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The [healthcare] industry is not very good at promoting
health, but it excels at promoting wealth among
healthcare providers, including some successful private
physicians who operate extremely profitable practices.

(Case and Deaton, 2020)

My hand surgeon should have been paid $4.5 billion for
fixing my broken wrist, not $1,000.

(Crawford, 2019)

The medical profession has changed substantially since Friedman and Kuznets (1945)

emphasized the importance of entry barriers. Most significantly, far more patients are now

covered by health insurance under contracts that restrict physicians’ payment rates. What

determines a profession’s earnings when its output faces regulated prices yet potential en-

trants face high barriers? We use a new U.S. tax data linkage to analyze earnings and labor

supply of the highly skilled and highly regulated medical profession. We show how payment

policies shape physicians’ earnings and how these incomes in turn affect labor supply.

This occupation merits detailed study as a large share of high earners in the United States

are physicians,1 so documenting their labor market rewards is central to understanding how

society values and allocates top talent. The allocation of human capital across different

activities is key to how a sector or an entire economy functions (Murphy, Shleifer and Vishny,

1991), and the government’s pronounced role in the physician labor market may give it

unique power to drive talent allocation of these quintessential “human capitalists” (Smith

et al., 2019). We examine this role theoretically, with reduced-form analyses, and with an

empirical model of specialty choice.

We begin with a conceptual model of physicians’ specialty choice and labor supply in a

world with restricted entry, regulated prices, and heterogeneous ability. The model allows

1Physicians are the most common occupation in the top percentile of the income distribution (Gottlieb
et al., 2023).
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us to interpret the impacts of government policy and understand how the high incomes of

physicians in exclusive specialties interact with the costs these physicians endured during

training. The model shows how limited entry for some specialties, combined with regulated

pricing, generates powerful interests to protect these ex post rents. When entry is restricted,

higher government payments are extra valuable for incumbents. The model illustrates the

subtle ways government reimbursement policy shapes the ability distribution across special-

ties when entry is restricted: sorting is key, rather than the number of entrants, and is

nonmonotonic in ability. This framework guides our estimation choices and interpretation.

Our empirical work begins with novel descriptive facts essential to understanding physi-

cians’ labor markets. Physician earnings comprise 8.6 percent of total healthcare spending.

While this market is of longstanding academic interest (Friedman and Kuznets, 1945; Feld-

stein, 1970; Fuchs and Kramer, 1973; Sloan, 1975), the modern literature has been hamstrung

by measurement challenges that obscure even basic facts.2 We document the level and com-

position of physician earnings, how earnings evolve over time, and the pronounced differences

across geography and specialty.

We use two-way fixed effects to disentangle the contributions of individual and geographic

factors. We find an unusual geographic pattern: rural areas have positive location effects and

there is negative physician-location sorting. That is, smaller markets attract lower-earning

physicians but boost their earnings. This differs from lawyers, whose pattern we examine

separately, and other workers and industries. One natural hypothesis for this unusual pattern

is the government subsidies that permeate this market. The tremendous demand increase

spurred by insurance (Finkelstein, 2007) and centrally set reimbursements for healthcare

services may increase physicians’ earnings in rural markets relative to other occupations.

We use two types of policy variation—changes to insurance coverage and to payment rates

2This literature (e.g. Baker, 1996; Nicholson and Souleles, 2001; Bhattacharya, 2005; Vaughn et al., 2010;
Nicholson and Propper, 2011; Esteves-Sorenson and Snyder, 2012; Chen and Chevalier, 2012; Jagsi et al.,
2012; Seabury et al., 2013; Altonji and Zhong, 2021; LoSasso et al., 2020; Gottlieb et al., 2023) has relied
on survey data and faced measurement challenges, such as top-coding and complicated income structures.
Our data overcome many (though not all) of these issues and allow us to newly establish basic facts about
U.S. physicians’ earnings. Appendix A presents a survey on the public’s beliefs about physician earnings.
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per service—to distinguish government’s influence from other differences across markets that

affect physicians’ earnings and labor supply. The government’s influence is dramatic. When

Medicare reimbursements change, one quarter of marginal revenue from public and private

insurance flows into physician earnings. When the ACA permanently increased insurance

coverage, 6% of public spending accrued to physicians personally.

It is often hard to know whether, beyond accruing rents (Kline et al., 2019; Bertrand,

2009), top incomes play an important allocative role. To answer this, we study labor supply

responses to the same insurance coverage and payment policy changes using income tax,

Medicare billing, and specialty choice data. We find positive labor supply responses, with a

procedure-level short-run supply elasticity of 0.4. In the medium-run, doctors who are past

the lifetime earnings peak delay retirement when they experience positive earnings shocks.

Perhaps the most important dimension of labor supply in the long run is talent alloca-

tion across specialties. Specialty choice is particularly important because it is sticky; once

physicians decide early in their careers, they are unlikely to change specialty later on, so this

initial choice has long-run ramifications. It is also complex due to binding entry restrictions

for some specialties: physicians cannot simply enter more lucrative specialties at will.

We thus consider a more subtle prediction: higher-ability physicians, who have more

choice of specialty, will displace lower-ability physicians in specialties that become more

lucrative. We use data on specialty choice separately by physician ability to estimate the

earnings elasticity of specialty choice. Our estimates imply that increasing primary care

earnings by 5%, while holding constant the number of available slots and earnings of other

specialties, would increase the probability of graduates from top-5 medical schools entering

primary care by 4.8%. Increased earnings attract physicians with higher test scores to a

specialty while displacing those with lower test scores and less choice.

Taking these results together with policy’s sizable impact on earnings, we conclude that

government payment rules play a key role in valuing and allocating one of society’s most

expensive assets: physicians’ human capital. Policies subsidizing surgery will increase sur-
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geons’ incomes and attract more top talent to surgical specialties, improving surgery for

a generation. Subsidizing primary care instead will increase these physicians’ incomes and

attract top talent to primary care, improving primary care for a generation.

These results are key to understanding equilibrium in the market for physicians. They

teach us how policies drive consequential short- and long-run outcomes, and provide a clear

agenda for future research. Our results show that policy evaluation in this environment

must account for the health impacts, and thus social returns, to physician ability in different

specialties—currently unknown parameters. We encourage future work to estimate these in

order to determine the welfare impact of talent allocation and hence insurance policies.

1 Model of Earnings, Specialization, and Labor Supply

We start with a model that analyzes physicians’ labor supply decisions together with policy

instruments that can change earnings. Our setting differs from recent work studying the

interaction between policy environments and the allocation of talent in the economy (Bell

et al., 2019; Hsieh et al., 2019; Jaimovich and Rebelo, 2017) because of entry restrictions

(as in Murphy et al., 1991), and the government’s direct influence on payments for different

categories of workers in this sector.

1.1 Setup

Consider a unit mass of physicians, indexed by i, each with medicine-specific ability ai ≥ 0

and idiosyncratic preferences ϵi ≥ 0 for specializing. Ability follows a Pareto distribution

F (a) = 1 − (1/a)θ with shape parameter θ ≥ 1. Preference for specializing follows an

independent exponential distribution H(ϵ) = 1− exp(−ϵ).

In period 1, each physician chooses whether to specialize (si = 1) or be a generalist

(si = 0). In period 2, government arbitrarily chooses reimbursement rates for each specialty,
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rs. In period 3, physicians choose intensive margin labor supply Lis and earn yis.
3 A

physician’s payoff includes utility V (yis, Lis) over consumption (which equals income) and

leisure plus direct (dis)utility from specializing W (si; ϵi, ai):

U(Lis, si; ai) = V (yis, Lis) +W (si; ϵi, ai)

where:

V (yis, Lis) = ln

(
yηis
η

− Lψis
ψ

)

W (si; ϵi, ai) =

[
ϵi − γ ln

(
A

ai

)]
· 1si=1

with η ∈ (0, 1) and ψ > 1. The labor/leisure tradeoff is separable in consumption and

leisure, with concave utility over consumption (since η < 1) and convex disutility of work

effort Lis (since ψ > 1). Income yis that depends on the reimbursement rate and hours

worked according to a function that may be convex: yis(Lis) =
rsLαis
α

, with α ∈ [1, ψ).4

The direct utility from specializing is normalized to zero if the physician chooses to be a

generalist. If she chooses to specialize, the utility has two terms: an idiosyncratic match

component ϵi and a cost of studying for the specialty, γ ln
(
A
ai

)
. We assume A > 0 and

0 < γ < θ so high-ability physicians have a comparative advantage in specializing.

1.2 Physician Choices

Physicians make two career choices in this framework: specialty in period 1 and the amount

of labor in period 3. We start with the labor-leisure tradeoff. Our assumptions generate

3We assume that ability only matters when studying to enter a specialty, but our results would strengthen
if ability also impacts earnings directly.

4The assumption that only reimbursement rates and labor effort determine earnings is obviously a simpli-
fication. One natural generalization would be to introduce additional dimensions of physician heterogeneity.
By focusing exclusively on the reimbursement rate rs, we also ignore private insurance negotiations, employ-
ment relationships, and costs of production, which could vary across markets. We will use physician movers
to empirically disentangle worker heterogeneity from market-level factors in Section 4. This allows us to
determine the income variation across space relevant to physicians’ choices—factors akin to rs—separately
from unobserved individual ability.
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upward-sloping labor supply in response to the realized reimbursement rate rs: L
∗
is = r

η
ψ−αη
s .

This implies a stronger upward-sloping income-reimbursement relationship conditional on

specialty choice:

y∗is =
1

α
r

ψ
ψ−αη
s . (1)

The resulting subutility over labor and leisure, taking specialty choice and reimbursements as

given, is then V ∗
s = χ+φ ln(rs) for specialty s.

5 This is more elastic to reimbursement rates

than is labor supply—though less elastic than is income, as changing work effort dissipates

some of the earnings difference.

In this framework, demand shocks—i.e. a change in reimbursement rates—are not mod-

erated by entry and competition for rents on the supply side. This happens because we

do not allow for entry in period 3—a realistic benchmark given the long training and other

entry barriers into medicine. So the impact of reimbursements on rents is absorbed fully by

the incumbents, who then have an incentive to lobby and desire to restrict disadvantageous

changes. Any competition occurs at earlier stages, when doctors choose specialties.

To study specialty choice, we first work back to period 2 in which the government chooses

reimbursement rates. From the physician’s perspective, government’s price setting in period

2 is random. Assume it is drawn from a lognormal distribution: ln rs ∼ N (lnµs, σ
2
s) . The

expected subutility from consumption and leisure, EV ∗
s , can then be written as EV ∗

s =

χ+ φ lnµs for specialty s. Doctor i will choose to specialize when the total expected utility

from specializing is greater than the expected utility from being a generalist:

χ+ φ lnµ1 + ϵi − γ ln

(
A

ai

)
> χ+ φ lnµ0 (2)

5The constants are χ = ln
(

1
αηη − 1

ψ > 0
)
and φ = ψη

ψ−αη > 0.
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Given the distribution of ϵi, the share of doctors of ability ai who prefer to specialize is:

Pr(ui1 > ui0|ai) =
(
µ1

µ0

)φ (ai
A

)γ
. (3)

This assumes that any physician can choose to specialize or become a generalist. We next

account for the empirical reality that not all physicians have this choice.

1.3 Equilibrium Specialty Allocation

In practice physicians cannot choose specialties at will, as the number of specialized training

slots n offered in any year is typically lower than the latent demand for these slots. We

assume the application process for specialized training ranks physicians according to ability,

only admitting those above some cutoff, denoted am. In practice, this happens through the

residency or fellowship match process and the cutoff am is endogenous to the set of applicants.

