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1 Introduction

For decades, health economists have studied how to appropriately model inherently skewed

health expenditure distributions. It is a stylized fact that populations around the world ex-

hibit spending distributions where roughly 50% of total health expenditures falls on 5% of the

sickest individuals in society (cf. French and Kelly, 2016; Karlsson, Klein, and Ziebarth, 2016;

Finkelstein, 2020). In other words, health expenditure data routinely exhibit heavy right tails

(cf. Handel, Kolstad, and Spinnewijn, 2019). Such a distributional property could violate the

assumptions required by the ordinary least squares (OLS) estimation. It may lead to a poor

finite sample performance.

If a distribution has a heavy tail, random sample draws from this distribution are likely

to generate very large values, which are often treated as outliers. Applied economists have

adopted several approaches to deal with such outliers. Jones (2011), Manning (2012), and

Mihaylova, Briggs, O’Hagan, and Thompson (2011) provide comprehensive overviews of alter-

native econometric models. A widely used approach is the generalized linear model (GLM) with

a log-link function (Mullahy, 1998; Manning and Mullahy, 2001; Manning, Basu, and Mullahy,

2005; Deb, Norton, and Manning, 2017). GLM is one of the most sophisticated health econo-

metric approaches. It attempts to capture particularities of health care spending distributions

– including their long right tails and large mass points at zero spending. Further, it is more

efficient than the transformed log model (Manning and Mullahy, 2001; Buntin and Zaslavsky,

2004). A much simpler but very popular alternative approach is to trim the top percentiles of

the distribution, or to top code them.1 However, extreme health care spending values are nei-

ther classical outliers nor measurement error. Hence, simply deleting or ignoring them means

1Other very important approaches include the two-part model, which employs a binary outcome model
along with a conditional model for positive spending (Newhouse and Phelps, 1976; Manning, Newhouse, Duan,
Keeler, and Leibowitz, 1987; Mullahy, 1998) as well as count data models or latent class models that differentiate
between frequent and infrequent users of health care; for example, when modeling the number of outpatient
doctor visits (Deb and Trivedi, 1997, 2002; Pohlmeier and Ulrich, 1995).
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to potentially ignore valuable information. What’s more, the researcher then ignores precisely

those individuals who are responsible for the lion’s share of per capita health care spending. On

the other hand, “how to contain health care costs?” has probably been the recurring theme for

health economists and policymakers around the world for decades. Therefore, methodological

refinements for credible empirical analysis of the right tail of health expenditure distributions

harbor great potential to deliver answers to some of the most pressing policy questions.

In this paper, we propose to focus on and specifically model heavy right tails of health

expenditure distributions. Our approach intends to accommodate extreme values explicitly.

To do so, it focuses on the top 5% of spenders who produce 50% of all health care spending.

For that purpose, we use a high-quality claims dataset containing half a million policyholders

from one of the biggest German private health insurers. Big insurance pools are required in

such a setting where the focus is on the top percentiles of spenders.

We study the heavy tail feature using the following steps: In a first step, using log-rank-

log-size plots, we show that the tails of the claims data exhibit clear features of a Pareto

distribution. This implies a highly nonlinear relationship between individual i’s predictors Xi

and their medical spending Yi. Moreover, we estimate the Pareto exponent, which characterizes

the heaviness of the tail of the underlying distribution. We find that the Pareto exponent is

around two in our dataset, which implies that the finite second moment condition of OLS is

very likely violated, leading to poor performance of OLS and t-tests. Using simulations, we

then study the behavior of OLS under the Pareto heavy tail. Moreover, we show that the

Pareto and heavy tail features lead to biases in OLS estimates as well as rejection errors when

conducting inference.

In the next step, we propose an alternative method that leads to unbiased estimation and

asymptotically correct statistical inference. To do so, we exploit the Pareto tail feature and

introduce a maximum likelihood estimator (MLE) for the pseudo-true parameter and, more

importantly, the marginal effects. This method was initially proposed and studied by Wang
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and Tsai (2009) and Wang and Li (2013) in the statistics literature. We tailor their approach for

the health expenditure context and benchmark it against a simple linear specification. Further,

we incorporate our method into the widely used two-part model (e.g., Manning, 1998; Mullahy,

1998) which employs a binary outcome model along with a conditional model for positive

spending. We propose a novel three-part model by incorporating our tail MLE as the third

part. For empirical users, we also provide a cookbook recipe of the various steps to implement

our method.

After that, using the German claims dataset, we estimate the marginal effects and calculate

the standard errors for exogenous spending predictors, such as age and gender, both for the

standard OLS estimator and for our proposed approach. We provide explicit evidence on the

relevance of extreme outliers for the robustness of OLS estimation. Our findings demonstrate

the sensitivity of OLS to extreme outliers. Further, coherent with our simulation results, we

find that the OLS point estimates of the age-spending nexus lie below the marginal effects

estimated by our proposed method along the entire age distribution from age 35 to 75.

We are not the first in the literature to study heavy tail features of health expenditure data.

As stated in Mullahy (2009), ”heavy upper tails may influence the ”robustness” with which some

parameters are estimated. Indeed, in worlds described by heavy-tailed Pareto or Burr-Singh-

Maddala distributions some traditionally interesting parameters (means, variances) may not

even be finite, a situation never encountered in, e.g., a normal or log-normal world.” Our paper

follows this lead and rigorously studies situations in which the variance of the health expenditure

is infinite. For alternative models, Manning et al. (2005) propose to use the generalized gamma

distribution, and Jones, Lomas, and Rice (2014) propose to use the generalized beta of the

second kind (GB2) distribution, which covers Pareto distribution and Burr-Singh-Maddala

distribution as special cases. Using Monte Carlo simulations, Jones, Lomas, and Rice (2015)

and Jones, Lomas, Moore, Rice et al. (2013) evaluate the empirical performance of a range of

different empirical techniques for modelling the distribution of health care expenditures. One
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performance indicator of their comparison is to accurately represent the distribution of the

right tail.

Our proposal is in stark contrast to these existing methods in two ways. First, we only

model the tail part of the health expenditure data while most of the existing methods model

the whole distribution. As our method is based on the Pareto tail approximation, which does

not necessarily hold for the whole distribution, it entails more robustness to mis-specification

from the non-tail part. In addition, exploiting the Pareto approximation safeguards against

mis-specification of the distribution within the right tail. Accordingly, we propose to extend

the existing two-part model to a three-part model, in which the additional part applies only

to extreme values. Multi-part models for health expenditures have a long tradition in health

economics. Duan, Manning, Morris, and Newhouse (1982) proposes a four-part model to deal

with different distributional properties of ambulatory and other expenses. Gilleskie and Mroz

(2004) propose a flexible estimator of the conditional density of expenditures within a number

of set intervals. What is new in our application is to propose a parsimonious estimator that

captures key features of the tails of the expenditure distribution. Second, we allow the tail

heaviness (more precisely, the Pareto exponent) to depend on covariates such as age and gender,

while the existing methods typically consider the tail heaviness to be a fixed constant. Using

our claims data, we empirically document that the tail heaviness varies across gender and age,

supporting the use of our method.

In Section 2, we preview the heavy tail feature of our data. Using simulation studies, we show

that the commonly used least squares method performs poorly under such heavy tails. Next,

we introduce our proposed method which explicitly accommodates heavy tails and extreme

values. Finally, we extend the two-part model and develop a novel three-part model. Then,

we provide an empirical guide for its implementation. In Section 3, we introduce more details

about our claims dataset and present descriptive results. In Section 4, we apply the proposed

method and present the empirical findings. The mathematical details, additional simulation
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results, and robustness analysis are in the Appendix.

