A9: Estimates of Agglomeration Externalities by Industry Group and CBSA

(1) (2)
(A) Agglomeration Externality by Industry Group Parameter OLS IV

Health and education (HE) β1 0.967 0.613
(0.165) (0.099)

Professional and other services (PS) β2 2.015 0.512
(0.586) (0.522)

Manufacturing (M) β3 0.749 1.166
(0.833) (0.549)

Accommodation, trade, and transportation (ATT) β4 0.897 0.786
(2.259) (2.364)

β0 -0.412 -0.149
(0.228) (0.255)

Observations 9,152 9,152
First Stage Within-R2 0.479

(B) Agglomeration Externality by CBSA

Mean 0.043 0.067
Standard deviation 0.045 0.022

Panel (A) reports estimates of industry-group agglomeration externalities from Equation (28), with an intercept
and slope of ∆ logLjt for each CBSA, and year fixed effects. The dependent variable is the log time difference of
commuter wages in each CBSA-year according to Equation (53) in Appendix A.14.2. The instrumental variables
are the predicted changes in the number of commuters, defined in (26). The regression is based on observations
for 622 CBSAs and 15 years. Robust standard errors in parentheses. We confirm the strength of the first stage
by reporting the R2 of the regression of ∆ logScjt on IVjt after residualizing each on an intercept and slope of
∆ logLjt for each CBSA, and year fixed effects. Panel (B) reports the first two moments of the distribution of

positive CBSA-specific estimates of agglomeration externalities, computed as δj = β0 +
∑4

g=1 βgsgj0.

Table A9 reports the results. In Panel (A), for each industry group g ≥ 1, βg represents the

agglomeration strength in sector g, relative to nontradable industries (RUC), g = 0. Focusing

on the IV estimates in column (2), we find that all industry groups have a higher agglomeration

strength than nontradables, with the highest value for manufacturing, followed by accommodation,

trade, and transportation. In Panel (B), the industry-specific coefficients are combined with each

CBSA j’s labor-value-added adjusted employment shares by group, sgj0 to form estimates δj. Our

preferred IV estimates in column (2) indicate a mean value of δj of 0.067 and a standard deviation

of 0.022 across the 622 CBSAs in the sample. In Appendix A.14.3, we perform robustness exercises

for the specifications of Equation (28); in Appendix A.14.4, we define agglomeration externalities

using only industry estimates from Rossi-Hansberg et al. (2021). We find similar qualitative results

in both exercises.
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A.14.3 Robustness of the Main Specification

We test the robustness of our main specification for the estimation of agglomeration externalities

by leaving out each year from the sample alternatively. The results are summarized in Table A10.

They indicate that while the estimated agglomeration parameters vary somewhat if we drop one

year, the mean value remains within an interval of 0.06 and 0.09.

Table A10: Robustness Exercises for the Estimation of Agglomeration Externalities

Year Excluded p50(δ̂) sd(δ̂)

2007 0.071 0.022
2008 0.065 0.025
2009 0.082 0.025
2010 0.086 0.032
2011 0.081 0.032
2012 0.073 0.024
2013 0.060 0.026
2014 0.073 0.022
2015 0.090 0.021
2016 0.060 0.017
2017 0.053 0.021
2018 0.061 0.029
2019 0.089 0.017
2020 0.034 0.032
2021 0.097 0.051

The table report robustness exercises in the estimation of the agglomeration externality from Equation (28). In
particular, each row repeats our estimation excluding one year at a time from the sample, and reports the mean
and standard deviation of δj across 622 CBSAs.

A.14.4 Alternative Estimates of Agglomeration Externalities

In this section, we construct alternative estimates of agglomeration externalities and test the

robustness of our quantification. We build city-specific estimates relying on industry-specific es-

timates of agglomeration externalities obtained by Rossi-Hansberg et al. (2021). They specify a

production function featuring labor productivity that is influenced by external effects stemming

from the local composition of labor. They recover the endogenous levels of local productivity

that rationalize observed data on wages, employment, and input-output linkages as an equilib-

rium. Given their measures of productivity, they estimate the degree of local externalities for four

industry groups and two broad occupational categories.16

16The industry groups, based on the NAICS 1997 classification, are Health and education (HE), Professional
and other services (PS), Manufacturing (M), Accommodation, trade, and transportation (ATT). The two occupa-
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Figure A13: Agglomeration Externalities from Main Specification vs. Constructed from Rossi-
Hansberg et al. (2021)
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This figure reports the CBSA-specific values of δj implied by our main specification on the y axis and by the
alternative method described in Section A.14.4 on the x axis.

We construct our alternative measure of city-specific agglomeration externalities by computing

the average of the four industry-specific externality parameters weighted by each city’s employment

shares in the four industries. We compute these industry shares using the County Business Patterns

in 2019.17 Specifically, we compute the city-specific averages of the externality parameters τL in

Table 1 of Rossi-Hansberg et al. (2021). The average value of the agglomeration externality across

624 CBSAs is 0.089, which is close to estimates obtained in different contexts by other studies.18

Figure A13 compares our main estimates to those from this alternative method, revealing a good

correlation between the two methods. The R2 is 0.23.

A.15 Estimation Details for the Transportation Costs Elasticity

A.15.1 Comparison to the Literature

As reported in Table 1, the mean transportation-cost elasticity across the 278 CBSAs in our sample

is 0.026. This value is lower than some other estimates in the literature: for instance, Duranton

and Puga (2023) obtain an elasticity of 0.077 from a pooled bid-rent regression covering a broad set

of U.S. metropolitan areas. This appendix clarifies why our estimate is consistent with our model’s

structure and how the difference arises from the mapping between the empirical rent gradient and

the underlying transportation-cost elasticity. Using our data but applying the Duranton and Puga

tional categories are Cognitive Non-Routine (CNR) and non Cognitive Non-Routine (non-CNR). They define CNR
occupations as all those with SOC-2 classifications 11 to 29 and non-CNR occupations as all other occupations.

17We use the crosswalk provided by Rossi-Hansberg et al. (2021) to map the four groups of industries defined
by NAICS 1997 into the industries used by the County Business Patterns. See Appendix Table A.16 page 80 of
Rossi-Hansberg et al. (2019).

18Duranton and Puga (2023) estimate an overall agglomeration externality of 0.08 in the United States, once
adding the static and dynamic effects of city size on individual productivity.
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(2023) empirical specification, we replicate their result, confirming that the discrepancy stems from

model interpretation rather than data or estimation differences.

Duranton and Puga (2023) derive the spatial rent gradient from a linear commuting-cost spec-

ification, where a resident located at distance x from the CBD incurs a cost Tit(x) = τitx
γ, so that

d lnTit(x)/d lnx = γ. In their additive framework, commuting costs enter directly in dollars rather

than in utility, and equilibrium requires rents Pit(x) to relate to commuting costs according to

Pit(0)− Pit(x) = Tit(x).

Differentiating implies d ln(Pit(0) − Pit(x))/d lnx = γ: the rent gradient in levels exactly mirrors

the elasticity of commuting costs with distance. Because housing consumption is fixed (each worker

consumes one unit of land), the slope of rents directly identifies γ.

By contrast, our framework embeds the same functional form for Tit(x) = τitx
γ in a utility-based

model with endogenous housing consumption. In this case, commuting costs affect utility multi-

plicatively, and the rent gradient reflects both commuting and housing-consumption elasticities.

From our equation (12), we obtain, with the same notation as above,

d lnPit(x)

d lnx
= −γ (1− µℓ)

(1− α)
,

and the general expression in equation (33) gives

d lnPit(x)

d lnx
= − γ

1− α

(
1− µ+ µ

Lcit

Lit

)
.

Before the widespread adoption of remote work (Lcit ≃ Lit), this simplifies to

d lnPit(x)

d lnx
≃ − γ

1− α
.

Since the share of non-housing consumption is α = 0.76, rents must decline roughly four times

faster than commuting costs to maintain spatial indifference. A measured rent gradient of −0.077

thus implies γ ≃ 0.02 in our model, whereas in Duranton and Puga (2023)’s additive model it

would imply γ = 0.077.

To confirm this interpretation, Table A11 re-estimates the average rent gradient using the set of

CBSAs, controls, and functional form closest to those in Duranton and Puga (2023). Both analyses

use ACS data on median gross rents at the block-group level, though our period is 2015–2019 (theirs

is 2008–2012). When using the log of median rent as the dependent variable—as in our baseline

specification—we obtain a slope of −0.070. When we instead use the log of the difference in rents

between the most expensive block group and each location—as in Duranton and Puga (2023)—we

obtain 0.071, closely matching their 0.077.