Given this rule, the choice expression (3) is only valid for physicians whose ability exceeds the

cutoff am. To solve for am, we integrate the choices given by (3) over the ability distribution

of doctors and equate it to n, yielding:

am ∝
[

1

nAγ

(
µ1

µ0

)φ] 1
θ−γ

. (4)

This equation describes the way physician specialty choices achieve equilibrium when slots are

fixed.6 Higher relative wage expectations µ1
µ0

for a specialty induce supply. But with demand

inelastic at n, rents must be dissipated somehow. Equation (4) shows two mechanisms by

which this can occur. The first is by reducing the nonpecuniary benefits of specializing—

captured here as making the entry process costly (higher A). The second is rationing based

on a strict application process, modeled here as an increase in the ability threshold for

specializing, am. This expression is intuitive: the higher relative wages are for specializing,

6The constant of proportionality in (4) is
[

θ
(θ−γ)

] 1
θ−γ

.
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the higher the ability cutoff. The more physicians are allowed to specialize (higher n),

the lower the cutoff. The higher the training cost shifter A—i.e. the less attractive is the

specialized work—the lower the cutoff.

Empirical Implications

Since we cannot perfectly measure ability—let alone whatever metric is used in the residency

matching process—we develop the model’s empirical predictions that can be used with lim-

ited data. We consider the match process for doctors in a high-ability regime—those who

have free choice of specialty—and those with fewer choices.

High-ability physicians. Suppose we do not see a doctor’s exact ability ai, but do have

an indicator that this doctor has high ability; specifically, ai > a for some threshold a. This

is analogous to graduating from a top-5 medical school, or a test score interval, as we use in

Section 6.1.7 The share choosing to specialize is:

Pr(ui1 > ui0|ai > a) =
1

Aγ
θ

θ − γ

(
µ1

µ0

)φ
aγ. (5)

This share is increasing in relative wages µ1
µ0

and in the strictness of the cutoff, a. Furthermore,

two variables have a positive cross-partial. This has a clear empirical implication: moving

up the ability distribution, the earnings elasticity of specialty choice increases.

Low-ability physicians. Now suppose we observe a doctor with low ability, ai < a.8

Accounting for the endogeneity of am with respect to other parameters yields:

Pr(ui1 > ui0|ai < a) = n− 1

Aγ
θ

θ − γ

(
µ1

µ0

)φ
aγ. (6)

7The key assumption is that a > am for any set of parameters that is empirically relevant.
8The case where a < am is trivial, as these doctors always have zero probability of specializing. So we

assume a > am. The share of this group choosing to specialize is a weighted average of (3), for those with
ai ∈ [am, a], and zero, for with with ai < am.

8



This expression is intuitive: there are n slots available in total, and the second term parallels

equation (5)—the choice share for higher-ability doctors (ai > a). The difference is what

is left over for the doctors with ai < a. This expression is decreasing in relative wages

µ1
µ0
; higher wages make the specialty more attractive for the higher-ability doctors, leaving

fewer slots remaining for the lower-ability ones. Empirically, we should see the share of

low-ability doctors decreasing as a specialty’s wages increase. The magnitude of this effect

is stronger the more negatively selected the group being measured (the lower the value of a).

1.4 Discussion

This model captures key features of the physician market and guides our empirical analysis

of physicians’ earnings and labor supply. First, the model demonstrates the importance of

estimating pass-through from reimbursements to income; the earnings-reimbursement rela-

tionship in (1) is key for subsequent labor supply and specialty choice analysis. If reimburse-

ment changes were competed away or absorbed by intermediaries such as hospital employers

(not modeled here), it would be harder for them to influence physicians’ labor supply and

specialty choice. We therefore estimate the impact of reimbursements on physician earnings

and labor supply in Section 5.

Earnings potential serves two key roles in the model: First, it induces physician labor

supply—and, with a generalization, other investments in patient care. Second, it allocates

physician talent across specialties. This can have a powerful impact on supply even if the

number of physicians in a specialty can’t adjust, by working instead through changes in

the ability distribution. Higher expected earnings imply some combination of higher ex ante

entry costs and stronger selection of those able to enter. We test this empirically in Section 6.

Strong selection and high entry costs may help to explain the political economy of physi-

cian labor markets. Physicians who specialize will have incurred substantial costs to do so,

whether through the difficulty of training or foregoing other opportunities commensurate

with their high ability. If they subsequently experience lower-than-expected earnings—
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rs is set below expectations or additional specialists are allowed to enter and drive down

earnings—the incumbents will be displeased. Those at the margin will have (ex post) made

the wrong specialty choice; the inframarginal specialists will see significant rent dissipa-

tion. It would be natural to expect them to expend resources lobbying to maintain higher

reimbursements and restrict entry.

2 Institutional Background, Data, and Measurement

2.1 Career in Medicine

This section describes the standard sequence of medical training and career progression,

important background for our data and measurement choices. A career in medicine is com-

petitive and follows a relatively rigid script. Practicing physicians choose specializations

early and these are hard to change. Physicians’ earnings can be complex and frequently

include both wages and business income.

Medicine is a professional degree in the U.S. A high school student who wants to become

a physician must first complete an undergraduate degree and then earn an MD from one

of 158 medical schools. Around 50,000 students apply to U.S. MD-granting medical schools

annually and around 45% are admitted (AAMC, 2022). The top-ranked schools are highly

competitive; Stanford admits 2.2% of applicants and Harvard reports an average undergrad-

uate GPA of 3.9. Halfway through their (usually) four years of medical school, students take

the first standardized test required for the U.S. medical license, USMLE Step 1.

To practice medicine, MD recipients must next complete a residency in a specific specialty.

Residency programs take several years, but vary substantially in their competitiveness and

length.9 Primary care is typically less competitive and shorter than the more specialized

programs. After completing residency, physicians can begin to work in private practice,

9Overall, 5,313 residency programs offered 36,277 positions in 2022. 19,902 U.S. MD graduates applied
and 93% received an offer (NRMP, 2022).
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small groups, or larger organizations, or complete further “fellowship” training.

The earnings structure of independently practicing physicians can be classified into three

broad models. One extreme is physicians who only earn wage or salary income reported on

Form W-2. This is common in larger organizations such as academic medical centers. The

second model is a sole proprietorship, generating income that only appears on Schedule C

of the physician’s personal tax return (“Profit or Loss from Business, Sole Proprietorship”).

The third model involves a pass-through entity, usually an S-corporation or a partnership. A

medical practice organized as an S-corporation pays physicians a market wage, reported on

W-2, plus a share of profits that remain after all practice expenses. The exact legal structure

affects the tax liability and the profit-sharing incentives within the practice.

2.2 Data Sources

Our primary source is the universe of individual federal income tax returns from 2005 to 2017

merged with an administrative registry of all healthcare providers in the U.S. We augment

these with additional administrative and survey datasets.10

Tax Data. We use an extract from federal income tax data containing the universe of

individual tax returns for tax years 2005 through 2017. We augment individual returns with

third-party information returns, notably Forms W-2 and 1099-SSA. Form W-2 reports wage

earnings for each filer in the tax unit and includes the Employer Identification Number (EIN)

for those physicians who had any W-2 income.11 We inflation-adjust all monetary values to

2017 dollars using the CPI-U deflator from the BLS and replace missing records with $0 if

the person filed taxes. Tax data also include the state and county of residence.

Physician Registry. We merge tax data with the administrative registry of physicians

(the National Plan and Provider Enumeration System, or NPPES) using the Census Bu-

10Details of data sources are provided in Appendix B.1.
11For ease of exposition, we refer to the tax unit reported in the EIN on Form W-2 as “firm” throughout.
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reau’s Protected Identification Key (PIK)-based data linkage infrastructure. NPPES lists

all physicians and their specialty,12 which we augment with medical school name, the school’s

U.S. News and World Report medical school ranking, and the physician’s graduation year.

Demographic Data. We obtain date of birth, date of death if applicable, sex, and cit-

izenship status from the Census Bureau’s version of the Social Security Administration’s

Numerical Identification database (Census Numident, as described in, e.g., Bailey et al.,

2020; Polyakova et al., 2021). We infer marital status from the tax filing status.

American Community Survey. Using PIK-based linkages, we add responses from the

restricted-use version of the American Community Survey (ACS) for those physicians whose

household was surveyed by ACS between 2005 and 2017.13 This provides self-reported earn-

ings and work hours. We also use ACS to construct a sample of lawyers for comparison.

Medicare Data. We add data on treatments physicians provide to Medicare patients.

Since 2012, CMS has released data with the list of services performed, the number of times

each service was offered, and additional detail by physician. We further add data on Medicare

reimbursement rates for each service-year.14

2.3 Income and Retirement Definitions

Physician incomes come through diverse and changing mechanisms. This mishmash of

sources makes it particularly challenging to study physician earnings and highlights the

advantage of using tax rather than survey data to measure income. We construct four

measures of income in the tax data: individual total income; individual total wage income

12Physician specialty is defined at varying levels of detail; in this paper, we primarily use Medicare’s
specialty codes or broader aggregates we define in Appendix B.1.

13Restricted-use ACS has finer geographic detail, less income top-coding, and a larger sample than the
public-use version.

14As Section 5.1 describes, Medicare pricing is based on service-specific (and whether the service is provided
in a facility or not) Relative Value Units (RVUs), which are recorded in CMS Physician Fee Schedule files.
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including any pre-tax deferrals to retirement plans or alike;15 individual total business in-

come; and Adjusted Gross Income (AGI) at the household level. We define retirement as

the year in which an individual who is older than 40 first receives form 1099-SSA, “Social

Security Benefit Statement.” Details are in Appendix B.2.

2.4 Sample Definitions

Our main sample is a panel of physician-year observations for 2005 to 2017 for physicians

aged 20 to 70. This results in 11.6 million physician-year observations for 965,000 unique

physicians in our main sample, 848,000 of whom are observed in the 2017 cross-section (Table

1). In many of our analyses we also use two age-based sub-samples: a peak earnings sample

of ages 40 to 55 and high retirement risk sample of ages 56 to 70 (350,000 and 287,000

physicians, respectively, in 2017).16

3 How Much Do U.S. Physicians Earn?

3.1 Basic Facts

Table 1 reports summary statistics for the full sample (column 1), year 2017 cross-section

(column 2), and two age-based sub-samples of this cross-section (columns 3 and 4). The

average physician in 2017 earns $243,400 in wages and $350,000 in total individual income.

Income is right-skewed; median total individual income is $265,000. One third of physicians

have business income exceeding $25,000. At the tax unit level, 24% of physicians are in the

top percentile of the national income distribution and median AGI is $325,500. Real earnings

of physicians grew by 1% annually over the time period we consider (Appendix B.3).

Physicians in aggregate earn $297 billion in pre-tax dollars measured by total individual

income, or 8.6% of total U.S. healthcare spending in 2017 (CMS, 2019). Put differently,

15We include deferred contributions into wages and subtract likely deferred account withdrawals from total
individual income. The idea is to record earnings in the year they are earned, not consumed.

16All numbers in the manuscript are rounded according to U.S. Census Bureau disclosure protocols.

13



out of $10,611 that an average American spent on healthcare in 2017, physicians earned

$913. While billing for physicians’ clinical services comprises one-fifth of spending, less than

half of this amount is physicians’ own pay.17 Subtracting individual income tax payments

at a rate of 30% implies that physicians’ total after-tax earnings is closer to 6% of total

U.S. healthcare spending, or 1% of GDP. This puts an upper bound on the magnitudes

at stake in policy discussions that suggest reducing physician incomes in order to lower

U.S. healthcare spending (e.g. Baker, 2017).

Table 1 reports additional characteristics of physicians and their work environments,

including specialty, firm size, work hours, and medical school characteristics. We discuss

these factors in Appendix B.3.

