
IV METHODS RECONCILE INTENTION-TO-SCREEN
EFFECTS ACROSS PRAGMATIC CANCER SCREENING

TRIALS
Joshua Angrist

Peter Hull

WORKING PAPER 31443



NBER WORKING PAPER SERIES

IV METHODS RECONCILE INTENTION-TO-SCREEN EFFECTS ACROSS PRAGMATIC 
CANCER SCREENING TRIALS

Joshua Angrist
Peter Hull

Working Paper 31443
http://www.nber.org/papers/w31443

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
July 2023, Revised September 2023

We thank Edoardo Botteri, Amy Finkelstein, Guido Imbens, Amanda Kowalski, and Emily Oster 
for helpful comments. Carol Gao provided excellent research assistance. The views expressed 
herein are those of the authors and do not necessarily reflect the views of the National Bureau of 
Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2023 by Joshua Angrist and Peter Hull. All rights reserved. Short sections of text, not to 
exceed two paragraphs, may be quoted without explicit permission provided that full credit, 
including © notice, is given to the source.



IV Methods Reconcile Intention-to-Screen Effects Across Pragmatic Cancer Screening Trials 
Joshua Angrist and Peter Hull
NBER Working Paper No. 31443
July 2023, Revised September 2023
JEL No. C21,C26,C93,I12

ABSTRACT

Pragmatic cancer screening trials mimic real-world scenarios in which patients and doctors are 
the ultimate arbiters of treatment. Intention-to-screen (ITS) analyses of such trials maintain 
randomization-based apples-to-apples comparisons, but differential adherence (the failure of 
subjects assigned to screening to actually get screened) makes ITS effects hard to compare across 
trials and sites. We show how instrumental variables (IV) methods address the nonadherence 
challenge in a comparison of estimates from 17 sites in five randomized trials measuring 
screening effects on colorectal cancer incidence. While adherence rates and ITS estimates vary 
widely across and within trials, IV estimates of per-protocol screening effects are remarkably 
consistent. An application of simple IV tools, including graphical analysis and formal statistical 
tests, shows how differential adherence explains variation in ITS impact. Screening compliers are 
also shown to have demographic characteristics broadly similar to those of the full trial study 
sample. These findings argue for the clinical relevance of IV estimates of cancer screening 
effects.

Joshua Angrist
Department of Economics, E52-436
MIT
77 Massachusetts Avenue
Cambridge, MA 02139
and NBER
angrist@mit.edu

Peter Hull
Department of Economics
Box B, Brown University
Providence RI 02912
and NBER
peter_hull@brown.edu



1 Introduction

The question of whether cancer screening improves health remains contentious—a fact highlighted

by the debate over mammography, prostate-specific antigen (PSA) screening, and colorectal cancer

(CRC) screening.1 Regularly screened patients tend to be healthier than those who opt out. But

this observational comparison may be misleading: patients and doctors who do and don’t screen are

likely to differ in many ways besides the screening itself. When screening is randomly assigned, and

those assigned to screening are indeed screened, any later difference in the health of screened and

unscreened participants is almost certainly caused by screening. This fact motivates randomized

screening trials, which offer screening to participants by lottery.2

Pragmatic randomized trials, meant to “measure effectiveness in routine clinical practice”

[Roland and Torgerson, 1998], are particularly well-suited to estimate the real-world impact of

cancer screening on health. As in clinical practice, pragmatic trials allow patients and their doctors

to be the ultimate arbiters of screening and other treatments. At the same time, the evaluation of

unpleasant and time-consuming medical interventions under real-world conditions is usually com-

plicated by the fact that many patients fail to take their doctor’s advice. It’s one thing to randomize

the opportunity to screen, quite another to randomize screening itself. Consequently, pragmatic

cancer screening trials typically report intention-to-screen (ITS) effects comparing groups random-

ized to receive an offer of screening with a control group that receives no such offer.

Free colonoscopies—now there’s an offer! Indeed, when it comes to pragmatic trials for colonoscopy

and sigmoidoscopy, the share of participants randomized to a screening invitation who are actually

screened can be worryingly low. Data from five screening trials, summarized in Table 1, bear this

out. In four sigmoidoscopy trials, adherence ranges from a low of 58% in the Italian SCORE study

to a high of 87% in the American PLCO study. The more invasive colonoscopy screenings offered to

patients in Poland, Norway, and Sweden in the NordICC pragmatic trial saw even lower adherence,

with only 42% of those randomly offered a colonoscopy completing one.

Nonadherence in NordICC, which showed little mortality benefit alongside reduced CRC in-

cidence, recently sparked a debate over the clinical relevance of screening trial findings [Gyawali,

2022]. In one of many letters responding to the Bretthauer et al. [2022] report on NordICC,

correspondent Winawer [2023] asks, “are these intention-to-treat observations applicable to other

clinical environments?” In cancer screening trials, randomization of invitations to screen ensures

ITS effects are free of selection bias—meaning they’re unconfounded by pre-treatment differences

between those assigned to screening and control groups. Yet, as Winawer [2023] suggests, nonad-

herence makes ITS effects hard to compare across studies and even harder to apply to public health

policy. Intuitively, low adherence dilutes ITS effects by including people whose screening behavior

is unaffected by the offer in the treatment group. The number need to screen to prevent cancer

1See, e.g., Kowalski [2021, 2023] for discussions of mammography, Hayes and Barry [2014] on PSA, and references
in the CRC studies cited below.

2A recent NEJM editorial on CRC screening (Dominitz and Robertson, 2022) notes that “[non-randomized] studies
probably overestimate the real-world effectiveness of colonoscopy because of the inability to adjust for important
factors such as incomplete adherence to testing and the tendency of healthier persons to seek preventive care.”
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may therefore be well below the number that must be offered screening in a trial.

A role for offer adherence in mediating ITS effects is suggested by the first column of Table

2, which reports estimated ITS effects on CRC incidence 10-12 years after random assignment for

the five trials summarized in Table 1. In principle, screening reduces CRC incidence by revealing

precancerous abnormalities in the colon, which can then be removed.3 In practice, ITS effects on

incidence vary. The estimated ITS effect in the NordICC trial is 0.19 percentage points (reported

as −0.0019 in the table), while data from the UKFFST trial yield an ITS estimate that’s twice as

big. Given the statistical precision with which these effects are estimated, with robust standard

errors as small as 0.0005, these large differences in impact are unlikely to be due to chance alone.

At first blush, systematic differences in ITS effects for a common or similar intervention would

seem to threaten the external validity—and therefore the clinical relevance—of individual studies.

Of course, medical interventions may affect different populations differently. The NordICC and

UKFSST study populations are broadly similar, however, both involving men and women aged

55-64 in European countries offering low-cost access to modern medical services. On the other

hand, the impact of colonoscopy screening examined in NordICC might exceed that of less invasive

and less sensitive sigmoidoscopy screening examined in UKFSST. But the ITS results in this regard

present a puzzle, since the estimated CRC incidence reduction due to NordICC colonoscopy offers

is far below the the estimated CRC incidence reduction yielded by UKFSST sigmoidoscopy offers.

This article shows that divergent ITS estimates—across trials, across sites within trials, and even

across variations on a similar treatment—can be reconciled by instrumental variables (IV) methods

that make adherence the mediator of trial effects. The next section sketches the IV approach to

causal inference. The IV estimand, known to econometricians as a local average treatment effect

(LATE), is shown to be a type of per-protocol effect that captures the average screening effect

for subjects induced to screen by virtue of their trial participation. Section 3 uses IV to estimate

screening effects on CRC incidence. Substantial variability in ITS estimates notwithstanding, LATE

estimates are remarkably consistent across and within the five studies in Table 1. The fact that

adherence explains variation in ITS impact, while LATEs are reasonably stable, bolsters the case

for seeing IV estimates as clinically relevant.4 In support of this claim, Section 4 deploys three IV

tools not previously applied in this context: visual instrumental variables, overidentification testing,

and complier characteristics. Section 5 summarizes our argument and draws some conclusions.