2 Failure of OLS and How to Model Pareto Tails

2.1 Preview of the Pareto Tail

We start by presenting the Pareto tail feature in our medical expenditure dataset. Let Yi denote

health care spending of individual i for i = 1, . . . , n, where n denotes the total sample size.

Also, let Y(1) ≥ Y(2) ≥ . . . ≥ Y(n) be the descending and ordered expenditure values whose ranks

are accordingly 1, 2, ..., n. Figure 1 plots the natural logarithms of the rank i against lnY(i) for

the largest 5% of all values. We separately show the plots for females (left) and males (right).
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Figure 1: Rank-Size Plots of Natural Logarithms of Rank against Expenditures

Notes: The left graph shows plots for females and the right graph shows plots for males. See Section
3 for more details about the German health care claims data.

Both Figure 1a (Females) and b (Males) clearly suggest a linear fit in the rank-size plots.

As has been extensively shown (e.g., Gabaix, 2009), this pattern implies that the underlying

distribution exhibits a Pareto tail, or equivalently, the power law. More specifically, if Yi has a

Pareto distribution beyond some cutoff value ymin, we have that
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P (Yi > y|Yi ≥ ymin) =

(
y

ymin

)−α

, (2.1)

where α is called the Pareto exponent, a positive parameter that uniquely characterizes the

heaviness of the tail. Given the Pareto tail assumption, the slope of the linear fit in the rank-

size plot is equal to −α. Furthermore, the parameter ymin determines the cutoff location of

the tail, above which the Pareto distribution serves as a good approximation of the underlying

distribution. We discuss such Pareto tails from two perspectives.

First, from a theoretical perspective, it has been established in the statistics literature (e.g.,

Smith, 1987) that many commonly used distributions can be well approximated by Pareto

distributions as long as one focuses on a sufficiently far tail region, that is, by considering a

sufficiently large ymin. Examples include the Student-t, the F and the Cauchy distributions,

among many others.2

Accordingly, we can treat ymin as a tuning parameter that determines the precision of the

Pareto tail approximation. Note that this concept is close in spirit to the choice of the bandwidth

parameter in nonparametric kernel estimations. In practice, we set ymin as the 95% quantile

and present robustness checks with alternative cutoffs in Appendix A1.

Second, from an empirical perspective, the Pareto tail has been widely documented in many

other datasets in economics and finance, such as stock returns, city size, firm size, and income,

see Gabaix (2009, 2016) for reviews of other datasets that exhibit Pareto tails.

Before introducing our proposed method, we examine the standard OLS estimation method

under the Pareto tail. OLS causes two potential problems: The first is a bias due to the strong

nonlinearity implied by the Pareto distribution. The second is a potentially infinite variance

due to the heavy tail.

First, let Xi denote a vector of exogenous individual spending predictors such as age and

2In particular, the Pareto exponent α is equal to the degree of freedom when the underlying distribution is
Student-t.
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gender. Since the Pareto distribution (2.1) is uniquely characterized by the exponent α, the

effect of Xi on Yi in the tail is through α = α(Xi). The power function yα(Xi) naturally

generates a nonlinear effect of Xi on the expected value of Yi. Conversely, a model based on

a linear specification, such as a simple OLS, could produce substantially biased results. We

present such bias in a simple simulation study in the following subsection.

Second, the slope in Figure 1 is around −2, implying that the underlying distribution of

health care expenditure has a very heavy tail. In particular, the tail of the Pareto distribution

(2.1) is heavier with a smaller α. Moreover, the Pareto distribution implies that for any r > 0

(e.g., Mikosch, 1999):

E[Y r
i ] < ∞ if r < α and E[Y r

i ] = ∞ if r > α.

Accordingly, when α is less than two, the tail is so heavy that E [Y 2
i ] becomes infinity!

Recall that the asymptotic normality of the OLS estimator and the t-statistic require that the

second moment of Yi is finite, that is, E [Y 2
i ] < ∞.

The heavy tail feature in the data then compromises this population moment condition, even

though the finite sample variance is always defined. Hence the OLS estimator, the standard

t-test, and estimates of any other higher-order moments such as skewness and kurtosis may

perform poorly. We also study this consequence of heavy tails using simulation in the next

subsection.

2.2 Monte Carlo Simulation Studies

Ordinary Least Squares

The effect of Pareto tails on coefficient bias. We now perform a simple simulation

study to illustrate the effect of the Pareto tail. First, we focus on the potential bias of the
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OLS estimator due to the nonlinearity. To this end, we generate Yi from the standard Pareto

distribution (2.1) such that

P(Yi > y|Yi > ymin, Xi = x) =

(
y

ymin

)α(x)

,

where Xi is an independent draw from the absolute value of the standard normal distribution.

We set α(x) = exp(1 + xβ0) with β0 = 1 as the pseudo-true parameter. This setup guarantees

that α(Xi) is always positive. Since the Pareto tail is invariant to scale, we set ymin = 1 without

loss of generality in this simulation.3 Moreover, the minimum value of α(x) is exp(1) = 2.718 >

2, implying that the variance of Yi, given Xi, is always finite. Therefore, the potential bias of

the OLS method could only originate from misspecification due to nonlinearities in the tail, as

we will see in Figures 2 and 3 below.

The Pareto distribution implies that E[Yi|Xi = x] = α(x)/(α(x) − 1). Then the marginal

effect of Xi on the average of Yi is

∂E[Yi|Xi = x]

∂x
= − α(x)

(α(x)− 1)2
β0,

This is the main object of interest. When β0 is positive, a larger x leads to a larger α(x)

and hence a thinner tail. Then, accordingly, the expectation of Yi conditional on being in the

tail is smaller.

To estimate the marginal effect, we implement three methods. First, we use the stan-

dard OLS estimator, regressing Yi on Xi (and a constant). The OLS coefficient estimates the

marginal effect. By construction, such an estimated marginal effect is constant regardless of

which value of Xi we condition on (red in Figures 2 and 3). Second, we regress lnYi on Xi (and

a constant) to obtain the coefficients (β̂0, β̂1). Given the logarithm, the marginal effect of Xi

3Conversely, the tail is not invariant to an additive transformation like, e.g. the amount of spending above
a uniform deductible. However, such transformations are of limited relevance when studying the right tail of
health expenditures.
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on Yi evaluated at Xi = x0 is then estimated as exp(β̂0 + x0β̂1)β̂1exp(û), where exp(û) is the

average of the exponential of the residuals (yellow in Figures 2 and 3); hence, the estimated

marginal effect varies with Xi even though β does not. Third, we implement our proposed

MLE method (green in Figures 2 and 3); for reasons of readability, we postpone the details of

our MLE to the next subsection.

Figure 2: Histograms of OLS with Linear or Natural Logarithms of Y and the proposed MLE

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

-0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

Notes: This figure depicts the histograms of the OLS estimator with Yi (red color) or lnYi (yellow
color) and the MLE (green color) for a marginal effect evaluated at x0 = 0.5, 1, 1.5 and β0 = 2. The
vertical line depicts the averages of the estimators. Results are based on 10,000 simulation draws.
See the main text for more details about the data generating process.

9



Figure 2 depicts the histograms of the OLS estimators—the true marginal effect substracted

with 0 indicating no bias. The figure shows the results of the first method of Yi (red color)

as well as the second method lnYi (yellow color) and our proposed MLE (green color) . The

histrograms are based on 500 observations in each simulation and 10000 simulation draws. The

top/middle/bottom panel corresponds to the marginal effect evaluated at x0 = 0.5/1/1.5 and

β0 = 2.

We find the following: It is evident that the OLS estimator is substantially biased, regardless

of whether we use Yi or lnYi. By constrast, our proposed MLE estimator is unbiased. The

bias here is due to the fact that the marginal effect is highly nonlinear in Xi, while the OLS

method specifies a linear model. We emphasize that such a bias exists only in the tail but not

necssarily below ymin where a linear model is more reasonable and OLS could still perform well.