Earnings Variation. Figure E.1 illustrates the substantial heterogeneity behind average

earnings. More than 25% of physicians in 2017 earn above $425,000, and the top 1% of

physicians earns above $1.7 million. Table E.2 asks what share of this variation relates to

observable characteristics. We run a series of regressions of physician earnings on changing

covariates. We first add basic demographics—age, sex, marital status, and whether the

individual was ever a non-U.S. citizen. Age accounts for 14% of the variation. Conditional

on age, adding other demographics brings R2 up to 0.19. Women earn 30% less than men.

We then consider the explanatory power of covariates that physicians have (at least some)

control over throughout their careers—attending a top-5 medical school, specialty, location

(commuting zone), size of practice, and presence of business earnings. Specialty and firm size

explain (statistically) substantial shares of earnings variation. Physicians who graduate from

the very top schools have 12% higher income than others, but this effect operates almost fully

through access to specialties. Together, pre-determined demographics and career “choice”

variables explain up to 37% of the observed variation.

These results highlight two facts that guide our subsequent analyses. First, age, the

17This distinction is a major limitation of previous studies that use health record or claims data to infer
something about physicians’ own earnings, such as the gender pay gap (e.g. Ganguli et al., 2020).
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presence of business income, firm size, and specialty appear to play key roles (statistically)

in explaining earnings. We flesh out the specific patterns along these dimensions next.

Second, conditional on all observables, almost two-thirds of the variation remains unex-

plained. We come back to this fact in Section 4, where we use non-parametric two-way fixed

effects (TWFE) to quantify the roles of observed and unobserved individual-specific and

market-specific factors. The TWFE analysis can only address some dimensions, since fixed

characteristics (most importantly, specialty) are part of the individual-specific component.

Section 6 thus formalizes specialty choice as a central labor supply decision for physicians,

taking our theoretical model to the data.

Age Profile. Figure 1A plots individual total income by five-year age groups in 2017.

The earnings profile is very steep. Physicians earn around $60,000 on average in their late

twenties, while they are still in training. This escalates rapidly to an average of more than

$185,000 in the early thirties, and peaks at around $425,000 at age 50. Work hours begin to

fall and the probability of retirement starts rising at age 60 (Figures E.4A and E.4B), but

earnings remain close to $270,000 into the late 60s. This age pattern motivates our focus on

income during ages 40 to 55 in much of subsequent analyses, as that age interval reflects a

physician’s maximum potential earnings.

Figure 1B shows that the growth in earnings during the highest-earning ages occurs

through business income. Average wages are almost flat at around $285,000 at ages 40 to

55, while business income (along with the probability of filing Schedule C; see Figure E.4C)

grows steadily and accounts for nearly a quarter of earnings at age 50.

Administrative vs. Survey Data. Figure 1C uses the subset of physicians who re-

sponded to the 2017 ACS to highlight the differences between survey and administrative

data. Total individual income is measured to be substantially higher in tax data than the

ACS—for the exact same individuals. The difference is especially large at the career peak.

During physicians’ most productive years, the ACS estimates are about $140,000 lower, or
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one-third of the administrative data mean. Tax-based earnings grow much more rapidly

during the highest-growth ages. The difference between the two measures is driven by the

extensive margin underreporting of business income in the survey data (Appendix B.4)—a

crucial part of physicians’ earnings, as discussed above.

Firm Size. Figure 1D shows the relationship between earnings and firm size among 40-

to 55-year-old physicians. We see a pronounced non-monotonicity. Physicians in single-

physician EINs have the lowest average earnings of $382,000. Average earnings are highest

in firms sizes that correspond to small group practices of 8 to 10 physicians. Moving to larger

firms—presumably large physician organizations or hospitals—average earnings decline.

Top Earners Among Physicians. Table 2 examines the long right tail of the physician

income distribution, showing how top earners differ from average physicians. We focus on

physicians age 40 to 55 in 2017. First, as with the general population, the income gradient

is steep for these quintessential “human capitalists.” The top 1% of physicians averages $4.0

million in annual earnings, 10 times average annual earnings in the sample and more than

twice the average earnings in the top 5%.18

Second, business income is crucial for the top earners. 80% of physicians in the top 1%

report business income of at least $25,000, compared to 44% in the top half and 35% overall.

The share of earnings coming from non-W-2 sources is also substantially higher among top

earners: 85% for physicians in the top percentile, but 6% for an average physician.

Third, top earners are 67% more likely than the average physician to attend top-5 medical

schools and 38% as likely to work in primary care—motivating our model in Section 1. Top

earners are 6 times more likely to be neurosurgeons, which is one of the most human capital

investment-intensive specializations.

18For each cutoff in the table, mean incomes among physicians above the cutoff are very nearly double the
cutoff point itself. This suggests the physician income distribution is close to Pareto with a shape parameter
of 2 throughout the top half of the physician distribution, as Gottlieb et al. (2023) assumed previously when
relating physician and non-physician top earnings.
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Overall, the evidence on top physician earners is consistent with top earners in the econ-

omy broadly (Smith et al., 2019). The very top incomes are observed among highly trained

physicians who earn business incomes rather than wages.

3.2 The Importance of Specialty

Earnings by Specialty. Earnings vary substantially across specialties (Table E.5). Pri-

mary care physicians (PCPs), the most common specialty category, is also the lowest-earning.

Average total individual income among 40- to 55-year-old physicians is $201,200 ($198,300

at median) for PCPs, or 50% of the overall sample mean in 2017. The highest earners are

procedural specialists and surgeons, whose average individual earnings are about twice those

of PCPs. This variation is visible in the probability of being in the top 1% of households

nationally, which in 2017 ranges from 16% among primary care physicians to 57% among

surgeons. PCPs’ earnings rose somewhat faster than other specialties and general national

incomes in the decade we consider; in 2005 surgeons had income 2.6 times that of PCPs,

and that ratio went down to 2.4 in 2017. In contrast, average earnings of anesthesiologists

and radiologists fell over this time period.

Correlates of Specialty Income. Higher earnings could make one specialty more attrac-

tive than another, or could represent a compensating differential as in equation (4). While

Section 6 formally evaluates income’s role in allocating physicians’ talent across special-

ties, here we present descriptive relationships between earnings and specialty characteristics.

These suggest that higher incomes indeed make specialties attractive rather than just com-

pensate for disamenities.

We first examine how earnings differences across specialties relate to two key job ameni-

ties: working hours and training length. Figure 2A shows the relationship between total

individual income (ages 40 to 55) and weekly working hours (based on ACS responses) at

the granular Medicare specialty level using all years of our data (2005–2017). Specialties in
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which physicians report longer work weeks (such as neurosurgeons and cardiac surgeons, at

close to 65 hours) have higher incomes. Ten extra hours per week is associated with $195,000

higher annual income (or around $375 per hour). Two notable outliers well above the re-

gression line are dermatology (44 hours) and ophthalmology (48 hours). Family practice,

internal medicine, and pediatrics are all below the regression line, suggesting a dispropor-

tionate drop in hourly earnings. Figure 2B shows a very strong relationship between average

income in specialty and physicians’ average length of training.19 Each extra year of training

is associated with $143,000 in extra annual income.

The challenges of medical training extend beyond the length alone. For instance, new

residents matching in 2020 report having conducted two to three times as much research

during medical school as their counterparts a decade earlier (Ahmed and Adashi, 2023).

Panel C shows that the level of research experience—among those who successfully match

in a specialty—is positively related to a specialty’s income. Research experience among

matched physicians is an equilibrium choice, so it is not clear whether to view it as a measure

of ability or the specialty’s entry costs.20

Panels A, B, and C show clear relationships, but also a fair amount of variation around

the regression lines (R2 = 0.36 in Panel A, R2 = 0.54 in Panel B, and R2 = 0.64 in Panel

C). Any specialty above the regression lines must either have compensating differentials

for unobserved job characteristics (such as flexibility, time on call, liability risk, or type of

work) or be more attractive to potential entrants.

To distinguish between these explanations, we examine labor supply given the bundle

of earnings, training, and hours that each specialty offers. Given the presence of entry

restrictions, the number of physicians in a specialty is not an appropriate measure of labor

19Although training is largely standardized within a specialty, there is variation across programs and
across individuals. To systematically determine each specialty’s actual average training length, we develop
a method to estimate it empirically using the tax data. Appendix B.2 provides details. Our measure ranges
from 3.7 years for family practice to 7.2 years for cardiac surgery.

20In the language of equation (4) in the theoretical model, demanding more research experience would be
a higher A, while selecting a higher caliber of medical students would be a higher am. Either one would
bring the model into equilibrium as a specialty’s relative income µ1

µ0
increases.
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supply. Instead, we look at who enters each specialty. Residency and fellowship programs

generally prefer domestic MD graduates to other applicants. So each specialty’s share of

entrants from U.S. MD programs is a coarse metric of the specialty’s appeal to incoming

physicians. Figure 2D relates this share to the unexplained part of specialty earnings.21 We

residualize both the share of U.S. MD-trained physicians and specialty mean income with

respect to training duration and work hours. We then plot the residualized U.S.-trained share

against residualized income (with sample means of each variable added to the residuals). We

observe a clear upward slope. Conditional on hours and training, a specialty with $100,000

higher peak earnings tends to have a 7 percentage point higher share of U.S. MD graduates.

This suggests that income above the regression lines in Panels A and B is largely an attractive

feature of a specialty rather than a compensating differential. In Section 6 we move beyond

this descriptive relationship and estimate a formal model of specialty choice.

4 Sources of Variation in Physician Earnings

The geographic pattern of physician earnings is striking. Figure 3A shows average earnings

for physicians aged 40 to 55 by state. The pattern is unusual: physicians incomes are not

highest on the coasts, as they are for lawyers (shown in Panel B) and the broader economy.

This section unpacks this pattern. In Section 4.1, we use event studies to implement the

movers strategy of Finkelstein et al. (2016), Molitor (2018), and others, to determine the

causal importance of location. We then delve into a finer decomposition of place- and person-

specific factors based on Card et al. (2021) in Section 4.2, and describe the characteristics

of high-earning locations in Section 4.3. The place effects for physician earnings are indeed

unique, with negative sorting between people and places.

These findings suggest that the substantial policy interventions in this market could be

21Panels C and D use National Residency Match Program (NRMP) specialty definitions. NRMP data
allows us to distinguish between the number of U.S. MD graduating seniors and other applicants who match
to a specialty. Non-U.S. MD graduates are primarily graduates of international medical schools, but also
include graduates of U.S. DO programs.
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important for the geographic patterns, and motivate us to specifically examine the role of

government payments in Section 5. Section 5.3 then puts these pieces together to understand

the variation we document here.

4.1 Place vs. Physician Factors: Event Study

Empirical Approach. We use physician movers to ask if location matters for earnings.

For each physician i who moves across commuting zones,22 we denote the difference between

average log incomes among physicians in i’s origin CZ c and destination CZ c′ by ∆ln y(c,c′).

We then estimate the following regression using data from twelve years around the move:

ln yit = αi +
∑
τ ̸=0

βτ × 1τ ×∆ln y(c,c′) + θa(i,t) + λτ + εit, (7)

where ln yit denotes physician i’s annual log individual income. This is a dynamic, parametric

event study specification, which yields coefficients β̂τ on the income change for each year τ

relative to the year of move (τ = 0). Under the standard assumption that shocks εit are

conditionally mean-independent of location causal effects, the post-move coefficients can be

interpreted as the share of the geographic income differences due to place rather than person.

Although standard, this assumption cannot be taken for granted, so we use the pre-move

β̂τ coefficients to investigate it. We control for physician (αi), physician age (θa(i,t)), and

relative time (λτ ) fixed effects.23

Results. Figure 4 shows that location drives a large share of earnings. The estimates of β̂τ

show a sharp change in income at the time of the move and no differential trends in income

preceding the move. The point estimates suggest that movers’ incomes shift by 70% of the

difference between mean incomes in origin and destination. This estimate is even higher

22Our sample is all 40- to 55-year-old physicians who changed their commuting zone (CZ) residence exactly
once between 2005 and 2017. We use CZs to capture both within- and cross-state variation; unadjusted CZ
average incomes are shown in Figure E.5.