2 The IV Advantage

2.1 Casting Causal Effects

Consider a pragmatic trial offering CRC screening by lottery to a population of experimental

subjects indexed by i. Let Zi ∈ {0, 1} be a dummy variable indicating experimental screening offers

3Our followup horizon matches that in Bretthauer et al. [2022]. We focus on CRC incidence over mortality
because estimates for the former are more precise, a point noted by Bretthauer, Løberg and Kaminski [2023].

4Angrist and Meager [2023] makes an analogous point in the context of schooling-related interventions in devel-
oping countries, where mediating instrumental variables gauge program implementation.
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(also called invitations) and let Si ∈ {0, 1} be a dummy variable indicating post-randomization

screening completion. Subjects are free to decline or ignore screening offers, while some not invited

for screening through the trial may be screened elsewhere. The possibility of nonadherence is

reflected in the fact that Si ̸= Zi for some (perhaps many) subjects. CRC incidence, denoted by

dummy variable Yi ∈ {0, 1}, is measured for all subjects after offers are made in the trial.

A potential outcomes model is used to define the causal effects of interest in our setting (and

many others; see, e.g., Imbens and Rubin [2015]). Let dummy variable Y0i indicate the CRC status

of subject i when she is unscreened, while Y1i indicates CRC incidence when i is screened. Only

one of these potential outcomes is ever observed for a given subject, depending on the value of Si.

In particular, observed CRC incidence can be written:

Yi = Y0i + Si(Y1i − Y0i). (1)

The difference in potential outcomes by screening status, Y1i − Y0i, is the causal effect of screening

on individual i. This is never seen for any one person, since we only see one of Y0i or Y1i for each

i. Randomization of Zi makes it independent of both Y0i and Y1i.

Although individual causal effects are unknowable, randomized trials with full adherence reveal

average effects. Specifically, when Si = Zi for all i, a comparison of the average Yi in the samples

of screened (Si = 1) and unscreened (Si = 0) groups give the average screening effect, E[Y1i − Y0i]:

E[Yi|Si = 1]− E[Yi|Si = 0] = E[Y1i|Zi = 1]− E[Y0i|Zi = 0]

= E[Y1i]− E[Y0i] = E[Y1i − Y0i].

The first equality follows from the potential outcomes model and Si = Zi; the second follows from

the random assignment of Zi; the third follows from the fact that the expectation of a difference is

the corresponding difference in expectations.

When screening itself is effectively randomized (because of full adherence), the unconditional

average screening effect E[Y1i − Y0i] further equals the average effect of screening on the screened:

E[Y1i − Y0i] = E[Y1i − Y0i|Si = 1].

This quantity answers the question of whether those who are screened have lower average CRC

incidence than they would have suffered in a counterfactual scenario in which they’re unscreened.

Clinicians and public health officials often prioritize this measure of impact, which reveals whether

people screened in a trial can expect to have fewer cancers as a result of screening. With a dummy

variable outcome like CRC incidence, the reciprocal of E[Y1i − Y0i|Si = 1] is the epidemiological

“number needed to screen.” This is the number of patients that must be screened, on average, to

prevent one CRC case [Rembold, 1998].5

5With no always-takers, CRC case counts fall by Nλ when N are screened and LATE is λ. To prevent one CRC
case, screen N∗ such that 1 = N∗λ. The number needed to screen is therefore N∗ = 1

λ
.
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2.2 A Little LATE

For many subjects in screening trials, treatment received diverges from treatment assigned. Subjects

who are especially healthy, worried, or well-informed may be most likely to respond to a randomized

invitation to screen. In such scenarios, screening Si is no longer randomly assigned though it’s

still correlated with the randomized screening offers Zi. We model this correlation using potential

adherence. Specifically, let S1i denote a dummy variable indicating i’s screening status when offered

screening, while S0i denotes a dummy indicating i’s screening status when not offered. Potential

adherence determines screening status according to:

Si = S0i + Zi(S1i − S0i). (2)

The causal effect of screening offers on screening behavior is given by S1i − S0i.

The local average treatment effects (LATE) model, introduced in Imbens and Angrist [1994] and

Angrist, Imbens and Rubin [1996], categorizes trial participants on the basis of potential adherence.

In randomized screening trials, screening compliers are subjects for whom S1i = 1 and S0i = 0.

In the vernacular of screening trials, compliers are subjects who adhere to the screening status to

which they’re randomly assigned. Subjects for whom S1i = S0i = 0 or S1i = S0i = 1 are either

never or always screened, regardless of Zi. The LATE framework presumes that the trial population

includes at least some compliers.

The LATE setup also assumes away the possibility of a perverse response in which trial par-

ticipants are screened only when not invited for screening but are not screened when invited. In

other words, we assume no subject has S1i = 0 and S0i = 1. Given this monotonicity assumption,

Ci = S1i − S0i is a dummy variable that equals one for compliers and is zero otherwise. Mono-

tonicity is surely satisfied when those not offered screening have no other access to it, since S0i = 0

then equals zero for all i. More generally, monotonicity is satisfied when randomized invitations to

screen necessarily make screening more attractive and accessible to some subjects, with no effect

on screening status for subjects not invited to screen.

A final LATE assumption is called an exclusion restriction. In our context, the exclusion

restriction says that randomized invitations to screen have no effect on CRC incidence other than by

boosting the likelihood of screening.6 Like monotonicity, this assumption is plausible in pragmatic

screening trials where screening offers have no intrinsic value beyond possibly encouraging screening.

Given exclusion, the random assignment of screening offers makes Zi independent of all potential

outcomes in the set (Y0i, Y1i, S0i, S1i). An ITS analysis leverages this independence to estimate the

average effect of screening offers on CRC incidence. More ambitiously, IV takes us from ITS offer

effects to the effect of screening itself.

The journey from ITS to screening effects starts by combining equations (1) and (2) to show

that randomized offers determine outcomes according to:

Yi = Y0i + Sji(Y1i − Y0i) when Zi = j.

6Exclusion is formalized with the help of double-indexed potential outcomes. Let Yi(d, z) denote the outcome
realized for subject i when Di = d and Zi = z. Exclusion asserts that Yi(d, 0) = Yi(d, 1) = Ydi for each d ∈ {0, 1}.
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Because Zi is independent of (Y0i, Y1i, S0i, S1i), this representation can be used to write ITS as:

E[Yi | Zi = 1]− E[Yi | Zi = 0] = E[Y0i + S1i(Y1i − Y0i)]− E[Y0i + S0i(Y1i − Y0i)]

= E[(S1i − S0i)(Y1i − Y0i)]

= E[Ci(Y1i − Y0i)] ≡ ρ, (3)

In an IV context, the ITS effect denoted by ρ is called the reduced-form effect of treatment assign-

ment. In a screening trial with less than full adherence, the reduced form averages Y1i − Y0i for

compliers (for whom Ci = 1) with zeros for subjects whose screening status is unchanged by Zi

(for whom Ci = 0). Hence, ITS understates the magnitude of the effect of screening itself.

Along with CRC incidence, screening status becomes an additional outcome in the LATE frame-

work. The causal effect of screening offers on screening status is given by a comparison of conditional

average screening rates analogous to that generating the reduced form:

E[Si | Zi = 1]− E[Si | Zi = 0] = E[S1i − S0i] ≡ π. (4)

In an IV context, π is known as the first-stage effect of treatment assignment. Because monotonicity

makes S1i − S0i = Ci a dummy variable, π is the probability of compliance:

π = E[S1i − S0i] = Pr(Ci = 1).