Hence, the lower value of γ in our results reflects not a weaker spatial relationship in the data
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Table A11: Average Transportation Costs Elasticity Across CBSAs

ln(Pit(x)) ln(Pit(0)− Pit(x))
(1) (2)

Log distance to city center -0.070 0.071
(0.007) (0.007)

CBSA indicators Yes Yes
Block-group and dwelling controls Yes Yes
R2 0.289 0.214
Observations 90,421 90,421

This table reports OLS estimates of the average bid-rent gradient across the sample of CBSAs closest to the
set of MSAs used in Duranton and Puga (2023). Units of observation are city block-groups and the dependent
variable is i) log of the median housing rental price in the block-group in column (1); ii) the log of the difference
in the median housing rental price between the most expensive block-group in the city and the block-group under
consideration in column (2). Controls in both columns are percentages of Hispanic, Black, and Asian population,
performance in standardized tests of the closest public school relative to the city average, waterfront indicator, and
ruggedness. Dwelling controls are percentage dwellings in block-group by type of structure, number of bedrooms,
and construction decade. The R2 is within city.

but a different theoretical mapping from rent gradients to commuting costs. Models with fixed

housing consumption identify the rent slope directly as γ, while in our model with adjustable

housing, the rent gradient scales with 1/(1− α), leading to proportionally lower implied values of

γ for the same empirical gradient.

A.15.2 Transportation Costs Elasticity and City Size

In this section, we report the relation between the estimated distance elasticity of transportation

costs, γ, and CBSA size, across the 622 cities in our sample. This relation is depicted in Figure

A14, where we exclude a few outliers for visibility. We estimate that a doubling of city size is

associated to a distance that is 0.001 smaller, relative to a sample mean of 0.026.

A.15.3 Endogenous Housing Supply

In this subsection, we examine how allowing the housing supply—and thus population density—to

respond to the rent level affects equilibrium outcomes. We show that, while housing elasticity

modifies the location and magnitude of the kinks in the rent function, the relationship between

the average rent–distance slope and the transportation-cost elasticity γ remains almost identical

to that in the baseline model with fixed housing supply, especially when the commuter share is

large, as in our estimation sample.

Assume that housing supply h(d) at distance d from the CBD on each ray follows

h(d) = ar(d)η, a > 0, η ≥ 0. (55)
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Figure A14: Transportation Costs Elasticity, γ, and CBSA size
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This figure reports the city-specific γj against the CBSA’s BEA employment. Each γj is estimated as described in
Section 5.4. The size of the circles represents CBSA’s employment.

Here η measures the elasticity of local housing density with respect to rent. When η = 0, housing

supply is perfectly inelastic.

The slope of the rent function is determined by agents’ joint optimization of consumption,

housing, and residential location, taking rents as given. This slope is therefore unaffected by the

elasticity of housing supply and remains given by (13), reproduced below:

r (d) =

{ (
D̄/d

)γ/(1−α) (
d̄/D̄

)µγ/(1−α)
ra if d < d̄(

D̄/d
)(1−µ)γ/(1−α)

ra if d ≥ d̄
.

As a result, the average elasticity of rent with respect to distance, κ, remains

κ ≡ 1

D̄

∫ D̄

x=0

∂r(x)

∂x

x

r(x)
dx = − γ

1− α

[
(1− µ) + µ

d̄

D̄

]
.

Hence, the mapping between κj—which we estimate for each CBSA j in Section 5.4—and

the transportation-cost elasticity γj differs only through the ratio d̄/D̄, whose expression changes

when η > 0. As shown in Section 4.4.1, when η = 0, d̄ = (Lc/π)
1/2 and D̄ = (L/π)1/2, implying

d̄/D̄ = (Lc/L)
1/2.

To characterize d̄/D̄ under elastic supply, define ϕ ≡ ηγ/(1 − α). Integrating housing units

over the commuter disk and the entire city yields:

Lc =

∫ d̄

0

h(x)2πx dx =
(
D̄ 1−µd̄µ

)ϕ
rηa 2πa

d̄ 2−ϕ

2− ϕ
=

2πa rηa
2− ϕ

D̄ ϕ(1−µ)d̄ 2−ϕ(1−µ), (56)

L = Lc +

∫ D̄

d̄

h(x)2πx dx = Lc +
2πa rηa

2− ϕ(1− µ)

(
D̄ 2 − D̄ ϕ(1−µ)d̄ 2−ϕ(1−µ)

)
. (57)
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Eliminating constants and powers of D̄ gives the closed-form relationship(
d̄

D̄

)2−ϕ(1−µ)

=
(2− ϕ)Lc

(2− ϕ(1− µ))L− ϕµLc

. (58)

Two implications follow immediately:

(i) Fixed housing is the limiting case. When η = 0 (so ϕ = 0), (58) reduces to(
d̄

D̄

)2

=
Lc

L
⇒ d̄

D̄
=

(
Lc

L

)1/2

,

which corresponds to the benchmark used in the main text.

(ii) With elastic housing, deviations are small for empirically plausible parameters. For benchmark

parameter values γ = 0.027, α = 0.76, µ = 0.6, and a pre-pandemic commuter share Lc/L = 0.96,

a high housing-supply elasticity η = 3—near the upper bound of empirical estimates for U.S.

metropolitan areas—yields d̄/D̄ = 0.976 from equation (58), compared to (Lc/L)
1/2 = 0.980.

This difference corresponds to a deviation of only −0.4 percent. Even under extremely elastic

housing supply, the resulting correction is thus quantitatively negligible. Across the empirically

relevant range 0 ≤ η ≤ 3, deviations remain below one-half of one percent, confirming that the

mapping between the estimated rent gradient κ and the transportation-cost elasticity γ derived

under inelastic housing supply remains an excellent approximation.

A.16 Change in Trips to CBD and Welfare Change from Switching to

Remote Equilibrium for Largest Cities

In Table A12, we report the values of our estimates for the change in visits to the CBD and the

welfare of the low-commuting stationary equilibrium relative to the high-commuting stationary

equilibrium. Our sample is the largest 45 U.S. cities for which we can compute the relevant

parameters and the commuting trips to the CBD.

In the table, Column 2 reports the employment from the 2019 Census that we use in our

calibrations, as described in Appendix A.18. Column 3 reports the change in visits to the CBD

for each city from January 2020 to July 2022, as described in Appendix A.7.19 Column 4 reports

the welfare ratio W(Lss
c low)/W(Lss

c high), defined in Section 7. These values are only computed for

the CBSAs that are in their cone of multiplicity according to our estimation. We indicate by

“U” the CBSAs that are outside their cone, for which there exists no low-commuting stationary

equilibrium.

Figure A15 shows correlates of Ŵ , the welfare in the low-commuting relative to the high-

commuting stationary equilibrium. These scatterplots can only be computed for the set of cities

19These values are a simple transformation of those plotted on the y axis of Panel (b) of Figure 3 (the complement
to 100).
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in the cone of multiplicity. The left panel shows a scatterplot between Ŵ and the net strength of

agglomeration externalities, δ − γ/(2µ). The right panel shows a scatterplot between Ŵ and the

share of trips to the CBD in July 2022, relative to January 2020. The marker size is proportional

to total city employment.

Figure A15: Correlates of Welfare Change Ŵ
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(b) With CBD Trip Decline
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Table A12: Change in Trips to CBD and Welfare Loss in Remote Equilibrium for a Group of 45
Cities

2019 Census Trips to CBD Welfare Change
CBSA Employment Jul’22 / Jan’20 W(Lss

c,low)/W(Lss
c,high)