23Calendar year fixed effects are implicitly included as a linear combination of the other fixed effects.
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within location-by-specialty.24 Having established that location influences earnings, we next

examine the patterns of these locations’ effects and how physicians sort across them.

4.2 Place vs. Physician Factors: Variance Decomposition

Empirical Approach. We use a two-way fixed effects model to decompose place (c) and

person (i) contributions to individual earnings. Year t earnings are:

ln yit = αi + ψc(i,t) + θa(i,t) + λτ + εit, (8)

in which αi is the individual component, ψc is the location (commuting zone) component,

εit is a mean-independent person-time residual, and some specifications include fixed effects

for age, θa(i,t), and for time relative to the year of move, λτ . Moves must be independent

of the shocks εit, and the lack of pre-trends in Section 4.1 provides some justification for

this assumption. Limited mobility bias could plague a naive variance decomposition, so we

implement the Andrews et al. (2008) homoskedastic correction, and the Kline et al. (2020)

heteroskedastic correction along with a direct fixed effects estimation (Abowd et al., 1999).25

Results. Figure 5A shows the key results. The first three bars show the estimated vari-

ance of location effects, Var(ψc), using standard fixed effects estimation, the homoskedastic

correction, and the heteroskedastic correction. The next three bars report estimates of how

physicians sort across space, 2Cov(αi, ψc), for the same three methods. All three show

pronounced negative sorting. The magnitude of sorting is substantial relative to that of

the location effects themselves; the ratio of covariance to variance is between 0.6 and 0.8

(Table E.6). Column (4) shows that the result is stable when adding time-varying controls.

24Figure E.6 shows analogous event study graphs for four subsamples of physicians: specialists, PCPs, and
physicians who graduated from ranked and from unranked medical schools. For each sample, we construct
the income difference using physicians in the same category. Looking within specialty leads to coefficients
meaningfully larger than the overall average, with the point estimates closer to 0.85. This suggests that
the key driver of variation is the interaction of specialty and location, and specialty earnings have different
geographic patterns.

25We use the Bonhomme et al. (2023) PyTwoWay package to implement and describe all of these estimators.
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Panel B presents analogous estimates for lawyers, another highly-educated occupation,

but with a differently structured labor market. We again initially find a negative covariance

when using the standard fixed effects estimator, but in this case the limited mobility bias

corrections reverse the sign.26 The magnitude of the corrected covariance is in the same

ballpark as for physicians, but with the opposite sign. So our data and procedures do yield

the expected positive sorting, consistent with Card et al. (2021) and the broader literature

on worker-firm matching—when the data support it. Physicians’ pattern is unique.27

Importance of Sorting for Geographic Patterns

What does this sorting mean for the overall pattern of earnings across space? We follow

Card et al. (2021) and address this question by aggregating equation (8) to the CZ level:

ln yc = αc + ψc + βXc. (9)

This decomposes area-level average log earnings ln yc into a location effect ψc, the average

person effect among physicians in the location αc, and (in some specifications) additional

controls.28 The variance decomposition of (9) reveals what share of variation in areas’ average

incomes come from the places themselves, the composition of workers, and sorting of those

workers across locations.

Figure 5D shows the results by relating the estimates of αc and ψc in a binned scatterplot.

26The similarity of results between the two correction methods is likely because the PyTwoWay package
collapses observations at worker-location spell level, which addresses the serial correlation that plagues naive
fixed effects estimation. Comparing the lawyer and physician samples, the latter is an order of magnitude
larger because we identify physicians with administrative data and lawyers from the ACS sample (see Ap-
pendix B.1). The trace of the matrix governing the TWFE bias is an order of magnitude larger for lawyers,
which is why the corrections have such an impact for them but little for physicians.

27Two further analyses provide evidence that this negative covariance is not an artifact of limited mobility
bias. First, we conduct a simple split sample estimation and obtain results extremely similar to those
reported here. Second, we estimate a parametric alternative to two-way fixed effects: we use a linear
regression to adjust raw earnings for various individual-level observables, but not individual fixed effects,
and take each CZ’s fixed effect conditional on these observables. We then correlate these CZ effects with the
individual effects from (8). As we add additional covariates, the correlation of individual fixed effects with
the conditional CZ effects becomes increasingly negative, trending towards the pattern in Figure 5C.

28Including or excluding age fixed effects and relative time fixed effects has little impact on the estimates
of location variance and sorting (Table E.7).
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The sorting remains negative. The last column of Table E.6 reports the magnitude. The

relative magnitude of the sorting effect increases to around 1.2 times the variance of location

effects, compared with around two-thirds of the location variance when estimated at the

individual level. To benchmark the magnitude, the covariance of CZ-by-industry effects

with person effects in Card et al. (2021) explains 1.8 times the magnitude of the CZ-industry

effects.29 The relative magnitude of our sorting is 1.2 times that of location effects, but with

the opposite sign.

4.3 Correlates of Fixed Effects

We explore the economics of these places by projecting the place fixed effects on observable

characteristics.30 For a series of location characteristics, Figure 6 shows two correlations:

that between the characteristic and our estimated place fixed effect, and that between the

characteristic and the raw mean log earnings of the location.

Measures of the location’s general economic strength tend to be uncorrelated, or have a

slight positive relationship, with the location’s raw physician earnings. This pattern holds

whether measuring the region’s economic strength with income, education, real estate prices,

or population size. Life expectancy is slightly negatively correlated with both earnings

measures, though the movers-based treatment effect on mortality (Finkelstein et al., 2021)

is statistically unrelated. Panel B relates both physicians’ and lawyers’ place fixed effects to

local average income. The difference is striking: lawyers’ fixed effect is nearly uncorrelated

with local income, while the relationship for physicians is negative and precise.31

A few economic forces could generate this pattern. First, physicians could be fundamen-

tally more productive in low-income places, though this contradicts empirical evidence on

29Card et al. (2021) consider CZ-by-industry while we consider location effects for one occupation. Our
data differ from the LEHD Card et al. (2021) use in that we include the self-employed and non-wage income.

30We use estimates for commuting zone fixed effects based on (8) with the full set of controls, but without
the limited mobility bias corrections that—as we have shown above—do not change the baseline sorting
pattern among physicians. The TWFE analysis in equation (8) also yields fixed effects for each individual
physician. Their patterns are similar to the raw physician descriptives discussed in Section 3, so we do not
present them further.

31Table E.8 reports regression coefficients and standard errors for all regressions shown in Figure 6.
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agglomeration in healthcare (Dingel et al., 2023). Second, physicians may face less com-

petition in smaller and lower-income markets and thus be able to charge higher markups

to self-paying and privately insured patients. But the magnitude of this force is probably

insufficient to explain all of the earnings differences we observe.32 Third, the income gradient

may reflect compensating differentials for skilled workers’ preferences to live in higher-income

locales. But it is not clear why this would be true for only physicians and not lawyers. Fi-

nally, government’s major role in the healthcare market, and the complex political economy

of this role, could cause outcomes to differ from other industries. Federal and state govern-

ments purchase medical services on behalf of lower-income and rural residents, increasing

these consumers’ effective purchasing power for healthcare relative to other goods or services.

Section 5 measures this influence and asks how it affects the geographic earnings gradient.

4.4 Firm Fixed Effects

While intimately linked with the physician’s location, the firm at which a physician works

may have its own influence on earnings. To explore this, we estimate a firm-worker two-way

fixed effects decomposition using a model analogous to (8). The results, shown in Table E.6

Panel C and Figure E.7, are broadly consistent with the location-physician decomposition.

Both the raw and bias-corrected covariances between the physician’s individual and firm

effects are negative, suggesting that physicians’ sorting across firms reflects these firms’

geographic locations. The negative covariance reinforces the uniqueness of physicians’ labor

markets (cf. Bonhomme et al., 2023).

32Clemens and Gottlieb (2017, Fig. 2) report 20 percent higher private payments in the most concentrated
markets compared with the least. Dunn and Shapiro (2014) find that a 10 percent increase in physician
market concentration increases prices by 1 percent. In hospital pricing, Cooper et al. (2019) report 12
percent higher prices in monopoly markets than those with at least four competitors. The pattern we
observe is also not driven by CZs with very few physicians. Indeed, the negative correlation between CZ
FE and median household income is stronger among CZs with more than 10 physicians. Further, CZ FE
are only weakly negatively correlated with the number of physicians in each CZ in our data, while we would
have expected a pronounced negative correlation driven by small markets if the main underlying mechanism
were market power (Bresnahan and Reiss, 1991). In short, these estimates imply that lack of competition is
insufficient to drive the scale of differences we estimate in markups across commuting zones.
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5 Government Influence on Physician Earnings

We use two empirical strategies to investigate the government’s influence on physicians’ earn-

ings and short- to medium-run labor supply. We first use short-run price changes, which

occur as Medicare adjusts its reimbursements for each procedure. We then examine a per-

sistent demand shock from the expansion of health insurance coverage under the Affordable

Care Act (ACA). As this is a permanent demand shock rather than transient variation in

prices, it is more informative of longer-run behavioral responses.

5.1 Short-Run Changes: Medicare Rate Adjustments

We first use price shocks to estimate short-run elasticities of income and labor supply. The

$900 billion-per-year Medicare program reimburses physicians’ professional services based on

a fee schedule that defines a Relative Value Unit (RVU) for each medical service. Although

this RVU metric is meant to reflect the differences in the time and effort it requires to provide

different services, it changes due to periodic reviews and political factors.33 We use changes

in the RVUs assigned to each service to estimate how much Medicare payments influence

physician incomes and labor supply.

Do physicians shift their service mix as relative prices change? Given the broad set of

price changes Medicare implements each year, we analyze supply responses at the proce-

dure code level. To study physician-level response margins, such as earnings, retirement,

and total procedure supply, we use physicians’ different baseline service mixes to generate

a physician-year reimbursement shock. While each billing code’s update is applicable na-

tionally, physicians perform different bundles of services. So each physician is differentially

exposed to each year’s set of RVU changes. This allows us to use the logic of simulated

33We rely on three facts about this system. First, RVUs may vary across time and geography, but not
across individual physicians. Second, Medicare’s RVU Update Committee (RUC) regularly reviews how many
RVUs are assigned to each service. The reviews can be triggered by changes in the service, by Medicare’s
request, or based on a pre-determined five-year review cycle. Third, the timing of when a particular code, or
even codes of which specialty, is reviewed is uncertain. Chan and Dickstein (2019) explain the uncertainty
in which specialties will be able to propose code reviews at any given RUC meeting. Appendix C.1 provides
more details about the institutional setting and our empirical approach.
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instruments to construct each physician’s Medicare price exposure.

For each physician i, we first compute the average number of times each service k was

performed across all years of our utilization data (2012 to 2017), and denote this by qi,k. We

then multiply this time-invariant quantity measure by the time-varying number of RVUs that

Medicare assigns to service k and add them up by physician-year. The result is a series of

annual price shocks for each physician, purged of any behavioral response. Mathematically,

the composite price for physician i who performs a set K of services in year t is:

Pi,t =
∑
k∈K

qi,k ×RV Uk,t. (10)

We label this the Medicare price instrument. Figure E.8 shows the distribution of annual

shocks to this instrument, ∆ lnPi,t = lnPi,t − lnPi,t−1.