Intuitively, π captures the extent to which ρ is diluted by nonadherence. In a trial where few

subjects take screening offers, Ci is mostly zero and the reduced-form is necessarily small. As long

as the first stage is nonzero, however, some subjects offered a chance to screen take it. By dividing

ρ by π, IV adjusts for dilution due to nonadherence, transforming the reduced form into a screening

effect. This is formalized by using equations (3) and (4) and the fact that Ci is a dummy to write:

ρ

π
=

E[Ci(Y1i − Y0i)]

E[S1i − S0i]
=

E[Y1i − Y0i | Ci = 1]Pr(Ci = 1)

Pr(Ci = 1)
= E[Y1i − Y0i | Ci = 1]. (5)

LATE, defined as E[Y1i − Y0i | Ci = 1], is the average causal effect of screening on screening

compliers. Given monotonicity, random assignment of screening offers, and exclusion, the ratio

of reduced-form offer effects to first-stage offer effects is the average causal effect of screening on

experimental subjects screened when randomized to receive screening offers (but not otherwise).

From a public-health perspective, the reciprocal of LATE gives the number needed to screen per

cancer averted in the population that’s responsive to screening opportunities.

LATE can be consistently estimated by replacing conditional expectations with sample averages

on the left side of the formulas for π and ρ, above.7 But the link between LATE and IV is of

practical as well as conceptual value. In practice, IV estimates and the associated standard errors

are easily computed using two-stage least squares (2SLS), an IV estimator discussed more in Section

4. Powerful and flexible 2SLS estimators accommodate covariates and multiple instruments (both

arise, for instance, in stratified trials in which offers are made at different rates in different strata).

7The term “consistent” is used here in the statistician’s sense: sample moments and smooth functions thereof
converge in probability to the corresponding population quantities in large samples.
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2SLS also provides an immediate path to off-the-shelf statistical inference.8

Hernán and Robins [2017] note that it’s usually impossible to name individual LATE compliers

in a study population, since only one of S1i and S0i is observed for any one subject i. Even in

a trial in which no randomized controls cross over to receive receive screening (so S0i = 0 for all

i), the identity of compliers among subjects not offered treatment remains hidden since we don’t

know S1i when Zi = 0. Yet, just as readers of medical journals must remain ignorant of treated

subjects’ identities, reaearchers and other observers need not identify individual compliers. Rather,

these observers are interested in the distribution of complier characteristics. Are compliers mostly

old or mostly young? Mostly male or mostly female? Do they have pre-existing conditions that

predispose them to take advantage of screening? Are complier populations so unusual that the

external validity of IV estimates is limited? IV tools detailed in Section 4 answer these questions.

2.3 LATE, Effects on the Screened, and Per-Protocol the Old-Fashioned Way

Trial analysts distinguish intent-to-treat effects from per-protocol effects, typically defined as “the

effect that would have been observed had all trial participants followed the trial protocol” [Swanson

et al., 2015]. LATE is also per-protocol effect, but not for everyone: as equation (5) shows, ρ/π

gives the average causal effect of screening among experimental subjects screened as a result of the

trial—that is, for screening compliers. The complier population constitutes the subset of the study

population that follows a trial protocol in the field.

Importantly, when all subjects not offered screening remain unscreened, LATE equals the effect

of screening on everyone in the study population who is screened. In other words, with no control-

group crossovers into screening (as in most of the CRC screening trials analyzed below), LATE is

an average causal effect in the population for which Si = 1. This is a consequence of the fact that,

in general, two sorts of subjects are screened:

• Those with S0i = 1, in which case monotonicity implies S1i = 1 as well. Angrist, Imbens and

Rubin [1996] call this group, which is screened regardless of Zi, always-takers.

• Compliers who are offered screening, a group for which Zi = 1 and S1i − S0i = S1i = 1.

In screening trials in which no controls are screened, S0i = 0 for all i meaning there are no always-

takers. Hence, only the second group, compliers with Zi = 1, are screened. Moreover, because Zi is

randomly assigned, effects on compliers offered screening are the same as LATE for all compliers.

8IV ideas applied to randomized trials appear in alternate forms in social science and medicine without refer-
encing IV or potential outcomes. Bloom [1984] adjusts trial data for treated never-takers using equation (6), below.
Newcombe [1988] derives an adjustment for randomized trials with control-group crossovers. Hearst, Newman and
Hulley [1986] use similar reasoning to obtain effects of Vietnam-era military service using the American draft lottery.
Baker and Lindeman [1994] and Baker, Kramer and Lindeman [2016] use maximum likelihood to derive an IV-type
adjustment for nonadherence in a model for Bernoulli outcomes. Some analyses of screening trials, including Atkin
et al. [2010] and Segnan et al. [2011], reference an adherence adjustment due to Cuzick, Edwards and Segnan [1997].
Also focusing on Bernoulli outcomes, the latter derives a maximum likelihood estimator that adjusts risk ratios for
nonadherence. The Cuzick, Edwards and Segnan [1997] estimator is an instance of results in Imbens and Rubin
[1997], which uses IV to compute marginal distributions of potential outcomes for compliers.
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The result that LATE equals the average effect of screening on all screened subjects in a trial

with no always-takers is formalized by writing:

E[Y1i − Y0i | Si = 1] = E[Y1i − Y0i | S1i = 1, Zi = 1]

= E[Y1i − Y0i | S1i = 1] = E[Y1i − Y0i | Ci = 1]. (6)

The first equality uses the fact that Si = S1iZi with no always-takers; the second uses the fact

that Zi is independent of potential outcomes and potential adherence; the third uses the fact that

Ci = S1i − S0i = S1i when S0i = 0 for everyone.

When applied to a randomized screening trial, the LATE result (5) turns only on the claims

that random assignment to screening: (i) makes screening more likely on average, (ii) never inhibits

screening, and (iii) affects outcomes solely by making screening more likely. This contrasts with

the arguments underpinning old-fashioned per-protocol adjustments. An “as-treated” analysis (as

in, e.g., Chêne et al. [1998] and Packer et al. [2019]) ignores experimental random assignment,

comparing outcomes by screening status, Si, as if the latter was randomized as intended. But

comparisons of E[Yi | Si = 1] and E[Yi | Si = 0] in a trial with partial adherence are confounded

for the same reason that comparisons by treatment status in cohort studies are confounded. In a

pragmatic trial, where patients and their doctors freely choose adherence, potential outcomes are

unlikely to be independent of adherence.

An alternative non-IV estimation strategy (seen, e.g., in Bretthauer et al. [2022]) compares all

randomly-assigned controls to treated subjects who are screened as intended. This amounts to a

comparison of E[Yi | Si = 1, Zi = 1] with E[Yi | Zi = 0], which differs from an as-treated analysis

in that it discards subjects for whom S1i = 0, rather than moving them to a putative control group

defined by screening status. Angrist, Imbens and Rubin [1996] call subjects with S1i = 0 “never-

takers” because they remain unscreened regardless of their assignment. When no one assigned to

control is screened, the per-protocol estimator discarding never-takers is given by:

E[Yi | Si = 1, Zi = 1]− E[Yi | Zi = 0] = E[Y1i | S1i = 1, Zi = 1]− E[Y0i | Zi = 0]

= E[Y1i | S1i = 1]− E[Y0i],

using random assignment of Zi. Because the two conditional expectations contrasted on the second

line involve different groups, this is not an apples-to-apples comparison.9

It is remarkable and even surprising that in a trial with no control-group crossovers,

ρ

π
= E[Y1i − Y0i | Si = 1],

while, at the same time, E[Yi | Si = 1, Zi = 1] − E[Yi | Zi = 0] is compromised by selection bias.

Specifically, when the decision to comply is a matter of choice rather than chance, omission of

never-takers is consequential because adherents in the group invited to screening may be special.