New York-Northern New Jersey-Long Island, NY-NJ-PA 7,334,144 0.457 0.973
Los Angeles-Long Beach-Santa Ana, CA 4,748,281 0.499 0.971
Chicago-Joliet-Naperville, IL-IN-WI 3,630,720 0.540 0.973
Dallas-Fort Worth-Arlington, TX 2,842,177 0.648 0.980
Washington-Arlington-Alexandria, DC-VA-MD-WV 2,548,552 0.477 0.975
Atlanta-Sandy Springs-Marietta, GA 2,284,940 0.642 0.981
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 2,270,070 0.373 0.972
Miami-Fort Lauderdale-Pompano Beach, FL 2,149,512 0.649 0.980
Boston-Cambridge-Quincy, MA-NH 1,979,049 0.490 0.968
San Francisco-Oakland-Fremont, CA 1,914,574 0.472 0.979
Phoenix-Mesa-Glendale, AZ 1,680,550 0.597 0.985
Seattle-Tacoma-Bellevue, WA 1,606,160 0.582 0.981
Detroit-Warren-Livonia, MI 1,578,962 0.732 0.974
Minneapolis-St. Paul-Bloomington, MN-WI 1,575,451 0.630 0.971
Riverside-San Bernardino-Ontario, CA 1,468,173 0.652 0.981
Tampa-St. Petersburg-Clearwater, FL 1,095,802 0.551 0.981
Charlotte-Gastonia-Rock Hill, NC-SC 999,016 0.766 0.982
Portland-Vancouver-Hillsboro, OR-WA 996,704 0.523 0.978
Austin-Round Rock-San Marcos, TX 906,522 0.639 0.983
Cincinnati-Middletown, OH-KY-IN 845,880 0.699 0.975
Pittsburgh, PA 841,832 0.689 0.975
Kansas City, MO-KS 832,707 0.655 0.977
Sacramento–Arden-Arcade–Roseville, CA 811,475 0.514 0.981
Las Vegas-Paradise, NV 807,521 0.504 0.971
Nashville-Davidson–Murfreesboro–Franklin, TN Are 798,725 0.660 0.974
San Jose-Sunnyvale-Santa Clara, CA 791,561 0.459 0.968
Columbus, OH 791,421 0.585 0.975
Indianapolis-Carmel, IN 771,329 0.615 0.977
Virginia Beach-Norfolk-Newport News, VA-NC 624,538 0.669 0.981
Providence-New Bedford-Fall River, RI-MA 612,059 0.696 0.967
Milwaukee-Waukesha-West Allis, WI 599,389 0.728 0.969
Raleigh-Cary, NC 558,030 0.719 0.983
Richmond, VA 534,987 0.564 0.985
Salt Lake City, UT 488,013 0.596 0.978
Oklahoma City, OK 461,898 0.809 0.981
Hartford-West Hartford-East Hartford, CT 451,318 0.680 0.973
New Orleans-Metairie-Kenner, LA 434,260 0.498 0.974
Buffalo-Niagara Falls, NY 412,839 0.609 0.972
Grand Rapids-Wyoming, MI 412,449 0.513 0.971
Rochester, NY 395,591 0.608 0.969
Omaha-Council Bluffs, NE-IA 389,758 0.777 0.982
Tulsa, OK 365,181 0.755 0.979
Worcester, MA 346,749 0.658 0.969
Madison, WI 276,371 0.959 U
Baton Rouge, LA 270,329 0.748 U

The letter “U” in Column 4 indicates that the CBSA is outside the multiplicity cone according to our estimates.
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A.17 Robustness to Alternative Values of Transportation and Agglom-

eration Elasticities

In this subsection, we investigate the sensitivity of our main results to alternative calibrations

of the model that shift the values of all transportation elasticities up, or all the agglomeration

elasticity down, by the same level. In particular, when raising a city’s γ by a shift parameter s,

we recalibrate the parameter τ̄ so that the city’s initial commuting population matches its 2019

levels as described above, and recompute its position with respect to its cone. When reducing a

city’s δ by a shift parameter s, we recompute the values of A, z/A and τ̄ to match commuting

population and remote work premium, as described above, and again recompute its position with

respect to its cone. After shifting one of these two elasticities by the same amount for all cities,

we re-estimate the relation between the in-cone indicator and trip shortfalls, rent flattening, and

city size, as in the main text.

We report the results of these exercises in Tables A13 and A14. The first table contains

robustness to increasing γ progressively by 0.01, up to 0.04: this exercise shifts the mean of γ

up to 0.0667 in the most conservative case. The second table contains robustness to reducing δ

progressively by 0.01, up to 0.04: this exercise shifts the mean of δ down to 0.0327 in the most

conservative case.20 In all cases, the in-cone indicator is significantly associated to our outcomes

of interest; naturally, as γ grows, or δ shrinks, the fraction of cities in the cone reduces, and so

does the strength of these associations.

A.18 Descriptive Evidence Using Census Employment

A.18.1 Individual Mobility

In Section 3, we characterize CBSAs by their total non-farm employment in 2019, published by

the BEA. While this variable provides a measure of city size for all CBSAs, it is distinct from the

measure of city size that we use in the quantification of the model in several ways. First, it is

based on counting the number of jobs in the CBSAs, rather than on the number of workers, as

is the case in our Census data. Since some workers hold more than one job, the BEA measure is

typically larger than our Census measure. Second, because the Census data is based on individual

records, we can count the number of commuters and calibrate our model to workers who are more

likely to face the trade-off between remote work and commuting that our theory speaks to. For

example, the Census allows us to focus on workers between 25 and 64 years of age and to exclude

self-employed workers. As a result, our Census-based measure of CBSA employment is 56 percent

lower than the BEA measure on average. The correlation between the log of the two employment

measures is 0.89.

Using the Census individual data to measure commuting decisions, we can compute total

20The number of cities in the sample drops slightly as we reduce the mean since the downward shift pushes some
of them into a negative δ.
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Table A13: Robustness with Respect to Transportation Costs Elasticities

(1) (2) (3) (4) (5)

Shift s 0 +0.01 +0.02 +0.03 +0.04

Statistics on γ

p10 0.002 0.012 0.022 0.032 0.042
p50 0.014 0.024 0.034 0.044 0.054
p90 0.044 0.054 0.064 0.074 0.084
Mean 0.027 0.037 0.047 0.057 0.067

Trip Shortfall
β -3.80 -3.67 -3.45 -2.98 -2.93
s.e. (0.61) (0.59) (0.57) (0.55) (0.58)

Flattening at 11/24
β 3.87 2.86 3.43 2.93 3.97
s.e. (1.41) (1.33) (1.32) (1.37) (1.64)

City Size
β 0.80 0.64 0.60 0.40 0.37
s.e. (0.14) (0.13) (0.10) (0.08) (0.07)

Multiplicity
Number of Cities 278 278 278 278 278
Fraction in Cone 0.76 0.69 0.55 0.43 0.29

This table reports the coefficients (β), standard errors (s.e.) of the regressions of the in-cone indicator 1cone
j on the

trip shortfall, the rent flattening, and total log employment in a city, for alternative calibrations of the distribution
of γ with a mean shifted by s.

employment for 598 out of the 847 CBSAs represented in Figure 3a. In Figures A16a and A16b,

we reproduce the analogous figures to Figures 3a and 3 with this smaller sample of CBSAs. In

Figure A16a, we use lower thresholds of employment (1 million for “large” CBSAs, 100,000 for

“small” CBSAs) to reflect the fact that our measure of employment from the Census is lower than

the BEA measure on average. These thresholds of Census employment reproduce the partition

of CBSAs in Figure 3a, with the first group containing the top 3 percent of CBSAs in terms of

employment, the second containing the bottom 75 percent of CBSAs.

The patterns of trips to CBD over time are very similar to those described in Section 3.1.

Namely, CBSAs of all sizes experience a large decline of trips to CBD of 70 to 80 percent during

the stay-at-home policies in 2020, with larger CBSAs only recovering to 60 percent of their pre-

pandemic values, while smaller CBSAs return at least to 90 percent on average. Figure A16b

confirms that the relationship between the size of the drop in trips to CBD and CBSA employment

became stronger by July 2022 than in April 2020.

A.18.2 Distance Gradients in House Prices

Figure A17a shows that the divergence in the average distance elasticity of house prices relative to

January 2020 between smaller and larger cities is visible also when we measure size with Census

employment.

Panel (a) of Figure A17b confirms that the flattening of the housing price gradients occurs in

similar magnitude for cities of all sizes in January 2021. Panel (b) confirms that even in the sample

of cities ordered by Census employment, the drop in the gradient is more strongly related to city
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Table A14: Robustness with Respect to Agglomeration Externalities

(1) (2) (3) (4) (5)

Shift s 0 -0.01 -0.02 -0.03 -0.04

Statistics on δ

p10 0.047 0.038 0.029 0.019 0.010
p50 0.071 0.061 0.051 0.041 0.031
p90 0.092 0.082 0.072 0.062 0.052
Mean 0.071 0.061 0.052 0.042 0.033

Trip Shortfall
β -3.80 -3.96 -3.38 -2.94 -2.33
s.e. (0.61) (0.60) (0.58) (0.56) (0.63)

Flattening at 11/24
β 3.87 3.00 3.00 3.56 2.13
s.e. (1.41) (1.33) (1.33) (1.53) (1.75)

City Size
β 0.80 0.66 0.51 0.37 0.25
s.e. (0.14) (0.13) (0.10) (0.07) (0.07)

Multiplicity
Number of Cities 278 277 274 272 266
Fraction in Cone 0.76 0.67 0.51 0.33 0.19

This table reports the coefficients (β), standard errors (s.e.) of the regressions of the in-cone indicator 1cone
j on the

trip shortfall, the rent flattening, and total log employment in a city, for alternative calibrations of the distribution
of δ with a mean shifted by s.

size by December 2022.

A.19 Empirical Determinants of Multiplicity and Change in CBD Trips

This section tests the robustness of our empirical results to an alternative definition of a city’s

return to the high-commuting equilibrium. In addition to the measure of switching behavior used

in Section 6, we define a more stringent indicator, 1
back(0,30)
j , which equals one if trips in July 2022

are at or above their pre-pandemic level, and zero if they declined by more than 30%. This

alternative threshold captures only the most complete recoveries in commuting activity.