We estimate the following empirical relationship to determine how log income, lnYi,t,

responds to the Medicare price instrument:

lnYi,t = αi + β lnPi,t + θa(i,t) + ηt,s(i) + εi,t. (11)

The coefficient of interest, β, is the reduced form elasticity of income Y with respect to the

Medicare price instrument.34 We control for physician fixed effects, αi, physician age fixed

effects, θa(i,t), and year-by-specialty fixed effects, ηt,s(i). The key coefficient β is thus identified

off the variation in the composition of services that each individual physicians performs.35

We run our analysis separately for 40–55 and 56–70-year-old physicians; the former group is

prime working age physicians, so we remove trainees with fixed incomes and minimize the

mechanical decline in income due to retirements. The latter group is closer to retirement,

34To the extent that changes in Medicare fee schedule can trigger changes in private insurers’ reimburse-
ment rates, as in Clemens and Gottlieb (2017), our reduced form estimate will capture both the direct and
indirect effects of Medicare’s reimbursement on physician earnings and labor supply.

35The main effects of year and specialty are omitted from ηt,s(i) as specialty is collinear with the physician
fixed effect αi and year is collinear with the combination of αi and age θa(i,t). To account for the large
variability in Medicare billing volumes across providers, we use the average Medicare revenue each physician
collected in 2012–2017 as regression weights. We cluster standard errors by Medicare specialty.
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allowing us to measure that labor supply margin.

To study Medicare’s impact on the supply of medical care, we replace the dependent

variable with the log number of RVUs physician i bills in year t, lnQi,t.
36 Since these RVUs

are part of our instrument Pi,t, we expect a mechanical coefficient of 1 in the absence of any

behavioral response. With total RVUs as an outcome, the difference between the coefficient

and 1 yields the supply elasticity. A coefficient below 1 indicates income-targeting behavior,

while a coefficient above 1 indicates a positive supply elasticity.

To get the elasticity of income to Medicare billing, we estimate an IV setup treating

the log Medicare price instrument, lnPi,t, as an instrument for the log total RVUs billed,

lnQi,t, and log income, lnYi,t, as the dependent variable. To quantify any response via the

retirement margin of labor supply, we treat income as the endogenous variable and retirement

as the outcome. We estimate both of these IV specifications using two-stage least squares.

To estimate more granular labor supply responses, we count the number of times a

physician bills for each code in each year, qi,k,t. We directly measure how much a change in

the code’s own RVU metric, RV Uk,t, affects this supply:

ln qi,k,t = αi + βRV Uk,t + θa(i,t) + ηt,s(i) + φκ(k) + εi,t (12)

where φκ is a set of procedure fixed effects.37 To distinguish between effects on the number

of patients treated and the care provided per patient, we also estimate a version in which

the dependent variable is the number of unique patients per procedure.

Results

Table 3 and Figure E.9 report the results. A 10% increase in Medicare payment rate leads

to a 2.4% increase in professional earnings of 40- to 55-year-old physicians. A substantial

36This can be interpreted as the number of services a physician provides, weighted by value. It is formally
defined in Appendix C.1, where we also present the estimating equations. For a simpler measure, we also
estimate a version that simply counts the number of procedures each physician bills, regardless of value.

37The subscript κ is distinct from k because the fixed effects are by HCCPS code, while the unit of
observation is at the code-by-place of service level.
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component of this change is physicians’ behavioral response; a 10% increase in the payment

rate leads physicians to bill 4.4% more RVUs. (Recall that we must subtract 1 from the

coefficient of 1.437 to get the supply elasticity.) 2SLS estimates imply an elasticity of 0.17

between earnings and prices. This intensive margin labor supply response is a composition of

performing 3.9% more unique procedures, and shifting to relatively higher-paid procedures.

The procedure-level analysis directly shows that a 10% increase in price per procedure leads

physicians to do 3.8% more of this procedure. Nearly the full effect (3.4% out of 3.8%) is

driven by performing this procedure on additional patients rather than doing the procedure

more frequently for the same number of patients.

Intensive margin responses are broadly similar among 55-to-70-year-old physicians. For

this group, we also find a response on the extensive margin. The IV estimate shows that a

10% increase in professional earnings driven by changes in the reimbursement rates leads to

a 0.5 percentage point decline in the probability of retirement that year.

To better understand the magnitudes, we convert our earnings estimates into a pass-

through—how much do physicians’ earnings increase when the government pays one more

dollar? Our direct estimates imply that physicians earn $62 of each $100 in additional

Medicare spending. Accounting for Medicare’s spillover into private insurance spending

(Clemens and Gottlieb, 2017; Clemens et al., 2017), we get a lower pass-through of $25

for each $100 of any insurance spending.38 Under either interpretation, pass-through is

quite large. Our estimates differ from the modest level of rent-sharing with workers found

in response to many other shocks (Card et al., 2018), but are similar to rent-sharing with

higher skilled workers who benefit, for example, from patent rents (Kline et al., 2019).

Our results indicate that these marginal earnings have real consequences: paying physi-

cians more increases care provision, as more patients receive better-compensated treatments

and physicians delay retirement. We do not observe health outcomes so cannot assess the

net social benefits of this marginal spending. The labor supply elasticity of 0.2 to 0.4 that

38Appendix C.1 details these calculations.
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we estimate is lower than in Clemens and Gottlieb (2014) or Cabral et al. (2021), but is

similar to other estimates of compensated wage elasticities (Nicholson and Propper, 2011).

5.2 Persistent Demand Shocks and Long-Run Supply Responses

Short-term price shocks, such as those resulting from RVU changes, are most likely to af-

fect short-run supply margins such as the number of patients treated. To study longer-run

responses, we exploit a persistent demand shock: the Affordable Care Act (ACA)’s expan-

sion of health insurance coverage. The ACA increased the insured share of the non-elderly

population through two main mechanisms. First, 37 states expanded Medicaid eligibility.

Second, means-tested subsidies were offered to individuals for purchasing individual health

insurance on newly created health insurance Marketplaces. The ACA became law in 2010,

but most of the insurance expansions were implemented in 2014 and 2015. We restrict our

analysis to states where the full package of key ACA reforms took place roughly on the same

timeline. This leads us to analyze incomes and retirement choices in 24 states that expanded

Medicaid in 2014 or early in 2015, coinciding with the rollout of Marketplaces in 2014.39

Our identification relies on variation in each county’s potential magnitude of insurance

coverage expansions. There is more scope for insurance coverage to increase in counties

that had a higher share of uninsured population prior to the law’s implementation. The

share of uninsured under-65 population in 2013, on the eve of ACA expansions, varied from

under 10% in some counties of Minnesota to over 30% in some counties of Nevada (Figure

E.10). Let Uc,2013 denote the share of the under-65 population uninsured in county c in year

t = 2013. We estimate the reduced form impact of insurance expansions on outcomes Yc,t

using a county-level panel which covers four years of post-expansion data:

Yc,t =
2017∑

t=2005,t̸=2010

βt × 1t × Uc,2013 + δt + µc + θgc,t + ϵc,t. (13)

39Appendix C.2 provides more details on our definitions and sources.
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where δt capture calendar year fixed effects, µc are county fixed effects, and gc,t controls for

the time-varying shares of physicians of each age in each county. β̂t are the coefficients on

year fixed effects interacted with our time-invariant measure of exposure, Uc,2013, and should

be interpreted as relative to 2010, the year in which ACA passed.40

To interpret the coefficients β̂t as measuring how much insurance coverage affected out-

come Yc,t, we need the identifying assumption that growth path of potential outcomes absent

ACA rollout over time would have been independent of rates of uninsurance among the non-

elderly population in 2013 conditional on covariates. While this parallel trends assumption

is not directly testable, the event study specification in (13) allows us to assess whether

counties with differential rates of uninsurance in 2013 followed a parallel trend in outcomes

prior to 2010. Expectations of future demand may be important for persistent outcomes like

retirement or firm structure. These choices may respond to anticipated changes in insur-

ance coverage, and thus to the ACA’s passage, rather than realized insurance coverage. In

contrast, income is likely to change only once expansions take place and demand increases.

In practice, ACA expansions resulted in only a subset of previously uninsured people

taking up insurance. To capture the relationship between Yc,t and the insured population in

a county, we estimate the first stage event study that measures how the rate of insurance Ic,t

in county c in year t changed as a function of the share uninsured in 2013. The specification

is the same as in (13), but with Ic,t as the outcome. To formally scale the reduced form

by the first stage, we collapse the differential time path of treatment effect into the pre-

and post-implementation periods.41 We estimate a 2SLS specification treating the rate of

insurance in the under-65 population as the endogenous variable of interest and the rate

of uninsured population in 2013 as an instrument that is assumed to only affect outcomes

through its effects on insurance.

40We use the number of physicians in each county-year as regression weights and cluster standard errors
at the county level.

41Because of the potential for anticipation effects in long-run decisions, we report two sets of 2SLS specifi-
cations: one in Table 4 that defines the pre-period to include all years before insurance expansions began (all
years before 2014), and another in Table E.9 that drops the intervening years between the ACA becoming
law and its implementation (2011 to 2013). Results are similar.
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To measure income and labor supply responses, we estimate the effect of insurance expan-

sions on (log) total individual income and the likelihood of generating extra income through

self-employment (as measured by filing Schedule SE) among physicians in their peak earning

years (ages 40 to 55). For the population at a higher risk of retirement (ages 56 to 70), we

measure the effect of ACA expansion on the probability of retirement.

Results

Figure 7 plots coefficients β̂t for the first stage and the reduced form for individual income

(among ages 40 to 55) and retirement (among ages 56 to 70). Table 4 reports the first stage,

reduced form, and 2SLS coefficients for all outcomes. The first stage estimate (Column 1 of

Table 4) shows that counties with a ten percentage point higher pre-ACA uninsurance rate

saw a 4.96 percentage point higher rate of insurance coverage in the post-implementation

years, with no noteworthy changes in insurance between 2010 and 2013. As in Finkelstein

(2007), expanding insurance coverage reduced pre-existing geographic differences in coverage.

Panel B and columns (2) and (5) of Table 4 show that earnings among physicians aged

40 to 55 grew faster in these more affected areas. We estimate that a ten percentage point

higher baseline uninsurance rate leads to 3.9% higher individual earnings four years post

expansion, or 2% on average across post-implementation years. Scaling this income effect by

the first stage suggests that a ten percentage points higher rate of insurance coverage (a 12%

increase over the average sample insurance rate of 85% in 2013) increases physician income

by 4.9% across post-implementation years. The elasticity of physicians’ earnings to the rate

of insurance coverage in the under-65 population is thus 0.41.

Columns (3) and (6) of Table 4 shed some light on how physicians may achieve these

changes. The probability that a physician files Schedule SE (self-employment income above

$400) increases by 3 percentage points for each 10 percentage point increase in insurance.

This proxies for the extensive margin of self-employment and potentially captures increased

opportunities to generate side income.
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Turning to labor supply in Figure 7C and Table 4 columns (4) and (7), we find that a 10

percentage point higher insurance rate leads to a 1 percentage point decline in retirement

probability after the implementation of ACA expansions. This effect emerges after the

law is signed rather than after implementation, which we would expect if physicians delay

retirement in anticipation of a shift in demand. This evidence suggests that the substitution

effect dominates the income effect over the time horizon we consider. Converting the post-

implementation estimate to an elasticity, a 12% increase in insurance rate leads to 4.9%

higher income and 5.4% less retirement, for a medium-run elasticity of retirement to income

of -1.1.42 This suggests a larger behavioral response in response to a more permanent change

in income than we found in response to short-run fluctuations in reimbursement rates.

We use our estimates to ask what share of insurance spending on marginally insured

patients goes to physicians—a key issue for the political economy of health insurance.43

Based on our pooled estimates, 6% of the $110 billion annual spending (CBO, 2016) on

the ACA insurance expansion accrued to physicians.44 Since physicians’ baseline share of

medical spending is 8.6%, their gain from expansions was slightly less than proportional to

their baseline expenditure share.