9The resulting selection bias appears as the second term in:

E[Y1i | S1i = 1]− E[Y0i] = E[Y1i − Y0i | S1i = 1] + {E[Y0i | S1i = 1]− E[Y0i]}
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In the NORCCAP trial, for instance, the Holme et al. [2014] supplement notes that “some baseline

characteristics (e.g. gender, area of residency, ethnic background, income, education and marital

status) are strong predictors of adherence.” The resulting selection bias can go either way. For

instance, NORCCAP adherents are relatively educated, and therefore likely to be healthier in the

absence of screening. But they’re also older and more likely to be male, elevating risk. Beyond

observable demographic differences, adherence may be motivated by chronic health concerns such

as diabetes, a history of polyps, or a family history that elevates CRC risk.

3 Colonoscopy Screening Trials

3.1 Background

We apply IV to estimates from five trials meant to gauge the impact of CRC screening. Trials con-

sidered here include the four featured in a recent meta-analysis [Juul et al., 2022] plus NordICC,

for which 10-year follow-up results were recently released [Bretthauer et al., 2022]. Screening

treatments evaluated in these trials include colonoscopy (which examines the entire colon), sigmoi-

doscopy (which examines the lower colon and is relatively rare in the US), and sigmoidoscopy plus

fecal occult blood testing (FOBT).

The five trials of interest recruited and screened subjects in various ways. NordICC participants

were drawn from population registries in Poland, Norway, and Sweden, with the sample limited to

men and women 55 to 64 years of age who had not previously undergone screening, excluding people

diagnosed with CRC. NordICC is the only one of our trials to offer initial colonoscopy screening

rather than initial sigmoidoscopy. NORCCAP likewise randomly assigned participants directly

from the Norwegian population registry, offering sigmoidoscopy in one group and sigmoidoscopy

plus FOBT in another (we pool these treatment groups). The other three trials randomly assigned

treatment to people who expressed interest in participating in a screening trial when surveyed.

Fewer participants in the U.K. (UKFSST) and Italian (SCORE) trials were referred to follow-up

colonoscopy screening as a result of an initial sigmoidoscopy screening. Finally, the American

PLCO trial offered 2 sigmoidoscopy screening examinations to subjects recruited in various ways

by mostly university-based cancer screening centers. Table 1 summarizes these and other key facts

regarding study populations, screening modalities, trial design, and adherence.10

Recent applications of IV methods to CRC screening trials include methodological studies by

Swanson et al. [2015], which illustrates an IV-inspired bounding computation using NORCCAP;

and Lee, Kennedy and Mitra [2023], which uses PLCO data to illustrate a new IV procedure for

estimation of survival models. Substantive trial analyses using IV include Holme et al. [2014, 2017,

2018], which report IV estimates for the NORCCAP trial; Senore et al. [2022], which reports IV

estimates for the SCORE trial; and Bretthauer et al. [2022], which comments briefly on an IV-based

“sensitivity analysis.” As far as we know, IV analyses of the four European trials to date fail to

10See Bretthauer et al. [2022] for a description of NordICC. The Juul et al. [2022] meta-analysis (which ignores
differential adherence) details the other trials examined here.
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note that IV recovers average causal effects on all screened subjects. Except for the two method-

ological contributions, most of these (and many other) trial reports feature traditional per-protocol

estimates—comparing subjects by treatment received rather than by randomized treatment as-

signed. We aim to explain why IV analysis, which shares with ITS a focus on random assignment,

offers a uniquely compelling solution to the adherence problem. We also show below how IV tools

can be deployed to establish the clinical relevance of IV estimates.

3.2 IV Estimates

Randomized screening offers reduced CRC incidence in each of the screening trials summarized

in Table 1. This is documented in the second column of Table 2, which reports reduced-form

ITS estimates of the effect of screening offers on CRC incidence along with associated standard

errors.11 Incidence reductions range from a low of 0.19 percentage points in the NordICC trial to

highs of 0.37 percentage points in the UKFSST and PLCO trials. These estimated reductions are

significantly different from zero and substantial in relative terms, amounting to roughly 20% of

mean CRC incidence in non-offered control groups (reported in the first column of the table).

As with the corresponding reduced-form estimates, first-stage adherence (reported in column 3

of Table 2) varies considerably across trials. The IV estimates shown in column 4 of the table adjust

for nonadherence by dividing reduced forms by first stages. The fact that IV estimates are larger

than ITS estimates (around 0.45 percentage points on average) boosts the case for screening as a

cancer mitigation strategy. The LATE interpretation of IV implies that the population induced

to screen by efforts to promote screening can expect to enjoy cancer risk reductions given by the

larger IV estimates rather than the diluted ITS effects. In other words, when weighing trade-

offs presented by screening, IV estimates capture the benefit most relevant for patients and their

doctors. Moreover, from a public health perspective, the number needed to screen among NordICC

compliers is 227, half the number needed to invite to screening reported in Bretthauer et al. [2022].

In two of the five trials, old-fashioned as-treated and per-protocol analysis omitting never-takers

miss the IV impact estimate. This is shown in columns 5 and 6 of Table 2: old-fashioned per-

protocol effects, amounting to 0.21 and 0.24 percentage points in the NordICC trial, are much closer

to the ITS estimate than to the markedly larger IV estimate of 0.44 percentage points. Likewise,

old-fashioned per-protocol analysis of NORCCAP data yields estimates around 0.24 percentage

points, close to the ITS effect of 0.22, while the corresponding IV estimate is 64% larger (0.36).

The shortfall in as-treated estimates may be explained by the fact that experimental subjects who

take up screening are older and are more likely to have risk-elevating health concerns than the

overall study population.

Old-fashioned per-protocol estimates for the three other trials are similar to the corresponding

IV estimates, suggesting selection bias is not a foregone conclusion. Without IV estimates as a

point of comparison, however, we’d never know for sure. IV adjusts for nonadherence without risk

11Except for PLCO, for which we obtained anonymized microdata, estimates and standard errors reported here
are computed using the published trial results. See Appendix A.2 for details.
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of selection bias from unobserved as well as from observed factors.

4 Establishing Clinical Relevance: An IV Toolkit

A regression of the reduced-form ITS estimates in column 2 of Table 2 on the corresponding first-

stage estimates (reported in column 3) yields an R2 of around 0.63. This descriptive fact hints

at the possibility that adherence explains much of the variance in ITS effects. Three IV tools—

visual instrumental variables (VIV), overidentification testing, and the distribution of complier

characteristics—help examine this claim. The results support the external validity, and therefore

the clinical relevance, of IV estimates of CRC screening effects.

4.1 Visualizing IV

The IV toolkit is applied to estimates from five trials and the experimental strata in three of the

trials. The parameters to be reconciled are pairs of reduced-form and first-stage coefficients (ρj , πj)

indexed by j = 1, . . . , J . The corresponding estimates are denoted by ρ̂j and π̂j . Within-trial results

are the reduced-form and first-stage estimates for three NordICC countries (Poland, Norway, and

Sweden), two NORCCAP regions (Oslo and Telemark), and 10 PLCO centers. Adding full-sample

estimates for SCORE and UKFSST, while deleting data points for the full NordICC, NORCCAP,

and PLCO samples to avoid duplication, leaves a total of J = 17 pairs of estimates.

VIV offers a graphical summary of the variation in (ρ̂j , π̂j) along with an overall estimate of

screening effects. Note first that if screening effects are assumed to be similar across trials, reduced

forms and first stages are roughly proportional:

ρj ≈ λπj ; j = 1, ...J ; (7)

where λ is the common LATE for screening compliers. This proportionality hypothesis motivates

a linear regression of estimated reduced forms on estimated first stages, with no intercept:

ρ̂j = λπ̂j + ηj . (8)

Regression residual ηj reflects estimation error in ρ̂j and π̂j , as well as approximation error when

the proportionality restriction fails due to screening effect heterogeneity.12

VIV plots ρ̂j against π̂j , along with the line of best fit suggested by (8). The slope of this line

yields an estimate of the common LATE for screening, an estimated denoted λ̂V IV . This estimate

is consistent for λ when the proportionality restriction (7) holds exactly, since ηj is then a sample

average with probability limit of zero as sample sizes grow. Otherwise, λ̂V IV estimates a weighted

average of trial- and strata-specific LATEs given by λj = ρj/πj .