As shown in Table A15, the results remain broadly consistent with those in Table 2. The cone

indicator 1cone
j continues to be strongly correlated with the probability that a city returns to its

pre-pandemic level of CBD trips, with a pseudo R2 of 0.28 when used as the only explanatory

variable. The magnitude of the coefficient is similar across specifications, although it becomes

smaller and less precisely estimated once total CBSA employment is included as a control. This

confirms that the predictive power of the cone indicator is not driven by a particular definition of

“return,” but is robust across alternative thresholds.
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Figure A16: Response of Trips to the CBD, Census Employment
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Panel (a) reports the estimates of the average volume of visits to the CBD from block groups located in i) CBSAs
with total Census employment above 1 million (19 largest CBSAs), ii) CBSAs with total employment below 100,000
(450 smallest CBSAs) expressed as a share of their values in January 2020. Panel (b) reports the change in the
average level of visits to each CBSA’s CBD between January 2020 and April 2020, and January 2020 and July 2022,
against our measure of employment from the Census. Each marker represents a CBSA. The solid line represents a
fitted kernel-weighted local polynomial smoothing, with the shaded area corresponding to the 95 percent confidence
interval around the fitted value.
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Figure A17: Response of House Price Gradients, Census Employment

(a) January 2021 Relative to January 2020

-0.020
-0.014 -0.017

-0.027
-0.032

-0.134

-0.117

-0.088

-0.068

-0.045

 Lockdown

-.1

-.08

-.06

-.04

-.02

0

.02

.04

D
is

ta
nc

e 
G

ra
di

en
t (

M
in

us
)

01/20 01/21 01/22 01/23 01/24

CBSAs with Employment ≥ 1 million
CBSAs with Employment ≤ 100 thousand

(b) December 2022 Relative to January 2020
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Panel (a) reports the difference between the average housing price gradients in January 2020 and each following
month, using the same Census employment thresholds as in Figure A16a. A negative value for the difference in
housing price gradients implies a lower premium for housing located close to the CBD. The value of the average
housing price gradient in each group is reported next to the marker of the associated group every six months. The
shaded areas represent the contour delimited by the consecutive 95 percent confidence intervals of each monthly
indicator. Panel (b) reports the difference between the housing price gradients in January 2020 and January
2021, and January 2020 and November 2024, against our measure of employment from the Census. Each marker
represents a CBSA. The solid line represents a fitted kernel-weighted local polynomial smoothing, with the shaded
area corresponding to the 95 percent confidence interval around the fitted value.
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Table A15: Determinants of CBSAs’ Changes in Trips to CBD: Observable Characteristics

1
back(5,20)
j 1

back(0,30)
j

(1) (2) (3) (4) (5) (6)
1
cone
j -1.26 -1.16 -1.10 -1.92 -1.38 -1.19

(0.00) (0.00) (0.01) (0.00) (0.01) (0.08)
CBSA Employment -6.59 -26.66

(0.01) (0.00)
Share of Teleworkable Employment -5.60 -6.07 -2.06 5.86

(0.08) (0.04) (0.76) (0.31)
Share of Trips to CBD in 2019 -0.29 -0.59 -0.53 -2.95

(0.31) (0.03) (0.46) (0.00)
sj0 Health and education 5.87 8.50 0.09 18.17

(0.47) (0.31) (0.99) (0.23)
sj0 Professional and other services -17.26 10.66 -39.13 -31.33

(0.10) (0.26) (0.04) (0.14)
sj0 Manufacturing 39.63 52.73 45.56 120.75

(0.04) (0.01) (0.10) (0.00)
sj0 Accomm., trade, transport. 4.75 14.07 -7.05 37.77

(0.72) (0.32) (0.74) (0.18)
Constant 0.37 2.31 -2.61 0.91 4.52 -12.46

(0.07) (0.36) (0.30) (0.00) (0.19) (0.03)
Observations 188 188 188 99 99 99
Pseudo R2 0.137 0.392 0.494 0.280 0.578 0.831

Columns (1)–(3) report probit estimates of 1
back(5,20)
j on 1cone

j and the listed controls. Columns (4)–(6) use the

alternative indicator 1
back(0,30)
j . Robust p-values in parentheses.
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B Theory

B.1 Rewriting the average value of a worker

By adding and subtracting the continuation value in the current labor delivery mode, the equation

for Uℓ can be rewritten as

Uℓ

(
{εct, εmt} ;Lct, ω

t
)

= uℓ (Lct;At, Tt, zt) + max
ℓ′

{
βVℓ′

(
Lct+1;ω

t+1
)
− Fℓℓ′t + εℓ′t

}
= uℓ (Lct;At, Tt, zt) + βVℓ

(
Lct+1;ω

t+1
)
− Fℓℓ,t +

max
ℓ′

{
β
[
Vℓ′
(
Lct+1;ω

t+1
)
− Vℓ

(
Lct+1;ω

t+1
)]

− (Fℓℓ′t − Fℓℓt) + εℓ′t
}

= uℓ (Lct;At, Tt, zt) + βVℓ
(
Lct+1;ω

t+1
)
− Fℓℓt +max

ℓ′

{
ε̄ℓℓ

′

t + εℓ′t

}
(59)

where

ε̄ℓℓ
′

t (Lct+1) ≡ β
[
Vℓ′
(
Lct+1;ω

t+1
)
− Vℓ

(
Lct+1;ω

t+1
)]

− (Fℓℓ′t − Fℓℓt) (60)

is the average value of switching from ℓ to ℓ′. Taking the expectation of Uℓ with respect to εt,

Vℓ (Lct; zt) = uℓ (Lct;At, Tt, zt) + βVℓ
(
Lct+1;ω

t+1
)
− Fℓℓt + Et max

ℓ′

{
ε̄ℓℓ

′

t + εℓ′t

}
≡

≡ uℓ (Lct;At, Tt, zt) + βVℓ
(
Lct+1;ω

t+1
)
− Fℓℓt + Ω

(
ε̄ℓt
)

(61)

where ε̄ℓt ≡
{
ε̄ℓct , ε̄

ℓm
t

}
. Ω

(
ε̄ℓt
)
is the value of the option of being able to move out of ℓ if circum-

stances require, or the “option value” of ℓ.

Under our distributional assumption for εt we can write the share of workers in ℓ state transi-

tioning to ℓ′ as

λℓℓ
′

t =
exp

(
ε̄ℓℓ

′
t (Lct+1) /s

)
exp

(
ε̄ℓct (Lct+1) /s

)
+ exp

(
ε̄ℓmt (Lct+1) /s

) (62)

We can use this expression to obtain the average expected switching values. In fact,

λℓℓ
′

t

λℓℓt
= exp

(
ε̄ℓℓ

′

t /s− ε̄ℓℓt /s
)
=⇒ s ln

λℓℓ
′

t

λℓℓt
= ε̄ℓℓ

′

t − ε̄ℓℓt =⇒ ε̄ℓℓ
′

t = s ln
λℓℓ

′
t

λℓℓt
(63)

To obtain the option value of being in ℓ, recall that

Ω
(
ε̄ℓt
)
= s log

[
exp

(
ε̄ℓct /s

)
+ exp

(
ε̄ℓmt /s

)]
(64)

Since log λℓℓt = ε̄ℓℓt /s− log
[
exp

(
ε̄ℓct /s

)
+ exp

(
ε̄ℓmt /s

)]
= − log

[
exp

(
ε̄ℓct /s

)
+ exp

(
ε̄ℓmt /s

)]
, we have

that

Ω
(
ε̄ℓt
)
= −s lnλℓℓt (65)
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B.2 Existence of a stationary equilibrium

To prove that a stationary equilibrium always exists, we proceed in steps. First, Lemma B.1 shows

that the characterization of a stationary equilibrium can be reduced to the zeros of one equation

in one unknown, the share of commuters who remain commuters next period, λcc. Lemma B.2

establishes a useful property of one component in such equation. Finally, Proposition B.1 shows

that this equation always has at least one solution.