Therefore, we consider our proposed method as a useful complement to study tail features of

heavily skewed distributions such as medical spending.

Next, we repeat the previous analysis with data generated from the same process as in

Figure 2. We maintain that x0 = 2, but now vary β0 = 0, 0.5, 1. The histograms of the

OLS estimators with Yi and lnYi and our proposed MLE are in Figure 3. In the top panel,

where β0 = 0, we know that—by construction—Xi does not have any effect on Yi. Therefore

E[Yi|Xi] is essentially linear in Xi. In this scenario, the OLS method does not suffer from

any misspecification due to nonlinearity and hence the histograms are basically identical as

expected. As β0 increases from zero to one when moving to the bottom panel in Figure 3,

the nonlinearity becomes more significant. Hence the bias of the OLS method becomes more

severe.

In summary, we know from Figure 1 that Yi exhibits a Pareto tail. This implies that

E[Yi|Yi > ymin] = yminα/(α − 1). Considering that α = α(Xi) is a function of Xi, the Pareto

tail imposes a nonlinear effect ofXi on the tail expectation of Yi. Such nonlinear effect cannot be

well approximated by the linear regression model, except in some special cases. This observation

10



Figure 3: Histograms of OLS with Linear or Natural Logarithms of Y and the proposed MLE

-2 -1.5 -1 -0.5 0 0.5

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

-1 -0.8 -0.6 -0.4 -0.2 0

Notes: This figure depicts the histograms of the OLS estimator with Yi (red color) or lnYi (yellow
color) and the MLE (green color) for the marginal effect with β0 = 0, 0.5, 1. The vertical line depicts
the averages of the estimators. Results are based on 10000 simulation draws. See the main text for
more details about the data generating process.

is the first motivation for our proposed MLE that explicitly takes advantage of the Pareto tail

regardless of its heaviness.

The Effect of Heavy Tails on Variance. After having examined the bias, we now evaluate

the effect of a heavy tail on the variance of the OLS estimation. To rule out that the effect

11



stems from nonlinearities, we generate data from the standard linear regression model that

Yi = β0 + β1Xi + ui,

with (β0, β1) = (1, 0) and Xi being i.i.d. standard normal. To characterize the potential heavy

tail, we independently generate ui from a two-sided generalized Pareto distribution that satisfies

P (ui ≥ u) = P (ui ≤ −u) = 0.5 (1 + ξu)−1/ξ for u > 0.

The parameter ξ is called the tail index and equals the reciprocal of the Pareto exponent α.

Using the standard OLS, we estimate the coefficients β0 and β1 and construct the standard t-

statistic and the 95% confidence interval based on heteroskedasticity robust standard errors. We

implement our simulations with a wide range of sample sizes n ∈ {500, 1000, 5000, 104, 105, 106}.

Let β̂1 (s) denote the OLS estimator for β1 in the sth simulated draw. Further, let σ̂ (s)

denote the estimated robust standard error of the OLS estimator β̂1 (s). Accordingly, let

t (s) = β̂1 (s) /σ̂ (s) denote the t-statistic.

Panel A of Table 1 depicts the mean absolute deviation (MAD): S−1
∑S

s=1 |β̂1 (s) − β1|

across S = 10, 000 simulation draws. Panel B depicts the root mean squared error (RMSE):

(S−1
∑S

s=1 |β̂1 (s) − β1|2)1/2 of the OLS estimator. Panel C depicts the average rejection rate

for the null that β1 = 0, that is S−1
∑S

s=1 1 [|t (s)| > 1.96]. Finally, Panel D of Table 1 depicts

the average length of the 95% confidence intervals, that is, S−1
∑S

s=1 2× 1.96σ̂ (s).

Table 1 shows the following. First, note that the error term ui has a finite variance when

ξ < 0.5 (α > 2). Thus, in the first five rows of Panels A and B, the MAD and the RMSE

are reasonably small. In comparison, they become substantially larger in the bottom five rows

where ξ > 0.5.

Second, when the variance of ui is finite, we expect the t-statistic to be approximately

normally distributed, as implied by the central limit theorem. Therefore, we would expect that

the rejection probability is around 5%, as seen in the first five rows of Panel C. However, when
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Table 1: OLS Simulation Results with Generalized Pareto Distribution

n 500 1000 5000 104 105 106 500 1000 5000 104 105 106

ξ(1/α) Panel A: MAD Panel B: RMSE
0.09 0.06 0.04 0.02 0.01 0.00 0.00 0.07 0.05 0.02 0.02 0.01 0.00
0.19 0.07 0.05 0.02 0.02 0.01 0.00 0.09 0.06 0.03 0.02 0.01 0.00
0.29 0.09 0.06 0.03 0.02 0.01 0.00 0.12 0.08 0.04 0.03 0.01 0.00
0.39 0.13 0.09 0.04 0.03 0.01 0.00 0.18 0.12 0.05 0.04 0.01 0.00
0.49 0.18 0.14 0.07 0.05 0.02 0.01 0.27 0.25 0.12 0.09 0.02 0.01
0.59 0.32 0.24 0.13 0.10 0.05 0.02 1.31 0.68 0.25 0.16 0.08 0.03
0.69 0.63 0.50 0.28 0.23 0.12 0.06 5.09 3.36 0.89 0.79 0.47 0.49
0.79 1.14 0.94 0.74 0.64 0.38 0.24 4.47 3.98 5.43 4.63 1.84 1.40
0.89 2.87 5.19 5.02 3.43 1.88 1.19 46.9 260 291 147 30.0 13.5
0.99 5.61 6.69 5.49 5.68 5.00 7.75 44.5 87.7 44.1 38.7 37.1 156

ξ(1/α) Panel C: Rejection Prob. Panel D: Length of 95% CI
0.09 0.05 0.05 0.05 0.05 0.05 0.05 0.28 0.20 0.09 0.06 0.02 0.01
0.19 0.05 0.05 0.05 0.05 0.05 0.05 0.34 0.25 0.11 0.08 0.02 0.01
0.29 0.05 0.05 0.05 0.05 0.05 0.05 0.44 0.31 0.14 0.10 0.03 0.01
0.39 0.05 0.05 0.05 0.05 0.05 0.05 0.59 0.43 0.20 0.14 0.05 0.01
0.49 0.04 0.04 0.05 0.05 0.05 0.05 0.85 0.65 0.32 0.24 0.08 0.03
0.59 0.04 0.03 0.04 0.04 0.04 0.04 1.43 1.08 0.58 0.44 0.18 0.07
0.69 0.03 0.03 0.04 0.04 0.03 0.04 2.75 2.17 1.23 1.01 0.51 0.27
0.79 0.03 0.03 0.03 0.03 0.03 0.03 4.81 3.97 3.14 2.73 1.62 1.03
0.89 0.03 0.03 0.03 0.02 0.03 0.03 11.8 20.8 20.1 13.8 7.70 4.92
0.99 0.02 0.02 0.02 0.02 0.02 0.02 22.9 27.2 22.3 23.1 20.4 31.1

Notes: The table depicts the average mean absolute deviation (MAD), average root mean
squared error (RMSE), average rejection probability of the standard t-test, and the average
length of the standard 95% confidence intervals. The results are based on 10000 simulation
draws. See the main text for details about the data generating process.

ξ > 0.5, the rejection probability becomes substantially smaller than 5%.