When the VIV slope is estimated by weighted least squares with weights proportional to the

sample size times the within-trial variance of Zi, λ̂V IV is a two-stage least squares (2SLS) estimator

12Applications of VIV to model validation include Angrist [1990] and Angrist, Pathak and Zárate [2023]. Angrist
and Pischke [2009] sketch the underlying econometric theory.
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of λ.13 2SLS is a powerful and flexible estimation strategy that combines multiple instruments to

produce a single, more precise IV estimate than would be obtained using the instruments one at

a time. 2SLS also accommodates covariates—in this case, a set of dummies indicating data from

each trial and stratum in a data set that stacks data from all trials and strata.

Panel A of Figure 1 shows a VIV plot for the 17 groups examined here; whiskers in the plot

indicate 95% confidence intervals for reduced-form estimates. While some reduced-form estimates

are more precise than others, overall, these estimates appear to be a linearly decreasing function

of estimated first-stage adherence rates.14 Fit with no intercept and using 2SLS weights, the VIV

regression line in the figure has slope λ̂V IV = −0.0047, with an estimated standard error of 0.0017.

This estimate of the effect of screening on CRC incidence is close to the median of the group-specific

IV estimates reported in Table 2.

The VIV line fits both cross-trial and within-trial estimates remarkably well. Low NordICC

adherence, for instance, is associated with modest cancer reductions while high PLCO adherence is

associated with larger CRC drops. NORCCAP, SCORE, and UKFSST, with middling adherence,

also yield middling CRC impact. This consistent pattern is especially striking in view of the fact

that NordICC assigned initial colonoscopy screening, while other trials offered sigmoidoscopy. It is

also noteworthy that within NordICC the leftmost blue triangle marks low adherence and impact for

Poland, with an impact and adherence roughly twice as large for Norway. A very noisy estimate

for Sweden (reflecting a small sample size) sits well above the VIV line but is not statistically

distinguishable from it. A few outlying screening effects for PLCO likewise have confidence intervals

covering the 2SLS line.

In marked contrast with reduced-form ITS estimates, IV estimates of CRC screening LATEs are

unrelated to adherence. This is documented in Panel B of Figure 1, which plots λ̂j = ρ̂j/π̂j against

first-stage adherence. The line fit to these points (again using 2SLS weights, though now allowing

for an intercept) has a slope of effectively zero with a standard error of 0.0039. In other words,

adjusting ITS estimates for differential adherence fully explains the strong negative relationship

plotted in Panel A.

4.2 Overidentification Testing

The VIV line plotted in Panel A of Figure 1 yields a good but imperfect fit. Under the proportion-

ality hypothesis expressed by (7), anything less than a perfect fit is due to sampling variance in the

underlying estimates. Can the fact that the VIV fit is imperfect indeed be put down to sampling

variance alone? An overidentification test statistic answers this question in a formal test.

In the context of the estimates in our VIV plot, the overidentification test is a goodness-of-fit

13Appendix A.3 details 2SLS and derives these weights. Intuitively, 2SLS weights reflect the fact that,under
classical regression assumptions, the variance of the reduced-form estimate for each trial is inversely proportional to
trial size times the within-trial variance of the instrumental variable, Zi.

14The reduced-form and first-stage estimates plotted in this figure appear in Appendix Table A1, along with
estimated standard errors.
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statistic that can be written:

T̂ =
∑

j
(1/σ̂2

j )(ρ̂j − λ̂V IV π̂j)
2, (9)

where σ̂2
j denotes the estimated sampling variance of ρ̂j − λ̂V IV π̂j . Under the proportionality

null hypothesis, T̂ has an asymptotic chi-square distribution with degrees of freedom given by the

number of restrictions being tested. A single trial is enough to compute one LATE; two trials can be

used to estimate two LATEs. The proportionality restriction implying that these are equal yields

2− 1 = 1 degree of freedom. More generally, when data from J trials and strata used to estimate a

single λ, we’re imposing (and therefore testing) J − 1 restrictions. The null hypothesis is rejected

when the overidentification test statistic is surprisingly large relative to a χ2(J − 1) distribution.

In other words, the test rejects when deviations from the VIV line in Panel A of Figure 1 are too

large to be attributed to sampling variance in the estimates.15

Over-identification test statistics, reported in Table 3 along with associated degrees of freedom

and p-values, indicate that the proportionality hypothesis fits the reduced-form and first-stage

estimates well.16 The first row of the table reports test results for all groups used to fit the VIV

line in Figure 1, yielding a test value of around 12 and a p-value of 0.74. Test statistics in remaining

rows evaluate the proportionality restriction across the five trials while pooling strata within trails,

and for estimates across strata within NordICC, NORCCAP, and PLCO. Consistent with the

impression made by the figure, no test weighs against the hypothesis of a stable per-protocol

screening effect.

4.3 Characterizing Compliers

IV overcomes the problem of selection bias in old-fashioned per-protocol estimates, but self-selection

into adherence can still limit the clinical relevance of IV estimates. If, for instance, a particular

demographic group is substantially under-represented among compliers, LATEs might be seen as

being of limited value for this group. On the other hand, when all groups of interest are well-

represented among LATE compliers, IV estimates of screening effects are more likely to predict

screening effects beyond the trials that produced them. Our third IV tool consists of simple

estimators of complier characteristics.

With no always-takers, complier characteristics are revealed by the characteristics of screened

participants. To be precise, consider a screening trial that collects data on subject characteristics,

such as demographic information, socioeconomic background, and baseline health, summarized in

a covariate vector with generic element Xi. The complier mean of this characteristic is defined as

E[Xi | Ci = 1]. When S0i = 0 for all i and Zi is independent of Xi, E[Xi | Ci = 1] = E[Xi | Si = 1].

This point parallels the result highlighted in Section 2.3, that LATE equals the average screening

15Angrist and Pischke [2009] detail the theory behind overidentification testing. In an antecedent of the overiden-
tification test applied here, Glasziou [1992] tests for homogeneity of IV estimates in a meta-analysis of the effects of
mammography in five breast cancer screening trials.

16Appendix A.4 details test statistic calculation.
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effect on the screened in a trial with no control-group crossovers.17

Allowing for control-group crossovers, we must contend with the fact that Ci = S1i − S0i is

unobserved since only one of the two potential adherence variables is seen for each individual i.

Even so, complier means are easily estimated. To see this, consider an IV estimand with SiXi

replacing the outcome variable Yi. Because Xi is independent of Zi, this new IV estimand can be

simplified as:

E[SiXi | Zi = 1]− E[SiXi | Zi = 0]

E[Si | Zi = 1]− E[Si | Zi = 0]
=

E[S1iXi]− E[S0iXi]

E[S1i]− E[S0i]

=
E[(S1i − S0i)Xi]

E[S1i − S0i]
= E[Xi | Ci = 1]. (10)

Complier mean Xi is therefore given by the LATE theorem applied to dependent variable SiXi.

In the five CRC trials considered here, compliers have demographic characteristics broadly

representative of trial participants at large. This is documented in Figure 2, which compares

complier means with the averageXi in full study samples for dummy variables indicating female and

younger participants, and, for NORCCAP, a dummy indicating Oslo residents. Although there are

some differences (compliers tend to be older and are more likely to be male), all demographic groups

are well-represented among compliers in each study. Oslo residents are somewhat underrepresented

among NORCCAP compliers, but not dramatically so.