In a stationary equilibrium, the system is characterized by 11 unknowns, uc,um,Lc,Vc,Vm,λ
cc,λmm,

ε̄cc,ε̄cm,ε̄mc,ε̄mm, and 11 equations: the flow utility values that account for the relation between

d̄, D̄, and Lc, L:

uc = log rα−1
a ᾱ

B(L̃c)

τ(L̃c)

wc(
L̃c/π

)γ/2 (66)

um = log rα−1
a ᾱT µ

(
B(L̃c)

τ(L̃c)

)1−µ
wm

(L/π)γ(1−µ)/2
(67)

the law of motion for Lc,

Lc = Lcλ
cc + (L− Lc) (1− λmm) (68)

the average value functions by mode,

Vc = uc + βVc − s lnλcc − Fcc (69)

Vm = um + βVm − s lnλmm − Fmm (70)

the transition probabilities,

λcc =
exp (ε̄cc/s)

exp (ε̄cc/s) + exp (ε̄cm/s)
(71)

λmm =
exp (ε̄mm/s)

exp (ε̄mc/s) + exp (ε̄mm/s)
(72)

and the expected values from switching

ε̄cc = 0 (73)

ε̄mm = 0 (74)

ε̄cm = β (Vm − Vc)− (Fcm − Fcc) (75)

ε̄mc = β (Vc − Vm)− (Fmc − Fmm) (76)

The following lemma shows that we can always reduce this system of equations to one equation

in one unknown.
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Lemma B.1 The characterization of the stationary equilibrium (66)-(76) can be reduced to one

equation in one unknown,

f (λcc) ≡ 1

1 + exp (ε̄cm (λcc) /s)
− λcc = 0 (77)

where

ε̄cm (λcc) ≡ β

1− β
[ef (λ

cc) + eo (λ
cc)− (Fmm − Fcc)]− Fcm + Fcc (78)

is the value of switching from c to m; the function

eo (λ
cc) ≡ s lnλcc

1− ϕλcc

1− λcc
(79)

is the difference in the option values of staying in m versus staying in c; and the function

ef (λ
cc) ≡ um (Lc (λ

cc))− uc (Lc (λ
cc)) (80)

is the difference in the flow value of utilities, with

Lc (λ
cc) =

(1− ϕ)λcc

(1− λcc) (1− ϕλcc) + (1− ϕ)λcc
L ≡ σ (λcc)L (81)

ϕ ≡
[
1− exp

(
Fcc + Fmm − Fcm − Fmc

s

)]
≤ 1 (82)

Proof. Rearrange the value of switching from c to m (eq. (75)) as β (Vc − Vm) = −ε̄cm−Fcm+Fcc.

Substitute this expression into eq. (76) for ε̄mc to obtain

ε̄mc = β (Vc − Vm)− Fmc + Fmm (83)

= −ε̄cm − Fcm + Fcc − Fmc + Fmm (84)

Rearranging the average value functions (69)-(70), one can write

Vc = (uc − s lnλcc − Fcc) / (1− β)

Vm = (um − s lnλmm − Fmm) / (1− β)

and use these expressions into (75) to obtain

ε̄cm = β (Vm − Vc)− Fcm + Fcc =
β

1− β
[um − s lnλmm − Fmm − (uc − s lnλcc − Fcc)]− Fcm + Fcc =

=
β

1− β
[um − uc + s lnλcc/λmm − Fmm + Fcc]− Fcm + Fcc (85)

We want to express the right-hand side of this expression only as a function of λcc.
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To do that, note that eq. (71) and (73) together imply

λcc =
1

1 + exp (ε̄cm/s)
=⇒ exp (−ε̄cm/s) = λcc/ (1− λcc) (86)

Use (74) and (84) into eq. (72) for λmm,

λmm =
1

exp ((−ε̄cm − Fcm + Fcc − Fmc + Fmm) /s) + 1
(87)

We can then use eq. (86) in (87) to obtain,

λmm =
1

exp (−ε̄cm/s) exp ((−Fcm + Fcc − Fmc + Fmm) /s) + 1
=

=
1

λcc/ (1− λcc) exp ((−Fcm + Fcc − Fmc + Fmm) /s) + 1
=

=
(1− λcc)

λcc exp ((−Fcm + Fcc − Fmc + Fmm) /s) + (1− λcc)
=

=
(1− λcc)

1− λcc [1− exp ((−Fcm + Fcc − Fmc + Fmm) /s)]
=⇒

λmm =
1− λcc

1− ϕλcc
(88)

with ϕ ≡
[
1− exp

(
Fcc + Fmm − Fcm − Fmc

s

)]
≤ 1 (89)

Use (88) to write the stationary equilibrium value of Lc (from eq. (68)) as

Lc = Lcλ
cc + (L− Lc) (1− λmm)

Lc − Lcλ
cc + Lc (1− λmm) = L (1− λmm)

Lc

(
1− λcc +

(1− ϕ)λcc

1− ϕλcc

)
= L

(1− ϕ)λcc

1− ϕλcc

Lc ((1− λcc) (1− ϕλcc) + (1− ϕ)λcc) = L (1− ϕ)λcc

Lc =
(1− ϕ)λcc

(1− λcc) (1− ϕλcc) + (1− ϕ)λcc
L ≡ σ (λcc)L (90)

Making use of (88) and (90), we can then rewrite (85) as

ε̄cm =
β

1− β
[um (Lc (λ

cc))− uc (Lc (λ
cc)) + s lnλcc/λmm − Fmm + Fcc]− Fcm + Fcc

=
β

1− β

[
um (Lc (λ

cc))− uc (Lc (λ
cc)) + s lnλcc

1− ϕλcc

1− λcc
− Fmm + Fcc

]
− Fcm + Fcc (91)
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Lemma B.2 The function eo (λ) in eq. (79) increases from -∞ to +∞ as λ ∈ (0, 1).

Proof. The derivative of eo (λ) = s ln
(
λ1−ϕλ

1−λ

)
with respect to λ is

s

[
1

λ
− ϕ

1− ϕλ
+

1

1− λ

]
= s

[
1

λ
+

−ϕ (1− λ) + (1− ϕλ)

(1− ϕλ) (1− λ)

]
= s

[
1

λ
+

1− ϕ

(1− ϕλ) (1− λ)

]
=

= s

[
(1− ϕλ) (1− λ) + (1− ϕ)λ

(1− ϕλ) (1− λ)λ

]
= s

1− 2ϕλ+ ϕλ2

(1− ϕλ) (1− λ)λ
(92)

This function is always positive because the numerator is a convex parabola in λ, and the minimum

is reached at λ = 2ϕ/ (2ϕ) = 1, where the numerator is equal to 1 − 2ϕ + ϕ = 1 − ϕ > 0. Note

that limλ→0 λ
1−ϕλ
1−λ

= 0, and limλ→1 λ
1−ϕλ
1−λ

= +∞, so that the function limλ→0 eo (λ) = −∞ and

limλ→1 eo (λ) = +∞.

Recall that eo(λ
cc) is the option value of a remote worker minus the option value of a commuting

worker. Lemma B.2 says that: 1) as the equilibrium number of commuters grows, the relative

option value of being a remote worker grows; 2) as we approach a purely remote equilibrium

(λcc → 0), switching from c to m implies a loss in option values that approaches +∞; as we

approach a purely commuting equilibrium (λcc → 1), switching from c to m implies a gain in the

option values that approaches +∞. In this sense, eo(λ) acts as a dynamic congestion force, always

increasing the value of becoming a remote worker when there are more commuters.

Proposition B.1 There exists at least one stationary equilibrium Lc,ss.

Proof. Consider the equation f (λ) = 0 characterizing stationary equilibria from (77). f (λ) is

continuous over λ ∈ (0, 1). We aim at showing that limλ→0 f (λ) > 0 and limλ→1 f (λ) < 0, so

that f (λ) = 0 (and there exists at least one stationary equilibrium) for some λ ∈ (0, 1) by the

intermediate value theorem.

Consider the behavior of

ε̄cm (λcc) ≡ β

1− β
[ef (λ

cc) + eo (λ
cc)− (Fmm − Fcc)]− Fcm + Fcc

from (78). The difference in the option values eo(λ
cc) behaves as limλ−→0 eo (λ

cc) = −∞ and

limλ−→1 eo (λ
cc) = +∞ from Lemma B.2.

Using the functional forms in Assumption 1 in the indirect utility functions (66) and (67), we

can write

ef (λ
cc) ≡ um (λcc)− uc (λ

cc) = µ

(
log T − log

B̄

τ̄
− (δ + ξ − θ − γ/2) logL− γ

2
log π + log

Z

A

)
− µ2(δ + ξ − θ − γ/(2µ)) log σ(λcc) (93)

As λ → 1, this difference approaches a finite number. When λ → 0, this difference approaches

−∞ if δ + ξ < θ + γ/(2µ), and +∞ if δ + ξ > θ + γ/(2µ),
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These observations imply that limλcc−→1 ε̄
cm (λcc) = +∞. Moreover, Assumption 2 guarantees

that limλcc→0 ε̄
cm (λcc) = −∞. It follows that limλ−→0 f (λ) = 1 and limλ−→1 f (λ) = −1. Hence,

eq. (77) always has at least one solution.

B.3 Sufficient conditions for a unique stationary equilibrium

In this subsection, we show sufficient conditions for the stationary equilibrium to be unique and

how this stationary equilibrium changes with some of the model’s parameters. The proof of this

result in Proposition B.2 is based on establishing conditions for the monotonicity of f (λ) in eq.

(77). Lemma B.3 below preliminarily establishes the monotonicity of Lc in the share of commuters

that remain commuters, λcc.