Third, following the previous point, the underrejection results from large standard errors, as

reflected in the long confidence intervals in Panel D. Remember that the confidence interval is

expected to shrink at the root-n rate when ξ < 0.5. However, when ξ > 0.5, the standard error

is not well-defined and hence the confidence interval becomes too wide to be informative. More

specifically, since the variance of ui is infinite, we may alternatively consider its inter-quantile

range as a benchmark. In our data generating process, the inter-quantile range of ui is one when

ξ = 1 and the standard deviation of Xi is always one. So the average length of the confidence
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interval should be of the order of magnitude n−1/2 if the central limit theorem provides a good

approximation. However, the average length of the standard CI is substantially larger than

n−1/2. In the last row of Table 1, where ξ (and α) is approximately one, the average length of

the confidence interval is even above 20. Therefore, we believe that the standard OLS-based

inference is not performing satisfactorily under the heavy tail distribution.

Finally, our simulations in Table 1 assume a correctly specified model. Given the poor

performance of the linear model in the presence of heavy tails, an applied researcher might

be tempted to follow the common practice of taking the logarithm of Yi as the dependent

variable as in Figure 2. The performance of such a transformed specification crucially depends

on the true data generating process, which is typically unknown. In Appendix A2 we conduct

simulations based on a logarithmic specification applied to a linear data generating process with

heavy tails. We find that approximating the linear model with a heavy-tailed error by the log-

linear model could lead to substantial misspecification errors, which are not even diminishing

with the sample size.

Generalized Linear Model

Next, we repeat the previous exercise using the generalized linear model (GLM). The GLM

is also widely used in health economics to model health expenditure distributions, see, for

instance, Manning and Mullahy (2001) and Buntin and Zaslavsky (2004). More specifically, we

generate the data from

Yi = exp(β0 + β1Xi) + ui,

with (β0, β1) = (1, 0) and (Xi, ui) following the same distribution as before. This model implies

that the conditional mean E [Yi|Xi = x] = exp(β0+β1x), which is nonlinear in Xi. To discipline

the estimators, we impose the infeasible bound that the estimators are within [−50, 50].
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Table 2: GLM Simulation Results with Generalized Pareto Distribution

n 500 1000 5000 104 105 106 500 1000 5000 104 105 106

ξ(1/α) Panel A: MAD Panel B: RMSE
0.09 0.02 0.02 0.01 0.00 0.00 0.00 0.03 0.02 0.01 0.01 0.00 0.00
0.19 0.03 0.02 0.01 0.01 0.00 0.00 0.03 0.02 0.01 0.01 0.00 0.00
0.29 0.04 0.02 0.01 0.01 0.00 0.00 0.07 0.03 0.01 0.01 0.00 0.00
0.39 0.05 0.03 0.02 0.01 0.00 0.00 0.27 0.05 0.02 0.01 0.00 0.00
0.49 0.07 0.05 0.03 0.02 0.01 0.00 0.30 0.19 0.04 0.03 0.01 0.00
0.59 0.12 0.10 0.05 0.04 0.01 0.01 0.53 0.46 0.11 0.07 0.03 0.01
0.69 0.23 0.16 0.10 0.08 0.04 0.02 0.92 0.46 0.30 0.29 0.09 0.06
0.79 0.39 0.33 0.21 0.18 0.11 0.08 1.27 1.14 0.60 0.40 0.24 0.22
0.89 0.62 0.56 0.42 0.39 0.28 0.23 1.89 1.54 1.03 0.99 0.55 0.45
0.99 0.96 0.89 0.72 0.70 0.61 0.52 2.44 2.12 1.51 1.45 1.12 0.89

ξ(1/α) Panel C: Rejection Prob. Panel D: Length of 95% CI
0.09 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.07 0.03 0.02 0.01 0.00
0.19 0.05 0.05 0.05 0.05 0.05 0.05 0.13 0.09 0.04 0.03 0.01 0.00
0.29 0.05 0.05 0.05 0.05 0.05 0.05 0.16 0.12 0.05 0.04 0.01 0.00
0.39 0.05 0.04 0.05 0.05 0.05 0.05 0.22 0.16 0.07 0.05 0.02 0.01
0.49 0.04 0.04 0.04 0.04 0.05 0.05 0.33 1.03 0.12 0.09 0.03 0.01
0.59 0.05 0.05 0.04 0.04 0.04 0.04 66.6 0.42 0.23 0.16 0.07 0.03
0.69 0.06 0.06 0.05 0.05 0.04 0.04 > 103 > 103 409 > 103 1.94 > 103

0.79 0.08 0.08 0.07 0.07 0.05 0.04 > 103 > 103 > 103 > 103 > 103 > 103

0.89 0.10 0.11 0.11 0.11 0.09 0.08 > 103 > 103 > 103 > 103 > 103 > 103

0.99 0.13 0.13 0.14 0.14 0.13 0.14 > 103 > 103 > 103 > 103 > 103 > 103

Notes: The table depicts the average mean absolute deviation (MAD), average root mean squared
error (RMSE), average rejection probability of the standard t-test, and the average length of the
standard 95% confidence intervals. The results are based on 10000 simulation draws. See the main
text for details about the data generating process.

Table 2 depicts the same performance measures as in Table 1 for the GLM method. The

findings are also similar. In particular, the GLM estimator has a small bias and RMSE when

the error term does not have a heavy tail and ξ < 0.5 in Panels A and B. The confidence

interval is short and shrinking with the sample size.

In contrast, in Panel C, the t-test substantially overrejects when the error term has a heavy

tail. Moreover, the confidence interval is exploding when ξ exceeds 0.6. Such wide confidence

intervals originate from the poor standard error estimates in the GLM. To see this, note that

we obtain the GLM estimator β̂ by solving the nonlinear least squares problem
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(β̂0, β̂1) = argminβ0,β1

n∑
i=1

(Yi − exp(β0 + β1Xi))
2.

Some derivation shows that the asymptotic variance of β̂ becomes

E[u2
i ]

E[exp(2(β0 + β1Xi))] E[exp(2(β0 + β1Xi))Xi]

E[exp(2(β0 + β1Xi))] E[exp(2(β0 + β1Xi))X
2
i ]


−1

.

When the error has a heavy tail, E[u2
i ] becomes extremely large. Furthermore, in this case,

the estimator can be numerically unstable so that the above matrix is not invertible. Both

features lead to large standard errors and hence wide and uninformative confidence intervals.

The results become even worse when we relax the restriction that β̂j ∈ [−50, 50] for j = 0, 1.

In summary, ignoring heavy tails in heavily skewed data, such as health expenditure data,

can lead to substantial estimation biases as well as rejection errors in the statistical inference

of unknown parameters. As shown, such errors could become even more severe in nonlinear

GLM than linear OLS models, motivating our proposed method that explicitly focuses on the

heavy tail.

2.3 Modeling Pareto Tails and the Proposed Maximum Likelihood

Estimator

Given the failure of OLS under a Pareto tail, we move forward to construct a valid alternative

that explicitly accommodates extreme values. For illustrative purposes, we preview the new

approach in this subsection by assuming an exact Pareto tail. In fact, the econometric derivation

only requires an approximate Pareto tail, which holds for many commonly used distributions

such as Student-t, F, Gamma, et cetera. For reasons of readability, we relegate the technical

details and the primitive assumptions to Appendix A3 .
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The new method is based on the tail index regression proposed by Wang and Tsai (2009).

First, assuming Yi has an exact Pareto tail above ymin, we obtain

P (Yi > y|Yi > ymin, Xi = x) =

(
y

ymin

)−α(x)

, (2.2)

where α (x) is the Pareto exponent that depends on the characteristics Xi = x. We adopt the

model α = exp (X ′
iβ0), where β0 again denotes the pseudo-true coefficient. The exponential

function guarantees that the Pareto exponent is always positive, and the linear index form is

adopted mainly for computational simplicity. Using only the observations above ymin, we then

obtain the following negative log-likelihood function:

L (β) = n−1

n∑
i=1

{exp(X ′
iβ) log (Yi/ymin)−X ′

iβ}1 [Yi > ymin] , (2.3)

where 1 [·] denotes the indicator function. Then, the maximum likelihood estimator (MLE) of

β0 is

β̂ = argmax
β

L (β) .