5 Summary and Conclusions

IV analysis of cancer screening trials offers an easily-navigated path from ITS effects of screening

invitations to credible per-protocol estimates of the causal effects of screening itself. Applied to

five CRC screening trials with substantial nonadherence, IV methods reconcile divergent ITS effects

with an estimated CRC incidence reduction from screening of nearly half a percentage point. Efforts

to promote CRC screening would do well to feature this as the expected benefit for subjects who

screen. It’s also noteworthy that the U.S. Preventive Services Task Force (USPSTF) marks trial

evidence down due to “Inconsistency of findings across individual studies.”18 IV estimates showing

consistent effects on subjects actually screened may therefore prompt an evidence quality upgrade.

Economists have long used IV to address nonadherence and other sources of selection bias in

wide-ranging settings. Although IV ideas have also filtered into medical statistics, progress on the

clinical side has been surprisingly slow. The gap across disciplines partly reflects missing data.

For instance, a fair proportion of the PLCO control-group appears to have been screened. Yet,

estimates using PLCO data (including ours) ignore this fact since information on screening for

the full study sample is unavailable [Schoen et al., 2012]. The Kowalski [2023] IV analysis of the

CNBSS mammography screening experiment uses information on screening among controls, but

17When treatment assignment rates differ within strata, as in the NORCCAP trial studied here, screening offers
are independent of Xi only within strata. A consequence of this is that complier means may diverge from treated
means even without always-takers. This point is fleshed out in Appendix A.5, which shows how to compute complier
means in stratified trials.

18See https://www.uspreventiveservicestaskforce.org/uspstf/about-uspstf/methods-and-processes/grade-definitions.
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CNBSS appears to be the only trial cited in the USPSTF mammography guidelines that identifies

always-takers. Short-sighted data collection is not limited to cancer screening; the landmark mRNA

COVID-19 vaccine trial likewise neglects information on post-randomization vaccination among

controls [El Sahly et al., 2021]. In addition to promoting use of IV, we hope that our work encourages

routine monitoring of treatment status for all trial subjects, identifying treatments received in both

experimental and control groups, whether provided per protocol or otherwise.
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Figure 1

Panel A. Visual Instrumental Variables

Weighted slope = -0.0047
SE = 0.0017
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Panel B. IV Estimates Plotted Against First-stage Estimates

Weighted slope = -0.0000
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Weighted slope = -0.0048
SE = 0.0020
R2 =  0.89
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Notes: Panel A of this figure plots reduced-from estimates of effects of screening invitations on colorectal cancer (CRC)
diagnosis against first-stage estimates for 17 groups derived from 5 pragmatic trials. Panel B plots the corresponding
IV estimates of screening effects. The mediating variable for IV is screening participation. Samples are for 3
NordICC countries, 2 NORCCAP regions, 10 PLCO centers, and for all randomized participants in each of UKFSST,
NORCCAP, SCORE, NordICC, and PLCO. These trials randomly offered participating subjects sigmoidoscopy or
colonoscopy screening, in populations that are otherwise unlikely to screen. CRC incidence is measured 10-12 years
after random assignment. Regression lines plotted in the figures are weighted by Pjpj(1− pj) where Pj is the sample
size and pj is the offer rate and computed omitting estimates for the full NordICC, NORCCAP, and PLCO samples
to avoid duplication. The line in Panel A is fit without an intercept. The slope of this line is an estimate of λ, as
described in the text. Whiskers mark 95% confidence intervals.
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Figure 2: Complier Characteristics
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Notes: This figure compares the sex, age, and region distribution for full study samples and screening compliers.
Complier means are computed as described in the text. Bars show sample proportions (dummy variable means)
in the groups indicated on the x-axis. Young refers to age group 50-54 for NORCCAP and to 55-59 for NordICC,
SCORE, and PLCO.
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Table 1: Sigmoidoscopy and Colonoscopy Screening Trials

Trial NordICC NORCCAP SCORE UKFSST PLCO
(1) (2) (3) (4) (5)

Countries Poland, Norway, Sweden Norway Italy UK U.S.

Screening Period 2009-2014 1999-2001 1995-1999 1994-1999 1993-2001

Initial Screening Type Colonoscopy Sigmoidoscopy + FOBT Sigmoidoscopy Sigmoidoscopy Sigmoidoscopy

Follow-up Screening Type Biopsy Colonoscopy, Biopsy Colonoscopy Colonoscopy Second sigmoidoscopy
(after 3/5 year)

Participants Identification Population registry Population registry Survey Survey Survey

Median Follow-up Years 10.0 10.9 10.5 11.2 11.9

Participants (N) 84,585 98,792 34,272 170,038 154,900

Range 55-64 50-64 55-64 55-64 55-74

Invitation Ratio 0.33 0.21 0.50 0.34 0.50

Adherence Rate 0.42 0.63 0.58 0.71 0.87

Notes: This table summarizes key features of the trials analyzed here. These trials randomly assigned an invitation to screening in the form of flexible
signoidoscopy or colonoscopy. Half of the NORCCAP treated group was invited for sigmoidoscopy, with the rest invited for both sigmoidoscopy and fecal occult
blood test (FOBT). The PLCO trial offered a second screening 3 or 5 years after the initial screening. The second screening had an adherence rate of 0.51. The
adherence rate is the proportion screened in the group invited for screening. The number of participants counts subjects with follow-up data. All participants
who receive the first screening are invited to receive a second flexible sigmoidoscopy after 3 or 5 years. Follow-up screening invitation in NORCCAP, SCORE,
and UKFSST are based on polyp detection in the initial screening. Second sigmoidoscopy screening invitations are to all invited group. NordICC does not
provide follow-up screenings.
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Table 2: IV Estimates of Screening Effects on CRC Incidence

Per-protocol

First Stage PP Omitting
Control Mean ITS (Adherence) IV/LATE As-treated never-takers

(1) (2) (3) (4) (5) (6)

NordICC 0.0110 -0.0019 0.4197 -0.0044 -0.0021 -0.0024
(0.0006) (0.0020) (0.0017) (0.0009) (0.0010)

NORCCAP 0.0114 -0.0022 0.6297 -0.0035 -0.0025 -0.0024
(0.0007) (0.0027) (0.0013) (0.0009) (0.0009)

SCORE 0.0179 -0.0032 0.5784 -0.0055 -0.0050 -0.0051
(0.0009) (0.0019) (0.0024) (0.0014) (0.0015)

UKFSST 0.0161 -0.0037 0.7114 -0.0052 -0.0051 -0.0051
(0.0005) (0.0013) (0.0008) (0.0006) (0.0006)

PLCO 0.0171 -0.0037 0.8660 -0.0042 -0.0038 -0.0040
(0.0006) (0.0012) (0.0007) (0.0006) (0.0006)

Notes: This table reports the estimated effect of colonoscopy screening on 10-year colorectal cancer (CRC)
incidence. The instrument is a randomly assigned invitation to undergo colonoscopy/sigmoidoscopy screening;
treatment is participation in colonoscopy/sigmoidoscopy screening. The outcome variable indicates CRC diagnosis
10-12 years after random assignment. Column 1 reports the mean of CRC incidence diagnosis in the group not
offered screening. Column 2 reports the reduced-form (intention-to-screen; ITS) effects of screening invitation on
CRC incidence; column 3 reports the first-stage effect of screening invitation on screening. The IV estimate
reported in column 4 is the ratio of ITS to first stage. Column 5 reports the as-treated effects of undergoing
screening on CRC incidence; column 6 reports effects of invitation to screening on CRC incidence, omitting those
that were invited but did not undergo screeening. Robust standard errors appear in parentheses.
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Table 3: Overidentification Tests

Test statistic D.f. p-value
(1) (2) (3)

All sites 12.03 16 0.74

All studies 1.79 4 0.77

NordICC countries 0.60 2 0.74

NORCCAP regions 0.05 1 0.83

PLCO centers 10.08 9 0.34

Notes: This table reports overidentification test statistics computed as described in Appendix A.4, along with the
associated degrees of freedom and p-values. The NordICC overidentification test statistic compares IV estimates for
3 countries (Poland, Norway, and Sweden). The NORCCAP overidentification test statistic compares IV estimates
for 2 regions (Oslo and Telemark). The PLCO overidentification test statistic compares IV estimates across 10 PLCO
screening centers.
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A Appendix