5.3 Can Government Shape Earnings Variation?

We now consider what our estimates of pass-through imply for the ability of government

policies to shape the earnings variation documented in Sections 3 and 4. We first examine

whether government policies can explain any of the unusual geographic pattern of physician

earnings: higher-earning physicians being in lower-earning areas. We consider reimbursement

rates in Medicare—one of the main policy instruments. Medicare adjusts these rates for local

42A 2SLS specification that drops the years pre-ACA implementation gives us 3.9% higher income and
6.9% less retirement for a medium-run elasticity of -1.8.

43The analogous question among hospitals is well-studied (Garthwaite et al., 2018).
44Policy reports suggest that ACA expansion resulted in approximately 5.9 percentage points more people

insured among non-elderly in total (Tolbert et al., 2020); the uninsurance rate went down from 16.8% in
2013 to 10.9% in 2015. Applying our elasticity estimate, this expansion led to a 2.4% increase in physician
incomes, or $8,400 per physician (2.4% of $350,000). In aggregate for 848,000 physicians in our cross-section,
this means $7.1 billion of extra spending, or 6% of the $110 billion in annual spending.
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input costs, but the adjustment is incomplete, resulting in effective subsidies to rural areas

(GAO, 2022). We conduct an exercise based on Section 5.1 to quantify how this large rural

subsidy shapes the geography of physician earnings.

Figure E.11 illustrates this calculation. We consider the elasticity between Medicare’s Ge-

ographic Adjustment Factor (GAF) for physicians’ work—a factor that multiplies Medicare

reimbursement rates—and the commuting zone’s median household income.45 This elastic-

ity is a policy choice, and we plot its value on the horizontal axis of Figure E.11. The solid

vertical line marks the current empirical estimate of 0.09; the dashed vertical line marks the

empirical elasticity of 0.33 between a broader local price index (Diamond and Moretti, 2021)

and local incomes. Medicare’s differences in reimbursement have a much weaker relationship

with geographic differences in income levels than do other prices.

The vertical axis of Figure E.11 shows the elasticity of physician earnings to local income.

The empirical values estimated in Section 4 for physicians and lawyers (-0.13 and 0.12,

respectively) are indicated with horizontal lines.46 We use our estimates from Section 5.1 of

how changes in Medicare prices affect physicians’ earnings to draw a relationship between this

policy elasticity and income elasticities. Since the GAF multiplies Medicare RVUs, a change

in this index affects physician reimbursements similarly to a change in RVUs.47 We found

that a 10 percent increase in Medicare prices increases earnings by 2.4 percent, including

any supply response (see Section 5.1). We draw a red line in Figure E.11 with this slope.

This line shows the implied relationship between the elasticity of Medicare reimbursement

to local income (x-axis) and the elasticity of physician earnings to local income (y-axis).48

The y-axis is a summary metric of the shape of the geographic distribution in physician

earnings—an equilibrium outcome—while the x-axis depends on policy choices. If the elas-

45We use analysis in MaCurdy et al. (2014) to compute commuting zone level GAF. We use 2016 CZ-level
median household income estimates from Chetty et al. (2014).

46These estimates are obtained from a regression of the CZ earnings FE from Section 4, separately for
physicians and lawyers, on (log) median household income.

47The GAF is an approximation of the GPCIs applicable to any particular service; see MaCurdy et al.
(2014) for details.

48The intercept is set such that the line passes through the empirical elasticities between physician CZ FE
and local incomes, and the elasticity between GAF and local incomes.
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ticity of Medicare prices to local incomes increased to the level of the elasticity of the general

consumption basket (the dashed vertical line farther to the right along the x-axis), our esti-

mates suggest that the geographic variation in physician earnings would look more similar to

lawyers’. This finding suggests that Medicare’s limited adjustment for local costs alone can

explain about a third of the unique pattern of physician earnings, at least as captured by

the elasticity of CZ FE to local incomes. That said, this exercise has an important caveat.

It uses a short-run estimate of income responses to Medicare payment changes, while the

CZ FE-income elasticity is a cross-sectional (and thus long-run) relationship. Longer-run

pass-through could be larger (due to private market spillovers; Clemens and Gottlieb, 2017)

or smaller (due to entry). In Figure E.11, this would change the slope of the red line. The

higher is the pass-through from Medicare payments to earnings, the steeper the red line, and

the more important Medicare payments are in driving the geography of earnings.

6 Earnings and Allocation of Talent Across Specialties

While we have seen that government policy drives physician earnings and contemporary

labor supply choices, earnings may be even more important if they shape talent allocation

over the long run. The model in Section 1 emphasized new physicians’ specialty choices.

Building on this, we conclude the paper by estimating how income changes the allocation of

physician talent across specialties. This analysis takes advantage of the specialty-year panel

of earnings we are able to construct using our data linkage.

6.1 Empirical Models of Specialty Choice

Overview. Since new physicians can choose from many specialties, we analyze their decision-

making using a discrete choice model. This approach generalizes the binary choice discussed

in Section 1, both by allowing for more than two specialties and by incorporating observable

and unobservable preference heterogeneity.
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We identify the relationship between relative incomes and specialty choice using panel

variation in each specialty’s earnings, accounting for other time-varying attributes. As Sec-

tion 1 highlights, only sufficiently high-ability physicians have a free choice of specialty in a

world with entry restrictions. For this group, we can interpret the choice-income relationship

as reflecting preferences. Other physicians’ choices reflect a combination of preferences and

rationing. We first develop a discrete choice model of specialty choice, which we estimate

on physicians who graduated from top-5 U.S. medical schools.49 We then estimate a version

allowing for heterogeneity by physicians’ test scores. For the highest-scoring physicians, this

model yields similar results to the version estimated on top graduates. The different income-

specialty relationship for lower-scoring physicians quantifies the impact of entry restrictions

and allows us to see how changing income shapes the entire distribution of talent.

Discrete-Choice Model Specification. Consider new physician i entering the residency

match in year t. Suppose i graduated from a top medical school so has freedom to choose

any specialty s out of a set S of nine specialty categories. Physician i chooses specialty s to

maximize utility:

uis = αMst(i) + βiϕst(i) + As + εis (14)

where:

εis ∼ Gumbel(0,1)

βi ∼ N(β0 + β1Di, σ
2).

We denote cohort t’s beliefs about hourly earnings in specialty s byMst(i); it is the empirical

analogue of the expected log reimbursement rate, µs in the theoretical model. Specialty fixed

effects As account for time-invariant amenity differences across specialties. The vector ϕst(i)

captures time-varying features of specialty s we can measure. The random coefficients on

49See Appendix B.2 for measurement details.
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these observables, βi, allow for both observed and unobserved heterogeneity in preferences

for the specialties’ time-varying amenities.50

Finally, εis is the part of individual i’s preference for specialty s that the individual

knows but the econometrician does not observe. It includes any idiosyncratic beliefs about

individual match-specific components of specialty earnings or hours. We assume that this

unobserved part of utility is independently and identically distributed with a type I extreme

value (standard Gumbel) distribution across all graduates and all specialty choices s.

Identification. A common concern in discrete choice models of consumer demand is that

the error term includes a choice-market-specific shock correlated with prices and consumer

choices. In our context, this means α will not reflect physicians’ true preferences if earnings

potential is correlated with the specialty choice constraints they face—which may occur if

underlying ability is correlated with both. We address this by limiting the sample to physi-

cians who graduate from top-5 U.S. medical schools.51 To understand how incomes shape

specialty choice across the broader ability distribution, we use different data and a differ-

ent empirical approach. Both methods yield similar results for the top (least-constrained)

residency applicants, supporting our approach.

Score-Based Aggregate Model Specification. To account for the limited choices facing

most residency applicants, we estimate an analogue of equation (14) allowing for heterogene-

ity by test score. To do this, we use aggregate data on the number of physicians who apply

to each specialty grouped by USMLE score.52 The National Residency Matching Program

(NRMP) reports these scores in 10-point intervals, ranging from ≤ 180 to > 260. We simplify

the model by removing other dimensions of heterogeneity from equation (14), which allows us

50Appendix C.3 has more details on these variables and estimation.
51Furthermore, unlike the canonical consumer demand model, our setting does not (directly) have strate-

gically income-setting firms. Indeed, as Section 5 showed, much of the variation in income is driven by
government fiat.

52This exam is normally taken after the second year of medical school and historically played an important
role in the residency match. In 2022, numerical scores were replaced with pass/fail grading (USMLE, 2021).
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to estimate the model on aggregate data using the log-shares transformation (Berry, 1994),

treating family medicine as the outside option. We estimate a pooled specification using

data for all USMLE score intervals, but allow the coefficient on mean hourly earnings in a

specialty to vary across score intervals:

ln Pr(s)ast − ln Pr(0)at = δMa ·Mst + δϕϕst + δs + νast. (15)

In equation (15), ln Pr(s)ast denotes the log share of graduates in score group a in cohort t

who applied to specialty s, and other variables are defined as in equation (14).

We use USMLE score buckets to proxy for ability a. If applications reflect rationing of

attractive specialties, the empirical choice patterns should look different for physicians who

are not at the top of the USMLE score distribution and hence more constrained. We expect

δMa for high USMLE scores to reflect true preferences, measuring how graduates trade off

earnings and non-pecuniary amenities of specialties. As we move down in the USMLE score

distribution, the coefficient on specialty earnings potential should shift, reflecting the shadow

price of the entry constraint. At the bottom of the distribution, it could even reverse sign—

not because lower-scoring graduates have different preferences, but because their choice is

limited to the slots remaining after higher-scoring candidates make their selections.

Results. Table 5 reports estimates of equation (14)’s α parameter in the top row and

each score group’s δMa from (15) in the bottom row.53 The estimates for high-ability groups

are generally intuitive: graduates who are likely unconstrained in their choices prefer higher

earnings. Physicians prefer the amenities offered by primary care and various procedural

specialties appear to have relative disamenities. Our estimate of α̂ in the highest USMLE

score group based on the aggregate model is very similar to the individual choice model

estimate. This lends credence to these numbers, as the two approaches use entirely different

53The δMa reported in the bottom row are calculated as the sum of the group-specific interaction with
hourly income, reported on the second row, plus the hourly income coefficient for the omitted group (score
≤ 190). Table E.11 reports detailed estimates for the individual and Table E.13 for the aggregate model.
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datasets and estimation methods.

Moving across the columns to the right, we see the implied coefficient on income δ̂Ma for

students with lower USMLE scores become smaller and even turn negative for the lowest

score groups. This is consistent with the equilibrium described in our model in which higher

compensation attracts new physicians to a specialty, while the scarcity of residency slots

screens lower-ability physicians out of high-paying specialties. Appendix C.3 presents ad-

ditional details and graphs to help interpret these results. The specialty choice elasticities

are in a similar range to earlier studies that account for rationed entry into the highest-paid

specialties (Nicholson, 2002; Bhattacharya, 2005).54

6.2 Implications for Allocation of Talent

We use these results to consider two salient policy debates surrounding physician labor

markets: entry restrictions and shortages of primary care physicians (Glied et al., 2009).

Entry restrictions may drive physician shortages, especially in rural areas, while student

debt allegedly leads doctors to choose highly compensated specialties over primary care.

Policy discussions often consider increases to primary care physicians’ incomes, either

through reimbursements, bonuses, or loan forgiveness. We use our estimates to compute

how physicians’ specialty choice responds to these policies. Figure 8A shows the results for

physicians who are likely unconstrained in their specialty choice, based on the individual-

level model. Increasing primary care physicians’ hourly income to the level of medicine

subspecialists (an increase from $98 to $168) would induce 48% of top-5 graduates in the

U.S. to practice primary care rather than specializing. This is a 20 percentage point increase.