We can estimate its asymptotic variance as

Σ̂β =

(
n−1
0

n∑
i=1

XiX
′
i1 [Yi > ymin]

)−1

, (2.4)

where n0 =
∑n

i=1 1 [Yi > ymin] denotes the total number of tail observations.

We provide two remarks about the proposed MLE. First, the Pareto tail assumption (2.2)

implies that the conditional expectation of health expenditures beyond ymin is

E [Yi|Yi > ymin, Xi = x] = ymin
α (x′β0)

α (x′β0)− 1
. (2.5)

The tail cutoff ymin is again a tuning parameter chosen by the econometrician. In our
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subsequent analysis, we use the 95% quantile as ymin. Appendix A3 provides more details

about the choice of this parameter.

Given the Pareto tail (2.2), the marginal effect of Xi on tail expenditures is

M (x; β0) ≡ ∂E [Yi|Yi > ymin, Xi = x]

∂x

= −ymin
exp (x′β0)

(exp (x′β0)− 1)2
β0

= −E [Yi|Yi > ymin, Xi = x]

(exp (x′β0)− 1)
β0, (2.6)

which we estimate by replacing β0 with our MLE β̂ in (2.3).

As seen, the marginal effect is a function of Xi. Hence the proposed estimator allows for

a nonlinear impact of individual characteristics, such as age, on expected spending in the tail.

This may be a desirable feature as average health care spending increases with age at a faster

rate for seniors. In contrast, an OLS specification assumes that the marginal effect is constant,

unless higher-order polynomials are included in the regression equation. We emphasize that the

non-linearity is not generic but specifically due to the Pareto tail. One could include higher-

order and interaction terms in α(x) for more flexibility. It should also be noted that whenever

the model includes several independent variables, the assumption is that their interaction effects

are non-zero (apart from the special case where the marginal effect is zero).

Using the Delta method, we can construct the standard errors for the marginal effects. In

particular, for the marginal effect of the jth component of Xi, we have that
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∇jM (x, β0) ≡ ∂M (x; β)

∂βj

∣∣∣∣
β=β0

= −ymin

[
ej

exp (x′β0)

(exp (x′β0)− 1)2

−2x
exp (2x′β0)

(exp (x′β0)− 1)3
β0j + x

exp (x′β0)

(exp (x′β0)− 1)2
β0j

]
,

where ej denotes the jth standard unit vector. Then the estimate of the standard error is

Σ̂Mj
= ∇jM

(
x, β̂

)′
Σ̂β∇jM

(
x, β̂

)
. (2.7)

In summary, we propose the following steps:

1. Given ymin, say the 95% quantile of Yi, select all Yi’s that are larger than ymin.

2. Construct the MLE by numerically solving (2.3) and estimate the standard error using

(2.4).

3. Estimate the marginal effect (2.6) and the standard error (2.7).

4. Perform robustness check by using different ymin.

5. Generate the counterfactual of the conditional tail expectation using (2.5).

2.4 Extension to a Three-Part Model

So far, we have focused on the tail solely using observations Yi > ymin. In this subsection,

we generalize the previous analysis to model the whole distribution and extend the existing

two-part model (cf., Mullahy, 1998) to a three-part model.4

4We thank Anirban Basu and Edward Norton for proposing this extension.
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In particular, the widely used two-part model is designed to capture that many observations

of Yi are zero. To model this, consider

E[Yi|Xi = x] = P(Yi > 0|Xi = x)× E[Yi|Yi > 0, Xi = x], (2.8)

provided that Yi > 0 almost surely.

In the first part, we fit the binary outcome 1[Yi = 0] with a standard logit or probit model.

Then we estimate the partial effect on P(Yi > 0|Xi = x) of Xi. In the second part, we run

regressions of Yi (or lnYi) on Xi. We obtain the overall marginal effect ∂E[Yi|Xi = x]/∂x by

combining the estimates from both parts.

Given the Pareto tail, we can extend (2.8) and propose the following three-part model:

E[Yi|Xi = x] = E[Yi|0 < Yi ≤ ymin, Xi = x]× P[0 < Yi ≤ ymin|Xi = x]

+E[Yi|Yi > ymin, Xi = x]× P[Yi > ymin|Xi = x]. (2.9)

Three-Part Model. In the first part, we estimate the conditional probabilities P[0 < Yi ≤

ymin|Xi = x] and P[Yi > ymin|Xi = x] by running a multinomial logistic regression. More

specifically, denote Y ∗ = 0, 1, 2 if Yi = 0, Yi ∈ (0, ymin), Yi > ymin, respectively. Then, the

multinomial logistic regression fits

P(Y ∗
i = j|Xi = x) =

exp (x′θj)

1 +
∑2

j=0 exp (x
′θj)

, (2.10)

for j = 1, 2 and θ0 is understood as zero for normalization. Denote the estimated coefficient as

θ̂j. In the second part, we run a linear regression of Yi on Xi with observations Yi ∈ (0, ymin).

Denote the regression coefficient as γ̂. Given the upper bound ymin, we do not have to consider

lnYi. In the third part, we implement the MLE method as described in the previous subsection.
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Combining all three parts, we then estimate conditional expectation by

Ê[Yi|Xi = x] = x′γ̂ × exp (x′θ̂1)

1 +
∑2

j=0 exp (x
′θ̂1)

+ ymin
exp (x′β̂)

exp (x′β̂)− 1
× exp (x′θ̂2)

1 +
∑2

j=0 exp (x
′θ̂2)

.

Finally, we obtain the partial effect ∂E[Y |X = x]/∂x by taking the derivative, and obtain

the standard error by bootstrapping.

Limitations. As a final note, we discuss the underlying distributional assumptions and po-

tential limitations of the three-part model.

In the existing two-part model (2.8), we assume that P(Yi > 0|Xi = x) is characterized by

a parametric binary probability model like logit or probit. And that E[Yi|Yi > 0, Xi = x] is a

linear or log-linear function of x. See, for example, Mullahy (1998) and Manning (1998).

In a similar fashion, our three-part model assumes that (i) P(Yi ∈ (0, ymin)|Xi = x) and

P(Yi > ymin)|Xi = x) are governed by a parametric multinomial logit model, (ii) that E[Yi|Yi >

ymin, Xi = x] is governed by the Pareto tail as in (2.5), and (iii) that E[Yi|Yi ∈ (0, ymin), Xi = x]

is linear in x. Obviously, these assumptions are stronger than those for the two-part model.

They possibly lead to more bias in estimating the marginal effects.

Again following Mullahy (1998), one could relax these assumptions by considering alterna-

tive models in all three parts. In particular, one could consider the Heckman selection model

or the modified two part-model for estimating the conditional probabilities P(Yi > 0|Xi = x).

Then, for observations Yi > 0, one could further decompose the data based on Yi > ymin or not.

However, as known, the Heckman model requires a valid exlcusion restriction.

In this sense, we consider our proposed three-part model as one of the potential extensions
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of the popular two-part model, one that is specifically designed to accommodate the heavy tail

feature of health care spending data. An extensive study of other extensions is beyond the

scope of this paper. It is an important topic for future research.

3 Data

This section describes the claims data used in this paper. The main working sample focuses

on the privately insured in the German health care system. Note that the policyholders do not

have supplemental private insurance, but comprehensive long-term health insurance over their

lifecycles until death. For more details on the German two-tier health care system and German

private health insurance, please see Atal, Fang, Karlsson, and Ziebarth (2023).

The claims data are administrative records on the universe of policies and claims between

2005 and 2011 from one of the largest private health insurers in Germany. In total, our dataset

includes more than 2.6 million enrollee-year observations from 620 thousand unique policy-

holders along with detailed information on plan parameters such as premiums, claims, and

diagnoses. Atal, Fang, Karlsson, and Ziebarth (2019) provide more details about the dataset.