A.1 IV Estimates Contributing to Figure 1

Table A1: IV Estimates of Screening Effects Within Trials

N ITS First Stage 
(Adherence)

IV/LATE

(1) (2) (3) (4) 

54,528 -0.0014 0.3301 -0.0041
(0.0008) (0.0035) (0.0025)

26,411 -0.0033 0.6074 -0.0054
(0.0014) (0.0052) (0.0023)

3,646 0.0007 0.3980 0.0019
(0.0038) (0.0140) (0.0095)

73,190 -0.0027 0.5600 -0.0049
(0.0015) (0.0049) (0.0026)

25,488 -0.0040 0.7002 -0.0057
(0.0018) (0.0045) (0.0025)

13,164 -0.0067 0.8511 -0.0079
(0.0021) (0.0044) (0.0024)

8,105 -0.0035 0.8342 -0.0041
(0.0024) (0.0058) (0.0029)

10,842 -0.0026 0.8270 -0.0031
and Education Institute (0.0024) (0.0051) (0.0030)

24,662 -0.0020 0.7138 -0.0029
(0.0015) (0.0041) (0.0021)

28,860 -0.0026 0.9254 -0.0028
(0.0015) (0.0022) (0.0016)

15,041 -0.0080 0.8650 -0.0092
in St Louis (0.0021) (0.0039) (0.0025)

16,930 -0.0038 0.9263 -0.0041
(0.0019) (0.0028) (0.0021)

14,363 -0.0010 0.9230 -0.0010
(0.0019) (0.0031) (0.0021)

16,732 -0.0043 0.8949 -0.0048
(0.0020) (0.0034) (0.0022)

6,188 -0.0042 0.9651 -0.0044
at Birmingham (0.0031) (0.0033) (0.0032)

C. PLCO

University of Colorado

Georgetown University

Pacific Health Research 

Henry Ford 

University of Minnesota

Washington University 

University of Pittsburgh

University of Utah

Marshfield

University of Alabama 

Telemark

A. NordICC

Poland

Norway

Sweden

B. NORCCAP

Oslo

Notes: This table reports IV estimates of the effect of colonoscopy screening on colorectal cancer (CRC) incidence for
subgroups in NordICC, NORCCAP, and PLCO. The instrument is a randomly assigned screening offer. NORCCAP
estimates in Panel B are based on a 15-year follow-up; other estimates are for 10-12 year follow-ups. Robust standard
errors appear in parentheses.

A.2 Estimation Sources and Methods

This appendix gives sources and methods for the ITS, IV, and old-fashioned per-protocol estimates

in Table 2 and Appendix Table A1.
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NordICC

Estimates come from published results in Bretthauer et al. [2022]. Specifically, statistics used to

compute reduced-form (ITS) and first-stage (adherence) estimates for the full trial are taken from

Tables 1 and 2. IV estimates are computed from these as described in the text. ITS estimates

reported in Bretthauer et al. [2022] appear to adjust for covariates; ours do not.

Our per-protocol estimate omitting never-takers is computed by dividing the number of CRC

cases for screened and control groups reported in Table S4 by numbers of subjects in these groups

as reported in Table 1 (102/11843−622/56365 = −0.0024). An as-treated estimate is computed by

moving the invited but not screened participants to the control group (102/11843− (622 + (259−
102))/(56365 + (28220− 11843)) = −0.0021). The number of CRC cases invited but not screened

is obtained from Table S1 and S4, while the size of the group is obtained from Table 1.

Statistics used to compute country-specific adherence rates and ITS estimates are taken from

Table 1 and Supplementary Table S5, respectively. Bretthauer et al. [2022] supplement Table

S4 reports an “adjusted per-protocol estimate” of −0.0038; the supplement notes CRC risk gaps

between invited non-screened subjects and controls. In contrast with estimates relying on covariate

adjustment, IV estimates should be insensitive to control for (pre-treatment) covariates.

Standard errors are computed by applying conventional “robust” (i.e., heteroscedasticity-consistent)

formulas for OLS and 2SLS. Our calculations exploit the fact that with dummy dependent vari-

ables, these formulas can be implemented using published data on sample sizes, screening rates,

and CRC incidence since our outcomes, treatments, and instruments are dummies.

Specifically, robust standard errors for ITS estimates are given by:

σ̂(ρ̂j) =

[
( 1
N

∑
i(Zi − Z̄)2(Yi − Ŷi)

2)

N
(
1
N

∑
i(Zi − Z̄)2

)2
]1/2

, (11)

where N is trial sample size, Z̄ is the sample mean of Zi and Ŷi is the fitted value from a regression

of Yi on Zi. Since Zi and Yi are both dummies, the numerator of equation (11) is given by:

1

N

∑
i

(Zi − Z̄)2(Yi − Ŷi)
2 =p(Y = 1, Z = 0)(0− Z̄)2(1− Ȳ 0)2 + p(Y = 0, Z = 0)(0− Z̄)2(0− Ȳ 0)2

+ p(Y = 1, Z = 1)(1− Z̄)2(1− Ȳ 1)2 + p(Y = 0, Z = 1)(1− Z̄)2(0− Ȳ 1)2,

where p(Y = m,Z = n) denotes the sample proportion of observations with Yi = m and Zi = n,

and Ȳ n gives the sample average Yi among observations where Zi = n. The denominator of (11) is

computed using:

1

N
(
∑
i

(Zi − Z̄)2) = p(Z = 0)(0− Z̄)2 + p(Z = 1)(1− Z̄)2,

where p(Z = n) gives the sample proportion of observations where Zi = n. Proportions are

computed using p(Y = m,Z = n) and p(Z = n) numerator counts in Tables 1 and 2 in Bretthauer
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et al. [2022]; the Ȳ n means are computed by dividing the number of CRC cases in a group by the

size of the group. The mean offer rate, Z̄, is computed by dividing the size of the group invited to

screening by the overall sample size. Appropriately modified versions of these formulas yield robust

standard errors for the old-fashioned per-protocol (OLS) estimates.

Robust standard errors for IV estimates are given by:

σ̂(λ̂j) =

( 1
N

∑
i(Ŝi − S̄)2(Yi − (α̂IV + β̂IV Si))

2)

N
(

1
N

∑
i(Ŝi − S̄)2

)2

1/2

, (12)

where S̄ is the sample mean of Si, Ŝi gives the first-stage fitted value for observation i and (α̂IV , β̂IV )

are the IV (second-stage) intercept and slope estimate.19 We compute β̂IV by dividing the ITS

estimate by the adherence rate. The intercept is α̂IV = Ȳ − β̂IV S̄, where Ȳ is the sample mean of

Yi. Since Zi, Si, and Yi are dummies, the numerator in equation (12) expands as:

1

N

∑
i

(Ŝi − S̄)2(Yi − (α̂IV + β̂IV Si))
2

=p(Y = 1, S = 1, Z = 1)(S̄1 − S̄)2(1− (α̂IV + β̂IV ))
2

+ p(Y = 0, S = 1, Z = 1)(S̄1 − S̄)2(0− (α̂IV + β̂IV ))
2

+ p(Y = 1, S = 0, Z = 1)(S̄1 − S̄)2(1− α̂IV )
2 + p(Y = 0, S = 0, Z = 1)(S̄1 − S̄)2(0− α̂IV )

2

+ p(Y = 1, S = 0, Z = 0)(S̄0 − S̄)2(1− α̂IV )
2 + p(Y = 0, S = 0, Z = 0)(S̄0 − S̄)2(0− α̂IV )

2,

where p(Y = m,S = q, Z = n) counts the sample proportion with Yi = m, Si = q, and Zi = n

and where S̄p gives the sample average Si among observations where Zi = n, with other sample

proportions and sample means defined similarly. Here we use the fact that there are no always-

takers, so p(Y = 1, S = 1, Z = 0) = p(Y = 0, S = 1, Z = 0) = 0. The denominator of equation (12)

is computed using:

1

N

∑
i

(Ŝi − S̄)2 = p(Z = 1)(S̄1 − S̄)2 + p(Z = 0)(S̄0 − S̄)2.