Nearly half of these reallocations would be from procedural specialties, followed by radiology

and surgery. This policy would nearly double the share of primary care physicians coming

from top-5 medical schools (Figure E.13). This implies that physicians value the amenities

54Consistent with studies that do not account for entry barriers and find much lower elasticities (Nicholson
and Propper, 2011), we get much lower elasticity estimates as we move down the USMLE score distribution
where MD graduates likely have less choice.
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of primary care. About a third of today’s specialists would have preferred primary care if

its hourly income were the same as specialists’.55

Figure 8B reports a similar exercise using the aggregated model with heterogeneous test

scores. We compute the counterfactual distribution of internists’ test scores that results

when internal medicine hourly earnings are increased to dermatologists’ level. The share

of graduates with USMLE scores above 250 in internal medicine increases by more than

10 percentage points, displacing some lower-scoring entrants, for a 10 point increase in the

average USMLE score in internal medicine.

We frame these analyses as an increase in primary care physicians’ incomes. Since the

model considers relative incomes, the results would be the same if we instead reduced special-

ists’ earnings.56 This distinction—i.e. the absolute level of earnings—may affect the choice to

enter medicine in the first place. While our model abstracts from this decision, Appendix D

uses our data to speculate on implications for this extensive occupational choice margin.

7 Conclusion

This paper uses a new administrative data linkage to describe and understand U.S. physi-

cians’ earnings. Physicians’ care commands one-fifth of healthcare resources, but their per-

sonal earnings account for less than half of that amount, totaling 8.6% of U.S. healthcare

spending. Physicians earn $350,000 on average, for an average lifetime income of $10 million.

The age-earnings profile is steep, reflecting the many years of human capital investments re-

quired to enter a career in medicine. We show that, in this setting with binding entry

restrictions, government payment rules have a profound impact on earnings and thus play a

key role in valuing and allocating one of society’s most expensive assets: physicians’ human

55Raising primary care income to the level of procedural specialists is in practice very similar to equalizing
incomes across all specialities, see Figure E.14. Note that eliminating student loans, also frequently proposed
as a way to induce new physicians to pursue primary care, is not equivalent to income equalization. As
medical school debt varies little across specialties, it has little impact on relative incomes.

56Paying all physicians at the current level of U.S. primary care incomes would approximate physician
compensation in Sweden, while paying everyone at U.S. specialists’ level would be closer to Switzerland.
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capital.

Our results teach how policy drives the most consequential long-run outcomes in this

labor market and provide a clear agenda for future research. To analyze the long-run welfare

impacts of healthcare policies, including those we investigate, we need evidence on the distri-

bution of health impacts and thus social returns to physician ability in different specialties.

We do not speculate on the magnitude of such returns in this paper, but our results show

that quantifying the health impacts of ability is an essential direction for future work and is

key to formulating optimal payment policies.
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Figure 1: Physician Earnings over the Lifecycle and by Firm Size
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Notes: The figure plots mean individual total income in our 2017 sample of physicians by 5-year age intervals (Panels A-C) and by firm
size (Panel D). Business income in Panel B is defined as the Total Money Income of the household net of wages, taxable dividends, taxable
interest, social security, partially observed profit and loss from Schedule E, and distributions from pre-tax deferral accounts irrespective of
age. ACS total individual income in Panel C is defined as the sum of individual wage and self-employment income of the index individual
plus self-employment income of the spouse. Panel D is restricted to physicians age 40 to 55 and firms with fewer than 100 physicians; the
x-axis is ventiles of the physician-level distribution of firm size. The term “firm” refers to the tax unit, measured as the EIN on Form W-2.
Appendix B.2 provides measurement details. Disclosure Review Board approval CBDRB-FY23-0319, CBDRB-FY2023-CES005-024.
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Figure 2: Correlates of Specialty Income
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(B) Income vs. Length of Training
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(C) Income vs. Applicants’ Research Experience
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Notes: This figure characterizes the relationship between specialty earnings and specialty characteristics. Specialty earnings are measured
as mean individual total income among 40- to 55-year-old physicians in our full panel 2005-2017 in a Medicare Specialty (Panels A and B)
or NRMP specialty (Panels C and D). We plot specialty earnings against the average number of hours worked among physicians aged 40
to 55 in 2005–2017 (Panel A), the average imputed years of training (Panel B), and the average number of abstracts, presentations, and
publications that MD students report having completed on their residency application, as provided by NRMP (Panel C). Panel D plots the
specialty’s share of physicians with a U.S. degree against average earnings, conditional on the number of work hours and years of training.
Years of training is imputed from tax data as described in Appendix B.2. Circle sizes in the graphs are proportional to the number of
individuals in each specialty in our baseline sample in 2017. The line of best fit is estimated as a weighted bivariate OLS on specialty-level
data. Disclosure Review Board approval CBDRB-FY23-0319, CBDRB-FY2023-CES005-024.
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Figure 3: Geographic Variation in Earnings
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Notes: This figure plots mean individual total income among 40 to 55 year old physicians (Panel A) and
lawyers (Panel B) in year 2017 by state. Income is measured using individual tax returns data and is
defined as the sum of individual total wage income and the household AGI net of all wage earnings and
taxable retirement distributions (for those aged 60 or older), but gross of tax exempt interest and social
security payments. Physicians and lawyers are defined as described in Section 2 and Appendix B.2. The
same Appendix also provides more details on income measurement. Disclosure Review Board approval
CBDRB-FY23-0319, CBDRB-FY2023-CES005-024.
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Figure 4: Event Study: Physician Movers
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Notes: This figure shows coefficient estimates on the difference between mean individual total income between
origin and destination commuting zones (∆ln y(j,j′)) from equation (7). The coefficient is normalized to 0
in the year prior to the move (τ = −1). The dashed lines mark the 95% confidence intervals. The outcome
variable is log individual total income. The independent variables include ∆ln y(j,j′) interacted with year
effects, physician fixed effects, relative year fixed effects, and age fixed effects. A physician is defined as
a mover and is included in the sample if they changed their commuting zone once between years 2005 to
2017, and were aged 40 to 55 during that change. Disclosure Review Board approval CBDRB-FY23-0319,
CBDRB-FY2023-CES005-024.

49



Figure 5: Place vs. Physician Contributions to Earnings
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Notes: This figure shows elements of variance decomposition of individual total income among 40–55 year old physicians (Panel A) and
lawyers (Panel B) in the sample of movers (see definition in Figure 4.) Estimates in bars labeled “Two-Way Fixed Effects” are based on
the estimation of equation (8). The outcome variable is log individual total income. The importance of location effects is computed as
the variance of estimated CZ fixed effects, Var(ψc). The effect of sorting of people to locations, 2Cov(αi, ψc), is computed as twice the
covariance of individual and CZ fixed effect estimates. The bars labeled homoskedastic and heteroskedastic correction report the corrected
variance and covariance terms based on Andrews et al. (2008) and Kline et al. (2020), respectively, implemented following Bonhomme et al.
(2023). Panels C and D show binned scatterplots relating place effects and person effects based on estimation of equation (8) in the sample
of movers. Panel C reports the average CZ fixed effect within each ventile of individual fixed effects distribution. In Panel D we first collapse
the data to the CZ level by averaging individual fixed effects within a CZ as in Card et al. (2021). The line of best fit is based on a bivariate
OLS regression using underlying data points. Disclosure Review Board approval CBDRB-FY23-0319, CBDRB-FY2023-CES005-024.
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Figure 6: Correlates of Place Effects
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Notes: This figure plots the results of bivariate OLS regressions of raw average individual total income
in a commuting zone (light blue colors), as well as of place treatment effect on earnings (dark blue), on
z-scores of the indicated place characteristics. Place treatment effects on earnings are CZ fixed effects from
the estimation of equation (8) in the sample of movers (see definition in Figure 4.). Raw mean income is
computed in the same sample. CZ-level characteristics are as reported in Chetty et al. (2014); Finkelstein et
al. (2021); Diamond and Moretti (2021). Disclosure Review Board approval CBDRB-FY23-0319, CBDRB-
FY2023-CES005-024.
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Figure 7: Effect of ACA Insurance Expansion
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Notes: This figure shows event study estimates of the effects of ACA insurance expansions on insurance rates (Panel A), log individual
total income of physicians aged 40–55 (Panel B), and the probability of retirement (defined as receiving Form 1099-SSA) among 56–70
year old physicians (Panel C). Independent variables include county fixed effects, year fixed effects, share of physicians of each age, and
year fixed effects interacted with the share of under 65 population that was uninsured in 2013. The sample includes counties in states that
had ACA expansions in 2014 and 2015 as detailed in Appendix C.2. The regression specification is in equation (13). Each regression is
estimated on county-level data, weighted by the number of physicians (overall in Panel A and in the corresponding age group in Panels B
and C) in that county and year. Error bars represent 95% confidence intervals. Disclosure Review Board approval CBDRB-FY23-0319,
CBDRB-FY2023-CES005-024.
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Figure 8: Counterfactual Specialty Choices

(A) Increase Primary Care Income to Medicine Subspecialty Level
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Notes: Panel A reports the results of a counterfactual exercise in which we set the mean hourly income of primary care
physicians to be the same as that of medicine subspecialists. This counterfactual simulation uses the individual level discrete
choice model model in equation (14) of Section 6.1. Mean hourly income is constructed as described in Appendix B.2.
We plot the observed baseline and counterfactual share of graduates from top-5 MD programs who choose each specialty
category. Panel B reports the results of a counterfactual in which we set the mean hourly income in internal medicine to
equal the mean hourly income in dermatology. This computation uses the aggregate model in equation (15). We plot the
observed and counterfactual distribution of USMLE scores in internal medicine. In both panels, the baseline is computed
as model predictions at observed income values. Disclosure Review Board approval CBDRB-FY23-0319, CBDRB-FY2023-
CES005-024.
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Table 1: Summary Statistics

Years: 2005-2017 2017

(1) (2) (3) (4)
Ages: All All 40 to 55 56 to 70

Number of Person-Years 11,600,000 848,000 350,000 287,000
Number of Unique Individuals 965,000 848,000 350,000 287,000

Demographics

Age Mean 45.3 49.3 47.3 62.6
Median 45.0 49.0 47.0 62.0
Std. Dev. 12.7 11.6 4.6 4.2

Female 0.36 0.38 0.40 0.26
Non-U.S.-Born 0.19 0.22 0.27 0.12
Married 0.77 0.80 0.83 0.82
Share Observed in ACS 0.20 0.20 0.20 0.22

Income

Individual Total Wage (2017 $) Mean 201,600 243,400 286,200 224,900
Median 155,700 209,400 247,700 188,700
Std. Dev. 945,300 283,000 260,300 359,400

Individual Total Income (2017 $) Mean 290,800 350,000 404,500 367,500
Median 210,700 265,000 308,600 267,500
Std. Dev. 3,589,000 1,192,000 711,400 1,578,000

AGI (2017 $) Mean 359,200 429,500 502,400 435,100
Median 264,700 325,500 384,300 314,800
Std. Dev. 859,200 1,266,000 827,500 1,652,000

Business Income > $25K 0.29 0.32 0.35 0.38
Households in Top 1% of AGI 0.22 0.24 0.31 0.24

Career Choices and Characteristics

Firm Size (Number of Physicians) Mean 1,101 1,472 1,536 1,480
Median 52.0 84.6 75.0 20.0
Std. Dev. 3,677 4,855 5,025 5,312

Weekly Working Hours (ACS) Mean 50.5 49.5 49.5 47.6
Median 50.0 50.0 50.0 50.0
Std. Dev. 16.4 15.2 14.5 15.4