The data also contain the age and gender of all policyholders as well as their occupational

group. We convert all monetary values to 2016 U.S. dollars (USD).

Sample Selection. We focus on primary policyholders. In other words, we disregard in-

sured children and those who are younger than 25 years (555,690 enrollee-year observations).5

Moreover, due to a 2009 portability reform (Atal et al., 2019), we disregard inflows after 2008

(253,325 enrollee-year observations). The final sample consists of 1,867,465 enrollee-year ob-

servations from 362,783 individuals.

5Children obtain their own individual risk-rated policies. However, if parents purchase the policy within two
months of birth, no risk-rating applies. Under the age of 21, insurers do not have to budget and charge for
old-age provisions.
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Descriptive Statistics. Table 3 presents the descriptive statistics. The mean age of the

sample is 45.5 years. The oldest policyholder is 99 years old. Thirty-four percent of the sample

are high-income employees, 49% are self-employed and 13% are civil servants. The majority

of policyholders (72 percent) are male, because women are underpresented among the self-

employed and high-income earners in Germany. On average, policyholders have been clients of

the insurer for 13 years and have been enrolled in their current health plan for 7 years.6 The

majority of individuals sign join private insurance around the age of 30, when most Germans

have fully entered the labor market but are still healthy and are charged reasonable premiums

in this risk-rated market (risk rating is only imposed at contract inception and all subsequent

premium increases are community rated).

Table 3 shows that the average annual premium is $4,749 and slightly lower than the average

premium for a single plan in the U.S. group market at the time (Kaiser Family Foundation,

2019). Note that the annual premium is the total premium—including employer contributions

for privately insured high-income earners.7 The average deductible is $675 per year.

In terms of benefits covered, we simplify the rich data and focus on a plan generosity

indicator provided by the insurer. It classifies plans into three coverage tiers: TOP, PLUS, and

ECO plans. ECO plans are the lowest coverage tier; they lack coverage for services such as

single rooms in hospitals and treatments by a leading senior M.D. For ECO and PLUS plans,

a 20% coinsurance rate applies if enrollees see a specialist without referral from their primary

care physician. About 38% of all policyholders have a TOP plan, 34% a PLUS plan, and 29%

an ECO plan. Because these plan characteristics have mechanical effects on claim sizes and

correlate with policyholders’ age, we control for them in our estimation of health care costs.

6Our insurer doubled the number of clients between the 1980s and 1990s and has thus a relatively young
enrollee population, compared to all privately insured in Germany. Gotthold and Gräber (2015) report that a
quarter of all privately insured are either retirees or pensioners.

7Employers cover roughly one half of the total premium and the self-employed pay the full premium.
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Table 3: Summary Statistics: German Claims Panel Data

Mean SD Min Max N

Health Plan Parameters
Total Claims (USD) 3,289 8,577 0 2,345,126 1,867,465

Annual premium (USD) 4,749 2,157 0 33,037 1,867,318
Deductible (USD) 675 659 0 3,224 1,867,465
Annual risk penalty (USD) 157 453 0 21,752 1,867,465
TOP Plan 0.377 0.485 0.0 1.0 1,867,465
PLUS Plan 0.338 0.473 0.0 1.0 1,867,465
ECO Plan 0.285 0.451 0.0 1.0 1,867,465

Socio-Demographics
Age (in years) 45.5 11.4 25.0 99.0 1,867,465
Female 0.276 0.447 0.0 1.0 1,867,465
Policyholder since (years) 6.5 5.0 1.0 40.0 1,867,465
Client since (years) 12.8 11.0 1.0 86.0 1,867,465
Employee 0.336 0.473 0.0 1.0 1,867,465
Self-Employed 0.486 0.500 0.0 1.0 1,867,465
Civil Servant 0.132 0.338 0.0 1.0 1,867,465
Health Risk Penalty 0.358 0.480 0.0 1.0 1,867,465
Pre-Existing Condition Exempt 0.016 0.126 0.0 1.0 1,867,465

Source: German Claims Panel Data. Policyholder since is the number of years
since the client has enrolled in the current plan; Client since is the number of years
since the client joined the company. Employee and Self-Employed are dummies
for the policyholders’ current occupation. Health Risk Penalty is a dummy that
is one if the initial underwriting led to a health-related risk penalty on top of the
factors age, gender, and type of plan; Pre-Existing Conditions Exempt is a dummy
that is one if the initial underwriting led to exclusions of pre-existing conditions.
The mutually exclusive dummies TOP Plan, PLUS Plan and ECO Plan capture
the generosity of the plan. Annual premium is the annual premium, and Annual
Risk Penalty is the amount of the health risk penalty charged. Deductible is the
deductible and Total Claims the sum all claims in a calendar year. See Section 3
for further details.
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4 Results

4.1 The Marginal Effect of Age

Figure 4 depicts estimates of marginal age effects on health care spending. In particular, we

implement our MLE as described in equation (2.6) and set the tail cutoff ymin as the 95%

quantile of Yi as the benchmark value. In addition to age, the specification controls for female

sex, for plan generosity type, and includes six year dummies. We use the final year 2011 as the

reference category.

We summarize the results in Figure 4 as follows: First, the OLS estimate of the marginal

age effect is biased: for all ages, it is outside the 95% confidence interval of the MLE estimate.

Second, the bias is economically large and meaningful. The smallest marginal effect of the

MLE, which is 112 Euro for 29-year-olds, is more than twice the OLS estimate of 51 Euro.

In Figure 5, we split the sample by gender and compare results for males and females. The

OLS estimates for females presented in Figure 5a paint a slightly different picture compared

to 4 above: over the entire age range, the OLS estimate is within the confidence interval of

the MLE estimate. On the other hand, the bias is larger in this subsample: for the youngest

females, the OLS estimate is 77% downward biased, compare to 54% in the pooled sample.

In Figure 5b for males, the relative bias is slightly lower at 51%; however, also within this

subsample, the OLS estimate lies outside the MLE confidence interval for all ages.

4.2 Discussions and Guidance for Empirical Analysis

The previous simulations and empirical results suggest a substantial difference between our

proposed MLE and the classic OLS methods. Both specifications are based on some functional

form assumptions regarding the relationship between health care spending and age. More

specifically, the OLS assumptions are that expenditures are linear in age, and that the variance

25



Figure 4: Comparison of OLS and MLE Estimates of Marginal Age Effects.
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Notes: See Section 3 for more details about the German health insurance data. The graph compares
the marginal age effects on health care spending, along with 95% confidence intervals. The marginal
MLE effect is larger across the whole age domain and the difference to OLS increases in age.

is finite, whereas the MLE estimate allows for a non-linear relationship but requires the Pareto

tail, see equation (2.5).

In general, both these and any other functional form assumptions may be incorrect. In

cases where the distributional assumptions required for OLS are satisfied, we know that OLS

estimates represents the best linear approximation to E [Yi|Xi] (Angrist and Pischke, 2008). In

cases where the true distribution has an exact Pareto tail above ymin, the MLE estimator will

be the most efficient one among all consistent estimators. We close this section by some heuris-

tic discussions about the underlying distributional assumptions and provide some empirical

guidance.

To compare the proposed MLE and the OLS methods, we essentially need to address two
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Figure 5: Marginal Age Effects by Sex, OLS versus MLE.
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(b) Males
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Notes : Own calculations based on German health insurance data. The graph compares the
marginal age effects on health care spending, along with 95% confidence intervals.

relevant issues: (1) whether expected expenditures can be well approximately by a linear func-

tion of age and other controls, and (2) whether the data exhibit a sufficiently heavy tail so that

the variance of the expenditure is possibly infinite.