Note that the absence of always-takers implies S̄1 is the first-stage estimate and S̄0 = 0. As above,

counts and averages are obtained from Tables 1 and 2 in Bretthauer et al. [2022].

NORCCAP

Reduced-form (ITS) and first-stage (adherence) estimates for the full trial are taken from Supple-

mentary eTable2 in Holme et al. [2014]. A per-protocol estimate omitting never-takers is computed

as the difference in CRC incidence in the adherent group and control group using numbers reported

in Supplementary eTable2 in Holme et al. [2014], (116/12955−890/78220). An as-treated estimate

19Note that S̄ is also the sample mean of Ŝi, since the fitted values are given by OLS.
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is computed using the difference in CRC incidence in the adherent group and in the control and

nonadherent grousp (116/12955−(890+92)/(78220+7617)). We received region-specific adherence

rates and ITS estimates from the NORCCAP study team. IV estimates and all standard errors are

computed as for NordICC.

SCORE

Reduced-form (ITS) and first-stage (adherence) estimates for the full trial are computed using

numbers from Tables 1 and 2 in Segnan et al. [2011]. As-treated and per-protocol estimates omitting

never-takers are computed as for NORCCAP using numbers from Table 2 in Segnan et al. [2011].

IV estimates and all standard errors are computed as for NordICC.

UKFSST

Reduced-form (ITS) and first-stage (adherence) estimates for the full trial are computed using

numbers from Table 1 and Figure 1 in Atkin et al. [2010]. As-treated and per-protocol estimates

omitting never-takers are computed as for NORCCAP using numbers from Table 2 in Atkin et al.

[2017]. IV estimates and all standard errors are computed as for NordICC.

PLCO

PLCO estimates and standard errors were computed using microdata obtained from the Cancer

Data Access System (CDAS). The CDAS data set records trials subjects assignment, receipt of

initial screening among those invited to screen, receipt of a later screening (in 3 years or in 5 years),

the PLCO study center recruiting subjects, and a colorectal cancer (CRC) incidence diagnosis

through 2009. Screening is coded according to whether treated subjects received any screening

defined. The CRC outcome indicates whether participants were diagnosed with CRC any time

from random assignment through 2009.

A.3 Visual IV and 2SLS

The no-constant best-fit line in Figure 1 weights trial sites by trial sample size times the within-

trial variance of Zi. We show here that the slope of this line is the two-stage least squares (2SLS)

estimate of the common screening effect, λ.

2SLS gets its name from the fact that it’s computed in two regression steps. The 2SLS estimator

corresponding to Figure 1 can be described by a causal “second-stage” model of the form:

Yi =
∑
j

βjDij + λSi + εi,

with corresponding first-stage equation:

Si =
∑
j

αjDij +
∑
j

πjDijZi + νi.
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In the context of multiple trials, the 2SLS estimation sample stacks data from J sites, while the

Dij are J dummies indicating participants in site j. 2SLS proceeds by estimating the first-stage

equation, then replacing Si in the causal model with first-stage fitted values. A key feature of

2SLS as implemented here is that the first-stage and reduced-form models are saturated, meaning

there’s a dummy for every possible combination of Dij and Zi). A regression therefore fits the

corresponding sample conditional means perfectly.

2SLS and VIV equivalence follows from Theorem 3 in Angrist and Imbens [1995], which shows

that the 2SLS estimator in models with a saturated first stage converges to a weighted average of

one-at-a-time IV estimands:

λ2SLS =
∑
j

(
PjVjπ

2
j∑

k PkVkπ
2
k

)
ρj
πj

,

where Pj = Pr(Dij = 1) and Vj = V ar(Zi | Dij = 1). This formula can be rewritten:

λ2SLS =

∑
j Wjπjρj∑
j Wjπ2

j

,

where Wj = PjVj . Thus, the 2SLS estimand is a weighted regression of ρj on πj with no intercept

and weights Wj . The 2SLS estimator is the sample analog of this formula.

A.4 Over-identification Test Statistics

The test statistics reported in Table 3 are computed using equation (9), where σ̂2
j = σ̂(λ̂j)

2π̂2
j and

σ̂(λ̂j) is the robust IV standard error from equation (12). This variance estimate is derived from the

asymptotic distribution of the IV estimates under the proportionality null hypothesis of ρj/πj = λ:

√
N(λ̂j − λ) ⇒ N (0, Nσ(λ̂j)

2),

where Nσ(λ̂j) is the probability limit of Nσ̂(λ̂j). Note that π̂j converges in probability to a

constant. Application of Slutsky’s theorem therefore gives:

√
N(ρ̂j − λπ̂j) =

√
N(λ̂j − λ)π̂j ⇒ N (0, Nσ(λ̂j)

2π2
j ),

such that σ̂(λ̂j)
2π̂2

j estimates the asymptotic sampling variance of ρ̂j − λπ̂j .

An infeasible test statistic defined as

T̃ =
∑

j
(1/σ̂2

j )(ρ̂j − λπ̂j)
2

is asymptotically a sum of J squared standard normals, and so is asymptotically distributed χ2(J)

under the null. Replacing λ with λ̂V IV to obtain T̂ changes the null distribution to χ2(J − 1); see

Newey [1985] for details.
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A.5 Complier Characteristics With Stratification

For the NORCCAP trial, which is stratified by region with different assignment rates in each,

complier means are estimated separately in each region and then averaged using the share of

compliers in each region. To see how this works, let categorical variable Wi ∈ {1, . . . ,K} encode

strata membership for subject i. Iterating expectations over strata yields:

Pr(Xi = 1 | Ci = 1) =
∑
k

Pr(Xi = 1 | Ci = 1,Wi = k)Pr(Wi = k | Ci = 1). (13)

The term Pr(Xi = 1 | Ci = 1,Wi = k) can obtained by applying (10) within strata. The second

term inside the sum, Pr(Wi = k | Ci = 1), can be obtained using:

Pr(Wi = k | Ci = 1) = Pr(Ci = 1 | Wi = k)
Pr(Wi = k)

Pr(Ci = 1)
,

where Pr(Ci = 1 | Wi = k) is the strata-specific compliance (adherence) rate (equal to the first

stage within strata). The overall compliance rate, Pr(Ci = 1), is computed by averaging these

strata-specific rates, weighting by strata size.

Even in trials with no always-takers (i.e. control-group crossovers), stratification may cause

complier means to diverge from treated means. The latter are given by:

Pr(Xi = 1 | Si = 1) =
∑
k

Pr(Xi = 1 | Ci = 1,Wi = k)Pr(Wi = k | Si = 1), (14)

using Pr(Xi = 1 | Si = 1,Wi = k) = Pr(Xi = 1 | Ci = 1,Wi = k) when S0i = 0. Moreover,

Pr(Wi = k | Si = 1) =
Pr(Ci = 1 | Wi = k)Pr(Zi = 1 | Wi = k)Pr(Wi = k)

Pr(Ci = 1)Pr(Zi = 1)

= Pr(Wi = k | Ci = 1)
Pr(Zi = 1 | Wi = k)

Pr(Zi = 1)
.

The weights applied to Pr(Xi = 1 | Ci = 1,Wi = k) in (13) and (14) differ unless assignment rates

are constant within strata, in which case Pr(Zi = 1 | Wi = k) = Pr(Zi = 1) for all k.
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