Lemma B.3 The function σ (λ) in eq. (81) is monotonically increasing from 0 to 1 when λ ∈
[0, 1].

Proof. Computing the derivative,

σ′ (λ) =
(1− ϕ) [(1− λ) (1− ϕλ) + (1− ϕ)λ]− (1− ϕ)λ [(1− ϕ)− (1− ϕλ)− ϕ (1− λ)]

[(1− λ) (1− ϕλ) + (1− ϕ)λ]2
=

= (1− ϕ)
(1− λ) (1− ϕλ) + (1− ϕ)λ− λ (1− ϕ) + λ (1− ϕλ) + ϕλ (1− λ)

[(1− λ) (1− ϕλ) + (1− ϕ)λ]2
=

=
(1− ϕ) (1− λ2ϕ)

[(1− λ) (1− ϕλ) + (1− ϕ)λ]2
(94)

which is always positive.

Proposition B.2 Assume δ+ξ < θ+γ/(2µ). Then there is a unique stationary equilibrium value

of the commuting population Lc,ss. This stationary equilibrium value monotonically increases with

A and B̄, and monotonically falls with Z, T and τ̄ .

Proof. Recall eq. (93), stating that

ef (λ
cc) ≡ um (λcc)− uc (λ

cc) = µ

(
log T − log

B̄

τ̄
− (δ + ξ − θ − γ/2) logL− γ

2
log π + log

Z

A

)
− µ2(δ + ξ − θ − γ/(2µ)) log σ(λcc) (95)

When δ + ξ < θ + γ/(2µ), this difference is increasing in λcc from Lemma B.3 and it follows that

ε̄cm (λcc) in eq. (78) is monotonically increasing in λcc, mapping the interval (0, 1) into (−∞,+∞).

Hence, the function f (λcc) in (77) is monotonically decreasing in λcc and maps the interval (0, 1)

into itself. Equation (77) has then a unique solution for λcc, which maps into a unique value for

Lc = σ (λcc)L.

Note also that A, Z, T , B̄ and τ̄ only affect the value of ε̄cm (λcc) in (78) through um − uc;

in particular, ε̄cm
(
λcc;A, B̄, Z, T, τ

)
grows with Z, T , and τ̄ while falling with A and B̄ for any
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given λcc. Hence, f (λcc) in (77) shifts uniformly down with Z, T , τ̄ and up with A and B̄ in its

domain λcc ∈ (0, 1). This implies that the solution to (77) and Lc = σ (λcc)L also moves in the

same direction with these parameters.

B.4 Necessary and sufficient conditions for multiple stationary equi-

libria

In Proposition B.1 we have shown that there is always at least one stationary equilibrium because

f (λ) starts positive, ends negative, and is continuous. In Proposition B.3, we show that for any

level of (sufficiently strong) agglomeration forces, there is a range of values z/A where the economy

exhibits multiple stationary equilibria. Proposition B.3 makes use of the following four lemmas.

Lemma B.4 characterizes necessary and sufficient conditions for multiplicity in terms of the function

f(λ) in eq. (77): multiple stationary equilibria exist if f ′(λ) > 0 at a stationary equilibrium, which

can be restated into a condition on ∂ε̄cm (λ) /∂λ, the slope of the expected value of switching from

c to m with respect to λ. Lemma B.5 considers such slope and it shows that, at a candidate λ̂,

one can always make ∂ε̄cm (λ) /∂λ arbitrarily negative by choosing an externality term δ above a

threshold δ∗. This fact is useful because the slope of ε̄cm can be used to control the slope of f(λ).

Lemma B.6 characterizes some properties of this threshold δ∗. Lemma B.7 shows that for any level

of δ, we can always find a ratio of the exogenous remote work to in-office productivity, z/A, that

makes an arbitrary λ̂ a stationary equilibrium. Proposition B.3 uses these lemmas to show that

for a high enough δ, we can always find a z/A that makes some λ̂ a stationary equilibrium where

f ′(λ̂) > 0.

Lemma B.4 Consider an economy Ω. The economy has multiple stationary equilibria if and only

if there exist one λ̂ such that

f(λ̂) = 0 (96)

∂f(λ)

∂λ

∣∣∣∣
λ=λ̂

> 0 (97)

Moreover, if such λ̂ exists, then it holds true that:

∂ε̄cm (λ)

∂λ

∣∣∣∣
λ=λ̂

< − s

λ̂
(
1− λ̂

) (98)

Proof. From Lemma B.1, a stationary equilibrium is characterized by f(λ̂) = 0. Suppose

∂f(λ)

∂λ

∣∣∣∣
λ=λ̂

> 0 (99)

Since f(λ) always starts at +1 and ends at −1, f (λ) will cross zero at least two more times, one
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to the left and one to the right of λ̂. In other words, the equation f(λ) has more than one solution,

that is, the economy exhibits multiple stationary equilibria.

Note that, using the definition of f in eq. (77),

∂f (λ)

∂λ
= − exp (ε̄cm (λ) /s)

(1 + exp (ε̄cm (λ) /s))2
1

s

∂ε̄cm (λ)

∂λ
− 1 > 0

∂ε̄cm (λ)

∂λ
< −s(1 + exp (ε̄cm (λ) /s))2

exp (ε̄cm (λ) /s)
(100)

Additionally, using the same definition, at a stationary equilibrium it holds true that

f
(
λ̂
)
≡ 1

1 + exp
(
ε̄cm

(
λ̂
)
/s
) − λ̂ = 0 =⇒ (101)

1 + exp
(
ε̄cm

(
λ̂
)
/s
)

= 1/λ̂ (102)

exp
(
ε̄cm

(
λ̂
)
/s
)

=
(
1− λ̂

)
/λ̂ (103)

Hence, using equations (102) and (103) in eq. (100), we have

∂ε̄cm (λ)

∂λ

∣∣∣∣
λ=λ̂

< − s

λ̂
(
1− λ̂

) (104)

Lemma B.5 ∀λ̂ ∈ (0, 1) , K > 0, ∃ δ∗
(
λ̂, K

)
> 0 :

∂ε̄cm (λ, δ)

∂λ

∣∣∣∣
λ=λ̂

< −K ⇐⇒ δ + ξ > δ∗
(
λ̂, K

)
Proof. Consider the expression for ε̄cm (λ) from (78):

ε̄cm (λ) ≡ β

1− β
[ef (λ) + eo (λ)− (Fmm − Fcc)]− Fcm + Fcc

The first derivative of this function with respect to λ is

∂ε̄cm (λ)

∂λ
=

β

1− β

[
e′f (λ) + e′o (λ)

]
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We know that e′o (λ) > 0. From eq. (93), we can easily compute e′f so that our condition becomes

∂ε̄cm (λ)

∂λ

∣∣∣∣
λ=λ̂

< −K ⇐⇒ e′f (λ)
∣∣
λ=λ̂

< − e′o (λ)|λ=λ̂ −
1− β

β
K ⇐⇒

δ + ξ >
1

µ2

[
σ(λ)

σ′(λ)

(
e′o (λ) +

1− β

β
K

)]
λ=λ̂

+
γ

2µ
+ θ ≡ δ∗

(
λ̂, K

)
(105)

Lemma B.6 Define

δ̂(λ) ≡ 1

µ2

[
σ(λ)

σ′(λ)

(
e′o (λ) +

1− β

β

s

λ(1− λ)

)]
+

γ

2µ
+ θ (106)

as the threshold function δ∗(λ,K) for K = s
λ(1−λ)

in eq. (105). Then, δ̂(λ) reaches a minimum

value of ηmin > γ/(2µ) + θ. If ϕ ∈ (0, 1), then δ̂(λ) is convex in λ.

Proof. The function δ̂(λ) is defined for λ̂ ∈ (0, 1), is continuous, and differentiable. Since the

term in the square brackets is always positive, the function is also always positive. To further

characterize δ̂(λ), we study its limiting properties. To compute limδ̂→0 δ̂(λ̂), we substitute the

expressions for σ(λ), e′o(λ) and σ
′(λ) from equations (90), (92), and (94) and obtain

lim
λ̂→0

δ̂(λ̂) =
s

µ2β
+

γ

2µ
+ θ ≡ δ̂0 > 0

Further, limδ̂→1 δ̂(λ̂) = +∞ since, from (90) and (94), limλ̂→1 σ
(
λ̂
)
= 1 and limλ̂→1 σ

′
(
λ̂
)
= 1;

and from Lemma B.2, limλ̂→1 e
′
o

(
λ̂
)
= +∞.