Note that the sample variance is always finite given any data set, while the unknown popu-

lation variance could be infinite. In this scenario, the best linear approximation property fails

and the sample variance and any other higher moment such as sample skewness and kurtosis

are not informative about their population analogs.

The first question, regarding the functional form, depends on the true data generating

process, which is usually unknown. In order to shed some light on this issue, we return to the

log-size-log-rank plot in Figure 1. If the distribution of expenditures has a Pareto-type tail, we

expect to see a linear fit in the plot. In this scenario, age and other control variables could only

affect the expenditure through the Pareto exponent α = α(X) and hence

E[Yi|Yi > ymin, Xi = x] = ymin
α(x)

α(x)− 1
.

27



Although the functional form of α(x) is unknown, the conditional mean is in general nonlin-

ear in x and thus results in a bias in the OLS estimation. Thus, the proposed MLE should be

applied when the data shows a clear Pareto pattern in the tail. Moreover, we follow Wang and

Tsai (2009) to consider the single-index form α(X) = exp (X ′β). This additional assumption

facilitates the estimation but could again be restrictive.

As a robustness analysis, we now relax the functional form assumptions imposed so far. To

do so, we summarize the age information by five age quintile dummies. We then use the entire

sample to construct point estimates and confidence intervals for the predicted expenditure

values at each age quintile.8 We plot predicted values as the partial effects of age dummies are

poorly defined in the MLE specification.

Figure 6 presents the results. For the youngest group, aged 31.6 years on average, the OLS

estimate is close to the MLE estimate of EUR 37,900. For the second youngest group, the OLS

point estimate is just outside the 95% CI of the MLE estimate, and there is still considerable

overlap between the CI’s of the two estimators. For the three oldest groups, however, the two

CI’s are completely disconnected, and the OLS estimates are substantially below their MLE

counterparts. This finding is again coherent with our simulation results.

As a remark, quantile regression is another commonly adopted method to study nonlinear

effects. However, we argue that it might not be appropriate in our context. To see why, let

QY |X=x(τ) denote the quantile function of Yi conditional on Xi = x for τ ∈ (0, 1).

The classical quantile regression model imposes that

QY |X=x(τ) = x′β(τ)

for some pseudo-true coefficient β(τ). Wang and Li (2013, Proposition 2.1) show that the Pareto

exponent α(x) has to be constant for the above quantile regression model to be appropriate.

8Thereby it is asserted that the other independent variables representing gender, year and plan type are
constant across age quintiles.
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Figure 6: Predicted Health Spending by Age Quintiles.
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Note: Own calculations based on German health insurance data.

However, Figure 1 clearly shows different slopes for males and females, suggesting that the

Pareto exponent changes at least across gender. This feature is not coherent with quantile

regression and hence our proposed MLE is more suitable, at least in our data.

Coming back to the second question about tail heaviness, we can estimate the unconditional

Pareto exponent of Yi by existing estimators. Common choices include Hill (1975) and Gabaix

and Ibragimov (2011). The slope in Figure 1 is also a consistent estimator of α. As mentioned

earlier, the second moment E[Y 2
i ] is infinite if the true α is less than two. Therefore, Figure 1

raises the concern of an infinite variance and the performance of OLS since the slope is merely

above two. Sasaki and Wang (2022) provide a formal test about the finite moment condition.

As a final remark, our proposed MLE is specially designed for learning about the tail

properties of medical expenditures, but not the whole sample. For the non-tail observations

satisfying Yi < ymin, the support and the variance are naturally bounded and hence the least

squares methods could perform well.

We summarize these discussions in the following guidance for an empirical implementation.

Guidance for Empirical Implementation
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Step 1 Given any potentially skewed dataset, e.g. on claims or incomes, run the log-size-log-rank

plot as in Figure 1. A linear fit in the tail suggests that the underlying distribution has

a Pareto-type tail.

Step 2 If the slope of the linear fit and other estimators of the Pareto exponent such as Hill

(1975) and Gabaix and Ibragimov (2011) are below (or approximately) two, the underlying

distribution might have a heavy tail and the population variance of expenditure might be

infinite.

Step 3 Select the tail part of the data by Yi > ymin and the associated Xi. Run our proposed

MLE as in Section 2.3 to estimate the conditional expectation E[Yi|Yi > ymin, Xi].

Step 4 For the non-tail part, estimate the three-part model as described in Section 2.4.

5 Conclusion

Health expenditure data typically involve extreme outliers. They represent heavy tail features

in the underlying distribution of the data. Simple truncation of such extreme values could

lead to substantial bias when estimating any type of effect on health expenditures. In general,

extreme data values can be a threat to the commonly adopted least squares methods.

In this paper, using simulation studies, we first show that when the underlying distribution

has heavy tails, then the commonly used OLS and GLS methods may suffer from large biases;

further, the corresponding confidence intervals may be too wide to be informative. Second, to

accommodate extreme values, we propose the use of a new econometric method that allows

us to recover information about the right tail of a health expenditure distributions, which is

entirely ignored in many standard approaches such as top-coding. Third, we apply the proposed

method to high-quality claims data from one of the biggest German private health insurers with

half a million policyholders.
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We estimate marginal effects of exogenous age predictors that substantially differ from

those of the potentially biased least squares methods. In general, OLS tends to underestimate

the age gradient in health spending. However, both estimators require careful consideration

of functional form assumptions. In a next step, we extend the standard two-part model and

propose a novel three-part model to model health expenditure distributions. Finally, we provide

guidance and a cook-book recipe for applied economists on how to test for heavy tail features,

and how to implement our proposed method.
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Appendix

The Appendix consists of three sections. Appendix A1 contains additional empirical robustness

checks. Appendix A2 contains additional simulation results. Appendix A3 contains econometric

details about the proposed estimator.

A1 Robustness Checks

We first check the robustness to the choice of ymin. In Section 4 of the main text we use the

top 5% percentile, and in this section we use top 3% and 7% percentiles. Figure A1 depicts

the estimates of the marginal effects based on OLS and our proposed MLE. Figures A2 and A3

repeat the analysis with female and male subsamples. The findings are similar to those reported

in Section 4. In particular, the OLS estimates are substantially below the MLE regardless of

the subsample and the choice of ymin.

Figure A1: Marginal Age Effects for Different Cutoffs, OLS versus MLE.
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(b) Top 7%
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Notes : Own calculations based on German health insurance data. The graph compares the
marginal age effects on health care spending, along with 95% confidence intervals.

Second, we repeat the exercise in Section 4.2 by splitting the sample by gender. Recall
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Figure A2: Marginal Age Effects for Different Cutoffs – Females. OLS versus MLE.

(a) Top 3%

0
-1

37
20

0
30

0
40

0
E

xp
en

di
tu

re
 (E

U
R)

30 40 50 60 70
Age

OLS Estimate
MLE Estimate
95 % C.I.

(b) Top 7%
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Notes : Own calculations based on German health insurance data. The graph compares the
marginal age effects on health care spending, along with 95% confidence intervals.

Figure A3: Marginal Age Effects for Different Cutoffs – Males. OLS versus MLE.
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(b) Top 7%
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Notes : Own calculations based on German health insurance data. The graph compares the
marginal age effects on health care spending, along with 95% confidence intervals.

that age is replaced with five dummy variables presenting the quintiles. Figure A4 depicts

the estimated health spending at different age quintiles based on the proposed MLE and the

classic OLS methods. The OLS estimates and confidence intervals are again below their MLE
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counterparts as we find in Section 4.2.

Figure A4: Predicted Health Spending by Age Quintiles
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(b) Males

30
,0

00
35

,0
00

40
,0

00
45

,0
00

50
,0

00
55

,0
00

60
,0

00
E

xp
en

di
tu

re
 (E

U
R)

30 40 50 60 70
Age

MLE Estimate
OLS Estimate
95 % C.I. (MLE)
95 % C.I. (OLS)

Notes : Own calculations based on German health insurance data.