Retired (Based on 1099-SSA) 0.05 0.07 0.01 0.19
Name of Medical School Observed 0.52 0.53 0.56 0.55
Graduated from Ranked Medical School 0.48 0.48 0.48 0.50
Graduated from Top-5 Medical School 0.06 0.06 0.06 0.06

Share in Specialty Category

Primary Care 0.43 0.44 0.42 0.43
Medicine Subspecialty 0.12 0.12 0.13 0.13
Hospital-Based 0.11 0.11 0.11 0.09
Surgery 0.09 0.09 0.09 0.09
Procedural Specialties 0.06 0.06 0.06 0.06
Anesthesiology 0.06 0.06 0.06 0.06
Radiology 0.05 0.05 0.05 0.05
OB-GYN 0.05 0.05 0.05 0.05
Neurology 0.03 0.03 0.03 0.03

Notes: This table reports summary statistics for all main samples used in our analysis. Column (1) includes years 2005–2017
and physicians aged 20 to 70. Columns (2) to (4) report summary statistics for the 2017 cross-section, overall, and by
age subgroups. The sample in column (1) is constructed by merging the 2017 vintage of the National Plan and Provider
Enumeration System (NPPES) file that includes National Provider Identifiers of all physicians in the U.S. with the universe
of individual income tax return data. Section 2 and Appendix B.2 provide details on data sources and measurement of each
variable. Disclosure Review Board approval CBDRB-FY23-0319, CBDRB-FY2023-CES005-024.
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Table 2: Characteristics of Top Earning Physicians

Top X% of Physicians by Income

1% 5% 10% 25% 50% All

Number of Unique Individuals 3,500 17,500 35,000 87,500 175,000 350,000

Income and Labor Supply

Individual Total Income ($1,000) Mean 4,051 1,817 1,319 871 626 405
Median 2,739 1,280 960 652 473 309
Cutoff 1,937 960 719 473 309 -

Wage Income ($1,000) Mean 897 737 654 524 417 286

AGI ($1,000) Mean 4,465 1,993 1,448 964 708 502

Business Income ($1,000) Mean 1,313 588 394 228 147 87
Share > $25K 0.80 0.72 0.65 0.53 0.44 0.35

Median Share of Income from Business 0.28 0.20 0.13 0.05 0.02 0.00
Median Share of Income from Non-Labor 0.85 0.51 0.31 0.14 0.08 0.06
Median Share of Income from Labor 0.15 0.49 0.69 0.86 0.92 0.94
Mean Weekly Hours Worked 48 54 54 54 53 50
Retired (Based on 1099-SSA) 0.002 0.001 0.001 0.001 0.001 0.004
Mean Firm Size 354 449 493 699 1,091 1,536

Specialties and MD Training

Graduated from Top-5 MD Program 0.10 0.08 0.07 0.07 0.06 0.06

Cardiology Share 0.02 0.04 0.05 0.05 0.03 0.02
Neurosurgery Share 0.06 0.05 0.04 0.02 0.01 0.01
General Surgery Share 0.03 0.03 0.04 0.05 0.05 0.03
Primary Care Share 0.16 0.12 0.12 0.15 0.24 0.42

Family Practice Share 0.03 0.03 0.03 0.04 0.07 0.14

Demographics

Mean Age 48 48 48 48 48 47
Female 0.24 0.18 0.18 0.20 0.27 0.40
Non-U.S.-Born 0.22 0.23 0.23 0.23 0.25 0.27
Married 0.92 0.91 0.91 0.89 0.87 0.83

Share in New York and New Jersey 0.20 0.14 0.12 0.10 0.10 0.10
Share in California 0.11 0.09 0.09 0.10 0.12 0.12
Share in Florida 0.10 0.08 0.08 0.07 0.06 0.07
Share in Texas 0.11 0.11 0.10 0.09 0.08 0.08
Share in Arizona 0.03 0.03 0.02 0.02 0.02 0.02

Notes: This table reports selected summary statistics for the sample of age 40–55 physicians in year 2017
(sample in column (3) of Table 1), by selected percentiles of the individual total income distribution (as
specified in column titles). Variables are as defined in Table 1. Section 2 and Appendix B.2 provide more
details on data sources and measurement of each variable. Disclosure Review Board approval CBDRB-FY23-
0319, CBDRB-FY2023-CES005-024.
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Table 3: RVU Regression Table

NPI-Level Procedure-level 2SLS

(1) (2) (3) (4) (5) (6) (7)

Dependent variable:
Log

Income
Log Total

RVUs Billed
Log Number of

Unique Procedures
Log Number of
Unique Patients

Log Total
RVUs Billed

Log
Income Retired

Panel A: Physicians Age 40-55

Log Medicare Price Instrument (lnPi,t) 0.236 1.437 0.395
(0.035) (0.109) (0.039)

Log RVUs per Procedure (lnRV Uk,t) 0.344 1.382
(0.050) (0.057)

Log Total RVUs Billed (lnQi,t) 0.167
(0.028)

Log Income -0.001
(0.003)

Mean of Dependent Variable (2010-13) 13.13 8.75 2.99 3.88 4.82 13.13 0.00
Std. Dev. of Dependent Variable (2010-13) 0.84 1.13 0.79 1.12 1.70 0.84 0.06
Mean of Independent Variable 8.94 8.95 8.94 0.63 0.63 8.75 13.13
Std. Dev. of Independent Variable 1.02 1.00 1.02 1.18 1.18 1.12 0.84
Number of Observations 1,357,000 1,354,000 1,373,000 16,900,000 16,900,000 1,338,000 1,357,000

Panel B: Physicians Age 56-70

Log Medicare Price Instrument (lnPi,t) 0.340 1.402 0.370
(0.042) (0.107) (0.044)

Log RVUs per Procedure (lnRV Uk,t) 0.394 1.441
(0.058) (0.070)

Log Total RVUs Billed (lnQi,t) 0.246
(0.023)

Log Income -0.054
(0.028)

Mean of Dependent Variable (2010-13) 13.02 8.68 2.96 3.90 4.78 13.02 0.10
Std. Dev. of Dependent Variable (2010-13) 0.88 1.07 0.78 1.13 1.69 0.88 0.30
Mean of Independent Variable 8.86 8.87 8.86 0.54 0.54 8.68 13.02
Std. Dev. of Independent Variable 0.96 0.94 0.96 1.13 1.13 1.06 0.88
Number of Observations 897,000 907,000 920,000 10,800,000 10,800,000 884,000 897,000

Notes: This table reports coefficients and standard errors from estimating equation (11) for each outcome variable as indicated in column names,
and each age group, as indicated in panel names. Independent variables are the log Relative Value Units (RVU) rate, age fixed effects, and Medicare
specialty by year fixed effects. For physician-level regressions, the log Medicare price (lnPi,j) faced by the physician is computed as a weighted average
of procedure-level RVU rates for a fixed vector of services. 2SLS specifications regress the outcome variable of interest on the log total number of
RVUs billed (RVU rate for each service multiplied by the number of times a service is performed) instrumented by lnPi,j . This is defined in equation
(10), with the fixed vector of services defined as the average number of times each service (a combination of HCPCS procedure code and facility or
non-facility place of service) was performed by a physician between years 2012 and 2017. Disclosure Review Board approval CBDRB-FY23-0319,
CBDRB-FY2023-CES005-024.
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Table 4: ACA Regression Table

First Stage Reduced Form 2SLS

(1) (2) (3) (4) (5) (6) (7)

Dependent variable:
Share
Insured

Log
Income

Share with
Schedule SE

Share
Retired

Log
Income

Share with
Schedule SE

Share
Retired

Share Uninsured in 2013 (Uc,2013)
× Years 2010− 2013 0.013 -0.076 0.082 -0.021

(0.011) (0.046) (0.037) (0.019)

× Year ≥ 2014 0.496 0.204 0.199 -0.064
(0.039) (0.064) (0.044) (0.027)

Share Insured (Ic,t) 0.487 0.323 -0.107
(0.119) (0.067) (0.037)

Mean of Dependent Variable 0.851 12.470 0.469 0.199 12.470 0.456 0.198
Std. Dev. of Dependent Variable 0.047 0.158 0.078 0.051 0.154 0.078 0.049
Mean of Independent Variable 0.147 0.147 0.147 0.150 0.876 0.876 0.877
Std. Dev. of Independent Variable 0.044 0.044 0.044 0.045 0.051 0.051 0.052
Number of Observations 11,500 15,000 15,000 15,000 11,500 11,500 11,500
Number of Unique Counties 1,200 1,200 1,200 1,200 1,200 1,200 1,200
Physician Age Range 40-55 40-55 40-55 56-70 40-55 40-55 56-70

Notes: The table displays parametric difference-in-differences estimates of the effects of the ACA insurance expansions on the outcomes indicated in
column names. The regression specification is as in equation (13), except that we collapse the time dimension into three periods: before the ACA
passage (2010 and earlier); post-ACA passage and pre-implementation period (2011-2013); and post-implementation period (2014-2017). Age range
restrictions are specified in the last row of the table. Independent variables include these three time intervals interacted with the fraction of population
that was uninsured in a county in 2013, as well as county fixed effects, calendar year fixed effects, and the time-varying share of physicians of each age
in each county. All regressions are estimated at the county-year level with the number of physicians in each county-year in the corresponding sample
as regression weights. Standard errors are clustered at the county level. County-level averages are computed for physicians in our baseline sample who
resided in states that expanded Medicaid in 2014 or 2015. Appendix C.2 provides the full list of states. Column (1) reports the first stage, where the
outcome variable is the share of individuals under 65 who are insured in a county. Columns (2) to (4) report reduced-form estimates. Columns (5) to
(7) report the results of corresponding 2SLS specifications that treat the rate of insurance in the under-65 population as the endogenous variable of
interest and the rate of uninsured population in 2013 as an instrument. The 2SLS specification treats all years pre-implementation as the pre-period.
Table E.9 reports the same specifications, but dropping the post-ACA passage and pre-implementation years (2011-2013). Disclosure Review Board
approval CBDRB-FY23-0319, CBDRB-FY2023-CES005-024.
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Table 5: Specialty Choice Model

Ability Group (a) :
USLME Step 1 Scores

Top-5 Ranked
> 260 251-260 241-250 231-240 221-230 211-220 201-210 191-200 ≤ 190

Medical School

Coefficient on Hourly Income (α) 0.014
(0.003)

Coefficient on Hourly Income 0.025 0.022 0.019 0.014 0.010 0.005 0.003 -0.001 Reference
× Ability Group Dummy (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) -

Implied Coefficient on Hourly Income 0.016 0.014 0.011 0.006 0.002 -0.003 -0.005 -0.009 -0.008
for Group a (δMa ) (0.002)

Notes: This table reports selected coefficients from estimating the discrete choice model specified in Section 6.1. The estimates in column (1) are
based on the model in equation (14), estimated on individual-level data using simulated maximum likelihood. The estimates in columns (2) to (10)
are based on the group level model in equation (15) and are estimated on group data at the USMLE Step 1 score group-by-specialty level using
OLS. Column (1) reports the estimate of α̂ for graduates from top-5 medical schools. The coefficients in columns (2) to (10) are estimates from
one pooled regression. We first report the estimated interactions between hourly income and score group dummies and compute δMa by adding
interactions with the reference group estimate to get a score-group specific marginal utility of income coefficient. See Section 6.1 for more discussion
of the interpretation. Table E.11 reports the full set of estimates for the specification in column (1). Table E.13 reports the full set of estimates for
the specification in columns (2) to (10). Table E.12 presents own and cross-income elasticities of specialty choice probability computed based on the
individual-level model of column (1). The elasticities are computed from model simulations. Table E.14 reports the analogue based on the aggregate
model specification. Disclosure Review Board approval CBDRB-FY23-0319, CBDRB-FY2023-CES005-024.
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