The first derivative of δ̂(λ), after some algebra, is given by:

δ̂′(λ) = − s

µ2

4ϕ(1− 2ϕλ+ ϕλ2)

(1− ϕλ2)(1− ϕλ)

+
s

µ2

(1− 2ϕλ+ ϕλ2)2(1− 3ϕ2λ2 − 3ϕλ2 + 4ϕ2λ3 + ϕ)

(1− ϕλ2)2(1− ϕλ)2(1− λ)2

+
s

µ2

1− β

β

1 + 2ϕ(2λ− 2λ2 − 1)− ϕ2λ2(2− 4λ+ λ2)

(1− ϕλ2)2(1− λ)2
(107)

Moreover,

lim
λ̂→0

δ̂′(λ) < 0 ⇐⇒ ϕ >
1

2 + β
(108)

Hence, the function begins by sloping down if ϕ is large enough. Assume that δ̂(λ) is convex, which
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we will prove right below. In this case, the (unique) minimum is achieved for a ηmin : γ/(2µ)+ θ <

ηmin < δ̂0. If the function begins by sloping up, then ηmin ≡ δ̂0.

It remains to be proven that δ̂(λ) is convex. To this end, it is thus sufficient to prove the

convexity of the simplified function δ̂(λ)simple, which takes out the constant term γ
µ
+ θ and the

positive multiplicative term s
µ2 :

δ̂(λ)simple =
λ (1− 2ϕλ+ ϕλ2)

1− ϕλ2

[
1− 2ϕλ+ ϕλ2

(1− ϕλ)(1− λ)λ
+

1− β

β

1

λ(1− λ)

]
=

(1− 2ϕλ+ ϕλ2)

(1− ϕλ2)(1− λ)

[
1− 2ϕλ+ ϕλ2

(1− ϕλ)
+

1− β

β

]
=

(1− 2ϕλ+ ϕλ2)2

(1− ϕλ2)(1− λ)(1− ϕλ)︸ ︷︷ ︸
first term Ξ1

+
1− β

β

(1− 2ϕλ+ ϕλ2)

(1− ϕλ2)(1− λ)︸ ︷︷ ︸
second term Ξ2

.

We argue that each of the terms Ξ1 and Ξ2 is convex, which will prove the convexity of their

sum.

The second derivative of Ξ1 is:

d2Ξ1

dλ2
=

2

(1− λ)3
+ ϕ2

(
2

(1− ϕλ)3
− 8x(ϕλ2 + 3)

(1− ϕλ2)3

)
We prove by contradiction that d2Ξ1

dλ2 cannot be negative. Recall that the range of values for

ϕ, λ is ϕ ∈ (0, 1), λ ∈ (0, 1). The first term of the expression 2
(1−λ)3

, is always positive. If d2Ξ1

dλ2

is negative at any value of λ, then the term
(

2
(1−ϕλ)3

− 8x(ϕλ2+3)
(1−ϕλ2)3

)
must be negative. If this is so,

then:

d2Ξ1

dλ2
=

2

(1− λ)3
+ ϕ2

(
2

(1− ϕλ)3
− 8x(ϕλ2 + 3)

(1− ϕλ2)3

)
≥ 2

(1− λ)3
+

(
2

(1− ϕλ)3
− 8x(ϕλ2 + 3)

(1− ϕλ2)3

)
≥ 2

(1− λ)3
+

(
2

(1− λ)3
− 8x(ϕλ2 + 3)

(1− ϕλ2)3

)
≥ 2

(1− λ)3
+

(
2

(1− λ)3
− 8x(λ2 + 3)

(1− λ2)3

)
=

4

(1 + λ)3

≥ 0

The fourth line follows because d
da

= −8x(ϕλ2+3)
(1−ϕλ2)3

= −16λ3(5+ϕλ2)
(−1+ϕλ2)4

≤ 0, so the term is most
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negative at ϕ = 1. We have shown that d2Ξ1

dλ2 is weakly positive. Thus, Ξ1 is convex.

We now move on to the second term term. The second derivative of Ξ2 is:

d2Ξ2

dλ2
=

2(1− ϕλ2)3 − 4ϕ2λ(ϕλ2 + 3)(1− λ)3

(1− λ)3(1− ϕλ2)3

The denominator is obviously positive for ϕ ∈ (0, 1), λ ∈ (0, 1). We want to prove that the

numerator is positive. Let us observe so the numerator, which we denote as N2(λ):

N2(λ) = 2(1− ϕλ2)3 − 4ϕ2λ(ϕλ2 + 3)(1− λ)3

By inspection, N2(λ) is decreasing in ϕ for ϕ ∈ (0, 1). As such we only need to prove that

N2(λ) is positive for ϕ = 1 to show that N2(λ) is always positive.

N2(λ) = 2(1− ϕλ2)3 − 4ϕ2λ(ϕλ2 + 3)(1− λ)3

≥ 2(1− λ2)3 − 4λ(λ2 + 3)(1− λ)3

= 2(1− λ)6

≥ 0 for λ ∈ (0, 1)

We have shown that both the numerator and denominator of the second derivative of Ξ2 are

positive. As such, Ξ2 is convex.

We have shown that Ξ1 and Ξ2 are convex, their sum δ̂(λ)simple is also convex, which in turn

implies that our original function δ̂(λ) is convex.

Lemma B.6 essentially states what is the minimum level of agglomeration forces that overcomes

dynamic congestion forces if at a candidate λ we want f ′(λ) > 0, a necessary condition for such λ

to be an unstable equilibrium in a multiple equilibrium configuration.

Lemma B.7 For each λ̂ and δ, there exists a ratio z/A such that f
(
λ̂; δ, z/A

)
= 0. This ratio is

described by the function

ρ(λ̂) = exp

{
1

µ

[
1− β

β
(Fcm − Fcc) + Fmm − Fcc

]}
× πγ/2 B̄

τ̄T

× σ(λ̂)µ(ξ+δ−θ)−γ/2

(1− ϕλ̂)s/µ
×

(
1− λ̂

λ̂

)s/(βµ)

× Lξ+δ−θ−γ/2 (109)

Proof. Using the definition of ε̄cm
(
λ̂
)
from eq. (78) in the condition for a stationary equilibrium

from (77),
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λ̂ =
1

1 + exp
(
ε̄cm

(
λ̂
)
/s
) =⇒ s ln

1− λ̂

λ̂
= ε̄cm

(
λ̂
)

s ln
1− λ̂

λ̂
=

β

1− β

[
ef

(
λ̂
)
+ eo

(
λ̂
)
− (Fmm − Fcc)

]
− Fcm + Fcc

Using ef ≡ um − uc and the result in eq. (93), after some manipulation, we obtain

Z

A
= exp

{
1

µ

[
1− β

β
(Fcm − Fcc) + Fmm − Fcc

]}
× πγ/2 B̄

τ̄T

× σ(λ̂)µ(ξ+δ−θ)−γ/2

(1− ϕλ̂)s/µ
×

(
1− λ̂

λ̂

)s/(βµ)

× Lξ+δ−θ−γ/2 ≡ ρ(λ̂) (110)

Lc is a function of λ̂ and is bounded between 0 and L. One can verify using eq. (79) that the

sum in the curly bracket −eo
(
λ̂
)
+ 1−β

β
s ln 1−λ̂

λ̂
goes to +∞ for λ̂ → 0 and to −∞ for λ̂ → 1.

Hence, the image of ẑ spans (0,+∞) as λ̂ varies in (0, 1).

Proposition B.3 Assume Fcc = Fmm = 0. Then, there exist a finite threshold ηmin > θ+γ/(2µ),

and a set Z ⊂ R++, such that:

i) for δ + ξ > ηmin, Z is a non-empty interval (Zmin, Zmax) and there are multiple stationary

equilibria if z/A ∈ Z; further, Zmin and Zmax grow with L and B̄ and fall with T and τ̄ .

ii) there is a unique stationary equilibrium in all other cases.

Proof. From Lemma B.4, we know that equations (96) and (98) characterize an economy with

multiple stationary equilibria. We seek necessary and sufficient conditions for those equations to

hold.

Consider the equation δ̂(λ̂) in Lemma B.6. From Lemmas B.4 and B.5, f ′(λ̂) > 0 if and only if

we pick a δ̄ : δ̄+ξ ≥ δ̂(λ̂). Note that δ̂(λ̂) is defined for λ̂ ∈ (0, 1), is continuous, and differentiable.

Also, from Lemma B.6, it is convex in λ̂ and it reaches a global minimum value of δ̂min. An

example of this function is plotted in Panel (a) of Figure A18.

Our proof proceeds with a taxonomic discussion of the implications of different values of δ̄.