A2 Additional Simulations

In this section, we conduct simulation studies of the OLS estimator with log-transformed data.

The data are still generated from

Yi = β0 + β1Xi + ui, (A2.1)

with (β0, β1) = (1, 1). To make sure that Yi is positive, we generate Xi from the absolute

value of the standard normal distribution, and ui from the standard Pareto distribution with

exponent 1/ξ, that is, P (ui ≥ u) = (1 + ξu)−1/ξ for u > 0. The other model specifications are

the same as in Tables 1 and 2.

Note that the OLS estimator of β1—when regressing ln(Yi) on Xi (and a constant)—is not

measuring the marginal effect of Xi on Yi, given the nonlinear setup. To make a reasonable

comparison, we treat Ȳ β̂1 as the estimator of the marginal effect where Ȳ denotes the sample

3



average of Yi and compares it with the true parameter β1. The standard error of the estimator of

the marginal effect is adjusted accordingly by multiplying Ȳ to that of β̂1. Since the marginal

effect depends on the value of Xi, this estimator essentially estimates the average marginal

effect over Xi. We also implement the estimator for Xi = 1 with β1 = 1 as in Figures 2 and 3.

The results are very similar and hence omitted.

Table A1 depicts the performance of such as marginal effect estimator in terms of MAD,

RMSE, average rejection probability of the standard t-test, and the average length of the

standard 95% confidence intervals.

Table A1: Log-Y Simulation Results with Generalized Pareto Distribution

n 500 1000 5000 104 105 106 500 1000 5000 104 105 106

ξ(1/α) Panel A: MAD Panel B: RMSE
0.09 0.07 0.06 0.05 0.05 0.05 0.05 0.09 0.07 0.05 0.05 0.05 0.05
0.19 0.09 0.08 0.08 0.08 0.08 0.08 0.11 0.10 0.08 0.08 0.08 0.08
0.29 0.13 0.12 0.12 0.12 0.12 0.12 0.16 0.14 0.13 0.12 0.12 0.12
0.39 0.19 0.18 0.18 0.18 0.18 0.18 0.22 0.20 0.19 0.19 0.18 0.18
0.49 0.28 0.27 0.27 0.27 0.27 0.27 0.33 0.30 0.28 0.28 0.27 0.27
0.59 0.41 0.41 0.41 0.41 0.41 0.41 0.50 0.46 0.42 0.42 0.41 0.41
0.69 0.66 0.64 0.64 0.66 0.64 0.64 1.57 1.07 0.81 1.88 0.68 0.65
0.79 1.61 1.03 1.23 1.11 1.09 1.10 47.9 2.65 11.2 4.48 1.27 1.29
0.89 1.88 2.05 2.13 2.12 2.07 2.26 8.90 19.7 9.34 11.8 3.48 6.63
0.99 4.43 4.37 6.47 9.83 6.04 6.02 65.5 61.5 129 342 104 37.6

ξ(1/α) Panel C: Rejection Prob. Panel D: Length of 95% CI
0.09 0.10 0.15 0.57 0.86 1.00 1.00 0.27 0.19 0.09 0.06 0.02 0.01
0.19 0.15 0.27 0.87 0.99 1.00 1.00 0.32 0.23 0.10 0.07 0.02 0.01
0.29 0.24 0.44 0.98 1.00 1.00 1.00 0.37 0.27 0.12 0.08 0.03 0.01
0.39 0.35 0.62 1.00 1.00 1.00 1.00 0.45 0.32 0.14 0.10 0.03 0.01
0.49 0.49 0.77 1.00 1.00 1.00 1.00 0.54 0.38 0.17 0.12 0.04 0.01
0.59 0.61 0.89 1.00 1.00 1.00 1.00 0.68 0.48 0.22 0.15 0.05 0.02
0.69 0.73 0.95 1.00 1.00 1.00 1.00 0.91 0.63 0.28 0.20 0.06 0.02
0.79 0.81 0.98 1.00 1.00 1.00 1.00 1.94 0.88 0.43 0.29 0.09 0.03
0.89 0.86 0.99 1.00 1.00 1.00 1.00 2.02 1.51 0.68 0.48 0.15 0.05
0.99 0.90 1.00 1.00 1.00 1.00 1.00 4.63 3.03 1.84 1.94 0.38 0.12

Notes: The table depicts the average mean absolute deviation (MAD), the average root
mean squared error (RMSE), the average rejection probability of the standard t-test, and
the average length of the standard 95% confidence intervals. The results are based on 10000
simulation draws. See the main text for details about the data generating process.
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The results can be summarized as follows. First, the large bias and RMSE indicate that

the misspecification error of approximating the linear model with a heavy-tailed error term by

the log-linear model could be substantial. Such misspecification error is small when the tail

is thin, i.e, ξ is close to zero. This is what has been documented in the existing literature.

However, when the tail of the error term becomes heavy, the misspecification error is amplified

substantially.

Second, accordingly, the rejection probability of the t-test becomes substantially larger than

the nominal 5% level (Panel C). When ξ is above 0.5, the variance of the error term is not well-

defined and hence the t-test is hardly informative.

Third, although the length of the confidence interval is shrinking with the sample size, the

bias and the overrejection do not (Panel D). This suggests that the estimator substantially

deviates from the true value with the bias strictly dominating the randomness.

A3 More Details about the MLE

Our maximum likelihood estimator is based on the tail index regression proposed by Wang and

Tsai (2009). The key condition is that the conditional distribution of Yi on Xi = x has an

approximate Pareto tail. In particular, we assume that uniformly over x,

1− P (Yi > y|Xi = x) = c (x) y−α(x) (1 + o(1)) as y → ∞, (A3.1)

for some constant c (x) > 0 and α (x) > 0. This condition is mild and satisfied by many

commonly used distributions such as Student-t, Gamma, F distributions. In particular, if Y is

Student-t distributed conditional on X = x with v (x) degrees of freedom, then α (x) is simply

v (x). Chapter 1 in de Haan and Ferreira (2006) provides a complete review of the literature.

Note that the condition (A3.1) requires that the right tail of the conditional distribution
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is well approximated by a Pareto distribution with component α (x). Such an approximation

becomes more accurate as we move further towards the tail (i.e., y → ∞). In this sense, we

consider our method a semiparametric method that does not hinge on any specific distribution.

This is important for empirical applications as, a priori, researchers do not know the true health

expenditure distribution.

Under Condition (A3.1), we can further approximate the conditional probability density of

Y given X and Y > ymin for some large tail threshold ymin by α (x) (y/ymin)
−α(x) y−1. This

leads to the negative likelihood function in Equation (2.3). Under (A3.1) and some additional

technical conditions, Wang and Tsai (2009) establish that by solving (2.3), the MLE β̂ is

consistent and asymptotically normal. The standard error can be estimated by (2.4).

As a tuning parameter, the econometrician chooses the tail threshold ymin which affects the

estimation result, especially when the sample size is only moderate. However, the optimal se-

lection of ymin is challenging and has stimulated a large literature in statistics and econometrics.

On the one hand, a large ymin ensures that the tail Pareto approximation performs well, and

hence the bias is small. On the other hand, a small ymin ensures enough tail observations for

asymptotic normality, and hence the variance is small.

This bias-variance trade-off indicates a delicate balance in the choice of ymin (and equiva-

lently the number of tail observations n0). It turns out that a theoretically optimal choice of

ymin does not exist if no other condition is imposed on the true underlying distribution (Müller

and Wang, 2017). Therefore, we recommend to vary ymin in sensitivity analysis. Wang and

Tsai (2009) also provide a data-driven method of choosing ymin, whose theoretical properties

need further investigation.
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