This discussion can be organized around features of the set

Λ(δ̄) ≡ {λ̂ : δ̂
(
λ̂
)
≤ δ̄ + ξ} (111)

Note that by construction, for each λ̂ ∈ Λ(δ̄), eq. (98) is satisfied if f(λ̂, δ̄, z/A) = 0.
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Figure A18: Identifying the Range of Parameters for Multiple Stationary Equilibria

δ

λ


(a) The function δ̂(λ̂)

λ


(b) The function ρ(λ̂)

Consider part i) of the proposition, and fix a δ̄ : δ̄+ ξ > δ̂min > γ/(2µ) + θ. Then, the set Λ(δ̄)

is non-empty; moreover, since δ̂ is convex from Lemma B.6, the set Λ(δ̄) is an interval of the form

Λ(δ̄) = (λmin(δ̄), λmax(δ̄)). Consider then the set

Z(δ̄) = {z/A : z/A = ρ
(
λ̂
)
for some λ̂ ∈ Λ(δ̄)} (112)

The set Z is the image of the set Λ in z/A (see Panel (b) of Figure A18) By construction, for any

z/A in this set, there is some λ̂ for which λ̂, z/A is a stationary equilibrium, that is, eq. (96) holds.

Since at the same λ̂ eq. (98) also holds, the economy exhibits multiple stationary equilibria. Note

also that since ρ(λ) is continuous and Λ is an interval, Z(δ̄) is also an interval and can be written

as

Z(δ̄) =
(
Zmin(δ̄), Zmax(δ̄)

)
Zmin(δ̄) = minλ∈Λ(δ̄) ρ(λ)

Zmax(δ̄) = maxλ∈Λ(δ̄) ρ(λ)

To show how Zmin(δ̄), Zmax(δ̄) vary with L, we consider the expression for ρ(λ) in eq. (110). If

λ− is the minimizer when the total city size is L, then λ− is also the minimizer when the total

city size is kL, for k > 0; additionally, ρ(λ, kL) = kδ̄+ξ−θ−γ/2ρ(λ, L). Since δ̄ + ξ − θ − γ/2 > 0 is

satisfied whenever Z is non-empty, then Zmin grows with L. A similar argument shows that Zmax

also grows with L. Further, similar arguments can be made to show that these boundaries grow

with B̄ and fall with τ̄ and T .

To prove part ii), note that if δ̄ + ξ > δ̂min but z/A ̸∈ Z(δ̄), then by construction none of the

λ̂ ∈ Λ(δ̄) are a stationary equilibrium where (98) holds; however, since a stationary equilibrium

always exists, the equilibrium must be unique. Similarly, if δ̄ + ξ < δ̂min, then the set Λ(δ̄) in eq.

(111) is empty; hence, there is no λ̂ for which eq. (96) holds at a candidate stationary equilibrium.
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Again, since a stationary equilibrium always exists, it must be unique.

Proposition 4.3 then follows from the fact that Lc is monotone increasing in λcc by Lemma B.3.

B.5 Relative Transition Shares

Lemma B.8 Suppose Fcc = Fmm = 0 and that Fcm = Fmc = F . Then

yℓℓ′t ≡ ln
λℓℓ′tλ

β
ℓ′ℓ′t+1

λℓℓtλ
β
ℓℓ′t+1

=
β

s
(uℓ′t+1 − uℓt+1)−

(1− β)F

s
. (113)

Proof.

Combining (18) and (17), the share of workers in state ℓ transitioning to ℓ′ is given by

λℓℓ′t =
exp (βVℓ′t+1 − Fℓℓ′,t)

1/s

exp (βVct+1 − Fℓc,t)
1/s + exp (βVmt+1 − Fℓmt)

1/s
, (114)

where we denote Vℓt+1 = Vℓ (Lct+1;ω
t+1). We first obtain an expression of λℓℓ′t as a function of Vℓt,

Vℓ′t+1 and transition costs only by re-writing (61) with time indices only,

Vℓt = uℓt + βVℓt+1 − Fℓℓt + Ωℓt, (115)

and re-writing (65) after replacing the transition share by its expression in (114):

Ωℓt = −s ln

(
exp (βVℓt+1 − Fℓℓt)

1/s

exp (βVct+1 − Fℓct)
1/s + exp (βVmt+1 − Fℓmt)

1/s

)
. (116)

Substituting for Ωℓt in (115), we get the following expression for the value of labor delivery mode

ℓ:

Vℓt = uℓt + s ln
(
exp (βVct+1 − Fℓct)

1/s + exp (βVmt+1 − Fℓmt)
1/s
)
, (117)

or equivalently,

exp (βVct+1 − Fℓct)
1/s + exp (βVmt+1 − Fℓmt)

1/s = exp (Vℓt − uℓt)
1/s . (118)

Recognizing the left hand side as the denominator in (114), we obtain the following expressions

for the share of workers in state ℓ transitioning to ℓ′ at t, in state ℓ transitioning to ℓ at t, in state

ℓ′ transitioning to ℓ′ at t+ 1 and in state ℓ transitioning to ℓ′ at t+ 1, respectively, as:

λℓℓ′t = exp (βVℓ′t+1 − Fℓℓ′t + uℓt − Vℓt)
1/s . (119)

λℓℓt = exp (βVℓt+1 − Fℓℓt + uℓt − Vℓt)
1/s , (120)
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λℓ′ℓ′t+1 = exp (βVℓ′t+2 − Fℓ′ℓ′t+1 + uℓ′t+1 − Vℓ′t+1)
1/s , (121)

λℓℓ′t+1 = exp (βVℓ′t+2 − Fℓℓ′t+1 + uℓt+1 − Vℓt+1)
1/s . (122)

We get the following expression for the ratio of the discounted probabilities:

λℓℓ′t (λℓ′ℓ′t+1)
β

λℓℓt (λℓℓ′t+1)
β

= exp (β (uℓ′t+1 − uℓt+1) + Fℓℓt − Fℓℓ′t + β (Fℓℓ′t+1 − Fℓ′ℓ′t+1))
1/s . (123)

Using the assumption imposed in Proposition 4.3 that Fℓℓt = 0 for all t and ℓ ∈ {m, c}, and that

Flm = Fml = F , the logarithm of this ratio can be written as

ln
λℓℓ′t (λℓ′ℓ′t+1)

β

λℓℓt (λℓℓ′t+1)
β

=
β

s
(uℓ′t+1 − uℓt+1)−

1− β

s
F. (124)

B.6 Testing for multiple equilibria

It is in principle possible for models like ours to exhibit multiple equilibria, not only multiple

stationary equilibria. For example, a city could start in an initial condition with low commuting,

but individual expectations of a return to high commuting might put the system on a self-fulfilling

path. In this subsection, we describe how we test – and find no evidence of – this possibility.

In particular, let us examine first a case where, starting from an initial condition that we expect

to converge toward the high-commuting equilibrium, the system might actually converge toward

the low commuting one. For cities with multiple stationary equilibria, we have always found 2

stable and one unstable stationary equilibrium. We therefore start by setting an initial condition

for Lc0 above the unstable equilibrium. The top panels of Figure A19 set Lc0/L = 0.15 for the

metro area of New York, which is above the unstable stationary equilibrium (dashed red line).

In Panel (a), we set as initial guesses for the time path of the value functions Vc and Vm
their respective value in the high-commuting stationary equilibrium. We require, as a convergence

criterion, both that the sup-norm relative distance between successive guesses of the value functions

is less than a given threshold and that the terminal value of these value functions is within the same

relative tolerance from the high-commuting stationary equilibrium value. We set this threshold to

10−6. The panel shows successive time paths of Lc/L at the indicated iteration number. In this

exercise, our value function iteration algorithm converges to a solution in a little more than 4,000

iterations.

Starting from the same Lc0/L = 0.15, Panel (b) sets as initial guesses for the time path of the

value functions Vc and Vm their respective value in the low-commuting stationary equilibrium. We

impose the same convergence criterion, requiring this time that the terminal value of the value

functions converge to the low-commuting stationary equilibrium. In this case, our value function

iteration algorithm does not converge within 40,000 iterations. Panel (b) shows that along the
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iteration process, the guesses attempt to reach the low commuting equilibrium, but they move

progressively away from it.

The bottom panels of Figure A19 report analogous exercises where we instead start from an

initial condition below the unstable equilibrium, namely Lc0/L = 0.10. In Panel (c), we again

attempt to converge toward the high-commuting equilibrium, with no success. In Panel (d), we

successfully converge towards the low-commuting equilibrium in about 3,600 iterations.

In unreported results, we have also experimented with other initial conditions farther away from

either side of the unstable equilibrium, and other cities of varying sizes (like San Francisco, CA,

Kansas City, MO-KS, Milwaukee, WI, Salt Lake City, UT, and Providence, RI), always reaching

the same conclusion.
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Figure A19: Tests for multiple equilibria

(a) Lc0/L = 0.15, shooting toward
high-commuting equilibrium

0

800

1600

2400

3200

4000

0 200 400 600 800 1000 1200 1400 1600 1800
t

0.2

0.4

0.6

0.8

1.0

Lc/L

(b) Lc0/L = 0.15, shooting toward
low-commuting equilibrium
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(c) Lc0/L = 0.10, shooting toward
high-commuting equilibrium
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(d) Lc0/L = 0.10, shooting toward
low-commuting equilibrium
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